

UNIVERSIDAD DE SALAMANCA Doctorado en Biología Funcional y Genómica

TESIS DOCTORAL

Implicaciones de los sistemas XRE/DUF397 de *Streptomyces coelicolor* en la producción de antibióticos

Carolina Riascos Cuero Salamanca, 2023

Dr. Ramón Santamaría Sánchez, Investigador Científico del CSIC y Dra. Margarita Díaz

Martínez, Profesora Titular del Departamento de Microbiología y Genética de la

Universidad de Salamanca

CERTIFICAN:

Que la tesis titulada "Implicaciones de los sistemas XRE/DUF397 de S. coelicolor en la

producción de antibióticos", presentada por D. Carolina Riascos Cuero para optar al

grado de Doctor por la Universidad de Salamanca, dentro del programa de Doctorado

en Biología Funcional y Genómica, ha sido realizada bajo su dirección en el Instituto de

Biología Funcional y Genómica, centro mixto de la Universidad de Salamanca y el

Consejo Superior de Investigaciones Científicas (USAL/CSIC).

Y para autorizar su presentación y evaluación por el tribunal correspondiente, extienden

el presente certificado en Salamanca, a 20 de junio de 2023.

Fdo: Dr. Ramón Santamaría Sánchez

Fdo: Dra. Margarita Díaz Martínez

Quargacios?

Dr. César Roncero Maíllo, Coordinador del Programa de Doctorado en Biología Funcional y Genómica (R.D. 99/2011) de la Universidad de Salamanca

CERTIFICA:

Que la tesis titulada "Implicaciones de los sistemas XRE/DUF397 de *S. coelicolor* en la producción de antibióticos", presentada por D. Carolina Riascos Cuero para optar al título de Doctor por la Universidad de Salamanca, ha sido realizada bajo la dirección del Dr. Ramón Santamaría Sánchez y de la Dra. Margarita Díaz Martínez dentro del programa de Doctorado de Biología Funcional y Genómica, en el Instituto de Biología Funcional y Genómica, centro mixto de la Universidad de Salamanca y el Consejo Superior de Investigaciones Científicas (USAL/CSIC).

Y para autorizar su presentación y evaluación por el tribunal correspondiente, extienden el presente certificado en Salamanca, a 20 de junio de 2023.

Fdo: Dr. César Roncero Maíllo

Financiación

La presente Tesis Doctoral ha sido posible gracias a la concesión de una beca/condonada para la formación de doctorandos en el exterior 2019 por parte del Ministerio de Ciencia Tecnología e Innovación de Colombia (Minciencias) y una beca de la Universidad de Salamanca y el Banco Santander.

El trabajo realizado ha sido financiado a través de los proyectos **BIO2015-66958-R** (Ministerio de Economía y Competitividad / Fondo Europeo de Desarrollo Regional), **PID2019-107716RB-I00** (Ministerio de Ciencia e Innovación / Agencia Estatal de Investigación) y **SA036G19** (Consejería de Educación de la Junta de Castilla y León).

El Instituto de Biología Funcional y Genómica (Universidad de Salamanca / Consejo Superior de Investigaciones Científicas), donde se ha desarrollado la presente Tesis Doctoral, ha recibido apoyo económico a través del programa "Escalera de Excelencia" CLU-2017-03/14-20 (Junta de Castilla y León / Fondo Europeo de Desarrollo Regional).

Dedicatoria

Dedico esta nueva proeza de mi vida, a toda mi familia que ha comprendido mi ausencia durante estos años y a tres mujeres que me sostienen siempre:

Mi abuela, María Luisa, que ha sido incondicional con todo y sus silencios; mi madre, Marta Inés, siempre dispuesta a escuchar y a solventarlo todo, mi prima, Vanessa, que llena de colores, fábulas y argumentos mi vida.

Agradecimientos

Primero agradecer a mis dos directores de tesis Ramón Santamaría Sánchez y Margarita Díaz Martínez, que me dieron la oportunidad de desarrollar mi tesis en su grupo de investigación, me hicieron parte de él y me han guiado hasta lo que hoy expongo aquí.

Gracias a Ana Martínez-Carrasco Pérez, nuestra técnica y mi amiga, que siempre fue incondicional a la hora de ayudar a solucionar cualquier dilema. Que trabajó mano a mano conmigo para culminar muchos de los experimentos que desarrollé, como si fueran propios.

Agradezco a mis compañeros del laboratorio 1.9: Ricardo Sánchez de la Nieta Moreno, Javier García Martín, María Lorenzo Sánchez, Ramiro Morán Cacho y a todos los que han pasado durante estos cuatro años de desarrollo de mi tesis, grandes cómplices que me han colmado siempre de mucho entusiasmo para aprender y hacerlo mejor.

Asimismo, agradezco a los compañeros en general del IBFG; Alberto Bugallo, Alberto Pineda, Adrián Campos, Laura Marín, Mary Curto, Marta Hoya, Laura Gómez, Verónica Díaz, Ana Santos, Vanessa Carvalho y Sabas García por hacer este desafío más agradable.

También agradecer al Dr. Juan Fernando Alzate Restrepo colaborador y compatriota, que ayudo a que el análisis de RNAseg fuera posible.

Finalmente, agradecer a todos los predoctorales, postdoctorales, técnicos, investigadores principales y funcionarios del Instituto de Biología Funcional y Genómica, que hacen que el instituto sea lo que es.

A todos por ser mi familia aquí en España, gracias.

Tabla de contenido

Introduc	cción	19
I1 Géi	nero Streptomyces	21
11.2	2 Streptomyces coelicolor	22
11.3	3 Ciclo de vida	23
11.4	1 Metabolitos secundarios	25
11.5	5 Metabolitos secundarios en <i>S. coelicolor</i>	28
I2 Reg	gulación de la producción de metabolitos secundarios en Streptomyces	31
12.1	L Factores transcripcionales (TF)	31
12.2	2 Reguladores específicos	32
12.3	3 Reguladores pleiotrópicos	33
12.4	4 Sistemas de dos componentes (TCS)	34
12.5	5 Familia TetR	36
12.6	5 Elementos de Respuesta Xenobiótico (XRE)	37
12.7	7 Dominio de función Desconocida (DUF)	38
I3 Sist	temas XRE/DUF397	39
Anteced	lentes y objetivos	41
Resultac	dos y Discusión	45
Capít	ulo 1	47
Sisten	nas XRE/DUF397 de <i>S. coelicolor</i>	47
C1.	1 Posición y orientación de los genes que codifican los sistemas XRE/DUF397	47
C1.	2 Genes vecinos que codifican proteínas de interés	50
C1.	3 Características generales de los sistemas XRE/DUF397	53
C1.	4 Genes homólogos en otras especies del filo Actinobacteria	53
C1.	5 Análisis filogenético de los sistemas XRE/DUF397	59
C1.	6 Dominios de las proteínas XRE/DUF397	63
C1.	7 Modelado estructural de las proteínas	70
Capít	ulo 2	75
Sobre	expresión de los sistemas XRE/DUF397	75
C2.	1 Sobreexpresión de los 14 sistemas XRE/DUF397 en estudio	75
	2 Fenotipo de las colonias que sobreexpresan los 6 sistemas XRE/DUF397 eccionados	81
C2.	3 Fenotipo de la sobreexpresión de los 6 sistemas XRE/DUF seleccionados	82
C2.	4 Efecto sobre la actividad biológica de la sobreexpresión de los seis sistemas	87
C2.	5 Cuantificación de la producción de ACT con la sobreexpresión del sistema	
SCC	D2252/53	90

antibióticos y diferenciación	02
Capítulo 3	
·	
Obtención de mutantes de <i>S. coelicolor</i> carentes de sistemas XRE/DUF397	
C3.1 Obtención de los mutantes	
C3.2 Comprobación, análisis y complementación fenotípica de los mutantes	100
C3.3 Implicación de los sistemas XRE-DUF397 en producción de antibióticos y/o diferenciación	113
Capítulo 4	115
Análisis transcripcional de la sobrexpresión del gen scr1 (SC04441)	115
C4.1 Diseño del ensayo transcripcional	115
C4.2 Estimación de la calidad del RNA	118
C4.3 Análisis de expresión diferencial	120
C4.5 Validación del análisis transcripcional	179
C4.6 Conclusiones del análisis transcripcional	179
Conclusiones	181
Materiales y métodos	187
M1 Microrganismos utilizados y creados	189
M2 Vectores utilizados	189
M3 Medios y condiciones de cultivo	195
M3.1. Medios de cultivo	195
M3.2. Antibióticos utilizados en los medios de cultivo	196
M3.3. Condiciones de cultivo	196
M4. Conservación de cepas	197
M5. Obtención, manipulación y detección de DNA	197
M5.1. Extracción de DNA genómico de Streptomyces	197
M5.2 Extracción de DNA de plásmidos de <i>E coli</i>	198
M5.3 Electroforesis en gel de agarosa	198
M5.4 Purificación de fragmentos de DNA	198
M5.5 Técnicas básicas de ingeniería genética	198
M5.6 Reacción en cadena de la polimerasa (PCR)	198
M5.7 Reacción en cadena en tiempo real cuantitativa (qRT-PCR)	199
M5.8 oligonucleótidos utilizados	200
M6 Introducción de DNA en microorganismos	203
M6.1 Transformación en Streptomyces	203
M6.2 Transformación de F. coli	204

M6.3 Conjugación interespecífica	204
M7 Sobreexpresión de los 6 sistemas XRE/DUF seleccionados	204
M8 Antibiograma	205
M9 Utilización del sistema CRISPR-Cas9 para la deleción de los sistemas XRE/DUF397	206
M9.1 Elección y construcción de la secuencia guía	206
M9.2 Obtención de las secuencias molde	209
M9.3 Conjugación, eliminación del plásmido y comprobación de mutantes	213
M10 Ensayos de complementación	215
M11 Producción de antibióticos	217
M11.1 Cuantificación en medio liquido de ACT y RED	217
M12 Análisis de RNAseq	218
M12.1 Extracción de RNA	218
M12.2 Librería, secuenciación y análisis	218
M.12.3 Programas bioinformáticos y páginas web empleados en la realización de est	:e
trabajo	219
Bibliografía	221
Anexos	235
A1 Construcción de plásmidos derivativos de pNG3	237
A2 Número total de genes diferencialmente sobrexpresados en el análisis transcripcio de la cepa Sscr1	
A3 Expresión diferencial de cada uno de los metabolitos secundarios que varían en el análisis transcripcional de la cepa Sscr1	

Siglas y abreviaturas

ACP: Proteína transportadora de acilo **Mb**: Megabases

ACT: Actinorrodina MII: Micelio secundario

Amp: Ampicilina mL: mililitros

Apra: Apramicina Neo: Neomicina

BGC: Clústers de Genes Biosintéticos **NRPS:** Péptidos No Ribosomales

C: Citosina OCS: Sistema de un componente

°C: Grado Centígrado padj: p valor ajustado

CDA: Antibiótico Dependiente de Calcio

polimerasa

DNA: Ácido desoxirribonucleico

IPP: Isopentenil disfosfato

M: Molar

cDNA: DNA complementario

PKS: Policétido sintasa

qRT-PCR: Reacción en cadena en tiempo

CPK P1: Coelimicina P1

real cuantitativa

CSR: Reguladores Situados en los

RED: Undecilprodigiosina

Clústeres Biosintéticos

PIMAPP: Dimetilalil difosfato

RIN: Número de integridad del RNA

RNA: Ácido Ribonucleico

sgRNA: RNA guía única

DUF: Domino de función desconocida **RNAseq:** Secuenciación del RNA

NIASCY. Secuciniación des conocida

FC: Fold change

RNP: Péptidos no ribosomales

RNPS: Sintetasas de péptidos no

g: Gramo ribosomales

G: Guanina **rpm:** Revoluciones Por Minuto

h: Hora

RR: Regulador de Respuesta

SARP: Proteína Reguladora de Antibióticos de Streptomyces

HTH: Hélice giro hélice SCO: Streptomyces coelicolor ORF

kb: Kilobase **TCS:** Sistema de Dos Componentes

·

kDa: Kilodalton **TF:** Factor transcripcional

KS: Cetosintasa **TFR:** Reguladores transcripcionales

L: Litro XRE: Elemento de respuesta xenobiótico

Introducción

I1 Género Streptomyces

El género *Streptomyces* fue propuesto por primera vez por Waksman y Henrici en 1943 (UI-Hassan & Wellington, 2009). Se clasifica dentro del orden Actinomicetales y es el género tipo de la familia Streptomycetaceae (Ludwig & Klenk, 2005). Las bacterias del género *Streptomyces* son bacterias filamentosas Gram positivas con un alto contenido de GC en su DNA. Producen un micelio ramificado a nivel del sustrato el cual, al diferenciarse, forma filamentos aéreos que se componen de cadenas de esporas. Por ello las colonias en medio sólido, al principio se observan como una superficie suave, pero más tarde por el desarrollo del micelio aéreo se ven granuladas, polvorientas o aterciopeladas (Kämpfer, 2006).

Estas bacterias son quimioorganotrofas y ubicuas y la mayoría de ellas pueden degradar sustratos como la caseína, gelatina, hipoxantina, almidón y también celulosa. Además, utilizan una amplia gama de compuestos orgánicos como única fuente de carbono para la obtención de energía (Efthimiou et al., 2008). Se encuentran en gran proporción en el suelo y por tener toda esta capacidad degradativa son grandes recicladoras de carbono. Se caracterizan por la producción de una amplia cantidad de metabolitos secundarios, que les permite adaptarse a las condiciones inhóspitas del suelo, su nicho natural. Estos metabolitos secundarios tienen diversas propiedades, como son propiedades: antibióticas, antifúngicas, antihelmínticas, antitumorales e inmunosupresoras. Los cuales son muy importantes para este tipo de bacterias, porque les permite competir frente a otros microorganismos por recursos o hábitats. De hecho, estos microorganismos son responsables de la producción del 80% de los antibióticos naturales utilizados en la medicina humana, prácticas agrícolas y veterinaria (UI-Hassan & Wellington, 2009). Asimismo, son muy importantes en la producción de antitumorales, antifúngicos y agentes inmunosupresores.

11.2 Streptomyces coelicolor

Streptomyces coelicolor es la bacteria modelo de este género gracias a su disposición para análisis genético y la producción de dos antibióticos coloreados, actinorrodina (ACT) y undecilprodigiosina (RED).

Se caracteriza por tener un cromosoma lineal de 8.667.507 pares de bases, con 7825 genes predichos que incluye más de 20 clústers que codifican para metabolitos secundarios conocidos o propuestos. Además, su genoma contiene una gran cantidad de genes reguladores que participan en las respuestas a los estímulos externos y al estrés (Bentley et al., 2002).

Su cromosoma lineal presenta el origen de replicación en el centro (oriC) y en su región central se encuentran principalmente los genes asociados a funciones celulares primarias y en sus dos brazos, el izquierdo de 1.5 Mb y el derecho de 2.3 Mb se encuentran los genes de las funciones no esenciales como los de producción de metabolitos secundarios (figura I1) (Bentley et al., 2002). Estos brazos son muy inestables en sus extremos y sufren a menudo grandes deleciones y duplicación de DNA y transferencia horizontal, lo que lleva a cambios fenotípicos (Volff & Altenbuchner, 1998), por ello tal versatilidad de los *Streptomyces* en la producción de metabolitos secundarios.

La secuenciación completa del genoma de *S. coelicolor* se realizó en el 2002 (Bentley et al., 2002), desde esa época han depositado cientos de genomas del género *Streptomyces* en las bases de datos públicas como por ejemplo *National Center for biotechnology Information* (NCBI) (https://www.ncbi.nlm.nih.gov/).

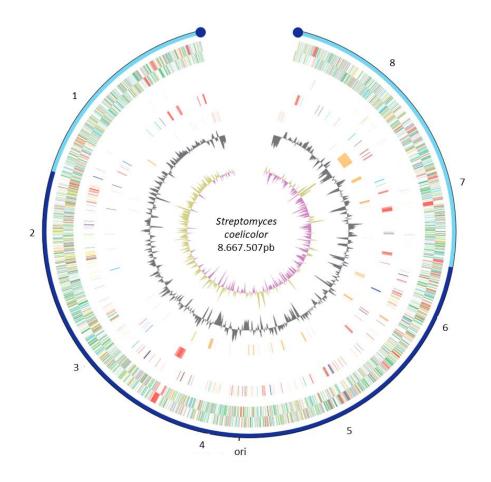
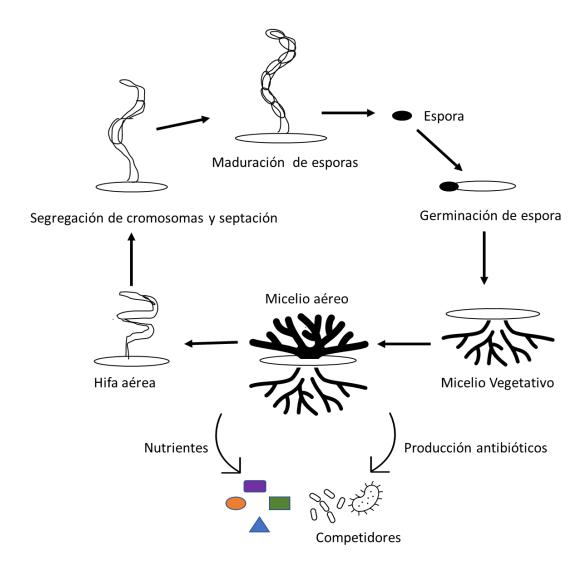



Figura I1. Genoma de *S. coelicolor*. ■ región central del cromosoma. ■ brazos del cromosoma. De afuera hacia dentro: círculos 1 y 2 todos los genes, círculo 3 genes "esenciales" (división celular, replicación de DNA, transcripción, traducción y biosíntesis de aminoácidos), círculo 4 genes "contingentes" (metabolismo secundario, exoenzimas, sistemas reguladores inusuales y proteínas de vesículas de gas), circulo 5 elementos móviles, círculo 6 contenido de G+C, círculo 7 sesgo de GC (Bentley et al., 2002).

I1.3 Ciclo de vida

El ciclo de vida de *S. coelicolor*, y de todos los *Streptomyces* en general, es un ciclo complejo, el cual comienza con la germinación de una **espora** que da origen a uno o dos **tubos germinativos** que luego se van a desarrollar en hifas que crecen por ramificación y extensión de la punta (una característica particular de bacterias del género *Streptomyces*), estableciendo así una red de hifas que forman el **micelio vegetativo** de paredes entrecruzadas que separan las hifas en compartimientos conectados, en el que cada compartimiento contiene múltiples cromosomas (Barka et al., 2015).

Posteriormente, el micelio vegetativo, en respuesta a el estrés por agotamiento de nutrientes, sacrifica una porción de micelio, sometiéndolo a una degradación autolítica mediante muerte celular programada, lo que conduce a la liberación de nutrientes en el medio ambiente, este suceso desencadena la producción de metabolitos secundarios, para proveer protección frente a microorganismos competidores. Son entonces esos nutrientes, los que son utilizados para la diferenciación del micelio vegetativo en hifas eréctiles que van a ser parte del **micelio aéreo**, el cual tendrá un proceso de segregación cromosómica y septación, que después de tener una maduración llegará a la formación de **esporas** unigenómicas (figura 12).

Figura 12. Esquema representativo del ciclo de vida de *S. coelicolor* (van der Meij et al., 2017).

Es importante aclarar que en el proceso de muerte celular programada se ha descrito detalladamente los eventos que ocurren en la transición del micelio sustrato al micelio aéreo (Manteca et al., 2007; Manteca & Sanchez, 2009). Este acontecimiento sucede en dos eventos, el primero ocurre en el micelio temprano en el que algunas zonas específicas sufren muerte celular, (micelio primario MI) y desde las zonas que quedan viables, se desarrolla un segundo micelio (micelio secundario MII) que sería el micelio sustrato de donde empieza la fase reproductora del ciclo. Así a partir del MII, compuesto por hifas multinucleadas, y después de un segundo evento de apoptosis, se origina el micelio aéreo que a su vez dará inicio a la esporulación (Manteca et al., 2007; Manteca & Sanchez, 2009).

Por consiguiente, el comienzo de la diferenciación de las células de micelio vegetativo a micelio aéreo en *Streptomyces*, coincide con la producción de metabolitos secundarios algunos con propiedad antibiótica o antifúngica entre otras. Lo que se convierte en un plus en la búsqueda de nuevos productos naturales de interés humano.

I1.4 Metabolitos secundarios

Los metabolitos secundarios son moléculas bioactivas relacionadas con la ecología de grupos de microorganismos específicos. No intervienen en las funciones del metabolismo primario (O'Brien & Wright, 2011), además, estudios en *Streptomyces* afirman que estos metabolitos secundarios se producen durante el desarrollo de hifas aéreas y su regulación o antes de este suceso (Bibb, 2005).

El generó *Streptomyces* es una amplia fuente de metabolitos secundarios con propiedades bioactivas, sin embargo, muchos estudios sostienen que todavía podría producir más de 150.000 compuestos activos de los que se conocen actualmente debido al elevado número de rutas biosintéticas que están silenciadas en sus genomas (Nett et al., 2009; Rutledge & Challis, 2015). También producen muchas enzimas como proteasas, celulasas, lipasas, pectinasas y amilasas, que son de gran importancia en industrias como la de alimentos, textil y biotecnológica (Kluepfel et al., 1986; McCarthy & Williams, 1992; Sidar et al., 2020; Tuncer et al., 2004).

Por tal motivo los científicos utilizan varias estrategias para explorar el potencial de estas bacterias en la producción de metabolitos secundarios, como son diferentes condiciones de cultivo, análisis bioinformáticos, expresión heteróloga, minería del genoma y el entender la regulación y los reguladores implicados en la síntesis de estas moléculas.

Dentro de los metabolitos secundarios producidos por *Streptomyces* se encuentra una extensa variedad de moléculas como; policétidos, pironas, péptidos, sideróforos, γ-butirolactonas, butenólidas, furanos, terpenoides, ácidos grasos, oligopirroles y desoxiazúcares. Estos compuestos cumplen diferentes funciones bioactivas como antibióticos, antifúngicos, antiparasitarios, antivirales, herbicidas, anticancerígenos y promotores de crecimiento. Además, tienen peculiaridades únicas que los hace especiales como, por ejemplo, estos tres grupos muy característicos:

-Los policétidos

Son una familia de metabolitos secundarios que presentan diversas actividades bioactivas, como agentes antibióticos, inmunosupresores, antiparasitarios y antitumorales (O'Hagan, 1992) y son un grupo muy heterogéneo de compuestos que comprenden polienos, macrólidos, polifenoles y poliéteres (Hertweck, 2009). Estos compuestos son producidos por bacterias, hongos y plantas y están constituidos por una cadena de carbono estructuralmente particular que se ensambla a partir de simples bloques de construcción de acilo (Nivina et al., 2019). Los policétidos son sintetizados por un complejo multienzimático policétido sintasa (PKS), las PKS tienen actividad de cetosintasa (KS), la cual cataliza el aglomeramiento de unidades extensoras en un sustrato iniciador de acilo o una cadena de policétido en crecimiento (Miyanaga, 2017).

Los PKS se dividen en tres grupos, las PKS de tipo I, II y III. Las PKS de tipo I son enzimas multifuncionales que se organizan en módulos, en donde cada uno aloja un conjunto de dominios catalíticos distintos, la mayoría de metabolitos sintetizados por este tipo son macrólidos, mientras que, las PKS de tipo II consisten en un complejo de subunidades con una proteína transportadora de acilo (ACP) y una (KS) que producen policétidos aromáticos, por otra parte, las PKS de tipo III tienen una estructura más sencilla, un homodímero de KS (Miyanaga, 2017).

Dentro de los policétidos sintetizados por bacterias del género *Streptomyces* se encuentran antibióticos como ACT un policétido aromático; rifamicina una ansamicina y eritromicina un macrólido (Hopwood, 2019).

-Los péptidos no ribosomales (NRP)

Los NRP también son metabolitos secundarios con una estructura muy diversa y con diversas propiedades bioactivas. Como su nombre lo indica la síntesis de estos ocurre a través de sintetasas de péptidos no ribosomales (NRPS) multimodulares y multifuncionales y por lo general provienen principalmente de bacterias y hongos. En el cual el género *Streptomyces* contribuye con una gran cantidad de estos.

La biosíntesis de los NRP sucede a partir de los 20 aminoácidos proteínicos que se complementan con componentes básicos adicionales los cuales se han desarrollado a partir de rutas biosintéticas concretas. Esta biosíntesis ocurre en tres fases principales; primero tiene lugar el ensamble de los bloques de construcción, segundo se da el ensamble mediado por las NRPS y tercero sigue la modificación y decoración de los NRPS (Süssmuth & Mainz, 2017).

Los NRP incluyen muchos fármacos comerciales, antibióticos como la actinomicina y la viomicina, inmunosupresores como la rapamicina y compuestos antitumorales como la bleomicina. Por otra parte, cabe anotar que los NRP son adecuados para biosíntesis modificada de nuevos compuestos.

-Terpenoides

Son un grupo muy diverso de metabolitos secundarios los cuales también son conocidos como isoprenoides o terpenos, se sintetizan a partir de 2 precursores isoprenoides de cinco carbonos, el isopentenil disfosfato (IPP) y el dimetilalil difosfato (DMAPP). Estos dos monómeros el IPP y el DMAPP se condensan consecutivamente mediante reacciones de acoplamiento de cabeza a cola catalizados por preniltrasferasas para formar diversos compuestos lineales, que después pueden ser sometidos a modificaciones, como ciclaciones, hidroxilaciones y glicosilaciones complejas, lo que hace que los terpenoides tengan estructuras tan diversas y muestren diferentes actividades biológicas que los hace buenos candidatos para la producción de fármacos (Kuzuyama, 2017). Uno de los

primeros terpenoides identificado en *Streptomyces*, muy conocido que le da su característico olor es la geosmina que es un sesquiterpenoide odorífero.

11.5 Metabolitos secundarios en S. coelicolor

En *Streptomyces coelicolor* más de 20 clústers codifican para metabolitos secundarios conocidos o propuestos, sin embargo, algunos de ellos son metabolitos insignia por las aportaciones que han generado en el campo de la investigación, como son: ACT, RED, antibiótico dependiente de calcio (CDA) y coelimicina (CPK).

-Actinorrodina (ACT)

La ACT químicamente pertenece al grupo de las benzoisocromanoquinonas y es un antibiótico de tipo policétido (figura I3) coloreado que a pH ácido presenta una coloración roja y a pH básico, es de color azul (Rudd & Hopwood, 1979). También se caracteriza por presentar actividad bacteriostática frente a bacterias Gram positivas (Mak & Nodwell, 2017) y su grupo de genes biosintéticos se encuentra compuesto por 22 genes divididos en cinco unidades transcripcionales.

Debido a su coloración azul bajo condiciones básicas ha servido como modelo de estudio de metabolitos secundarios, dado que permite su detección de forma visual, así como su análisis espectrofotométrico. Además, procesos como la clonación, deleción y expresión heteróloga también tuvieron grandes avances gracias a su color (Hopwood, 1999).

Figura 13. Molécula de la ACT de S. coelicolor.

-Undecilprodigiosina (RED)

La RED es una prodiginina de color rojo que pertenece a la familia de los tripirroles, se caracteriza por tener actividad antimicrobiana, inmunosupresora y anticancerígena (Williamson et al., 2006). Además, es un antibiótico híbrido peptidilo y policétido. Su clúster biosintético lo conforman 22 genes y su función en *Streptomyces* no está clara aún. Se han descrito varias funciones, como efectos protectores contra la radiación UV y daño oxidativo (Stankovic et al., 2012), e incluso se le ha atribuido tener un papel importante en la muerte celular programada (figura I4) (Tenconi et al., 2018).

Figura 14. Molécula de RED de S. coelicolor.

-Antibiótico dependiente de Calcio (CDA)

El CDA es un lipopéptido ácido que está compuesto por una cadena lateral de ácido graso 2,3-epoxihexanoilo N-terminal y varios residuos de aminoácidos no proteinogénicos (figura I5) (Hojati et al., 2002). El nombre que recibe es debido a que tiene actividad antibiótica frente a otras bacterias Gram positivas solo en presencia de iones de calcio (Hopwood & Wright, 1983) y su grupo de genes biosintéticos del CDA está compuesto por 48 genes.

$$H_3$$
C H_3 C H_3 C H_4 C H_4 C H_5 C

Figura 15. Molécula CDA de S. coelicolor.

-Coelimicina (CPK)

La coelimicina se sintetiza a partir de un policétido sintasa tipo I y es una molécula críptica en *S. coelicolor* M145, en este organismo presenta un mecanismo de regulación muy complejo que depende de la composición del medio de cultivo y la densidad del inoculo. Después de que se produce la síntesis del antibiótico coelimicina A, que es un compuesto incoloro e inestable, reacciona con ciertos compuestos del medio de cultivo, perdiendo su actividad antibiótica y da lugar a las coelimicinas P1 y P2 de color amarillo (Gómez-Escribano et al., 2012). El grupo de genes biosintéticos de la CPK contiene 24 genes que pertenecen a 5 grupos funcionales: núcleo biosintético, suministro de precursores, adaptación posterior al policétido de exportación y reguladores (figura I6) (Gómez-Escribano et al., 2012).

Figura 16. Molécula del CPK P1 de S. coelicolor.

12 Regulación de la producción de metabolitos secundarios en Streptomyces

En un principio se pensó que la regulación de la producción de metabolitos secundarios en *Streptomyces* se daba de una forma jerárquica, en la que genes globales o pleiotrópicos en un **nivel superior**, activan la regulación de genes específicos de rutas en un **nivel inferior**. Sin embargo, la regulación en *Streptomyces* está gobernada por un complejo programa, en donde reguladores de grupos de genes en rutas biosintéticas específicas de algún metabolito secundario, también intervienen en la regulación de otros metabolitos secundarios, comportándose de esta forma como genes pleiotrópicos, además, también regulan genes reguladores de nivel superior (J. Huang et al., 2005). Así pues, la regulación de la producción de metabolitos secundarios en *Streptomyces* está constituida por una red compleja en la que intervienen distintos tipos de reguladores a nivel transcripcional, traduccional y postraduccional.

En este apartado nos vamos a centrar en la regulación transcripcional.

I2.1 Factores transcripcionales (TF)

El inicio de la transcripción celular es un punto importante en la expresión génica de todo organismo, por tal razón en este punto se ejerce una gran cantidad de factores reguladores. Los TF son proteínas capaces de unirse al DNA de doble cadena para activar o reprimir la transcripción de genes específicos en respuesta a cambios ambientales o celulares; el dominio hélice giro hélice (HTH) es el más frecuente que se encuentra en los TF bacterianos y de arqueas; sin embargo, existen otros dominios menos frecuentes como dominios de unión a RNA y antiparalelos de hoja β (Pérez-Rueda et al., 2004).

Cuando los TF actúan como represores lo pueden hacer de tres formas; 1) compitiendo con un activador por el sitio de unión, 2) uniéndose a la región promotora e impidiendo el acceso de la RNA polimerasa, 3) uniéndose aguas abajo de un promotor y previniendo el alargamiento transcripcional (Romero-Rodríguez et al., 2015). Por otro lado, los TF activadores simples actúan estabilizando el complejo promotor de la polimerasa o acelerando la transición al complejo abierto (Lee et al., 2012).

Dentro de los TF se encuentran: TF globales o pleiotrópicos, que establecen un modo de respuesta general frente a diferentes tipos de estrés, agotamiento de recursos y utilización de una fuente de carbono alternativa; y TF locales o específicos, los cuales suelen tener un ambiente de regulación que comprende unos pocos genes u operones y, de la misma forma, también actúan como detectores de señales ambientales (Seshasayee et al., 2011).

Los *Streptomyces* de las especies secuenciadas tienen un cromosoma que fluctúa entre 6 a 12 Mb de tamaño y codifican entre 7000 y 10000 genes. El 12% de su cromosoma total son genes reguladores, de los cuales entre 471 y 1101 son TF (Romero-Rodríguez et al., 2015).

A continuación, se mencionan algunos TF de importancia en la regulación de *Streptomyces*, muchos de ellos provienen de estudios o análisis de la regulación en *S. coelicolor* la bacteria modelo de este género.

12.2 Reguladores específicos

En el género *Streptomyces* los genes encargados de la síntesis de metabolitos secundarios, se encuentran organizados en **Clústers de Genes Biosintéticos (BGC)**; grupos de genes en el cromosoma de *Streptomyces* que codifican las enzimas encargadas de sintetizar algún metabolito secundario específico, así como los genes que codifican los transportadores y reguladores asociados a estos.

Esta forma particular de encontrarse en el genoma, y la gran cantidad de genomas de *Streptomyces* disponibles en las bases de datos, han servido para identificar más BGC en cada genoma por analogía a partir de programas bioinformáticos. Esto ha ampliado la posibilidad de encontrar nuevos metabolitos secundarios pues se ha demostrado que la mayoría de estos son específicos de especie (Nett et al., 2009; Rutledge & Challis, 2015).

En los BGC se encuentra los reguladores específicos de ruta o **Reguladores Situados en los Clústeres Biosintéticos (CSR**, *Cluster-Situated Regulators*) (J. Huang et al., 2005; Liu et al., 2013; van Wezel & McDowall, 2011). Como ya se había mencionado, los CSR se encuentran junto a los grupos de genes biosintéticos, de secreción y resistencia a

antibióticos. La mayoría de estas proteínas reguladoras que controlan el metabolismo secundario en *Streptomyces* pertenecen a la familia SARP (*Streptomyces A*ntibiotic *R*egulatory *P*rotein).

-Familia SARP

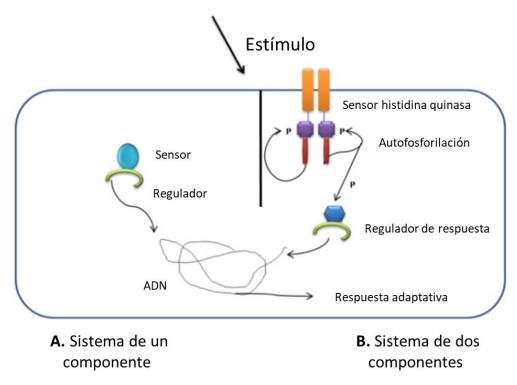
La familia de proteínas SARP son una familia de proteínas reguladoras de la producción de antibióticos de *Streptomyces*. Estas proteínas sólo se encuentran en el filo Actinobacteria y la mayoría está dentro de la familia Streptomycetaceae. Estas proteínas poseen un motivo hélice-giro-hélice modificado wHTH (*winged* HTH) en la región N terminal que comparte similitud con la familia de proteínas OmpR, las cuales regulan la expresión de porinas de la membrana externa en bacterias entéricas. Además, algunas de las proteínas SARP parecen reconocer repeticiones heptaméricas dentro de las regiones promotoras de los genes que regulan (Wietzorrek & Bibb, 1997).

Estas proteínas regulan directamente la expresión de genes y operones en los grupos biosintéticos asociados y actúan al final de la cascada de transducción de señales. Ejemplo de estas son, la proteína **ActII-ORF4** que es una proteína de unión al DNA que regula de forma positiva la transcripción de los genes biosintéticos de ACT (Arias et al., 1999). La proteína **ActII-ORF4** es la proteína tipo de la familia SARP y presenta el codón raro TTA, lo que hace que su traducción, y por ende la síntesis de ACT, sea un proceso dependiente del tRNA codificado por el gen *bldA* (Fernández-Moreno et al., 1991). Por otro lado, **RedZ**, es un regulador de respuesta (RR) huérfano atípico, que difiere de otros RR al carecer de las estructuras necesarias para la fosforilación, este regulador controla la expresión de *redD*, que a su vez induce la expresión de los genes biosintéticos del clúster RED en *S. coelicolor*, igualmente también presenta el codón raro TTA (Guthrie et al., 1998).

12.3 Reguladores pleiotrópicos

Los reguladores pleiotrópicos o globales son factores transcripcionales encargados de regular dentro de la célula una enorme cantidad de procesos biológicos como son; diferenciación morfológica, producción de antibióticos y respuesta a varios tipos de estrés (Martín & Liras, 2010). Como se ha mencionado previamente, estos reguladores controlan tantos procesos a la vez, que se les suele ubicar en un nivel superior.

A continuación, se mencionan ejemplos de algunos grupos de reguladores globales:


12.4 Sistemas de dos componentes (TCS)

En los sistemas de dos componentes el TF logra su objetivo vinculando un tipo específico de estímulo ambiental a una respuesta transcripcional. Los TCS se caracterizan por tener una HK unida a la membrana y una proteína de unión al DNA conocida como RR, que actuaría principalmente como un TF. Estos sistemas por lo general están codificados por genes vecinos. Además, se encuentran distribuidos en todo el cromosoma y algunas HK o RR no tienen parejas y se denominan huérfanas.

Las HKs tienen, normalmente, un dominio extracelular que detecta diversos estímulos ambientales, lo que desencadena la autofosforilación de la histidina; y una vez activa, transduce el grupo fosforilo a su RR, y este a su vez activa o reprime la transcripción de los genes diana (figura I7) (Podgornaia & Laub, 2013).

Adicional a estos se encuentran también los sistemas de un componente (OCS), que son proteínas que tienen los dominios sensores y reguladores en una única proteína (figura 17).

El número de TCS que se encuentran asociados a una bacteria está correlacionado con el número de estímulos que recibe de su ambiente, por ejemplo, bacterias que viven en entorno estables presentan pocos TCS. En el caso del género *Streptomyces*, al vivir en hábitats muy cambiantes presenta alrededor de 90 HK y 80 RR (http://www.p2cs.org) (Barakat et al., 2011).

Figura 17. Sistemas de transducción de señales de uno y dos componentes. **A.**OCS consta de una proteína con un dominio sensor y un dominio regulador. **B.**TCS incluye un sensor de histidina quinasa y un regulador de respuesta independiente.

En *S. coelicolor* se encuentran sistemas de dos componentes como el **AbsA1/A2**, el cual está conformado por la HK AbsA1 y el RR AbsA2. Este TCS se encuentra ubicado dentro del clúster biosintético del CDA y actúa como un regulador negativo en la producción de los antibióticos ACT, RED y CDA. Esta regulación la ejerce uniéndose directamente a los promotores *actII-ORF4*, *redZ* y *cdaR* respectivamente; sin embargo, no llega a afectar la diferenciación morfológica (McKenzie & Nodwell, 2007).

Otro ejemplo es el sistema **PhoP/R**, este sistema es uno de los más estudiados en *S. coelicolor*. Su HK PhoR en condiciones limitantes de fosfato se fosforila y activa PhoP, el cual actúa uniéndose a secuencias denominadas *PHO boxes* para poder activar vías de aprovechamiento del fosfato, contener la utilización de fuentes de nitrógeno, intervenir en la transición a fase secundaria y activar el metabolismo secundario (Martín et al., 2017). En la tabla 1 se muestran otros ejemplos de TCS descritos en *S. coelicolor*.

Tabla I1. TCS descritos en *S. coelicolor*. Tabla modificada tomada de (Antoraz Martín, 2018).

Sistema	Proceso regulado	Referencia
AbrA1/A2	Producción de antibióticos y diferenciación morfológica	(Yepes et al., 2011)
AbrB1/B2	Producción de antibióticos y diferenciación morfológica	(Sánchez de la Nieta
		et al., 2020)
AbrC1/C2/C3	Desarrollo morfológico y producción de antibióticos	(H. Rodríguez et al., 2015)
AbsA1/A2	Producción de antibióticos	(Adamidis et al., 1990)
AfsQ1/Q2	Producción de antibióticos y diferenciación	(Ishizuka et al., 1992)
Aor1 RR	huérfano implicado en producción de antibióticos y diferenciación	(Antoraz et al., 2017)
CseB/C	Homeostasis de pared celular	(Paget et al., 1999)
CutR/S	Producción de antibióticos	(Chang et al., 1996)
ChiS/R	Producción de una quitinasa	(Homerová et al., 2002)
DraR/K	Producción de antibióticos	(Yu et al., 2012)
EcrA1/A2	Producción de antibióticos	(Y. Li et al., 2004)
GluR/K	Producción de antibióticos y captación de glutamato	(L. Li et al., 2017)
MtrA/B	Esporulación y producción de antibióticos	(Som et al., 2017)
OsaA/B	Osmoadaptación y producción de antibióticos	(Bishop et al., 2004)
OhkA	HK huérfana implicada en producción de antibióticos y diferenciación	(Y. Lu et al., 2011)
OsdK/R	Producción de antibióticos	(Wang et al., 2009)
PhoP/R	Transporte de fosfato y producción de antibióticos	(H. Rodríguez et al., 2013)
RagK/R	Esporulación independiente de SapB	(Paolo et al., 2006)
RapA1/A2	Producción de antibióticos	(Y. Lu et al., 2007)
VanR/S	Resistencia a vancomicina	(Hong et al., 2004)
SCO3818	RR huérfano implicado en producción de antibióticos	(Wang et al., 2009)
SCO4155/56	Secreción en respuesta a estrés	(Gullón et al., 2012)
SCO5784/85	Metabolismo primario y secundario	(Rozas et al., 2012)

12.5 Familia TetR

Las proteínas TetR de la familia represora de tetraciclina son TF denominados también reguladores transcripcionales (TFR) que generalmente actúan como represores. Esta familia es de gran importancia porque están asociadas a la biosíntesis y resistencia a antibióticos (Ramos et al., 2005). Sin embargo, también están implicadas en otros procesos como captación de nitrógeno, morfogénesis, ciclo del ácido carboxílico y

formación de biopelículas. En *S. coelicolor* y en otros actinomicetos se encuentran presentes más de 100 genes de estos TFR (Yu et al., 2010).

Los TFR por lo general controlan las bombas de salida para exportación de antibióticos, como también regulan la expresión de genes biosintéticos. Un ejemplo es la proteína ActR, la cual actúa como represor al unirse al operón actA (actA/actII-ORF2, actII-ORF3 y actVA-ORF1) el cual es el encargado de codificar varias supuestas proteínas transmembranales encargadas de exportar la ACT. ActR puede activar la auto resistencia a este antibiótico, pues la ACT y varios precursores de esta, pueden hacer que ActR se disocie del operón actA lo que conlleva a la desrepresión y exportación de ACT por parte de las proteínas codificadas por el operón actA que ya no está reprimido (Willems et al., 2008).

Otro ejemplo que destacar es el caso de la proteína **RrdA**, que regula de forma negativa la producción de RED al controlar la cantidad de RNAm de *redD* y al parecer como efecto colateral aumenta la producción de ACT, al disminuir la competencia de los precursores que son comunes a ambas vías de estos dos antibióticos (Ou et al., 2009).

12.6 Elementos de Respuesta Xenobiótico (XRE)

Esta familia de reguladores se puede encontrar en eucariotas, bacterias y arqueas, están asociados con DNA adquirido horizontalmente y se sabe que la función de algunos consiste en controlar las copias de plásmidos en la célula y el desarrollo morfológico. Sin embargo, aunque se han encontrado en un porcentaje alto en los genomas del género *Streptomyces* secuenciados, muy pocos han sido caracterizados (Romero-Rodríguez et al., 2015).

los reguladores XRE pueden regular la expresión de genes implicados en la resistencia a xenobióticos, bombas de flujo, metales para la homeostasis y respuesta a factores estresantes y normalmente, son represores de la expresión de distintos genes. Estos represores tienen un sitio de unión al DNA en el extremo N terminal con un dominio HTH.

Una de las proteínas XRE más estudiada en *S. coelicolor* es la proteína **BldD**, esta proteína es codificada por un gen que pertenece a un grupo de genes denominados *bld*, que recibieron ese nombre debido a que mutantes de estos no desarrollan las hifas aéreas, lo que resulta en colonias con apariencia calva (Flärdh & Buttner, 2009).

La proteína BIdD es una proteína autorreguladora y que reprime varios genes reguladores, incluidos los factores sigma whiG, bldN y sigH al unirse a secuencias que se superponen al promotor y/o al sitio de inicio de transcripción (Elliot et al., 2001). Además, tiene dianas asociadas al desarrollo como: bldA, bldC, bldH/adpA, bldM, bldN, ssgA, ssgB, ftsZ, whiB, whiG, smeA-ssfA; y otros asociados al metabolismo secundario como: nsdA, cvn9, bldA, bldC, leuA lo que destaca su papel como regulador global (Den Hengst et al., 2010)

Otra proteína de esta familia también ampliamente estudiada es **WhiJ**, cuando el gen que codifica esta proteína es eliminado en la cepa de *S. coelicolor* no tiene un resultado detectable sobre la diferenciación morfológica, sin embargo, algunos alelos en los que se elimina parte del gen *whiJ*, pero se retiene un fragmento de este en su extremo 5' terminal donde se une el DNA, dan un fenotipo whi y esporas no pigmentadas. Todos estos alelos mutantes producen fenotipos whi que permiten la síntesis de un WhiJ truncado, con un dominio de unión al DNA intacto (Aínsa et al., 2010). Además, la eliminación del gen *SCO4542* (codifica una proteína con un dominio de función desconocida (DUF397)) que se encuentra inmediatamente aguas abajo, anula la formación del micelio aéreo y el fenotipo se suprime totalmente mediante la eliminación *whiJ*. Se puede decir que WhiJ es un represor de la diferenciación y su acción es neutralizada por el producto del gen *SCO4542* (Aínsa et al., 2010).

12.7 Dominio de función Desconocida (DUF)

Las proteínas de domino de función desconocida DUF, como su nombre indica son proteínas que tiene un dominio del cual se desconoce su función. La proteína BldB (SCO5723) que contiene un dominio DUF397 (Marchler-Bauer et al., 2011), es una de las proteínas de este tipo más estudiadas y ha sido denominada como un regulador

transcripcional necesario para el desarrollo del micelio aéreo en *S. coelicolor* (Champness, 1988).

Un estudio en el 2006 que buscaba genes que codificaran proteínas homologas al BldB, encontró que las 14 proteínas DUF397 de *S. coelicolor* que forman parte de los sistemas XRE/DUF397, son homologas y al parecer estas proteínas son exclusivas de los actinomicetos filamentosos (Eccleston et al., 2006).

Por otra parte, Pope y sus colaboradores, sostienen que vale la pena probar la posibilidad de que la BldB es una proteína de unión al DNA y sugieren varios aminoácidos que podrían ser importantes para la interacción proteína-DNA, como son residuos de ácido glutámico en las posiciones 62 y 69, una treonina en la posición 63 y una arginina en la posición 66 (Pope et al., 1998).

Las proteínas DUF397 que componen los sistemas XRE/DUF397 están poco caracterizadas, en el apartado anterior se menciona una de ellas la SCO4542 que al parecer ejerce una acción de neutralización sobre el represor WhiJ. Frente a todos estos aspectos las proteínas DUF397 también se perfilan como nuevos mecanismos reguladores en *S. coelicolor*.

I3 Sistemas XRE/DUF397

Los sistemas XRE/DUF397 están compuestos por dos proteínas, la primera es una proteína XRE de alrededor de 32 kDa y la segunda más pequeña es una proteína DUF397 aproximadamente de unas 8 kDa. Como se mencionó anteriormente, las proteínas XRE suelen ser factores de transcripción, capaces de unirse al DNA para reprimir o activar la transcripción de genes. Por otra parte, las proteínas DUF397 son proteínas de Dominio de función Desconocida.

Hwang y colaboradores (Hwang et al., 2021) describieron que estos pares de genes XRE/DUF397 se encuentran abundantemente en el genoma de bacterias del género *Streptomyces* aunque, actualmente, se desconoce la función de la mayoría ellos. Estudios de nuestro laboratorio demostraron que el par Scr1-Scr2 de *S. coelicolor* actúa como un fuerte regulador positivo en la producción de múltiples antibióticos en

diferentes especies de *Streptomyces* lo que demuestra que las proteínas codificadas por estos genes pueden ser reguladores pleiotrópicos de la síntesis de metabolitos secundarios (Santamaría et al., 2018).

Antecedentes y objetivos

La aparición de nuevas enfermedades causadas por bacterias resistentes a los tratamientos con antibióticos constituye un problema de talla mundial que afecta la salud humana, la sanidad de los animales, la ganadería, la agricultura, el comercio y por ende la economía mundial. Esta resistencia a los antibióticos se debe a diferentes factores, pero el uso indiscriminado e inapropiado de estos medicamentos es uno de los factores que más contribuye a la aparición de este fenómeno que causa un gran impacto clínico, epidemiológico y microbiológico.

En el plan nacional de España frente a la resistencia a los antibióticos 2019-2021 desarrollado por el ministerio de sanidad, consumo y bienestar social y la agencia española de medicamentos y productos sanitarios (*Plan Nacional frente a la Resistencia a los Antibióticos (PRAN) 2019-2021*, s. f.) reportaron: que en toda Europa 35.000 personas mueren cada año a causa de las infecciones hospitalarias producidas por bacterias resistentes; y de acuerdo con los datos del registro del Conjunto Mínimo Básico de Datos (CMBD), en España alrededor de 4000 personas mueren al año por la misma causa.

Si no se toman medidas de carácter urgente se estima que en 35 años las muertes en Europa por infecciones multirresistentes ascenderán 390000 casos al año y en España a 40000 muertes anuales, además la resistencia desbancará a el cáncer como primera causa de muerte.

Frente a esta premisa, existen varias estrategias para abordar esta problemática; vigilancia, control, prevención, investigación, formación y comunicación. En general a nivel de investigación se busca identificar y desarrollar nuevos antibióticos e incrementar el conocimiento sobre el problema de la resistencia.

Una de las líneas de estudio en nuestro grupo de investigación se basa en estudiar distintos reguladores generales de la producción de antibióticos entre los que se encuentran los TCSs y los sistemas XRE/DUF397.

Los sistemas XRE/DUF397 han sido propuestos por otros autores como sistemas toxina/antitoxina (TA) tipo II. Son sistemas que se encuentran abundantemente en el cromosoma de muchas bacterias y arqueas de vida libre y están implicados en múltiples actividades, como estrés por escases de nutrientes, programación de muerte celular,

protección frente a bacteriófagos y resistencia antibióticos. Los sistemas TA tipo II consisten en una proteína toxina estable y una antitoxina inestable que bloquea el efecto de la toxina.

Un estudio bioinformático del genoma de *S. coelicolor* permitió proponer que esta bacteria poseía 22 sistemas TA del tipo II. De ellos, 15 sistemas eran del tipo XRE/DUF397 (http://bioinfo-mml.sjtu.edu.cn/TADB2/) (Xie et al., 2018). En el laboratorio se demostró que uno de esos sistemas compuesto por las proteína codificadas por *SCO4441/42* (Scr1/Scr2) no se comporta como un sistema TA, si no que funciona como un fuerte regulador positivo en la producción de antibióticos, tanto en *S. coelicolor* como en otras especies de *Streptomyces* (Santamaría et al., 2018). Por tal razón nos preguntamos ¿cuántos, de esos 14 sistemas XRE/DUF397, también podían ser reguladores en la producción de antibióticos? y se plantearon los siguientes objetivos

Objetivos

- 1. Caracterizar in silico los sistemas XRE/DUF397 de S. coelicolor.
- **2.** Estudiar la función *in vivo* de los 14 grupos de genes de *S. coelicolor* que codifican para proteínas del tipo XRE/DUF397.
 - **2.1.** Clonar y sobreexpresar este grupo de genes en *S. coelicolor*
 - **2.2.** Analizar el efecto de la deleción de estos genes
- **3.** Examinar las diferencias transcripcionales que la sobreexpresión de Scr1/Scr2 produce
 - **3.1.** Determinar los genes cuya expresión está regulada por Scr1/Scr2.
 - **3.2.** Establecer la red de regulación de Scr1/Scr2.

Resultados y Discusión

Capítulo 1 Sistemas XRE/DUF397 de S. coelicolor

El genoma de *S. coelicolor* posee 15 sistemas XRE/DUF397 que han sido propuestos, bioinformáticamente, como sistemas toxina/antitoxina de tipo II (TADB2.0; https://bioinfo-mml.sjtu.edu.cn/TADB2/ (Xie et al., 2018). Sin embargo, en nuestro laboratorio se demostró, de forma experimental, que uno de los sistemas XRE/DUF397 de *S. coelicolor* compuesto por las proteínas codificadas por los genes *SCO4441* y *SCO4442* (Scr1/Scr2) actúa como un fuerte regulador positivo de la producción de antibióticos en varias especies de *Streptomyces* y no actúa como un sistema toxina/antitoxina (Santamaría et al., 2018). Posteriormente, Zhu y colaboradores demostraron que la proteína XRE codificada por el gen *SCO1979*, que forma parte de una pareja XRE/DUF397, se comportaba como un regulador negativo de la producción de antibióticos (Zhu et al., 2020). Estos resultados plantean la posibilidad de que el resto de los sistemas XRE/DUF397 de *S. coelicolor* tengan un posible papel de regulación de la producción de antibióticos y no se comporten como sistemas toxina/antoxina en las condiciones experimentales empleadas.

En este capítulo se revisan varias características generales de estos 15 sistemas XRE/DUF397 de *S. coelicolor* como son: la ubicación de los genes que los codifican en el genoma, genes vecinos que codifican proteínas de interés, características generales, genes homólogos en otras especies de actinobacterias, filogenia, identificación de dominios y modelado estructural de las proteínas.

C1.1 Posición y orientación de los genes que codifican los sistemas XRE/DUF397

Para empezar, se detallan las posiciones y orientaciones de los genes que codifican estos sistemas en el genoma de *S. coelicolor* M145 (Figura C1.1 y C1.2), estas representaciones fueron realizadas utilizando como guía la base de datos "StrepDB" (http://strepdb.streptomyces.org.uk/).

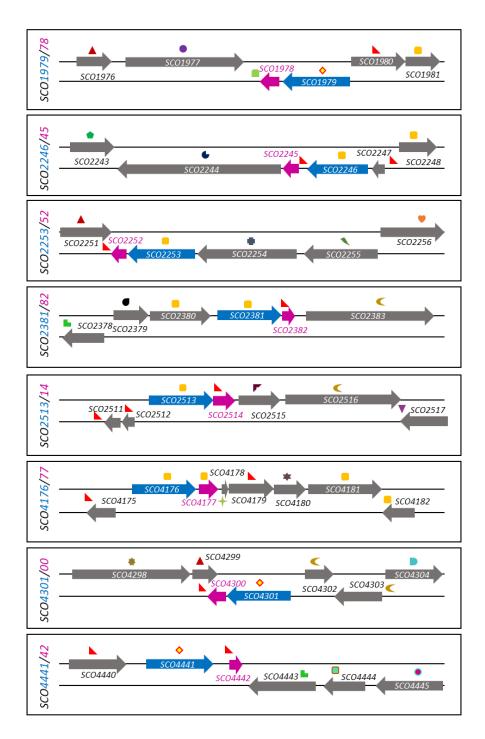


Figura C1.1. Ubicación de los genes que codifican los sistemas XRE/DUF397 y sus genes vecinos en el genoma de *S. coelicolor*. ▲ Supuesta proteína integral de membrana; ● Supuesta subunidad pequeña de glutamato sintasa; ▶ Proteína hipotética; ● Proteína hipotética conservada; ■ Supuesta proteína similar a AbaA; ◆ Supuesta proteína de unión a DNA; ◆ Supuesto regulador transcripcional de la familia TetR; ◆ Probable serina/treonina proteína quinasa; ◆ 3-metil-2-oxobutanoato hidroximetiltransferasa; ● Supuesta proteína de eflujo transmembrana; ◆ Supuesta proteína de membrana; ● Supuesta acetiltransferasa; ● Supuesta Proteína secretada; ▶ Supuesto regulador transcripcional de la familia MerR; ▶ Supuesta lipoproteína; ▼ Supuesto regulador de respuesta del sistema de dos componentes; → Supuesta Proteína pequeña de membrana; ◆ Supuesto proteína reguladora de la captación de hierro; ▶ Supuesta oxidorreductasa; ◆ Supuesta carboxilesterasa; ■ Supuesta glutatión peroxidasa; ● Supuesto regulador transcripcional "StrepDB" (http://strepdb.streptomyces.org.uk/).

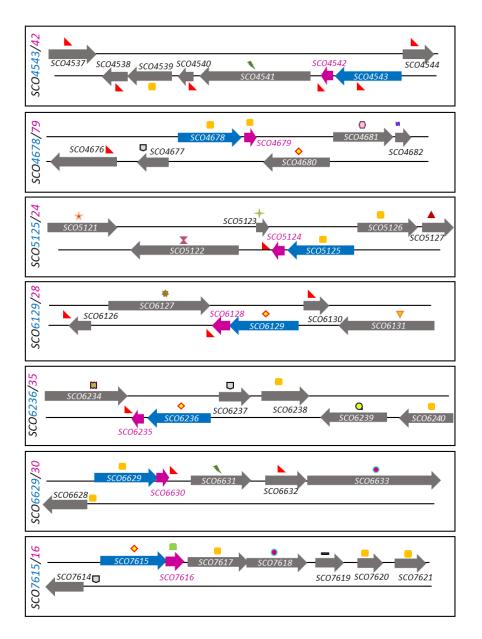


Figura C1.2. Ubicación de los genes que codifican los sistemas XRE/DUF397 y sus genes vecinos en el genoma de *S. coelicolor.* ▶ Proteína hipotética; ■ Proteína hipotética conservada; ◆ Supuesta proteína de membrana; □ Supuesta proteína reguladora; ◆ Supuesta proteína de unión a DNA; □ Supuesta deshidrogenasa de cadena corta; ▶ Supuesta tautomerasa; ★ Supuesto sistema de transporte de péptidos proteína de unión a ATP; ▼ Supuesta peptidasa; → Supuesta Proteína pequeña de membrana; ▲ Supuesta proteína integral de membrana; ♣ Supuesta carboxilesterasa; ▼ Supuesta carboxipeptidasa; ➡ beta-manosidasa secretada; □ Supuesto factor sigma; ● Supuesto regulador transcripcional; ■ Supuesta proteína similar a AbaA; ■ Supuesto antagonista del factor anti sigma "StrepDB" (http://strepdb.streptomyces.org.uk/).

Los 15 sistemas están compuestos por un gen que codifica una proteína XRE (Elementos de Respuesta a Xenobióticos) cuyo tamaño es de alrededor de 32 kDa y que posee un dominio de unión a DNA y un segundo gen que codifica una proteína que le sigue más pequeña DUF397 (Dominio de Función Desconocida) con un tamaño aproximado de 8 kDa.

C1.2 Genes vecinos que codifican proteínas de interés

En la tabla C1.1 se muestran las proteínas codificadas por los genes vecinos de cada uno de estos sistemas y se indica la posible función, propuesta bioinformáticamente, en la mayoría de los casos.

Tabla C1.1. Proteínas codificadas por los genes vecinos de los 15 sistemas XRE/DUF397 en el genoma de *S. coelicolor* (solo se tuvieron en cuenta las representadas en la figura C1.1. y C1.2.) ■ gen XRE ■ gen DUF397.

		SC01979/78	SC02246/45	SC02253/52	SC02381/82	SC02513/14	SCO4176/77	SCO4301/00	SCO4441/42	SC04543/42	SC04678/79	SCO5125/24 SCO6129/28	SC06236/35	SC06629/30	SC07615/16
_	Proteína integral de membrana*	Χ		Χ				Χ				Х			_
sistemas XRE/DUF39	Subunidad pequeña de glutamato sintasa*	Χ													
Ž	Proteína similar a AbaA*	Χ													Χ
7	Regulador transcripcional de la familia TetR*		Χ												
₩.	Serina/treonina proteína quinasa		Χ												
as)	Proteína de eflujo transmembranal*			Χ											
Ĕ	Proteína de membrana*			Χ						Χ					
ste	3-metil 2- oxobutanoato hidroximetiltransferasa			Χ											
S.	Acetiltransferasa*				Χ										
08	Regulador transcripcional de la familia merR*				Χ				Χ						
de	Proteína secretada*				Χ	Χ		Χ							
por los genes vecinos de	Lipoproteína*					Χ									
<u>.</u>	Regulador de respuesta de los sistemas de dos componentes*					Χ									
Ķ	Proteína pequeña de membrana*						Χ					Χ			
es	Proteína reguladora de captación de hierro*						Χ								
en	Carboxilesterasa*							Χ				Χ			
S PD	Regulador transcripcional*							Χ	Χ					Χ	Χ
<u> </u>	Oxidoreductasa*							Χ							
ŏ	Glutatión peroxidasa*								Χ						
SE	Proteína de unión al DNA*										Χ				
ာဗ္ဓ	Proteína reguladora*										Χ		Χ		Χ
Ξ̈́	Deshidrogenasa de cadena corta*										Χ				
ğ	Tautomerasa*										Χ				
S	Sitema de transporte de péptidos proteína de unión ATP*											Χ			
nas	Peptidasa*											Χ			
Ę,	beta-manosidasa secretada*												Χ		
Proteínas codificadas	Factor sigma*												Χ		
	Antagonista del factor anti sigma														X

^{*}proteínas hipotéticas

Dado que el interés en su estudio se debe a su posible implicación en la producción de antibióticos se resalta la información del potencial de las proteínas codificadas por los genes vecinos en la producción de metabolitos secundarios. Por ejemplo, cerca de los genes que codifican el sistema SCO2513/14 están localizado los genes que codifican para un supuesto sistema de dos componentes (SCO2517/18) que regula positivamente la producción de undecilprodigiosina (RED) (Li et al., 2004; Hutchings et al., 2004; Sánchez de la Nieta et al., 2020).

Por otra parte, el gen *SCO2243*, que se encuentra cerca de los genes del sistema SCO2246/45, codifica un supuesto regulador transcripcional de la familia TetR. Estos reguladores tienen actividad represora en la biosíntesis de antibióticos, bombas de eflujo y estrés osmótico (Ramos et al., 2005). Además, mencionar que las proteínas codificadas por los genes *SCO1978* y *SCO7616*, ambas proteínas DUF397 de los sistemas estudiados, son proteínas similares a AbaA, el cual es un *locus* regulador pleiotrópico para la producción de antibióticos en *S. coelicolor* (Fernández-Moreno et al., 1992).

También se indican varios tipos de proteínas asociadas a la membrana, como proteínas secretadas, proteínas integrales de membrana, proteínas de eflujo transmembranal, lipoproteínas, proteínas pequeñas de membranas y proteínas de captación de hierro. Importantes en la adsorción de nutrientes, detección de cambios en el medio ambiente, el flujo de los antibióticos y exportación de toxinas; todas ellas relacionadas en el transporte celular y *por ende* posibles dianas en los procesos de biosíntesis de antibióticos (Saier et al., 2016).

Una recopilación de Severi y Thomas, 2019 (Severi & Thomas, 2019) sobre la exportación de antibióticos por parte de las bacterias, describe la diversidad y desconocimiento de proteínas asociadas a grupos de genes biosintéticos encargadas de la exportación de metabolitos secundarios y la participación de estos en la regulación y el proceso de maduración de las moléculas a secretar. Además, *S. coelicolor* por ser una bacteria Gram positiva tiene la capacidad de secretar sus metabolitos secundarios al exterior de forma más sencilla y casi inmediata dado que no posee una membrana externa hidrofóbica

como las Gram negativas (Anné et al., 2017; Hamed et al., 2018), lo que supone diversidad de proteínas adaptadas para realizar esta labor.

Debido a que, lo que se describe anteriormente es un poco especulativo, es necesario investigar más sobre cuál es el papel que cumplen estas proteínas codificadas por los genes vecinos de los sistemas XRE/DUF397. Es importante anotar que la producción de antibióticos es una adaptación a ambientes hostiles por parte del género *Streptomyces* y que muchas de estas proteínas de membrana pueden también estar cumpliendo un papel de señalización; a la par se hace necesario estudiar más a fondo, bioinformática y experimentalmente, los grupos de genes que están actuando con estos sistemas.

C1.3 Características generales de los sistemas XRE/DUF397

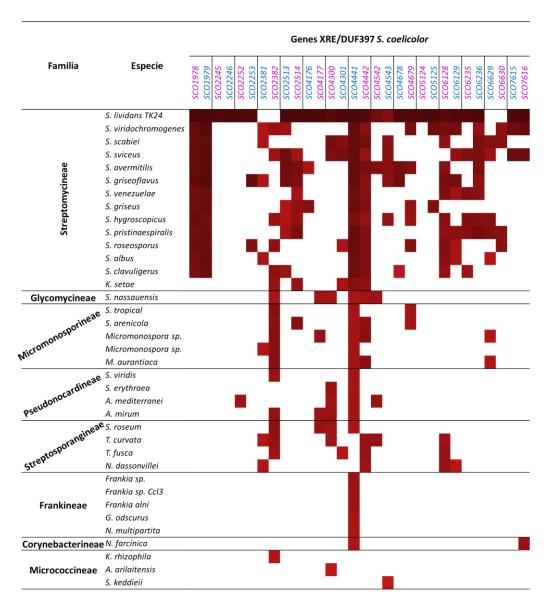
En la tabla C1.2 se muestran las características generales de los sistemas XRE/DUF397; la posición exacta de sus genes en el genoma, peso molecular, número de aminoácidos, número de nucleótidos y el producto de cada gen. Esta información se obtuvo de la base de datos "StrepDB" (http://strepdb.streptomyces.org.uk/).

Tabla C1.2. Características generales de los 15 XRE/DUF397 de *S. coelicolor.* ■ gen XRE ■ gen DUF397.

Sistema	Gen	Tipo	pb	aa	Peso molecular Da	Hebra	Comienzo - Final	Producto
1	SCO1979	XRE	861	286	32245	-1	2117906 a 2118766	Supuesta proteína de unión al ADN
1	SCO1978	DUF397	276	91	9834	-1	2117630 a 2117905	Proteína similar a AbaA
2	SCO2246	XRE	777	258	28866	-1	2415308 a 2416084	Proteína hipotética conservada SC1G2.08c
2	SCO2245	DUF397	210	69	7391	-1	2415027 a 2415236	Proteína hipotética SC1G2.07c
3	SCO2253	XRE	855	284	31716	-1	2419629 a 2420483	Proteína hipotética conservada SC1G2.15c.
3	SCO2252	DUF397	222	73	7720	-1	2419411 a 2419632	Proteína hipotética SC1G2.14c.
4	SCO2381	XRE	836	278	31073	1	2550901 a 2551737	Proteína hipotética conservada SC4A7.09
4	SCO2382	DUF397	197	65	6943	1	2551706 a 2551903	Proteína hipotética SC4A7.10
5	SCO2513	XRE	833	277	30410	1	2709485 a 2710318	Proteína hipotética conservada SCC121.16
5	SCO2514	DUF397	290	96	10231	1	2710300 a 2710590	Proteína hipotética SCC121.17
6	SCO4176	XRE	843	280	31551	1	4588684 a 4589526	Proteína hipotética conservada
O	SCO4177	DUF397	269	89	9451	1	4589532 a 4589801	Proteína hipotética conservada
7	SCO4301	XRE	839	279	30575	-1	4716256 a 4717095	Supuesta proteína de unión a ADN
,	SCO4300	DUF397	269	89	9451	-1	4716003 a 4716272	proteína hipotética SCD95A.33c
8	SCO4441	XRE	887	295	33593	1	4863620 a 4864507	Supuesta proteína de unión a ADN
0	SCO4442	DUF397	191	63	6484	1	4864681 a 4864872	Proteína hipotética SCD6.20
9	SCO4543	XRE	851	283	31766	-1	4959584 a 4960435	Proteína hipotética
9	SCO4542	DUF397	191	63	6727	-1	4959382 a 4959573	Proteína hipotética
10	SCO4678	XRE	849	282	31047	1	5108924 a 5109772	Proteína hipotética conservada
10	SCO4679	DUF397	192	63	6996	1	5109769 a 5109960	Proteína hipotética conservada
11	SCO5125	XRE	863	287	32166	-1	5572261 to 5573124	Proteína hipotética conservada
11	SCO5124	DUF397	206	68	7054	-1	5572058 a 5572264	Proteína hipotética
12	SCO6129	XRE	911	303	33975	-1	6730923 a 6731834	Supuesta proteína de unión a ADN
12	SCO6128	DUF397	233	77	8242	-1	6730693 to 6730926	Proteína hipotética SC9B2.15c
13	SCO6236	XRE	876	291	32651	-1	6859900 a 6860775	Supuesta proteína de unión al ADN
15	SCO6235	DUF397	246	81	8895	-1	6859658 a 6859903	Proteína hipotética SC2H4.17c
14	SCO6629	XRE	833	277	30703	1	7357519 a 7358352	Proteína hipotética conservada SC4G2.03
14	SCO6630	DUF397	203	67	7014	1	7358349 to 7358552	Proteína hipotética SC4G2.04
15	SCO7615	XRE	873	290	32358	1	8442864 a 8443736	Supuesta proteína de unión al ADN
	SCO7616	DUF397	270	89	9558	1	8443733 a 8444002	Supuesta proteína similar a AbaA

C1.4 Genes homólogos en otras especies del filo Actinobacteria

Para el análisis de los genes homólogos de los sistemas XRE/DUF397 en *S. coelicolor* se utilizó la base de datos "Actinoblast" (http://streptomyces.org.uk/actinoblast/). Esta base contiene un estudio de genes asociados al desarrollo en *Streptomyces* y la importancia de genes específicos del desarrollo en el filo Actinobacteria de 100 genomas actinobacterianos secuenciados (BLAST P) (Chandra & Chater, 2014). Estos dos autores


basaron su investigación en la genómica comparativa de genes asociados a la complejidad morfológica, la septación y formación de esporas en el filo Actinobacteria.

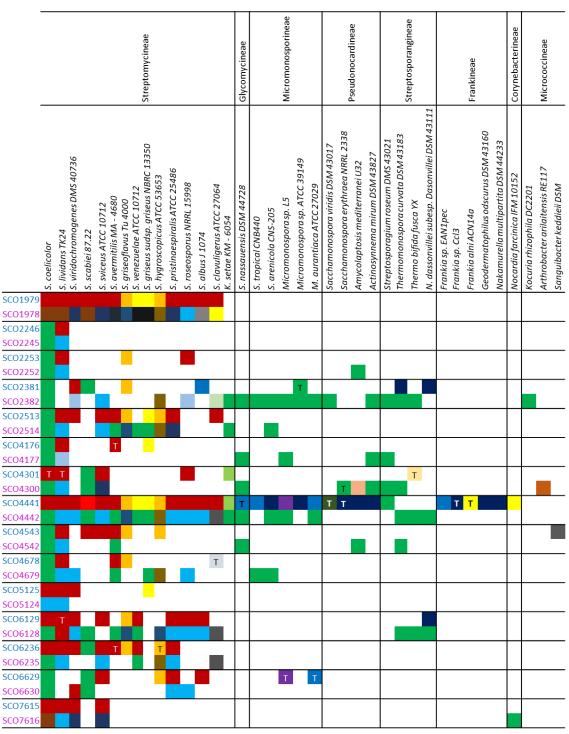
Son pocos los autores que recopilan información de estos sistemas XRE/DUF397 que, al parecer, proceden de genes relacionados con el desarrollo y la amplia cascada de regulación de la esporulación como son los genes *whi* y *bld* (Chandra & Chater, 2014; Den Hengst et al., 2010; Willemse et al., 2012).

Se eligió esta base de datos, "Actinoblast", porque los genes que actúan en la regulación de la producción de antibióticos están coordinados en muchos de los casos con los genes del desarrollo de *Streptomyces* (Flärdh & Buttner, 2009). Se realizó una tabla con los 15 genes XRE/DUF397 de *S. coelicolor* y sus genes ortólogos en otras especies de actinobacterias (tabla C1.3).

Hay que señalar que de los 15 sistemas XRE/DUF397 el gen *SCO4543* (XRE) fue denominado previamente gen *whiJ* (Chandra & Chater, 2014; Chater, 1972). Las proteínas codificadas por los genes *whi* en su mayoría son reguladores que participan en el desarrollo de los streptomycetes, sus mutantes forman hifas aéreas de color blanco, debido a que no consiguen esporular y adquirir el color gris de las esporas por eso su nombre. Asimismo, algunos se caracterizan por tener una secuencia de unión al DNA y estar asociados a una proteína más pequeña (Aínsa et al., 2010).

Tabla C1.3. Genes ortólogos de los 15 XRE/DUF397 de *S. coelicolor* en otras especies del filo Actinobacteria ☐ gen XRE ☐ gen DUF397*.

*Lista de los nombres de las cepas utilizadas en la realización de la tabla C1.3. se colocan en orden de aparición: Streptomyces lividans TK24, S. viridochromogenes DSM 40736, S. scabiei 87.22, S. sviceus ATCC 29083, S. avermitilis MA-4680, S. griseoflavus Tu4000, S. venezuelae ATCC 10712, S. griseus subsp. Griseus NBRC 13350, S. hygroscopicus ATCC 53653, S. pristinaespiralis ATCC 25486, S. roseosporus NRRL 15998, S. albus G J1074, S. clavuligerus ATCC 27064, Kitasatospora setas KM-6054; Stackebrandtia nassauensis DSM 44728; Salinispora tropica CNB-440, S. arenícola CNS-205, Micromonospora sp. L5, M. sp. ATCC39149, M. aurantiaca ATCC 27029; Saccharomonospora viridis DSM 43017; Saccharopolyspora erythraea NRRL 2338; Amycolatopsis mediterranei U32, Actinosynnema mirum DSM 43827; Streptosporangium roseum DSM 43021, Thermomonospora curvata DSM 43183, Thermobífida fusca YX, Nocardiopsis dassonvillei subesp. Dassonvillei DSM 43111; Frankia sp. EAN1pec, F. sp. Ccl3, F. alni ACN14a, Geodermatophilus obscurus DSM 43160, Nakamurella multipartita DSM 44233; Nocardia farcinica IFM 10152; Kocuria rhizophila DC2201, Arthrobacter arilaitensis Re117, Sanguibacter keddieii DSM 10542.


En el estudio de Chandra y Chater, 2014 los 15 sistemas XRE/DUF397 son denominados genes parálogos del gen whiJ *SCO4543* que a su vez también es un sistema XRE/DUF397 (Chandra & Chater, 2014). Aínsa et al., 2010 comprobaron que la proteína WhiJ (SCO4543) es un represor de la esporulación que responde a una señal transmitida a través de al menos uno de los genes que lo rodea y al parecer la proteína SCO4542 participa en esta represión (Aínsa et al., 2010). Estos dos genes están conservados en S. *lividans* TK24 y *S. avermitilis* MA-4680 y están ausentes en las familias Micromonosporineae, Frankineae y Corynebacterineae (tabla C1.3).

Empleando la base de datos Actinoblast ((http://streptomyces.org.uk/actinoblast/) se comprobó que 13 de los sistemas XRE/DUF397 presentes en *S. coelicolor* se encuentran conservados en *S. lividans* la especie más cercana a *S. coelicolor* con excepción de los sistemas SCO2381/82 y SCO6629/30 que no tienen ortólogos en esta especie (tabla C1.3).

Los ortólogos del sistema SCO4441/42 están presentes en todas las familias del filo Actinobacteria expuestas menos en la familia Micrococcineae; y el sistema SCO1978/79 solo se encuentra en la familia Streptomycineae; cabe anotar que el gen *SCO1979* ya fue comprobado experimentalmente que actúa como un regulador pleiotrópico y que regula su propia transcripción, el desarrollo celular y la producción de los antibióticos ACT, RED y CDA en *S. coelicolor* (Zhu et al., 2020).

Como complemento de la tabla C1.3 se realizó la tabla C1.4 en la que se muestra como han sido denominados los productos de las proteínas de los sistemas XRE/DUF397 presentes en *S. coelicolor* y sus ortólogos en el filo Actinobacteria en la base de datos "Actinoblast" (http://streptomyces.org.uk/actinoblast/). Se observó que la denominación en general de la proteína XRE coincide en lo que se conoce sobre ella: una proteína hipotética conservada, de unión al DNA, que tiene un dominio HTH, regulador transcripcional XRE y algunas son denominadas antitoxinas.

Tabla C1.4. Producto de los 15 XRE/DUF397 de *S. coelicolor* en otras especies del filo Actinobacteria ■ gen XRE ■ gen DUF397.

T: Presenta el codón TTA

Proteína de unión al DNA

Proteína de unión al promotor de Quitinasa Sistema toxina antitoxina de la familia XRE, componente antitoxina

Supuesta proteína de unión al DNA

Regulador transcripcional putativo

Proteína hipotética

Proteína hipotética conservada

Proteína que contiene domino hélice giro hélice

Regulador transcripcional de la familia XRE

Proteina de dominio hélice giro hélice

Proteína hélice giro hélice

Sistema toxina antitoxina componente toxina

Supuesto sistema toxina antitoxina componente toxina

Proteína que contiene el dominio DUF397

Proteína similar a AbaA

Proteína reguladora

Proteína similar a AbaA abaA2

Supuesta proteína AbaA

Regulador

yorG Proteína Hipotética

Proteína Predicha

Regulador transcripcional

Proteína hélice - horquilla-hélice que contiene el

motivo de unión DNA

Vsr supuesta endonucleasa de reparación de parche

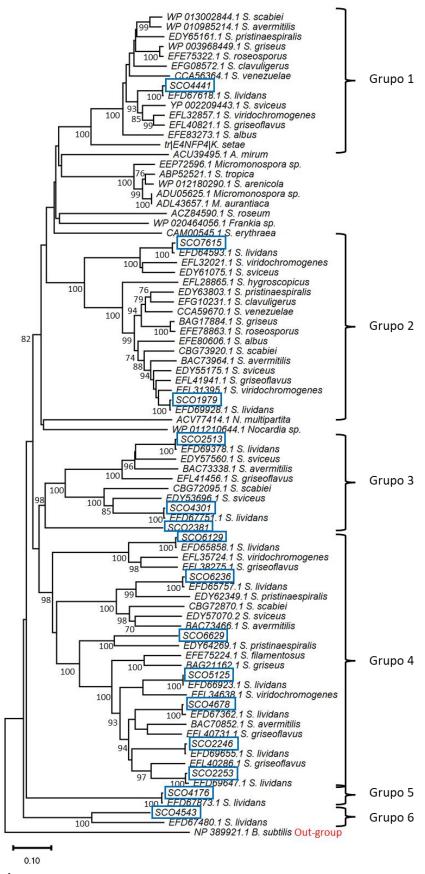
muy corto

Proteína del anillo M de cuerpo basal flagelar

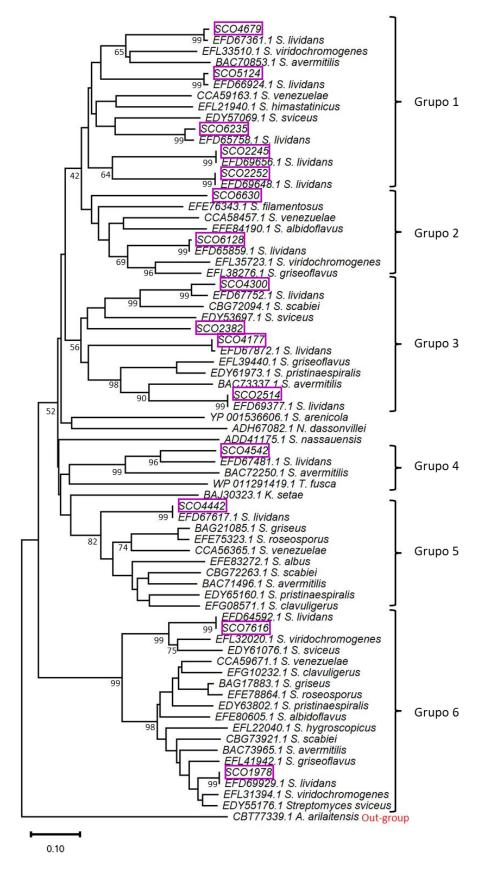
Proteína que contiene el dominio HTH_3

Dos de las denominaciones que se salen un poco de lo normal son: primero, una proteína de unión al promotor quitanasa en el ortólogo del gen *SCO4441* en *S. scabiei* 87.22, sin embargo, Fujii y sus colaboradores en el 2005 (Fujii et al., 2005) encontraron un gen con similitud al gen *SCO4441* que participa en la regulación de la expresión de la quitinasa en *S. lividans* y segundo, una proteína del cuerpo basal del gancho flagelar FliF ortólogo del gen *SCO4543* en *Sanquibacter keddieii* DSM.

Respecto a la proteína DUF397 su denominación general es proteína hipotética, proteína con dominio DUF397, regulador transcripcional, supuesta toxina y proteína similar a AbaA. La denominación más extraña fue la supuesta Vsr endonucleasa de reparación de parche muy corto ortólogo del gen *SCO4300 en Arthrobacter arilaitensis* RE117 (Chandra & Chater, 2014)(tabla C1.4).


Otra curiosidad que se observó en el sistema XRE/DUF397 SCO4300/01 de *S. coelicolor* y en algunos de los ortólogos en las otras familias del filo Actinobacteria fue la presencia del codón TTA (tabla C1.4). El codón TTA es muy extraño en la familia streptomycineae debido a que su genoma contiene en promedio un 70 % GC, la traducción de este codón se da a través del gen *bldA* que a diferencia de todos los genes reguladores del desarrollo no es un factor de transcripción, sino que codifica el único tRNA que puede traducir este codón. Aunque ningún gen esencial en la familia Streptomycineae contiene el codón TTA, por lo que sus mutantes de *bldA* son viables, pueden presentar fenotipos afectados en su desarrollo (Chandra & Chater, 2008; W. Li et al., 2007). Hay autores que sostienen que

dado que estos organismos son ricos en GC los genes que contienen el codón TTA son de origen exógeno (Chandra & Chater, 2008; W. Li et al., 2007).


C1.5 Análisis filogenético de los sistemas XRE/DUF397

Unido a los análisis anteriores, también se realizó un análisis filogenético de las proteínas XRE y DUF397 por separado con los genes ortólogos de la tabla C1.3 que mostraron un porcentaje de identidad ≥ 70% con el programa MEGA11 método de Neighbor-Joining bootstrap 1000 réplicas. El árbol filogenético de las proteínas XRE mostró 6 grupos robustos con una frecuencia mayor o igual a 98 réplicas (figura C1.3), mientras que la filogenia de las proteínas DUF397 solo mostró dos grupos robustos de los 6 presentes el grupo 6 y 5 (figura C1.4).

Sin embargo, los árboles filogenéticos obtenidos de estas proteínas XRE y DUF397 de *S. coelicolor* por separado está mostrando la relación intrínseca entre ellas como sistema, debido a que se agrupan de forma similar en ambos árboles, por ejemplo, las proteínas del sistema SCO4441/42 en cada uno de los árboles, se ubican en un grupo aparte junto a proteínas de la familia Streptomycineae (figura C1.3 grupo 1 y figura C1.4 grupo 5). Algo parecido sucede con las proteínas de los sistemas SCO2245/46 y el SCO2252/53. En ambos árboles filogenéticos están muy relacionadas las proteínas XRE y las DUF397 (figura C1.3 grupo 4 y figura C1.4 grupo 1) y las proteínas del sistema SCO4543/42 forman un grupo a parte de los otros sistemas el grupo 6 para las XRE (figura C1.3) y el grupo 4 para las DUF397 (figura C1.4).

Figura C1.3. Árbol filogenético de los genes XRE de *S. coelicolor y* sus ortólogos en el filo Actinobacteria ≥ 70 % identidad. Programa MEGA11 método de Neighbor-Joining Bootstrap 1000 copias genes XRE.

Figura C1.4. Árbol filogenético de los genes DUF397 de *S. coelicolor y* sus ortólogos en el filo Actinobacteria ≥ 70 % identidad. Programa MEGA11 método de Neighbor-Joining Bootstrap 1000 copias genes DUF397.

Lo anterior apunta a lo propuesto por Hwang et al., 2021 que sugirió que los pares de genes XRE- DUF397 tienen funciones biológicas distintas a las de estos genes por separado (Hwang et al., 2021).

Algo importante de resaltar es que en ambos árboles filogenéticos se forman dos grupos muy robustos: el grupo 2 de las proteínas XRE con 100 réplicas y las proteínas SCO7615 y SCO1979 XRE (figura C1.3) y el grupo 6 de las proteínas DUF397 con 99 réplicas y las proteínas SCO7616 y SCO1978 (figura C1.4), ambas proteínas de los dos grupos se complementan en un sistema XRE/DUF, el SCO7616/15 y el SCO1979/78 y se agrupan solo con especies de la familia Streptomycineae en una rama aparte; lo que confirma que estos dos sistemas estan bastante conservados en esta familia como se manifiesta en la tabla C1.3. Además, quizás la proteína SCO7615, no solo comparte cercanía filogenética con la proteína SCO1979, sino que también compartan fuciones similares, como regulación en el desarrollo y en la producción de antibioticos en *S coelicolor* que ya ha sido comprobado en la proteína SCO1979 (Zhu et al., 2020).

Además, remarcar que en el árbol filogenético de las proteínas DUF397 solo dos grupos son robustos, el mencionado arriba y el grupo en el que se encuentra la proteína SCO4442 sola (Grupo 5) junto a otros *Streptomyces* (figura C1.4).

Cabe anotar que dado que se eligieron secuencias con identidad ≥ 70% en los árboles filogenéticos se incluyeron pocos representantes de otras familias del filo Actinobacteria, pero así se consiguió tener arboles más robustos y claros a la hora de ver las relaciones de estos sistemas XRE/DUF397 de *S. coelicolor*.

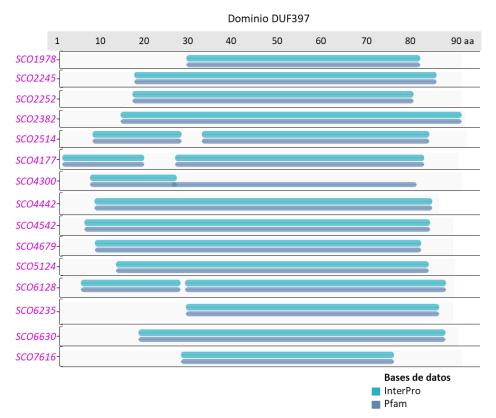
C1.6 Dominios de las proteínas XRE/DUF397

Los dominios de las proteínas XRE y DUF397 fueron identificados con el programa Interpro (https://www.ebi.ac.uk/interpro/) el cual proporciona un análisis práctico de secuencias de proteínas catalogándolas en familias e identificando la presencia de dominios importantes a partir de varias bases de datos. En la tabla C1.5 y C1.6 se detalla esta información de forma escrita; indicando el código de acceso de cada base de datos y el comienzo y el final de cada dominio y las figura C1.5 y C1.6 muestran gráficamente la posición y longitud de los dominios en cada una de las proteínas y el color determina la base de datos que la predijo.

Tabla C1.5. Identificación de los dominios de los 15 genes XRE. Se menciona la base de datos, código de acceso y comienzo y final en la proteína. gen XRE.

Base de datos	Interpro	PROSITE	Conserved Domains	SMART	Interpro	Pfam
Código	IPR001387	PS50943	cd00093	SM00530	IPR043917	PF19054
Dominio	Cro/C1-type_HTH	HTH_CROC1	HTH_XRE	HTH_XRE	DUF5753	DUF5753
SCO1979 aa	16-75	19-75	16-72	18-73	101-280	101-280
SCO2246 aa	29-79		31-86	29-79	102-253	102-253
<i>SCO2253</i> aa	29-86		29-80	31-86	102-279	102-279
SCO2381 aa	18-75	21-73	18-71	20-75	91-263	91-263
SCO2513 aa	14-71	17-69	14-67	16-71	89-264	89-264
SCO4176 aa	19-76		19-71	21-76	93-268	93-268
SCO4301 aa	18-75	21-74	18-71	20-75	91-268	91-268
SCO4441 aa	25-82	28-82	25-78	27-82	109-287	109-287
SCO4543 aa	15-72		15-72	17-72	101-277	101-277
SCO4678 aa	27-84		27-78	29-84	100-277	100-277
SCO5125 aa	32-88		34-88	32-82	105-282	105-282
<i>SCO6129</i> aa	47-104	50-103	47-99	49-104	122-297	122-297
SCO6236 aa	35-92	38-91	35-86	37-92	108-286	108-286
<i>SCO6629</i> aa	22-79		22-73	24-79	94-272	94-272
<i>SCO7615</i> aa	23-81	24-81		23-78	106-272	106-272

Tabla C1.6. Identificación de los dominios de los 15 genes DUF397. Se menciona la base de datos, código de acceso y comienzo y final en la proteína. gen DUF397.


Base de datos	Inter	pro	Pfam			
Código	IPR007	7278	PF04149			
Dominio	DUF3	397	DUF397			
SCO1978 aa		30-82		30-82		
SCO2245 aa		14-65		14-65		
SCO2252 aa		14-64		14-64		
SCO2382 aa		11-65		11-65		
SCO2514 aa	9-29	35-88	9-29	35-88		
SCO4177 aa	2-19	27-81	2-19	27-81		
SCO4300 aa	8-26		8-26	26-79		
SCO4442 aa		10-62		10-62		
SCO4542 aa		6-59		6-59		
SCO4679 aa		8-58		8-58		
SCO5124 aa		11-64		11-64		
SCO6128 aa	7-25	27-76	7-25	27-76		
SCO6235 aa		27-77		27-77		
SCO6630 aa		14-64		14-64		
SCO7616 aa		27-73		27-73		

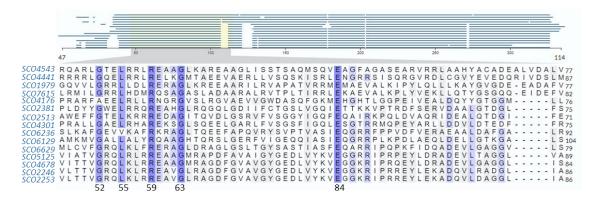
Para las proteínas XRE se identificaron dos dominios, el dominio HTH_XRE que también es llamado Cro/C1-type_HTH y HTH_CROC1. El dominio HTH_XRE es descrito como un dominio proteico de procariotas de tipo hélice-giro-hélice de unión al DNA con una longitud aproximadamente de 50-60 aa, el cual pertenece a la familia de reguladores transcripcionales de elementos de respuesta xenobiótica (Harrison, 1991; Luscombe et al., 2000).

Los otros dos nombres que recibe: Cro/C1-type_HTH y HTH_CROC1 se deben a los represores transcripcionales Cro y C1 de los bacteriófagos 434 y lambda respectivamente. De este motivo se ha descrito que está presente en procariotas y eucariotas y que por lo general la unión al DNA hélice-giro-hélice se encuentra en la parte N-terminal y es posible que el extremo C-terminal contenga un dominio de oligomerización (Aggarwal et al., 1998).

Figura C1.5. Identificación de los dominios de los 15 genes XRE de *S. coelicolor, p*osición en la proteína genes XRE Interpro (https://www.ebi.ac.uk/interpro/).

Figura C1.6. Identificación de los dominios de los 15 genes DUF397 de *S. coelicolor* posición en la proteína. Programa InterPro. gen DUF397.

El otro dominio DUF5753 de las proteínas XRE es un Dominio de Función Desconocida con una longitud aproximada de 150-160 aa es un supuesto dominio de unión a un ligando que se encuentra en reguladores de transcripción bacterianos que poseen un dominio HTH (hélice-giro-hélice) N-terminal (obtenido de la base de datos pfam PF13560).


Como su nombre indica, las proteínas DUF397 tienen un único dominio llamado dominio DUF397 cuya función es desconocida aunque se ha sugerido que algunos miembros de esta familia son reguladores transcripcionales (Fernández-Moreno et al., 1992).

En este grupo de proteínas las predicciones de la localización de este dominio se diferencian más que en los genes XRE. Por ejemplo, en los genes *SCO4177*, *SCO2514*, *SCO4300* y *SCO6128* el dominio se extiende a dos zonas, una inicial pequeña de aproximadamente 18 aa y una siguiente más amplia con aproximadamente 51 aa (figura C1.6; tabla C1.6). Los tres primeros genes coinciden también en ser parte del grupo 3 del árbol filogenético (figura C1.4).

C1.6.1 Alineamiento de los dominios

Adicionalmente se realizó un alineamiento de ambos tipos de proteínas con el programa UniProt para ver los aminoácidos conservados en los dominios de ambas proteínas (figura C1.7, C1.8 y C1.9).

En la figura C1.7 se observa que en el dominio HTH_XRE de las proteínas XRE, hay tres aminoácidos conservados en las 15 proteínas (marcados con morado oscuro) la arginina (R), glicina (G) y ácido glutámico (E), en las posiciones 59, 63 y 84 respectivamente. Se sabe que en estado no protonado, las cadenas laterales funcionales de la arginina y el ácido glutámico tienen la capacidad de ceder un par de electrones libres a otro aminoácido combinándose y enlazándose covalentemente con ellos (Bischoff & Schlüter, 2012). También se observó una leucina (L) conservada en 14 de las proteínas en la posición 55 (figura C1.7).

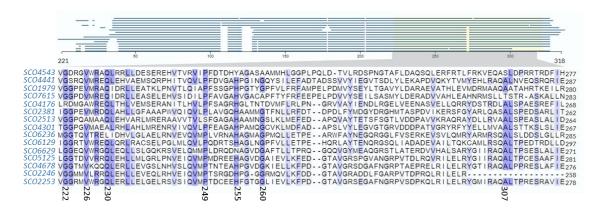


Figura C1.7. Alineamiento del dominio *HTH_XRE* de las 15 proteínas XRE de *S. coelicolor.* Programa UniProt. ■ gen XRE.

En el dominio DUF5753 de las proteínas XRE se observan dos aminoácidos conservados en 14 proteínas, la glicina en la posición 222 y la prolina (P) en la posición 249. La prolina es un aminoácido no polar, que en su forma L prolina, se le atribuye funciones de inhibir la agregación de proteínas durante su plegamiento (figura C1.8) (Bach & Takagi, 2013).

Además, en el dominio DUF5753 también se observa la secuencia de aminoácidos V-R-QL—L, valina, arginina, glutamina, leucina y leucina respectivamente, conservada en 10 proteínas empezando en la posición 226 (figura C1.8) (las rayas en la secuencia de aminoácidos son aminoácidos intermedios no conservados). La glutamina es un aminoácido que tiende a la desamidación especialmente cuando está cerca de aminoácidos pequeños tanto *in vivo* como *in vitro* (Bischoff & Schlüter, 2012). También se conserva en aproximadamente 12 proteínas una histidina (H) en la posición 255, una glicina (G) en la posición 260 y una alanina (A) seguida de una leucina (L) en la posición 307 (todos los aminoácidos conservados están marcados en morado) (figura C1.8).

La histidina en cadenas laterales funcionales, al igual que la arginina y el ácido glutámico en estado no protonado, también puede ceder un par de electrones libres a otra especie de aminoácido para combinarse y enlazarse covalentemente (Bischoff & Schlüter, 2012)

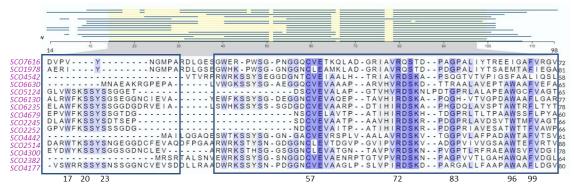


Figura C1.8. Alineamiento del dominio *DUF5753* de los 15 genes XRE de *S. coelicolor*. Programa UniProt. ■ gen XRE.

El alineamiento de las proteínas DUF397 contiene la secuencia W—KSSYS, triptófano, lisina, serina, serina, tirosina y serina respectivamente, en las posiciones del 17 al 23 (las rayas representan los aminoácidos no conservados) (marcadas en morado claro) (figura C1.9), esta secuencia está conservada sólo en ocho proteínas.

Por otra parte, también se encontraron las secuencias CVE, cisteína, valina y ácido glutámico respectivamente, que comienza en la posición 57, conservada en 12 proteínas; y la secuencia RDSK, arginina, aspartato, serina y lisina respectivamente, conservado en 13 proteínas la cual comienza en la posición 72. Finalmente, se encuentran semi conservados los aminoácidos glicina, triptófano y fenilalanina en las posiciones 83, 96 y 99 respectivamente.

Eccleston y sus colaboradores en un estudio de aminoácidos críticos en la proteína BldB, la cual es homologa y comparte todas las secuencias conservadas mencionadas antes de las proteínas DUF397 de esta investigación, determinaron que los aminoácidos ácido glutámico, arginina y serina en las posiciones 59, 72 y 74 respectivamente (figura C1.9), además de estar conservados, tenían cadenas laterales hidrófilas o cadenas laterales aromáticas en el caso de triptófano en la posición 17 y 96 y la fenilalanina en la posición 99 (Eccleston et al., 2006). Si estas cadenas están expuestas en la superficie de estas proteínas, es posible que sean parte de diversas interacciones.

Figura C1.9. Alineamiento del dominio DUF397 de los 15 genes DUF397 en *S. coelicolor*. En algunos sistemas la predicción del dominio DUF397 está compuesto por 2 partes señaladas por los dos cuadros azules, en otros solo está compuesto por el segundo cuadro más grande (tabla C1.6.) programa UniProt. ■ gen DUF397.

C1.7 Modelado estructural de las proteínas

Finalmente se realizó un modelado estructural de las proteínas XRE con el programa SWISS-MODEL (https://swissmodel.expasy.org/) (tablas C1.7, C1.8, C1.9 y C1.10). El 80 % de las proteínas XRE (SCO4441, SCO2246, SCO2253, SCO2513, SCO4176, SCO4301, SCO4543, SCO4678, SCO5125, SCO6129, SCO6629, SCO7615) concordaron con el modelo 6jq1.1.A Regulador transcripcional de la familia XRE, estructura cristalina de DdrO de *Deinococcus geothermalis*, el DdrO es un represor transcripcional que actúa frente al daño del DNA (H. Lu et al., 2019); la proteína SCO1979 coincidió con el modelo 6rnx.1.A regulador transcripcional tipo HTH DdrOC, estructura cristalina del represor esencial DdrO *Deinococcus deserti* resistente a la radiación (de Groot et al., 2019).

Por otra parte, la proteína SCO2381 concordó con el modelo 6rmq.1.A regulador transcripcional de tipo HTH DdrOC estructura cristalina de un mutante A70M I84M sustituido con selenometionina del represor esencial DdrO *Deinococcus deserti* resistente a la radiación, este regulador actúa en la expresión génica frente al estrés (de Groot et al., 2019). Por último la proteína SCO6236 coincidió con el modelo 6rmq.1.A regulador transcripcional de tipo HTH DdrOC, estructura cristalina de un mutante A70M I84M sustituido con selenometionina del represor esencial DdrO de *Deinococcus deserti* resistente a la radiación (de Groot et al., 2019).

Aunque en general los modelos de las proteínas XRE obtuvieron porcentajes muy bajos en la identidad de las secuencias, la proteína SCO4441 fue la que obtuvo la identidad de secuencia más alta de 24,09 %, se coloca de primera en la tabla C1.7.

Los modelos de las proteínas DUF397 no se muestran porque se obtuvieron puntuaciones muy bajas en las mediciones de calidad con el programa SWISS-MODEL (https://swissmodel.expasy.org/).

Tabla C1.7. Modelado de 4 proteínas XRE con el programa SWISS-MODEL. ■ gen XRE.

Gen XRE	Estado del oligo	GMQE**	QMEANDisCo*	Modelo	
SCO4441	Homo-dímero	0.22	0.44	6jq1.1.A Regulador transcripcional, familia XRE Estructura cristalina de DdrO de Deinococcus geothermalis Identidad secuencia: 24,09 %	To the second se
SCO1979	Homo-dímero	0.22	0.36	6rnx.1.A Regulador transcripcional tipo HTH DdrOC Estructura cristalina del represor esencial DdrO Deinococcus deserti resistente a la radiación Identidad secuencia: 20,16 %	
SCO2246	Homo-dímero	0.26	0.44	6jq1.1.A Regulador transcripcional, familia XRE Estructura cristalina de DdrO de Deinococcus geothermalis Identidad secuencia: 15,75 %	
SCO2253	Homo-dímero	0.23	0.43	6jq1.1.A Regulador transcripcional, familia XRE Estructura cristalina de DdrO de Deinococcus geothermalis Identidad secuencia: 15,75 %	TO SECOND TO SEC

^{*} Brindan una medición general de la calidad del modelo de 0 a 1 donde los números más altos indican una mayor calidad esperada. GMQE: depende de la cobertura de la secuencia y QMEANDisCo: es la puntuación promedio por residuo.

Tabla C1.8. Modelado de 4 proteínas XRE con el programa SWISS-MODEL. ■ gen XRE.

Gen XRE	Estado del oligo	GMQE*	QMEANDisCo*	Modelo	•
SCO2381	Homo-dímero	0.21	0.43	6rmq.1.A Regulador transcripcional de tipo HTH DdrOC Estructura cristalina de un mutante A70M 184M sustituido con selenometionina del represor esencial DdrO Deinococcus deserti resistente a la radiación 1dentidad secuencia: 18,03 %	
SCO2513	Homo-dímero	0.23	0.43	6jq1.1.A Regulador transcripcional, familia XRE Estructura cristalina de DdrO de Deinococcus geothermalis Identidad secuencia: 18,11 %	To the second se
SCO4176	Homo-dímero	0.20	0.44	6jq1.1.A Regulador transcripcional, familia XRE Estructura cristalina de DdrO de Deinococcus geothermalis Identidad secuencia: 22,76 %	
SCO4301	Homo-dímero	0.23	0.46	6jq1.1.A Regulador transcripcional, familia XRE Estructura cristalina de DdrO de Deinococcus geothermalis Identidad secuencia: 14,96 %	

^{*} Brindan una medición general de la calidad del modelo de 0 a 1 donde los números más altos indican una mayor calidad esperada. GMQE: depende de la cobertura de la secuencia y QMEANDisCo: es la puntuación promedio por residuo.

Tabla C1.9. Modelado de 4 proteínas XRE con el programa SWISS-MODEL. gen XRE.

Gen XRE	Estado del oligo	GMQE*	QMEANDisCo*	Modelo	
SCO4543	Homo-dímero	0.25	0.42	6jq1.1.A Regulador transcripcional, familia XRE Estructura cristalina de DdrO de Deinococcus geothermalis Identidad secuencia: 19,53 %	Total Park
SCO4678	Homo-dímero	0.23	0.42	6jq1.1.A Regulador transcripcional, familia XRE Estructura cristalina de DdrO de Deinococcus geothermalis Identidad secuencia: 14,96 %	
SCO5125	Homo-dímero	0.24	0.45	6jq1.1.A Regulador transcripcional, familia XRE Estructura cristalina de DdrO de Deinococcus geothermalis Identidad secuencia: 21,09%	
SCO6129	Homo-dímero	0.19	0.44	6jq1.1.A Regulador transcripcional, familia XRE Estructura cristalina de DdrO de Deinococcus geothermalis Identidad secuencia: 11,72 %	

^{*} Brindan una medición general de la calidad del modelo de 0 a 1 donde los números más altos indican una mayor calidad esperada. GMQE: depende de la cobertura de la secuencia y QMEANDisCo: es la puntuación promedio por residuo.

Tabla C1.10. Modelado de 3 proteínas XRE con el programa SWISS-MODEL. gen XRE.

Gen XRE	Estado del oligo	GMQE*	QMEANDisCo*	Modelo	
SCO6236	Homo-dímero	0.22	0.45	6rmq.1.A Regulador transcripcional de tipo HTH DdrOC Estructura cristalina de un mutante A70M 184M sustituido con selenometionina del represor esencial DdrO de <i>Deinococcus deserti</i> resistente a la radiación Identidad secuencia: 18,11%	
SCO6629	Homo-dímero	0.21	0,43	6jq1.1.A Regulador transcripcional, familia XRE Estructura cristalina de DdrO de Deinococcus geothermalis	
				Identidad secuencia: 14,06 %	NO TO
SCO7615	Homo-dímero	0,22	0,41	6jq1.1.A Regulador transcripcional, familia XRE Estructura cristalina de DdrO de Deinococcus geothermalis Identidad secuencia: 15,63%	

^{*} Brindan una medición general de la calidad del modelo de 0 a 1 donde los números más altos indican una mayor calidad esperada. GMQE: depende de la cobertura de la secuencia y QMEANDisCo: es la puntuación promedio por residuo.

Capítulo 2 Sobreexpresión de los sistemas XRE/DUF397

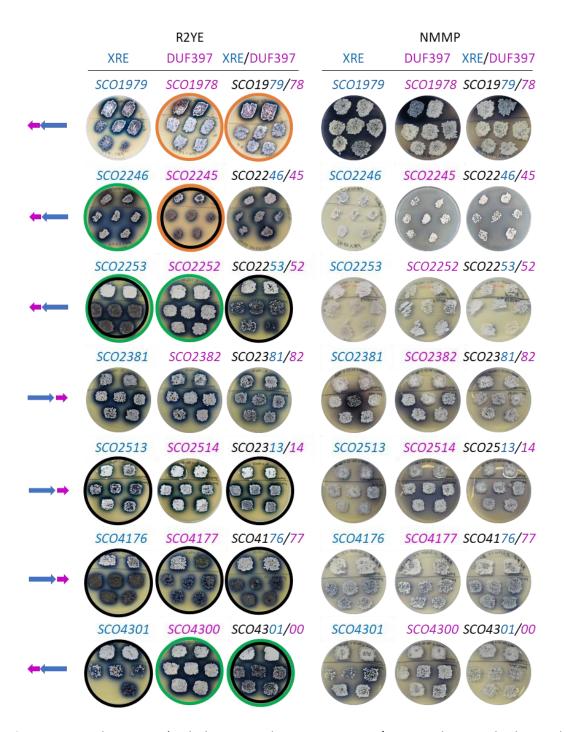
Como ya se ha mencionado anteriormente, las bacterias del género *Streptomyces* son productoras de una amplia fuente de metabolitos secundarios de gran uso en medicina como antibióticos, antifúngicos o antitumorales (de Lima Procópio et al., 2012; Mouncey et al., 2019; Watve et al., 2001) La producción de estos compuestos está sujeta a una compleja red de múltiples reguladores que actúan de forma jerárquica, unos en el nivel más alto, los reguladores pleiotrópicos y globales que modulan la transcripción sobre otro grupo de genes, en un nivel más bajo, que regulan directamente la transcripción de los genes de las distintas rutas biosintéticas (Liu et al., 2013).

Tres de los sistemas XRE/DUF397 presentes en el genoma de *S. coelicolor* ya han sido identificados como reguladores globales de la producción de antibióticos (Aínsa et al., 2010; Santamaría et al., 2018; Zhu et al., 2020). Dado que el efecto sobre la producción de antibióticos del regulador descrito por nuestro grupo, Scr1/Scr2, se observaba principalmente al sobreexpresar los genes que lo codifican (Santamaría et al., 2018), el objetivo de este capítulo fue el estudio de la sobreexpresión del resto de los 14 sistemas XRE/DUF397 de *S. coelicolor* (incluidos los dos ya descritos por los otros grupos de investigación estudiados en otras condiciones (Aínsa et al., 2010; Zhu et al., 2020). Para este estudio se emplearon distintos medios de cultivo para identificar condiciones que llevaran a seleccionar los sistemas con mayor potencial en la regulación de la producción de antibióticos.

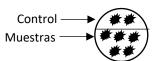
C2.1 Sobreexpresión de los 14 sistemas XRE/DUF397 en estudio

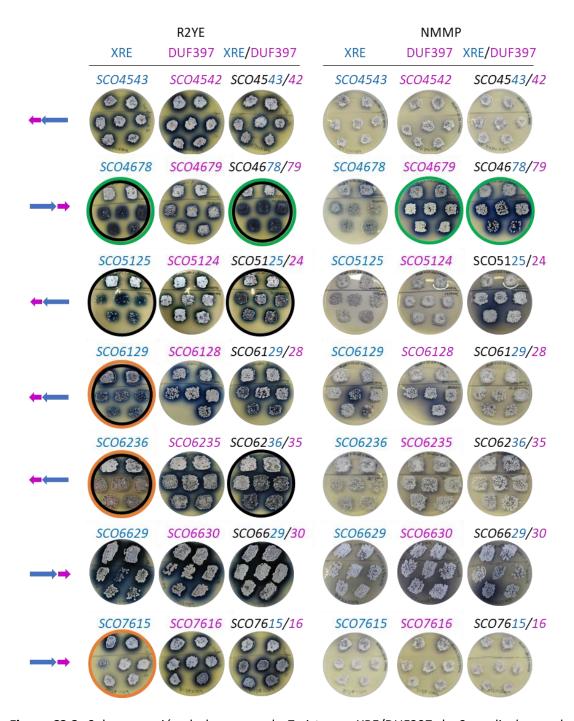
Para la sobreexpresión de los 14 sistemas objeto de estudio, se diseñaron oligonucleótidos específicos para amplificar cada uno de los genes por separado y en conjunto de cada pareja del sistema (ver materiales y métodos en el apartado M5.8 oligonucleótidos utilizados). Posteriormente, por cada sistema se construyeron tres plásmidos para su sobreexpresión en *S. coelicolor* dos que portan cada uno de los genes por separado y uno con los dos genes. En el proceso de construcción se hicieron tres

plásmidos intermediarios en *E. coli* y luego se construyeron los tres plásmidos multicopia finales para cada sistema; un total de 84 plásmidos (ver materiales y métodos en el apartado de **M2 Vectores utilizados** (tabla M2 y M3)).


El efecto de la sobreexpresión en *S. coelicolor* M145 de estos genes se estudió en una primera aproximación, utilizando dos medios de cultivo sólidos, uno rico (R2YE) y uno mínimo (NMMP) xilosa 1%. De cada cepa portadora de una determinada construcción se sembraron cinco clones mediante una siembra en parche sobre las correspondientes placas y se compararon con dos clones del control (que portan el plásmido vacío).

Para facilitar la escritura y la comprensión del trabajo en ocasiones se utilizará el termino gen DUF para los genes que codifican las correspondientes proteínas DUF397, el gen XRE para los genes que codifican las proteínas XRE de cada uno de los sistemas y el doble transformante XRE/DUF cuando se sobreexpresan conjuntamente ambos genes del sistema.


Se analizaron los cambios cualitativos existentes en el patrón de diferenciación (aparición de micelio aéreo: coloración blanca de la colonia) y en la producción del antibiótico coloreado ACT (color azul) con respecto a la cepa control a lo largo del tiempo. En las figuras C2.1 y C2.2 se muestran los fenotipos observados a los 7 días. En este estudio sólo se consideraron significativos los cambios de la sobreexpresión si estos se presentaban en 3 o más de los cinco clones analizados.


En el medio R2YE se observó que casi todos los sistemas mostraron diferencias de mayor o menor intensidad en los patrones de diferenciación y/o producción de ACT cuando al menos uno de sus genes estaba sobreexpresado con respecto al control; solo los sistemas SCO2381/82, SCO4543/42 y SCO6629/30 no presentaron diferencias significativas (figuras C2.1 y C2.2).

Sin embargo, en el medio NMMP sucedió lo contrario, casi ninguno de los sistemas mostró diferencias apreciables. Se observó tan solo que la sobreexpresión de *SCO4679* (gen DUF) y del doble sistema *SCO4678/79* mostraron una mayor producción de ACT (figura C2.2).

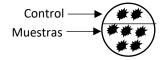


Figura C2.1. Sobreexpresión de los genes de 7 sistemas XRE/DUF397 de *S. coelicolor* en dos medios de cultivo R2YE y NMMP. **Control**: porta el plásmido vacío pNX702Gem3; **Muestras**: portan los plásmidos que llevan los genes indicados en la parte superior de la placa; **Izquierda**: indica el esquema de la disposición de los genes en el genoma *S. coelicolor.* **O** Retraso en el desarrollo. **O** Aumento en la producción actinorrodina. **O** Disminución en la producción de actinorrodina.

Figura C2.2. Sobreexpresión de los genes de 7 sistemas XRE/DUF397 de *S. coelicolor* en dos medios de cultivo R2YE y NMMP. **Control**: porta el plásmido vacío pNX702Gem3; **Muestras**: portan los plásmidos que llevan los genes indicados en la parte superior de la placa; **Izquierda**: indica el esquema de la disposición de los genes en el genoma *S. coelicolor.* **O** Retraso en el desarrollo. **O** Aumento en la producción actinorrodina **O** Disminución en la producción de actinorrodina.

Debido a que el número de colonias obtenidas en todas las transformaciones con los genes que codifican las proteínas DUF397 (supuesta toxina) fue similar a las transformaciones con los genes que codifican las proteínas XRE (supuesta antitoxina) y que las colonias seleccionadas para realizar los parches crecían perfectamente, se puede concluir que ninguna de las proteínas DUF397 no se están comportando como toxinas en las condiciones ensayadas.

Hay que señalar que con este estudio los fenotipos alterados en diferenciación se aprecian con mayor claridad que las diferencias observadas en la producción de ACT. Por otro lado, hay que destacar que no se ha observado que haya una clara correlación del comportamiento de la sobreexpresión de los genes de forma individual o conjunta en los diferentes sistemas. Por ejemplo, en el sistema SCO2245/46, la sobreexpresión de SCO2246 (XRE) sube la producción de ACT y no afecta a la diferenciación, la sobreexpresión de SCO2245 (DUF) tiene el efecto contrario, y cuando se sobreexpresan ambos predominan el fenotipo del elemento XRE. En el caso del sistema SCO6235/36 hay una mayor similitud entre el fenotipo de la sobreexpresión la proteína DUF y la doble sobreexpresión. En otros casos el fenotipo es similar con los tres tipos de construcciones como en el caso del SCO4176/77 respecto a la diferenciación.

Aunque se puede concluir que cada uno de los sistemas tiene un modo de actuación diferente en relación con la producción de ACT y con el desarrollo correcto de los procesos de diferenciación, en general, hay un predominio de fenotipos similares cuando se sobreexpresa el elemento XRE y el sistema completo. Un modelo acorde con este comportamiento predominante sería que la molécula efectora responsable del efecto observado sería la proteína XRE y que para determinar si la proteína DUF es indispensable en este fenotipo habría que realizar la sobreexpresión sobre una cepa mutante en la que no estuviera presente el sistema. En cualquier caso, si DUF es importante en estos casos, no sería en condiciones de equimolaridad. Una posibilidad es que las interacciones entre ambas proteínas sean poco estables con lo que una cantidad basal de DUF fuera suficiente para la actuación de las proteínas XRE.

Teniendo esto en consideración, y dado que el principal interés del trabajo era identificar aquellos sistemas implicados en la regulación de la producción de antibióticos, de los 14 sistemas estudiados se seleccionaron seis de los sistemas que mostraron una mayor o

menor producción de ACT con respecto al control, en los medios estudiados, con los que se continuó su estudio. Y también se seleccionaron aquellos con un fenotipo diferente muy destacado en su diferenciación.

Los sistemas seleccionados según los fenotipos obtenidos en medio R2YE de las figuras C2.1 y C2.2 fueron:

- **SCO2246/45** en el que la sobreexpresión del gen DUF muestra un retraso en el desarrollo y menor producción de ACT y la sobreexpresión del gen XRE muestra el fenotipo opuesto (figura C2.1).
- **SCO2253/52** en el cual, la sobreexpresión del gen XRE y la del doble XRE/DUF muestra un retraso drástico en el desarrollo y la sobreexpresión de los elementos por separado muestra un ligero aumento de la producción de ACT (figura C2.1).
- **SCO4176/77** en el que la sobreexpresión de los dos genes por separado y en conjunto muestra un fenotipo calvo (figura C2.1).
- **SCO4678/79** en donde la sobreexpresión del gen XRE y la de los dos genes en conjunto muestran un fenotipo calvo y una mayor producción de ACT. En este caso también se observa claramente en el medio NMMP que la sobreexpresión de ambos genes y la del gen DUF muestran mayor producción de ACT (figura C2.2).
- **SCO6236/35** en el cual la sobreexpresión del gen XRE muestra menor producción de ACT y se ve afectada la diferenciación. En el caso de la sobreexpresión del doble tan solo se aprecia una disminución en la diferenciación (figura C2.2).
- **SCO7615/16** que igual que en el sistema anterior la sobreexpresión del gen XRE muestra menor producción de ACT. Además, la diferenciación estaba poco afectada (figura C2.2).

C2.2 Fenotipo de las colonias que sobreexpresan los 6 sistemas XRE/DUF397 seleccionados

Además de este estudio comparativo de los parches transformantes portadores de las distintas construcciones crecidas en parche, se analizaron los fenotipos de las colonias individuales de cada uno de los transformantes seleccionados sobre medio R2YE tras 7 días de cultivo.

Así se observó que las colonias que sobreexpresaban las proteínas XREs correspondientes a los genes *SCO4176* y *SCO6236* tenían una apariencia calva, así como que, existía un retraso en la diferenciación de las colonias que sobreexpresaban el par *SCO4176/77*. Además de ello, se comprobó que aquellas colonias que sobreexpresaban *SCO4177* o *SCO2253/52*, *SCO4176/77*, *SCO4678/79* y *SCO6236/35* presentaban un tamaño menor que las colonias controles (figura C2.3).

Figura C2.3. Fenotipo de colonias de la sobreexpresados de seis sistemas XRE/DUF397 de *S. coelicolor* en R2YE.

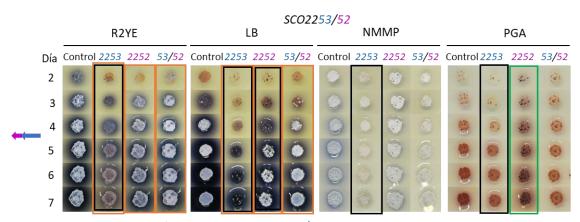
Los fenotipos calvos y colonias más pequeñas que muestra la figura C2.3, ratifican que la sobreexpresión de estos genes está regulando el desarrollo y muy posiblemente la producción de antibióticos en *S. coelicolor*. Pues ya se sabe que, en el ciclo de vida de *S. coelicolor*, los procesos de diferenciación del micelio sustrato a micelio aéreo, están muy

relacionados con la producción de metabolitos secundarios y muchos de ellos tienen capacidad antibiótica.

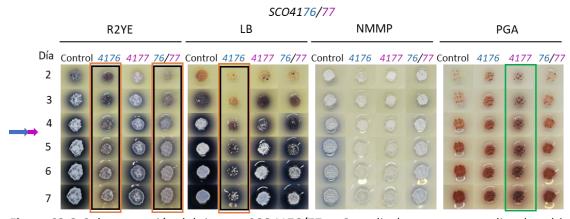
C2.3 Fenotipo de la sobreexpresión de los 6 sistemas XRE/DUF seleccionados

Para corroborar los fenotipos observados en las Figuras C2.1 y C2.2 en los dos medios utilizados, R2YE y NMMP, los clones transformantes de todas las construcciones de los seis sistemas seleccionados (SCO2246/45, SCO2253/52, SCO4176/77, SCO4678/79, SCO6236/35, SCO7615/16) se sembraron de nuevo y en el ensayo se añadieron dos medios adicionales: LB (medio rico) y PGA un medio adecuado para observar la producción del otro antibiótico coloreado, RED, producido por *S. coelicolor*. Se sembraron en cada placa 2 parches por cada construcción y 2 parches de la cepa transformada con el plásmido vacío por duplicado en los 4 medios (ver materiales y métodos apartado M7 sobreexpresión de los 6 sistemas XRE/DUF seleccionados). El crecimiento a 30 ºC se siguió y fotografió diariamente durante siete días.

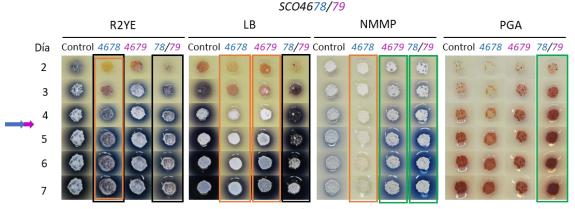
En las figuras C2.4 al C2.9 puede observarse que algunos de los fenotipos observados en el primer ensayo no se siguen manteniéndo en el medio R2YE, especialmente en lo referente a la producción de ACT como se indica en cada caso.


Se hicieron las siguientes observaciones:

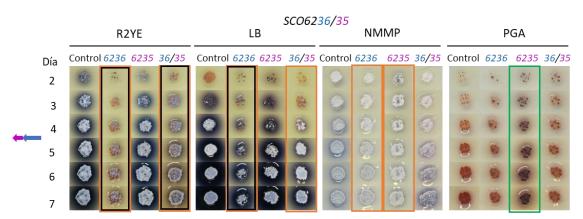
- En el sistema **SCO2246/45** (figura C2.4) la sobreexpresión individual del gen DUF produce o mantiene la disminución drástica en la producción de ACT y el retraso en el desarrollo observados con anterioridad en medio R2YE. Esta bajada en la producción de ACT también se ve en medio LB cuando se expresa el gen DUF. La sobreexpresión del gen XRE disminuye claramente la producción de ACT en el medio LB. Por otro lado, hay un aumento de la producción de RED con la sobreexpresión del gen XRE (*SCO2246*) como puede apreciarse en el medio PGA. No hay diferencias significativas en la sobreexpresión de ambos genes en los medios ensayados. No hay diferencias significativas en medio NMMP (figura C2.4).


Figura C2.4. Sobreexpresión del sistema *SCO2246/45* en *S. coelicolor* en cuatro medios de cultivo R2YE, LB, NMMP y PGA. **Control**: porta el plásmido vacío pNX702Gem3; **Otros**: portan los plásmidos que sobreexpresan los genes indicados en la parte superior; **Izquierda**: indica el esquema de la disposición de los genes en el genoma *S. coelicolor.* **O** Retraso en el desarrollo. **O** Aumento en la producción de actinorrodina o undecilprodigiosina. **O** Disminución en la producción de actinorrodina o undecilprodigiosina.

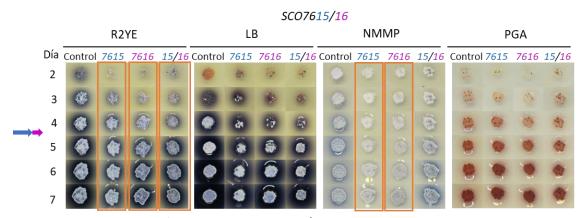
- En el sistema **SCO2253/52** (figura C2.5) la sobreexpresión del gen XRE mantiene una menor producción de micelio aéreo en los cuatro medios de cultivo, presentando un fenotipo calvo en LB. En los medios R2YE y LB la sobreexpresión de los dos genes por separado y en conjunto disminuyen la producción de ACT al contrario de lo observado en el ensayo anterior. Por otro lado, la sobreexpresión del gen DUF (*SCO2252*) aumenta la producción de RED en medio PGA. No hay diferencias significativas en la producción de ACT en medio NMMP (figura C2.5).


Figura C2.5. Sobreexpresión del sistema *SCO2253/52* en *S. coelicolor* en cuatro medios de cultivo R2YE, LB, NMMP y PGA. **Control**: porta el plásmido vacío pNX702Gem3; **Otros**: portan los plásmidos que sobreexpresan los genes indicados en la parte superior; **Izquierda**: indica el esquema de la disposición de los genes en el genoma *S. coelicolor.* **O** Retraso en el desarrollo. **O** Aumento en la producción de actinorrodina o undecilprodigiosina. **O** Disminución en la producción de actinorrodina o undecilprodigiosina.

- En el sistema **SCO4176/77** (figura C2.6) la sobreexpresión del gen XRE mantiene en un déficit en la diferenciación en los dos medios ricos de cultivo estudiados y la producción de ACT está disminuida en los medios R2YE y LB; la sobreexpresión del gen DUF aumenta la producción de RED en medio PGA y la sobreexpresión de los dos genes en conjunto disminuye la producción de ACT y afecta la diferenciación, principalmente en R2YE. No hay diferencias significativas en medio NMMP (figura C2.6).


Figura C2.6. Sobreexpresión del sistema *SCO4176/77* en *S. coelicolor* en cuatro medios de cultivo R2YE, LB, NMMP y PGA. **Control**: porta el plásmido vacío pNX702Gem3; **Otros**: portan los plásmidos que sobreexpresan los genes indicados en la parte superior; **Izquierda**: indica el esquema de la disposición de los genes en el genoma *S. coelicolor.* **O** Retraso en el desarrollo. **O** Aumento en la producción de actinorrodina o undecilprodigiosina. **O** Disminución en la producción de actinorrodina o undecilprodigiosina.

- En el sistema **SCO4678/79** (figura C2.7) la sobreexpresión del gen XRE genera colonias afectadas en diferenciación en el medio R2YE y una disminución en la producción de ACT (al contrario de lo observado en el ensayo anterior), es más drástica en medio LB. Por otro lado, la sobreexpresión el gen DUF, baja la producción de ACT en medio LB y muestra mayor producción de ACT en medio NMMP y esta sobreexpresión de ACT en NMMP es mucho más clara si se sobreexpresan ambos genes; además esta expresión conjunta incrementa también la expresión de RED en medio PGA (figura C2.7).


Figura C2.7. Sobreexpresión del sistema *SCO4678/79* en *S. coelicolor* en cuatro medios de cultivo R2YE, LB, NMMP y PGA. **Control**: porta el plásmido vacío pNX702Gem3; **Otros**: portan los plásmidos que sobreexpresan los genes indicados en la parte superior; **Izquierda**: indica el esquema de la disposición de los genes en el genoma *S. coelicolor.* **O** Retraso en el desarrollo. **O** Aumento en la producción de actinorrodina o undecilprodigiosina. **O** Disminución en la producción de actinorrodina o undecilprodigiosina.

- En la sobreexpresión del sistema **SCO6236/35** (figura C2.8) se observa que la sobreexpresión del gen XRE genera colonias con una menor diferenciación en el medio R2YE y LB con una bajada muy drástica de la producción de ACT en ambos medios. Se corrobora el fenotipo observado en el ensayo anterior. La sobreexpresión del gen DUF muestra mayor producción de la expresión de RED en medio PGA; y la sobreexpresión de ambos genes en conjunto se comportan como la sobreexpresión de gen XRE con una bajada muy drástica de la producción de ACT en R2YE y en LB. Una menor producción con la sobreexpresión de los genes individuales se observa en NMMP (figura C2.8).

Figura C2.8. Sobreexpresión del sistema *SCO6236/35* en *S. coelicolor* en cuatro medios de cultivo R2YE, LB, NMMP y PGA. **Control**: porta el plásmido vacío pNX702Gem3; **Otros**: portan los plásmidos que sobreexpresan los genes indicados en la parte superior; **Izquierda**: indica el esquema de la disposición de los genes en el genoma *S. coelicolor.* **O** Retraso en el desarrollo. **O** Aumento en la producción de actinorrodina o undecilprodigiosina. **O** Disminución en la producción de actinorrodina o undecilprodigiosina.

- El último sistema estudiado fue **SCO7615/16** (figura C2.9). La sobreexpresión de los genes por separado y en conjunto provocan una disminución de la producción de ACT en el medio R2YE, especialmente la sobreexpresión del gen XRE y tiene la misma tendencia en medio LB sin llegar a ser claro. La menor producción con la sobreexpresión de los genes individuales se observa también en NMMP. No se aprecian diferencias significativas en PGA (figura C2.9).

Figura C2.9. Sobreexpresión del sistema *SCO7615/16* en *S. coelicolor* en cuatro medios de cultivo R2YE, LB, NMMP y PGA. **Control**: porta el plásmido vacío pNX702Gem3; **Otros**: portan los plásmidos que sobreexpresan los genes indicados en la parte superior; **Izquierda**: indica el esquema de la disposición de los genes en el genoma *S. coelicolor.* **O** Retraso en el desarrollo. **O** Aumento en la producción de actinorrodina o undecilprodigiosina. **O** Disminución en la producción de actinorrodina o undecilprodigiosina.

Así pues, realizados todos estos estudios fenotípicos comparativos se puede deducir que la sobreexpresión de estos sistemas XRE/DUF397 afecta el desarrollo y la producción de ACT y RED en *S. coelicolor* M145 postulándolos como potenciales reguladores pleiotrópicos en esta especie.

C2.4 Efecto sobre la actividad biológica de la sobreexpresión de los seis sistemas

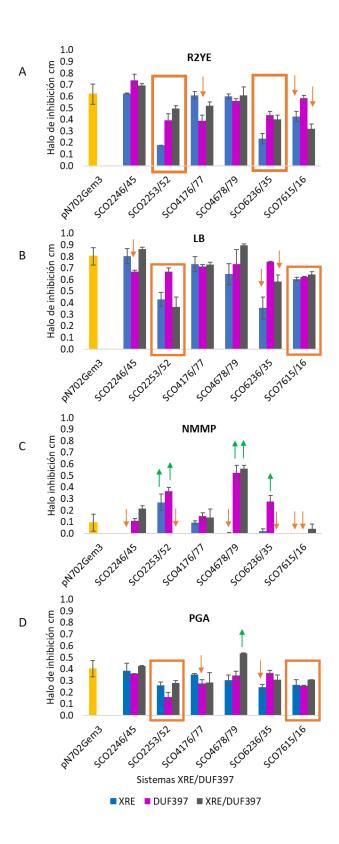
Para completar el estudio fenotípico y con el fin de analizar la producción de metabolitos secundarios bioactivos inducidos por la sobreexpresión de los sistemas estudiados se realizaron antibiogramas de los distintos transformantes individuales y conjuntos de los seis sistemas (SCO2246/45, SCO2253/52, SCO4176/77, SCO4678/79, SCO6236/35, SCO7615/16). Se analizó la sobreexpresión de cada una de las construcciones en distintos medios frente a *Bacillus subtilis* neoR como microorganismo testigo. Se empleó esta cepa resistente a neomicina ya que los medios de cultivo en los que se analizan los clones llevan neomicina para seleccionar y mantener los plásmidos multicopia de sobreexpresión.

Este ensayo se realizó con las mismas colonias de los transformantes del ensayo anterior, las cuales fueron sembradas en forma de parches en los medios R2YE, LB, NMMP y PGA, a los 7 días de crecimiento se hicieron tacos de estos parches de 0.7 cm, de diámetro los cuales fueron colocados en placas cuadradas de LB con cobertera del microorganismo testigo *Bacillus subtilis* neoR (ver en materiales y métodos el apartado **M8** antibiograma).

A partir del tamaño de los halos de inhibición se obtuvo una cuantificación indirecta de los antibióticos que se están produciendo por la sobreexpresión de estos genes en cada uno de estos medios de cultivo (figura C2.10).

En el sistema **SCO2246/45** no se apreciaron diferencias en este ensayo cuando se crecieron los correspondientes transformantes en R2YE y en PGA (figura C2.10A y C2.10D), tan solo se observa una bajada con la sobreexpresión de SCO2245 (gen DUF) en LB y con el gen XRE en medio NMMP (figura C2.10B y C210C).

El sistema **SCO2253/52** ejerce una regulación negativa sobre la producción de antibióticos en tres de los medios de cultivo empleados (R2YE, LB y PGA) tanto con la sobreexpresión individual como conjunta (figura C2.10A, C2.10B y C2.10D); mientras que en el medio NMMP la sobreexpresión de los genes XRE (*SCO2253*) y DUF (*SCO2252*) por separado inducen una mayor actividad biológica (figura C2.10C) y esta no debe proceder de los antibióticos coloreados, ACT ó RED, ya que estos no se detectan en este medio


(figura C2.1 y C2.5). Curiosamente, en este medio, NMMP, la sobreexpresión de ambos genes en conjunto provoca la no producción de antibióticos (figure C2.10C). El cambio en la producción de metabolitos secundarios al sobreexpresar este sistema en medio rico o en un medio mínimo puede deberse a una regulación asociada a la fuente de carbono.

En el sistema **SCO4176/77** se observa una bajada en la actividad biológica al sobreexpresar el gen DUF en los medios R2YE y PGA (figura C2.10A y C2.10D.

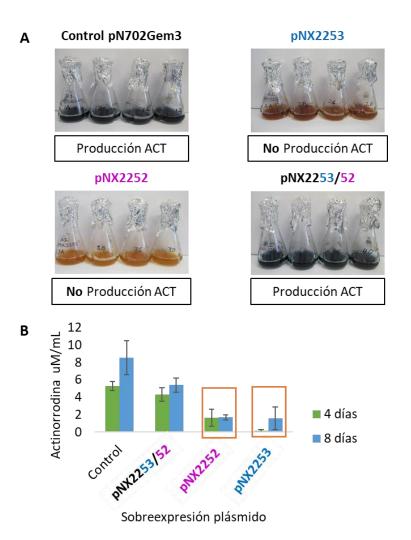
El sistema **SCO4678/79** muestra una mayor actividad biológica de los clones que sobreexpresan de genes DUF y XRE/DUF y esto se corresponde con una mayor producción de ACT en medio NMMP (figura C2.10C). También se observa un incremento en la actividad en medio PGA con la sobreexpresión del sistema completo (figura C2.10D).

El sistema **SCO6235/36** muestra una bajada en la actividad biológica frente a *B. subtilis* en medio R2YE con todas las construcciones (figura C2.10A) y en medio LB cuando se sobreexpresa el gen XRE o todo el sistema (C2.10B). También baja con la sobreexpresión del gen XRE y del doble en medio NMMP (figura C2.10C) y en PGA con el gen XRE (figura C2.10D). Hay a su vez una subida en la actividad biológica con la sobreexpresión del gen DUF en NMMP (figura C2.10C).

Finalmente, el sistema **SCO7615/16** mantiene, en general en todos los medios de cultivo, una ligera bajada en la producción de antibióticos por la sobreexpresión de los genes por separado y del sistema completo (figura C2.10). Esta reducción en la producción de antibióticos es más marcada en el medio NMMP en el que no se detecta actividad biológica cuando se sobreexpresan los genes por separado y muy baja cuando se hace en conjunto (figura C2.10C).

Figura C2.10. Antibiograma de 6 sistemas XRE/DUF397 sobreexpresión en 4 medios de cultivo diferentes, frente a *Bacillus subtilis*. (A) Medio R2YE; (B) Medio LB; (C) Medio NMMP; (D) Medio PGA. Disminución en la producción de metabolitos secundarios bioactivos.

C2.5 Cuantificación de la producción de ACT con la sobreexpresión del sistema SCO2252/53


Adicionalmente a los estudios anteriormente desarrollados, se cuantificó la producción de ACT en medio R2YE líquido en cultivos que sobreexpresaban uno de los sistemas. Para este estudio se seleccionó el sistema SCO2252/53.

Para este fin se sembraron cuatro clones de cada construcción y del control (cepa que lleva el pNX702Gem3) y se mantuvieron bajo agitación a 28 °C durante 8 días. La ACT producida se cuantificó mediante espectrofotometría a los 4 y 8 días (ver materiales y métodos el apartado **M11.1 cuantificación en medio líquido de ACT y RED**).

A simple vista se puede apreciar que los cultivos correspondientes a la sobreexpresión de los genes DUF y XRE por separado no producen ACT en medio líquido ya que no presentan el color típico de este antibiótico. Sin embargo, cuando se sobreexpresan ambos genes en conjunto los cultivos adquieren un intenso color azul muy similar al del control (figura C2.11A).

La cuantificación espectrofotométrica de estos cultivos corroboró estas observaciones al comprobar claramente que la expresión de los genes individuales conlleva una bajada importante en la producción de este antibiótico mientras que la sobreexpresión de los dos en conjunto provoca una bajada menor respecto al control (figura C2.11B).

Los resultados de la cuantificación realizada de la producción de ACT en medio líquido del sistema SCO2252/53 se corresponden con los obtenidos en medio R2YE sólido mediante la observación cualitativa realizada en el segundo ensayo: una bajada mayor en la producción por la sobreexpresión individual de los genes XRE y DUF del sistema que está menos acentuada cuando se sobreexpresan ambos genes (figura C2.5).

Figura C2.11. Sobreexpresión del sistema SCO2253/52 en medio líquido R2YE. (A) medios de cultivo de *S. coelicolor* con la sobreexpresión del plásmido que indica en la parte de arriba (B) Cuantificación de la producción ACT por la sobrexpresión de los plásmidos indicados.

C2.6 Relación de los seis sistemas XRE/DUF seleccionados con la producción de antibióticos y diferenciación

Como se ha podido observar durante todos los ensayos realizados, los seis sistemas estudiados están regulando la producción de antibióticos y/o la diferenciación en mayor o menor medida. Además, esta regulación es dependiente del medio de cultivo y la implicación de los dos elementos de cada sistema es diferente en cada caso e incluso puede variar dependiendo del medio de cultivo empleado.

En la tabla C2.1 se muestra un resumen de la regulación ejercida por los seis sistemas XRE/DUF397 en la diferenciación y producción de ACT y RED, al sobreexpresar en *S. coelicolor* en los diferentes medios de cultivo ensayados.

Tabla C2.1. Resumen de la regulación ejercida por los sistemas XRE/DUF397 en la diferenciación y producción de ACT y RED, al sobreexpresar en *S. coelicolor* en diferentes medios de cultivo.

		Regulación																							
					Gen	XRE				Gen DUF							Genes XRE/DUF								
		Diferenciación					ACT RED			Diferenciación			ACT			RED	Diferenciación			ACT			RED		
	Medio de	R2	LB	NM	PGA	R2	LB	NINA	PGA	D2	LB	ΝМ	PGA	D2	LB	NM	PGA	D2	LB	NM	PGA	R2	LB	NM	PGA
	cultivo	K2	LD	IVIVI	PGA	K2	LD	IVIVI	PGA	K2	LD	IVIVI	PGA	KZ	ш	INIVI	PGA	52	LD	IVIVI	PGA	52	LD	IVIVI	PGA
as	SCO2246/45	0	0	0	0	0	Α	0	+	-	0	0	0	$\overline{}$	$\overline{}$	0	0	0	0	0	0	0	0	0	0
	SCO2253/52	<u>^</u>	$\overline{\cap}$	-	-	Α	/ -1	0	0	0	-	0	0	U	U	0	Ŧ	0	0	0	0	(-)	-	0	0
Ë	SCO4176/77	-	U	0	0	/ - N	-	Q	0	0	0	0	0	0	0	0	(+)	<u> </u>	0	0	0	U	0	0	0
ste	SCO4678/79	- /	0	0	0	-	-	/ -\	0	0	0	0	0	0	0	+	0	[-]	-	0	0	0	0	+	+
\ <u>is</u>	SCO6236/35	U	0	0	0	-	\- /	-	0	0	0	-	0	0	0	-	Θ	U	0	0	0	$\overline{}$	-	0	0
	SCO7615/16	0	0	0	0	V	0	\- /	0	0	0	0	0	0	0	-	0	0	0	0	0	(-)	0	0	0

(-) Regulación negativa; (+) Regulación positiva; (O) no hay efecto. Medio R2YE (R2); Medio LB (LB); Medio NMMP (NM) Medio PGA (PGA).

De la tabla C2.1 se puede concluir los siguientes resultados más significativos del efecto de la sobreexpresion de estos sistemas:

-En general las proteínas de los genes **XRE** ejercen una regulación negativa en la diferenciación de *S. coelicolor* en medios ricos. Cabe anotar que la familia de los factores de transcripción (TFs) XRE, se han identificado como represores del desarrollo morfológico en *Streptomyces* (Romero-Rodríguez et al., 2015). Además, ejercen una regulación negativa en la producción de ACT tanto en medios ricos como en medio mínimo.

-Las proteínas de los genes **DUF**, por lo general, no afectan a la diferenciación, pero ejercen una regulación negativa en la producción de ACT en medios ricos, mientras, que regulan de forma positiva la producción de RED en medio PGA.

-Por último, las proteínas **XRE/DUF397** en conjunto, por lo general, solo ejercen regulación negativa en la diferenciación y la producción de ACT en medio R2YE.

Como se ha podido apreciar a través del capítulo, el tipo de medio de cultivo determina efectos en la sobrexpresión de estos genes y seguramente cambios ínfimos en sus ingredientes, también. Por ello es importante clarificar que el primer escrutinio de la sobreexpresión de los 14 sistemas se realizó para cada sistema según fueron obteniéndose los correspondientes plásmidos lo que conllevó el uso de diferentes lotes de medios lo que pudiera afectar a las observaciones realizadas. Por esa razón, el segundo ensayo de sobreexpresión se realizó en simultaneo con los seis sistemas, porque de esa forma se minimiza el error experimental dado, por el lote de medios de cultivo, temperatura de incubación u otros factores que pudieran escaparse.

A pesar de que en los ensayos presentados en este capítulo se observan algunas discrepancias en los resultados, estos sistemas se perfilan muy bien como reguladores pleiotrópicos en *S. coelicolor*, regulando por lo general el desarrollo y la producción de ACT de forma negativa y en algunos casos la producción de RED positivamente.

Capítulo 3

Obtención de mutantes de *S. coelicolor* carentes de sistemas XRE/DUF397

En el capítulo 2 se demostró que la sobrexpresión de los genes de varios de los sistemas XRE/DUF397 (bien por la sobreexpresión de los genes individualmente o en conjunto) provocaban cambios en la producción de ACT y RED en *S. coelicolor* y también originaban cambios fenotípicos significativos relativos a su diferenciación. En consecuencia, mutantes de deleción de los genes de estos sistemas, también deberían suprimir o alterar la producción de estos antibióticos y/o la diferenciación.

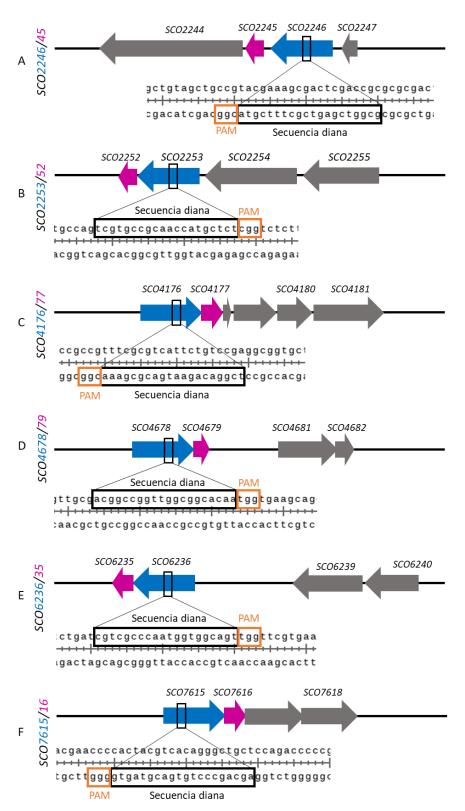
Bajo esta premisa, el objetivo de este capítulo fue delecionar del genoma de *S. coelicolor* M145 los genes de los seis sistemas XRE/DUF397 seleccionados a lo largo del capítulo 2 porque su sobreexpresión generaba cambios fenotípicos significativos en alguno de los medios estudiados. Estos sistemas fueron: SCO2246/45, SCO2253/52, SCO4678/79, SCO4176/77, SCO6236/35 y SCO7615/16. La estrategia inicial fue abordar la eliminación conjunta de los dos genes de cada uno de los seis sistemas.

Para la obtención de estos mutantes se empleó la tecnología CRISPR-Cas9 y una vez obtenidos y comprobados se analizaron sus fenotipos en distintos medios de cultivo.

Cabe aclarar que este objetivo se empezó en paralelo con parte del trabajo del objetivo del capítulo 2 (sobreexpresión de los mencionados sistemas).

C3.1 Obtención de los mutantes

Inicialmente, se abordó la construcción de los mutantes dobles porque se quería observar las implicaciones del sistema completo en la regulación de los antibióticos.


La tecnología CRISPR-Cas9 es una técnica eficiente para eliminar genes y grupos de genes en distintos organismos y en el orden de los Actinomycetales ha sido puesta a punto por varios grupos (Cobb et al., 2015; Tong et al., 2015).

Para la implementación de esta técnica se utilizó el protocolo de Tong et al., 2015, en donde a partir del plásmido pCRISPR-Cas9, que contenía un complejo endonucleasa Cas9 – crRNA, se introdujo en el sitio crRNA una guía de 20 nucleótidos con la secuencia diana

que hibridaba en uno de los dos genes que se querían delecionar generando los correspondientes plásmidos pCRISPR-Cas9-sg2246, pCRISPR-Cas9-sg2253, pCRISPR-Cas9-sg4176, pCRISPR-Cas9-sg4678, pCRISPR-Cas9-sg6236 y pCRISPR-Cas9-sg7615 (siendo *SCO2246/45*, *SCO2253/52*, *SCO4176/77*, *SCO4678/79*, *SCO6236/35* y *SCO7615/16* los SCOs correspondientes a cada sistema). En este caso, como se ha mencionado, se diseñaron guías para la deleción de los dos genes XRE y DUF de cada sistema de forma simultánea. Sería interesante también abordar la mutación individual de cada uno de los genes XRE y DUF397. Sin embargo, debido a la finalización del tiempo de desarrollo de la investigación de tesis doctoral no se pudo abordar este estudio.

Las guías se diseñaron para cada uno de los sistemas para dirigir los cortes específicos mediante la herramienta *CRISPy Cas9 target finder for S. coelicolor* (http://staff.biosustain.dtu.dk/laeb/crispy scoeli/) (Ronda et al., 2014). Su secuencia y sitio de hibridación en los sistemas se indican en la figura C3.1. Los oligonucleótidos utilizados para su obtención, así como el procedimiento para la obtención de los plásmidos pCRISPR-Cas9-sg2246, pCRISPR-Cas9-sg2253, pCRISPR-Cas9-sg4176, pCRISPR-Cas9-sg4678, pCRISPR-Cas9-sg6236 y pCRISPR-Cas9-sg7615 se indican en materiales y métodos en el apartado M9 utilización del sistema CRISPR-Cas9 para la deleción de los sistemas XRE/DUF397 y en la tabla M12.

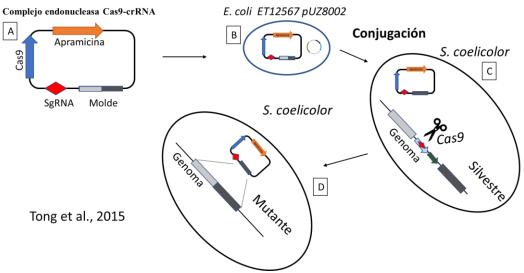

Posterior a eso se amplificaron mil pares de bases aguas arriba y mil pares de bases aguas debajo de los dos genes que se deseaba eliminar y a partir de una PCR solapante se obtuvo un molde que carecía de los dos genes a delecionar. Cada secuencia molde se introdujo en el plásmido portador de la guía correspondiente obteniéndose los plásmidos conjugativos de deleción finales para cada sistema, pCRISPR-Cas9-2246/45, pCRISPR-Cas9-2253/52, pCRISPR-Cas9-4176/77, pCRISPR-Cas9-4678/79, pCRISPR-Cas9-6236/35 y pCRISPR-Cas9-7615/16. Los oligonucleótidos y la estrategia utilizada para su introducción en los plásmidos pCRISPR-Cas9-sg2246, pCRISPR-Cas9-sg2253, pCRISPR-Cas9-sg4176, pCRISPR-Cas9-sg4678, pCRISPR-Cas9-sg6236 y pCRISPR-Cas9-sg7615 se indican en materiales y métodos en el apartado M9 utilización del sistema CRISPR-Cas9 para la deleción de los sistemas XRE/DUF397 y en las Tablas M10, M13 y M14.

Figura C3.1. Secuencias dianas seleccionadas para dirigir el corte de la Cas9, para delecionar los genes *SCO2246/45*, *SCO2253/52*, *SCO4176/77*, *SCO4678/79*, *SCO6236/35* y *SCO7615/16* SCOs correspondientes a cada sistema XRE/DUF397 delecionado. (A) Sistema SCO2246/45; (B) Sistema SCO2253/52; (C) sistema SCO4176/77; (D) Sistema SCO4678/79; (E) Sistema SCO6236/35; (F) Sistema SCO7615/16.

Una vez obtenidos todos los plásmidos, para cada sistema se realizaron tres conjugaciones diferentes: 1ª con el plásmido vacío pCRISPR-Cas9; 2ª con el plásmido con la guía correspondiente, pCRISPR-Cas9-sg2246, pCRISPR-Cas9-sg2253, pCRISPR-Cas9-sg4176, pCRISPR-Cas9-sg4678, pCRISPR-Cas9-sg6236 y pCRISPR-Cas9-sg7615, y 3ª con el plásmido completo que portaba la guía y el molde de cada sistema, pCRISPR-Cas9-2246/45, pCRISPR-Cas9-2253/52, pCRISPR-Cas9-4176/77, pCRISPR-Cas9-4678/79, pCRISPR-Cas9-6236/35 y pCRISPR-Cas9-7615/16. Para ello, se introdujeron previamente cada uno de los plásmidos en la cepa de *E coli* ET12567/pUZ8002 conjugativa y se realizaron conjugaciones con *S. coelicolor* M145 (ver materiales y métodos el apartado M9.3 conjugación, eliminación del plásmido y comprobación de mutantes).

Cuando los plásmidos pCRISPR-Cas9-2246/45, pCRISPR-Cas9-2253/52, pCRISPR-Cas9-4176/77, pCRISPR-Cas9-4678/79, pCRISPR-Cas9-6236/35 y pCRISPR-Cas9-7615/16 están dentro de la cepa de *S. coelicolor* M145, la enzima Cas9 utiliza la guía para dirigir un corte específico en la doble hebra de DNA en la secuencia diana de los genes a delecionar y con el molde tiene lugar una reparación directa por recombinación homóloga. De esta forma se obtuvieron cada uno de los diferentes mutantes de los sistemas XRE/DUF397 (figura C3.2.).

Figura C3.2. Sistema CRISPR-Cas9. **(A)** Plásmido pCRISPR-Cas9 Sg-guía y molde, **(B)** Plásmido introducido en cepa *E coli* conjugativa. **(C)** La Cas9 corta el DNA de doble cadena en el sitio indicado por el Sg. **(D)** Reparación directa por homología, obtención del mutante.

El único sistema que no se consiguió mutar fue el SCO4176/77, debido a que se tuvo problemas en la amplificación del extremo de 1000 pb aguas arriba del gen *SCO4176* que se utiliza para generar el molde que carece de los dos genes a delecionar. Se cree que no se pudo obtener este fragmento, debido a su alto contenido de GC. Aunque es característico del genoma de *S. coelicolor* un alto contenido en GC y ya en el laboratorio se usan polimerasas especiales para sopesar esto, esta zona del genoma todavía tenía un porcentaje más alto de GC, el gen *SCO4175* que esta exactamente al lado, aguas arriba del gen *SCO2246* tiene un 78% GC en su secuencia y generó problemas en las amplificaciones. Por lo tanto, no se consiguió el plásmido final pCRISPR-Cas9-4176/77 con la guía y el molde a pesar de realizar diferentes aproximaciones y cambio de oligonucleótidos y, consecuentemente, no pudo realizarse la conjugación posterior.

Con la intención de abordar el problema de la obtención del mutante de los genes SCO4176/77, se le asignó como trabajo de fin de máster a María Lorenzo, miembro activo de nuestro grupo de investigación, para que lo desarrollara desde cero y, además, consiguiera también los mutantes individuales de los genes XRE $\Delta SCO4176$ y DUF $\Delta SCO4177$ del sistema.

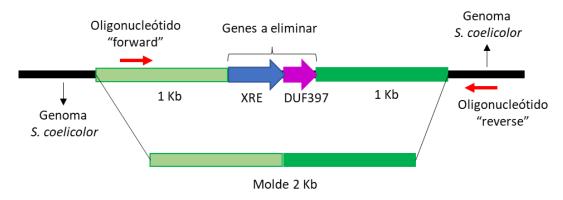
María se encontró con la misma dificultad de no poder amplificar el extremo de 1000 pb aguas arriba del gen *SCO4176* necesario para generar el molde que carece de los dos genes a delecionar o el gen a delecionar, para la construcción de los pCRISPR-Cas9 para el mutantes doble *SCO4176/77* y el mutante del XRE *SCO4176*. Sin embargo, consiguió el mutante del gen DUF397 Δ*SCO4177*, para el cual la zona del molde era diferente, a la que se tenía que amplificar para los otros dos mutantes. Observándose nuevamente, en manos diferentes, que aguas arribas del gen *SCO4176* el alto contenido de GC, no permite amplificar esta zona.

Respecto al resto de los sistemas, se pudo seguir todo el procedimiento indicado y en la figura C3.3 se muestra un ejemplo de las colonias obtenidas de los posibles mutantes de *S. coelicolor* M145 después de realizar la conjugación tanto con el plásmido vacío pCRISPR-Cas9 (Figura C3.3A), como con el plásmido solo con guía pCRISPR-Cas9-sg2246 (Figura C3.3B), o con el plásmido que porta la guía y el molde pCRISPR-Cas9-2246/45 (Figura C3.3C). En esta figura C3.3 solo se exponen las placas de los transformantes

conseguidos para la obtención del mutante $\Delta SCO2246/45$ ($\Delta 46/45$) a modo de ejemplo para todos los sistemas, de los cuales se obtuvieron resultados similares.

Figura C3.3. Placas resultado de la conjugación de *E. coli* y *S. coelicolor* M145 para la obtención del mutante Δ2246/45. (**A**) *S. coelicolor* M145 pCRISPR-Cas9 - vacío, muchas colonias, no hay corte por parte de la Cas-9 (**B**) *S. coelicolor* M145 pCRISPR-Cas9-Sg2246-guía, ninguna colonia, con guía, pero sin molde, la Cas9 corta, pero no repara. (**C**) *S. coelicolor* M145 pCRISPR-Cas9-2246/45 guía-molde, número intermedio de colonias, la Cas9 corta y repara por homología.

Puede observarse que cuando se transforma con la guía solamente, pCRISPR-Cas9-sg2246 no aparecen conjugantes dado que no pueden hacer la reparación de la rotura del DNA (Figura C3.3B). Sin embargo, sí se observa la aparición de conjugantes cuando se añade el molde al plásmido pCRISPR-Cas9-2246/45 (Figura C3.3C).


C3.2 Comprobación, análisis y complementación fenotípica de los mutantes

Después de conseguir conjugantes con los plásmidos de deleción correspondientes a los cinco sistemas XRE/DUF397, SCO2246/45, SCO2253/52, SCO4678/79, SCO6236/35 y SCO7615/16, era necesario eliminar el plásmido pCRISPR-Cas9 (gracias a su termosensibilidad) y tras su limpieza mediante sucesivos pases de esporulación (ver materiales y métodos el apartado M9.3 conjugación, eliminación del plásmido y comprobación de mutantes) se procedió a la comprobación de la correcta eliminación de los genes correspondientes de los clones seleccionados.

Para ello, se aisló el DNA genómico de cada una de las cepas y de la cepa silvestre y se analizó la ausencia de los genes en los conjugantes obtenidos por PCR. Por cada posible mutante, se diseñó un oligonucleótido dentro del molde que se le proporcionó para la

reparación homóloga en el genoma de *S. coelicolor* M145 y otro oligonucleótido del otro lado del gen eliminado por fuera del molde en el genoma de *S. coelicolor* M145 (figura C3.4). De esta forma se garantizó que la amplificación no se debía a los plásmidos pCRISPR-Cas9 utilizados para conseguir cada mutante, pues uno de los oligonucleótidos únicamente híbrida en el genoma de la cepa. La secuencia de todos los oligonucleótidos utilizados está en materiales y métodos en la tabla M15.

Esta PCR daba lugar a diferentes tamaños de banda en función de si la cepa era silvestre o mutante como se indica en las figuras C3.5, C3.7, C3.10, C3.13, C3.15, para cada uno de los mutantes. Adicional a esa comprobación, también se realizó una amplificación por PCR de los genes mutados utilizando oligonucleótidos internos a las zonas delecionadas (figuras C3.5, C3.7, C3.10, C3.13, C3.15). Como era esperable, en la PCR sobre el DNA de la cepa silvestre se obtuvo una banda del tamaño del sistema y en los mutantes no se obtuvieron bandas. Los controles negativos de las PCRs, fueron la mezcla de los reactivos (agua, oligonucleótidos, DNA polimerasa, DMSO) en ausencia de DNA de cualquier tipo.

Figura C3.4. Esquema del diseño de los oligonucleótidos, utilizados en la comprobación de las cepas mutantes de los sistemas XRE/DUF397. ■ gen XRE; ■ gen DUF397.

En todos los mutantes se realizó este tipo de estudio y las amplificaciones mostraron que había una deleción de los genes por la disminución en el tamaño de la banda amplificada. Por lo tanto, se había conseguido obtener los mutantes de deleción $\Delta SCO2246/45$ ($\Delta 46/45$), $\Delta SCO2253/52$ ($\Delta 53/52$), $\Delta SCO4678/79$ ($\Delta 78/79$), $\Delta SCO6236/35$ ($\Delta 36/35$) y $\Delta SCO7615/16$ ($\Delta 15/16$) (ver a continuación).

Después de comprobar por PCR que los cinco mutantes obtenidos eran correctos, se obtuvieron esporas de cada uno de ellos y se realizó un ensayo de gota para el **análisis**

de sus fenotipos. Este ensayo consistió en colocar, por duplicado, una gota de 5 μ L conteniendo 5 x 10⁵ esporas de cada mutante y control, en cinco medios de cultivo diferentes: R2YE, LB, NMMP, YEPD y SFM en paralelo con la cepa silvestre *S. coelicolor* M145 y fotografiar su fenotipo diariamente durante siete días.

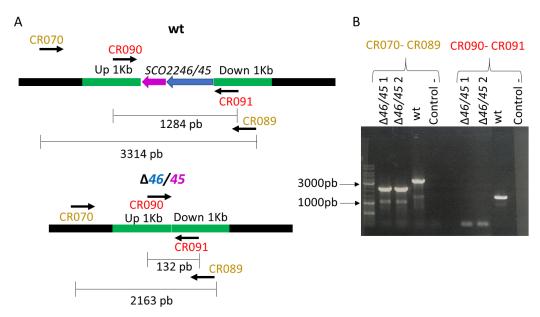
En este análisis fenotípico no se incluyó el medio PGA, debido a que, en el capítulo anterior al sobreexpresar los genes de los 6 sistemas XRE/DUF397 en este medio, los fenotipos no diferían mucho del control. Teniendo esto en mente, se incluyeron dos medios ricos más, el medio YEPD y el medio SFM, con el objetivo de ampliar las posibilidades de encontrar fenotipos diferenciales entre los mutantes y la cepa silvestre para conseguir realizar de forma más fácil el ensayo de complementación del fenotipo mutante.

Vale la pena destacar que, aunque el medio SFM no se utiliza habitualmente para caracterizar fenotipos en *S. coelicolor*, se incluyó en este ensayo porque cuando se obtuvieron las esporas de las cepas mutantes de los cinco sistemas XRE/DUF397 se observó que algunos mutantes producían un pigmento marrón en este medio, que la cepa silvestre *S. coelicolor* M145 no producía.

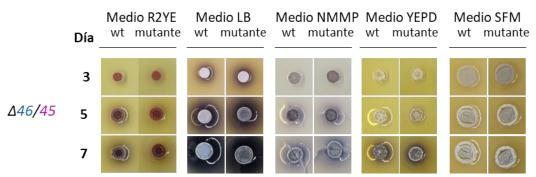
En paralelo a los estudios fenotípicos de los mutantes, se obtuvieron los plásmidos integrativos para la realización de los ensayos de complementación de los fenotipos de cada uno de los mutantes de deleción de los genes de los sistemas XRE/DUF397 para, una vez obtenidos los mutantes, verificar que los fenotipos observados correspondían a los genes eliminados y no a efectos colaterales. Los plásmidos utilizados para las complementaciones eran derivados del plásmido integrativo pKC796, al cual se le introdujo la secuencia de cada uno de los sistemas XRE/DUF397 bajo el control de su propio promotor, obteniéndose los plásmidos pKC2246/45, pKC2253/52, pKC4678/79, pKC6236/35 y pKC7615/16 (donde *SCO2246/45*, *SCO2253/52*, *SCO4678/79*, *SCO6236/35* y *SCO7615/16* corresponde con los SCOs correspondiente). Tabla M17 (ver materiales y métodos el apartado M10 ensayos de complementación). Es importante resaltar que al introducir un plásmido integrativo en la célula de *S. coelicolor* esta puede presentar cambios en su fenotipo, por esta razón son tan importantes los controles, en nuestro caso, el silvestre con el plásmido vacío pKC796 y el mutante correspondiente con el plásmido vacío pKC796.

Para el ensayo se transformó la cepa mutante con su plásmido correspondiente portador de los genes y se hicieron los correspondientes controles con las cepas silvestre y mutante transformadas con el plásmido vacío: *S. coelicolor* M145/pKC796 y *S. coelicolor* Δ 46/45, Δ 53/52, Δ 78/79, Δ 36/35 y Δ 15/16 /pKC796 (cada mutante por separado).

Con la intención de que la información de cada mutante obtenido sea más clara se muestra, a continuación, la comprobación, el análisis y la complementación fenotípica de cada mutante:


C3.2.1 Mutante ΔSCO2246/45 (Δ46/45)

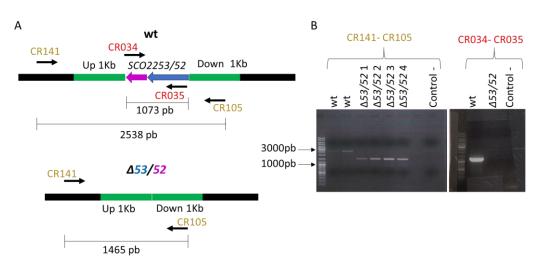
En la figura C3.5A se muestran de forma esquemática el diseño de los oligonucleótidos utilizados para la comprobación del mutante $\Delta 46/45$. Como para todos los mutantes, se diseñó un oligonucleótido (CR089) dentro del molde que se le proporcionó para la reparación homologa en el genoma de *S. coelicolor* M145 y otro oligonucleótido (CR070) del otro lado del sistema eliminado por fuera del molde en el genoma de *S. coelicolor* M145 (figura C3.5A). Para la segunda comprobación, en donde se amplifica los genes delecionados, se utilizaron los oligonucleótidos CR090-CR091 que amplificaban por fuera de los genes delecionados y por lo tanto se observó una disminución del tamaño de la banda en el mutante (figura C3.5B)


En el caso de este mutante se obtuvieron dos clones, que mostraron las bandas esperadas para el mutante $\Delta 46/45$ (figura C3.5B). Se eligió el clon 1 y se continuó solo con ese la obtención de esporas para la realización del análisis fenotípico.

En el análisis fenotípico, el mutante $\Delta 46/45$ no mostró diferencias relevantes en la producción de ACT en ninguno de los cinco medios de cultivo utilizados. Respecto a la diferenciación morfológica, se observó un retraso en los medios R2YE y LB, no observable en el resto de los medios (figura C3.6).

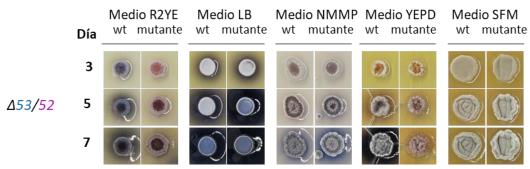
Al no observar un fenotipo representativo que difiera significativamente del silvestre, se optó por no realizar la complementación para el mutante $\Delta 46/45$. En los ensayos de complementación generalmente no se recupera totalmente el fenotipo del silvestre. Porque el fenotipo que se observa del mutante puede no ser solo, el resultado de ese gen delecionado, sino que puede deberse a otros factores como, interacciones de ese

Figura C3.5. Comprobación del mutante Δ46/45. (A) Esquema del diseño de oligonucleótidos utilizados para comprobar el mutante Δ46/45 por PCR. ■ gen XRE; ■ gen DUF397; ■ molde reparación homologa; ■ genoma *S. coelicolor* M145. (B) Gel de agarosa con las bandas correspondientes wt y mutante.


Figura C3.6. Fenotipo del mutante $\Delta 46/45$, en cinco medios de cultivo: R2YE, LB, NMMP, YEPD y SFM.

gen con otros genes, interacciones con su entorno genético; o interacciones con el ambiente en el que crece (Chandler et al., 2013; Dowell et al., 2010). Debido a que, el plásmido pKC796 introduce el gen de interés en otra región específica de *S. coelicolor* (Kuhstoss et al., 1991) no exactamente donde se encontraba el gen, esas interacciones se ven afectadas y no se recupera por completo el fenotipo silvestre. Por lo tanto, la recuperación del retraso en la diferenciación en el medio R2YE y LB mostrado por el mutante, no hubiera sido apreciable.

La sobreexpresión de estos genes solo presentaba un fenotipo claro cuando se sobreexpresaba el gen DUF (*SCO2245*) en medio R2YE o ambos genes de forma individual en medio LB. Por lo tanto, para poder afinar en el papel de este sistema sería necesario eliminar de forma individual los genes obteniendo mutantes simples.


C3.2.2 Mutante ΔSCO2253/52 (Δ53/52)

Para el mutante $\Delta 53/52$ se realizaron las comprobaciones descritas al principio de este apartado (figura C3.4). En la figura C3.7A se muestra el esquema del sitio de hibridación de los oligonucleótidos diseñados para este fin. En el caso de este mutante se obtuvieron cuatro clones que mostraron las bandas esperadas para el mutante $\Delta 53/52$, al realizar la primera comprobación con los oligonucleótidos CR141 y CR105, que hibridaban dentro del molde y por fuera de este en el genoma de *S. coelicolor* respectivamente (figura C3.7B). Para la segunda comprobación con los oligonucleótidos internos a los genes a delecionar, CR034-CR035, solo se probó un clon (figura C3.7B) con el cual también se obtuvo la banda esperada y se utilizó, este clon, para continuar con la obtención de esporas y la caracterización fenotípica de la cepa mutante (figura C3.8).

Figura C3.7. Comprobación del mutante Δ53/52. (A) Esquema del diseño de oligonucleótidos utilizados para comprobar el mutante Δ53/52 por PCR. gen XRE; gen DUF397; molde reparación homologa; genoma *S. coelicolor* M145. (B) Gel de agarosa con las bandas correspondientes wt y mutante.

En el análisis fenotípico, el mutante $\Delta 53/52$ mostró una clara reducción en la producción de ACT cuando se creció en los medios R2YE y en YEPD. Por el contrario, este mutante en medio LB esporulaba más rápido a los 5 días, pero se igualaba a los 7 días con el silvestre, por otra parte, en el medio NMMP se observa un ligero incremento de la producción de ACT en la cepa mutante. Por último, en el medio SFM el mutante se comporta como la cepa silvestre (figura C3.8).

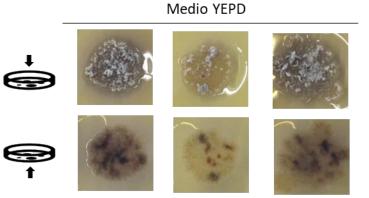
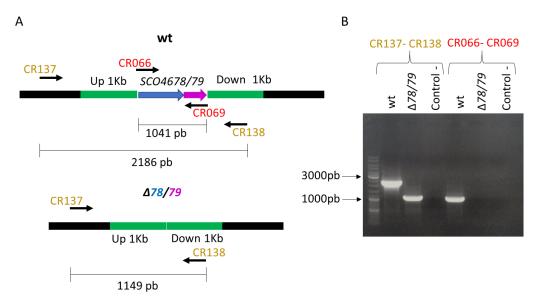


Figura C3.8. Fenotipo del mutante $\Delta 53/52$, en cinco medios de cultivo: R2YE, LB, NMMP, YEPD y SFM.

Como este mutante mostró diferencias en varios de los medios probados en el análisis fenotípico se procedió a transformarlo con el plásmido integrativo pKC2253/52 para ver si existía complementación. El ensayo de la complementación se realizó en el medio YEPD que es dónde mayor cambio de fenotipo se observaba (figura C3.9).

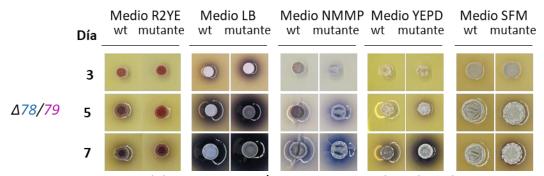
Como se observa en la figura C3.9, la integración de los genes SCO2253/52, en la cepa mutante, recuperaba el fenotipo silvestre de la cepa S. coelicolor M145 transformada con el plásmido vacío pKC796. Se observa una mayor producción de ACT y una mejora en la diferenciación respecto al fenotipo observado en el mutante $\Delta 53/52$ transformada con el plásmido vacío pKC796.

La tendencia observada con la sobreexpresión de los dos genes *SCO2253/52* es también a una bajada, aunque leve, en la producción de ACT, no viéndose afectada la diferenciación.



M145-pKC796 Δ53/52-pKC796 Δ53/52-pKC2253/52

Figura C3.9. Ensayo de complementación. La imagen muestra el fenotipo de la cepa silvestre M145 con el plásmido pKC796, el mutante $\Delta 53/52$ con el plásmido pKC796, y el mutante $\Delta 53/52$ con el pKC2253/52.


C3.2.3 Mutante ΔSCO4678/79 (Δ78/79)

Para este mutante, $\Delta 78/79$, también se hicieron las comprobaciones descritas al comienzo de este apartado (figura C3.4). En la figura C3.10A se muestra el esquema de los oligonucleótidos diseñados para este fin. En el caso de este mutante se comprobó un clon, el cual mostró las bandas esperadas para la correcta comprobación de la deleción de los genes del sistema tanto con los oligonucleótidos externos como internos (figura C3.10B).

Figura C3.10. Comprobación del mutante Δ78/79. (A) Esquema del diseño de oligonucleótidos utilizados para comprobar el mutante Δ78/79 por PCR. ■ gen XRE; ■ gen DUF397; ■ molde reparación homologa; ■ genoma *S. coelicolor* M145. (B) Gel de agarosa con las bandas correspondientes wt y mutante.

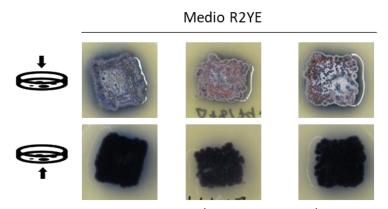
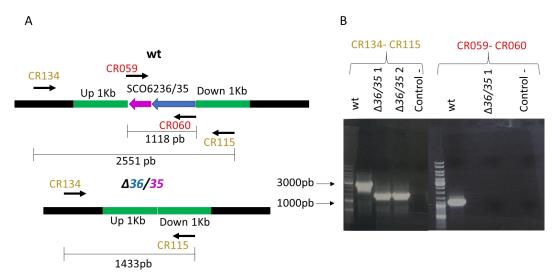

El análisis fenotípico del mutante $\Delta 78/79$, mostró diferencias poco claras en su fenotipo en el medio R2YE, mientras que en el medio LB y NMMP producía más ACT a partir de los cinco días y este aumento de la producción de ACT se observaba también en YEPD en el día séptimo; respecto al medio SFM se observaba una escasa producción de ACT respecto al silvestre (figura C3.11).

Figura C3.11. Fenotipo del mutante $\Delta 78/79$, en cinco medios de cultivo: R2YE, LB, NMMP, YEPD y SFM.

Como este mutante mostró diferencias fenotípicas frente al silvestre en varios medios de cultivo, se realizó el ensayo de complementación con el plásmido pKC4678/79 en los medios R2YE e YEPD como más representativos. Se pudo observar la recuperación del fenotipo silvestre en el medio R2YE cuando se reintegraban los genes *SCO4678/79* en el

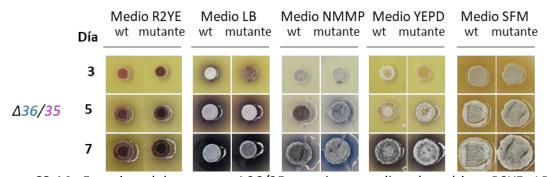
mutante $\Delta 78/79$ mediante la integración del plásmido pKC4678/79, a pesar de que mostraba un fenotipo muy leve de disminución de producción de ACT (figura C3.12). En el medio YEPD cuando se integraba el plásmido vacío dejaban de observarse las diferencias inicialmente descritas (figura C3.11) por lo que no se podía proceder a su complementación en este medio.

M145-pKC796 Δ78/79-pKC796 Δ78/79-pKC4678/79


Figura C3.12. Ensayo de complementación. La imagen muestra el fenotipo de la cepa silvestre M145 con el plásmido pKC796, el mutante $\Delta 78/79$ con el plásmido pKC796, y el mutante $\Delta 78/79$ con el pKC4678/79.

Al igual que en el anterior mutante, la tendencia observada con la sobreexpresión de los dos genes *SCO4678/79* es también a una bajada, aunque leve, en la producción de ACT, no viéndose afectada la diferenciación. En el caso del NMMP parece tener una importancia especial en la producción de ACT ya que tanto su sobreexpresión como su deleción conjunta conlleva una subida importante en la producción de ACT.

C3.2.4 Mutante ΔSCO6236/35 (Δ36/35)


Para este mutante, Δ36/35, se realizaron las dos comprobaciones descritas al inicio del apartado (figura C3.4). La figura C3.13A muestra de forma esquemática el diseño del lugar de hibridación de los oligonucleótidos para estas comprobaciones. En este caso se obtuvieron dos clones correctos de la cepa mutante en la primera comprobación, con los oligonucleótidos externos CR134-CR115, pero por efectos prácticos se continuó trabajando con un solo clon, por eso en la segunda comprobación con los oligonucleótidos CR059-CR060 solo se muestra el clon elegido (figura C3.13B). En ambas

comprobaciones se amplificó el tamaño de banda esperado para el mutante $\Delta 36/35$ o su ausencia cuando se utilizaban los oligonucleótidos internos.

Figura C3.13. Comprobación del mutante $\Delta 36/35$. (A) Esquema del diseño de oligonucleótidos utilizados para comprobar el mutante $\Delta 36/35$ por PCR. ■ gen XRE; ■ gen DUF397; ■ molde reparación homologa; ■ genoma *S. coelicolor* M145. (B) Gel de agarosa con las bandas correspondientes wt y mutante.

Este mutante $\Delta 36/35$ no mostró diferencias fenotípicas claras en los medios R2YE, LB, YEPD y SFM; sin embargo, en el medio NMMP producía más ACT que el silvestre (figura C3.14).

Figura C3.14. Fenotipo del mutante $\Delta 36/35$, en cinco medios de cultivo: R2YE, LB, NMMP, YEPD y SFM.

Aunque se realizó la complementación utilizando el plásmido pKC6236/35 y se intentó recuperar el fenotipo del silvestre en el medio NMMP, no fue posible conseguirlo, a pesar de que, se realizó el ensayo dos veces. Esto se debe a que las pequeñas diferencias

observadas en la figura C3.14 dejan de hacerlo cuando se integra el plásmido vacío en las cepas mutante y silvestre.

En el caso de este sistema *SCO6236/35*, la sobreexpresión de los dos genes sí que conllevaba una bajada importante en la producción de ACT en medios ricos, especialmente en medio R2YE. Sin embargo, la deleción de los genes no dio lugar a un fenotipo de sobreproducción de ACT en estos medios. Tal vez su acción reguladora negativa se vea compensada por algún otro de los sistemas en su ausencia.

C3.2.5 Mutante ΔSCO7615/16 (Δ15/16)

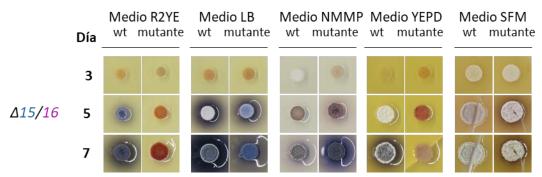
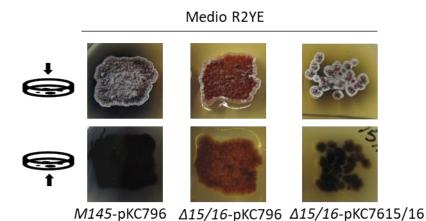

Las comprobaciones de este mutante. $\Delta 15/16$, se realizaron de la misma forma que se describe al inicio del apartado (figura C3.4). En la figura C3.15A se muestra el esquema de la localización de los oligonucleótidos diseñados para este fin. Para ambas comprobaciones se obtuvieron las bandas esperadas para el mutante $\Delta 15/16$ (figura C3.15.B). De todos los seis clones analizados solo se eligió uno para continuar con el estudio de fenotipo.

Figura C3.15. Comprobación del mutante $\Delta 15/16$. (A) Esquema del diseño de oligonucleótidos utilizados para comprobar el mutante $\Delta 15/16$ por PCR. ■ gen XRE; ■ gen DUF397; ■ molde reparación homologa; ■ genoma *S. coelicolor* M145. (B) Gel de agarosa con las bandas correspondientes wt y mutante.


El análisis fenotípico del mutante $\Delta 15/16$ mostró un fenotipo diferente en cada uno de los medios (figura C3.16); en los medios R2YE y YEPD tiene un fenotipo calvo con poca o

nula producción de ACT a diferencia del silvestre. En el medio LB también presenta menor producción de ACT y sí es capaz de emitir micelio aéreo; sin embargo, en el medio NMMP produce mayor cantidad de ACT, y finalmente en el medio SFM el mutante produce más cantidad de ACT o pigmentos que la cepa silvestre. Es decir, en medios ricos (R2YE, LB y YEPD) produce menos antibiótico y en otros medios, como un medio pobre (NMMP) y el medio de esporulación (SFM) produce más cantidad.

Figura C3.16. Fenotipo del mutante $\Delta 15/16$, en cinco medios de cultivo: R2YE, LB, NMMP, YEPD y SFM.

Debido a que el mutante $\Delta 15/16$ mostró un fenotipo muy diferente respecto al silvestre en el medio R2YE, solo se analizó la complementación en este medio. Claramente la complementación parcial de la cepa mutante ocurre y el mutante complementado recupera parcialmente la formación de micelio aéreo y la producción de ACT (figura C3.17).

Figura C3.17. Ensayo de complementación. La imagen muestra el fenotipo de la cepa silvestre M145 con el plásmido pKC796, el mutante $\Delta 15/16$ con el plásmido pKC796, y el mutante $\Delta 15/16$ con el pKC7615/16.

La sobreexpresión del sistema *SCO7615/16* no daba lugar a fenotipos demasiado drásticos, tan solo un retraso en la producción de ACT en los medios R2YE y NMMP (en este caso con la sobreexpresión de los genes individualmente).

C3.3 Implicación de los sistemas XRE-DUF397 en producción de antibióticos y/o diferenciación

Los resultados obtenidos a partir del estudio de los mutantes de deleción de los sistemas SCO2246/45, SCO2253/52, SCO4678/79, SCO6236/35 y SCO7615/16 nos permiten concluir lo siguiente.

Se han observado algunas diferencias fenotípicas más o menos significativas tanto en la producción de ACT como en el desarrollo de la diferenciación de las cepas mutantes con respecto a la cepa silvestre *S. coelicolor* M145 en los diferentes medios ensayados. Al igual que en los estudios de sobreexpresión realizados estas diferencias son dependientes de medio de cultivo.

En general las mutaciones provocan una bajada de la producción de ACT y un retraso en la diferenciación con una mayor o menor intensidad en los medios ricos en las cepas carentes de los sistemas de regulación en estudio y una subida de la producción de ACT en estas cepas crecidas en medio mínimo NMMP. Esto indica que pueden jugar un papel regulador tanto positivo en los medios ricos como negativo en los medios pobres.

El mutante $\Delta 15/16$ es el que muestra un fenotipo más relevante con respecto a la cepa silvestre en todos los medios ensayados. Así en medios ricos (R2YE, LB y YEPD) produce menos antibiótico y en otros medios, como el medio pobre (NMMP) y el medio de esporulación (SFM) produce más cantidad.

El hecho de que los fenotipos no sean muy drásticos en general podría deberse a la redundancia de estos sistemas que podrían compensar la ausencia de uno de ellos en algunas de las condiciones o medios ensayados.

Los mutantes con un fenotipo más reseñable ($\Delta 53/52$ en medio YEPD; $\Delta 78/79$ en medio R2YE; $\Delta 15/16$ en R2YE) fueron capaces de ser complementados con sus correspondientes plásmidos integrativos portadores de los genes delecionados (figuras

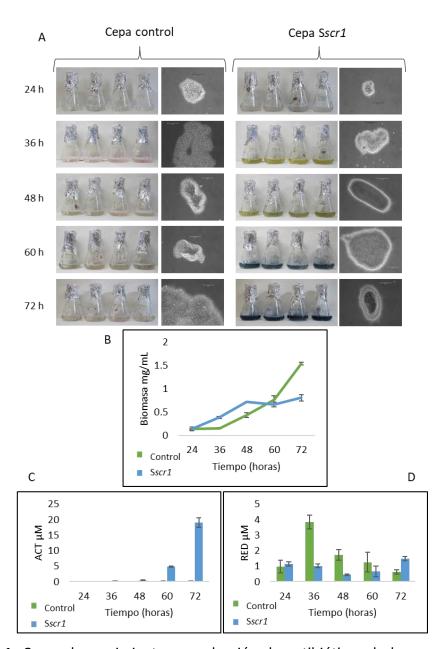
C3.9, C3.12; C3.17). Por lo tanto, el fenotipo de estas cepas mutantes se debe a la deleción de los genes *SCO2253/52*, *SCO4678/79* y *SCO7615/16* y no a efectos polares.

Para las dos cepas mutantes $\Delta 46/45$ y $\Delta 36/35$ que no presentaron un fenotipo diferencial en los medios de cultivo probados, a futuro se puede realizar el análisis fenotípico en otros medios de cultivo para encontrar diferencias y de ese modo realizar la complementación.

Por otro lado, esta descrito que la complementación de mutaciones con plásmidos derivados de φC31 no consigue recuperar totalmente el fenotipo silvestre (Bierman et al., 1992). Como estrategia para futuros ensayos de complementación, se construyó otro plásmido integrativo derivado del plásmido pNG3 (González-Quiñonez et al., 2016) (ver en anexos el apartado **A1 construcción de plásmidos derivativos de pNG3**) para cada una de las cepas mutantes expuestas en este capítulo. Este plásmido se integra en un sitio *attB* localizado en el gen *SCO4848* (Gregory et al., 2003), y ha sido utilizado, con éxito, por otros miembros del laboratorio. Desafortunadamente, no se alcanzó a desarrollar este segundo ensayo de complementación, debido a la finalización del tiempo de desarrollo de la investigación de tesis doctoral.

Capítulo 4

Análisis transcripcional de la sobrexpresión del gen scr1 (SC04441)


Como ya se ha mencionado previamente, en nuestro laboratorio se demostró, de forma experimental, que uno de los sistemas XRE/DUF397 de S. coelicolor compuesto por las proteínas codificadas por los genes SCO4441 y SCO4442 (scr1/scr2) actúa como un fuerte regulador positivo de la producción de antibióticos en varias especies de Streptomyces y no actúa como un sistema toxina/antitoxina como proponían otros autores (Makarova et al., 2009) . Adicionalmente, de los 15 sistemas XRE/DUF397 de S. coelicolor, este sistema es el más conservado en el filo Actinobacteria, según la tabla C1.3, que se de datos "Actinoblast" desarrolló а de la base partir (http://streptomyces.org.uk/actinoblast/) (capítulo 1).

Debido a estas razones, se realizó un análisis transcripcional de la sobreexpresión del gen *SCO4441* (*scr1*) en *S. coelicolor* para poder determinar los cambios transcripcionales provocados directa o indirectamente por esta sobreexpresión y definir así su regulón; esto es de gran interés dado que Scr1 actúa como un fuerte regulador positivo en la producción de antibióticos en presencia de la proteína Scr2 (Santamaría et al., 2018.

C4.1 Diseño del ensayo transcripcional

Para comenzar con el análisis transcripcional se realizó una curva de crecimiento a partir de esporas de *S. coelicolor* que contenían el plásmido multicopia pNX4441 (que sobrexpresa el gen *scr1* (*SCO4441*) y esporas de *S. coelicolor* con el plásmido vacío pN702GEM3 como control (10⁶ esporas/mL). Los cultivos se realizaron en matraces indentados de 50 mL con cultivos de 10 mL de medio NMMP xilosa 1%. La figura C4.1 muestra el desarrollo macro y micro de los cultivos, la curva de crecimiento y la producción de ACT y RED.

Para efectos prácticos, durante este trabajo nos vamos a referir a la cepa que sobreexpresa el gen *scr1* (*SCO4441*) en *S. coelicolor* como **cepa Sscr1** y a la que sobreexpresa el plásmido vacío pN702GEM3 en *S. coelicolor* como **cepa control**.

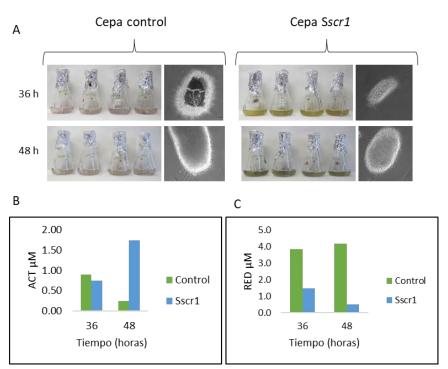


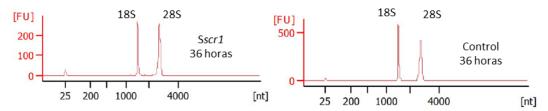
Figura C4.1. Curva de crecimiento y producción de antibióticos de las cepas control (verde) y Sscr1 (azul) en medio de cultivo NMMP. (A) Desarrollo macro y micro de los cultivos a través del tiempo, (B) Curva de crecimiento, (C) Producción de ACT, (D) Producción de RED.

Teniendo en cuenta los datos obtenidos de la curva de crecimiento (figura C4.1), se eligieron los cultivos de 36 y 48 horas para realizar el análisis de RNAseq. Se seleccionaron estos tiempos ya que a nivel cualitativo ya se observaban diferencias entre las cepas *Sscr1* y el control, en la producción de antibióticos coloreados de *S. coelicolor* (figura C4.1A). Según su crecimiento, se pudo determinar ambos cultivos estaban en fase exponencial de crecimiento en estos tiempos de cultivo (36 y 48 h). Sin embargo, aunque

el crecimiento era algo mayor en la cepa Sscr1 hasta las 48 h, posteriormente ralentizaba su crecimiento respecto del control (figura C4.1B). Por lo tanto, la sobreexpresión del gen scr1 afectaba al crecimiento a tiempos largos. Respecto a la producción cuantitativa de antibióticos se observó un incremento de ACT en todos los tiempos analizados en la cepa Sscr1 (figura C4.1C) a pesar de tener menor biomasa en los tiempos largos y una disminución de RED hasta las 60 horas de crecimiento (figura C4.1D).

Para el análisis transcripcional como tal, se realizaron tres replicas biológicas de cada tiempo 36h y 48h de cada una de las cepas, Sscr1 y control en las condiciones de cultivo descritas anteriormente. Las muestran utilizadas en el análisis de RNAseq mostraron características similares de forma macro y micro a la curva de crecimiento figura C4.2A y Sscr1 mostró de forma clara mayor producción de ACT a las 48 horas respecto al control, mientras que, por el contrario, se observa más producción de RED en el control (figuras C4.2B y C4.2C). De cada una de estas muestras se aisló y purificó el RNA según se describe en materiales y métodos en el apartado M12.1. extracción de RNA.

Figura C4.2. Muestra de las cepas control (verde) y *Sscr1* (azul), a las 36 y 48 horas en medio de cultivo NMMP. (**A**) Desarrollo macro y micro de los cultivos a través del tiempo, (**B**) Producción de ACT, (**C**) Producción de RED.


C4.2 Estimación de la calidad del RNA

La estimación de la calidad del RNA obtenido en cada una de las muestras fue elaborada por el servicio de genómica del IBFG mediante el equipo 2100 Bioanalyzer system. Todas las muestras empleadas para este análisis transcripcional mostraron ratios de rRNA (28S/18S) superiores a 1 y valores RIN (*RNA Integrity Number*) superiores a 7; lo que indicaba que su calidad era adecuada para estudios de expresión génica (Fleige & Pfaffl, 2006) (tabla C4.1).

Tabla C4.1. Parámetros de calidad de las muestras de RNA utilizadas en el análisis de RNAseq de las cepas Sscr1 *versus* control a los dos tiempos de estudio (36 y 48 horas).

Tiempo	Muestra	Replica biológica	RIN	Ratio rRNA 28S/18S
36 horas		1	9.90	1.3
	Control	2	10	1.3
		3	10	1.2
Ф Р		1	10	1.3
m	Sscr1	2	10	1.2
		3	10	1.2
		1	9.90	1.6
S	Control	2	10	1.8
48 horas		3	9.90	1.6
		1	10	1.4
	Sscr1	2	10	1.3
		3	10	1.5

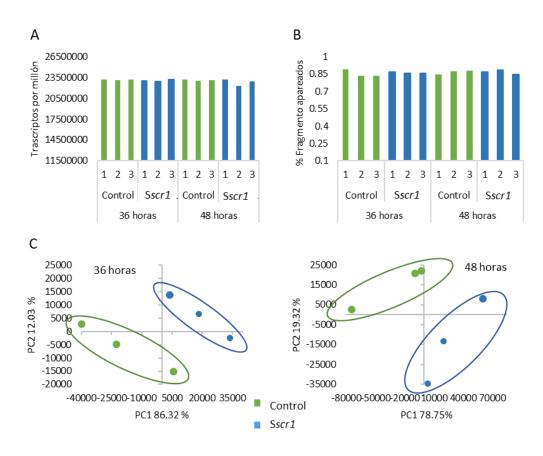
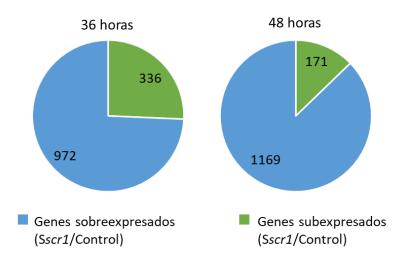

En la figura C4.3 se muestra un ejemplo de las gráficas que generó el "2100 Bioanalyzer system" para determinar los RIN de las muestras de RNA.

Figura C4.3. Ejemplo de gráfica de RIN de dos de las muestras de RNA utilizadas en el análisis de RNAseq de las cepas Sscr1 vs control.

Las librerías y la secuenciación de las muestras fueron realizadas por la empresa Macrogen. Los detalles se muestran en materiales y métodos en el apartado M12.2 librería, secuenciación y análisis.

Se obtuvieron aproximadamente entre 23 millones de transcriptos por muestra, el emparejamiento de las muestras estuvo sobre un 83 % y el análisis de componentes principales (PCA) agrupó de forma correcta las muestras respecto a la cepa y el tiempo correspondiente de estudio (figura C4.4).

Figura C4.4. Métricas de control de calidad secuencias RNAseq y de la expresión diferencial de los genes entre las dos cepas estudiadas: control (verde), Sscr1 (azul). (A) Número de transcriptos por millón, (B) Correcto emparejamiento de los fragmentos, (C) Análisis de componentes principales.


Los análisis de los datos obtenidos se realizaron con la ayuda del programa RANA-seq (https://ranaseq.eu/), que es una plataforma interfaz que permite filtrar y cuantificar los fastq, realizar el control de calidad, la cuantificación de expresión génica y la expresión diferencial (Prieto & Barrios, 2019). Para los análisis estadísticos y el manejo de los datos en crudo se contó con la colaboración del Dr. Juan Fernando Alzate Restrepo, miembro

del Centro Nacional de Secuenciación Genómica de la Universidad de Antioquia-Colombia, quien también se encargó de depositar los datos obtenidos en formato fastq en la base de datos NCBI SRA (BioSample accessions: SAMN31777774, SAMN31777775).

C4.3 Análisis de expresión diferencial

En el análisis de expresión diferencial de la cepa Sscr1, el log2FC determinó el grado de cambio en la expresión, se estableció que valores por debajo de o iguales a -1 ($log2FC \le -1$) indicaban genes subexpresados y valores superiores o iguales a 1 ($log2FC \ge 1$) mostraban genes sobreexpresados. Todos estos cambios de expresión génica fueron determinados respecto al control (Sscr1 vs control) y se consideraron con validez estadística los que presentaban, además del cambio en la log2FC, un padj (p valor ajustado) < 0.05.

Tras el análisis correspondiente, los datos mostraron que 1308 y 1340 genes, a las 36 horas y 48 horas respectivamente, se encontraban diferencialmente expresados con significación estadística. De esos genes, a las 36 horas se encontraban subexpresados 336 genes y sobreexpresados 972 genes; mientras que, a las 48 horas se subexpresaron 171 genes y se sobreexpresaron 1169 genes (figura C4.5).

Figura C4.5. Número de genes sobreexpresados (log2 FC ≥ 1) y subexpresados (log2 FC ≤ -1) en el análisis transcripcional Sscr1 con respecto a la cepa control a las 36 y 48 horas. Los genes seleccionados presentaban padj \leq 0,05.

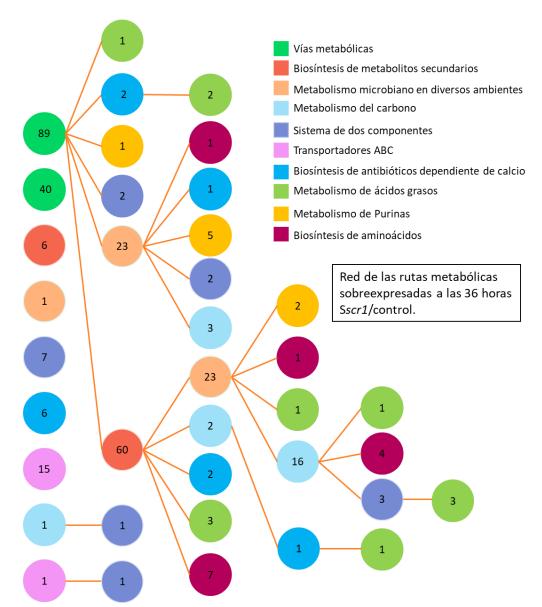
Los datos mostraron que de las 36 a las 48 horas aumentaban los genes sobreexpresados y, por el contrario, los genes subexpresados disminuyeron de las 36 a las 48 horas. Está claro que en ambos tiempos casi el 70 % o más de los genes diferencialmente expresados, se encontraban sobreexpresados.

El papel biológico de los genes diferencialmente expresados se determinó a través del programa STRING (https://version-11-5.string-db.org/), que es una plataforma web, la cual realiza un análisis de enriquecimiento funcional de redes de interacción proteína-proteína.

Para este abordaje, se introdujo la lista de todos los genes diferencialmente expresados para cada uno de los dos tiempos de estudio, 36 y 48 horas, en el programa. De este modo la plataforma nos facilitó la información de los genes de función conocida, o de los que había algún tipo de información (localización, similitud...), agrupándolos en relación con su función (en las diferentes rutas metabólicas) y generando redes de interacción tanto dentro de cada agrupación como entre las distintas agrupaciones. Alguno de los genes seleccionados estaba incluido en más de uno de estos procesos o agrupaciones (solapamiento funcional), como se indicará posteriormente. También, y como era de esperar, muchos de los genes diferencialmente expresados no aparecían en ninguna de las agrupaciones puesto que no existía ninguna información al respecto sobre ellos; y, por lo tanto, el sistema no los incluyó en ninguna de las interacciones o agrupaciones y no se ha podido discutir en el trabajo su importancia.

Adicionalmente al estudio funcional realizado con STRING y puesto que nuestro principal interés era la producción de metabolitos secundarios (antibióticos) y el papel activador de dicha producción, Scr1 en se utilizó el programa antiSMASH (https://antismash.secondarymetabolites.org/). Con este programa pudimos posicionar los clústers que codificaban metabolitos secundarios en S. coelicolor y, posteriormente, compararlos para identificar los genes que se estuvieran expresando diferencialmente en el análisis transcripcional de la cepa Sscr1.

A continuación, y para la discusión de los datos obtenidos, se detalla el análisis funcional realizado con la plataforma STRING de la expresión diferencial de los genes. En primer lugar, se analiza de forma general en qué grupos funcionales se encuentran dichos genes


en cada uno de los tiempos, 36 y 48 horas; y también se analiza el solapamiento funcional existente de estos genes (pertenencia del mismo gen a varios grupos funcionales según los describe la plataforma). Este solapamiento funcional de alguno de los genes se debe, en parte, a que algunos de los grupos funcionales que el programa propone son muy amplios y otros son más específicos; por lo tanto, están presentes tanto en la categoría general como en la específica (ver los siguientes apartados). En segundo lugar, se analizan las rutas metabólicas, operones y genes de interés diferencialmente expresados en cada uno de los tiempos encontrados en cada una de las agrupaciones propuestas por STRING realizando un estudio y discusión detallada de su significación.

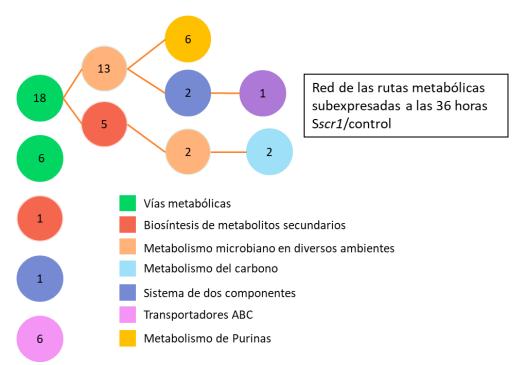
C4.3.1 Análisis funcional de los genes diferencialmente expresados a las 36 horas (Sscr1 versus control)

En el caso de los 1308 genes que estaban expresados de forma diferencial a las 36 horas, el programa STRING consiguió asociar estos genes a *diez agrupaciones* que comprenden varias rutas metabólicas relacionadas funcionalmente entre sí. Cabe aclarar que no todos los 1308 genes expresados diferencialmente a las 36 horas fueron asociados a una de estas 10 agrupaciones metabólicas por falta de información en las bases de datos de los mismos, como se ha explicado con anterioridad. Por esta razón no aparecen todos los 1308 genes en las figuras C4.6 y C4.7. Los otros genes diferencialmente sobreexpresados se muestran en el anexo A2 número total de genes diferencialmente sobreexpresados en el análisis transcripcional de la cepa Sscr1.

La agrupación funcional con mayor representación de genes fue la denominada en STRING como "vías metabólicas". Esta agrupación abarca muchos procesos que son la base del metabolismo primario en general y muchos procesos del metabolismo secundario, como se detallará en sucesivos apartados. También se observaron genes diferencialmente expresados asociados a otras agrupaciones más específicas y denominadas en la plataforma como: "biosíntesis de metabolitos secundarios", "biosíntesis de antibióticos dependientes de calcio", "metabolismo microbiano en diversos ambientes" "metabolismo del carbono", "metabolismo de purinas", "metabolismo de ácidos grasos", "biosíntesis de aminoácidos", "transportadores ABC" y

"sistema de dos componentes". Se utilizará esta nomenclatura para el análisis detallado de los datos a partir de aquí y en los siguientes apartados.

Figura C4.6. Red de las categorías funcionales sobreexpresadas en el análisis transcripcional de las cepas Sscr1 vs control a las 36 horas. Los números dentro de los círculos representa los genes presentes en cada categoría; los colores corresponden a las categorías funcionales indicadas en la leyenda. Las líneas indican el desglose de esos genes en las categorías más específicas (cuanto más a la derecha).


En la figura C4.6 se muestra cómo están asociados los diferentes **genes sobreexpresados** de estas agrupaciones funcionales a las 36 horas. Cada una está representada por un círculo de un color diferente y los números del interior de cada círculo indican los genes totales diferencialmente expresados de una agrupación (a la izquierda de la imagen). A su vez se muestran los solapamientos funcionales que se han encontrado entre dos

categorías, y se muestran por la unión por una línea entre ellas (manteniendo el código de colores); y en el nuevo círculo se especifica a su vez el número de genes de la categoría anterior (izquierda de la figura) compartido entre ambas. Los círculos que no se unen a ninguna línea, significa que tienen genes que solo se encontraron asociados a esa agrupación.

Es evidente que la categoría denominada "vías metabólicas" (verde aguamarina en la figura C4.6), que agrupa la red metabólica tanto primaria como secundaria de las células, es la que más genes diferencialmente expresados presenta (89 + 40); y que, además, 89 de ellos están compartidos con otras seis categorías más específicas con diferente número de genes en cada una de ellas (figura C4.6). En el extremo opuesto se encuentran los genes asociados a la categoría "transportadores ABC" (de color rosa en la figura C4.6) con 15 diferencialmente expresados no compartidos; en este caso tan solo 1 de los genes comparte su función con la categoría "sistema de dos componentes".

Por otra parte, las dos agrupaciones; "biosíntesis de metabolitos secundarios" (color rosado oscuro) y "metabolismo microbiano en diversos ambientes" (color naranja claro), también presentan un elevado número de genes diferencialmente expresados. Gran cantidad de sus genes están, además, integrados a su vez en otras agrupaciones funcionales todavía más específicas. De este modo, 60 y 23 genes están compartidos respectivamente con la categoría general "vías metabólicas"; y, a su vez algunos de estos están compartidos en otras categorías más específicas. Por ejemplo, dentro de los 60 genes de "biosíntesis de metabolitos secundarios" se encuentran los 23 genes de "metabolismo microbiano en diversos ambientes". Tan solo 6 genes de "biosíntesis de metabolitos secundarios" y 1 de "metabolismo microbiano en diversos ambientes" no se encuentran en las otras categorías. Se puede inferir que dentro de la categoría general de "vías metabólicas", las de "biosíntesis de metabolitos secundarios" y "metabolismo microbiano en diversos ambientes", son las dos categorías con mayor representación de genes sobreexpresados en este análisis transcripcional. Así mismo estas son también, las que presentan más cantidad de genes que pueden integrarse en otras todavía más específicas. Por último, hay que indicar que la categoría de "transportadores ABC", es la que presenta menos genes con solapamiento funcional (figura C4.6).

Respecto a los **genes subexpresados** a las 36 horas, disminuyen notablemente los genes diferencialmente expresados, y sigue siendo la categoría general "vía metabólica", la más representativa en número de genes (18 + 6), y de nuevo se desglosan en las categorías más específicas "metabolismo microbiano en diversos ambientes" (color naranja claro-13 genes) y "biosíntesis de metabolitos secundarios" (color rosado oscuro 5 genes). En este caso no se están subexpresando genes asociados al "metabolismo de ácidos grasos", como tampoco genes asociados a la "biosíntesis de antibióticos dependientes de calcio" (figura C4.7).

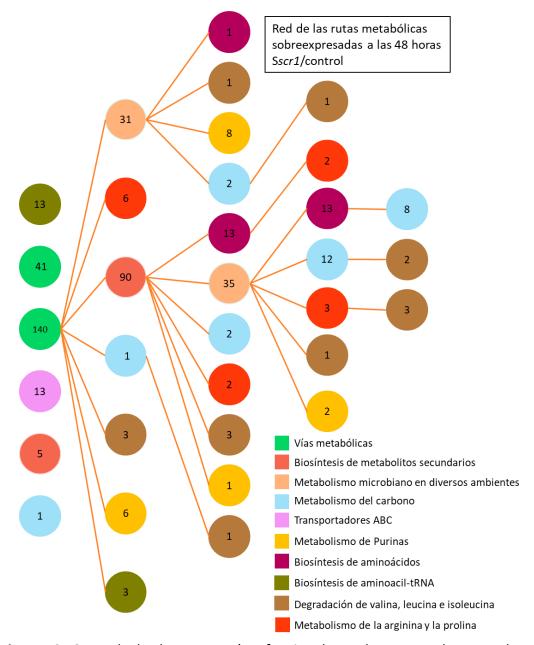
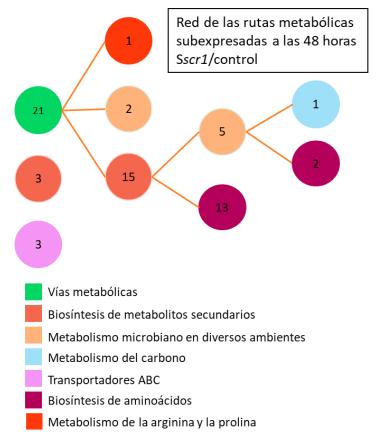


Figura C4.7. Red de las categorías funcionales subexpresadas en el análisis transcripcional de las cepas Sscr1 vs control a las 36 horas. Los números dentro de los círculos representa los genes presentes en cada categoría; los colores corresponden a las categorías funcionales indicadas en la leyenda. Las líneas indican el desglose de esos genes en las categorías más específicas (cuanto más a la derecha).

C4.3.2 Análisis funcional de los genes diferencialmente expresados s a las 48 horas (Sscr1 versus control)

Como ya se había mencionado anteriormente, a las 48 horas se encontraron 1340 genes expresados diferencialmente. El programa STRING asoció estos genes a diferentes categorías funcionales siendo también la categoría general "vía metabólica" la que mostró el número más alto de genes asociados como cabía esperar (41 + 140 genes;

color verde aguamarina) (figura C4.8). Al igual que a las 36 horas cabe aclarar que no todos los 1340 genes expresados diferencialmente a las 48 horas fueron asociados a una categoría dado la falta de información disponible sobre ellos. Por esta razón no aparecen todos los 1340 genes en las figuras C4.8 y C4.9. Los otros genes diferencialmente sobreexpresados se muestran en el anexo **A2 número total de genes diferencialmente** sobreexpresados en el análisis transcripcional de la cepa Sscr1.


Figura C4.8. Red de las categorías funcionales sobreexpresadas en el análisis transcripcional de las cepas Sscr1 vs control a las 48 horas. Los números dentro de los círculos representa los genes presentes en cada categoría; los colores corresponden a las categorías funcionales indicadas en la leyenda. Las líneas indican el desglose de esos genes en las categorías más específicas (cuanto más a la derecha).

En este caso los genes igualmente se asociaron a 10 categorías funcionales, contando la general "vía metabólica". De ellas, 7 categorías coinciden con las observadas a las 36 horas: "biosíntesis de metabolitos secundarios", "metabolismo microbiano en diversos ambientes", "metabolismo del carbono", "transportadores ABC", "metabolismo de purinas" y "biosíntesis de aminoácidos". Sin embargo, a las 48 horas entran en juego genes asociados a tres categorías diferentes: "biosíntesis de aminoacil tRNA", "degradación de valina, leucina e isoleucina" y "metabolismo de la arginina y la prolina"; y no aparecen genes asociados a las categorías de: "sistema de dos componentes", "biosíntesis de antibióticos dependiente de calcio" y "metabolismo de ácidos grasos" presentes a las 36 horas.

Por otro lado, el número de los genes subexpresados a las 48 horas disminuye casi a la mitad de los genes subexpresados detectados a las 36 horas. A este tiempo, solo se subexpresan genes asociados a 7 categorías, la general "vías metabólicas", y las más específicas: "biosíntesis de metabolitos secundarios", "metabolismo microbiano en diversos ambientes", "metabolismo del carbono", "transportadores ABC", "biosíntesis de aminoácidos y metabolismo de arginina y prolina", cada una de ellas con el número de genes indicado en la figura C4.9.

Además, se observó que, a las 48 horas de la misma manera que a 36 horas, las categorías: "vías metabólicas", "biosíntesis de metabolitos secundarios" y "biosíntesis de aminoácidos", tenían más número de genes subexpresados asociados. Mientras que, la categoría "transportadores ABC" sigue siendo de las más específicas, no presentando solapamiento funcional con el resto (figura C4.9).

Las figuras C4.6 a C4.9, dejan entrever de forma global el desglose entre categorías de los genes que se expresan diferencialmente en la cepa *Sscr1* con respecto al control. Como ya se ha mencionado, es obvio notar que la categoría "vía metabólica" sea la base o el comienzo de la red de categorías específicas que se utilizan en este análisis transcripcional, dado que, en sí, esta categoría encierra todos esos procesos que enlazan el metabolismo primario, con el metabolismo secundario.

Figura C4.9. Red de las categorías funcionales subexpresadas en el análisis transcripcional de las cepas Sscr1 vs control a las 48 horas. Los números dentro de los círculos representa los genes presentes en cada categoría; los colores corresponden a las categorías funcionales indicadas en la leyenda. Las líneas indican el desglose de esos genes en las categorías más específicas (cuanto más a la derecha).

La información obtenida con STRING también fue utilizada para generar tablas de cada una de las categorías funcionales sobreexpresadas o subexpresadas en este análisis transcripcional tanto a las 36 y 48 horas. En estas tablas se muestra el nombre de cada gen, información sobre su función y el *fold change* (FC) obtenido en el ensayo de RNAseq Sscr1 vs control de cada gen en paralelo a las 36 y 48 horas y se muestran y discuten en los siguientes apartados (tablas C4.2 a la C4.16).

Por lo tanto, a continuación, se analizarán las distintas categorías individualmente y se profundizará en los procesos biológicos y rutas metabólicas en los que están implicados los genes presentes en ellas. Cabe aclarar que las rutas representadas gráficamente no siempre la incluyen en su totalidad, sino que tiene las etapas en las que participan los genes que se expresaron diferencialmente en el análisis transcripcional.

C4.3.3 Genes de la categoría general "vías metabólicas"

Debido a que la categoría general de "vías metabólicas" incluye muchas otras categorías más específicas, como ya se ha mencionado, en la tabla C4.2, por efectos prácticos, solo se incluyeron los genes que el programa STRING asoció exclusivamente a esta categoría a ambos tiempos de estudio. Los otros genes a su vez incluido en categorías más específicas serán discutidos en el apartado correspondiente a esas categorías. A continuación, se discutirán algunos de los grupos de genes o genes importantes diferencialmente expresados, en el análisis transcripcional de Sscr1 correspondientes a esta categoría general.

Genes de biosíntesis de ergotioneína

En la tabla C4.2 se observa que los genes correspondientes a él operón de la ergotioneína (EGT) *egtABCD* (*SCO0910* al *SCO0913*), se encuentran sobreexpresados a las 36 horas mientras que, a las 48 horas ya no están diferencialmente expresados.

La EGT es un aminoácido inusual derivado de la histidina que contiene azufre, este compuesto solo puede ser sintetizado por algunos hongos, micobacterias y actinobacterias, además ayuda en la regulación de la fisiología microbiana, la homeostasis redox, el metabolismo celular y en la capacidad patógena de varios microorganismos, como es el caso de *Mycobacterium tuberculosis* (Cumming et al., 2018). Este compuesto, protege a *S. coelicolor* frente a diversos factores de estrés oxidativo (Nakajima et al., 2015); sin embargo, sus funciones biológicas aún no se han descifrado completamente.

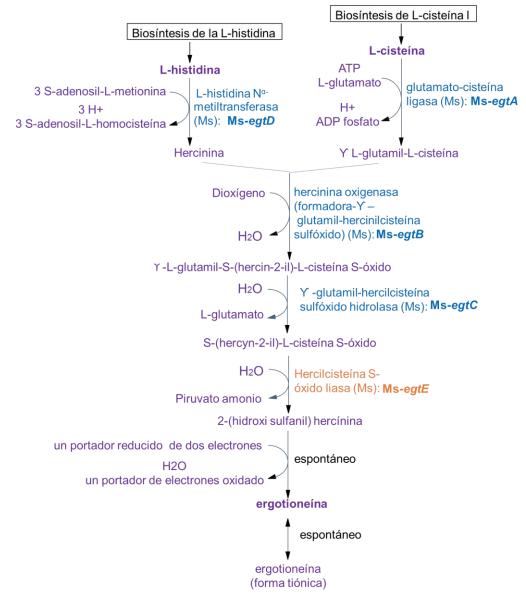

La vía biosintética de EGT se describió *in vitro* en las micobacterias, en esta vía intervienen 5 pasos, catalizados por los genes *egtABCDE* (Seebeck, 2010) (Figura C4.10). En *S. coelicolor* se encuentran los cuatro primeros genes en él operón *egtABCD* (*SCO0910* al *SCO0913*), sin embargo, el ortólogo del gen *egtE* se encuentra fuera del operón, es el gen *SCO1921* una hipotética aminotransferasa (Nakajima et al., 2015). En nuestro estudio no se detectó cambio de expresión en este gen ni a 36 ni a 48 horas.

Tabla C4.2. Análisis transcripcional de las cepas S*scr1 vs* control. **"Vías metabólicas"** ■ genes subexpresados ■ genes sobreexpresados.

36 horas 48 horas Gen Nombre **Producto** Log2FC log2FC padj padi SCO0171 SCJ1.20 Nicotinato fosforribosiltransferasa -1.2 8.50E-04 -1.3 1.20F-11 SCO0179 SCJ1.28c Posible deshidrogenasa que contiene zinc -1.4 1.50E-05 SCO0259 SCF1.01 Probable alcohol deshidrogenasa 6.10E-05 1.2 SCO0668 SCF91.28c Posible flavoproteína 3.80E-06 1.4 3.00E-03 3.20E-15 SCF15.02 Ferredoxina/flavodoxina-NADP+reductasa 1.70E-16 -1.7 SCO0681 SCO0910 egtA Glutamato--cisteína ligasa 1.8 2.00E-28 SCO0911 egtB Gamma-glutamil hercinilcisteína s-óxido sintasa 1.7 8.00E-22 SCO0912 2.60F-15 eatC Gamma-glutamil hercinilcisteína s-óxido hidrolasa 1.7 SCO0913 eqtD L-histidina nalfa-metiltransferasantesis de la ergotioneína 1.7 1.30E-17 SCO0958 SCM11.13c Diacilglicerol o-aciltransferasa / cera sintasa 4.10E-08 4.50E-02 SCO1244 8.40E-48 bioB SCO1245 1.30E-56 bioA Aminotransferasa BioA SCO1246 bioD Detiobiotina sintetasa 1.20E-32 SCO1429 1.6 5.60E-08 chiD Quitinasa SCO1776 pyrG 2.80E-10 Ctp sintetasa 1.1 SCO1984 SC3C9.19c 5-metiltioadenosina/S-adenosilhomocisteína desaminasa 1.70E-04 1.40E-22 SCO1989 SC7H2.03c Prolina iminopeptidasa 5.50E-13 1.80E-14 SCO1996 1.90F-31 2.1 1.40F-10 coaF Defosfo-coa guinasa 1.8 SCO2346 SCC8A.04c Manitol-1-/azúcar-/sorbitol-6-fosfatasa 1.10E-33 2.10E-04 SCO2542 audD Glucarato deshidratasa 3.60E-07 SCO2543 SCC77.10c 5-dehidro-4-desoxiglucarato deshidratasa 1.50E-05 SCO2776 accD1 Acetil/propionil CoA carboxilasa, subunidad beta 3.00E-24 1.80E-11 SCO2821 SCBAC17F8.12c Posible pectato liasa 7.60E-14 SCO3072 SCE25.13c Beta-ureidopropionasa 2.90E-12 SCO3073 hutU Urocanato hidratasa 4.80E-95 2.00E-03 SC03197 SCF22.14c 8.10F-08 3.50F-02 1-fosfofructoquinasa 1.3 1.2 SCO3403 folE GTP ciclohidrolasa 1 3.10E-12 SCO3463 SCE46.20 Probable fosforilasa -1.1 6.40E-06 SCO4169 SCD66.06 Probable oxidorreductasa 5.10E-04 1.5 2.20E-02 8.30E-31 SCO4279 SCD95A.12c Posible acetiltransferasa 5.90E-43 2.0 SCO4307 Ácido N-acetilmurámico 6-fosfato eterasa 6.90E-05 2.60E-02 murQ 1.1 SCO4828 *absA* Betaína-aldehído deshidrogenasa 1.0 2.20E-04 8.60E-40 3.60E-05 SCO4932 hutH Histidina amoníaco-liasa 2.0 1.4 Udp-n-acetil-d-glucosamina deshidrogenasa 2.80E-06 1.1 2.20E-02 SCO5050 SCK7.23 1.4 SCO5235 SC7E4.32 Beta-n-acetilhexosaminidasa 4.70E-05 1.2 SCO5367 Subunidad a de la atpasa transportadora de h+ de tipo F 1.30E-12 atpB Delta de la subunidad atpasa transportadora de h+ de tipo F SCO5370 atpH 1.0 3.60E-11 SC5H4.04c SCO5680 Probable citidina desaminasa -1.3 3.30E-10 SCO6423 SC1A6.12c Lipoato-proteína ligasa 1.60E-40 1.6 SCO6654 SC5A7.04c Proteína no caracterizada 1.40E-20 -1.1 4.10E-07 SCO6730 SC5F2A.13 Alfa-metilacil-coa racemasa 5.50E-04 DNA (citosina-5)-metiltransferasa 1 SCO6844 SC3D9.12c 1.20E-04 SCO7050 SC4G1.16c Probable D-alanil-D-alanina carboxipeptidasa 3.70E-35 2.4 2.30E-06 SCO7141 SC9A4.03c Supuesta NADH deshidrogenasa/NAD(P)H nitroreductasa 8.00E-14 2.20E-04 SCO7311 SC5F8.21c Probable aminoácido descarboxilasa 1.1 2.10E-04 Piruvato deshidrogenasa (quinona) SC6D11.08 4.70E-05 SCO7412 -2.9 -1 1 5.6

Si la EGT ayuda frente al estrés oxidativo, puede ser importante su actividad en la cepa Sscr1 a las 36 horas, ya que en este momento la cepa comienza a transcribir genes del clúster biosintético de la actinorrodina y otros metabolitos secundarios que pudieran tener propiedades antibióticas (Tabla C4.3, C4.4 y C4.9), y debido a que se ha

comprobado que los antibióticos con diversas dianas, aumenta la respiración bacteriana, posibilitando la generación de especies reactivas de oxígeno, que inducen el estrés redox; el cual puede contribuir al deterioro de la célula (Dwyer et al., 2014). Es posible que la activación del operón de la EGT sea una respuesta natural autoprotectora, junto a otros procesos de resistencia, como las bombas de expulsión activa (Y. Xu et al., 2012) que normalmente contrarrestan los efectos que pudieran causar los antibióticos que está produciendo la misma célula.

Figura C4.10. Ruta biosintética de la ergotioneína. (Seebeck, 2010), describió la identificación del grupo de genes biosintéticos de la ergotioneína a partir de micobacterias y realizó una reconstitución en vitro de este proceso en *Mycobacterium smegmatis*. En azul genes sobrexpresados, en rojo genes subexpresados y en naranja genes que no se expresaron diferencialmente en la cepa S*scr1*. Se uso la página de MetaCyc https://biocyc.org/META/NEW-IMAGE?object=PWY-7255 para extraer la ruta.

Otro papel en el cual pudiera estar participando la EGT, es como *vehículo para moldear el ensamble de algunas moléculas*. Zhao y sus colaboradores 2015, comprobaron que el EGT junto con el micotiol (MSH) contribuyen en la síntesis de la lincomicina A, en la especie *Streptomyces lincolnensis* un antibiótico de licosamida, que contiene azufre (Zhao et al., 2015).

Genes del operón biosintético de la biotina

Tres genes, *bioBAD* (*SCO1244*, *SCO1245*, *SCO1246*), que forman parte en el proceso de síntesis de biotina se encuentran sobreexpresados solo a las 36 horas (tabla C4.2). La biotina es un cofactor importante en la biosíntesis de malonil coenzima A (malonil-coA), el cual es utilizado como unidad de elongación para la biosíntesis de ácidos grasos. Malonil-coA también proporciona las unidades para la elongación de metabolitos secundarios como la actinorrodina y undecilprodigiosina en *S. coelicolor* (más adelante se discute la expresión diferencial de los genes asociados a estos dos metabolitos) (E. Rodríguez et al., 2001). En este caso la biotina está cumpliendo un papel importante en el metabolismo primario de la célula, en la *producción de precursores* que luego serán usados en la construcción de metabolitos secundarios (figura C4.11).

Otros genes de interés

Además, el gen *accD1(SCO2776)*, que está sobreexpresado a las 36 y 48 horas (tabla C4.2). Este gen sintetiza una **propionil-coA** carboxilasa que junto con la biotina en *S. coelicolor*, genera los bloques que luego serán utilizados en la *síntesis de ácidos grasos y policétidos* (metabolitos secundarios, como la actinorrodina) (Bramwell et al., 1996). Esta reacción sucede en dos pasos, en la primera reacción, el cofactor biotina es unido a la proteína transportadora biotina-carboxilasa (BCCP) como un brazo oscilante; y en la segunda reacción, una enzima carboxiltransferasa (CT) cataliza la transferencia del grupo carboxil de la carboxibiotina al propionil-coA para formar metilmalonil-CoA) (Arabolaza et al., 2010; Bramwell et al., 1996).

En general, se observa que los genes que están diferencialmente expresados incluidos en "vías metabólicas" (tabla C4.2), la mayoría de ellos están diferencialmente expresados a las 36 horas, mientras que a las 48 horas solo el 41 % de estos, muestra una expresión diferencial.

Biosíntesis de biotina

8-amino-7-oxononanoato H₂N OH CH₃ BioA (SCO1245) adenosilmetionina-8-amino-7oxononanoato aminotransferasa BioA

7,8-diaminononanoato

Figura C4.11. **Biosíntesis de biotina**. En azul las proteínas sobreexpresadas en la cepa *Sscr1* "**vías metabólicas"** (tabla C4.2). Tomado de la base de datos KEGG. (Kanehisa et al., 2022).

C4.3.4 Genes asociados a la categoría "biosíntesis de metabolitos secundarios"

La representación de los genes diferencialmente expresados incluidos en la categoría de metabolitos secundarios se desglosa en dos tablas (tablas C4.3 y C4.4). Se van a discutir los hallazgos más importantes observados en cada una de ellas. Solo se incluyeron los genes que se consideraron pertinentes discutir. Algunos de los genes compartidos con otras rutas se discuten en las rutas más específicas.

Los metabolitos secundarios son moléculas activas, las cuales no son esenciales para el organismo que los produce, pero les proporciona una ventaja competitiva frente a otros organismos (Bennett & Bentley, 1989). *S. coelicolor* se caracteriza por tener más de 20 clústers biosintéticos de metabolitos secundarios (Bentley et al., 2002), muchos de ellos no son producidos en condiciones de laboratorio. Por eso se utilizan estrategias genéticas para poder activar esos clústeres que permanecen silenciados en este género. Una de esas estrategias, es entender los genes que intervienen en la regulación de estos clústeres.

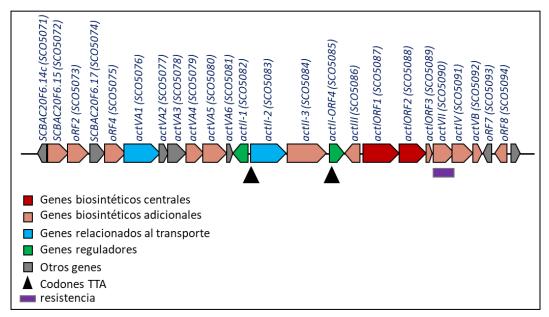
En el análisis transcripcional de la cepa *Sscr1* se observó un adelanto en la expresión diferencial de algunos de los genes del clúster de la actinorrodina; en el que, el gen *actIl-ORF4* (*SCO5085*) se sobreexpresó solo a las 36 horas, 11 de ellos se sobreexpresaron a las 36 y 48 horas, mientras que los genes del resto del clúster diferencialmente expresados, se sobreexpresaron solo a las 48 horas (tabla C4.3). Por otra parte, solo el gen *redX* (*SCO5878*) del clúster de la undecilprodigiosina se sobreexpresó a las 36 horas, mientras los otros genes del clúster se subexpresaron solo a las 48 horas (tabla C4.4). A continuación, se discuten los hallazgos.

Clúster de actinorrodina (ACT)

La ACT químicamente pertenece al grupo de las benzoisocromanoquinonas y es un antibiótico de tipo policétido coloreado, que a pH ácido presenta una coloración roja y a pH básico, es de color azul (Rudd & Hopwood, 1979). También se caracteriza por presentar actividad bacteriostática frente a bacterias Gram positivas (Mak & Nodwell, 2017).

Tabla C4.3. Análisis transcripcional de las cepas Sscr1 vs control.

"Biosíntesis metabolitos secundarios"


genes subexpresados genes sobreexpresados.

	Nombre	Producto		horas	48	48 horas	
Gen	Nombre	Producto	log2FC	padj	log2FC	padj	
SCO0489	SCF34.08c	Proteína hipotética conservada	-2.3	5.10E-04			
SCO0565	SCF73.12c	Supuesta poliprenil sintetasa	2.0	8.50E-10	1.5	3.00E-03	
SCO0568	SC8B3.02c	Poliprenil sintetasa	1.9	2.70E-19	2.5	7.90E-09	
SCO0774	3SCF60.06c	Ácido pentalénico sintasa	3.7	1.10E-56	3.5	1.00E-20	
SCO1441	ribBA	3,4-dihidroxi-2-butanona 4-fosfato sintasa/gtp ciclohidrolasa II			1.2	3.00E-03	
SCO1759	2SCI34.12c	Posible transferasa	1.0	1.90E-06			
SCO2256	panB	3-metil-2-oxobutanoato hidroximetiltransferasa	1.2	3.70E-10			
SCO2649	SC8E4A.19c	Probable 4-alfa-glucanotransferasa	1.7	3.50E-24			
SCO2778	hmgL	Hidroximetilglutaril-CoA liasa	2.3	2.90E-53	2.3	4.40E-08	
SCO2779	acdH	Acil-coa deshidrogenasa de cadena corta/ramificada	2.4	6.70E-85	2.4	6.50E-08	
SCO3028	manB	Fosfomanomutasa			1.0	2.80E-02	
SCO3203	bar	Fosfinotricina acetiltransferasa	1.2	1.40E-06			
SCO3218	SCE8.11c	Proteína hipotética conservada pequeña	2.0	7.50E-23	3.5	4.00E-27	
SCO3227	SCE63.06	(S)-3,5-dihidroxifenilglicina transaminasa	2.0	7.502 25	2.6	3.00E-14	
SCO3228	SCE63.05	Probable glicolato oxidasa	1.6	3.50E-08	3.1	6.70E-13	
SCO3229	SCE63.04	Probable ácido 4-hidroxifenilpirúvico dioxigenasa	2.3	1.80E-23	3.5	1.30E-25	
SCO3242	SCE29.11c	Posible transferasa	2.1	3.80E-09	1.6	7.00E-03	
SCO3242 SCO3243	SCE29.12c	Posible mioinositol fosfato sintasa	2.1	7.40E-17	2.8	1.80E-13	
SCO3249	SCE29.12c	Probable proteína portadora de acilo	1.8	6.90E-11		3.50E-05	
SCO3249 SCO3306	SCE68.04c		1.0	0.50L-11	_	1.00E-02	
		2-aminoadipato transaminasa	1.0	2 005 10	1.1		
SCO3739	SCH22A.17	Posible epimerasa	1.8	2.90E-10	1.5	1.50E-02	
SCO4233	ispD : F	2-C-metil-D-eritritol 4-fosfato citidililtransferasa			1.6	4.00E-06	
SCO4234	ispF	2-C-metil-D-eritritol 2,4-ciclodifosfato sintasa			1.6	1.00E-03	
SCO4288	SCD95A.21	Trehalosa 6-fosfato fosfatasa	4.5	4 705 24	1.2	8.00E-03	
SCO4583	SCD20.01	Heptaprenil difosfato sintasa	1.5	1.70E-24	4.2	4 205 02	
SCO4593	SCD20.11c	Nad(p)h deshidrogenasa (quinona)	2.1	4.20E-20	1.3	1.30E-02	
SCO4916	SCK13.08c	Posible fosfomanomutasa			1.0	1.60E-02	
		Biosíntesis de actinorrodina proteína actVA	1.5	7.40E-09	3.3	1.10E-18	
SCO5072	oRF1	Hidroxilacil-CoA deshidrogenasa	1.1	5.60E-09	2.1	2.70E-10	
SCO5073	oRF2	Posible oxidorreductasa	1.1	8.50E-08	1.8	3.70E-09	
		Posible deshidratasa	1.3	3.60E-10	2.6	2.00E-10	
SCO5075	oRF4	Posible oxidorreductasa	1.1	1.70E-08	1.8	2.20E-10	
SCO5076	actVA1	Proteína de membrana integral	1.1	1.40E-08	1.6	4.20E-09	
SCO5077	actVA2	Proteína hipotética	1.1	1.60E-07	1.6	3.90E-06	
SCO5078	actVA3	Posible proteína			1.9	3.60E-13	
SCO5079	actVA4	Proteína hipotética	1.0	5.00E-08	2.6	1.10E-11	
SCO5080	actVA5	Supuesta hidrolasa			1.7	6.70E-09	
SCO5081	actVA6	Gen biosintético de actinorrodina			2.0	2.30E-07	
SCO5082	actII-1	Supuesta proteína reguladora transcripcional	1.2	1.30E-14	2.0	9.10E-09	
SCO5083	actII-2	Supuesto transportador de actinorrodina	2.4	1.80E-69	1.8	2.10E-05	
SCO5084	actII-3	Supuesta proteína de membrana	2.7	7.60E-82	2.0	1.70E-09	
SCO5085	actII-ORF4	Proteína activadora de grupos de actinorrodina	1.3	2.00E-16			
SCO5086	actIII	Cetoacil reductasa			2.6	1.60E-13	
SCO5087	actIORF1	Sub. alfa de la beta-cetoacil sintasa de policétido de ACT			2.7	4.40E-14	
SCO5088	actIORF2	Sub. beta de la beta-cetoacil sintasa del poliquétido de ACT			2.5	2.70E-19	
SCO5089	actIORF3	Policétido sintasa de actinorrodina portadora de acilo			3.0	8.00E-03	
SCO5090	actVII	Policétido sintasa bifuncional ciclasa/deshidratasa de ACT			2.5	4.90E-16	
SCO5091	actIV	Ciclasa			2.3	2.60E-13	
SCO5092	actVB	Policétido de actinorrodina posible dimerasa			2.9	2.70E-22	
SCO5093	oRF7	Supuesta proteína del minicírculo			1.7	6.20E-07	
SCO5094	oRF8	Supuesta metiltransferasa				3.20E-08	
	-	· · · · · · · · · · · · · · · · · · ·					

-2.9 -1 1 5.6

En el análisis transcripcional se observó que **24 de los 25 genes** que pertenecen al clúster de la biosíntesis de ACT están **sobreexpresados**; 12 de los genes de este clúster se sobreexpresaron a las 36 horas (tabla C4.3, figura C4.12). Entre ellos se encuentra el gen

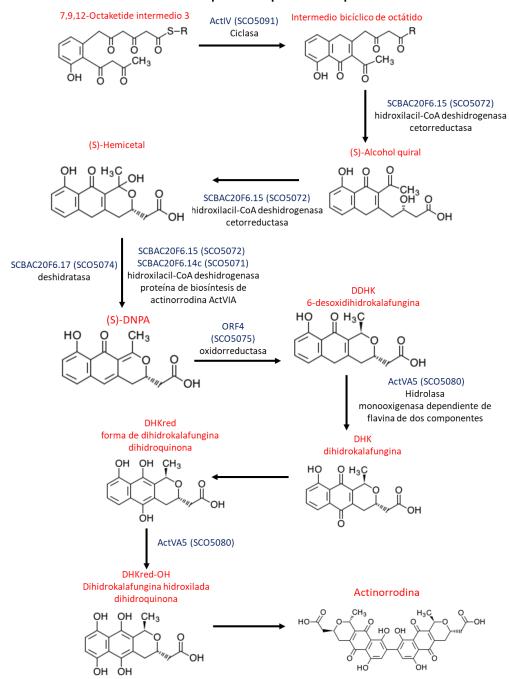

actII-ORF4 (SCO5085) que es un regulador transcripcional de unión al DNA, que regula de forma positiva los genes biosintéticos de la actinorrodina, siendo el regulador específico de esta ruta (Arias et al., 1999). En Streptomyces por lo general siempre hay un regulador principal de ruta, el cual, recibe aportes de varias fuentes y a su vez es regulado por otros reguladores pleiotrópicos (van Wezel & McDowall, 2011).

Figura C4.12. Clúster biosintético de ACT. En azul los genes sobreexpresados en la cepa Sscr1 (tabla C4.3). Tomado de la base de datos antiSMASH versión 7.0 (Blin et al., 2021).

A las 36 horas la cepa Sscr1 se encuentra a la mitad de la fase exponencial, el gen actII-ORF4 se está expresando previamente, para ejercer una regulación de los genes que van a dar lugar a la síntesis de ACT. En la figura C4.13 se muestran como todos los genes necesarios para la biosíntesis del esqueleto policétido tipo II ACT, se sobrexpresaron en la cepa Sscr1 a las 48 horas (tabla C4.3) momento en el cual la cepa está al final de su fase exponencial, en donde normalmente sucede la producción de actinorrodina.

Biosíntesis del esqueleto de policétidos tipo II ACT

Figura C4.13. Biosíntesis del esqueleto de policétidos tipo II ACT. En azul las proteínas sobreexpresadas en la cepa *Sscr1* "biosíntesis de metabolitos secundarios" (tabla C4.3). Tomado de la base de datos KEGG. (Kanehisa et al., 2022).

Aunque el metabolismo secundario va muy de la mano del metabolismo primario, la célula en la fase exponencial desarrolla la mayoría de los metabolitos primarios que ayudan al crecimiento y el desarrollo y al llegar a la fase estacionaria, en donde se presenta agotamiento de los recursos, se desarrolla una gran cantidad de metabolitos secundarios, que se generan a partir de los metabolitos primarios.

Este comportamiento se observa en nuestros datos, que muestran que a las 36 horas se formaron metabolitos primarios como la biotina (tabla C4.2), el cual es un cofactor del malonil-CoA, que, a su vez, es utilizado como unidad de elongación de metabolitos secundarios como la ACT.

En la tabla C4.3, también se encuentran genes asociados a la síntesis del antibiótico CDA que van del gen *SCO3218* al *SCO3249*, pero como el programa nos mostró otros genes pertenecientes a este clúster como una ruta metabólica aparte, este metabolito secundario se discutirá más adelante y se incluirán los genes que se encuentran en la tabla C4.3.

Biosíntesis de undecilprodigiosina (RED)

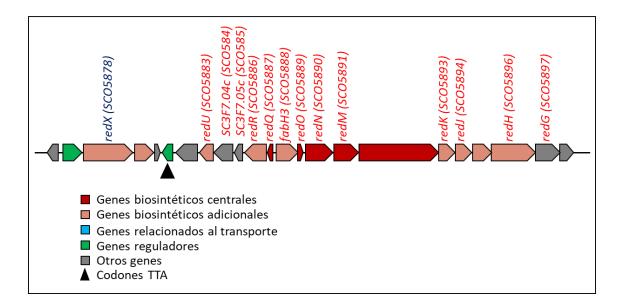
La RED es una prodiginina que pertenece a la familia de los tripirroles, se caracteriza por tener actividad antimicrobiana, inmunosupresora y anticancerígena (Williamson et al., 2006). Además, es un antibiótico híbrido peptidilo y policétido.

En el análisis transcripcional se observó que en la cepa Sscr1 14 de los 21 genes pertenecientes al clúster biosintético de la undecilprodigiosina, se encontraron diferencialmente expresados (Tabla C4.4). El gen redX (SCO5878) es el único que se sobreexpresa a las 36 horas, mientras que los otros nueve genes que se encuentran entre el gen SCO5883 y el SCO5897 todos se encontraron subexpresados a las 48 horas.

Se sabe que el gen *redX* (*SCO5878*) es regulado de forma negativa por el gen *SCO3201* que es un regulador de la familia TerR (Tabla A9) (D. Xu et al., 2014). En el análisis transcripcional este regulador se encuentra sobreexpresado a las 36 y 48 horas. con un log₂FC: 2,00; padj 5.40E-34 y log₂FC: 1,55; padj: 1.10E-02 respectivamente. Es posible que la regulación a la baja que ejerce el gen *SCO3201* sobre *redX* sea responsable de que los otros genes de la RED no se expresen diferencialmente a las 36 horas, al impedir que *redX* actúe en algún proceso de activación de los otros genes.

Tabla C4.4. Análisis transcripcional de las cepas Sscr1 vs control.

"Biosíntesis metabolitos secundarios"


genes subexpresados
genes sobreexpresados.

Gen Nombre		Post data	36	horas	48 horas	
		Producto		padj	log2FC	padj
SCO5176	SCP8.39	Ndp-hexosa 4-cetorreductasa	-1.1	5.80E-27	,	
SCO5222	cyc1	Epi-isozizaeno sintasa			1.5	3.00E-0
SCO5223	SC7E4.20	pi-isozizaeno 5-monooxigenasa / beta-farneseno sintasa	1.0	1.70E-07	1.1	3.20E-0
CO5444	glgP	Posible glucógeno fosforilasa	-1.5	1.80E-47		
SCO5662	SC6A9.05	Aminodesoxifutalosina desaminasa			1.1	7.00E-0
CO5791	miaA	Trna delta(2)-isopentenilpirofosfato transferasa			2.3	5.20E-1
SCO5878	redX	Familia de beta-cetoacil-ACP sintasas	1.1	2.30E-13		
SCO5883	redU	proteína hipotética			-1.6	1.90E-0
SCO5884	SC3F7.04c	proteína hipotética			-1.7	3.50E-0
		Supuesta proteína de membrana			-1.4	2.00E-0
CO5886	redR	3-oxoacil-ACP sintasa			-2.0	1.50E-1
SCO5887	redQ	Probable proteína transportadora de acilo			-1.1	6.90E-0
SCO5888	fabH3	3-oxoacil-ACP sintasa III			-2.3	4.60E-1
CO5889	redO	Proteína transportadora de péptidos			-1.7	4.50E-0
CO5890	redN	8-amino-7-oxononanoato sintasa			-1.5	2.70E-1
CO5891	redM	L-prolina[proteína transportadora de l-prolilo] ligasa			-1.3	3.80E-0
SCO5893	redK	Oxidorreductasa			-1.4	2.70E-0
CO5894	redJ	Tioesterasa			-1.4	2.50E-0
SCO5896	redH	Prodigiosina/undecilprodigiosina sintetasa			-1.0	2.80E-0
SCO5897	redG	Supuesta oxidasa			-1.0	1.50E-0
CO6035	SC1C3.23	Posible lisina/ornitina descarboxilasa	1.3	5.20E-05	1.0	2.30E-0
CO6604	SC1F2.01	Beta-glucosidasa			1.3	3.00E-0
CO6655	ribA2	Gtp ciclohidrolasa II	-2.9	6.50E-28	-1.2	1.10E-0
CO6662	tal1	Transaldolasa	1.0	1.80E-04		
SCO6663	tktB	Pertenece a la familia de las transcetolasas	1.7	2.00E-18	;	
CO6691	SC4C6.01	Probable fosfolipasa C	2.4	1.70E-40	1.3	4.00E-0
CO6764	SC6A5.13	Probable escualeno-hopeno ciclasa	1.0	9.50E-11		
CO6767	ispG1	(E)-4-hidroxi-3-metilbut-2-enil-difosfato sintasa	1.2	1.30E-13		
CO6768	dxs1	1-desoxi-D-xilulosa-5-fosfato sintasa	1.1	3.30E-12		
CO6769	SC6A5.18	Ornitinaoxo-ácido transaminasa	1.1	8.30E-09)	
CO6818	gpml	fosfoglicerato mutasa independiente de 2,3-bisfosfoglicerato	2.1	3.00E-26	i	
CO6819	aroA2	3-fosfoshikimato 1-carboxiviniltransferasa	2.3	2.60E-26	;	
CO6824	SC1A2.33c	Fosfonopiruvato descarboxilasa (fragmento)	1.1	6.30E-05		
CO7000	Idh	Isocitrato deshidrogenasa			1.1	3.20E-0
CO7036	argG	Pertenece a la familia de las argininosuccinato sintasas			-1.7	7.20E-0
CO7040	gap2	Pertenece a la familia de la gliceraldehído-3-fosfato deshidrogenasa	1.6	1.60E-23		
CO7266	SC5H1.26	Probable 3-oxoacil-[proteína transportadora de acilo] reductasa		•	1.2	2.10E-0
CO7417	SC6D11.13	2-hidroxi-5-metil-1-naftoato 7-hidroxilasa	2.4	4.60E-24	1.8	4.90E-0

La RED es un antibiótico que se distingue de otros, por producirse en etapas tempranas del desarrollo al mismo tiempo que el metabolismo primario (Tenconi et al., 2018). En este análisis transcripcional se evidencia este aspecto, pues a las 36 horas en donde la cepa Sscr1 se encuentra en mitad de la fase exponencial solo se sobreexpresa un gen del clúster biosintético del RED, y a las 48 horas en donde ya la cepa Sscr1 se encuentra al final de esta fase se subexpresaron trece genes (tabla C4.4). Por consiguiente, la síntesis del metabolito secundario RED precede a los dos tiempos estudiados en este análisis transcripcional.

La figura C4.14 muestra el clúster biosintético de la RED, se nombran solo los genes que se expresaron diferencialmente en la cepa Sscr1. Como se mencionó anteriormente solo uno de los genes diferencialmente expresado estaba sobreexpresado a las 36 horas, el resto se encontraban subexpresados a las 48 horas.

Por otra parte, en la figura C4.15 se representa la biosíntesis de la prodigiosina RED y como los genes del análisis transcripcional interviene en esa síntesis.

Figura C4.14. Clúster biosintético de RED. En azul los genes que se sobreexpresaron, en rojo los genes subexpresados en la cepa Sscr1 (tabla C4.4). Tomado de la base de datos antiSMASH versión 7.0 (Blin et al., 2021).

Biosíntesis de prodigiosina RED

Figura C4.15. Biosíntesis de prodigiosina RED. En rojo las proteínas subexpresadas y en naranja las proteínas que no se expresaron diferencialmente en la cepa *Sscr1* "biosíntesis de metabolitos secundarios" (tabla C4.4). Tomado de la base de datos KEGG. (Kanehisa et al., 2022).

C4.3.5 Genes asociados a "biosíntesis de antibiótico dependientes de calcio (CDA)"

Los genes que se expresaron diferencialmente en la cepa S*scr1* y están asociados al CDA, se muestran en la tabla C4.5.

Tabla C4.5. Análisis transcripcional de las cepas S*scr1 vs* control. **"Biosíntesis de antibióticos dependientes de calcio"**

genes subexpresados genes sobreexpresados.

Gen	Nombre	Producto	36 1	noras	48 horas		
Gen	MOUNDIE	Producto		log2FC padj		padj	
SCO3215	SCE8.08c	Proteína hipotética	1.5	4.30E-06	1.4	6.00E-03	
SCO3217	cdaR	Posible regulador transcripcional	1.1	7.40E-17	2.3	8.30E-20	
SCO3218	SCE8.11c	Proteína hipotética conservada pequeña	2.0	7.50E-23	3.5	4.00E-27	
SCO3219	SCE8.12c	Supuesta lipasa		_	1.2	1.70E-02	
		Supuesta proteína secretada	2.1	2.10E-07		6.40E-23	
SCO3221	SCE8.14c	Prefenato deshidrogenasa	2.5	3.90E-31	3.6	1.40E-17	
SCO3222	SCE8.15c	Supuesta proteína secretada	2.3	5.30E-18	5.6	8.70E-46	
SCO3227	SCE63.06	(S)-3,5-dihidroxifenilglicina transaminasa		_	2.6	3.00E-14	
SCO3228	SCE63.05	Probable glicolato oxidasa	1.6	3.50E-08	3.1	6.70E-13	
SCO3229	SCE63.04	Probable ácido 4-hidroxifenilpirúvico dioxigenasa	2.3	1.80E-23	3.5	1.30E-25	
SCO3230	cdaPSI	CDA péptido sintetasa I	1.4	1.00E-27	3.1	2.40E-34	
SCO3231	cdaPS2	CDA péptido sintetasa II	1.7	6.80E-29	2.9	4.50E-24	
SCO3232	cdaPS3	CDA péptido sintetasa III	1.9	1.50E-46	3.2	7.60E-26	
SCO3233	SCE29.0	Probable hidrolasa	2.3	1.60E-21	4.4	4.60E-28	
SCO3234	hasP	Fosfotransferasa	2.1	3.90E-19	4.3	1.20E-07	
SCO3235	SCE29.040	Posible transportador ABC	2.0	6.30E-26	3.2	1.60E-22	
SCO3236	asnO	L-asparagina oxigenasa	2.0	3.20E-20	3.9	1.50E-21	
SCO3237	SCE29.060	Proteína hipotética	1.2	3.30E-05	3.0	9.50E-08	
SCO3238	SCE29.070	Proteína hipotética	1.7	5.60E-08	2.4	1.30E-07	
		Proteína hipotética conservada	1.7	1.60E-06	_	3.70E-10	
SCO3240	SCE29.090	Proteína hipotética	1.5	2.70E-05	2.2	5.10E-04	
SCO3241	SCE29.10c	Posible isomerasa	1.9	1.50E-11	2.5	8.30E-08	
SCO3242	SCE29.11c	Posible transferasa	2.1	3.80E-09	1.6	7.00E-03	
		Posible mioinositol fosfato sintasa	2.1	7.40E-17		1.80E-13	
		Supuesta proteína secretada	2.6	1.10E-29		6.50E-23	
		Posible salicilato hidroxilasa	1.8	1.00E-13		8.10E-10	
SCO3246	-	3-oxoacil-[acil-carrier-protein] sintasa III	2.2	2.10E-11		2.00E-09	
		Posible acil CoA oxidasa	2.0	2.70E-23		7.90E-10	
SCO3248	fabF3	3-oxoacil-[acil-carrier-protein] sintasa II	2.0	1.20E-22	1.7	4.60E-05	
SCO3249	SCE29.180	Probable proteína portadora de acilo	1.8	6.90E-11	2.3	3.50E-05	
			-2.9	-1 1	-	.6	

El CDA es un polipéptido no ribosomal, que se sintetiza a partir de péptido sintetasas no ribosomales. Los polipéptidos no ribosomales contienen aminoácidos de origen proteico, como también aminoácidos inusuales. El nombre que recibe es debido a que tiene actividad antibiótica frente a otras bacterias Gram positivas solo en presencia de iones de calcio (Hopwood & Wright, 1983).

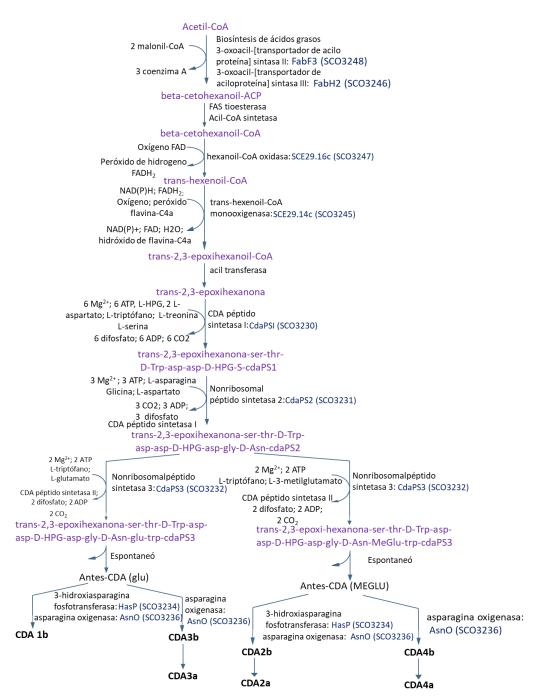
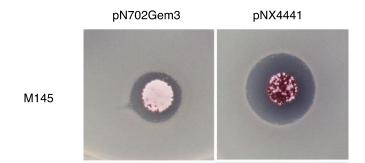

En la cepa Sscr1 se sobrexpresaron 30 genes de los 48 genes que forman parte del clúster biosintético del CDA (tabla C4.5). En la figura C4.16 se muestra el clúster biosintético de la CDA, con los 30 genes diferencialmente expresados en la cepa Sscr1, los tres genes biosintéticos centrales se sobreexpresaron.

Figura C4.16. Clúster biosintético de CDA. En azul los genes que se sobrexpresan en la cepa Sscr1 (tabla C4.5). Tomado de la base de datos antiSMASH versión 7.0 (Blin et al., 2021).


A las 36 horas todos los genes que se expresaron diferencialmente en el análisis transcriptómico estaban sobreexpresados, con excepción del *SCO3219* supuesta lipasa y SCO3227 que es una (S)-3,5-dihidroxifenilglicina transaminasa. El gen *SCO3227* junto a los genes SCO3228 y el *SCO3229*, intervienen en la transformación de 3-(4-hidroxifenil) piruvato a hidroxifenilglicina (L-HPG), este es un aminoácido inusual que compone el CDA. A las 48 horas todos los genes expresados diferencialmente en el análisis están sobreexpresados (tabla C4.5) los cuales presentan FCs más altos de los observados a las 36 horas, como las supuestas proteínas secretadas SCO3220 y SCO3222 con FC de 4,4 y 5,6 respectivamente.

Por otra parte, se muestra el clúster biosintético de la CDA indicando los genes que se sobrexpresaron diferencialmente en la cepa Sscr1 (figura C4.17). Como se puede observar en la figura la biosíntesis de este antibiótico es compleja y al final da origen a diferentes tipos de CDA.

Figura C4.17. Biosíntesis de antibióticos dependientes de calcio. En azul las proteínas sobreexpresadas en la cepa *Sscr1* "biosíntesis de antibióticos dependientes calcio" (tabla C4.5). Tomado de la página web de MetaCyc (https://biocyc.org/META/NEW-IMAGE?object=PWY-7255).

Previamente a esta tesis se había comprobado de forma experimental el incremento en la producción de CDA por parte de la cepa Sscr1 respecto al control (figura C4.18).

Figura C4.18. Comprobación experimental del incremento de CDA en la cepa Sscr1 (pNX4441) respecto al control (pN702Gem3). Para este ensayo se realizó un antibiograma frente *Bacillus subtilis* que es un microorganismo sensible a este antibiótico.

Los datos del análisis transcripcional mostraron que en la cepa Sscr1 los tres principales antibióticos producidos por *S. coelicolor* están diferencialmente expresados. La ACT se está sintetizando a las 48 horas, mientras que la síntesis de la RED precede a los dos tiempos estudiados en este análisis. El CDA al parecer también se está sintetizando, pues todos los genes diferencialmente expresados del clúster biosintético están sobreexpresados y experimentalmente hay una mayor producción de CDA (figura C4.18).

C4.3.6 Genes de la categoría "metabolismo microbiano en diversos ambientes"

Los genes diferencialmente expresados asociados al "metabolismo microbiano en diversos ambientes", se representan en la tabla C4.6. Los genes asociados a esta ruta están conectados a procesos biológicos como: el proceso metabólico y biosintético de la ectoína ectABCD (SCO1864, SCO1865, SCO1866 y SCO1867), respiración anaeróbica 2SCK31.07, narH3 y narl3 (SCO4947, SCO4948 y SCO4950), proceso catabólico de ácido monocarboxilico paaB, PaaC y GabT (SCO7472, SCO7473 y SCO5676) y proceso catabólico del ácido carboxílico SC4A7.29 y SCE33.01c (SCO2401 y SCO2999) (Tabla C4.6). De la misma forma, estos genes están asociados a funciones moleculares como, actividad oxidorreductasa, unión de grupos de hierro y azufre y actividad catalítica (https://version-11-5.string-db.org/).

Los genes agrupados en la categoría "metabolismo microbiano en diversos ambientes" les dan la *capacidad a los organismos de resistir ambientes extremos*. Por ejemplo, los

microorganismos tienen el reto de *contrarrestar los cambios de osmolaridad* de su ambiente. En general para contrarrestar rápidamente estos cambios, acumulan solutos compatibles, que son pequeños osmolitos orgánicos, que son altamente solubles en agua; por ejemplo, la ectoína.

Tabla C4.6. Análisis transcripcional de las cepas Sscr1 vs control.

"Metabolismo microbiano en diversos ambientes"

genes subexpresados genes sobreexpresados.

Gen	Nombre	Información	36 horas		48	horas
Gen	Nombre	information	log2FC	padj	log2FC	padj
SCO0201	SCJ12.13c	Subunidad grande de tiosulfato deshidrogenasa (quinona)	-1.2	4.50E-05	-1.2	1.70E-11
SCO0899	SCM1.32	Posible hidrolasa	1.8	3.60E-08		
SCO1174	SCG11A.05	thcA, aldehído deshidrogenasa			3.1	2.00E-03
SCO1454	SCL6.11c	Posible amino oxidasa			1.6	2.70E-04
SCO1750	2SCI34.03c	Probable acil CoA deshidrogenasa			1.2	2.10E-02
SCO1864	ectA	L-2,4-diaminobutírico ácido acetiltransferasa	1.5	2.90E-12		
SCO1865	ectB	Diaminobutirato2-oxoglutarato aminotransferasa	1.1	1.50E-08		
SCO1866	ectC	L-ectoína sintasa	1.2	5.80E-07		
SCO1867	ectD	Ectoína hidroxilasa	1.1	6.00E-11		
SCO1923	SCC22.05c	Posible subunidad de ferredoxina de dioxigenasa			1.5	2.00E-03
SCO2401	SC4A7.29	Galactonato deshidratasa			-1.4	5.50E-09
SCO2469	SC7A8.08c	3-fenilpropionato/trans-cinamato dioxigenasa	-1.0	2.10E-17		
SCO2925	SCE19A.25c	Probable subunidad oxidorreductasa			2.6	3.90E-15
SCO2999	SCE33.01c	Glutamato deshidrogenasa	-1.2	1.10E-32		
SCO3245	SCE29.14c	posible salicilato hidroxilasa (proteína hipotética)	1.8	1.00E-13	2.6	8.10E-10
SCO3730	SCH22A.08	Piridoxina 4-deshidrogenasa	1.3	7.60E-05		
SCO4164	cysA	Sulfurtransferasa	3.7	4.40E-29	1.6	2.90E-04
SCO4271	SCD95A.04	probable alcohol deshidrogenasa dependiente de NADP	1.2	5.40E-04		
SCO4418	SC6F11.16c	Probable oxidasa	1.2	8.10E-04	1.4	2.40E-02
SCO4683	gdhA	Glutamato deshidrogenasa (nadp+)	1.1	7.00E-10		
SCO4789	SCD63.21	Subunidad grande de tiosulfato deshidrogenasa (quinona)	-1.2	3.00E-15		
SCO4945	2SCK31.05	probable deshidrogenasa	4.6	2.80E-197	3.3	4.00E-04
SCO4947	2SCK31.07	Nitrato reductasa / nitrito oxidorreductasa			1.8	6.40E-12
SCO4948 2	2SCK31.08, narH3	3 Cadena beta de nitrato reductasa	1.3	4.90E-12	1.7	1.10E-07
SCO4950	2SCK31.10, narI3	R Cadena gamma de nitrato reductasa	1.4	2.10E-06	1.4	3.30E-02
SCO5676	gabT	4-aminobutirato aminotransferasa	-1.3	1.10E-04	1.1	1.00E-03
SCO6100	cysH	Fosfoadenosina fosfosulfato reductasa	4.3	6.80E-25	2.0	9.10E-05
SCO6102	SCBAC1A6.26c	Sulfito reductasa (ferredoxina)	3.6	2.30E-29		4.70E-07
SCO6824	SC1A2.33c	Fosfonopiruvato descarboxilasa (fragmento)	1.1	6.30E-05		02 07
SCO6975	SC6F7.28c	3D-(3,5/4)-trihidroxiciclohexano-1,2-diona acilhidrolasa			1.5	4.10E-05
SCO6976	SC8F11.02c	5-desoxi-glucuronato isomerasa				1.10E-02
SCO6978	SC8F11.04c	5-dehidro-2-desoxigluconoquinasa			1.1	3.00E-02
SCO7205	SC2H12.04	posible hidrolasa				2.80E-10
SCO7264	SC5H1.28c	Piridoxina 4-deshidrogenasa				4.20E-04
SCO7472	рааВ	Anillo-1,2-fenilacetil-CoA epoxidasa subunidad PaaB			1.0	2.00E-02
SCO7473	paaC	Anillo-1,2-fenilacetil-CoA subunidad epoxidasa PaaC			1.2	1.00E-03
SCO7474	paaD	Anillo-1,2-fenilacetil-CoA epoxidasa subunidad PaaD			1.3	1.00E-03
SCO7586	SC5F1.40	Probable oxidorreductasa	1.5	1.10E-06		•
		-2.9)	-1 1	5.6	
					0.0	_

En nuestro estudio, el **operón de la ectoína** *ectABCD* (*SCO1864, SCO1865, SCO1866, SCO1867*) se sobreexpresó a las 36 horas en la cepa *Sscr1*. En *S. coelicolor* la expresión de estos genes se presenta como respuesta al estrés osmótico o estrés por calor (Bursy et al., 2008). Adicional a la ectoína *S. coelicolor* también sintetiza 5-hidroxiectoína a

partir de la ectoína, reacción catalizada por la enzima *ectD* (SCO1867) para contrarrestar ambos estreses (Bursy et al., 2008).

Debido a que los solutos compatibles también tienen propiedades estabilizadoras de proteínas (Arakawa & Timasheff, 1985), es probable que este compuesto se esté sintetizando a las 36 horas previó a la síntesis masiva de metabolitos secundarios que se presentó a las 48 horas, con el propósito de favorecer un ambiente favorable para la estabilidad de estas moléculas.

Otra situación extrema para *S. coelicolor* es *la falta de oxígeno*, debido a que es una bacteria aerobia obligada, sin embargo, sintetiza enzimas como *nitrato sintetasas respiratorias* (enzimas Nars) asociadas a la membrana, que le ayudan a mantener el potencial energético en condiciones de hipoxia o anoxia (Sawers et al., 2019). Ellas reducen el nitrato a nitrito, y vinculan este proceso al bombeo de protones, lo que permite utilizar el nitrito, como un aceptador alternativo de electrones (Richardson* et al., 2001). A pesar de eso *S. coelicolor* en esas condiciones anaeróbicas no puede crecer, pero las enzimas Nars le permite un suministro mínimo de energía, como en un estado de latencia.

En la cepa *Sscr1* se sobreexpresó la enzima **2SCK31.07** (SCO4947) un nitrato sintetasa respiratoria (Nar) solo a las 48 horas y las otras dos enzimas Nars: NarH3 (SCO4948) y NarI3 (SCO4950) a las 36 y 48 horas (tabla C4.5). Estas tres enzimas son de tipo Nar3 y su actividad está asociada al micelio de *S. coelicolor*. En este caso los cultivos usados para el análisis transcripcional, no se encontraban en estrés por la ausencia de oxígeno, ni produciendo esporas pues eran medios líquidos; sin embargo, estas enzimas se estaban sobreexpresando. Se sabe que estas enzimas además de generar energía en condiciones de hipoxia o anoxia, también *ayudan a la eliminación del exceso de reductores creados en el metabolismo aeróbico* (Fischer et al., 2010).

Los genes cysA (SCO4164), cysH (SCO6100) y SCBAC1A6.26c (SCO6102) que en la tabla C4.6 están muy sobreexpresados serán discutidos más adelante en el ítem del "metabolismo de las purinas".

C4.3.7 Genes asociados a la categoría "metabolismo del carbono"

Los genes diferencialmente expresados asociados al "metabolismo del carbono" en la cepa *Sscr1*, se muestran en la tabla C4.7. El metabolismo del carbono se caracteriza por ser un proceso catabólico que genera energía y una gran cantidad de precursores a partir de la degradación de diferentes sustratos de carbono. Además, juega un papel principal en la síntesis de metabolitos secundarios, pues a partir de esta ruta metabólica se generan los precursores de estos.

En el análisis transcripcional en la cepa Sscr1 se expresaron diferencialmente genes asociados a las rutas de "metabolismo del piruvato" SCJ12.20 (SCO0208) y 2SC7G11.23 (SCO5261), "metabolismo del propanoato" mutA (SCO6832), SCE29.16c (SCO3247) y msdA (SCO2726), "síntesis y degradación de cuerpos cetónicos" SCD35.09 (SCO4502), SC8F4.03 (SCO5399) y SCE25.20 (SCO3079); estos tres últimos codifican enzimas acetil-coA c-acetiltransferasa las cuales comparten con las dos rutas anteriores, y "ciclo de citrato o ciclo de Krebs" sacA (SCO5999), Idh (SCO7000), SCM10.10c (SCO0922) y SCD10.20 (SCO4388) (tabla C4.7) (https://version-11-5.string-db.org/).

Con los genes diferencialmente expresados en la cepa Sscr1 se consiguió representar el ciclo de citrato (figura C4.19). Solo un gen que participa en la ruta no se expresó diferencialmente en la cepa Sscr1, el gen sucC (SCO4808) por eso no se muestra en la tabla C4.6.

De los genes diferencialmente expresados en la cepa Sscr1, casi el 79 % se expresaron a las 48 horas, mientras que a las 36 horas solo se expresaron el 40 % de estos genes, aunque generalmente el metabolismo del carbono se relaciona con el metabolismo primario y podría pensarse que a las 36 horas en donde la cepa Sscr1 se encuentra en mitad de la fase exponencial debería estar más activo, en este análisis a las 48 horas se están expresando más genes diferencialmente, cuando la cepa ya está entrando en fase estacionaria.

De la misma forma, dada la naturaleza catabólica y anabólica de esta ruta, es muy probable que esté contribuyendo con los precursores y la energía necesaria para la síntesis de metabolitos secundarios. Por ejemplo, los genes del ciclo del citrato se están expresando todos a las 48 horas. Los datos están mostrando que tanto el metabolismo

primario, como el metabolismo secundario. están acoplados durante todo el desarrollo de *S. coelicolor*, dependiendo de sus necesidades.

Tabla C4.7. Análisis transcripcional de las cepas Sscr1 vs control.

"Metabolismo del carbono"

genes subexpresados genes sobreexpresados.

Con	Nombre		36	horas	48 horas	
Gen	Nombre	Producto	log2FC padj		log2FC	padj
SCO0208	SCJ12.20	Piruvato, ortofosfato diquinasa	-1.1	2.00E-03		
SCO0379	katA	Pertenece a la familia de las catalasas	1.5	7.80E-29	1.4	8.10E-04
SCO0524	SCF11.04	Posible gluconolactonasa			1.2	2.40E-02
SCO0798	SCF43.09	6-fosfogluconolactonasa			1.3	6.00E-03
SCO0922	SCM10.10c	Succinato deshidrogenasa/fumarato reductasa			-1.7	3.50E-17
SCO0982	aceA	Isocitrato liasa	1.2	1.10E-04		
SCO0992	2SCG2.05	Posible cisteína sintasa		_	1.9	2.40E-05
SCO1028	SCG20A.08c	Cisteína sintasa		_	2.0	3.80E-13
SCO1077	SCG22.23c	Probable azúcar quinasa	2.1	1.00E-14	1.6	1.50E-02
SCO1224	2SCG58.24c	Posible azúcar-fosfato isomerasa		_	1.7	1.30E-06
SCO1679	SCI52.21	Gluconokinasa	2.0	3.10E-19	2.0	3.00E-03
SCO1705	SCI30A.26c	Alcohol deshidrogenasa probable (unión de zinc)			1.1	1.80E-02
SCO1936	tal2	Transaldolasa			1.5	2.10E-04
SCO1937	zwf	Glucosa-6-fosfato 1-deshidrogenasa			1.1	4.90E-02
SCO1946	pgk	Pertenece a la familia de las fosfogliceratos quinasas			1.2	1.00E-03
SCO2298 kdgA KHG/KDPG aldolasa 1.2 6.80E-07						
SCO2371 aceE Piruvato deshidrogenasa componente E1 -1.6 3.00E-51						
SCO2726	msdA	Ácido metilmalónico semialdehído deshidrogenasa			1.7	1.90E-05
SCO2777	accC	Subunidad alfa de acetil/propionil CoA carboxilasa	1.7	1.30E-44	2.0	2.90E-06
SCO3079	SCE25.20	Acetil-coa c-acetiltransferasa	1.7	1.80E-29		
SCO3247	SCE29.16c	Posible acil CoA oxidasa	2.0	2.70E-23	2.3	7.90E-10
SCO3831	bkdA2	Deshidrogenasa de alfa cetoácido de cadena ramificada E1-alfa	1.4	1.00E-03		
SCO4055	2SCD60.21c	Probable alcohol deshidrogenasa			2.2	2.40E-10
SCO4388	SCD10.20	Citrato sintasa 2			2.1	9.50E-15
SCO4502	SCD35.09	Acetil-coa c-acetiltransferasa	1.8	3.90E-10		
SCO4827	mdh	Malato deshidrogenasa			1.1	1.90E-02
SCO5042	fumC	Fumarato hidratasa, clase II	1.8	3.50E-35	2.3	2.50E-15
SCO5261	2SC7G11.23	Probable malato oxidorreductasa	1.4	4.20E-27	1.6	5.40E-08
SCO5399	SC8F4.03	Acetil-coa c-acetiltransferasa			1.5	3.50E-06
SCO5999	saca	Acónito hidratasa			1.2	1.10E-02
SCO6269	SCAH10.34c	Putativa subunidad beta de la oxidorreductasa			3.0	4.10E-12
SCO6270	SCAH10.35c	Posible subunidad alfa de oxidorreductasa			2.7	1.10E-17
SCO6832	mutA	Metilmalonil-coa mutasa, dominio n-termina			1.7	1.30E-05
SCO7000	Idh	Isocitrato deshidrogenasa			1.1	3.20E-02

-2.9 -1 1 5.6

Ciclo de citrato SCM10.10c (SCO0922) Succinato FumC (SCO5042) (S)-malato succinato fumarato eshidrogenasa/fumarat fumarato Fosforilación o reductasa hidratasa oxidativa Mdh (SCO4827) SucC (SCO4808) malato deshidrogenasa subunidad beta de la succinil-CoA sintetasa Biosíntesis de arginina Metabolismo de tirosina oxaloacetato succinil-CoA Degradación SCAH10.34c (SCO6269) HO de valina, Putativa subunidad beta leucina e de la oxidorreductasa isoleucina SCD10.20 (SCO4388) ► Acetil CoA Piruvato Citrato sintasa 2 SCAH10.35c (SCO6270) Posible subunidad alfa de SCAH10.34c (SCO6269) oxidorreductasa SCAH10.35c (SCO6270) Oxidación de piruvato SacA (SCO5999) acónito hidratasa 2-oxoglutarato Metabolismo de arginina Metabolismo de ascorbato v aldarato Metabolismo SacA (SCO5999) de alanina, acónito hidratasa Idh (SCO7000) aspartato v oxalosuccinato glutamato Idh (SCO7000) isocitrato deshidrogenasa Metabolismo

Figura C4.19. Ciclo del citrato. En azul las proteínas sobrexpresadas, en rojo las proteínas subexpresadas y en naranja las proteínas que no se expresaron diferencialmente en la cepa *Sscr1* "**metabolismo del carbono".** (tabla C4.7). Tomado de la base de datos KEGG. (Kanehisa et al., 2022).

C4.3.8 Genes asociados a la categoría "metabolismo de purinas"

En la tabla C4.8 se muestran los genes relacionados con el metabolismo de purinas que se expresaron diferencialmente en la cepa Sscr1. Las purinas son compuestos orgánicos heterocíclicos aromáticos, conocidas como bases nitrogenadas. El suelo es una fuente rica en purinas que provienen de organismos muertos u organismos vivos que la secretan, por ende, es una fuente importante de carbono y nitrógeno para Streptomyces.

Tabla C4.8. Análisis transcripcional de las cepas Sscr1 vs control.

"Metabolismo de purinas"

genes subexpresados 📕 genes sobreexpresados.

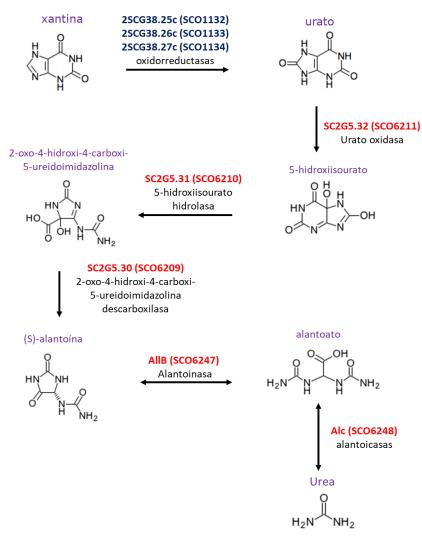
Scient Notified Froduction log2FC padj log2FC padj SCO0757 SCF81.16 Exopolifosfatasa / guanosina-5'-trifosfato,3'-difosfato pirofosfatasa 1.1 2.00E-03 SCO1132 2SCG38.25c Probable oxidorreductasa 1.2 5.00E-09 1.2 2.00E-03 SCO1132 2SCG38.26c Probable oxidorreductasa 1.2 6.60E-06 1.6 6.50E-05 SCO1134 2SCG38.27c Probable oxidorreductasa -1.4 5.50E-16 5.50E-16 SCO4859 SCE58.27c 2-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxilasa -1.4 5.50E-16 SCO4902 SCE19A.02c Desoxirribonucleótido trifosfato pirofosfatasa -1.4 5.50E-16 SCO4910 SCE41.09c Nucleósido trifosfato pirofosfohidrolasa -1.2 2.00E-03 SCO4941 purH Fosforribosil aminoimidazol carboxamida 1.2 2.00E-03 SCO4971 2SCK31.31 Posible deshidrogenasa 1.2 2.00E-03 SCO4971 2SCK31.32 Posible deshidrogenasa 1.7 3.50E-08	Gen	Nombre	Producto		36 horas		noras
SCO1132 2SCG38.25c Posible oxidorreductasa 1.2 5.10E-09 1.2 2.00E-03 SCO1133 2SCG38.26c Probable oxidorreductasa 1.2 6.60E-06 1.6 6.50E-05 SCO1134 2SCG38.27c Probable oxidorreductasa 1.3 3.70E-08 1.4 1.00E-03 SCO4859 SCSG8.27c 2-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxillasa -1.4 5.50E-16 SCO2902 SCE19A.02c Desoxirribonucleótido trifosfato pirofosfatasa 1.2 2.00E-03 SCO3100 SCE41.09c Nucleósido trifosfato pirofosfohidrolasa 1.2 2.00E-03 SCO4844 add Supuesto nucleósido desaminasa 1.2 2.00E-03 SCO4910 add1 Pertenece a la superfamilia de hidrolasas metalodependientes 1.1 2.00E-03 SCO4971 2SCK31.31 Posible deshidrogenasa 1.7 3.50E-08 SCO5525 ureAB Subunidad gamma/beta bifuncional de la ureasa 1.1 4.60E-05 1.2 8.00E-03 SCO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes 1.1 4.60E-05 1.2 8.00E-03	Gen	Nombre	Producto	log2FC	padj	log2FC	padj
SCO1133 2SCG38.26c Probable oxidorreductasa 1.2 6.60E-05 1.6 6.50E-05 SCO1134 2SCG38.27c Probable oxidorreductasa 1.3 3.70E-08 1.4 1.00E-03 SCO4859 SC568.27c 2-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxilasa -1.4 5.50E-16 SCO2902 SCE19A.02c Desoxirribonucleótido trifosfato pirofosfohidrolasa -1.4 5.50E-16 SCO3100 SCE41.09c Nucleósido trifosfato pirofosfohidrolasa 1.2 2.00E-03 SCO4844 add Supuesto nucleósido desaminasa 1.2 9.00E-03 SCO4901 add1 Pertenece a la superfamilia de hidrolasas metalodependientes 1.1 2.00E-03 SCO4971 2SCK31.31 Posible deshidrogenasa 1.7 3.50E-08 SCO5525 ureAB Subunidad gamma/beta bifuncional de la ureasa 1.7 4.60E-05 1.2 8.00E-03 SCO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes 1.1 4.60E-05 1.2 8.00E-03 SCO65075 cpdA 3',5'-AMP cíclico fosfodi	SCO0757	SCF81.16	Exopolifosfatasa / guanosina-5'-trifosfato,3'-difosfato pirofosfatasa	1.1	2.00E-03		
SCO1134 2SCG38.27c Probable oxidorreductasa 1.3 3.70E-08 1.4 1.00E-03 SCO4859 SC5G8.27c 2-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxilasa -1.4 5.50E-16 SCO2902 SCE19A.02c Desoxirribonucleótido trifosfato pirofosfatasa 1.8 1.20E-08 SCO3100 SCE41.09c Nucleósido trifosfato pirofosfohidrolasa 1.2 2.00E-03 SCO4644 add Supuesto nucleósido desaminasa 1.2 9.00E-03 SCO4814 purH Fosforribosil aminoimidazol carboxamida 1.1 2.20E-02 SCO4901 add1 Pertenece a la superfamilia de hidrolasas metalodependientes 1.2 5.00E-03 SCO4971 2SCK31.32 Posible deshidrogenasa 2.7 2.80E-25 SCO5525 ureAB Subunidad gamma/beta bifuncional de la ureasa 1.7 3.50E-08 SCO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes 1.1 4.60E-05 1.2 8.00E-03 SCO5805 nrdJ Ribonucleósido-difosfato reductasa cadena alfa 1.4 9.00E-04	SCO1132	2SCG38.25c	Posible oxidorreductasa	1.2	5.10E-09	1.2	2.00E-03
SCO4859 SC5G8.27c 2-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxilasa -1.4 5.50E-16 SCO2902 SCE19A.02c Desoxirribonucleótido trifosfato pirofosfatasa 1.8 1.20E-08 SCO3100 SCE41.09c Nucleósido trifosfato pirofosfohidrolasa 1.2 2.00E-03 SCO4644 add Supuesto nucleósido desaminasa 1.2 9.00E-03 SCO4814 purH Fosforribosil aminoimidazol carboxamida 1.1 2.20E-02 SCO4901 add1 Pertenece a la superfamilia de hidrolasas metalodependientes 2.7 2.80E-25 SCO4972 2SCK31.31 Posible deshidrogenasa 1.7 3.50E-08 SCO5525 ureAB Subunidad gamma/beta bifuncional de la ureasa 1.7 8.00E-03 SCO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes 1.1 4.60E-05 1.2 8.00E-03 SCO5805 nrdJ Ribonucleósido-difosfato reductasa cadena alfa 1.4 9.00E-04 SCO6097 cysN Sulfato adenililtransferasa subunidad 1 3.9 9.80E-60 1.1 3.20E-02	SCO1133	2SCG38.26c	Probable oxidorreductasa	1.2	6.60E-06	1.6	6.50E-05
SCO2902 SCE19A.02c Desoxirribonucleótido trifosfato pirofosfatasa 1.8 1.20E-08 SCO3100 SCE41.09c Nucleósido trifosfato pirofosfohidrolasa 1.2 2.00E-03 SCO4644 add Supuesto nucleósido desaminasa 1.2 9.00E-03 SCO4814 purH Fosforribosil aminoimidazol carboxamida 1.1 2.20E-02 SCO4901 add1 Pertenece a la superfamilia de hidrolasas metalodependientes 1.2 5.00E-03 SCO4971 2SCK31.31 Posible deshidrogenasa 2.7 2.80E-25 SCO4972 2SCK31.32 Posible deshidrogenasa 1.7 3.50E-08 SCO5525 ureAB Subunidad gamma/beta bifuncional de la ureasa 1.7 8.00E-03 SCO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes 1.1 4.60E-05 1.2 8.00E-03 SCO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes 1.1 4.60E-05 1.2 8.00E-03 SCO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes 1.1 4.60E-05 1.2 8.00E-03 SCO6097 cysN Sulf	SCO1134	2SCG38.27c	Probable oxidorreductasa	1.3	3.70E-08	1.4	1.00E-03
SCO3100 SCE41.09c Nucleósido trifosfato pirofosfohidrolasa 1.2 2.00E-03 SCO4644 add Supuesto nucleósido desaminasa 1.2 9.00E-03 SCO4814 purH Fosforribosil aminoimidazol carboxamida 1.1 2.20E-02 SCO4901 add1 Pertenece a la superfamilia de hidrolasas metalodependientes 1.2 5.00E-03 SCO4971 2SCK31.31 Posible deshidrogenasa 2.7 2.80E-25 SCO4972 2SCK31.32 Posible deshidrogenasa 1.7 3.50E-08 SCO5525 ureAB Subunidad gamma/beta bifuncional de la ureasa 1.7 8.00E-03 SCO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes 1.1 4.60E-05 1.2 8.00E-03 SCO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes 1.1 4.60E-05 1.2 8.00E-03 SCO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes 1.1 4.60E-05 1.2 8.00E-03 SCO6075 cpdA 3',5'-AMP cíclico fosfodiesterasa; Hidroliza cAMP a 5'-AMP	SCO4859	SC5G8.27c	2-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxilasa	-1.4	5.50E-16		
\$CO4644 add Supuesto nucleósido desaminasa	SCO2902	SCE19A.02c	Desoxirribonucleótido trifosfato pirofosfatasa			1.8	1.20E-08
\$CO4814 purH Fosforribosil aminoimidazol carboxamida	SCO3100	SCE41.09c	Nucleósido trifosfato pirofosfohidrolasa			1.2	2.00E-03
SCO4901 add1 Pertenece a la superfamilia de hidrolasas metalodependientes SCO4971 2SCK31.31 Posible deshidrogenasa SCO4972 2SCK31.32 Posible deshidrogenasa SCO5525 ureAB Subunidad gamma/beta bifuncional de la ureasa SCO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes SCO5526 nrdJ Ribonucleósido-difosfato reductasa cadena alfa SCO6075 cpdA 3',5'-AMP cíclico fosfodiesterasa; Hidroliza cAMP a 5'-AMP SCO6097 cysN Sulfato adenililtransferasa subunidad 1 SCO6098 cysD Sulfato adenililtransferasa subunidad 2 SCO6099 cysC Adenililsulfato quinasa SCO6209 SC2G5.30 2-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxilasa SCO6211 SC2G5.32 Urato oxidasa SCO6247 allB Alantoinasa 1.7 3.50E-08 1.7 8.00E-05 1.2 8.00E-05 1.2 8.00E-03 1.4 9.00E-04 1.4 2.10E-04 1.4 2.10E-04 1.4 2.10E-04 1.5 3.9 9.80E-60 1.1 3.20E-02 1.2 8.00E-03 1.2 9.00E-04 1.4 9.00E-04 1.4 2.10E-04 1.4 2.10E-04 1.5 0.00E-03 1.6 5.60E-06 1.7 1.00E-13 1.7 1.00E-13 1.7 1.00E-13 1.7 1.00E-13 1.8 0.0E-03	SCO4644	add	Supuesto nucleósido desaminasa			1.2	9.00E-03
SCO4971 2SCK31.31 Posible deshidrogenasa 2.7 2.80E-25 SCO4972 2SCK31.32 Posible deshidrogenasa 1.7 3.50E-08 SCO5525 ureAB Subunidad gamma/beta bifuncional de la ureasa 1.7 8.00E-03 SCO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes 1.1 4.60E-05 1.2 8.00E-03 SCO5805 nrdJ Ribonucleósido-difosfato reductasa cadena alfa 1.4 9.00E-04 SCO6075 cpdA 3',5'-AMP cíclico fosfodiesterasa; Hidroliza cAMP a 5'-AMP 1.4 2.10E-04 SCO6097 cysN Sulfato adenililtransferasa subunidad 1 3.9 9.80E-60 1.1 3.20E-02 SCO6098 cysD Sulfato adenililtransferasa subunidad 2 4.3 1.70E-24 1.8 3.30E-04 SCO6099 cysC Adenililisulfato quinasa 4.0 1.30E-34 2.0 6.00E-03 SCO6209 SC2G5.30 2-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxilasa -1.3 2.10E-06 SCO6210 SC2G5.32 Urato oxidasa -1.7 1.00E-13 SCO6247 allB Alantoinasa	SCO4814	purH	Fosforribosil aminoimidazol carboxamida			1.1	2.20E-02
\$CO4972 2SCK31.32 Posible deshidrogenasa 1.7 3.50E-08 \$CO5525 ureAB Subunidad gamma/beta bifuncional de la ureasa \$CO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes 1.1 4.60E-05 1.2 8.00E-03 \$CO5805 nrdJ Ribonucleósido-difosfato reductasa cadena alfa \$CO6075 cpdA 3',5'-AMP cíclico fosfodiesterasa; Hidroliza cAMP a 5'-AMP 1.4 2.10E-04 \$CO6097 cysN Sulfato adenililtransferasa subunidad 1 3.9 9.80E-60 1.1 3.20E-02 \$CO6098 cysD Sulfato adenililtransferasa subunidad 2 4.3 1.70E-24 1.8 3.30E-04 \$CO6099 cysC Adeniliisulfato quinasa 4.0 1.30E-34 2.0 6.00E-03 \$CO6209 \$C2G5.30 2-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxilasa 5CO6210 \$C2G5.32 Urato oxidasa 5CO6247 allB Alantoinasa -1.7 1.00E-13 5.60E-06 \$CO6247 allB Alantoinasa -1.7 2.80E-36	SCO4901	add1	Pertenece a la superfamilia de hidrolasas metalodependientes	1.2	5.00E-03		
\$CO5525 ureAB Subunidad gamma/beta bifuncional de la ureasa \$CO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes \$CO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes \$CO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes \$CO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes \$CO5526 ureC2 Pertenece a la superfamilia de hidrolasas metalodependientes \$CO5526 ureC2 u	SCO4971	2SCK31.31	Posible deshidrogenasa	2.7	2.80E-25		
SCO5526ureC2Pertenece a la superfamilia de hidrolasas metalodependientes1.14.60E-051.28.00E-03SCO5805nrdJRibonucleósido-difosfato reductasa cadena alfa1.49.00E-04SCO6075cpdA3',5'-AMP cíclico fosfodiesterasa; Hidroliza cAMP a 5'-AMP1.42.10E-04SCO6097cysNSulfato adenililtransferasa subunidad 13.99.80E-601.13.20E-02SCO6098cysDSulfato adenililtransferasa subunidad 24.31.70E-241.83.30E-04SCO6099cysCAdenililsulfato quinasa4.01.30E-342.06.00E-03SCO6209SC2G5.302-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxilasa-1.32.10E-06SCO6210SC2G5.31Pertenece a la familia de las transtiretinas-1.65.60E-06SCO6211SC2G5.32Urato oxidasa-1.71.00E-13SCO6247allBAlantoinasa-1.72.80E-36	SCO4972	2SCK31.32	Posible deshidrogenasa				3.50E-08
SCO5805nrdJRibonucleósido-difosfato reductasa cadena alfa1.49.00E-04SCO6075cpdA3',5'-AMP cíclico fosfodiesterasa; Hidroliza cAMP a 5'-AMP1.42.10E-04SCO6097cysNSulfato adenililtransferasa subunidad 13.99.80E-601.13.20E-02SCO6098cysDSulfato adenililtransferasa subunidad 24.31.70E-241.83.30E-04SCO6099cysCAdenililsulfato quinasa4.01.30E-342.06.00E-03SCO6209SC2G5.302-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxilasa-1.32.10E-06SCO6210SC2G5.31Pertenece a la familia de las transtiretinas-1.65.60E-06SCO6211SC2G5.32Urato oxidasa-1.71.00E-13SCO6247allBAlantoinasa-1.72.80E-36	SCO5525	ureAB	Subunidad gamma/beta bifuncional de la ureasa			1.7	8.00E-03
SCO6075 cpdA 3',5'-AMP cíclico fosfodiesterasa; Hidroliza cAMP a 5'-AMP 1.4 2.10E-04 SCO6097 cysN Sulfato adenililtransferasa subunidad 1 3.9 9.80E-60 1.1 3.20E-02 SCO6098 cysD Sulfato adenililtransferasa subunidad 2 4.3 1.70E-24 1.8 3.30E-04 SCO6099 cysC Adenililisulfato quinasa 4.0 1.30E-34 2.0 6.00E-03 SCO6209 SC2G5.30 2-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxilasa -1.3 2.10E-06 SCO6210 SC2G5.31 Pertenece a la familia de las transtiretinas -1.6 5.60E-06 SCO6211 SC2G5.32 Urato oxidasa -1.7 1.00E-13 SCO6247 allB Alantoinasa -1.7 2.80E-36	SCO5526	ureC2	Pertenece a la superfamilia de hidrolasas metalodependientes	1.1	4.60E-05	1.2	8.00E-03
SCO6097 cysN Sulfato adenililtransferasa subunidad 1 3.9 9.80E-60 1.1 3.20E-02 SCO6098 cysD Sulfato adenililtransferasa subunidad 2 4.3 1.70E-24 1.8 3.30E-04 SCO6099 cysC Adenililsulfato quinasa 4.0 1.30E-34 2.0 6.00E-03 SCO6209 SC2G5.30 2-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxilasa -1.3 2.10E-06 SCO6210 SC2G5.31 Pertenece a la familia de las transtiretinas -1.6 5.60E-06 SCO6211 SC2G5.32 Urato oxidasa -1.7 1.00E-13 SCO6247 allB Alantoinasa -1.7 2.80E-36	SCO5805	nrdJ	Ribonucleósido-difosfato reductasa cadena alfa			1.4	9.00E-04
SCO6098 cysD Sulfato adenililtransferasa subunidad 2 4.3 1.70E-24 1.8 3.30E-04 SCO6099 cysC Adenililsulfato quinasa 4.0 1.30E-34 2.0 6.00E-03 SCO6209 SC2G5.30 2-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxilasa -1.3 2.10E-06 SCO6210 SC2G5.31 Pertenece a la familia de las transtiretinas -1.6 5.60E-06 SCO6211 SC2G5.32 Urato oxidasa -1.7 1.00E-13 SCO6247 allB Alantoinasa -1.7 2.80E-36	SCO6075	cpdA	3',5'-AMP cíclico fosfodiesterasa; Hidroliza cAMP a 5'-AMP			1.4	2.10E-04
SCO6099 cysC Adenilisulfato quinasa 4.0 1.30E-34 2.0 6.00E-03 SCO6209 SC2G5.30 2-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxilasa -1.3 2.10E-06 SCO6210 SC2G5.31 Pertenece a la familia de las transtiretinas -1.6 5.60E-06 SCO6211 SC2G5.32 Urato oxidasa -1.7 1.00E-13 SCO6247 allB Alantoinasa -1.7 2.80E-36	SCO6097	cysN	Sulfato adenililtransferasa subunidad 1	3.9	9.80E-60	1.1	3.20E-02
SCO6209 SC2G5.30 2-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxilasa -1.3 2.10E-06 SCO6210 SC2G5.31 Pertenece a la familia de las transtiretinas -1.6 5.60E-06 SCO6211 SC2G5.32 Urato oxidasa -1.7 1.00E-13 SCO6247 allB Alantoinasa -1.7 2.80E-36	SCO6098	cysD	Sulfato adenililtransferasa subunidad 2		1.70E-24	1.8	3.30E-04
SCO6210 SC2G5.31 Pertenece a la familia de las transtiretinas -1.6 5.60E-06 SCO6211 SC2G5.32 Urato oxidasa -1.7 1.00E-13 SCO6247 allB Alantoinasa -1.7 2.80E-36	SCO6099	cysC	Adenililsulfato quinasa	4.0	1.30E-34	2.0	6.00E-03
SCO6211 SC2G5.32 Urato oxidasa -1.7 1.00E-13 SCO6247 allB Alantoinasa -1.7 2.80E-36	SCO6209	SC2G5.30	2-oxo-4-hidroxi-4-carboxi-5-ureidoimidazolina descarboxilasa	-1.3	2.10E-06		
SCO6247 allB Alantoinasa -1.7 2.80E-36	SCO6210	SC2G5.31	Pertenece a la familia de las transtiretinas	-1.6	5.60E-06		
	SCO6211	SC2G5.32	Urato oxidasa	-1.7	1.00E-13		
SCO6248 alc Pertenece a la familia de las alantoicasas -1.8 1.20E-30	SCO6247	allB	Alantoinasa	-1.7	2.80E-36		
	SCO6248	alc	Pertenece a la familia de las alantoicasas	-1.8	1.20E-30		

-2.9 -1 1 5.6

En el análisis transcripcional, a las 36 horas se observó que genes implicados en la degradación de las purinas estaban, mayoritariamente, sobreexpresados en la cepa *Sscr1* (tabla C4.8) sin embargo, esta degradación no se estaba dando de forma completa, porque cinco de las enzimas que intervienen en esta ruta, estaban subexpresadas (figura C4.20).

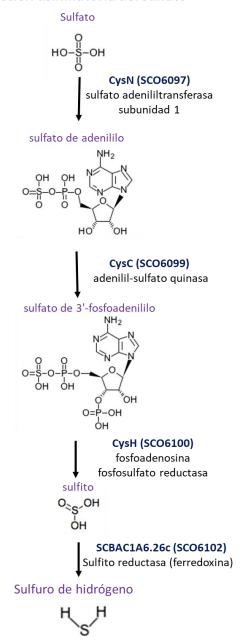
A pesar de ello, los genes de las tres oxidorreductasas (SCO1132, SCO1133 y SCO1134) que catalizan el inicio de la degradación de la purina, transformando la molécula de xantina en urato, se sobreexpresaron a las 36 y 48 horas en la cepa Sscr1 (figura C4.20). Según una investigación, el catabolismo de la alantoína influye en la producción de antibióticos en *S. coelicolor*. Al parecer la acumulación de urea y amonio puede afectar las enzimas de las rutas biosintéticas de la producción de antibióticos (Navone et al., 2014).

Es posible que los datos estén mostrando un tipo de regulación, pues la degradación de la purina se está realizando de forma incompleta, solo hasta el metabolito urato. El urato ha sido determinado como un ligando regulador de proteínas homologas de MarR (reguladores de resistencia a múltiples antibióticos). La familia homologa UrtR de reguladores transcripcionales sensible al urato, como su nombre lo indica, son reguladores transcripcionales que se unen al urato y provocan el antagonismo de unión al DNA. Aunque el homólogo encontrado en *S. coelicolor* no está diferencialmente sobreexpresado en la cepa *Sscr1*, cabe anotar que genes de su mismo *locus* si se encontraron sobrexpresadas, la proteína SCO2645 una permeasa hipotética y SCO2646 una supuesta proteína integral de membrana (genes no incluidos en la tabla C4.8) (H. Huang et al., 2013).


La mayoría de genes homólogos de UrtR se encuentran en bacterias asociadas a huéspedes vivos que responden al estrés oxidativo provocado por el huésped como defensa, o sea que actúa frente concentraciones exógenas de urato, por el contrario, en la especie *Deinococcus radiodurans*, una bacteria extremófila, el homólogo de este gen responde a concentraciones de urato endógeno para generar una respuesta ante el estrés oxidativo (Perera & Grove, 2011).

Por otro lado, en la cepa Sscr1, se sobreexpresaron los genes implicados en la reducción asimilatoria de sulfato, sobresalen tres genes, el cysN (SCO6097) cysD (SCO6098) y el cysC (SCO6099) que muestran valores de FC muy altos de 3.9, 4.4 y 4.0 respectivamente (Tabla C4.8 y figura C4 21). Los dos primeros genes son enzimas sulfato adeniltrasferasas y la tercera es una adenilsulfato quinasa (figura C4.21).

Estas enzimas permiten a *S. coelicolor* iniciar una ruta metabólica a través de la cual va a poder usar el sulfato como fuente de azufre que podrá ser incorporado directamente en los aminoácidos (Fischer et al., 2012).


Es probable, que la razón por la cual estos genes están casi tres veces expresados en la cepa *Sscr1*, es debido a que tienen la responsabilidad de suministrar los elementos necesarios para la síntesis de ciertos aminoácidos indispensables en la producción de metabolitos secundarios.

Degradación de purina

Figura C4.20. Degradación de purina. En azul las proteínas sobreexpresadas y en rojo las proteínas subexpresadas en la cepa *Sscr1* "**metabolismo de purinas**". (tabla C4.8). Tomado de la base de datos KEGG. (Kanehisa et al., 2022).

Reducción asimilatoria del sulfato

Figura C4.21. Reducción asimilatoria del sulfato. En azul las proteínas sobreexpresadas en la cepa *Sscr1* "metabolismo de las purinas" y "metabolismo microbiano en diversos ambientes". (tabla C4.8 y C4.6). Tomado de la base de datos KEGG. (Kanehisa et al., 2022).

C4.3.9 Genes asociados a la categoría "metabolismo de ácidos grasos"

Los genes diferencialmente expresados en la cepa Sscr1 asociados a la categoría "metabolismo de ácidos grasos", se muestran en la tabla C4.9. El metabolismo de los

ácidos grasos pertenece a el metabolismo central o primario, los ácidos grasos son precursores de muchos de los metabolitos secundarios en *S. coelicolor*.

En la tabla C4.9 se puede observar que todos los genes diferencialmente expresados asociados al metabolismo de ácidos grasos se encuentran sobreexpresados a las 36 horas. Los genes asociados a esta categoría son numerosos y se encuentran dispersos en las otras categorías más específicas, por tal razón no se representa una ruta completa a partir de este número de genes, pero por efectos prácticos se va a realizar la discusión a partir de los genes expuestos en la tabla C4.9.

Tabla C4.9. Análisis transcripcional de las cepas Sscr1 vs control. "Metabolismo de ácidos grasos"

genes subexpresados genes sobreexpresados.

Con	Nombre	Dradusta	36 horas		
Gen Nombre		Producto -		padj	
SCO1346	2SCG61.28d	3-oxoacil- [proteína transportadora de acilo] reductasa putativa	1.1	8.10E-06	
SCO2774	acdH2	Probable acil-CoA deshidrogenasa	2.0	1.90E-33	
SCO2777	ассС	Subunidad alfa de acetil/propionil CoA carboxilasa	1.7	1.30E-44	
SCO3079	SCE25.20	Acetil-coa c-acetiltransferasa	1.7	1.80E-29	
SCO3246	fabH2	3-oxoacil-[acil-carrier-protein] sintasa III	2.2	2.10E-11	
SCO3247	SCE29.16c	Posible acil CoA oxidasa	2.0	2.70E-23	
SCO3248	fabF3	3-oxoacil-[acil-carrier-protein] sintasa II	2.0	1.20E-22	
SCO4501	SCO4501	Cetoreductasa/3-oxoacil-[proteína transportadora de acilo] reductasa	1.2	3.90E-05	
SCO4502	SCD35.09	Acetil-coa c-acetiltransferasa	1.8	3.90E-10	
SCO5399	SC8F4.03	Acetil-coa c-acetiltransferasa	1.3	3.30E-19	
SCO6027	SC1C3.15c	Acetil-coa acetiltransferasa	1.2	1.90E-13	
SCO6826	SC4A9.03c	3-oxoacil-[acil-carrier-protein] sintasa III	1.4	2.00E-05	
		<u>-2.9</u> -1 1	5.	.6	

En la categoría de "metabolismo de ácidos grasos" aparecen estos tres genes que forman parte del clúster biosintético de CDA, el *fabH2* (*SCO3246*) una sintasa III, el *SCO3247* una acil-CoA oxidasa, *fabF3* (*SCO3248*) una sintasa tipo II, estos tres genes, junto a el *SCO3245*, una salicilato hidroxilasa ,y el *SCO3249*, una transportadora de acilo, forman el operón que sintetiza el ácido graso inusual de cadena lateral corta C6 trans-2,3-epoxihexanoil que forma parte del CDA (Lewis et al., 2011).

Por otra parte, uno de los pasos importantes en la biosíntesis de ácidos grasos es catalizado por el acetil-CoA carboxilasa, esta reacción implica dos reacciones, una primera realizada por la acetil-CoA carboxilasa y una segunda reacción catalizada por

una carboxiltransferrasa (esta reacción se explica en el ítem biotina página 132) ambas forman un complejo catalítico.

En la cepa Sscr1 se sobreexpresaron además, el gen de una acetil-CoA carboxilasa la AccC (SCO2777) y los de cuatro acetil-CoA carboxitransferrasas, SCO4502, SCO5399, SCO6027 y SCO3079. Por lo general estas enzimas en Streptomyces se encargan de la síntesis de malonil-CoA, para la biosíntesis de ácidos grasos y policétidos (E. Rodríguez et al., 2001).

C4.3.10 Genes asociados a la categoría "biosíntesis de aminoácidos"

En la tabla C4.10 se exponen los genes diferencialmente expresados, asociados a la biosíntesis de aminoácidos en la cepa Sscr1. Los aminoácidos son moléculas orgánicas compuestas por un grupo amino (NH₂) en un extremo y un grupo acido carboxílico en el otro extremo de la molécula. Son las unidades que componen las proteínas, las cuales participan en las diferentes funciones celulares de un organismo importantes para prevalecer.

En el análisis transcripcional se observó que a las 36 horas se expresaron 14 genes diferencialmente, de los cuales solo uno, el *SCO6962* estaba subexpresado, este gen pertenece a la familia de las glutaminas sintetasas, esta enzima convierte el glutamato y el amoniaco en glutamina. Los otros 13 genes restantes, se encontraban sobreexpresados en la cepa *Sscr1* a las 36 horas.

Entre esos 13 genes se encontraba sobreexpresado el **clúster biosintético del triptófano** (figura C4.22) sólo dos genes del clúster no sé encontraron diferencialmente expresados en el análisis transcripcional, el *hisA* (*SCO2050*) una fosforribosil isomerasa A y el *trpA* (*SCO2036*) la subunidad alfa de la triptófano sintasa. El triptófano es uno de los aminoácidos más raros en las proteínas y su síntesis tiene un alto coste (Yanofsky, 2007), además, forma parte de algunas de las moléculas de CDA y, aunque no forma parte de la estructura de la ACT, algunos autores han propuesto que el triptófano promueve tanto la producción de CDA, como la de ACT (Palazzotto et al., 2015).

A las 48 horas, 33 genes se expresaron diferencialmente en la cepa S*scr1* y de esos 33 genes 7 se subexpresaron y el resto de los genes estaban sobreexpresados. El clúster del aminoácido arginina se encuentra subexpresado (Tabla C4.10).


Tabla C4.10. Análisis transcripcional de las cepas S*scr1 vs* control. "Biosíntesis de aminoácidos"

genes subexpresados genes sobreexpresados.

Nombre	Producto		horas 48 ho		
	Troudeto	log2FC	padj	log2FC	padj
<i>C5G9.24c</i> Probab	le descarboxilasa			1.7	7.30E-05
2SCG2.05 posible	cisteína sintasa			1.9	2.40E-05
CG20A.08c Cisteína	sintasa			2.0	3.80E-13
SCG58.24c posible	azúcar-fosfato isomerasa			1.7	1.30E-06
hisG Atp fosf	Forribosiltransferasa			1.2	5.00E-03
argH Arginino	osuccinato liasa			-1.4	2.80E-07
argD Acetilor	nitina/n-succinildiaminopimelato aminotransferasa			-1.1	1.40E-06
argB Acetilgle	utamato quinasa			-1.8	1.10E-09
argJ Ornitina	a acetiltransferasa/n-acetilglutamato sintasa			-1.6	2.20E-10
argC N-acetil	-gamma-glutamil-fosfato reductasa			-1.1	2.70E-05
SCI34.14c Supuest	ta ciclohexadienil deshidrogenasa			1.2	8.00E-03
ectB Diamino	obutirato2-oxoglutarato aminotransferasa	1.1	1.50E-08		
dapA1 4-hidrox	xi-tetrahidrodipicolinato sintasa			1.4	7.00E-03
dapD 2,3,4,5-	tetrahidropiridin-2,6-dicarboxilato N-succiniltransferasa			1.5	1.20E-04
tal2 transalo	dolasa			1.5	2.10E-04
pgk Pertene	ce a la familia de las fosfogliceratos quinasas			1.2	1.00E-03
gltB Probabl	e subunidad grande de glutamato sintasa	1.8	3.00E-29	1.5	1.30E-06
leuA 2-isopro	ppilmalato sintasa			1.4	4.70E-04
•	ı-glutamil quinasa			1.9	4.60E-08
asd Asparta	to-semialdehído deshidrogenasa			2.2	5.70E-15
<i>SCE8.03c</i> 3-desox	i-7-fosfoheptulonato sintasa	1.7	3.00E-10		
trpC2 Indol-3-	glicerol fosfato sintasa	1.9	4.60E-09		
trpD2 Antrani	lato fosforribosiltransferasa	1.5	1.20E-05	1.5	1.00E-02
<i>trpG</i> Antrani	lato sintasa componente II sphaeroides	1.6	2.00E-03	1.9	2.00E-03
<i>SCE8.07c</i> Antrani	lato sintasa componente I amoníaco	1.6	4.70E-09		
SCE8.14c Prefena	to deshidrogenasa	2.5	3.90E-31	3.6	1.40E-17
SCD10.20 Citrato	sintasa 2			2.1	9.50E-15
aspC Aminot	ransferasa			1.0	6.00E-03
CD63.16c Proteína	a hipotética			1.8	8.50E-05
thrB Homose	erina quinasa			-1.4	4.00E-11
•	opilmalato deshidrogenasa			2.2	8.70E-08
	propilmalato/homocitrato sintasa familia transferasa			1.2	4.30E-02
•	xi-tetrahidrodipicolinato reductasa			1.3	1.20E-02
	hidratasa			1.2	1.10E-02
	ninasa sintetizadora de alanina			1.2	3.60E-02
tal1 Transal		1.0	1.80E-04		
	ece a la familia de las transcetolasas	1.7	2.00E-18		
J. J	cerato mutasa independiente de 2,3-bisfosfoglicerato	2.1	3.00E-26		
	shikimato 1-carboxiviniltransferasa	2.3	2.60E-26		
		-1.1	1.20E-31	1.1	2 205 22
					3.20E-02
	-			-1.7	7.20E-07
gap2 Gliceral	dehído-3-fosfato deshidrogenasa	1.6	1.60E-23		
Idh argG	Isocitra Pertene	Sc Pertenece a la familia de la glutamina sintetasa Isocitrato deshidrogenasa Pertenece a la familia de las argininosuccinato sintasas Gliceraldehído-3-fosfato deshidrogenasa	Isocitrato deshidrogenasa Pertenece a la familia de las argininosuccinato sintasas	Isocitrato deshidrogenasa Pertenece a la familia de las argininosuccinato sintasas Gliceraldehído-3-fosfato deshidrogenasa 1.6 1.60E-23	Isocitrato deshidrogenasa 1.1 Pertenece a la familia de las argininosuccinato sintasas -1.7 Gliceraldehído-3-fosfato deshidrogenasa 1.6 1.60E-23

En la figura C4.23 se muestra la biosíntesis de la arginina. Solo dos genes, el *argH* (*SCO1570*) una argininosuccinato liasa y el *argG* (*SCO7036*) una argininosuccinato sintasa, de los 6 genes expresados diferencialmente en el análisis transcripcional, participan en esta ruta. Aunque en la ruta biosintética de la arginina no intervienen los

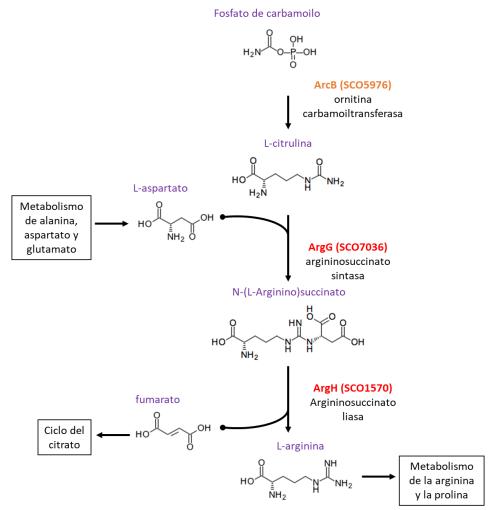

otros genes asociados a la arginina el *argD, argB, argJ* y *argC* (tabla C4.10), seguro participan en algún proceso metabólico, pues la arginina o moléculas relacionadas, son una importante fuente de precursores de metabolitos secundarios para el género *Streptomyces* (Romero et al., 1986).

Figura C4.22. Biosíntesis de triptófano. En azul las proteínas sobreexpresadas y en naranja las proteínas que no se expresaron diferencialmente en la cepa *Sscr1* "biosíntesis de aminoácidos". (tabla C4.10). Tomado de la base de datos KEGG. (Kanehisa et al., 2022).

En la ruta metabólica de la biosíntesis de arginina, se puede observar la versatilidad de este compuesto pues participa activamente con otras rutas. Por ejemplo, el metabolismo de la alanina, aspartato y glutamato, le aporta el precursor L-aspartato. A la ruta del ciclo del citrato le cede el metabolito fumarato y finalmente la L-arginina entra en el metabolismo de la arginina y la prolina (figura C4.23).

Biosíntesis de arginina

Figura C4.23. Biosíntesis de arginina. En rojo las proteínas subexpresadas y en naranja las proteínas que no se expresaron diferencialmente en la cepa *Sscr1* "**biosíntesis de aminoácidos".** (tabla C4.10). En. Tomado de la base de datos KEGG. (Kanehisa et al., 2022).

Es curioso que los genes de la arginina estén todos subexpresados en la cepa Sscr1 dado el carácter de este aminoácido, el cual es bastante común y versátil. Además, en el análisis transcripcional se encontró que el gen argR (SCO1576) que es un represor de arginina (FC -1,49 padj: 9.00E-09 (tabla A20)) también estaba subexpresado en la cepa Sscr1 a las 48 horas, este gen controla la expresión de genes biosintéticos de arginina y se ha identificado como un regulador de diversos procesos en S. coelicolor (Botas et al., 2018). Probablemente para la cepa Sscr1 la no expresión de los genes de este clúster biosintético de la arginina favorece el desarrollo de otros procesos.

C4.3.11 Genes asociados a el "metabolismo de la arginina y la prolina"

Los genes diferencialmente expresados asociados al metabolismo de la arginina y la prolina en la cepa Sscr1, se muestran en la tabla C4.11. Previamente se discutió en el apartado del metabolismo de aminoácidos, la biosíntesis de la arginina (C4.3.10 Genes asociados a la categoría "biosíntesis de aminoácidos" página 170).

Tabla C4.11. Análisis transcripcional de las cepas S*scr1 vs* control.

"Metabolismo de la arginina y la prolina"

genes subexpresados genes sobreexpresados.

SCO1223 2SCG58.23 Ornitinaoxo-ácido transaminasa 2.2 7.90E-1 SCO1706 SCI30A.27c Aldehído deshidrogenasa (nad+) 1.2 5.00E-0 SCO1989 SC7H2.03c Prolina iminopeptidasa 2.6 1.80E-1 SCO2587 proB Gamma-glutamil quinasa 1.9 4.60E-0 SCO2770 SCC105.01c Agmatinasa 1.4 2.70E-0 SCO4279 SCD95A.12c Posible acetiltransferasa 3.7 8.30E-3 SC04634 SCD82.05c Citosina/creatinina desaminasa 1.3 9.00E-0 SC04645 aspC Aminotransferasa 1.0 6.00E-0 SC04913 SCK13.05c Probable aldehído deshidrogenasa 2.2 2.30E-1 SC05679 SC5H4.03 Probable aldehído deshidrogenasa 1.3 3.10E-0 SC06035 SC1C3.23 Posible lisina/ornitina descarboxilasa 1.0 2.30E-0 SC06291 SCBAC8D1.04 ubunidad alfa de la D-hidroxiprolina deshidrogenasa 1.2 1.00E-0 SC06292 SCBAC8D1.05 1-pirrolina-4-hi		Nombre	Producto	48	horas
SCO1706 SCI30A.27c Aldehído deshidrogenasa (nad+) 1.2 5.00E-0 SCO1989 SC7H2.03c Prolina iminopeptidasa 2.6 1.80E-1 SCO2587 proB Gamma-glutamil quinasa 1.9 4.60E-0 SCO2770 SCC105.01c Agmatinasa 1.4 2.70E-0 SCO4279 SCD95A.12c Posible acetiltransferasa 3.7 8.30E-3 SC04634 SCD82.05c Citosina/creatinina desaminasa 1.3 9.00E-0 SC04645 aspC Aminotransferasa 1.0 6.00E-0 SC04913 SCK13.05c Probable aldehído deshidrogenasa 2.2 2.30E-1 SC05679 SC5H4.03 Probable aldehído deshidrogenasa 1.3 3.10E-0 SC06035 SC1C3.23 Posible lisina/ornitina descarboxilasa 1.0 2.30E-0 SC06291 SCBAC8D1.04 ubunidad alfa de la D-hidroxiprolina deshidrogenasa 1.2 1.00E-0 SC06292 SCBAC8D1.05 1-pirrolina-4-hidroxi-2-carboxilato desaminasa 1.8 3.60E-0	Gen	Nombre	Producto	log2FC	padj
SCO1989 SC7H2.03c Prolina iminopeptidasa 2.6 1.80E-1. SCO2587 proB Gamma-glutamil quinasa 1.9 4.60E-0. SCO2770 SCC105.01c Agmatinasa 1.4 2.70E-0. SCO4279 SCD95A.12c Posible acetiltransferasa 3.7 8.30E-3 SCO4634 SCD82.05c Citosina/creatinina desaminasa 1.3 9.00E-0. SCO4645 aspC Aminotransferasa 1.0 6.00E-0. SCO4913 SCK13.05c Probable aldehído deshidrogenasa 2.2 2.30E-1. SCO5679 SC5H4.03 Probable aldehído deshidrogenasa 1.3 3.10E-0. SCO6035 SC1C3.23 Posible lisina/ornitina descarboxilasa 1.0 2.30E-0. SCO6291 SCBAC8D1.04 ubunidad alfa de la D-hidroxiprolina deshidrogenasa 1.2 1.00E-0. SCO6292 SCBAC8D1.05 1-pirrolina-4-hidroxi-2-carboxilato desaminasa 1.8 3.60E-0.	SCO1223	2SCG58.23	Ornitinaoxo-ácido transaminasa	2.2	7.90E-11
SCO2587 proB Gamma-glutamil quinasa 1.9 4.60E-00 SCO2770 SCC105.01c Agmatinasa 1.4 2.70E-0 SCO4279 SCD95A.12c Posible acetiltransferasa 3.7 8.30E-3 SCO4634 SCD82.05c Citosina/creatinina desaminasa 1.3 9.00E-0 SCO4645 aspC Aminotransferasa 1.0 6.00E-0 SCO4913 SCK13.05c Probable aldehído deshidrogenasa 2.2 2.30E-1 SCO5679 SC5H4.03 Probable aldehído deshidrogenasa 1.3 3.10E-0 SCO6035 SC1C3.23 Posible lisina/ornitina descarboxilasa 1.0 2.30E-0 SCO6291 SCBAC8D1.04 ubunidad alfa de la D-hidroxiprolina deshidrogenasa 1.2 1.00E-0 SCO6292 SCBAC8D1.05 1-pirrolina-4-hidroxi-2-carboxilato desaminasa 1.8 3.60E-0	SCO1706	SCI30A.27c	Aldehído deshidrogenasa (nad+)	1.2	5.00E-03
SCO2770 SCC105.01c Agmatinasa 1.4 2.70E-0. SCO4279 SCD95A.12c Posible acetiltransferasa 3.7 8.30E-3 SCO4634 SCD82.05c Citosina/creatinina desaminasa 1.3 9.00E-0. SCO4645 aspC Aminotransferasa 1.0 6.00E-0. SCO4913 SCK13.05c Probable aldehído deshidrogenasa 2.2 2.30E-1. SCO5679 SC5H4.03 Probable aldehído deshidrogenasa 1.3 3.10E-0. SCO6035 SC1C3.23 Posible lisina/ornitina descarboxilasa 1.0 2.30E-0. SCO6291 SCBAC8D1.04 ubunidad alfa de la D-hidroxiprolina deshidrogenasa 1.2 1.00E-0. SCO6292 SCBAC8D1.05 1-pirrolina-4-hidroxi-2-carboxilato desaminasa 1.8 3.60E-0.	SCO1989	SC7H2.03c	Prolina iminopeptidasa	2.6	1.80E-14
SCO4279 SCD95A.12c Posible acetiltransferasa 3.7 8.30E-3 SCO4634 SCD82.05c Citosina/creatinina desaminasa 1.3 9.00E-0 SCO4645 aspC Aminotransferasa 1.0 6.00E-0 SCO4913 SCK13.05c Probable aldehído deshidrogenasa 2.2 2.30E-1 SCO5679 SC5H4.03 Probable aldehído deshidrogenasa 1.3 3.10E-0 SCO6035 SC1C3.23 Posible lisina/ornitina descarboxilasa 1.0 2.30E-0 SCO6291 SCBAC8D1.04 ubunidad alfa de la D-hidroxiprolina deshidrogenasa 1.2 1.00E-0 SCO6292 SCBAC8D1.05 1-pirrolina-4-hidroxi-2-carboxilato desaminasa 1.8 3.60E-0	SCO2587	ргоВ	Gamma-glutamil quinasa	1.9	4.60E-08
SCO4634SCD82.05cCitosina/creatinina desaminasa1.39.00E-0SCO4645aspCAminotransferasa1.06.00E-0SCO4913SCK13.05cProbable aldehído deshidrogenasa2.22.30E-1SCO5679SC5H4.03Probable aldehído deshidrogenasa1.33.10E-0SCO6035SC1C3.23Posible lisina/ornitina descarboxilasa1.02.30E-0SCO6291SCBAC8D1.04ubunidad alfa de la D-hidroxiprolina deshidrogenasa1.21.00E-0SCO6292SCBAC8D1.051-pirrolina-4-hidroxi-2-carboxilato desaminasa1.83.60E-0	SCO2770	SCC105.01c	Agmatinasa	1.4	2.70E-04
SCO4645aspCAminotransferasa1.06.00E-0SCO4913SCK13.05cProbable aldehído deshidrogenasa2.22.30E-1SCO5679SC5H4.03Probable aldehído deshidrogenasa1.33.10E-0SCO6035SC1C3.23Posible lisina/ornitina descarboxilasa1.02.30E-0SCO6291SCBAC8D1.04ubunidad alfa de la D-hidroxiprolina deshidrogenasa1.21.00E-0SCO6292SCBAC8D1.051-pirrolina-4-hidroxi-2-carboxilato desaminasa1.83.60E-0	SCO4279	SCD95A.12c	Posible acetiltransferasa	3.7	8.30E-31
SCO4913SCK13.05cProbable aldehído deshidrogenasa2.22.30E-1SCO5679SC5H4.03Probable aldehído deshidrogenasa1.33.10E-0SCO6035SC1C3.23Posible lisina/ornitina descarboxilasa1.02.30E-0SCO6291SCBAC8D1.04ubunidad alfa de la D-hidroxiprolina deshidrogenasa1.21.00E-0SCO6292SCBAC8D1.051-pirrolina-4-hidroxi-2-carboxilato desaminasa1.83.60E-0	SCO4634	SCD82.05c	Citosina/creatinina desaminasa	1.3	9.00E-03
SCO5679SC5H4.03Probable aldehído deshidrogenasa1.33.10E-0SCO6035SC1C3.23Posible lisina/ornitina descarboxilasa1.02.30E-0SCO6291SCBAC8D1.04ubunidad alfa de la D-hidroxiprolina deshidrogenasa1.21.00E-0SCO6292SCBAC8D1.051-pirrolina-4-hidroxi-2-carboxilato desaminasa1.83.60E-0	SCO4645	aspC	Aminotransferasa	1.0	6.00E-03
SCO6035SC1C3.23Posible lisina/ornitina descarboxilasa1.02.30E-0.SCO6291SCBAC8D1.04ubunidad alfa de la D-hidroxiprolina deshidrogenasa1.21.00E-0.SCO6292SCBAC8D1.051-pirrolina-4-hidroxi-2-carboxilato desaminasa1.83.60E-0.	SCO4913	SCK13.05c	Probable aldehído deshidrogenasa	2.2	2.30E-15
SCO6291 SCBAC8D1.04 ubunidad alfa de la D-hidroxiprolina deshidrogenasa1.21.00E-0.SCO6292 SCBAC8D1.05 1-pirrolina-4-hidroxi-2-carboxilato desaminasa1.83.60E-0.	SCO5679	SC5H4.03	Probable aldehído deshidrogenasa	1.3	3.10E-04
SCO6292 SCBAC8D1.05 1-pirrolina-4-hidroxi-2-carboxilato desaminasa 1.8 3.60E-0	SCO6035	SC1C3.23	Posible lisina/ornitina descarboxilasa	1.0	2.30E-02
·	SCO6291	SCBAC8D1.04	ubunidad alfa de la D-hidroxiprolina deshidrogenasa	1.2	1.00E-02
SCO6293 SCBAC8D1.06 Proteína hipotética 1.7 3.80E-0	SCO6292	SCBAC8D1.05	1-pirrolina-4-hidroxi-2-carboxilato desaminasa	1.8	3.60E-06
	SCO6293	SCBAC8D1.06	Proteína hipotética	1.7	3.80E-06
SCO6654 SC5A7.04c Proteína no caracterizada -1.1 4.10E-0	SCO6654	SC5A7.04c	Proteína no caracterizada	-1.1	4.10E-07

En la tabla C4.11 se observa que a las 48 horas todos los genes asociados a el metabolismo de la arginina y la prolina están sobrexpresados en la cepa Sscr1, con excepción del gen SCO6654, el cual es el único gen que se encuentra subexpresado, este gen pertenece a una proteína no caracterizada.

Dentro del grupo de los genes sobreexpresados, se encuentran dos genes asociados a la síntesis de prolina el *proB* (*SCO2587*) una gamma-glutamil quinasa y el *SCO1223* ornitina-oxo-ácido transaminasa. Los otros dos genes que participan en la biosíntesis de la prolina no se expresaron diferencialmente en el análisis transcripcional (figura C4.24).

Existe muy pocos estudios que relacionen la biosíntesis de prolina con la biosíntesis de metabolitos secundarios, pero se ha propuesto que participa en la biosíntesis de RED (Hood et al., 1992). De igual forma, el hecho de que no estén diferencialmente

expresados todos los genes biosintéticos de la prolina, plantea la duda de si se está sintetizando prolina o solo algún precursor intermedio utilizado para otra función.

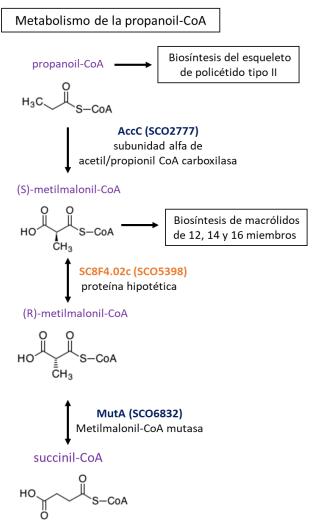
Biosíntesis de prolina L-Glutamato ProB (SCO2587) Gamma-glutamil quinasa L-glutamil 5-fosfato ProA (SCO2585) gamma-glutamil fosfato reductasa L-Glutamato 5-semialdehído L-Glutamato 5-semialdehído (S)-1-pirrolina-5-carboxilato ProC (SCO3337) pirrolina-5-carboxilato reductasa L-prolina

Figura C4.24. Biosíntesis de prolina. En azul las proteínas sobreexpresadas y en naranja las proteínas que no se expresaron diferencialmente en la cepa *Sscr1* "biosíntesis de la arginina y prolina". (tabla C4.11). En. Tomado de la base de datos KEGG. (Kanehisa et al., 2022).

C4.3.12 Genes asociados a la "degradación de valina, leucina e isoleucina"

La tabla C4.12 muestra los genes expresados diferencialmente asociados a la "degradación de valina, leucina e isoleucina" en la cepa Sscr1. La degradación de valina, leucina e isoleucina genera precursores importantes para síntesis de ácidos grasos, que a su vez sirve para biosíntesis de antibióticos policétidos.

Tabla C4.12. Análisis transcripcional de las cepas Sscr1 vs control. "Degradación de valina, leucina e isoleucina"


genes subexpresados genes sobreexpresados.

Con	Gen Nombre Producto			
Gen	Nombre	log2FC	padj	
SCO0907	7 SCM1.40c 3-hidroxiisobutirato deshidrogenasa			1.20E-09
SCO1706	SCI30A.27c	Aldehído deshidrogenasa (nad+)	1.2	5.00E-03
SCO2726	msdA	Ácido metilmalónico semialdehído deshidrogenasa	1.7	1.90E-05
SCO2774	acdH2	probable acil-CoA deshidrogenasa	2.1	3.30E-05
SCO2776	accD1	Acetil/propionil CoA carboxilasa, subunidad beta	2.3	1.80E-11
SCO2777	02777 accC subunidad alfa de acetil/propionil CoA carboxilasa		2.0	2.90E-06
SCO2778	hmgL	nidroximetilglutaril-CoA liasa		4.40E-08
SCO2779	acdH	Acil-coa deshidrogenasa de cadena corta/ramificada	2.4	6.50E-08
SCO4913	SCK13.05c	probable aldehído deshidrogenasa	2.2	2.30E-15
SCO5399	05399 SC8F4.03 Acetil-coa c-acetiltransferasa			
SCO5676	SCO5676 gabT 4-aminobutirato aminotransferasa			
SCO5679	SCO5679 SC5H4.03 Probable aldehído deshidrogenasa			
SCO6027	CO6027 SC1C3.15c Acetil-coa acetiltransferasa			
SCO6703	pcal	1.2	2.20E-02	
SCO6832	mutA	Metilmalonil-coa mutasa, dominio n-terminal	1.7	1.30E-05
		-2.9 -1 1	5.	.6

En el análisis transcripcional se observó que a las 48 horas todos los genes asociados a la "degradación de valina, leucina e isoleucina" en la cepa Sscr1 se encontraban sobreexpresados. De los 18 genes sobrexpresados solo dos pudieron conectarse directamente a la ruta de degradación de valina, leucina e isoleucina, el gen accC SCO2777 una propionil-CoA carboxilasa y la mutA SCO6832 una metilmalonil-CoA mutasa (figura C4.25). Seguramente los otros genes participan en rutas alternas o adjuntas a esta.

En esta ruta metabólica de la "degradación de valina, leucina e isoleucina", vuelven a entrar en juego la propionil-CoA carboxilasa y otras enzimas asociadas al metabolismo de los ácidos grasos (tabla C4.12). Esta relación es clara debido a que la degradación de estos tres aminoácidos la valina, la leucina y la isoleucina generan los precursores de los ácidos grasos, que la cepa Sscr1 está utilizando a las 48 horas en la biosíntesis de metabolitos secundarios.

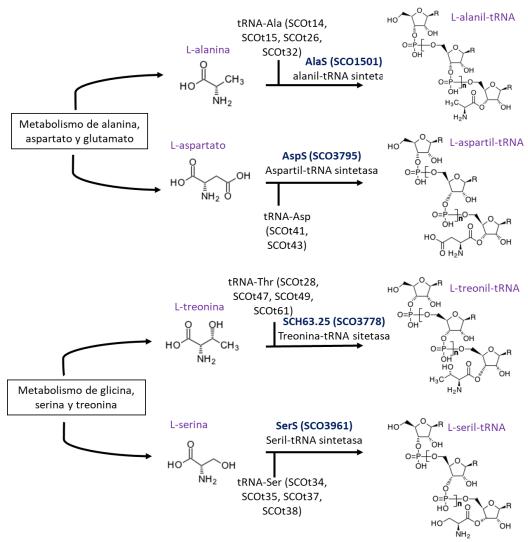
Degradación valina, leucina e isoleucina

Figura C4.25. Metabolismo de la propanoil-CoA. En azul las proteínas sobreexpresadas y en naranja las proteínas que no se expresaron diferencialmente en la cepa *Sscr1* "**degradación de valina, leucina e isoleucina".** (tabla C4.12). Tomado de la base de datos KEGG. (Kanehisa et al., 2022).

C4.3.13 Genes asociados a "biosíntesis de aminoacil-tRNA"

En la tabla C4.13 se exponen los genes que se expresaron diferencialmente asociados a la biosíntesis de aminoacil-tRNA en la cepa Sscr1. Las enzimas aminoacil-tRNA sintetasas son esenciales en la síntesis de proteínas, debido a que son las encargadas de traducir los mRNA en sus aminoácidos correspondientes.

Tabla C4.13. Análisis transcripcional de las cepas S*scr1 vs* control. "Biosíntesis de aminoacil-tRNA"


genes subexpresados genes sobreexpresados.

Gen	n Nombre Producto				
Gen	Nombre	Producto	logFC	padj	
SCO0499	SCF34.18	Posible formiltransferasa	2.2	9.70E-12	
SCO1501	alaS	Alanil-trna sintetasa	1.6	3.00E-07	
SCO1508	hisS	HistidinatRNA ligasa	3.2	5.00E-33	
SCO1594	pheT	Pertenece a la familia de subunidades beta de la fenilalanil-tRNA sintetasa	1.2	2.00E-04	
SCO1595	pheS	Subunidad alfa de la fenilalanil-trna sintetasa	3.1	4.50E-32	
SCO2615	valS	Valil-trna sintetasa	2.0	1.40E-10	
SCO3303	lysK	Lisil-trna sintetasa, clase i	2.2	1.30E-19	
SCO3334	trpS1	Triptofanil-trna sintetasa	1.1	1.90E-02	
SCO3397	SCE9.04	Posible lisil-tRNA sintetasa de membrana integral	1.3	9.00E-03	
SCO3778	SCH63.25	TreoninatRNA ligasa	3.1	4.60E-23	
SCO3792	metG	Metionil-trna sintetasa	1.6	5.70E-06	
SCO3795	aspS	Aspartil-trna sintetasa	1.4	3.30E-04	
SCO3961	serS	Seril-trna sintetasa	2.5	4.10E-18	
SCO5498	gatC	Aspartil-trna(asn)/glutamil-trna(gln) amidotransferasa subunidad c	1.4	3.00E-03	
SCO5499	gatA	Aspartil-trna(asn)/glutamil-trna(gln) amidotransferasa subunidad a	1.7	2.70E-10	
SCO5699	proS	Prolil-trna sintetasa	2.8	7.90E-33	
		-2.9 -1 1	5.6	<u> </u>	

El análisis transcripcional dilucidó que a las 48 horas 16 genes asociados a la biosíntesis de aminoacil-tRNA estaban sobrexpresados en la cepa S*scr1*. Las aminoacil-tRNA sintetasas expresadas pertenecen a aminoácidos como: L-alanina, L-aspartato, L-treonina, L-serina, L-metionina, N-formilmetionina, L-valina, L-lisina, L-prolina. L-histidina, L-fenilalanina, L-triptófano. En las figuras de la C4.26 a la C4.28 se muestran las enzimas que interviene en la biosíntesis de cada uno de los aminoacil-tRNA de los aminoácidos mencionados anteriormente.

Al parecer los aminoacil-tRNA más sintetizados por la cepa Sscr1 fueron el L-histidil-tRNA, el L-fenilalanil-tRNA y L-treonil-tRNA que mostraron expresión diferencial tres veces mayor. Es curioso que estos genes asociados a los aminoacil-tRNA no se observen a las 36 horas, seguramente esto se deba a que las proteínas biosintetizadas del metabolismo primario precedan a las 36 horas de la realización de este análisis transcripcional.

Biosíntesis de aminoacil-tRNA

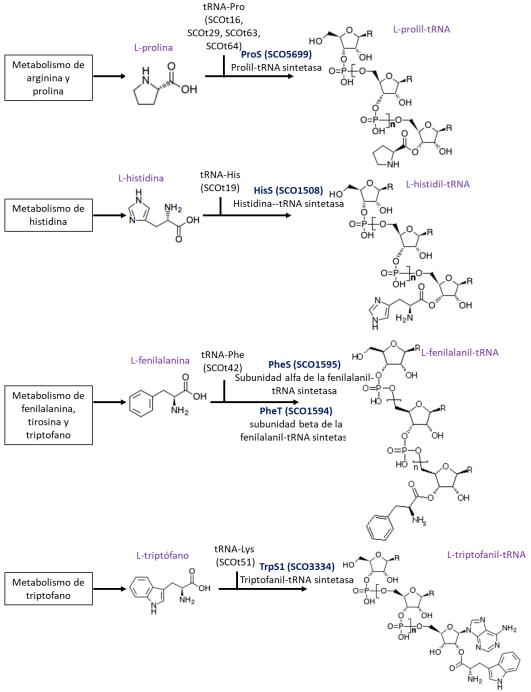


Figura C4.26. Biosíntesis de aminoacil-tRNA. De los aminoácidos Alanina, Aspartato, treonina y serina. En azul las proteínas sobreexpresadas en la cepa *Sscr1* "**biosíntesis de aminoacil-tRNA**". (tabla C4.13). Tomado de la base de datos KEGG. (Kanehisa et al., 2022).

Biosíntesis de aminoacil-tRNA tRNA-Met L-metionil-tRNA (SCOt11, SCOt46, SCOt50, SCOt52, SCOt53) L-metionina MetG (SCO3792) Metabolismo Metionil-tRNA sintetasa de cisteína y $\bar{\bar{N}}H_2$ metionina 10-formiltetrahidrofolato SCF34.18 (SCO0499) formiltransferasa N-formilmetionil-tRNA tetrahidrofolato tRNA-Val (SCOt01, L-valil-tRNA SCOt02, ValS (SCO2615) L-valina SCOt05) Valil-tRNA sintetasao Metabolismo Valina, leucina y isoleucina tRNA-Lys (SCOt20, SCOt21, SCOt22, L-lisil-tRNA SCOt45) LysK (SCO3303) L-lisina Lisil-tRNA sintetasa Metabolismo de lisina NH₂

Figura C4.27. "Biosíntesis de aminoacil-tRNA". De los aminoácidos metionina, valina y lisina. En azul las proteínas sobeexpresadas en la cepa *Sscr1* "biosíntesis de aminoacil-tRNA". (tabla C4.13). Tomado de la base de datos KEGG. (Kanehisa et al., 2022).

Biosíntesis de aminoacil-tRNA

Figura C4.28. "Biosíntesis de aminoacil-tRNA". De los aminoácidos prolina, histidina, fenilalanina y triptófano. En azul las proteínas sobreexpresadas en la cepa *Sscr1* "biosíntesis de aminoacil-tRNA". (tabla C4.13). Tomado de la base de datos KEGG. (Kanehisa et al., 2022).

C4.3.14. Genes asociados a "transportadores ABC"

Los genes diferencialmente expresados asociados a la categoría funcional de los "transportadores ABC", en la cepa Sscr1, se presentan en la tabla C4.14. Los transportadores de casete de unión al ATP (ABC), pertenecen a una de las familias más grandes de transportadores de moléculas específicas a través de membranas lipídicas y se encuentran en bacterias, arqueas y eucariotas.

Tabla C4.14. Análisis transcripcional de las cepas Sscr1 vs control.

"Transportadores ABC"

genes subexpresados genes sobreexpresados.

Gen	Nombre Producto 36 horas				48	48 horas	
Gen	Nombre	Producto	log2FC	padj	log2FC	padj	
SCO0322	SC5G9.31c	Posible subunidad de unión a ATP de transporte ABC			1.3	1.50E-04	
SCO0809	SCF43.20c	Permeasas del sistema de transporte dependiente de proteínas de unión	1.0	4.00E-03			
SCO0914	SCM10.02c	Posible lipoproteína	1.3	1.20E-05			
SCO1557	SCL11.13c	Proteína de unión a sustrato del sistema de transporte de D-metionina	1.6	1.50E-10	1.7	2.70E-04	
SCO1558	SCL11.14c	Probable transportador ABC permeasa	1.5	1.30E-05	2.3	8.30E-07	
SCO1559	metN	Sistema de transporte de D-metionina atp-binding protein	1.4	4.60E-12	1.9	2.50E-07	
SCO2229	malG	Permeasa de maltosa	-1.1	5.70E-05			
SCO2231	malE	Oligómero de arabinogalactano	-1.8	1.20E-32			
SCO2258	SCC75A.04	Proteína permeasa de transporte de información	-1.1	3.70E-14			
SCO2404	SC4A7.32	Probable receptor de unión al azúcar	-1.1	1.80E-07			
SCO2405	SC4A7.33	Probable proteína de unión a ATP transportadora de azúcar			-1.2	7.70E-09	
SCO2406	SC4A7.34	Permeasa del sistema de transporte de azúcares múltiples			-1.0	1.30E-05	
SCO2946	SCE59.05c	Posible proteína transportadora de azúcar que se une al azúcar			2.0	2.50E-06	
SCO2995	SCE99.02	Proteína permeasa de transporte de información			1.3	7.00E-03	
SCO3704	SCH35.20c	Posible proteína de transporte de unión a sustrato	2.0	2.00E-26			
SCO3705	SCH35.19c	Proteína permeasa del sistema de transporte de molibdato	1.4	7.70E-07			
SCO3706	SCH35.18c	Roteína de unión atp del sistema de transporte de molibdato	1.3	4.70E-07			
SCO4141	pstC	Fosfato sistema de transporte ABC proteína permeasa	1.4	7.60E-05			
SCO4831	SC2A6.16	Pro. de memb. integral del sistema de transporte ABC glicina/betaína	1.1	2.60E-06			
SCO4884	2SCK8.10	Probable lipoproteína	-1.2	1.90E-25			
SCO4886	2SCK8.12	Probable proteína de unión a ATP del transportador ABC de azúcar			1.1	9.00E-03	
SCO4887	2SCK8.13	Permeasa del sistema de transporte de nucleósidos general			1.2	3.00E-03	
SCO4888	2SCK8.14	Permeasa del sistema de transporte de nucleósidos general			1.3	1.00E-02	
SCO5775	gluC	Probable glutamato permeasa			-1.2	2.00E-06	
SCO6062	SC9B1.09	Subunidad de unión a ATP del transportador ABC	1.7	9.90E-23			
SCO6063	SC9B1.10	Probable permeasa de transporte ABC	1.8	7.90E-07			
SCO6064	SC9B1.11	Probable permeasa de transporte ABC	1.1	3.00E-03			
SCO6814	SC1A2.23c	posible componente de unión a ATP del transportador ABC	2.8	5.80E-41	2.5	1.00E-13	
SCO6815	SC1A2.24c	Proteína permeasa transportadora ABC de dos dominios	3.0	2.40E-70	2.0	1.80E-04	
SCO6816	SC1A2.25c	Proteína de unión a sustrato del sistema de transporte de fosfato	3.0	9.70E-31	1.9	3.00E-03	
SCO7028	SC1H10.17	Proteína de unión al sustrato del sistema de transporte de xilobiosa			1.2	5.00E-03	
SCO7399	SC10G8.27	lipoproteína de transporte dependiente de proteína de unión	-1.2	2.90E-02			
		-	2.9	-1 1	5	.6	

Estos transportadores utilizan la hidrólisis del ATP para transportar moléculas de forma activa, como; aminoácidos, péptidos, proteínas, azucares, iones metálicos, y metabolitos a través de la membrana. En procariotas, los transportadores pueden importan

nutrientes y exportan moléculas fuera de la célula. Los transportadores que exportan moléculas, están asociados a la resistencia a antibióticos (Beis, 2015).

Además, se caracterizan por tener 3 componentes proteicos que por lo general forman un operón, compuesto por; dos proteínas integrales de membrana, cada una con seis segmentos transmembranales, dos proteínas en la periférica, que se adhieren e hidrolizan ATP, y una proteína de unión a sustrato periplásmico o lipoproteína (Kanehisa et al., 2023).

En la cepa Sscr1 se expresaron diferencialmente tres tipos de transportadores ABC, transportadores de minerales y iones orgánicos, transportadores de oligosacárido, poliol y lípidos y transportadores de fosfato y aminoácidos (Tabla C4.14 y figura C4.29). La expresión de estos genes fue bastante variada de un tipo a otro.

Por ejemplo, en la cepa *Sscr1*, los genes de tres proteínas asociadas al transporte del molibdato (*SCO3704*, *SCO3705* y *SCO3706*), se sobreexpresaron solo a las 36 horas (Tabla C4.14) (figura C4.29A). De igual forma sucedió con el transportador de la betaína (*SCO4831*) (osmoprotector) solo que en este caso el gen de la proteína SCO2933 encargada de unirse al sustrato, no se expresó diferencialmente (Tabla C4.14 y figura C4.29B).

La betaína es un soluto compatible igual que la ectoína de la cual se habló en el apartado de metabolismo microbiano en diversos ambientes (apartado C4.3.6). En *E. coli* se demostró que, frente a un cambio osmótico, la acumulación de betaína, restaura el volumen celular y aumenta la cantidad de agua en el citoplasma (Cayley et al., 1992).

Por otra parte, en el trasportador de múltiples azúcares, los genes de las tres proteínas encargadas del proceso se subexpresaron. El gen de la proteína encargada de unirse al azúcar (*SCO2404*), se subexpresó a las 36 horas, mientras que, el de la proteína permeasa (*SCO2406*) y la proteína de unión al ATP (*SCO2405*) se subexpresaron a las 48 horas (figura C4.29C).

En el caso de la adenosina se observó que los genes de cuatro proteínas asociadas al transporte, el primero el de una lipoproteína (SCO4884) se subexpresó a las 36 horas, mientras que los de las otras 3 proteínas, las dos proteínas permeasas (SCO4887 y

SCO4888) y la proteína de unión al ATP (SCO4886) se sobrexpresaron a las 48 horas (figura C4.29D, tabla C4.14).

En el ortofosfato los genes de las tres proteínas encargadas de su transporte (*SCO6814*, *SCO6415*, *SCO6416*) se sobrexpresaron a las 36 y 48 horas. Todas las proteínas de este operón tienen un FC alto respecto a los valores de las otras proteínas en la tabla C4.14.

Transportadores ABC Transporte de minerales y iones orgánicos SCH35.19c SCH35.20c SCH35.18c Α Molibdato (SCO3705) (SCO3706) (SCO3704) Proteína permeasa Posible proteína proteína de unión del sistema de ATP del sistema de de transporte de unión a sustrato transporte de transporte de molibdato molibdato Betaína В SC9B1.10 (SCO6063) SC9B1.09 (SCO6062) SCE19A.33 (SCO2933) SC9B1.11 (SCO6064) Subunidad de unión componente de Probable permeasa de a ATP del proteína de unión a transporte ABC transportador ABC permeasa Osmoprotector Transporte de oligosacárido, poliol y lípidos SC4A7.34 (SCO2406) C SC4A7.32 (SCO2404) SC4A7.33 (SCO2405) Múltiples proteína permeasa Proteína de unión a receptor de unión al azúcares del sistema de ATP transportadora de azúcar transporte de azúcar azúcares múltiples D adenosina 2SCK8.13 (SCO4887) 2SCK8.14 (SCO4888) 2SCK8.12 (SCO4886) 2SCK8.10 (SCO4884 Proteínas permeasas proteína de unión a del sistema de ATP del transportador transporte de ABC de azúcar nucleósidos general Transportadores de fosfato y aminoácidos SC1A2.24c (SCO6815) ortofosfato Ε SC1A2.25c (SCO6816) SC1A2.23c (SCO6814) Parte del sistema de Proteína de unión a Componente de unión a transporte sustrato del sistema de ATP del transportador dependiente de transporte de fosfato proteínas de unión ABC para fosfato MetN (SCO1559) D-metionina F SCL11.13c (SCO1557) SCL11.14c (SCO1558) Sistema de transporte Proteína de unión a sustrato Probable de la proteína de del sistema de transporte detransportador ABC unión ATP D-D-metionina permeasa metionina

Figura C4.29. Transportadores ABC. En azul las proteínas sobreexpresadas, en rojo las proteínas subexpresadas y en naranja las proteínas que no se expresaron diferencialmente en la cepa *Sscr1* "**transportadores ABC"**. (tabla C4.14). (**A**) Molibdato, (**B**) Betaína, (**C**) Múltiples azucares, (**D**) Adenosina, (**E**) ortofosfato, (**F**) D-metionina. Tomado de la base de datos KEGG. (Kanehisa et al., 2022).

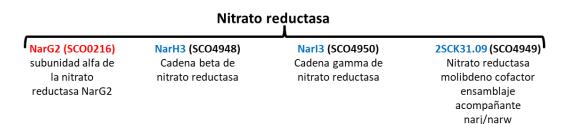
Por último, los genes de las proteínas encargadas de transportar D-metionina también se sobrexpresaron todos a las 36 y 48 horas (*SCO1557, SCO1558, SCO1559*). Los transportadores ABC son proteínas que cumplen un importante papel en el transporte de nutrientes y resistencia a antibióticos y aunque en las figuras donde se muestran los genes relacionados con las diferentes rutas metabólicas (figuras C4.6 a la C4.9), estos transportadores ABC, parecen que no se relacionaran mucho, seguro que su función como transportadores es vital en el desarrollo del metabolismo primario y secundario. Probablemente en *Streptomyces* su papel también vaya más allá en la resistencia a antibióticos por ser esta especie tan excelente productora de estos y en el transporte de precursores para la síntesis de estos.

C4.3.15 Genes asociados a "sistemas de dos componentes (TCS)"

Los genes asociados a los sistemas TCS en la cepa Sscr1 se exponen en la tabla C4.15. Los sistemas de dos componentes son importantes reguladores que responden a estímulos internos y del medio ambiente. Por lo general están compuestos por dos proteínas, un sensor de histidina kinasa (HK) y un regulador de respuesta (RR). El HK responde a cambios del entorno y a través de un flujo de fosforilación al RR, permite modular su función y tener una rápida respuesta frente al estímulo.

Los genes asociados a los sistemas de dos componentes en la cepa Sscr1, solo se expresaron diferencialmente a las 36 horas y solo tres de los 19 genes expresados diferencialmente, se encuentran subexpresados, el narG2 (SCO0216), SCO2255 y SCO6962. Todos los otros genes se sobrexpresaron (Tabla C4.15).

Aunque el gen *narG2* no es un sistema de dos componentes, sino que es una enzima nitrato sintetasa respiratoria, en las bases de datos este gen se encuentra asociado a los sistemas de dos componentes. Su asociación se puede deber a que, el sistema de dos componentes *osdR-osdK* (*SCO0204-SCO0203*) el cual actúa en respuesta a la limitación de oxígeno y nutrientes, controla la síntesis del operón *nar2* en respuesta a la hipoxia en el micelio (Fischer et al., 2019).


Tabla C4.15. Análisis transcripcional de las cepas S*scr1 vs* control. "Sistema de dos componentes"

genes subexpresados 📕 genes sobreexpresados.

Gen	Nombre	Producto	36	horas
Gen	dell' Nombre 110ddeto			padj
SCO0216	narG2	Nitrato reductasa / nitrito oxidorreductasa, subunidad alfa	-1.1	0.00012
SCO2255	SC1G2.17c	Proteína resistente a la vancomicina vanj	-1.1	3.70E-12
SCO2307	SCC30.15	Posible sensor quinasa de dos componentes	2.0	2.20E-20
SCO2308	SCC30.16	probable regulador de respuesta del sistema de dos componentes	1.6	8.90E-13
SCO3079	SCE25.20	Acetil-coA C-acetiltransferasa	1.7	1.8E-29
SCO3592	SC66T3.03	Proteína resistente a la vancomicina vanj	1.1	1.00E-03
SCO3596	vanX	D-alanina:d-alanina dipeptidasa	1.1	2.20E-02
SCO4502	SCD35.09	Acetil-coa c-acetiltransferasa	1.8	3.90E-10
SCO4948	narH3	Cadena beta de nitrato reductasa	1.3	4.90E-12
SCO4949	2SCK31.09	Nitrato reductasa molibdeno cofactor ensamblaje acompañante narj/narw $$	1.8	3.10E-09
SCO4950	narl3	Cadena gamma de nitrato reductasa	1.4	2.10E-06
SCO5261	2SC7G11.23	Probable malato oxidorreductasa	1.4	4.20E-27
SCO5399	SC8F4.03	Acetil-coa c-acetiltransferasa	1.3	3.30E-19
SCO5436	SC6A11.12	Proteína de transporte aeróbica de c4-dicarboxilato	1.1	1.10E-04
SCO5784	SC4H2.05	Histidina quinasa	1.3	4.40E-17
SCO6548	SC5C7.33	Celulosa 1,4-beta-celobiosidasa	1.2	2.00E-06
SCO6962	SC6F7.15c	Pertenece a la familia de la glutamina sintetasa	-1.1	1.20E-31
SCO7049	glsA	Pertenece a la familia de las glutaminasas	1.3	7.10E-09
		-2.9 -1 1	5.	6

Sin embargo, esta asociación es natural pues, los sistemas de dos componentes reaccionan a cambios bruscos en el ambiente que necesitan una respuesta rápida por parte de la bacteria; la falta de oxígeno para una bacteria aerobia obligada debe significar acciones precisas y que mejor estrategia que un sistema de dos componentes.

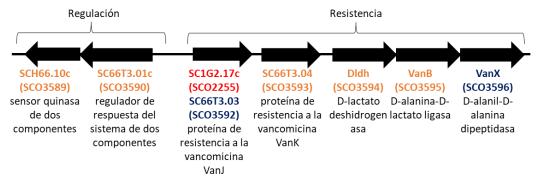

Además del gen *narG2* a los sistemas de dos componentes también se asociaron tres genes más del mismo tipo: *narH3* (*SCO4948*), *narl3* (*SCO4950*) y el *SCO4949*. Estos tres genes junto con el gen *narG2* son subunidades del nitrato reductasa (figura C4.30). Así mismo en el apartado del metabolismo microbiano asociado a diversos ambientes también se ha discutido el papel de estos dos genes *narH3* (*SCO4948*) y narl*3* (*SCO4950*) (Apartado C4.3.6).

Figura C4.30. Nitrato reductasa. En azul las proteínas sobreexpresadas y en rojo las proteínas subexpresadas en cepa *Sscr1* "**sistema de dos componentes".** (tabla C4.15). Tomado de la base de datos KEGG. (Kanehisa et al., 2022).

Por otro lado, dentro de los genes diferencialmente expresados se encuentran tres genes asociados al operón de resistencia a la vancomicina, *SCO2255* que codifica la proteína resistente a la vancomicina VanJ, el cual esta subexpresado, SCO*3592* del mismo tipo de gen, que el anterior, y *vanX* (*SCO3596*) que codifica una D-alanil-D-alanina dipeptidasa (figura C4.31).

Operón de resistencia a vancomicina

Figura C4.31. Operón de resistencia a vancomicina. En azul las proteínas sobreexpresadas, en rojo las proteínas subexpresadas y en naranja las proteínas que no se expresaron diferencialmente en la cepa *Sscr1* "**sistema de dos componentes**". (tabla C4.15). Tomado de la base de datos KEGG. (Kanehisa et al., 2022).

Los únicos genes de la tabla C4.15 con características de sistema de dos componentes fueron *SCO2307* que es un posible sensor quinasa, el *SCO2308* probable regulador de respuesta y *SCO5784* histidina quinasa.

Cuando se observó la posición del TCS *SCO2307- SCO2308* en el genoma de *S. coelicolor*, tenía la particularidad de tener de genes vecinos aguas arriba a el *SCO2305* y el *SCO2306* (tabla A17) que codifican una subunidad putativa de unión a ATP del transportador ABC

y una proteína de membrana integral del transportador ABC respectivamente; aguas abajo por el SCO2309 y el SCO2310 (tabla A17) que codifican una proteína de transporte transmembrana putativa y una proteína de eflujo de membrana integral putativa. Al mirar en el análisis transcripcional todos estos genes vecinos están sobrexpresados a las 36 horas con un padj \leq 0.05 al igual que el sistema TCS SCO2307- SCO2308. Estos genes podrían ser parte de un operón.

Por otra parte, el gen *SCO5784*, aunque su regulador de respuesta (*SCO5785*) no paso el umbral para estar dentro del análisis transcripcional, estuvo cerca con un FC 0.974 padj: 1.10E-04. Este sistema parece estar implicado en la regulación de los procesos relacionados con la transición del metabolismo primario al metabolismo secundario (Rozas et al., 2012).

No queda claro porque el programa String reconoció tan pocos genes, que en realidad fueran sistemas de dos componentes, puede ser porque no están diferencialmente expresados en el análisis transcripcional o no hay mucha información de estos en sus bases de datos.

C4.3.16 Genes asociados a los "sistemas XRE/DUF397"

Dado que el análisis transcripcional analiza el efecto de la sobreexpresión de un gen XRE en *S. coelicolor*, se examinó que estaba pasando con los otros sistemas XRE/DUF397 en la cepa Sscr1.

De los otros 14 sistemas XRE/DUF397 presentes en el genoma, solo los genes de un sistema completo exhibieron expresión diferencial, el del par SCO2513/SCO2514 en donde ambos genes el XRE y el gen DUF estaban subexpresados a las 36 y 48 horas en la cepa Sscr1 (tabla C4.16). Sobresale que el gen XRE (SCO2513) estaba subexpresado casi tres veces a las 36 horas mientras que ninguno de los otros genes presenta una subexpresión tan baja. En el ensayo de sobreexpresión de los sistemas XRE/DUF397 en en S. coelicolor (capítulo 2) el gen XRE (SCO2513) retrasa el desarrollo en S. coelicolor, mientras el gen DUF (SCO2514) no tiene ningún efecto (figura C2.1).

Por otro lado, dos genes XRE también se expresaron diferencialmente en la cepa Sscr1, el gen SCO1979, el cual se sobreexpresó a las 36 horas (tabla C4.16) mientras que el gen SCO4301 se subexpresó a las 36 horas en la cepa Sscr1.

A parte de eso, 4 genes DUF se expresaron diferencialmente en la cepa Sscr1. Los genes SCO6128 y el gen SCO6235 se subexpresaron ambos a las 36 horas. De la misma forma, el gen SCO5124 se subexpresó a las 36 y 48 horas en la cepa Sscr1. Por otra parte, el gen DUF SCO4177 se sobrexpresó a las 48 horas en la cepa Sscr1.

Tabla C4.16. Análisis transcripcional de las cepas Sscr1 vs control.

"Sistemas XRE/DUF397" ■ gen XRE, ■ gen DUF
■ genes subexpresados ■ genes sobreexpresados.

Gen	Nombro	Nombre Producto	36	horas	48 horas		
Gen	Nombre	Producto	log2FC	padj	Log2FC	padj	
SCO1979	SC3C9.14c	probable proteína de unión a DNA	1.1	1.80E-05			
SCO2513	SCC121.16	proteína hipotética	-2.8	2.80E-91	-1.4	3.20E-11	
SCO2514	SCC121.17	proteína hipotética	-1.4	3.40E-29	-1.2	9.00E-09	
SCO4177	SCD66.14	proteína hipotética conservada			1.8	9.00E-09	
SCO4301	SCD95A.34c	posible proteína de unión a DNA	-1.3	3.40E-29		_	
SCO4441	SCD6.19	posible proteína de unión a DNA	1.8	6.60E-58	1.7	1.10E-06	
SCO4442	SCD6.20	proteína hipotética	-1.4	9.00E-23	-1.7	1.40E-09	
SCO5124	SC9E12.09c	proteína hipotética	-1.2	4.70E-22	-1.9	1.40E-09	
SCO6128	SC9B2.15c	Proteína no caracterizada	-1.1	4.70E-22			
SCO6235	SC2H4.17c	Proteína no caracterizada	-1.0	4.70E-22			
			-2.9	-1	1	5.6	

En la tabla C4.16 también se incluyó el sistema *SCO4441/SCO4442*. Evidentemente el gen *SCO4441* está sobrexpresado en la cepa *Sscr1* en ambos tiempos, a las 36 y 48 horas. En tanto que, el gen *SCO4442* esta subexpresado a las 36 y 48 horas.

En general, en el análisis transcripcional de la cepa Sscr1 se observa una tendencia en la que sobresale que algunos de los genes XRE que en el ensayo de su sobreexpresión en S. coelicolor retrasan el desarrollo, están subexpresados en la cepa Sscr1, como es el caso de los genes SCO2513, SCO4301. Además, sobresale que el gen SCO4177, es el único gen de tipo DUF que está sobreexpresado a las 48 horas.

Por otra parte, es interesante observar que de los 14 sistemas XRE/DUF, 9 de las proteínas que los forman, aparte del sistema SCO4441/42, están activas en las condiciones ensayadas; pues, aunque en la cepa Sscr1 estén subexpresadas la mayoría

de ellas, el hecho de mostrar expresión diferencial significa que en la cepa control están ejerciendo algún tipo de regulación.

Trabajos previos del grupo demostraron que la proteína Scr1 necesita la presencia de la proteína Scr2, para poder ejercer una regulación positiva en la producción de antibióticos (Santamaría et al., 2018). Sin embargo, no ha sido posible demostrar la interacción directa de ambas proteínas mediante el empleo de un sistema de dos híbridos realizado en E. coli (resultados del grupo no publicados). Este resultado nos plantea la hipótesis de que la interacción entre ambas proteínas no sea directa o requiera la interacción con otra u otras proteínas que no están presentes en E. coli. Por otro lado, algunos autores afirman que proteínas similares a Scr2 tienen dominios de aminoácidos con capacidad de unión proteína-DNA (Pope et al., 1998). Debido a ello y a que en el análisis transcripcional de la cepa Sscr1 la proteína Scr2 está subexpresada, se puede plantear la hipótesis de que la proteína Scr2 se sintetice previamente a la Scr1 y se una a una región del gen que codifica la Scr1 activando su síntesis. Posteriormente, Scr2, después de la interacción proteína (Scr2)-DNA (scr1) se degradaría dando paso a que la Scr1 cumpla su papel de regulación positiva de la producción de antibióticos. Así en este caso no se produciría una interacción proteína-proteína si no que sería una interacción proteína (Scr2)-DNA (scr1) (figura C4.32).

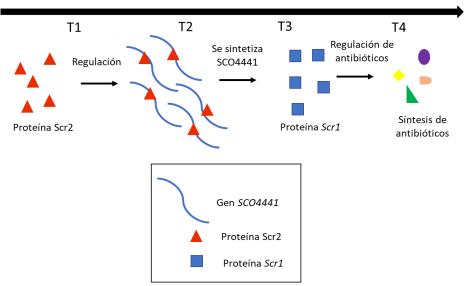
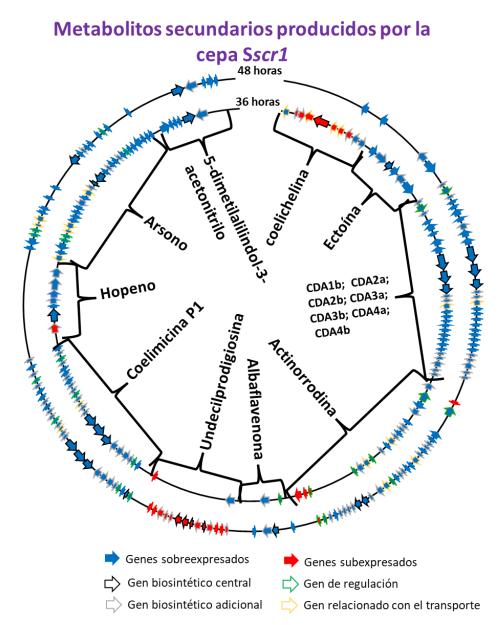


Figura C4.32. Hipótesis de interacción regulatoria de las proteínas Scr1 y Scr2.

C4.4. Búsqueda de metabolitos secundarios con el programa antiSMASH

Para ampliar la búsqueda de genes diferencialmente expresados relacionados con la síntesis de metabolitos secundarios y encontrar aquellos que la base de datos STRING no descubrió, se utilizó el programa antiSMASH (Blin et al., 2021) para posicionar los diferentes clústers que codifican metabolitos secundarios y comparando cada región del genoma de *S. coelicolor*, con los genes diferencialmente expresados en la cepa *Sscr1*.

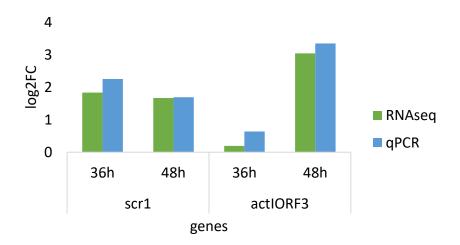

El programa arrojó 26 regiones dentro del genoma de *S. coelicolor* en las cuales se encuentran los genes implicados en la biosíntesis de metabolitos secundarios. En la cepa *Sscr1* se encontraron genes diferencialmente expresados en 19 de esas regiones. Sin embargo, no para todos los metabolitos secundarios encontrados se estaban expresando los genes biosintéticos centrales.

Se realizó una gráfica con los metabolitos secundarios que mostraron tener diferencialmente expresados los genes biosintéticos centrales y se trató de extrapolar su posición en el genoma de *S. coelicolor* (figura C4.33). En esa figura se muestra la expresión diferencial de los genes, el tipo de gen, el tiempo en el que se expresó y su posición aproximada en el genoma.

Solo dos metabolitos secundarios de la figura C4.33 parecen no estarse produciendo en la cepa Sscr1, pues sus genes biosintéticos centrales se encuentran subexpresados; son la coelichelina ((NRP-metalofóro (metalóforo peptídico no ribosómico), NRPS (sintetasa peptídica no ribosómica)) y RED (T1PKS (PKS tipo I (policétido sintasa), similar a NRPS (fragmento similar a NRPS), prodigiosina). Los 8 metabolitos que se encuentran sobrexpresados en la cepa Sscr1 son: la ectoína, el CDA (NRPS), actinorrodina (T2PKS (policétido tipo II)), albaflavenona (terpeno), coelimicina P1 (T1PKS policétido tipo I), hopeno (terpeno), arsonio (T1PKS) y 5-dimetilalilindol-3-acetonitrilo (Indol). Así pues, es evidente que la cepa Sscr1 está produciendo una variedad grande de metabolitos secundarios en mayor cantidad que la cepa silvestre.

La producción de la coelimicina P1 también se constató en los cultivos iniciales utilizados para la obtención del RNA, al ser el primer metabolito de color amarillo que se observó a las 36 horas. La coelimicina P1 es un compuesto inestable sin actividad antibiótica, que se produce después de la síntesis del antibiótico coelimicina A (Gómez-Escribano et al.,

2012). En la cepa Sscr1 solo 5 genes del clúster biosintético de la coelimicina P1 no están sobreexpresados. A las 36 horas se sobreexpresaron 26 genes y a las 48 horas 25 genes de los 33 genes biosintéticos del clúster, incluyendo todos los genes biosintéticos centrales.

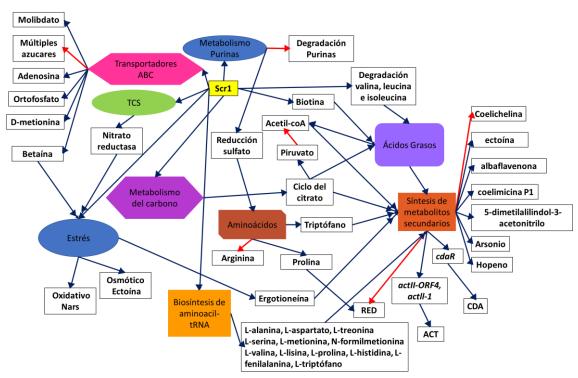

Figura C4.33. Metabolitos secundarios que varían su expresión en la cepa S*scr1* en el análisis transcripcional a las 36 y 48 horas. Posición en el cromosoma.

Las tablas que muestran la expresión diferencial de cada uno de los metabolitos secundarios que varían en la cepa Sscr1, se mencionan en el apartado que se muestra

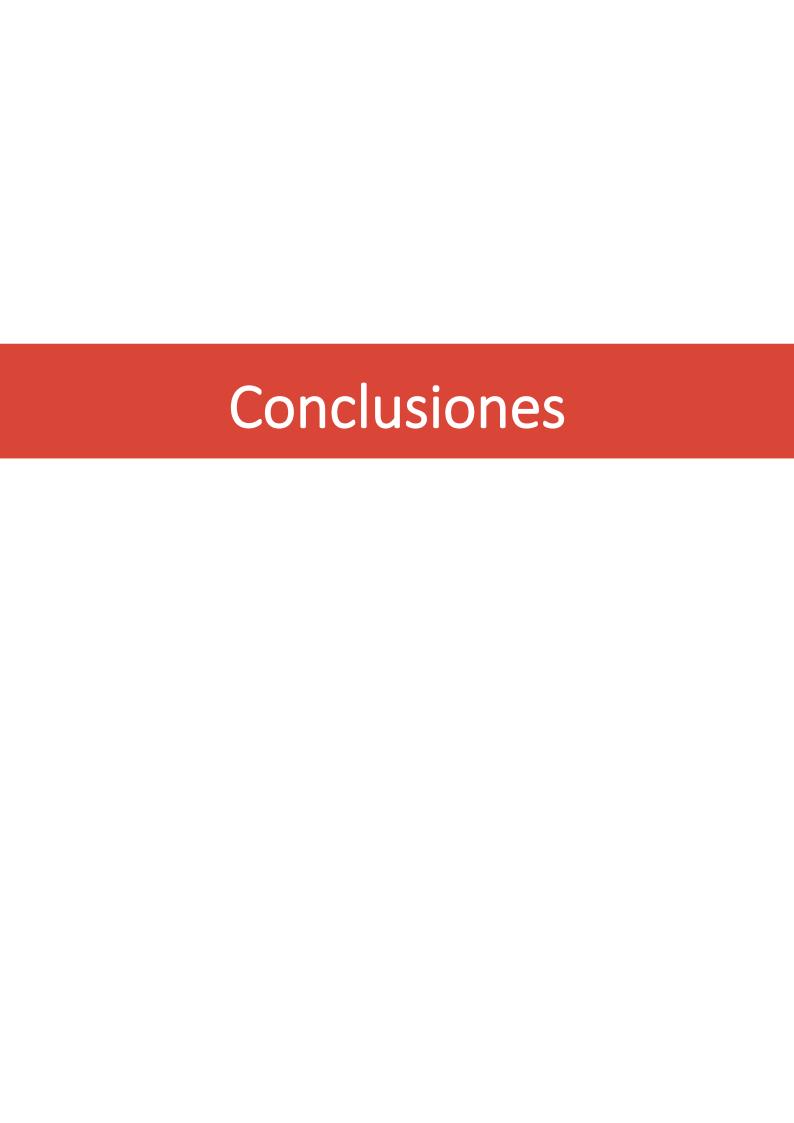
en los anexos A3 Expresión diferencial de cada uno de los metabolitos secundarios que varían en el análisis transcripcional de la cepa Sscr1.

C4.5 Validación del análisis transcripcional

Para la validación del análisis transcripcional se realizó una qPCR de dos genes expresados diferencialmente en el análisis transcripcional de la cepa Sscr1. Los genes seleccionados fueron scr1 (SCO4441) y el actIORF3 (SCO5089). En la figura C4.32 se observan que los vapores del FC de los genes elegidos son muy similares en ambos análisis. De esta forma se valida el análisis de RNAseq.


Figura C4.34. Validación del análisis transcripcional de la cepa Sscr1, comparando los valores de FC de los genes scr1 (SCO4441) y el actIORF3 (SCO5089) en los análisis de RNAseq y qPCR.

C4.6 Conclusiones del análisis transcripcional


Después de este análisis transcripcional de la cepa Sscr1 se puede concluir que la **proteína Scr1 ejerce una regulación pleiotrópica** en varios procesos importantes a nivel celular, como son; procesos energéticos, síntesis de proteínas, respuesta al estrés y procesos de transporte de moléculas.

En la figura C4.35 se muestra un resumen de todos los procesos discutidos a través de este capítulo que están siendo regulados por esta proteína, la red de regulación de esta proteína es una red intrincada, en la que algunos procesos se asocian de una forma

simple y en otros todavía falta información para poder entender y comprender cómo están sucediendo. Sin embargo, este análisis transcripcional avanza un paso en el esclarecimiento del papel pleiotrópico que ejerce la proteína Scr1 en procesos de desarrollo y biosíntesis de metabolitos secundarios en *S. coelicolor*.

Figura C4.35. Esquema de posible red de regulación de la proteína Scr1 (SCO4441) de *S. coelicolor*. Las flechas azules: regulación positiva, flechas rojas: regulación negativa.

En esta investigación se abordaron varios frentes respecto a las implicaciones de los sistemas XRE/DUF397 de *S. coelicolor* en la producción de antibióticos y diferenciación morfológica. Los estudios realizados incluyen su caracterización *in silico*, estudios de su función cuando se sobreexpresan o se delecionan y análisis transcripcional de uno de sus representantes, para determinar los genes que regula al sobrexpresarse en *S. coelicolor*.

Basados en estos estudios se puede concluir:

Capítulo 1 Sistemas XRE/DUF397 de S. coelicolor

A nivel in silico

- Los 15 sistemas XRE/DUF397 de *S. coelicolor* están muy conservados en la familia streptomycineae y el sistema SCO4441/SCO4442 esta conservado también en casi todas las familias del filo Actinobacteria: streptomycineae, glycomycineae, micromonosporineae, pseudonocardineae, streptosporangineae, frankineae y corynebacterineae.
- El análisis filogenético dio vestigios de que los sistemas XRE/DUF397 de S.
 coelicolor son proteínas que al parecer están filogenéticamente emparentadas.
- Los genes próximos a los genes que codifican las proteínas de los sistemas XRE/DUF397 de S. coelicolor, codifican proteínas con potencial para la acción reguladora de la producción de antibióticos que pudieran estar ejerciendo estos sistemas.
- La ubicación y posición general de los genes que codifican las proteínas de los sistemas XRE/DUF397 de S. coelicolor, no muestran una organización general que los caracterice pero siempre el gen que codifica la proteína XRE es anterior al que codifica la proteína DUF397.
- Las proteínas XRE y DUF397 de S. coelicolor tienen dominios de aminoácidos que las capacita para ejercer regulación transcripcional uniéndose a regiones génicas o proteicas.
- No hay modelos estructurales robustos de las proteínas de los sistemas XRE/DUF397.

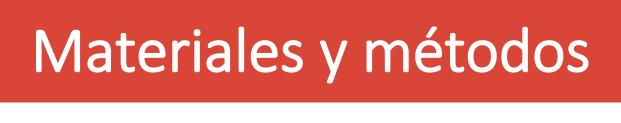
Capítulo 2 Sobreexpresión de los sistemas XRE/DUF397

De los 14 sistemas XRE/DUF397 de S. coelicolor se puede concluir

- La sobreexpresión de las supuestas toxinas (14 proteínas DUF397) (SCO1978, SCO2245, SCO2252, SCO2382, SCO2514, SCO4177, SCO4300, SCO4542, SCO4679, SCO5124, SCO6128, SCO6235 SCO6630, SCO7616) no genera muerte celular en S. coelicolor y no se comportan como sistemas de toxina/antitoxina, al menos bajo las condiciones estudiadas.
- La sobreexpresión en S. coelicolor de las proteínas XRE y DUF397 por separado o ambas proteínas de los diferentes sistemas, muestran cambios en la producción de ACT y RED, actuando positiva o negativamente en la regulación de estos dos antibióticos, así como en promoviendo cambios fenotípicos en diferenciación.

De los 6 sistemas XRE/DUF397 de S. coelicolor seleccionados se puede concluir

- En general, las proteínas de los genes **XRE** ejercen una regulación negativa en la diferenciación de *S. coelicolor* en medios ricos.
- Las proteínas de los genes DUF, por lo general, no afectan a la diferenciación, pero ejercen una regulación negativa en la producción de ACT en medios ricos, mientras, que regulan de forma positiva la producción de RED en medio PGA.
- Las proteínas XRE/DUF397 en conjunto, por lo general, solo ejercen regulación negativa en la diferenciación y la producción de ACT en medio R2YE.
- El estudio del efecto antibiótico frente a *B. subtilis* sugiere que en algunos casos la sobreexpresión de estas proteínas está produciendo nuevas moléculas bioactivas que no vemos de forma cualitativa cuando se analiza la producción de antibióticos coloreados y estos resultados abren una ventana en el estudio del papel de esta clase de **reguladores** en la producción de antibióticos.


Capítulo 3 Obtención de mutantes de S. coelicolor carentes de sistemas XRE/DUF397

 En general las deleciones de los sistemas XRE/DUF397 seleccionados provocan una bajada de la producción de ACT y un retraso en la diferenciación con una mayor o menor intensidad en los medios ricos y una subida de la producción de ACT en estas cepas crecidas en medio mínimo NMMP. Esto indica que pueden jugar un papel regulador diferente atendiendo a medio de cultivo empleado.

- El mutante Δ7615/7616 es el que muestra un fenotipo más relevante con respecto a la cepa silvestre en todos los medios ensayados. Así en medios ricos (R2YE, LB y YEPD) produce menos antibiótico y en otros medios, como el medio pobre (NMMP) y el medio de esporulación (SFM) produce más cantidad.
- Los mutantes con un fenotipo más reseñable (Δ53/52 en medio YEPD; Δ78/79 en medio R2YE; Δ15/16 en R2YE) fueron capaces de ser complementados con sus correspondientes plásmidos integrativos portadores de los genes delecionados.
 Por lo tanto, el fenotipo de estas cepas mutantes se debe a la deleción de los genes SCO2253/52, SCO4678/79 y SCO7615/16 y no a efectos polares.

Capítulo 4 Análisis transcripcional de la sobrexpresión del gen scr1

- El análisis transcripcional de la cepa Sscr1, cepa que sobreexpresa la proteína SCO4441, permite concluir que la proteína Scr1 ejerce una regulación pleiotrópica en varios procesos importantes a nivel celular, como son; procesos energéticos, síntesis de proteínas, respuesta al estrés y procesos de transporte de moléculas.
- La red de regulación de esta proteína es una red intrincada, en la que algunos procesos se asocian de una forma simple y en otros todavía falta información para poder entender y comprender cómo están sucediendo. Sin embargo, este análisis transcripcional avanza un paso en el esclarecimiento del papel pleiotrópico que ejerce la proteína Scr1 en procesos de desarrollo y biosíntesis de metabolitos secundarios en *S. coelicolor*.

M1 Microrganismos utilizados y creados

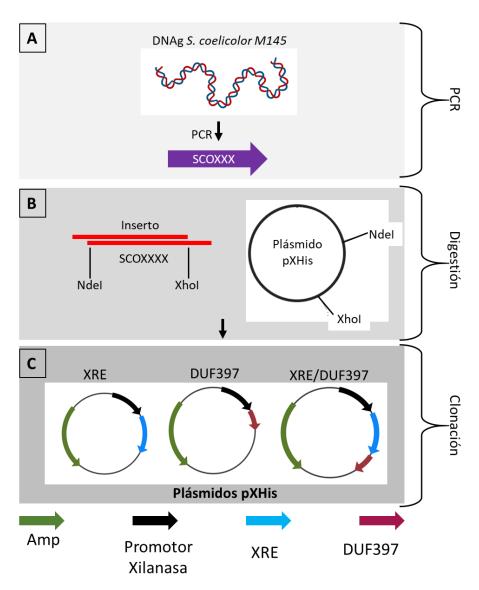
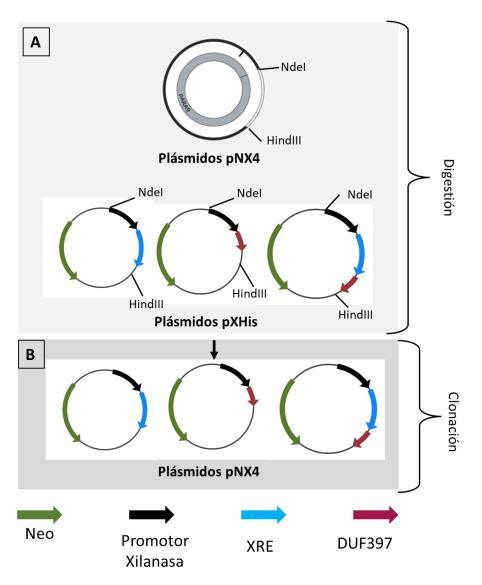

Los microorganismos utilizados en esta investigación se detallan en la tabla M1

Tabla M1. Microorganismos empleados.


Сера	Genotipo	Referencia
S. coelicolor M145	SCP1 SCP2	(Hopwood, 1986)
S. coelicolor M145 Δ46/45	SCP1 ⁻ SCP2 ⁻ ΔSCO2246/45	Este trabajo
S. coelicolor M145 Δ53/52	SCP1 ⁻ SCP2 ⁻ ΔSCO2253/52	Este trabajo
S. coelicolor M145 Δ78/79	SCP1 ⁻ SCP2 ⁻ ΔSCO4678/79	Este trabajo
S. coelicolor M145 Δ36/35	SCP1 ⁻ SCP2 ⁻ ΔSCO6236/35	Este trabajo
S. coelicolor M145 Δ15/16	SCP1 ⁻ SCP2 ⁻ ΔSCO7615/16	
Escherichia coli DH5α	F-, φ80dlacZΔM15, Δ(lacZYAargF)U169, recA1, endA1, hsdR17(rk mk+), supE44, λ-, thi-1, gyrA, relA1	(Hanahan, 1983)
Escherichia coli ET12567	dam, dcm, hsdS, cat, tet	(MacNeil et al., 1992)
Bacillus subtilis CECT 4522	Cepa Silvestre	CECT

M2 Vectores utilizados

En esta investigación por cada sistema XRE/DUF397 se construyeron tres plásmidos intermediarios en *E. coli* derivados del plásmido pXHis1 (tabla M2) y luego, sobre el plásmido pXN4, se construyeron los tres plásmidos multicopia finales que se utilizaron para transformar *S. coelicolor* (tabla M3). Así se han generado un total de 84 plásmidos cuyo esquema de construcción se muestra en las figuras M1 y M2. En la clonación en el plásmido pNX4 los genes XRE y DUF397 individuales quedan bajo el control del promotor de la xilanasa XysA de *S. halstedii* (S. Rodríguez et al., 2005) y en los plasmidos que llevan ambos genes (XRE/DUF397) el primero de ellos queda bajo el control de este promotor figura M2.

Figura M1. Esquema de construcción de plásmidos intermediarios en *E. coli* derivados del plásmido pXHis1 de los sistemas XRE/DUF397.

Figura M2. Esquema de construcción de plásmidos finales para *Streptomyces*. Estos plásmidos son derivados del plásmido pNX4.

Tabla M2. Plásmidos intermedios en E. coli derivados del plásmido pXHis1

Tabla M2.	Plásmidos intermedios en <i>E. coli</i> derivados del plásmido pXHis	51.
Vector	Características	Referencias
pXHis1	Vector de <i>E. coli</i> . Incluye el gen <i>xysA</i> . de <i>Streptomyces halstedii</i> (marcado con 6xHis en Ct) bajo su propio promotor. Resistencias: Ampicilina (<i>bla</i>)	(Adham et al., 2001)
pX1978	Derivado de pXHis1. Incluye el gen <i>SCO1978</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX1979	Derivado de pXHis1. Incluye el gen <i>SCO1979</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX1979/78	Derivado de pXHis1. Incluye los genes <i>SCO1979/78</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX2245	Derivado de pXHis1. Incluye el gen <i>SCO2245</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX2246	Derivado de pXHis1. Incluye el gen <i>SCO2246</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX2246/45	Derivado de pXHis1. Incluye los genes <i>SCO2246/45</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX2252	Derivado de pXHis1. Incluye el gen <i>SCO2252</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX2253	Derivado de pXHis1. Incluye el gen <i>SCO2253</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX2253/52	Derivado de pXHis1. Incluye los genes <i>SCO2253/52</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX2381	Derivado de pXHis1. Incluye el gen <i>SCO2381</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX2382	Derivado de pXHis1. Incluye el gen <i>SCO2382</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX2381/82	Derivado de pXHis1. Incluye los genes <i>SCO2381/82</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX2513	Derivado de pXHis1. Incluye el gen <i>SCO2513</i> de <i>S. coelicolor</i> . Bajo el promotor <i>XysA</i> .	Este trabajo
pX2514	Derivado de pXHis1. Incluye el gen <i>SCO2514</i> de <i>S. coelicolor</i> . Bajo el promotor <i>XysA</i> .	Este trabajo
pX2513/14	Derivado de pXHis1. Incluye los genes <i>SCO2513/14</i> de <i>S. coelicolor</i> . Bajo el promotor <i>XysA</i> .	Este trabajo
pX4176	Derivado de pXHis1. Incluye el gen <i>SCO4176</i> de <i>S. coelicolor</i> . Bajo el promotor <i>XysA</i> .	Este trabajo
pX4177	Derivado de pXHis1. Incluye el gen <i>SCO4177</i> de <i>S. coelicolor</i> . Bajo el promotor <i>XysA</i> .	Este trabajo
pX4176/77	Derivado de pXHis1. Incluye los genes <i>SCO4176/77</i> de <i>S. coelicolor</i> . Bajo el promotor <i>XysA</i> .	Este trabajo
pX4300	Derivado de pXHis1. Incluye el gen <i>SCO4300</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX4301	Derivado de pXHis1. Incluye el gen <i>SCO4301</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX4301/00	Derivado de pXHis1. Incluye los genes <i>SCO4301/00</i> de <i>S. coelicolor</i> . Bajo el promotor <i>XysA</i> .	Este trabajo
pX4542	Derivado de pXHis1. Incluye el gen <i>SCO4542</i> de <i>S. coelicolor</i> . Bajo el promotor <i>XysA</i> .	Este trabajo
pX4543	Derivado de pXHis1. Incluye el gen <i>SCO4543</i> de <i>S. coelicolor</i> . Bajo el promotor <i>XysA</i> .	Este trabajo
pX4543/42	Derivado de pXHis1. Incluye los genes <i>SCO4543/42</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX4678	Derivado de pXHis1. Incluye el gen <i>SCO4678</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX4679	Derivado de pXHis1. Incluye el gen <i>SCO4679</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo

pX4678/79	Derivado de pXHis1. Incluye los genes SCO4678/79 de S. coelicolor. Bajo el promotor xysA.	Este trabajo
pX5124	Derivado de pXHis1. Incluye el gen <i>SCO5124</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX5125	Derivado de pXHis1. Incluye el gen SCO5125 de S. coelicolor. Bajo el promotor xysA.	Este trabajo
pX5125/24	Derivado de pXHis1. Incluye los genes SCO5125/24 de S. coelicolor. Bajo el promotor xysA.	Este trabajo
pX6128	Derivado de pXHis1. Incluye el gen SCO6128 de S. coelicolor. Bajo el promotor xysA.	Este trabajo
pX6129	Derivado de pXHis1. Incluye el gen SCO6129 de S. coelicolor. Bajo el promotor xysA.	Este trabajo
pX6129/28	Derivado de pXHis1. Incluye los genes SCO6129/28 de S. coelicolor. Bajo el promotor XysA.	Este trabajo
pX6235	Derivado de pXHis1. Incluye el gen <i>SCO6235</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX6236	Derivado de pXHis1. Incluye el gen SCO6236 de S. coelicolor. Bajo el promotor xysA.	Este trabajo
pX6236/35	Derivado de pXHis1. Incluye los genes <i>SCO6236/35</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX6629	Derivado de pXHis1. Incluye el gen <i>SCO6629</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX6630	Derivado de pXHis1. Incluye el gen SCO6630 de S. coelicolor. Bajo el promotor xysA.	Este trabajo
pX6629/30	Derivado de pXHis1. Incluye los genes <i>SCO6629/30</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX7615	Derivado de pXHis1. Incluye el gen <i>SCO47615</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX7616	Derivado de pXHis1. Incluye el gen <i>SCO7616</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo
pX7615/16	Derivado de pXHis1. Incluye los genes <i>SCO7615/16</i> de <i>S. coelicolor</i> . Bajo el promotor <i>xysA</i> .	Este trabajo

Tabla M3. Plásmidos multicopia finales para cada sistema derivados del plásmido pNX4.			
Vector	Características	Referencias	
pNX4	Derivado de pN702GEM3. Expresión de la xilanasa Xys1 con el	(Díaz et al.,	
	promotor xysA de Streptomyces halstedii.	2005)	
pNX2245	Derivado de pNX4 Incluye el gen SCO2245	Este trabajo	
pNX2246	Derivado de pNX4 Incluye el gen SCO2246	Este trabajo	
pNX2246/45	Derivado de pNX4 Incluye el gen SCO2245-SCO2246	Este trabajo	
pNX2252	Derivado de pNX4 Incluye el gen SCO2252	Este trabajo	
pNX2253	Derivado de pNX4 Incluye el gen SCO2253	Este trabajo	
pNX2252/53	Derivado de pNX4 Incluye el gen SCO2252-SCO2253	Este trabajo	
pNX2381	Derivado de pNX4 Incluye el gen SCO2381	Este trabajo	
pNX2382	Derivado de pNX4 Incluye el gen SCO2382	Este trabajo	
pNX2381/82	Derivado de pNX4 Incluye el gen SCO2381-SCO2382	Este trabajo	
pNX2513	Derivado de pNX4 Incluye el gen SCO2513	Este trabajo	
pNX2514	Derivado de pNX4 Incluye el gen SCO2514	Este trabajo	
pNX2513/14	Derivado de pNX4 Incluye el gen SCO2513-SCO2514	Este trabajo	
pNX4176	Derivado de pNX4 Incluye el gen SCO4176	Este trabajo	
pNX4177	Derivado de pNX4 Incluye el gen SCO4177	Este trabajo	
pNX4176/77	Derivado de pNX4 Incluye el gen SCO4176-SCO4177	Este trabajo	
pNX4300	Derivado de pNX4 Incluye el gen SCO4300	Este trabajo	
pNX4301	Derivado de pNX4 Incluye el gen SCO4301	Este trabajo	
pNX4301/00	Derivado de pNX4 Incluye el gen SCO4300-SCO4301	Este trabajo	
pNX4542	Derivado de pNX4 Incluye el gen SCO4542	Este trabajo	
pNX4543	Derivado de pNX4 Incluye el gen SCO4543	Este trabajo	
pNX4543/42	Derivado de pNX4 Incluye el gen SCO4542-SCO4543	Este trabajo	
pNX4678	Derivado de pNX4 Incluye el gen SCO4678	Este trabajo	
pNX4679	Derivado de pNX4 Incluye el gen SCO4679	Este trabajo	
pNX4678/79	Derivado de pNX4 Incluye el gen SCO4678-SCO4679	Este trabajo	
pNX5124	Derivado de pNX4 Incluye el gen SCO5124	Este trabajo	
pNX5125	Derivado de pNX4 Incluye el gen SCO5125	Este trabajo	
pNX5125/24	Derivado de pNX4 Incluye el gen SCO5124-SCO5125	Este trabajo	
pNX6128	Derivado de pNX4 Incluye el gen SCO6128	Este trabajo	
pNX6129	Derivado de pNX4 Incluye el gen SCO6129	Este trabajo	
pNX6129/28	Derivado de pNX4 Incluye el gen SCO6128-SCO6129	Este trabajo	
pNX6235	Derivado de pNX4 Incluye el gen SCO6235	Este trabajo	
pNX6236	Derivado de pNX4 Incluye el gen SCO6236	Este trabajo	
pNX6235/36	Derivado de pNX4 Incluye los genes SCO6235-SCO6236	Este trabajo	
pNX6629	Derivado de pNX4 Incluye el gen SCO6629	Este trabajo	
pNX6630	Derivado de pNX4 Incluye el gen SCO6630	Este trabajo	
pNX6629/30	Derivado de pNX4 Incluye el gen SCO6629-SCO30	Este trabajo	
pNX7615	Derivado de pNX4 Incluye el gen el SCO7615	Este trabajo	
pNX7616	Derivado de pNX4 Incluye el gen SCO7616	Este trabajo	
pNX7615/16	Derivado de pNX4 Incluye los genes SCO7615-SCO7616	Este trabajo	

La construcción de todos los plásmidos generados a partir de pCRISPR-Cas9 así como sus respectivos derivados se detalla en el apartado M7 CRISPR-Cas9 deleción sistemas XRE/DUF.

M3 Medios y condiciones de cultivo

M3.1. Medios de cultivo

Todos los medios de cultivo fueron esterilizados en el autoclave antes de su uso.

- -R2YE: Sacarosa 103 g/L, K₂SO₄ 0,25 g/L, Cl₂Mg.6H₂O 10 g/L, glucosa 10,12 g/L, casaminoácidos 0,1 g/L, elementos traza* 2 mL/L, extracto de levadura 5 g/L, TES 5,73 g/L, pH 7,2. Empleado líquido o sólido añadiendo agar 2 %. Antes de utilizarlo se añadió por cada 100 mL: KH₂PO₄ 0,5 %, 1 mL, CaCl₂.2H₂O 5 M, 0,4 mL, L-prolina 20 %, 1,5 mL. Medio de uso general para crecimiento de *S. coelicolor*.
- *Elementos traza (en un litro de agua): $ZnCl_2 40$ mg, $FeCl_3.6H_2O 200$ mg, $CuCl_2.2H_2O 10$ mg, $MnCl_2.4H_2O 10$ mg, $Na_2B_4O_7.10H_2O 10$ mg y (NH_4)₆ $Mo_7O_{24}.4H_2O 10$ mg.
- -**SFM (MSA):** manitol 20 g/L, harina de soja 20 g/L, agar 2 %. En la elaboración de este medio se usa agua de grifo. Medio de esporulación *S. coelicolor*.
- -NMMP: (NH₄)₂SO₄ 2 g/L, MgSO₄.7H₂O 0,6 g/L, casaminoácidos 5 g/L, elementos traza** 1 mL/L, pH 7,2. Después de autoclavar se añadió: NaH2PO4 / K2HPO4 4,5 mM pH 7,2 15 mL/L, glucosa 0,5 %. Medio de uso general para crecimiento de *S. coelicolor*.
- **Elementos traza (en un litro de agua): ZnSO₄.7H₂O 1 g, FeSO₄.7H₂O 1 g, MnCl₂.4H₂O 1 g, CaCl₂ 1 g.
- **-YEPD:** extracto de levadura 10 g/L, glucosa 10 g/L, peptona 20g/L, agar 2 %. Medio de uso general para crecimiento y recuento de esporas viables de *S. coelicolor*.
- -LB: bactotriptona 10 g/L, extracto de levadura 5 g/L, NaCl 10 g/L, pH 7,5. Empleado líquido o sólido añadiendo agar 2 %. De uso general para el crecimiento de *E. coli*.
- -**TSB:** peptona de caseína 17 g/L, peptona de soja 3 g/L, NaCl 5 g/L, K₂HPO₄ 2,5 g/L, dextrosa 2,5 g/L, pH 7,3. Medio rico utilizado para crecer cultivos y aislar DNA de *S. coelicolor*.
- **-2XYT**: bactotriptona 16 g/L, extracto de levadura 10 g/L, NaCl 5 g/L, pH 7,0. Medio utilizado en conjugaciones *E. coli/S. coelicolor*.
- -YES: extracto de levadura 10 g/L, sacarosa 10,3 %. Suplementado con glucosa 0,5 %, glicina 0,5 % y MgCl₂ 5 mM. Medio utilizado para la obtención de protoplastos *S. coelicolor*.

-YEG: extracto de levadura 10,0 g/L, dextrosa 10,0 g/L, sacarosa 103,0 g/L, glicina 0,5 %, MgCl₂ 5,0 mM, pH 6,0. Utilizado para la obtención de protoplastos de *S. coelicolor*.

-**PGB**: Peptona 5,0 g/L. Tras esterilizar mediante autoclave se añade: Glicerol 1,0%. pH 7,0. Medio de uso general para crecimiento de *S. coelicolor*.

M3.2. Antibióticos utilizados en los medios de cultivo

Los antibióticos empleados a lo largo de esta investigación, así como sus concentraciones para seleccionar y mantener los plásmidos utilizados, se detallan en la Tabla M4.

Tabla M4. Antibióticos usados en esta investigación.

Antibiótico	Concentración final (μg/mL) <i>E. coli</i>	Concentración final (μg/mL) S. coelicolor
Apramicina	50	15
Ampicilina	100	-
Kanamicina	50	-
Neomicina	-	20
Cloranfenicol	25	-
Ácido nalidíxico	25	-

M3.3. Condiciones de cultivo

-Medios sólidos *Streptomyces*: se incubaron en placas Petri a 30 °C. Para los ensayos fenotípicos en gota se sembraron 10^5 esporas en gotas de 5 μ L. Para los ensayos de sobreexpresión se realizaron parches y se incubaron en placas Petri a 30 °C durante 7 días.

-Cultivos de Streptomyces en medios líquidos: Se realizaron en matraces de vidrio indentados de 50 mL con 10 mL de medio de cultivo a 28 °C. Por otro lado, para la eliminación de los plásmidos derivados del plásmido pCRISPR-Cas9 se incubaron a 37 °C (plásmido termosensible). En ambos casos los cultivos se incubaron a 200 rpm en un incubador orbital. Los estudios fenotípicos de antibióticos ACT y RED para muestras del análisis de RNAseq se realizaron sembrando 10⁵ esporas/mL en matraces con 10 mL de medio NMMP. Para el análisis de producción de ACT, de la sobreexpresión de los genes

del sistema SCO2253/52, se hicieron cultivos en matraces conteniendo 10 mL de medio de R2YE e inoculados con un taco de 0,7 cm de diámetro obtenido de una placa en la que la cepa se había crecido como un cesped. Se recogieron muestras a los 4 y 8 días.

- Los cultivos de *E. coli*: La incubación se realizó a 37 °C tanto en su versión sólida (placas Petri incubadas en estufa) como líquida (matraces en incubador orbital a 200 rpm).

M4. Conservación de cepas

La conservación de las cepas de *Streptomyces* utilizadas para experimentos rutinarios se realizó en forma de suspensiones de esporas o micelio en glicerol al 20 % y a -20 °C. Las esporas de las diferentes cepas se recogieron siguiendo el protocolo descrito por (Hopwood, 1986) y la población del stock fue cuantificada creciendo diluciones seriadas del stock y determinando las unidades formadoras de colonias. De igual forma Las cepas de *E. coli* y *B. subtilis* se conservaron en glicerol al 20 % y a -20 °C. La criopreservación para todas las cepas se realizó de micelio o de células, en glicerol al 20 % a -80 °C.

M5. Obtención, manipulación y detección de DNA

M5.1. Extracción de DNA genómico de Streptomyces

El DNA genómico total de *Streptomyces* se extrajo utilizando el método CTAB modificado (bromuro de hexadeciltrimetilamonio) (Cafaro et al., 2011). En total, se recogieron 1,5 mL de micelio en medio líquido y se transfirieron a un tubo de tapón de rosca de 1,5 mL y se centrifugaron a 13000 rpm durante 5 min y las células se lavaron con una solución de sacarosa al 10,3 %. A continuación, las células se maceraron utilizando perlas de vidrio en una solución de lisis (0,3M de sacarosa; 25 mM de EDTA pH 8,0; 25 mM de Tris-HCl pH 8,0) y se digirieron con 500 μ L de lisozima (3 mg mL⁻¹) y RNasa (50 μ g mL⁻¹) a 37 °C. La extracción del DNA se realizó en 500 μ L de tampón CTAB, con un paso de extracción con cloroformo (500 μ L), y la precipitación con isopropanol (1 volumen dependiente del sobrenadante obtenido) se llevó a cabo durante 30 min a -80 °C. El precipitado de DNA se lavó con etanol al 70 % y se resuspendió en tampón TE. La integridad del DNA genómico se verificó mediante electroforesis en gel de agarosa.

M5.2 Extracción de DNA de plásmidos de E coli

La obtención de DNA plasmídico de *E. coli* se realizó utilizando el kit comercial *Plasmid DNA Purification NucleoSpin* (Macherey-Nagel).

M5.3 Electroforesis en gel de agarosa

La separación de los fragmentos de DNA en función de su tamaño se hizo mediante electroforesis en gel de agarosa con bromuro de etidio. La concentración de agarosa empleada fue del 0,8 %, aumentando la misma a 1,6 % o 2 % cuando era necesaria la purificación de fragmerntos pequeños de DNA. La electroforesis se realizó a voltaje constante de 120 V en buffer TAE (Tris acetato 40 mM, EDTA 2 mM) (Green et al., 2012) y las bandas se observaron en el transiluminador de luz ultravioleta Gel Doc 2000 de Bio-Rad con el programa *Quantity One*. Los tamaños de los fragmentos se estimaron usando como referencia el marcador *O`GeneRuler DNA Ladder Mix (Thermo Scientific)*.

M5.4 Purificación de fragmentos de DNA

La purificación de fragmentos de DNA a partir de geles de agarosa y reacciones de PCR se llevó a cabo usando el kit *NucleoSpin* Gel and PCR *Clean-up* (Macherey-Nagel) siguiendo las instrucciones del fabricante.

M5.5 Técnicas básicas de ingeniería genética

Para técnicas de biología molecular e ingeniería genética, tales como digestiones con enzimas de restricción, desfosforilaciones de extremos y relleno de extremos 5' cohesivos, se llevaron a cabo siguiendo los protocolos descritos en el manual *Molecular cloning: a laboratory manual* (Green et al., 2012) y siguiendo las recomendaciones de las casas comerciales en cada caso (New England Biolabs, Promega y Thermo Fisher Scientific).

M5.6 Reacción en cadena de la polimerasa (PCR)

Para amplificar los 14 sistemas XRE/DUF397 se diseñaron oligonucleótidos específicos para cada uno de los genes por separado y en conjunto de cada pareja de sistema (Tabla M8), el diseño se realizó a partir del programa *SnapGene* (https://www.snapgene.com/)

y fueron sintetizados por *Invitrogen* (*Thermo Fisher Scientific*). La amplificación por PCR se realizó a partir de DNA de la cepa de *S. coelicolor* M145. Para estas PCR se utilizó la polimerasa de alta fidelidad *Phusion Hot Start II High Fidelity DNA Polymerase* (Thermo Scientific). En la tabla M5 se muestra las condiciones de amplificación de la PCR.

Tabla M5. Condiciones de PCR con la polimerasa *Phusion Hot Start II High Fidelity DNA Polymerase*.

Paso del ciclo	Temperatura	Tiempo	Ciclos
Inicio Desnaturalización	98 °C	30 s	1
Desnaturalización Hibridación	98 °C Tm*	5-10 s 30 s	30
Extensión Extensión final	72 °C 72 °C 4 °C	15-30 s** 10 min ∞	1

^{*}La temperatura de anillamiento se determinó a partir del programa *Tm calculator ThermoFisher* (*Tm Calculator - ES,* s. f.) para cada par de oligonucleótidos. ** Tiempo de extensión 30 s por cada Kb amplificar.

En procesos como comprobaciones de mutantes que no se necesita de alta fidelidad se utilizó la enzima *DNA Polymerase* (Biotools). En la tabla M6 se muestran las condiciones de amplificación de PCR.

Tabla M6. Condiciones de PCR con la polimerasa *DNA Polymerase* (Biotools).

Paso del ciclo	Temperatura	Tiempo	Ciclos
Inicio Desnaturalización	94 °C	1 min	1
Desnaturalización Hibridación	94 °C Tm*	30 s 30 s	30
Extensión	72 °C	15-30 s**	
Extensión final	72 °C 4 °C	10 min ∞	1

^{*}La temperatura de anillamiento se determinó a partir del programa SnapGene. ** Tiempo de extensión 1 min por cada Kb amplificar.

M5.7 Reacción en cadena en tiempo real cuantitativa (qRT-PCR)

El diseño de los oligonucleótidos se realizó utilizando los programas *SnapGene* (https://www.snapgene.com/) y la herramienta *PrimerQuest Tool* (*Integrated DNA*

Technologies). La lista de los oligonucleótidos se muestra en la tabla M9. El RNA de las cepas Sscr1 y control se obtuvo como se explica en el apartado M12.1 Extracción de RNA. Tras comprobar que la cantidad y la calidad de los RNA era la óptima, se trataron 2 μg con DNasa libre de RNasa (Promega) siguiendo las instrucciones del fabricante. 1 μg del RNA resultante se utilizó como molde para la síntesis del cDNA en 20 μl de volumen final de iScript Reverse Transcription Supermix (Bio-Rad).

Para llevar a cabo las qRT-PCR se utilizó el *kit TB Green® Premix Ex TaqTM* (Takara) en un termociclador CFX96 Touch Real Time PCR Detection System (Bio-Rad) siguiendo el programa detallado del fabricante y se incluyeron controles negativos (sin síntesis previa de cDNA) para verificar que no había contaminación por DNA en las muestras. Las condiciones de las qRT-PCR se detallan en la tabla M7.

Tabla M7. Condiciones de qRT-PCR con el kit TB Green® Premix Ex TaqTM

Paso del ciclo	Temperatura	Tiempo	Ciclos
Inicio Desnaturalización	95 °C	30 s	1
Desnaturalización	95 °C	5 s	40
Hibridación y extensión	60 °C	30 s	
Lectura	Lectura fluore	escencia	
Curva de <i>melting</i>	De 65°C a 95°C (aum	nento de 0,5°C c	ada 5 s) *

^{*} Lectura de fluorescencia tras cada aumento de temperatura

Para determinar la expresión de los genes analizados se utilizaron curvas estándar de referencia, realizadas a partir de diluciones seriadas de DNA genómico de *S. coelicolor* M145 estableciendo número de copias. El análisis de datos se realizó con la ayuda de los programas CFX ManagerTM (Bio-Rad) y Microsoft Excel.

M5.8 oligonucleótidos utilizados

En la tabla M8 se exponen los oligonucleótidos diseñados para amplificar los 14 sistemas XRE/DUF397 y en la siguiente tabla, la tabla M9 se muestran los oligonucleótidos diseñados para realizar las qRT-PCR de comprobación de análisis RNAseq.

Tabla M8. Oligonucleótidos diseñados para amplificar los 14 sistemas XRE/DUF397

Cebador	Secuencias (5'- 3')	Aplicación
CR-007	TTTTTCATATGAACCGCATCAAGCCC	Cebador directo para la amplificación de
		SCO1978. El sitio Ndel está subrayado.
CR 032	TATGATATCTCAGGACAGAAGGAAGTCC	Cebador inverso para la amplificación de
	GCCTC	SCO1978. El sitio EcoRV está subrayado.
CR-009	TTTTTCATATGGTGAGCGAGCCGCGGTC	Cebador directo para la amplificación de
	<u></u>	SCO1979. El sitio Ndel está subrayado.
CR-031	TATGATATCTCACAGCTCCTTGCGGAGAT	Cebador inverso para la amplificación de
	CCCGG	SCO1979. El sitio EcoRV está subrayado.
	TTTTTCATATGACCGGTAAGGACACACC	Cebador directo para la amplificación de
CR-003	CGTACAC	SCO2245. El sitio Ndel está subrayado.
	TTTTTCTCGAGTTCCGCGAGCGTCCCGG	Cebador inverso para amplificar <i>SCO2245</i> . El
CR-004	C	sitio Xhol está subrayado.
	TTTTT <u>CATATG</u> TCGGTGAACGGCGAGGC	Cebador directo para la amplificación de
CR-001	<u></u> G	SCO2246. El sitio Ndel está subrayado.
	TTTTT <u>CTCGAG</u> CCGCAGTTCGAGGATGC	Cebador inverso para amplificar <i>SCO2246</i> . El
CR-002	G	sitio XhoI está subrayado.
05.000	TTTTT <u>CATATG</u> AACAGCGTCACCTCAGC	Cebador directo para la amplificación de
CR-033		SCO2252. El sitio Ndel está subrayado.
	TTTTTCTCGAGAACCCGAGGACTGAGCG	Cebador inverso para amplificar SCO2252. El
CR-034		sitio Xhol está subrayado.
	TTTTT <u>CATATG</u> TCGGTGAACGGCGAGG	Cebador directo para la amplificación de
CR-035		SCO2253. El sitio Ndel está subrayado.
	TTTTT <u>CTCGAG</u> TGACTCTCCAAGCATCTG	Cebador inverso para la amplificación de
CR-036	CTCG	SCO2253. El sitio Xhol está subrayado.
CR-085	TTTTT <u>CATATG</u> GTGGCCAACATCCAGTCC	Cebador directo para la amplificación de
	C	SCO2381. El sitio Ndel está subrayado.
CR-086	TTTTT <u>CTCGAG</u> ACATTGCTCAGTGCTGTG	Cebador inverso para la amplificación de
	C	SCO2381. El sitio Xhol está subrayado.
CR-087	TTTTT <u>CATATG</u> CGGTCCCGCACAG	Cebador directo para la amplificación de
		SCO2382. El sitio Ndel está subrayado.
CR-088	TTTTT <u>CTCGAG</u> ACGCAGGCCGTCGAC	Cebador inverso para amplificar SCO2382. El
		sitio XhoI está subrayado.
CR-038	TTTTT <u>CATATG</u> GCCAATGGTTCACGGCA	Cebador directo para la amplificación de
	GG	SCO2513. El sitio Ndel está subrayado.
CR-039	TTTTT <u>CTCGAG</u> GGTCGTACTCGCGCATC	Cebador inverso para la amplificación de
	GTCTG	SCO2513. El sitio XhoI está subrayado.
CR-040	TTTTT <u>CATATG</u> CGCGAGTACGACCTGAC	Cebador directo para la amplificación de
	G	SCO2514. El sitio Ndel está subrayado.
CR-041	TTTTT <u>CTCGAG</u> AACACCCGCTCCGCGG	Cebador inverso para amplificar SCO2514. El
		sitio XhoI está subrayado.
CR-022	TTTTT <u>CATATG</u> GTGCCGCAGCGGAGGG	Cebador directo para la amplificación de
CK-UZZ		SCO4176. El sitio Ndel está subrayado.
CD 027	TTTTT <u>CTCGAG</u> GGTCGATGGCTCGCATG	Cebador inverso para la amplificación de
CR-027	GC	SCO4176. El sitio Xhol está subrayado.
CD 020	TTTT <u>CATATG</u> TCTTGGCGCAGGAGCAGCT	Cebador directo para la amplificación de
CR-028	ACAGCAACTC	SCO4177. El sitio Ndel está subrayado.
CD 020	TTTTT <u>CTCGAG</u> CGCGGCCCGCCCGG	Cebador inverso para la amplificación de
CR-029		SCO4177. El sitio XhoI está subrayado.
CR-044	TTTTT <u>CATATG</u> GAGACCACCCCTGAGTA	Cebador directo para la amplificación de
	CG	SCO4300. El sitio Ndel está subrayado.
CR-045	TTTTT <u>CTCGAG</u> CCGTCCACCTGGGCCTG	Cebador inverso para amplificar SCO4300. El
	A	sitio XhoI está subrayado.

CR-043 TTTTTCATATGCCAGGACCGAAAGACCT CG SCO4301. El sitio Ndel está subrayado. CR-044 CR-055 TTTTTCATATGGTGGCCCCCC CCAGCAGTTT TTCG GTTTTCCATATGGTGGCCCCCCCCCC
CR-064 TTTTTCCAAGGGGGTGGTCTCCATGCG CR-065 TTTTTTCCAAGGGACACTCTGA GGCTC CR-062 TTTTTCATATGGTGGCCCCCCCCCCCCCCCCCCCCCCCC
CR-064 TTTTTCATATGGTGACCGTACGCCCCC Cebador directo para la amplificación de SCO4542. El sitio Ndol está subrayado. CR-065 TTTTTCTCGAGGACAGTGGACCTCTTGA GGCTC CR-066 TTTTTTCTCGAGCACATTCCTTCGCCAGGTG GT GTTTTTCCGAGCACTCTTCGCCAGGTG GT GTTTTTCCGAGTGTCTCCCCCCAGCAGTT TTCG CR-066 TTTTTTCCGAGTGTTCTCCCAGCAGTT TTCG CR-067 TTTTTCCGAGTGTTCTCCCAGCAGTT TTCG CR-068 TTTTTTCCGAGTGTTCTCCCAGCAGTT TTCG CR-069 TTTTTTCCGAGTGTCTCCCAGCAGTT TTCG CR-069 TTTTTTCCGAGGCCCGCGAGCCGGACCCGCACGCGTA CR-069 TTTTTTCCGAGGCCCCGCGAGCCGGACCCGCACGCCGCACGCCGCACGCCGC
CR-064 TTTTTCATATGGTGACCGTACGCCCC CR-065 TTTTTTCTCGAGGACAGTGGACCTCTTGA GGCTC CR-062 TTTTTTCATATGGTGGCGCCCAAGGAGTCG CR-063 TTTTTCATATGGTGGCGCCCAAGGAGTCG CR-064 TTTTTCTCGAGCAATTCCTTCGCCAGGTG GT CR-066 TTTTTTCATATGGCGGCGCCAAGGACGACC CR-067 TTTTTCATATGGCGGTCGAGACGACC CR-068 TTTTTCATATGGTGGCGCCCAAGGACCGACC CR-069 TTTTTCATATGATCCCCCAGCAGTTT TTCG CR-069 TTTTTCCGAGGCACCGCCGACCGCGACCGCACCGCACCG
CR-062 TTTTTCCGAGGACAGTGGACCTCTTGA GGCTC Sitio Xhol está subrayado. CR-062 TTTTTCCGAGGACAGTGGACCTCTTGA GGCTC Sitio Xhol está subrayado. CR-063 TTTTTCCGAGCAATTCCTTCGCCAGGTG GT CCR-066 TTTTTCCGAGCAATTCCTTCGCCAGGTG CR-067 TTTTTCCGAGTGTCTCCCCAGCAGTTT TTCG TTCG CR-068 TTTTTCCGAGTGTCTCCCCAGCAGTTT TTCG CR-069 TTTTTTCTCGAGGCCCGCGAGCCGCGCGCGCCGCGCGCGC
CR-062 TTTTTCCAGAGCACAGTGGACCTCTTGA GGCTC CR-062 TTTTTTCATATGGTGGCGCCAAGGAGTCG CR-063 TTTTTCCAGAGCAATTCCTTCGCCAGGTG GT CR-066 TTTTTTCCAGAGCAATTCCTTCGCCAGGTG CR-066 TTTTTTCATATGGCGGTCGAGACCGGAC CR-067 TTTTTCCAGAGTGTGTCTCCCCAGCAGTTT TTCG CR-068 TTTTTTCCAGAGTGTGTCTCCCAGCAGTTT TTCG CR-069 TTTTTTCCAGAGCACGGACCGACCGCACCGCACCGCACGTCC CR-052 TTTTTTCATATGATCCGCACGTCCCCAGCAGTCCCCAGCAGTTT CCR-053 TTTTTCCAGAGCACTTCGCCAGCAGTCCCCCAGCAGTTCCCCAGCAGTTCCCCAGCAGCCCGCACCGCGCGCCCCCGCACCGCGCGCCCCCGCGCGCGCCGC
CR-062 TTTTTTCATATGGTGGCGCCAAGGAGTCG CR-063 TTTTTTCATATGGTGGCGCCAAGGAGTCG CR-064 CTTTTTCATATGGTGGCGCCAAGGAGTCG CR-065 CTTTTTTCATATGGCGGCGCAAGGAGCGAC CR-066 CTTTTTCATATGGCGGTCGAGACCGAC CR-067 CR-067 TTTTTCATATGATCCTCCCCAGCAGTTT TTCG CR-068 TTTTTCATATGATCCCCAGCAGTTT TTCG CR-069 TTTTTCATATGATCCCCAGCAGTCT CR-069 TTTTTCATATGATCCCCAGCAGTCC CR-069 TTTTTCATATGATCCCCAGCAGTCC CR-069 TTTTTCATATGATCCCCAGCAGCC CR-060 TTTTTCATATGATCCCCAGCAGCC CR-060 TTTTTCATATGATCCCCAGCAGCC CR-060 TTTTTCATATGATCCCCAGCAGCC CR-060 TTTTTCATATGATCCCCAGCAGCC CR-060 CC CR-060 TTTTTCATATGATCCCCCACCGCGTA CR-060 CC CR-060 CC CR-061 TTTTTCATATGATCCCCACCGCCGCACCGCCGCCCCCCCC
CR-062TTTTTTCATATGGTGGCGCCAAGGAGTCG SCO4543. El sitio Ndel está subrayado.CR-063TTTTTTCTCGAGCAATTCCTTCGCCAGGTG GTCebador directo para la amplificar SCO4543. El sitio Xhol está subrayado.CR-066TTTTTTCATATGGCGGTCGAGACGGAC CR-067Cebador directo para la amplificación de SCO4678. El sitio Ndel está subrayado.CR-067TTTTCTCGAGTGTGTCTCCCAGCAGTTT TTCGCebador directo para la amplificación de SCO4678. El sitio Xhol está subrayado.CR-068TTTTTCATATGATCCGCGAGACCGAGC CR-069Cebador directo para la amplificación de SCO4679. El sitio Ndel está subrayado.CR-069TTTTTCTCGAGGCGCCGCGCGCGCGCGACGCGTA ACebador directo para la amplificación de SCO5124. El sitio Ndel está subrayado.CR-052TTTTTCATATGATCCGCACGTCCTCGTCC ACebador directo para la amplificación de SCO5124. El sitio Ndel está subrayado.CR-053TTTTTTCATATGTCGGAGCTCTCGGCGG CCebador inverso para la amplificación de SCO5124. El sitio Ndel está subrayado.CR-050TTTTTTCATATGTCGGTGGACCCCGG CTCGCebador inverso para la amplificación de SCO5125. El sitio Ndel está subrayado.CR-051TTTTTTCTCGAGTGTCTCCCCCAGCAGTTG CTCGCebador inverso para la amplificación de SCO5125. El sitio Ndel está subrayado.CR-084TTTTTCATATGAGCAGCACCCCCACACTTCG CCGAGCCGTGCCCCGAGGAACG CCGGCCebador inverso para la amplificación de SCO6128. El sitio Ndel está subrayado.CR-084TTTTTCATATGAGCAGCACCGCACTTCG CCGAGCTGCCCCGAGGAACG GGGCCCCEAGOR directo para la amplificación de SCO6129. El sitio Ndel está subrayado.CR-084TTTTTCCATATGAGCAGACACGACCGCACTCCG CCBAGOR directo para la amplificación d
CR-063 TTTTTTCTCGAGCAATTCCTCGCCAGGTG GT CR-066 GT CR-066 TTTTTTCTCGAGTGTGTCTCCCCAGGTGTGTTTTCGATATGGCGGTCGAGACGGAC CR-067 TTCG CR-068 TTTTTTCTCGAGTGTGTCTCCCAGCAGTTTTCG CR-068 TTTTTTCTCGAGTGTGTCTCCCAGCAGTTTTTCG CR-068 TTTTTTCATATGATCCGCGAGACCGAGC CR-069 TTTTTCTCGAGTGTGTCTCCCAGCAGTTTTTCG CR-069 TTTTTCTCGAGTGTGTCTCCCAGCAGTTTTTCG CR-050 TTTTTTCATATGATCCGCGAGACCGAGC CR-051 TTTTTCATATGATCCGCACGTCCTCGTCC CR-052 TTTTTCATATGATCCGCACGTCCTCGTCC A SCO5124. El sitio Ndel está subrayado. CR-053 TTTTTCATATGATCCGCACGTCGCGGACCCGGG CR-054 TTTTTCATATGATCCGCACGTCCTCGTC CR-055 TTTTTCATATGATCCGCACGTCCTCGTC CR-056 TTTTTCATATGATCCGCACGTCCTCGTC CR-057 TTTTTCATATGATCCGCACGTCCTCGTC CC SCO5124. El sitio Ndel está subrayado. CR-058 TTTTTCATATGATCCGCACGTCCTCGTC CC SCO5125. El sitio Ndel está subrayado. CR-050 TTTTTTCATATGAGCAGCACCGCACTTCG CC SCO5125. El sitio Ndel está subrayado. CR-051 TTTTTCCAGAGTGCCCCCCAGCAGTTG CTCG SCO5125. El sitio Ndel está subrayado. CR-052 TTTTTTCATATGAGCAGCACCGCACTTCG CCBador inverso para la amplificación de SCO5125. El sitio Ndel está subrayado. CR-054 TTTTTCCATATGAGCAGCACCGCACTTCG CCBador inverso para la amplificación de SCO6128. El sitio Ndel está subrayado. CR-058 TTTTTTCATATGAGCAGCACCGCAGTTG CCBAGOR inverso para la amplificación de SCO6128. El sitio Ndel está subrayado. CCB-059 TTTTTTCATATGAGCAGCACCGCAGTTGCCCCCAGCAGTAGACCACCGCACTTCG CCB-050 TTTTTTCATATGAGCAGCACCCGCACTTCG CCB-050 TTTTTTCATATGAGCAGCACCCGCACTTCG CCB-050 TTTTTTCATATGAGCAGCACCCGCACTTCG CCB-050 TTTTTTCATATGAGCAGCACCCGCACTTCG CCB-050 TTTTTTCATATGAGCAGCACCGCACTTCG CCB-050 TTTTTTCATATGAGCAGACACCGCACTTCG CCB-050 TTTTTTCATATGAGCAGCACCGCACTCGACTCCCACTCTCCACACTCCACTCCACACTCCACTCTCCACACTCCACTCACTCACTCACACTCACTCACTCACACTCAC
CR-066 CR-066 CR-067 CR-067 CR-068 CR-068 CR-068 CR-068 CR-069 CR-069 CR-069 CR-051 CR-051 CR-051 CR-051 CR-051 CR-053 CR-053 CR-054 CR-055 CR-055 CR-055 CR-056 CR-056 CR-056 CR-057 CR-057 CR-057 CR-058 CR-058 CR-059 CR-059 CR-050 CR-050 CR-051 CR-051 CR-051 CR-052 CR-053 CR-054 CR-055 CR-055 CR-055 CR-056 CR-056 CR-057 CR-057 CR-058 CR-058 CR-059 CR-059 CR-050 CR-050 CR-051 CR-051 CR-051 CR-052 CR-053 CR-053 CR-054 CR-055 CR-055 CR-055 CR-055 CR-056 CR-057 CR-057 CR-058 CR-058 CR-059 CR-059 CR-050 CR-050 CR-051 CR-051 CR-052 CR-053 CR-054 CR-055 CR-055 CR-055 CR-055 CR-056 CR-057 CR-057 CR-058 CR-058 CR-059 CR-059 CR-059 CR-050 CR-050 CR-051 CR-051 CR-052 CR-053 CR-054 CR-055 CR-055 CR-055 CR-055 CR-056 CR-057 CR-057 CR-058 CR-058 CR-058 CR-059 CR
CR-066 CR-067 CR-068 CR-068 CR-068 CR-069 CR-052 CR-053 CR-053 CR-053 CR-051 CR-051 CR-051 CR-053 CR-053 CR-054 CR-054 CR-0554 CR-0554 CR-0555 CR-0555 CR-0555 CR-0556 CR-0556 CR-0556 CR-0567 CR-057 CR-057 CR-057 CR-057 CR-058 CR-058 CR-059 CR-059 CR-059 CR-059 CR-050 CR-050 CR-050 CR-051 CR-051 CR-052 CR-053 CR-053 CR-054 CR-0554 CR-0555 CR-0555 CR-0556 CR-0556 CR-0556 CR-0557 CR-0557 CR-0557 CR-0558 CR-0558 CR-0559 CR-0559 CR-0559 CR-0559 CR-0550 CR-0550 CR-0550 CR-0550 CR-0550 CR-0551 CR-0551 CR-0551 CR-0552 CR-0553 CR-0553 CR-0554 CR-0554 CR-0554 CR-0555 CR-0555 CR-0555 CR-0556 CR-0556 CR-0557 CR-0557 CR-0557 CR-0557 CR-0557 CR-0558 CR-0558 CR-0559 CR-0550 CR-0560 CR-0560 CR-0560 CR-0560 CR-057 CR-057 CR-057 CR-0580 CR-05
CR-066 CR-067 CR-068 CR-068 CR-069 CR-052 CR-053 CR-051 TTTTTCATATGTCGGTGGAGACGGAC CR-051 TTTTCATATGTCGGAGACTCCCCAGCAGTTC CTCG CR-068 CR-053 CR-051 TTTTTCATATGTCCGCGGAGACCCGGG CR-054 CR-0551 TTTTTCATATGTCCCCCCAGCAGTTC CTCG CR-058 TTTTTTCATATGTCCCCCCAGCAGTTC CTCG CR-058 CR-059 CR-051 TTTTTCATATGATCCCCCAGCAGTC CR-052 TTTTTTCATATGTCCCCCCAGCAGTC CR-053 TTTTTTCATATGTCCGCGAGACCCGGG CR-054 CR-055 CR-055 CR-056 CR-057 CR-058 TTTTTTCATATGTCCGCACGTCCTCGTCC CR-058 CR-059 CR-059 CR-051 TTTTTCATATGATCCCCCCCAGCAGTCCTCGTCC CR-051 TTTTTTCATATGATCCCCCCCAGCAGTTC CTCG CTCG
CR-067 CR-067 CR-068 TTTTTCGAGTGTGTCTCCCAGCAGTTT TTCG Sitio Xhol está subrayado. CR-068 CR-069 CR-069 CR-069 CR-052 TTTTTCATATGATCCGCGAGACCGTCC CR-053 TTTTTCCTCGAGACTTCTCGAGCTGCCGGAGCCGGAGCCGCGGAGCCGCGGAGCCGGAGCCGGAGCCGGAGACCGGGAGCCGGAGACCGGGAGCCGGAGACCGGAGACCGGGAGACCGGAGACCGGAGACCGGAGACCGGAGACCGGAGACCGGAGACCGGAGACCGCGAGACGCGTA CR-050 CR-051 TTTTTCCTCGAGAGCCGCGCGCGCGCGCGCGCGCGCGCGC
CR-067 CR-068 CR-069 CR-069 CR-052 CR-053 TTTTTCCAGAGTGTGCCGCGAGCCGGG CR-050 CR-051 TTTTTCATATGTGCGCGAGACCCGGG CR-051 TTTTTCCAGAGTGTCCCCCCAGCAGTTG CTCG CR-053 CR-051 TTTTTCCTCGAGTGTCCCCCCAGCAGTTG CCR-053 CR-054 TTTTTCCTCGAGTGCTCCCCCCCCAGCAGTG CR-0555 CR-056 CR-057 CR-058 TTTTTTCCTCGAGTGCCCCCCCCCGCGCGCGCGCGCGCGC
CR-068 TTTTTCATATGATCCGCGAGACCGAGC CR-069 TTTTTTCTCGAGGCGCCGCGCGCGCGACCGCTA CR-052 TTTTTTCATATGATCCGCGACGCTCC CR-053 TTTTTTCTCGAGACCTCTCGTCC CR-050 CR-050 CR-051 TTTTTTCTCGAGGCGCCGCGCGCGCGCGCGCGCGCGCGCG
CR-068 CR-069 TTTTTCCATATGATCCGCGAGACCGAGC CR-069 TTTTTTCCATATGATCCGCGAGACCGACGCTA CR-052 CR-053 TTTTTTCCTCGAGACTCTCGACCGCGCGCGCGCGCGCGCG
CR-069 TTTTTCCCGAGGCGCCGCGACGCTA CR-052 TTTTTCATATGATCCGCACGTCCTCGTCC CR-053 TTTTTCCTCGAGGCGCGCGCGCGCGCGCGCGCGCGCGCGC
CR-069 TTTTTCCGAGGCGCCGCGACGCGTA CR-052 TTTTTCATATGATCCGCACGTCCTCCC A SCO5124. El sitio Ndel está subrayado. CR-053 TTTTTCCGAGACTTCTGACCGTGCCGG CR-050 CR-050 TTTTTCATATGTCGGTGGACGCCGG CR-051 TTTTTCCTCGAGACTTCTGACCGTGCCGG CR-052 TTTTTCCTCGAGACTTCTGACCGTGCCGG CR-053 TTTTTCATATGTCGGTGGACGCCGG CR-054 CR-055 TTTTTCCTCGAGTGTCTCCCCCAGCAGTTG CCBador inverso para la amplificación de SCO5124. El sitio Xhol está subrayado. CR-051 TTTTTCCTCGAGTGTCTCCCCCAGCAGTTG CCBador inverso para la amplificación de SCO5125. El sitio Ndel está subrayado. CR-083 TTTTTCATATGAGCAGCACCGCACTTCG CR-084 TTTTTTCTCGAGCCGTGCCCCGAGGAACG CCBador inverso para la amplificación de SCO6128. El sitio Ndel está subrayado. CR-084 TTTTTTCTCGAGCCGTGCCCCGAGGAACA CCBador inverso para la amplificación de SCO6129. El sitio Ndel está subrayado. CR-085 TTTTTTCATATGGTGGTCATGATGGAACA GTGCGC CR-086 TTTTTTCCGAGTTGCTCTCCTAGGAGACC CCBador inverso para la amplificación de CEBador inverso para la amplificación de SCO6129. El sitio Ndel está subrayado. CR-086 CR-087 TTTTTTCTCGAGTTGCTCTCCTAGGAGACC CCBador inverso para la amplificación de CEBador inverso para la amplificación de SCO6129. El sitio Ndel está subrayado. CR-088 TTTTTTCTCCGAGTTGCTCTCCTAGGAGACC CCBador inverso para la amplificación de CEBador inverso para la amplificación de SCO6129. El sitio Ndel está subrayado.
CR-052 TTTTTCATATGATCCGCACGTCCTCGTCC A SCO5124. El sitio Ndel está subrayado. CR-053 TTTTTCCGAGACTTCTGACCGTGCCGG Cebador directo para la amplificación de SCO5124. El sitio Ndel está subrayado. CR-050 TTTTTCATATGTCGGTGGACGCCGG Cebador directo para la amplificación de SCO5125. El sitio Ndel está subrayado. CR-051 TTTTTCCGAGTGTCCCCCCAGCAGTTG CEbador directo para la amplificación de SCO5125. El sitio Ndel está subrayado. CR-083 TTTTTCATATGAGCAGCACCGCACTTCG Cebador directo para la amplificación de SCO6128. El sitio Ndel está subrayado. CR-084 TTTTTCCCGAGCCGTGCCCCGAGGAACG CEbador directo para la amplificación de SCO6128. El sitio Ndel está subrayado. CR-084 TTTTTCATATGGTGGTCATGATGGAACA CEbador directo para la amplificación de SCO6128. El sitio Xhol está subrayado. CR-085 TTTTTCCTCGAGTTGCTCTCCTAGGAGACA CEbador directo para la amplificación de SCO6129. El sitio Ndel está subrayado. CR-086 TTTTTTCCCGAGTTGCTCTCCTAGGAGACA CEbador inverso para la amplificación de SCO6129. El sitio Ndel está subrayado. CR-086 TTTTTTCCCGAGTTGCTCTCCTAGGAGACA CEbador inverso para la amplificación de SCO6129. El sitio Ndel está subrayado. CR-087 TTTTTTCCCGAGTTGCTCTCCTAGGAGACA CEbador inverso para la amplificación de SCO6129. El sitio Ndel está subrayado.
CR-052 TTTTTCATATGATCCGCACGTCCTCGTCC A SCO5124. El sitio Ndel está subrayado. CR-053 TTTTTCCATATGTCGGAGACTTCTGACCGGG C Cebador inverso para la amplificación de SCO5124. El sitio Nhol está subrayado. CR-050 TTTTTCATATGTCGGTGGACGCCGG CR-051 TTTTTCCATATGTCGGTGGACGCCGG CR-051 TTTTTCCGAGTGTCCCCCCAGCAGTTG CTCG CTCG CR-083 TTTTTCATATGAGCAGCACCGCACTTCG CR-084 TTTTTCCATATGAGCAGCCCGAGGAACG CR-084 TTTTTCCAGAGCCGTGCCCCGAGGAACG CR-085 TTTTTCCGAGCCGTGCCCCCGAGGAACG CR-086 TTTTTCCATATGAGCACCCGCACTTCG CR-087 CEbador inverso para la amplificación de SCO6128. El sitio Nhol está subrayado. CR-087 CEBADOR inverso para la amplificación de SCO6128. El sitio Nhol está subrayado. CR-088 TTTTTCCATATGAGCCCCCGAGGAACA CEBADOR inverso para la amplificación de SCO6128. El sitio Nhol está subrayado. CR-089 TTTTTCCTCGAGTTGCTCTCCTAGGAGACA GTGCGC CR-080 TTTTTTCCCGAGTTGCTCCCCCAGGAGACACACCCCCCAGCACACACA
CR-053 TTTTTCCCGAGACTTCTGACCGTGCCGG CR-050 TTTTTTCATATGTCGGTGACCGCGG CR-051 TTTTTCCCGAGTGCCCGG CR-051 TTTTTCCCCCCCCAGCAGTTG CR-052 CTCG CR-053 TTTTTTCCCGAGTGCCCCGG CR-054 TTTTTCCCGAGCCGTGCCCCGAGGAACG CR-085 TTTTTCCCGAGCCGTGCCCCGAGGAACG CR-086 TTTTTTCCCGAGCCGTGCCCCGAGGAACG CR-087 CCR-088 TTTTTCCCGAGCCGTGCCCCGAGGAACG CR-088 TTTTTCCCGAGCCGTGCCCCCGAGGAACG CR-089 TTTTTCCCGAGCCGTGCCCCCGAGGAACG CR-080 TTTTTCCCGAGCCGTGCCCCCGAGGAACG CCR-081 TTTTTCCATATGGTGGTCATGATGGAACA CCR-082 TTTTTCCATATGGTGGTCATGATGGAACA GTGCGC CR-082 TTTTTCCGAGTTGCTCCCCTAGGAGACC CCR-083 CCC-06129. El sitio Ndel está subrayado. CCR-084 CCR-085 SCC-06129. El sitio Ndel está subrayado. CCR-085 CCR-086 CCCCCCTAGGAGACC CCBCAGCTTCCCTAGGAGACC CCBCAGTTCCCCCTAGGAGACC CCBCAGTTCCTCCTAGGAGACC CCBCAGTTCCTCCTCCTAGGAGACC CCBCAGTTCCTCCTCCTAGGAGACC CCBCAGTTCCTCCTCCTAGGAGACC CCBCAGTTCCTCCTCCTCCTCCTCCTCCTCCTAGGAGACC CCBCAGTTCCTCCTCCTCCTCCTCCTCCTCCTCCTCCTCCTCCTC
CR-053 TTTTTCTCGAGACTTCTGACCGTGCCGG CR-050 TTTTTTCATATGTCGGTGGACGCCGG CR-051 TTTTTTCTCGAGTGTCCCCCCAGCAGTTG CTCG CR-053 TTTTTTCTCGAGTGTCTCCCCCAGCAGTTG CR-083 TTTTTTCATATGAGCAGCACCGCACTTCG CR-084 TTTTTTCTCGAGCCGTGCCCCGAGGAACG CR-085 TTTTTTCTCGAGCCGTGCCCCGAGGAACG CR-086 TTTTTTCTCGAGCCGTGCCCCGAGGAACG CR-087 CCGAGCACTGCCCCGAGGAACG CR-088 TTTTTTCTCGAGCCGTGCCCCGAGGAACG CR-089 TTTTTTCTCGAGCCGTGCCCCGAGGAACG CCGAGTGCCCCGAGGAACG CCGAGTGCCCCGAGGAACA CCGAGTGCCCCGAGCACACA CCGAGTGCCCCGAGCACACA CCGAGTGCCCCGAGCACACA CCGAGTGCCCCGAGCACACACA CCGAGTGCCCCCGAGCACACA CCGAGTGCCCCGAGCACACACA CCGAGTGCCCCGAGCACACACA CCGAGTGCCCCGAGCACACACA CCGAGTGCCCCGAGCACACACA CCGAGTGCCCCGAGCACACACA CCGAGTGCCCCGAGCACACACACA CCGAGTGCCCCGAGCACACACACA CCGAGTGCCCCGAGCACACACACACA CCGAGTGCCCCGAGCACACACACACACACACACACACACA
CR-050 TTTTTCATATGTCGGTGGACGCCGG Cebador directo para la amplificación de SCO5125. El sitio Ndel está subrayado. CR-051 TTTTTCCTCGAGTGTCTCCCCCAGCAGTTG CEbador inverso para la amplificación de SCO5125. El sitio Xhol está subrayado. CR-083 TTTTTTCATATGAGCAGCACCGCACTTCG SCO5128. El sitio Xhol está subrayado. CR-084 TTTTTTCTCGAGCCGTGCCCCGAGGAACG Cebador inverso para la amplificación de SCO6128. El sitio Ndel está subrayado. CR 081 TTTTTTCATATGGTGGTCATGATGGAACA Cebador directo para la amplificación de GTGCGC SCO6129. El sitio Ndel está subrayado. CR 082 TTTTTCTCGAGTTGCTCTCCTAGGAGAC Cebador inverso para la amplificación de GTCCAG SCO6129. El sitio Ndel está subrayado.
CR-050 TTTTTCATATGTCGGTGGACGCCGG Cebador directo para la amplificación de SCO5125. El sitio Ndel está subrayado. CR-051 TTTTTCTCGAGTGTCTCCCCCAGCAGTTG Cebador inverso para la amplificación de SCO5125. El sitio Xhol está subrayado. CR-083 TTTTTTCATATGAGCAGCACCGCACTTCG Cebador directo para la amplificación de SCO6128. El sitio Ndel está subrayado. CR-084 TTTTTTCTCGAGCCGTGCCCCGAGGAACG Cebador inverso para la amplificación de C SCO6128. El sitio Xhol está subrayado. CR 081 TTTTTTCATATGGTGGTCATGATGGAACA Cebador directo para la amplificación de GTGCGC SCO6129. El sitio Ndel está subrayado. CR 082 TTTTTCTCGAGTTGCTCTCCTAGGAGAC Cebador inverso para la amplificación de GGTCCAG SCO6129. El sitio Xhol está subrayado.
CR-051 TTTTTCTCGAGTGTCCCCCAGCAGTTG CR-083 TTTTTTCTCGAGCCGTGCCCCGAGGACG CR-084 TTTTTTCTCGAGCCGTGCCCCGAGGAACG CR 081 TTTTTTCATATGGTGGTCATGATGGAACA GTGCG CR 082 TTTTTTCTCGAGTTGCTCCTCTAGGAGAC CR 082 TTTTTTCTCGAGTTGCTCTCCTAGGAGAC GGTCCAG CR-084 TTTTTTCTCGAGTTGCTCTCCTAGGAGAC CCBador inverso para la amplificación de SCO6128. El sitio Xhol está subrayado. Cebador directo para la amplificación de SCO6128. El sitio Xhol está subrayado. Cebador directo para la amplificación de SCO6129. El sitio Ndel está subrayado. Cebador inverso para la amplificación de SCO6129. El sitio Ndel está subrayado. Cebador inverso para la amplificación de SCO6129. El sitio Xhol está subrayado.
CR-051 TTTTTCCCGAGTGTCCCCCAGCAGTTG CTCG CR-083 TTTTTTCATATGAGCAGCACCGCACTTCG CR-084 TTTTTTCCCGAGCCGTGCCCCGAGGAACG CR 081 TTTTTCATATGGTGGTCATGATGAACA GTGCGC CR 082 TTTTTTCCCGAGTTGCTCCCCAGGAACA GGTCCAG CCCGCGTGCCCCAGGAACA CCCCGAGGAACA CCCGAGGAACA CCCCGAGGAACA CCCCGAGGAACA CCCCGAGGAACA CCCCGAGGAACA CCCCGAGGAACA CCCCGAGGAACA CCCCGAGGAACA CCCCGAGGAACA CCCCGAGGAACA CCCCCGAGGAACA CCCCCGAGGAACA CCCCCGAGGAACA CCCCCCCC
CR-083 TTTTTTCATATGAGCAGCACCGCACTTCG CR-084 TTTTTTCTCGAGCCGTGCCCCGAGGAACG CR 081 TTTTTTCATATGGTGGTCATGATGAGCACC CR 082 TTTTTTCTCGAGTTGCTCCTAGGAGAC CR 082 TTTTTTCTCGAGTTGCTCTCTAGGAGAC GGTCCAG CTCG CTC
CR-083 TTTTTTCATATGAGCAGCACCGCACTTCG CR-084 TTTTTTCTCGAGCCGCGCGCGCACTTCG CR 081 TTTTTTCATATGGTGGTCATGATGGAACA GTGCGC CR 082 TTTTTTCTCGAGTTGCTCCTAGGAGAC GGTCCAG GGTCCAG Cebador directo para la amplificación de SCO6128. El sitio Xhol está subrayado. Cebador directo para la amplificación de SCO6129. El sitio Ndel está subrayado. Cebador inverso para la amplificación de SCO6129. El sitio Xhol está subrayado. CEDAGOR SCO6129. El sitio Xhol está subrayado.
CR-084 TTTTTTCTCGAGCCGTGCCCCGAGGAACG CR 081 TTTTTTCATATGGTGGTCATGATGGAACA GTGCGC CR 082 TTTTTTCTCGAGTTGCTCCTAGGAGAC GGTCCAG GGTCCAG SCO6128. El sitio Ndel está subrayado. Cebador directo para la amplificación de SCO6129. El sitio Ndel está subrayado. Cebador inverso para la amplificación de SCO6129. El sitio Ndel está subrayado.
CR-084 TTTTTTCTCGAGCCGTGCCCCGAGGAACG C SCO6128. El sitio Xhol está subrayado. CR 081 TTTTTTCATATGGTGGTCATGATGGAACA GTGCGC CR 082 TTTTTTCTCGAGTTGCTCCTAGGAGAC GGTCCAG GGTCCAG Cebador inverso para la amplificación de SCO6129. El sitio Ndel está subrayado. Cebador inverso para la amplificación de SCO6129. El sitio Xhol está subrayado.
C SCO6128. El sitio Xhol está subrayado. CR 081 TTTTTTCATATGGTGGTCATGATGGAACA Cebador directo para la amplificación de GTGCGC SCO6129. El sitio Ndel está subrayado. CR 082 TTTTTTCTCGAGTTGCTCTCCTAGGAGAC Cebador inverso para la amplificación de GGTCCAG SCO6129. El sitio Xhol está subrayado.
CR 081 TTTTTTCATATGGTGGTCATGATGGAACA Cebador directo para la amplificación de SCO6129. El sitio Ndel está subrayado. CR 082 TTTTTCTCGAGTTGCTCTCCTAGGAGAC Cebador inverso para la amplificación de GGTCCAG SCO6129. El sitio Xhol está subrayado.
GTGCGC SCO6129. El sitio Ndel está subrayado. CR 082 TTTTTCTCGAGTTGCTCTCTAGGAGAC Cebador inverso para la amplificación de SCO6129. El sitio Xhol está subrayado.
CR 082 TTTTTTCTCGAGTTGCTCCTAGGAGAC Cebador inverso para la amplificación de SCO6129. El sitio Xhol está subrayado.
GGTCCAG SCO6129. El sitio Xhol está subrayado.
,
CR-058 TTTTTTCATATGAACACGACGGAACTGGC Cebador directo para la amplificación de
C SCO6235. El sitio Ndel está subrayado.
CR-059 TTTTTTCTCGAGGCGGTCGTTGTACG Cebador inverso para la amplificación de
T SCO6235. El sitio Xhol está subrayado.
CR-060 TTTTTTCATATGGGCCCGTTGAGTGGG Cebador directo para la amplificación de
SCO6236. El sitio Ndel está subrayado.
CR-061 TTTTTTCTCGAGTGAGGCTCCTCGCATCC Cebador inverso para la amplificación de
GC SCO6236. El sitio Xhol está subrayado.
CR-011 TTTTTCATATGGTGGGCGACGAGGTTCA Cebador directo para la amplificación de
G SCO6629. El sitio Ndel está subrayado.
CR-012 TTTTTTCTCGAGTCTCTCCCAACAGCTT Cebador inverso para amplificar <i>SCO6629</i> . El
CTCG sitio Xhol está subrayado.
CR-013 TTTTTTCATATGAACGCTGAAGCAAAGCG Cebador directo para la amplificación de
C SCO6630. El sitio Ndel está subrayado.
CR-014 TTTTTTCTCGAGGCGTGCCGCGAACTCCA Cebador inverso para amplificar <i>SCO6630</i> . El
C sitio Xhol está subrayado.
CR-077 TTTTTTCATATGGTGAAGCTCGGTC Cebador directo para la amplificación de
CGG SCO/615. El sitio Ndel esta subrayado.
CR-078 TTTTTTCTCGAGTGAGTACTCCTTGCGCAT Cebador inverso para la amplificación de
GCGG SCO7615. El sitio Xhol está subrayado.

CR-079	TTTTT <u>CATATG</u> AGCACCACCGACGTCC	Cebador directo para la amplificación de
CK-079		SCO7616. El sitio Ndel está subrayado.
CR-080	TTTTTT <u>CTCGAG</u> TTCCGTTCCCTTCCTGCG	Cebador inverso para la amplificación de
CK-080	GC	SCO7616. El sitio Xhol está subrayado.
CR-005	CACTCCCCTTGTTCCACAGC	Cebador directo para amplificar insertos en el
		sitio de corte de las enzimas Ndel y Xhol.
CR-006	CGACTCTAGCTAGAGGTACGGGC	Cebador inverso para amplificar insertos en el
		sitio de corte de las enzimas Ndel y Xhol.

Tabla M9. Oligonucleótidos diseñados para comprobación por qRT-PCR de algunos de los genes seleccionados en el análisis RNAseq de la sobreexpresión del gen *SCO4441*.

		1 1
Cebador	Secuencias (5'- 3')	Aplicación
CR168	TGATGCAGATGGCGAAGG	Cebador directo para la amplificación de scr1 (SCO4441)
CR169	CAGGCCGGTGATGATCTG	Cebador inverso para amplificación de scr1 (SCO4441)
CR176	TGACCACCGACGATCTG	Cebador directo para la amplificación de actIORF3 (SCO5089)
CR177	AGTCGTACCCGATGTCC	Cebador inverso para amplificación de actIORF3 (SCO5089)
RCD010	GAGTTCGGCTTCTTCGG	Cebador directo para la amplificación de rpsL (SCO4659)
RCD011	CTTCTCCTTCTTGGCGC	Cebador inverso para amplificación de gen rpsL (SCO4659)

M6 Introducción de DNA en microorganismos

M6.1 Transformación en Streptomyces

El método utilizado para transformar *Streptomyces* fue el descrito por Kieser y sus colaboradores (Kieser, 2000). Se obtuvieron protoplastos que fueron transformados con los distintos plásmidos demetilados (obtenidos a partir de la cepa de *E. coli* ET12567) y se regeneraron en placas de R2YE. Tras 24 horas de crecimiento se añadió una cobertera del antibiótico correspondiente para la selección de los transformantes.

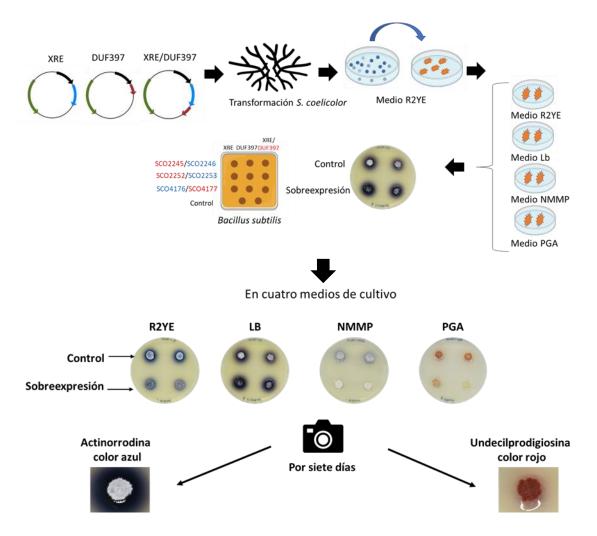
Para obtener los protoplastos se cultivaron las distintas cepas inoculando 5x10⁵ esporas/mL en 25 mL de medio YEG durante 36 horas. Tras recoger las células por centrifugación, se trataron con solución P con lisozima (2 mg/mL) hasta que se obtuvieron los protoplastos (37 °C, 30 min).

Solución P: TES 5,73 g/L; sacarosa 103 g/L; $Cl_2Mg 6H_2O 2,03$ g/L; $K_2SO_4 0,25$ g/L; $CaCl_2 2H_2O 3,68$ g/L; elementos traza (empleamos los del R2YE) 2 mL/L; pH 7,2. Tras autoclavar añadir 5 mL de $KH_2PO_4 1$ % por litro.

M6.2 Transformación de E. coli

Para la transformación de *E. coli* DH5 α y ET12567 con plásmidos, se realizaron células competentes de *E. coli* DH5 α y ET12567 siguiendo el protocolo descrito por Hanahan (Hanahan, 1983).

M6.3 Conjugación interespecífica


El proceso de conjugación se llevó a cabo entre *E. coli* ET12567 pUZ8002 con el plásmido de interés y las diferentes cepas de *Streptomyces* según el protocolo descrito en (Gust et al., 2003).

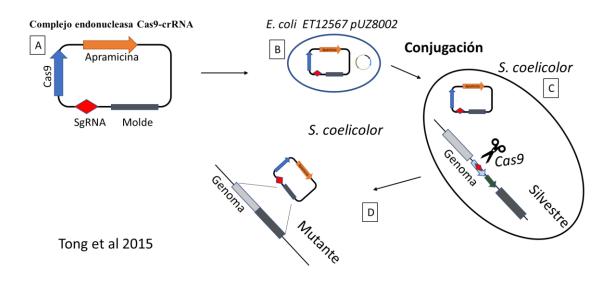
La selección de colonias de *Streptomyces* portadoras del vector de interés se realizó empleando el antibiótico correspondiente más ácido nalidíxico.

M7 Sobreexpresión de los 6 sistemas XRE/DUF seleccionados

Para este fin, se utilizaron los plásmidos ya construidos para sobreexpresar estos seis sistemas (tabla M3) y se sobreexpresaron en *S. coelicolor* en medio solido R2YE, posteriormente se realizaron parches de cinco clones de cada uno de los genes sobreexpresados y de esos parches se eligió dos clones y se sembraron nuevamente en cuatro medios de cultivo solidos: R2YE, LB, NMMP y PGA (es un medio optimizado para la producción de undecilprodigiosina).

Subsiguientemente se utilizaron esos parches para sembrar nuevamente en los cuatro medios de cultivo, dos clones de los genes sobreexpresados junto a dos clones del control (que es *S. coelicolor* con el plásmido vacío). Además, también se utilizó estos parches para realizar un antibiograma frente a *Bacillus subtilis* neoR (figura M3) (se explica la metodología en el siguiente apartado). Después de tener el montaje total del experimento, se monitoreó fotográficamente la producción de los antibióticos coloreados actinorrodina azul y undecilprodigiosina rojo, durante siete días (figura M3).

Figura M3. Montaje del ensayo de sobreexpresión de los 6 sistemas XRE/DUF seleccionados.


M8 Antibiograma

Con los parches obtenidos del ensayo de sobreexpresión de los 6 sistemas XRE/DUF seleccionados, se realizaron tacos de 0.7cm de diamentro y se enfrentaron a *Bacillus subtilis* neoR. Se utilizó un cultivo de medio líquido de *Bacillus subtilis* neoR con una densidad óptica de 0.2 para inocular 400 µL de agar blando, que posteriormente fue colocado sobre placas Petri cuadradas con medio YEPD. Posteriormente se colocaron sobre estas placas con el organismo testigo *Bacillus subtilis* neoR, los tacos obtenidos de los parches de la sobreexpresión de los seis sistemas en los cuatro medios de cultivo R2YE, LB, NMMP y PGA, todo se realizó por duplicado. Las placas se mantuvieron por 5

horas a 4°C para favorecer la difusión de metabolitos que pudieran estar presentes en los tacos y seguido a esto se incubaron a 30 °C durante 48 horas.

M9 Utilización del sistema CRISPR-Cas9 para la deleción de los sistemas XRE/DUF397

El sistema de mutación CRISPR-Cas9 empleado durante este trabajo fue el desarrollado por Tong y colaboradores (figura M4) (Tong et al., 2015).

Figura M4. Sistema CRISPR-Cas9. **(A)** Plásmido pCRISPR-Cas9 Sg-guía y molde, **(B)** Plásmido introducido en cepa *E coli* conjugativa. **(C)** La Cas9 corta el DNA de doble cadena en el sitio indicado por la Sg. **(D)** Reparación directa por homología, obtención del mutante.

M9.1 Elección y construcción de la secuencia guía

Inicialmente se utilizó la página web http://staff.biosustain.dtu.dk/laeb/crispy scoeli/ que es un buscador de objetivos Cas9 de *S. coelicolor*. En esta página se introdujeron los genes de interés a delecionar. En este caso, el objetivo era delecionar de forma conjunta ambos genes de los sistemas XRE/DUF397 seleccionados, pero las guías se buscaron en los genes XRE que son los genes más grandes y por ende tenían más opciones. La página arrojó varias opciones de 20 nucleótidos que servían de guía para producir la rotura de la doble cadena de DNA por Cas 9 en cada uno de los genes XRE. Dentro de todas las

secuencias posibles dentro de cada gen, se seleccionaron aquellas sin más coincidencias exactas en el genoma y con el menor número de coincidencias parciales tanto en el conjunto de la guía como en los últimos 13 nucleótidos, teóricamente los más específicos.

A las secuencias seleccionadas se les eliminó el NGG final necesario para el corte que no se puede incluir en la guía; y a partir de dichas secuencias se diseñó un oligonucleótido directo específico para cada caso. En cuanto al oligonucleótido reverso, se utilizó el mismo para todos los casos. Todos los oligonucleótidos se detallan en la Tabla M10.

Tabla M10. Oligonucleótidos diseñados para la mutación de los sistemas XRE/DUF397 seleccionados.

CRO30 CATGCCATGGGCGGTCGAGTCGCTTT CGTAGTTTTAGAGCTAGAAATAGC CR-017 TCCTGGACAAAACTGAGTTC CATGCCATGGTCGTGCCGCAACCATG CTCTGTTTTAGAGCTAGAAATAGC CR-092 CR-093 TCGTGCCGCAACCATGCTC CR-093 TCGTGCCGCAACCATGCTC CR-116 CATGCCATGGTCGGACAACCATGCTC CATGCCCATGGTCGTGCCGCAACCATGCTC CTCTGTTTTAGAGCTAGAAATAGC CR-093 TCGTGCCGCAACCATGCTCT CATGCCCATGGTCGGACAACCATGCTCT CATGCCCATGGTCGGACAACCATGCTCT CATGCCCATGGTCGGACAACCATGCTCT CATGCCCATGGTCGGACAACCATGCTCT CATGCCCATGGTCGGACAACCATGCTCT CATGCCCATGGTCGGACAGAATGACG CATGCCCATGGTCGGACAGAATGACG CATGCCCATGGTCGGACAGAATGACG CATGCCATGGTCGGACAGAATGACG CATGCCCATGGTCGGACAGAATGACG CATGCCCATGGTCGGACAGAATGACG CATGCCCATGGTCGGACAGAATGACG CCebador directo para la construcción de sgRNA SCO4176. Secuencia específica SgRNA SCO4176. Secuencia específica SgRNA SCO4176. Secuencia específica SgRNA SCO4176. Secuencia específica Sconegrita y cursiva. El sitio Ncol está subra Cebador directo para verificar plásmido Cas9-sg2253. CCEbador directo para la construcción de sgRNA SCO4176. Secuencia específica SgRNA SCO4176. Secuencia específica Sconegrita y cursiva. El sitio Ncol está subra Cebador directo para verificar plásmido Cas9-sg2253.	
CR-017 CR-017 TCCTGGACAAAACTGAGTTC CR-092 CATGCCATGGTCCGCAACCATG CTCTGTTTTAGAGCTAGAAATAGC CR-093 TCGTGCCGCAACCATGCTC CR-093 CATGCCATGGTCGGACAACCATGCTC CR-094 CR-095 CR-095 CR-096 CR-097 CR-097 CR-097 CR-098 CR-098 CR-099 CATGCCATGGTCGGACAACCATGCTCT CR-099 CATGCCATGGTCGGACAACCATGCTCT CATGCCCATGGTCGGACAACCATGCTCT CATGCCCATGGTCGGACAGAATGACGCTCT CATGCCCATGGTCGGACAGAATGACGCTCT CATGCCATGGTCGGACAGAATGACGCTCT CATGCCCATGGTCGGACAGAATGACGCTCT CATGCCCATGGTCGGACAGAATGACGCTCT CATGCCCATGGTCGGACAGAATGACGCTCT CATGCCCATGGTCGGACAGAATGACGCTCT CATGCCCATGGTCGGACAGAATGACGCTCTCT CATGCCCATGGTCGGACAGAATGACGCTCTCT CATGCCCATGGTCGGACAGAATGACGCTCTCT CATGCCCATGGTCGGACAGAATGACGCTCTCT CATGCCCATGGTCGGACAGAATGACGCTCTCT CATGCCCATGGTCGGACAGAATGACGCTCTCTCTCTCTCT	e SCO224
CR-017 TCCTGGACAAAACTGAGTTC Cas9-sg2246. CATGCCATGGTCGTGCCGCAACCATG CTCTGTTTTAGAGCTAGAAATAGC CR-093 TCGTGCCGCAACCATGCTCT CR-116 CATGCCATGGTCGGACAACCATGCTCT CATGCCATGGTCGGACAACCATGCTCT CATGCCATGGTCGGACAACCATGCTCT CATGCCATGGTCGGACAACCATGCTCT CATGCCATGGTCGGACAACCATGCTCT CATGCCATGGTCGGACAGAATGACGCCTCT CATGCCATGGTCGGACAGAATGACGCCTCT CATGCCATGGTCGGACAGAATGACGCCTCT CATGCCATGGTCGGACAGAATGACGCCTCT CATGCCATGGTCGGACAGAATGACGCCTCT CATGCCATGGTCGGACAGAATGACGCCTCT CATGCCATGGTCGGACAGAATGACGCCTCT CATGCCATGGTCGGACAGAATGACGCCTCTCT CATGCCATGGTCGGACAGAATGACGCCTCTCTCTCTCTCT	
CR-092 CATGCCATGGTCGTGCCGCAACCATG CTCTGTTTTAGAGCTAGAAATAGC CR-093 TCGTGCCGCAACCATGCTCT CR-093 TCGTGCCGCAACCATGCTCT CATGCCATGGTCGTGCCGCAACCATGCTCT CR-093 TCGTGCCGCAACCATGCTCT CATGCCATGGTCGGACAACCATGCTCT CATGCCATGGTCGGACAACCATGCTCT CATGCCATGGTCGGACAGAATGACG CATGCCCATGGTCGGACAGAATGACG CATGCCATGGTCGGACAGAATGACG CATGCCCATGGTCGGACAGAATGACG CATGCCCATGGTCGACAGAATGACG CATGCCCATGGTCGGACAGAATGACG CATGCCCATGGTCGACAGAATGACG CATGCCCATGCTCATGACAGAATGACG CATGCCCATGGTCGACAGAATGACG CATGCCCATGGTCGACAGAATGACG CATGCCCATGCTCATGACAGAATGACG CATGCCCATGCTCATGACAGAATGACG CATGCCCATGCTCATGACAGAATGACG CATGCCCATGCTCATGACAGAATGACG CATGCCCATGCTCATGACAGAATGACG CATGCCCATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGAC	orayado.
CR-092 CR-092 CATGCCATGGTCGTGCCGCAACCATG CTCTGTTTTAGAGCTAGAAATAGC CR-093 TCGTGCCGCAACCATGCTCT CATGCCATGGTCGTGCCGCAACCATG crosspan="2">	s pCRISPI
CR-092 CR-092 CR-093 CR-093 CR-093 CR-093 CR-094 CR-116 CR-116 CR-116 CATGCCATGGTCGGACCGCAACCATGCTCT CATGCCCATGGTCGGACCAGAATGACG CATGCCATGGTCGGACAGAATGACG CATGCCCATGGTCGGACAGAATGACG CATGCCCATGGTCGACAGAATGACG CATGCCATGGTCATGACAGAATGACG CATGCCCATGGTCATGACAGAATGACG CATGCCCATGGTCATGACAGAATGACG CATGCCCATGGTCATGACAGAATGACGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGACAGAATGA	
CR-092 CTCTGTTTTAGAGCTAGAAATAGC sgRNA SCO2253. Secuencia específica de en negrita y cursiva. El sitio Ncol está su Cebador directo para verificar plásmido Cas9-sg2253. CR-093 CATGCCATGGTCGGACAGAATGACG CGAAAGTTTTAGAGCTAGAAATAGC cGAAAGTTTTAGAGCTAGAAATAGC sgRNA SCO2253. Secuencia específica de en negrita y cursiva. El sitio Ncol está subra negrita y cursiva. El sitio Ncol está subra	l casete d
CR-093 TCGTGCCGCAACCATGCTCT Cas9-sg2253. CATGCCATGGTCGGACAGAATGACG CGAAAGTTTTAGAGCTAGAAATAGC CGAAAGTTTTAGAGCTAGAAATAGC en negrita y cursiva. El sitio Ncol está sul construcción de sgRNA SCO4176. Secuencia específica S negrita y cursiva. El sitio Ncol está subra	e SCO225
CR-093 TCGTGCCGCAACCATGCTCT Cas9-sg2253. Cebador directo para la construcción de sgRNA SCO4176. Secuencia específica S negrita y cursiva. El sitio Ncol está subra	orayado.
CATGCCATGGTCGGACAGAATGACG CR-116 CATGCCATGGTCGGACAGAATGACG CGAAAGTTTTAGAGCTAGAAATAGC CGAAAGTTTTAGAGCTAGAAATAGC Cas9-sg2253. Cebador directo para la construcción de sgRNA SCO4176. Secuencia específica S negrita y cursiva. El sitio Ncol está subra	s pCRISPI
CR-116 CATG <u>CCATGG</u> TCGGACAGAATGACG sgRNA SCO4176. Secuencia específica S negrita y cursiva. El sitio Ncol está subra	
CR-116 CGAAAGTTTTAGAGCTAGAAATAGC sgRNA SCO4176. Secuencia específica S negrita y cursiva. El sitio Ncol está subra	l casete d
negrita y cursiva. El sitio Ncol está subra	CO4176 e
Cebador directo para verificar plásmido	yado.
CR-117 TCGGACAGAATGACGCGAAA	s pCRISPI
CR-117 TCGGACAGAATGACGCGAAA Cas9-sg4176.	
Cebador directo para la construcción de	l casete d
CATG <u>CCATGG</u> ACGGCCGGTTGGCGG CR-098 CACAAGTTTTAGAGCTAGAAATAGC sgRNA SCO4678. Secuencia específica S	CO4678 e
negrita y cursiva. El sitio Ncol está subra	yado.
Cebador directo para verificar plásmido CR-099 ACGGCCGGTTGGCGGCACAA	s pCRISPI
Cas9-sg4678.	
Cebador directo para la construcción de CATGCCATGG CGTCGCCCAATGGTGG	
CR-108 sgRNA SCO6236. Secuencia específica d	l casete d
en negrita y cursiva. El sitio Ncol está su	

CR-109	CGTCGCCCAATGGTGGCAGT	Cebador directo para verificar plásmidos pCRISPR-	
CK-109	CGTCGCCCAATGGTGGCAGT	Cas9-sg6236.	
		Cebador directo para la construcción del casete de	
CR-124	CATG <u>CCATGG</u> AGCAGCCCTGTGACGT	sgRNA SCO7615. Secuencia específica de SCO7615	
Α	AGTG GTTTTAGAGCTAGAAATAGC	en negrita y cursiva. El sitio Ncol está subrayado.	
CD 135	ACCACCCCTCTCACCTACTC	Cebador directo para verificar plásmidos pCRISPR-	
CR-125	AGCAGCCCTGTGACGTAGTG	Cas9-sg7615.	
CARAFA	ACGCC <u>TACGTA</u> AAAAAAGCACCGACT	Cebador reverso construcción del casete sgRNA. El	
SAM51	CGGTGCC	sitio de restricción SnaBl está subrayado.	
CARACEC	TCCACACCTCCCACCCCAT	Cebador para verificar la secuenciación de casetes	
SAM056	TCCACACGTGGCACCGCGAT	sgRNA.	

Para la amplificación de cada una de las guías se utilizó como DNA molde el propio plásmido pCRISPR-Cas9, que porta la guía completa con excepción de los 20 nucleótidos que determinan el sitio de corte. Las condiciones de la PCR fueron las que se muestran a continuación en la tabla M11:

Tabla M11. Condiciones de PCR para amplificar la guía

Paso del ciclo	Temperatura	Tiempo	Ciclos
Inicio	98 °C	30 s	1
Desnaturalización	00.86	40	
Desnaturalización	98 °C	10 s	
Hibridación	48 °C	30 s	10
Extensión	72 °C	15 s	
Desnaturalización	98 °C	30 s	
Hibridación	55 °C	30 s	15
Extensión	72 °C	15 s	
Extensión final	72 °C	10 min	1

Las amplificaciones para cada sistema generaron fragmentos de 123 pares de bases, que se purificaron, se cortaron con las enzimas Ncol y SnaBl (cuyos sitios de corte están subrayados en las secuencias de los oligonucleótidos Tabla M10), y se ligaron en el vector pCRISPR-Cas9 previamente digerido con estas mismas enzimas, La ligación resultante se transformó en *E. coli* DH5α, y se seleccionaron las construcciones correctas mediante PCR y secuenciación. De este modo se generaron los plásmidos intermediarios pCRISPR-Cas9- sgXXXX (XXXX corresponde al gen al que se dirige la guía) (Tabla M12).

Tabla M12. plásmidos intermediarios pCRISPR-Cas9- sgXXXX*

Vector	Características	Referencias
pCRISPR-Cas9	Plásmido bifuncional <i>Escherichia - Streptomyces</i> . Este plásmido incluye el gen cas9 de <i>Streptococcus pyogenes</i> bajo el promotor <i>tipA</i> , y el casete sgRNA bajo el	(Tong et al., 2015)
	promotor <i>ermE</i> . Termosensible. Resistente: Apramicina, Tiostreptona.	
pCRISPR-Cas9-sg2246	Derivado pCRISPR-Cas9. sgRNA dirigido al sistema SCO2246/45.	
pCRISPR-Cas9-sg2253	Derivado de pCRISPR-Cas9. sgRNA dirigido al sistema SCO2253/52.	
pCRISPR-Cas9-sg4678	Derivado de pCRISPR-Cas9. sgRNA dirigido al sistema SCO4678/79.	Este trabajo
pCRISPR-Cas9-sg6236	Derivado pCRISPR-Cas9. sgRNA dirigido al sistema SCO6236/35.	
pCRISPR-Cas9-sg7615	Derivado de pCRISPR-Cas9. sgRNA dirigido al sistema SCO7615/16.	
pUZ8002	Transferencia de plásmido por conjugación (operón tra).	(Paget et al.,
	Resistencias: Neomicina.	1999)

^{*} XXXX corresponde al gen al que se dirige la guía

M9.2 Obtención de las secuencias molde

Después de integrada la secuencia guía, se procedió a insertar el molde de DNA necesario para reparar la rotura de doble cadena. Este molde consiste en la unión de las dos secuencias de 1 kb que flanquean a los genes que se van a eliminar. En este punto se usó una metodología diferente a la propuesta por (Tong et al., 2015) en la cual se llevada a cabo a través de la técnica de *Gibson Assembly* en el sitio de corte de la enzima Stul. En este caso se amplificaron los fragmentos flanqueantes de 1Kb por PCR con oligonucleótidos específicos, que luego permitieron realizar una PCR solapante para obtener el molde completo de 2Kb (figura M5). La metodología se describe en (Antoraz Martín, 2018).

En la Tabla M13 se presentan los oligonucleótidos diseñados para construir los moldes de los sistemas XRE/DUF397 para pCRISPR-Cas9.

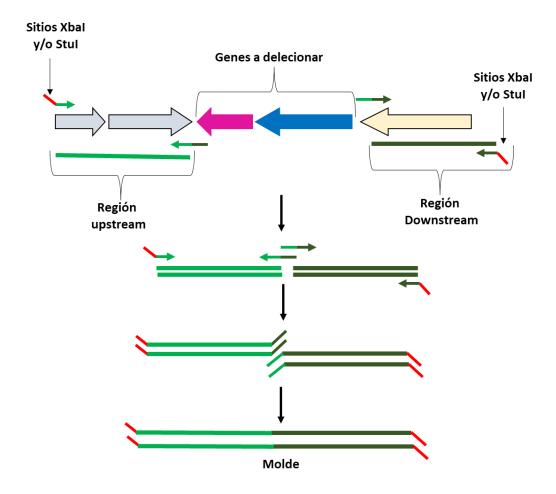


Figura M5. Esquema de la construcción del molde para el sistema CRISPR-Cas9

Tabla M13. Oligonucleótidos específicos diseñados para amplificar molde de los sistemas XRE/DUF para pCRISPR-Cas 9.

Cebador	Secuencia (5'- 3')	Aplicación
CR-070	TTTTTT <u>AGGCCTTCTAGA</u> CCACGGGGTAGGGC	Cebador directo para la construcción del
	TGC	molde. Secuencia homóloga aguas arriba
		del SCO2245 para pCRISPR-Cas9.
		Los sitios Stul y Xbal están subrayados.
CR-071	GTCCGAGTGACACAGTGGCCCTCCGCCAGTG	Cebador inverso para la construcción del
	GCATACCGG	molde. Secuencia homóloga aguas arriba
		del SCO2245 para pCRISPR-Cas9.
CR-072	CCGGTATGCCACTGGCGGAGGGCCACTGTGT	Cebador directo para la construcción del
	CACTCGGAC	molde. Secuencia homologa aguas abajo
		del SCO2246 para pCRISPR-Cas9.
CR-073	TTTTTT <u>AGGCCTTCTAGA</u> GACCCTGCGACCGA	Cebador inverso para la construcción del
	GTGATG	molde. Secuencia homóloga aguas abajo
		del SCO2246 para pCRISPR-Cas9.
		Los sitios Stul y Xbal están subrayados.
CR-074	GCAACGCATTCGGCACG	Cebador inverso para verificar el centro
		del molde del pCRISPR-Cas9-2246/45.

CR-075	CCAGGTCCGCCGCGACGA	Cebador directo para verificar el centro del molde del pCRISPR-Cas9-2246/45.
CR-094	TTTTTT <u>AGGCCTTCTAGA</u> TTCGTTCCGATGCTC GACGA	Primer directo para la construcción del molde. Secuencia homóloga aguas arriba del <i>SCO2252</i> para pCRISPR-Cas9.
CR-095	GTCGCGATACGACGCGTACGCCTTCGAGGCC ACGAAGAGC	Los sitios Stul y Xbal están subrayados. Cebador inverso para la construcción del molde aguas arriba del <i>SCO2252</i> para pCRISPR-Cas9.
CR-096	GCTCTTCGTGGCCTCGAAGGCGTACGCGTCGT ATCGCGAC	Cebador directo para la construcción del molde. Secuencia aguas abajo del <i>SCO2253</i> para pCRISPR-Cas9.
CR-097	TTTTTT <u>AGGCCTTCTAGA</u> CCTCATGGCGCTGTT CGT	Cebador inverso para la construcción del molde. Secuencia aguas abajo del <i>SCO2253</i> para pCRISPR-Cas9. Los sitios Stul y Xbal están subrayados.
CR-104	CGCCACCACCGGAGTAC	Cebador directo para verificar el centro del molde del pCRISPR-Cas9-2253/52.
CR-105	GGTCATGGAGAAGGCCGC	Cebador inverso para verificar el centro del molde del pCRISPR-Cas9-2253/52.
CR-118	TTTTTT <u>TCTAGA</u> CACTGGGTGCACAGCGTCAC	Primer directo para la construcción del molde. Secuencia aguas arriba del <i>SCO4176</i> para pCRISPR-Cas9. El sitio Xbal están subrayado.
CR-119	GCATAAACAGGGCCGGCCTCCCCCGGCTGT GGAATTTG	Cebador inverso para la construcción del molde. Secuencia homóloga aguas arriba del <i>SCO4176</i> para pCRISPR-Cas9.
CR-120	CAAATTCCACAGCCGGGAGGGAGGCCGGCCC TGTTTATGC	Cebador directo para la construcción del molde. Secuencia homologa aguas abajo del <i>SCO4177</i> para pCRISPR-Cas9.
CR-121	TTTTTT <u>TCTAGA</u> ACCAGGTGGATGTGGTGGTG	Cebador inverso para la construcción del molde. Secuencia homologa aguas abajo del <i>SCO4177</i> para pCRISPR-Cas9. El sitio Xbal está subrayado.
CR-122	CAACTCAAGCGGTGGCAAC	Cebador directo para verificar el centro del molde del pCRISPR-Cas9-4176/77.
CR-123	GAAGCCGTGCTCCGACTC	Cebador inverso para verificar el centro del molde del pCRISPR-Cas9-4176/77.
CR-100	TTTTTT <u>AGGCCT</u> GAGCGACTTGATGTCGGCGC	Cebador directo para la construcción del molde. Secuencia homóloga aguas arriba del <i>SCO4678</i> para pCRISPR-Cas9. El sitio Stul está subrayado.
CR-101	GTCGGCACGCAGGAGGTCAGACAGTCACCGT ACGTACCCG	Cebador inverso para la construcción del molde. Secuencia homóloga aguas arriba del <i>SCO4678</i> para pCRISPR-Cas9.
CR-102	CGGGTACGTACGGTGACTGTCTGACCTCCTGC GTGCCGAC	Cebador directo para la construcción del molde. Secuencia homóloga aguas abajo del <i>SCO4679</i> para pCRISPR-Cas9.
CR-103	TTTTTT <u>TCTAGA</u> TGGCGTAGTTCACGACGACG	Cebador inverso para la construcción del molde. Secuencia homóloga aguas abajo del <i>SCO4679</i> para pCRISPR-Cas9. El sitio Xbal está subrayado.
CR-106	CGATGGTCCGTACGCTGC	Cebador inverso para verificar el centro del molde del pCRISPR-Cas9-4678/79.
CR-107	CGTTGTTGGCCAGCTCGG	Cebador directo para verificar el centro del molde del pCRISPR-Cas9-4678/79.

CR-110	TTTTTT <u>AGGCCT</u> CAACCACGCCTACACCTGGT	Cebador directo para la construcción del molde. Secuencia homologa aguas arriba del <i>SCO6235</i> para pCRISPR-Cas9. El sitio Stul está subrayado.
CR-111	GCGGACGGTGGACAGTAAGATCGGTCGGGTC	Cebador inverso para la construcción del
CK-111		
	AGTGGTCCG	molde. Secuencia homóloga aguas arriba
		del SCO6235 para pCRISPR-Cas9.
CR-112	CGGACCACTGACCCGACCGATCTTACTGTCCA	Cebador directo para la construcción del
	CCGTCCGC	molde. Secuencia homóloga aguas abajo
		del SCO6236 para pCRISPR-Cas9.
CR-113	TTTTT <u>TCTAGA</u> CGGATGTCCTCACCGTGCAC	Cebador inverso para la construcción del
CIVILIS	TTTTT <u>TCTAGA</u> CGGATGTCCTCACCGTGCAC	molde. Secuencia homóloga aguas abajo
	—	
		de SCO6236 para pCRISPR-Cas9.
		El sitio Xbal está subrayado.
CR-114	GTGTCGGACAGCGCCGAG	Cebador inverso para verificar el centro
		del molde del pCRISPR-Cas9-6236/35.
CR-115	CCCGAACTCGCTGACGAG	Cebador directo para verificar el centro
		del molde del pCRISPR-Cas9-6236/35.
CR-126	TTTTTTAGGCCTTCCCGCGATCCCCAGGTGAC	Cebador directo para la del molde.
		Secuencia homóloga aguas arriba del
		SCO7615 para pCRISPR-Cas9.
		El sitio Stul está subrayado.
CD 137	CTCAACATCCCCCCTACCCCCCCCATTCT	
CR-127	GTGAAGATGCCCGGGTAGGCGGCGCCATTGT	Cebador inverso para la construcción del
	GACAGCGAC	molde. Secuencia homóloga aguas arriba
		del SCO7615 para pCRISPR-Cas9.
CR-128	GTCGCTGTCACAATGGCGCCGCCTACCCGGGC	Cebador directo para la construcción del
	ATCTTCAC	molde. Secuencia homóloga aguas abajo
		del SCO7616 para pCRISPR-Cas9.
CR-129	TTTTT <u>TCTAGA</u> CTGCTGAGCGCCGTCTGGTC	Cebador inverso para la construcción del
		molde. Secuencia homóloga aguas abajo
		de SCO7616 para pCRISPR-Cas9.
	•	El sitio Xbal está subrayado.
CR-130	CGGGGTGCTGCGCATGAG	Cebador inverso para verificar el centro
CIV 130	COGGGTGCTGCGCATGAG	del molde del pCRISPR-Cas9-7615/16.
CR-131	GCGGAGCGAGGGAAGGTC	•
CK-131	GCGGAGCGAGGGAAGGTC	Cebador directo para verificar el centro
		del molde del pCRISPR-Cas9-7615/16.
SAM-056	TCCACACGTGGCACCGCGAT	Cebador para la secuenciación de casetes
		sgRNA.
SAM-057	AGAGCATCACCGGCCTGTAC	Cebador directo para la secuenciación de
		moldes insertados en el sitio Xbal.
		Plásmido pCRISPR-Cas9.
SAM-058	CTAACGTCTGGAAAGACGACA	Cebador reverso para la secuenciación de
		moldes insertados en el sitio Xbal.
		plásmido pCRISPR-Cas9.
		p.asas p 511101 11 00051

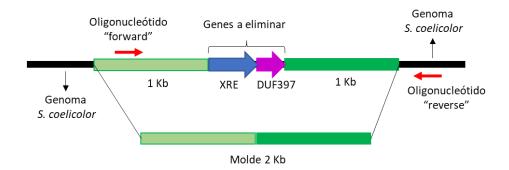
Mediante esta estrategia se generaron todos los moldes de los 6 sistemas XRE/DUF para introducir en los plásmidos intermediarios expuestos en la tabla M12. Después de introducir todos los moldes en cada plásmido correspondiente se construyeron los plásmidos finales que se muestran en la tabla M14.

Tabla M14. Plásmidos intermediarios pCRISPR-Cas9- sg-molde.

Vector	Características	Referencias
pCRISPR-Cas9-2246/45	Derivado de pCRISPR-Cas9-sg2246. Este plásmido incluye el molde de recombinación homóloga para secuencias adyacentes a los genes del sistema SCO2246/45.	Este trabajo
pCRISPR-Cas9-2253/52	Derivado de pCRISPR-Cas9-sg2253. Este plásmido incluye el molde de recombinación homóloga para secuencias adyacentes a los genes del sistema SCO2253/52.	Este trabajo
pCRISPR-Cas9-4678/79	Derivado de pCRISPR-Cas9-sg4678. Este plásmido incluye el molde de recombinación homóloga para secuencias adyacentes a los genes del sistema SCO4678/79.	Este trabajo
pCRISPR-Cas9-6236/35	Derivado de pCRISPR-Cas9-sg6236. Este plásmido incluye el molde de recombinación homóloga para secuencias adyacentes a los genes del sistema SCO6236/35.	Este trabajo
pCRISPR-Cas9-7615/16	Derivado de pCRISPR-Cas9-sg7615. Este plásmido incluye el molde de recombinación homóloga para secuencias adyacentes a los genes del sistema SCO7615/16.	Este trabajo

M9.3 Conjugación, eliminación del plásmido y comprobación de mutantes

Cuando se tuvieron listos y comprobados los plásmidos intermediarios pCRISPR-Cas9sgXXXX (con la guía) (Tabla M12) y el plásmido final pCRISPR-Cas9XXXX/XX (con la guía y el molde) (Tabla M14) para cada uno de los sistemas XRE/DUF397, fueron transformados en la cepa demetilante *E. coli* ET12567 pUZ8002. El plásmido pUZ8002 permite la transferencia de otros plásmidos conjugativos mediante conjugación interespecífica a *S. coelicolor*.


Para la conjugación se utilizaron los plásmidos intermediarios pCRISPR-Cas9sgXXXX, el plásmido final pCRISPR-Cas9XXXX/XX para cada sistema respectivamente y el pCRISPR-Cas9 vacío. El pCRISPR-Cas9sgXXXX y el pCRISPR-Cas9 fueron controles del ensayo. Se seleccionaron varias colonias de los conjugantes obtenidos para cada tipo de plásmido, las cuales se inocularon en TSB líquido y se mantuvieron a 37 °C durante 2 días para la eliminación del plásmido que tiene un origen de replicación termosensible.

Después de ese tiempo se comprobó que todas las células habían perdido los plásmidos pCRISPR-Cas9 conjugados, sembrando 200 μ L del cultivo en placas de R2YE y R2YE + Apra y dándolo por perdido si crecía en el primero y no en el segundo.

Para la comprobación de la obtención de los mutantes correctos, se aisló el DNA genómico de cada una de las cepas y de la cepa silvestre y se analizó la ausencia de los genes en los conjugantes obtenidos por PCR. Por cada posible mutante, se diseñó un oligonucleótido dentro del molde que se le proporcionó para la reparación homóloga en el genoma de *S. coelicolor* M145 y otro oligonucleótido del otro lado del gen eliminado por fuera del molde en el genoma de *S. coelicolor* M145 en la tabla M15 se muestran los oligonucleótidos diseñados para este fin y en la figura M6 se muestra el esquema de la comprobación de cepas mutantes de los sistemas XRE/DUF.

Tabla M15. Oligonucleótidos diseñados para comprobación de las cepas mutantes de los sistemas XRE/DUF397.

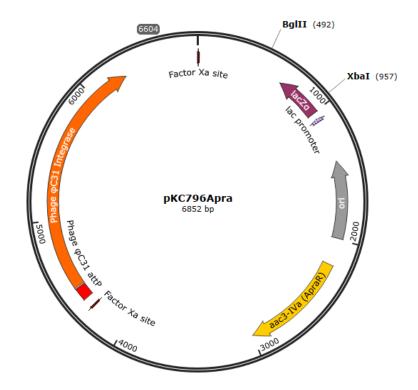
Cebador	Secuencia (5'- 3')	Aplicación
CR-070	TTTTTTAGGCCTTCTAGACCAC GGGGTAGGGCTGC	Cebador interno directo para verificar la deleción genómica de Δ2246/45.
CR-089	CACAGGGCTCTCCCGTGCC	Cebador externo inverso para verificar la deleción genómica de Δ2246/45.
CR-105	GGTCATGGAGAAGGCCGC	Cebador interno inverso para verificar la deleción genómica de Δ2253/52.
CR-141	GGCCATGCGGCACTGTTG	Cebador externo directo para verificar la deleción genómica de Δ2253/52.
CR-137	GATACGCGTGGGCCCTTC	Cebador externo directo para verificar la deleción genómica de $\Delta 4678/79$.
CR-138	CTGTGGTTCACCCCGGCG	Cebador interno inverso para verificar la deleción genómica de Δ4678/79.
CR115	CCCGAACTCGCTGACGAG	Cebador interno inverso para verificar la deleción genómica de Δ6236/35.
CR-134	TCGATGCGCTTCTTGGCG	Cebador externo directo para verificar la deleción genómica de Δ6236/35.
CR-139	GGTCCCGAGAGCGGCCAC	Cebador externo directo para verificar la deleción genómica $\Delta 7615/16$.
CR-140	CGAGTGGCACGGTGCATG	Cebador interno directo para verificar la deleción genómica de Δ7615/16.

Figura M6. Esquema del diseño de los oligonucleótidos, utilizados en la comprobación de las cepas mutantes de los sistemas XRE/DUF397. ■ gen XRE; ■ gen DUF397.

M10 Ensayos de complementación

Para los ensayos de complementación de los fenotipos de las cepas mutantes de los sistemas XRE/DUF397 Se diseñaron oligonucleótidos específicos con sitios de corte de las enzimas BgIII y XbaI para amplificar cada uno de los sistemas XRE/DUF397 delecionados en las cepas mutantes (tabla M16).

Tabla M16. Oligonucleótidos específicos para amplificar sistemas XRE/DUF delecionados.


Cebador	Secuencia (5'- 3')	Aplicación
CR-150	TTTTT <u>AGATCT</u> GTCTCTCGCCTC	Cebador directo para amplificar los genes SCO2246/45
	CTTCCG	bajo su propio promotor. El sitio BglII está subrayado.
CR-151	TTTTT <u>TCTAGA</u> CGTGCGTCCGAG	Cebador inverso para amplificar los genes
	GTAGAC	SCO2246/45 bajo su propio promotor. El sitio Xbal está subrayado.
CR-146	TTTTT <u>AGATCT</u> CGGATTCGGGG	Cebador directo para amplificar los genes SCO2253/52
	CCACCTC	bajo su propio promotor. El sitio BglII está subrayado.
CR-147	TTTTT <u>TCTAGA</u> AGTCCTCATCGC	Cebador inverso para amplificar los genes
	GGCAAC	SCO2253/52 bajo su propio promotor. El sitio Xbal
		está subrayado.
CR-144	TTTTT <u>AGATCT</u> CAGCCCCCAGGA	Cebador directo para amplificar los genes SCO4678/79
	ACGCAG	bajo su propio promotor. El sitio BglII está subrayado.
CR-145	TTTTT <u>TCTAGA</u> CTGTGGTTCACCC	Cebador inverso para amplificar los genes
	CGGCG	SCO4678/79 bajo su propio promotor. El sitio Xbal
		está subrayado.
CR-142	TTTTT <u>AGATCT</u> GACAGCGCCGA	Cebador directo para amplificar los genes SCO6236/35
	GCCGTAC	bajo su propio promotor. El sitio BglII está subrayado.
CR-143	TTTTT <u>TCTAGA</u> GGCGGGGCGTT	Cebador inverso para amplificar los genes
	TCCAGTG	SCO6236/35 bajo su propio promotor. El sitio Xbal está subrayado.

CR-148	TTTTT <u>AGATCT</u> GCGAGGGAAGG TCGAACC	Cebador directo para amplificar los genes SCO7615/16 bajo su propio promotor. El sitio BgIII está subrayado.
CR-149	TTTTT <u>TCTAGA</u> CCGGGAAGTGG TCCTTGC	Cebador inverso para amplificar los genes SCO7615/16 bajo su propio promotor. El sitio Xbal está subrayado.
CR-152	GTCGTGCTATCCGTAAGG	Cebador para la secuenciación de plantillas homológicas insertadas en el sitio BgIII. plásmido pKC796.
CR-153	CAGGAAACAGCTATGACC	Cebador para la secuenciación de plantillas homológicas insertadas en el sitio Xbal. plásmido pKC796.

Los plásmidos utilizados para las complementaciones son derivados del plásmido integrativo pKC796 (figura M7), al cual se le introdujo la secuencia de cada uno de los sistemas XRE/DUF397 bajo el control de su propio promotor (tabla M17).

Tabla M17. Plásmidos finales derivativos del plásmido integrativo pKC796, para ensayo de complementación de los sistemas XRE/DUF.

Vector	Características	Referencias	
	Plásmido bifuncional Escherichia - Streptomyces.	(Kuhstoss et al., 1991)	
pKC796	Integrativo (contiene fago φC31 integrasa). Resistencias:		
	Apramicina		
pKC2246/45	Derivado de pKC796. Este plásmido incluye los genes	Este trabajo	
prc2240/43	SCO2246/45 bajo su propio promotor.	Este trabajo	
pKC2253/52	Derivado de pKC796. Este plásmido incluye los genes	Este trabajo	
prc2233/32	SCO2253/52 bajo su propio promotor.	Este trabajo	
pKC4678/79	Derivado de pKC796. Este plásmido incluye los genes	Este trabajo	
prc-1076/73	SCO4678/79 bajo su propio promotor.	Late trabajo	
pKC6236/35	Derivado de pKC796. Este plásmido incluye los genes	Este trabajo	
prc0230/33	SCO6236/35 bajo su propio promotor.		
pKC7615/16	Derivado de pKC796. Este plásmido incluye genes	Este trabajo	
prc/015/10	SCO7615/16 bajo su propio promotor.	Lste trabajo	

Figura M7. Plásmido integrativo pKC796. Tomado de SnapGene https://www.snapgene.com/

M11 Producción de antibióticos

M11.1 Cuantificación en medio líquido de ACT y RED

Para la cuantificación de ACT y RED en medio líquido se parte de cultivos en matraces de 50 mL con 10 mL de medio de cultivo (NMMP; R2YE) por triplicado de la cepa a evaluar. El inóculo se realizó con una concentración de 10⁶ esporas/mL. Se tomaron muestras de 700 μL de cada matraz a los diferentes tiempos estudiados y se cuantificaron los antibióticos siguiendo un método colorimétrico modificado del descrito por Kieser (Kieser, 2000). De esa forma, las muestras fueron tratadas con KOH a una concentración final de 0,5 M e incubadas toda la noche a 4 °C. Posteriormente se centrifugaron y se midió la absorbancia de los sobrenadantes a 640 nm, y se calculó la concentración de ACT aplicando la ley de Lambert-Beer (coeficiente de extinción molar de la ACT: ε640 = 25320).

A su vez, el precipitado celular se lavó dos veces con HCl 0,5 M, y se resuspendió en HCl-metanol 0,5 M. Después de incubar 2 horas, se centrifugó y se midió la absorbancia a 530 nm para obtener los datos de concentración de RED (ε530=100500).

M12 Análisis de RNAseq

M12.1 Extracción de RNA

El análisis de RNAseq se realizó a partir de cultivos líquidos de las cepas S*scr1* (cepa que contiene un plásmido multicopia pNX4441) y la cepa control (que contiene un plásmido vacío pN702GEM3) ambas cepas son derivadas de la cepa *S. coelicolor* M145.

Las muestras se sembraron en matraces de 50 mL con 10 mL de medio NMMP, xilosa 1 %, fosfato 4,5 mM y neomicina 20 ug/mL, inoculados con 10⁶ esporas/mL. Por cada cepa se obtuvieron 3 réplicas técnicas para cada uno de los tiempos, 36 y 48 horas, (se tomaron dos matraces por replica). El micelio se trató con 2 mL de PBS y 4 mL de RNA Protect (Qiagen) antes de ser congelado a -20 °C.

La rotura del micelio se hizo incubando las muestras en TE con lisozima (15 mg/mL) a 37 °C durante 15 min, para posteriormente continuar la extracción de acuerdo con las especificaciones del *kit RNeasy Mini Kit* (Qiagen). La elución final se hizo en 50 μL de agua libre de RNAsas, y la cantidad y calidad del RNA mediante el equipo 2100 Bioanalyzer system, obteniéndose en todos los casos valores de RIN superiores a 9. El envío a Macrogen (Korea) se hizo precipitando el RNA con 0,25 volúmenes de NaCl (0,8M) y 3 volúmenes de etanol, según las indicaciones de la empresa.

M12.2 Librería, secuenciación y análisis

El análisis de RNAseq fue realizado por la empresa Macrogen, el equipo utilizado fue Novaseq 6000 Illumina, para limpiar las muestras del rRNA se utilizó el *kit Ribo-Zero Bacteria* y para obtener la librería de las muestras se utilizó la librería *Illumina Stranded Total RNA*. Las secuencias fueron generadas secuenciando ambos extremos *paired-end reads*.

El Dr. Juan Fernando Alzate Restrepo miembro del Centro Nacional de Secuenciación Genómica de la Universidad de Antioquia-Colombia, realizó los análisis estadísticos y el manejo de los datos en crudo, él se encargó de convertir los datos de las secuenciaciones obtenidas a formato FASTQ mediante el paquete bcl2fastq y de depositar los datos obtenidos en la base de datos NCBI SRA (BioSample accessions: SAMN31777774, SAMN31777775).

El análisis diferencial se realizó con la ayuda del programa RANA-seq (https://ranaseq.eu/) (Prieto & Barrios, 2019) y otros programas descritos en la tabla M18.

M.12.3 Programas bioinformáticos y páginas web empleados en la realización de este trabajo.

Para la realización del análisis bioinformático, el análisis diferencial del RNAseq y la caracterización de los sistemas XRE/DUF se utilizaron los programas bioinformáticos y páginas web, que se muestran en la tabla M18.

Tabla M18. Programas bioinformáticos

Programa	Función	Enlace	bibliografía
TADB2.0	Información toxina-antitoxina (TA) tipo II.	http://bioinfo-mml.sjtu.edu.cn/TADB2/	(Xie et al., 2018)
StrepDB	Servidor de anotaciones de <i>Streptomyces</i> .	http://strepdb.streptomyces.org.uk/	(StrepDB - Database Commons, s. f.)
Actinoblast	Blastp reciprocos entre el genoma de <i>S. coelicolor</i> .	http://streptomyces.org.uk/actinoblast/	(Chandra & Chater, 2014)
MEGA 11	Análisis genético evolutivo molecular.	https://www.megasoftware.net/	(Tamura et al., 2021)
InterPro	Clasificación de las familias de proteínas.	https://www.ebi.ac.uk/interpro/	(Paysan-Lafosse et al., 2023)
Pfam	Alineamiento de múltiples secuencias.	http://www.sanger.ac.uk/Software/Pfam/	(Finn et al., 2006).

UniProt	Repositorio central de datos gratuito sobre proteínas.	https://www.uniprot.org/	(Coudert et al., 2023)
SWISS- MODEL	Modelado de homología de estructuras de proteínas.	https://swissmodel.expasy.org/	(Waterhouse et al., 2018)
RANA-seq	Filtración y cuantificación de los fastq; realización del control de calidad, la cuantificación de expresión génica y la expresión diferencial	https://ranaseq.eu/	(Prieto & Barrios, 2019)

Bibliografía

- Adamidis, T., Riggle, P., & Champness, W. (1990). Mutations in a new *Streptomyces coelicolor* locus which globally block antibiotic biosynthesis but not sporulation. *Journal of Bacteriology*, *172*(6), 2962-2969. https://doi.org/10.1128/jb.172.6.2962-2969.1990
- Aggarwal, A. K., Ptashne, M., & Harrison, S. C. (1998). Recognition of a DNA Operator by the Repressor of Phage 434: A View at High Resolution. 242. https://doi.org/10.1126/science.3187531
- Aínsa, J. A., Bird, N., Ryding, N. J., Findlay, K. C., & Chater, K. F. (2010). The complex *whiJ* locus mediates environmentally sensitive repression of development of *Streptomyces coelicolor* A3(2). *Antonie van Leeuwenhoek*, *98*(2), 225-236. https://doi.org/10.1007/s10482-010-9443-3
- Anné, J., Economou, A., & Bernaerts, K. (2017). Protein Secretion in Gram-Positive Bacteria: From Multiple Pathways to Biotechnology. En F. Bagnoli & R. Rappuoli (Eds.), *Protein and Sugar Export and Assembly in Gram-positive Bacteria* (pp. 267-308). Springer International Publishing. https://doi.org/10.1007/82 2016 49
- Antoraz Martín, S. (2018). Mejora genética de cepas de *Streptomyces coelicolor* para la producción de metabolitos secundarios mediante el estudio de su regulación por sistemas de dos componentes. https://doi.org/10.14201/gredos.139475
- Antoraz, S., Rico, S., Rodríguez, H., Sevillano, L., Alzate, J. F., Santamaría, R. I., & Díaz, M. (2017). The Orphan Response Regulator Aor1 Is a New Relevant Piece in the Complex Puzzle of Streptomyces coelicolor Antibiotic Regulatory Network. Frontiers in Microbiology, 8, 2444. https://doi.org/10.3389/fmicb.2017.02444
- Arabolaza, A., Shillito, M. E., Lin, T.-W., Diacovich, L., Melgar, M., Pham, H., Amick, D., Gramajo, H., & Tsai, S.-C. (2010). Crystal Structures and Mutational Analyses of Acyl-CoA Carboxylase β Subunit of *Streptomyces coelicolor*. *Biochemistry*, *49*(34), 7367-7376. https://doi.org/10.1021/bi1005305
- Arakawa, T., & Timasheff, S. N. (1985). The stabilization of proteins by osmolytes. *Biophysical Journal*, 47(3), 411-414.
- Arias, P., Fernández-Moreno, M. A., & Malpartida, F. (1999). Characterization of the Pathway-Specific Positive Transcriptional Regulator for Actinorhodin Biosynthesis in *Streptomyces coelicolor* A3(2) as a DNA-Binding Protein. *Journal of Bacteriology*, 181(22), 6958-6968. https://doi.org/10.1128/JB.181.22.6958-6968.1999
- Bach, T. M. H., & Takagi, H. (2013). Properties, metabolisms, and applications of I-proline analogues. *Applied Microbiology and Biotechnology*, *97*(15), 6623-6634. https://doi.org/10.1007/s00253-013-5022-7
- Barakat, M., Ortet, P., & Whitworth, D. E. (2011). P2CS: A database of prokaryotic two-component systems. *Nucleic Acids Research*, *39*(Database issue), D771-D776. https://doi.org/10.1093/nar/gkq1023
- Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H.-P., Clément, C., Ouhdouch, Y., & van Wezel, G. P. (2015). Taxonomy, Physiology, and Natural Products of Actinobacteria. *Microbiology and Molecular Biology Reviews*, 80(1), 1-43. https://doi.org/10.1128/MMBR.00019-15
- Beis, K. (2015). Structural basis for the mechanism of ABC transporters. *Biochemical Society Transactions*, *43*(5), 889-893. https://doi.org/10.1042/BST20150047
- Bennett, J. W., & Bentley, R. (1989). What's in a Name?—Microbial Secondary Metabolism. En Advances in Applied Microbiology (Vol. 34, pp. 1-28). Elsevier. https://doi.org/10.1016/S0065-2164(08)70316-2
- Bentley, S. D., Chater, K. F., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C. W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., ... Hopwood, D. A. (2002). Complete genome sequence of the model actinomycete *Streptomyces coelicolor* A3(2). *417*.
- Bibb, M. J. (2005). Regulation of secondary metabolism in streptomycetes. *Current Opinion in Microbiology*, 8(2), 208-215. https://doi.org/10.1016/j.mib.2005.02.016

- Bierman, M., Logan, R., O'Brien, K., Seno, E. T., Nagaraja Rao, R., & Schoner, B. E. (1992). Plasmid cloning vectors for the conjugal transfer of DNA from *Escherichia coli* to *Streptomyces* spp. *Gene*, *116*(1), 43-49. https://doi.org/10.1016/0378-1119(92)90627-2
- Bischoff, R., & Schlüter, H. (2012). Amino acids: Chemistry, functionality and selected non-enzymatic post-translational modifications. *Journal of Proteomics*, 75(8), 2275-2296. https://doi.org/10.1016/j.jprot.2012.01.041
- Bishop, A., Fielding, S., Dyson, P., & Herron, P. (2004). Systematic Insertional Mutagenesis of a Streptomycete Genome: A Link Between Osmoadaptation and Antibiotic Production. *Genome Research*, 14(5), 893-900. https://doi.org/10.1101/gr.1710304
- Blin, K., Shaw, S., Kloosterman, A. M., Charlop-Powers, Z., van Wezel, G. P., Medema, M. H., & Weber, T. (2021). antiSMASH 6.0: Improving cluster detection and comparison capabilities. *Nucleic Acids Research*, 49(W1), W29-W35. https://doi.org/10.1093/nar/gkab335
- Botas, A., Pérez-Redondo, R., Rodríguez-García, A., Álvarez-Álvarez, R., Yagüe, P., Manteca, A., & Liras, P. (2018). ArgR of *Streptomyces coelicolor* Is a Pleiotropic Transcriptional Regulator: Effect on the Transcriptome, Antibiotic Production, and Differentiation in Liquid Cultures. *Frontiers in Microbiology*, 9. https://www.frontiersin.org/articles/10.3389/fmicb.2018.00361
- Bramwell, H., Hunter, L. S., Coggins, J. R., & Nimmo, H. G. (1996). Propionyl-CoA carboxylase from *Streptomyces coelicolor* A3(2): Cloning of the gene encoding the biotinlcontaining subunit. *Microbiology*, 142(3), 649-655. https://doi.org/10.1099/13500872-142-3-649
- Bursy, J., Kuhlmann, A. U., Pittelkow, M., Hartmann, H., Jebbar, M., Pierik, A. J., & Bremer, E. (2008). Synthesis and Uptake of the Compatible Solutes Ectoine and 5-Hydroxyectoine by *Streptomyces coelicolor* A3(2) in Response to Salt and Heat Stresses. *Applied and Environmental Microbiology*, 74(23), 7286-7296. https://doi.org/10.1128/AEM.00768-08
- Cafaro, M. J., Poulsen, M., Little, A. E. F., Price, S. L., Gerardo, N. M., Wong, B., Stuart, A. E., Larget, B., Abbot, P., & Currie, C. R. (2011). Specificity in the symbiotic association between fungus-growing ants and protective *Pseudonocardia* bacteria. *Proceedings of the Royal Society B: Biological Sciences*, 278(1713), 1814-1822. https://doi.org/10.1098/rspb.2010.2118
- Cayley, S., Lewis, B. A., & Record, M. T. (1992). Origins of the osmoprotective properties of betaine and proline in *Escherichia coli* K-12. *Journal of Bacteriology*, *174*(5), 1586-1595. https://doi.org/10.1128/jb.174.5.1586-1595.1992
- Champness, W. C. (1988). New Loci Required for *Streptomyces coelicolor* Morphological and Physiological Differentiationt. *J. BACTERIOL.*, 170.
- Chandler, C. H., Chari, S., & Dworkin, I. (2013). Does your gene need a background check? How genetic background impacts the analysis of mutations, genes, and evolution. *Trends in genetics: TIG*, 29(6), 358-366. https://doi.org/10.1016/j.tig.2013.01.009
- Chandra, G., & Chater, K. F. (2008). Evolutionary flux of potentially *bldA*-dependent *Streptomyces* genes containing the rare leucine codon TTA. *Antonie van Leeuwenhoek*, 94(1), 111-126. https://doi.org/10.1007/s10482-008-9231-5
- Chandra, G., & Chater, K. F. (2014). Developmental biology of *Streptomyces* from the perspective of 100 actinobacterial genome sequences. *FEMS Microbiology Reviews*, *38*(3), 345-379. https://doi.org/10.1111/1574-6976.12047
- Chang, H. M., Chen, M. Y., Shieh, Y. T., Bibb, M. J., & Chen, C. W. (1996). The cutRS signal transduction system of *Streptomyces lividans* represses the biosynthesis of the polyketide antibiotic actinorhodin. *Molecular Microbiology*, *21*(5), 1075-1085.
- Chater, K. F. (1972). A Morphological and Genetic Mapping Study of White Colony Mutants of Streptomyces coelicolor. Journal of General Microbiology, 72(1), 9-28. https://doi.org/10.1099/00221287-72-1-9

- Cobb, R. E., Wang, Y., & Zhao, H. (2015). High-Efficiency Multiplex Genome Editing of *Streptomyces* Species Using an Engineered CRISPR/Cas System. *ACS Synthetic Biology*, 4(6), 723-728. https://doi.org/10.1021/sb500351f
- Coudert, E., Gehant, S., de Castro, E., Pozzato, M., Baratin, D., Neto, T., Sigrist, C. J. A., Redaschi, N., Bridge, A., & The UniProt Consortium. (2023). Annotation of biologically relevant ligands in UniProtKB using ChEBI. *Bioinformatics*, 39(1), btac793. https://doi.org/10.1093/bioinformatics/btac793
- Cumming, B. M., Chinta, K. C., Reddy, V. P., & Steyn, A. J. C. (2018). Role of Ergothioneine in Microbial Physiology and Pathogenesis. *Antioxidants & Redox Signaling*, 28(6), 431-444. https://doi.org/10.1089/ars.2017.7300
- de Lima Procópio, R. E., da Silva, I. R., Martins, M. K., de Azevedo, J. L., & de Araújo, J. M. (2012). Antibiotics produced by *Streptomyces. The Brazilian Journal of Infectious Diseases*, 16(5), 466-471. https://doi.org/10.1016/j.bjid.2012.08.014
- de Groot, A., Siponen, M. I., Magerand, R., Eugénie, N., Martin-Arevalillo, R., Doloy, J., Lemaire, D., Brandelet, G., Parcy, F., Dumas, R., Roche, P., Servant, P., Confalonieri, F., Arnoux, P., Pignol, D., & Blanchard, L. (2019). Crystal structure of the transcriptional repressor DdrO: Insight into the metalloprotease/repressor-controlled radiation response in *Deinococcus. Nucleic Acids Research*, 47(21), 11403-11417. https://doi.org/10.1093/nar/gkz883
- Den Hengst, C. D., Tran, N. T., Bibb, M. J., Chandra, G., Leskiw, B. K., & Buttner, M. J. (2010). Genes essential for morphological development and antibiotic production in *Streptomyces coelicolor* are targets of BldD during vegetative growth: The *Streptomyces* BldD regulon. *Molecular Microbiology*, 78(2), 361-379. https://doi.org/10.1111/j.1365-2958.2010.07338.x
- Dowell, R. D., Ryan, O., Jansen, A., Cheung, D., Agarwala, S., Danford, T., Bernstein, D. A., Rolfe, P. A., Heisler, L. E., Chin, B., Nislow, C., Giaever, G., Phillips, P. C., Fink, G. R., Gifford, D. K., & Boone, C. (2010). Genotype to Phenotype: A Complex Problem. *Science*, 328(5977), 469-469. https://doi.org/10.1126/science.1189015
- Dwyer, D. J., Belenky, P. A., Yang, J. H., MacDonald, I. C., Martell, J. D., Takahashi, N., Chan, C. T. Y., Lobritz, M. A., Braff, D., Schwarz, E. G., Ye, J. D., Pati, M., Vercruysse, M., Ralifo, P. S., Allison, K. R., Khalil, A. S., Ting, A. Y., Walker, G. C., & Collins, J. J. (2014). Antibiotics induce redox-related physiological alterations as part of their lethality. *Proceedings of the National Academy of Sciences*, 111(20). https://doi.org/10.1073/pnas.1401876111
- Eccleston, M., Willems, A., Beveridge, A., & Nodwell, J. R. (2006). Critical Residues and Novel Effects of Overexpression of the *Streptomyces coelicolor* Developmental Protein BldB: Evidence for a Critical Interacting Partner. *Journal of Bacteriology*, 188(23), 8189-8195. https://doi.org/10.1128/JB.01119-06
- Efthimiou, G., Thumser, A. e., & Avignone-Rossa, C. a. (2008). A novel finding that *Streptomyces clavuligerus* can produce the antibiotic clavulanic acid using olive oil as a sole carbon source. *Journal of Applied Microbiology*, 105(6), 2058-2064. https://doi.org/10.1111/j.1365-2672.2008.03975.x
- Elliot, M. A., Bibb, M. J., Buttner, M. J., & Leskiw, B. K. (2001). BldD is a direct regulator of key developmental genes in *Streptomyces coelicolor* A3(2). *Molecular Microbiology*, 40(1), 257-269. https://doi.org/10.1046/j.1365-2958.2001.02387.x
- Fernández-Moreno, M. A., Caballero, J., Hopwood, D. A., & Malpartida, F. (1991). The ACT cluster contains regulatory and antibiotic export genes, direct targets for translational control by the *bldA* tRNA gene of *Streptomyces*. *Cell*, *66*(4), 769-780. https://doi.org/10.1016/0092-8674(91)90120-N
- Fernández-Moreno, M. A., Martín-Triana, A. J., Martínez, E., Niemi, J., Kieser, H. M., Hopwood, D. A., & Malpartida, F. (1992). *AbaA*, a new pleiotropic regulatory locus for antibiotic production in *Streptomyces coelicolor*. *Journal of Bacteriology*, *174*(9), 2958-2967. https://doi.org/10.1128/jb.174.9.2958-2967.1992

- Finn, R. D., Mistry, J., Schuster-Böckler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A., Durbin, R., Eddy, S. R., Sonnhammer, E. L. L., & Bateman, A. (2006). Pfam: Clans, web tools and services. *Nucleic Acids Research*, *34*(suppl_1), D247-D251. https://doi.org/10.1093/nar/gkj149
- Fischer, M., Alderson, J., van Keulen, G., White, J., & Sawers, R. G. (2010). The obligate aerobe Streptomyces coelicolor A3(2) synthesizes three active respiratory nitrate reductases. Microbiology, 156(10), 3166-3179. https://doi.org/10.1099/mic.0.042572-0
- Fischer, M., Falke, D., Rönitz, J., Haase, A., Damelang, T., Pawlik, T., & Sawers, R. G. (2019). Hypoxia-induced synthesis of respiratory nitrate reductase 2 of *Streptomyces coelicolor* A3(2) depends on the histidine kinase OsdK in mycelium but not in spores. *Microbiology*, 165(8), 905-916. https://doi.org/10.1099/mic.0.000829
- Fischer, M., Schmidt, C., Falke, D., & Sawers, R. G. (2012). Terminal reduction reactions of nitrate and sulfate assimilation in *Streptomyces coelicolor* A3(2): Identification of genes encoding nitrite and sulfite reductases. *Research in Microbiology*, *163*(5), 340-348. https://doi.org/10.1016/j.resmic.2012.05.004
- Flärdh, K., & Buttner, M. J. (2009). *Streptomyces* morphogenetics: Dissecting differentiation in a filamentous bacterium. *Nature Reviews Microbiology*, *7*(1), 36-49. https://doi.org/10.1038/nrmicro1968
- Fleige, S., & Pfaffl, M. W. (2006). RNA integrity and the effect on the real-time qRT-PCR performance. *Molecular Aspects of Medicine*, 27(2-3), 126-139. https://doi.org/10.1016/j.mam.2005.12.003
- Fujii, T., Miyashita, K., Ohtomo, R., & Saito, A. (2005). DNA-Binding Protein Involved in the Regulation of Chitinase Production in *Streptomyces lividans*. *Bioscience, Biotechnology, and Biochemistry*, 69(4), 790-799. https://doi.org/10.1271/bbb.69.790
- Gómez-Escribano, J. P., Song, L., Fox, D. J., Yeo, V., Bibb, M. J., & Challis, G. L. (2012). Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of *Streptomyces coelicolor M145*. *Chemical Science*, 3(9), 2716-2720. https://doi.org/10.1039/C2SC20410J
- González-Quiñonez, N., López-García, M. T., Yagüe, P., Rioseras, B., Pisciotta, A., Alduina, R., & Manteca, Á. (2016). New ΦBT1 site-specific integrative vectors with neutral phenotype in *Streptomyces*. *Applied Microbiology and Biotechnology*, 100(6), 2797-2808. https://doi.org/10.1007/s00253-015-7271-0
- Green, M. R., Sambrook, J., & Sambrook, J. (2012). *Molecular cloning: A laboratory manual* (4th ed). Cold Spring Harbor Laboratory Press.
- Gregory, M. A., Till, R., & Smith, M. C. M. (2003). Integration Site for *Streptomyces* Phage φBT1 and Development of Site-Specific Integrating Vectors. 185.
- Gullón, S., Vicente, R. L., & Mellado, R. P. (2012). A Novel Two-Component System Involved in Secretion Stress Response in *Streptomyces lividans*. *PLOS ONE*, 7(11), e48987. https://doi.org/10.1371/journal.pone.0048987
- Gust, B., Challis, G. L., Fowler, K., Kieser, T., & Chater, K. F. (2003). PCR-targeted *Streptomyces* gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. *Proceedings of the National Academy of Sciences of the United States of America*, 100(4), 1541-1546. https://doi.org/10.1073/pnas.0337542100
- Guthrie, E. P., Flaxman, C. S., White, J., Hodgson, D. A., Bibb, M. J., & Chater, K. F. (1998). A response-regulator-like activator of antibiotic synthesis from *Streptomyces coelicolor* A3(2) with an amino-terminal domain that lacks a phosphorylation pocket. *Microbiology (Reading, England)*, 144 (Pt 3), 727-738. https://doi.org/10.1099/00221287-144-3-727
- Hamed, M. B., Anné, J., Karamanou, S., & Economou, A. (2018). *Streptomyces* protein secretion and its application in biotechnology. *FEMS Microbiology Letters*. https://doi.org/10.1093/femsle/fny250

- Hanahan, D. (1983). Studies on transformation of *Escherichia coli* with plasmids. *Journal of Molecular Biology*, 166(4), 557-580. https://doi.org/10.1016/S0022-2836(83)80284-8
- Harrison, S. C. (1991). A structural taxonomy of DNA-binding domains. *Nature*, *353*(6346), Article 6346. https://doi.org/10.1038/353715a0
- Hertweck, C. (2009). The Biosynthetic Logic of Polyketide Diversity. *Angewandte Chemie International Edition*, 48(26), 4688-4716. https://doi.org/10.1002/anie.200806121
- Hojati, Z., Milne, C., Harvey, B., Gordon, L., Borg, M., Flett, F., Wilkinson, B., Sidebottom, P. J., Rudd, B. A. M., Hayes, M. A., Smith, C. P., & Micklefield, J. (2002). Structure, Biosynthetic Origin, and Engineered Biosynthesis of Calcium-Dependent Antibiotics from Streptomyces coelicolor. Chemistry & Biology, 9(11), 1175-1187. https://doi.org/10.1016/S1074-5521(02)00252-1
- Homerová, D., Knirschová, R., & Kormanec, J. (2002). Response regulator ChiR regulates expression of chitinase gene, chiC, in *Streptomyces coelicolor*. *Folia Microbiologica*, *47*(5), 499-505. https://doi.org/10.1007/BF02818788
- Hong, H.-J., Hutchings, M. I., Neu, J. M., Wright, G. D., Paget, M. S. B., & Buttner, M. J. (2004). Characterization of an inducible vancomycin resistance system in *Streptomyces coelicolor* reveals a novel gene (*vanK*) required for drug resistance. *Molecular Microbiology*, *52*(4), 1107-1121. https://doi.org/10.1111/j.1365-2958.2004.04032.x
- Hood, D. W., Heidstra, R., Swoboda, U. K., & Hodgson, D. A. (1992). Molecular genetic analysis of proline and tryptophan biosynthesis in *Streptomyces coelicolor* A3(2): Interaction between primary and secondary metabolism—A review. *Gene*, 115(1), 5-12. https://doi.org/10.1016/0378-1119(92)90533-U
- Hopwood, D. A. (1986). Genetic manipulation of *Streptomyces*—A laboratory manual: By D A Hopwood, M J Bibb, K F Chater; T Kieser CJ Bruton, H M Kieser, D J Lydiate, C P Smith, J M Ward and H Schrempf. Pp 356. The John Innes Foundation, Norwich, UK and Cold Spring Harbour Laboratory. 1985. \$25 ISBN 0-7084-0336-0. *Biochemical Education*, 14(4), 196-196. https://doi.org/10.1016/0307-4412(86)90228-1
- Hopwood, D. A. (1999). Forty years of genetics with *Streptomyces*: From in vivo through in vitro to in silico. *Microbiology*, *145*(9), 2183-2202. https://doi.org/10.1099/00221287-145-9-2183
- Hopwood, D. A. (2019). Highlights of *Streptomyces* genetics. *Heredity*, *123*(1), 23-32. https://doi.org/10.1038/s41437-019-0196-0
- Hopwood, D. A., & Wright, H. M. (1983). CDA is a New Chromosomally-determined Antibiotic from *Streptomyces coelicolor* A3(2). *Microbiology*, *129*(12), 3575-3579. https://doi.org/10.1099/00221287-129-12-3575
- Huang, H., Mackel, B. J., & Grove, A. (2013). *Streptomyces coelicolor* encodes a urate-responsive transcriptional regulator with homology to PecS from plant pathogens. *Journal of Bacteriology*, 195(21), 4954-4965. https://doi.org/10.1128/JB.00854-13
- Huang, J., Shi, J., Molle, V., Sohlberg, B., Weaver, D., Bibb, M. J., Karoonuthaisiri, N., Lih, C.-J., Kao, C. M., Buttner, M. J., & Cohen, S. N. (2005). Cross-regulation among disparate antibiotic biosynthetic pathways of *Streptomyces coelicolor*. *Molecular Microbiology*, 58(5), 1276-1287. https://doi.org/10.1111/j.1365-2958.2005.04879.x
- Hwang, S., Lee, N., Choe, D., Lee, Y., Kim, W., Jeong, Y., Cho, S., Palsson, B. O., & Cho, B.-K. (2021). Elucidating the Regulatory Elements for Transcription Termination and Posttranscriptional Processing in the *Streptomyces clavuligerus* Genome. *MSystems*, 6(3), e01013-20. https://doi.org/10.1128/mSystems.01013-20
- Ishizuka, H., Horinouchi, S., Kieser, H. M., Hopwood, D. A., & Beppu, T. (1992). A putative two-component regulatory system involved in secondary metabolism in *Streptomyces* spp. *Journal of Bacteriology*, *174*(23), 7585-7594. https://doi.org/10.1128/jb.174.23.7585-7594.1992
- Kämpfer, P. (2006). The Family Streptomycetaceae, Part I: Taxonomy. En M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), *The Prokaryotes: Volume 3:*

- Archaea. Bacteria: Firmicutes, Actinomycetes (pp. 538-604). Springer. https://doi.org/10.1007/0-387-30743-5_22
- Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro-Watanabe, M. (2023). KEGG for taxonomy-based analysis of pathways and genomes. *Nucleic Acids Research*, *51*(D1), D587-D592. https://doi.org/10.1093/nar/gkac963
- Kieser, T. (Ed.). (2000). Practical Streptomyces genetics. Innes.
- Kluepfel, D., Shareck, F., Mondou, F., & Morosoli, R. (1986). Characterization of cellulase and xylanase activities of *Streptomyces lividans*. *Applied Microbiology and Biotechnology*, 24(3), 230-234. https://doi.org/10.1007/BF00261542
- Kuhstoss, S., Richardson, M. A., & Rao, R. N. (1991). *Plasmid cloning vectors that integrate site-specifically in* Streptomyces *spp*.
- Kuzuyama, T. (2017). Biosynthetic studies on terpenoids produced by *Streptomyces*. *The Journal of Antibiotics*, 70(7), 811-818. https://doi.org/10.1038/ja.2017.12
- Lee, D. J., Minchin, S. D., & Busby, S. J. W. (2012). Activating transcription in bacteria. *Annual Review of Microbiology*, 66, 125-152. https://doi.org/10.1146/annurev-micro-092611-150012
- Lewis, R. A., Nunns, L., Thirlway, J., Carroll, K., Smith, C. P., & Micklefield, J. (2011). Active site modification of the β-ketoacyl-ACP synthase FabF3 of *Streptomyces coelicolor* affects the fatty acid chain length of the CDA lipopeptides. *Chemical Communications* (*Cambridge, England*), 47(6), 1860-1862. https://doi.org/10.1039/c0cc03444d
- Li, L., Jiang, W., & Lu, Y. (2017). A Novel Two-Component System, GluR-GluK, Involved in Glutamate Sensing and Uptake in *Streptomyces coelicolor*. *Journal of Bacteriology*, 199(18), e00097-17. https://doi.org/10.1128/JB.00097-17
- Li, W., Wu, J., Tao, W., Zhao, C., Wang, Y., He, X., Chandra, G., Zhou, X., Deng, Z., Chater, K. F., & Tao, M. (2007). A genetic and bioinformatic analysis of *Streptomyces coelicolor* genes containing TTA codons, possible targets for regulation by a developmentally significant tRNA. *FEMS Microbiology Letters*, *266*(1), 20-28. https://doi.org/10.1111/j.1574-6968.2006.00494.x
- Li, Y., Chen, P., Chen, S., Wu, D., & Zheng, J. (2004). A pair of two-component regulatory genes ecrA1/A2 in *S. coelicolor*. *Journal of Zhejiang University*. *Science*, *5*(2), 173-179. https://doi.org/10.1007/BF02840919
- Liu, G., Chater, K. F., Chandra, G., Niu, G., & Tan, H. (2013). Molecular Regulation of Antibiotic Biosynthesis in *Streptomyces*. *Microbiology and Molecular Biology Reviews*, 77(1), 112-143. https://doi.org/10.1128/MMBR.00054-12
- Lu, H., Wang, L., Li, S., Pan, C., Cheng, K., Luo, Y., Xu, H., Tian, B., Zhao, Y., & Hua, Y. (2019). Structure and DNA damage-dependent derepression mechanism for the XRE family member DG-DdrO. *Nucleic Acids Research*, *47*(18), 9925-9933. https://doi.org/10.1093/nar/gkz720
- Lu, Y., He, J., Zhu, H., Yu, Z., Wang, R., Chen, Y., Dang, F., Zhang, W., Yang, S., & Jiang, W. (2011).

 An Orphan Histidine Kinase, OhkA, Regulates Both Secondary Metabolism and Morphological Differentiation in *Streptomyces coelicolor* ▼ . *Journal of Bacteriology*, 193(12), 3020-3032. https://doi.org/10.1128/JB.00017-11
- Lu, Y., Wang, W., Shu, D., Zhang, W., Chen, L., Qin, Z., Yang, S., & Jiang, W. (2007). Characterization of a novel two-component regulatory system involved in the regulation of both actinorhodin and a type I polyketide in *Streptomyces coelicolor*. *Applied Microbiology and Biotechnology*, 77(3), 625-635. https://doi.org/10.1007/s00253-007-1184-5
- Ludwig, W., & Klenk, H.-P. (2005). Overview: A Phylogenetic Backbone and Taxonomic Framework for Procaryotic Systematics. En D. J. Brenner, N. R. Krieg, J. T. Staley, & G. M. Garrity (Eds.), *Bergey's Manual® of Systematic Bacteriology: Volume Two: The Proteobacteria, Part A Introductory Essays* (pp. 49-66). Springer US. https://doi.org/10.1007/0-387-28021-9_8

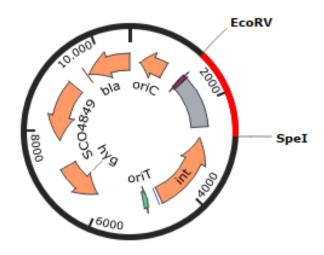
- Luscombe, N. M., Austin, S. E., Berman, H. M., & Thornton, J. M. (2000). *An overview of the structures of protein-DNA complexes*. *1*(1). https://doi.org/10.1186/gb-2000-1-1-reviews001
- MacNeil, D. J., Gewain, K. M., Ruby, C. L., Dezeny, G., Gibbons, P. H., & MacNeil, T. (1992). Analysis of *Streptomyces avermitilis* genes required for avermectin biosynthesis utilizing a novel integration vector. *Gene*, 111(1), 61-68. https://doi.org/10.1016/0378-1119(92)90603-M
- Mak, S., & Nodwell, J. R. (2017). Actinorhodin is a redox-active antibiotic with a complex mode of action against Gram-positive cells. *Molecular Microbiology*, *106*(4), 597-613. https://doi.org/10.1111/mmi.13837
- Makarova, K. S., Wolf, Y. I., & Koonin, E. V. (2009). Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. *Biology Direct*, 4(1), 19. https://doi.org/10.1186/1745-6150-4-19
- Manteca, A., Claessen, D., Lopez-Iglesias, C., & Sanchez, J. (2007). Aerial hyphae in surface cultures of *Streptomyces lividans* and *Streptomyces coelicolor* originate from viable segments surviving an early programmed cell death event. *FEMS Microbiology Letters*, 274(1), 118-125. https://doi.org/10.1111/j.1574-6968.2007.00825.x
- Manteca, A., & Sanchez, J. (2009). *Streptomyces* Development in Colonies and Soils. *Applied and Environmental Microbiology*, 75(9), 2920-2924. https://doi.org/10.1128/AEM.02288-08
- Marchler-Bauer, A., Lu, S., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., Fong, J. H., Geer, L. Y., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Jackson, J. D., Ke, Z., Lanczycki, C. J., Lu, F., Marchler, G. H., Mullokandov, M., Omelchenko, M. V., ... Bryant, S. H. (2011). CDD: A Conserved Domain Database for the functional annotation of proteins. *Nucleic Acids Research*, 39(Database issue), D225-229. https://doi.org/10.1093/nar/gkq1189
- Martín, J. F., Rodríguez-García, A., & Liras, P. (2017). The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: Comparison in *Streptomyces coelicolor* and *Streptomyces avermitilis*. The *Journal of Antibiotics*, 70(5), 534-541. https://doi.org/10.1038/ja.2017.19
- Martín, J.-F., & Liras, P. (2010). Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in *Streptomyces*. *Current Opinion in Microbiology*, *13*(3), 263-273. https://doi.org/10.1016/j.mib.2010.02.008
- McCarthy, A. J., & Williams, S. T. (1992). Actinomycetes as agents of biodegradation in the environment—A review. *Gene*, *115*(1), 189-192. https://doi.org/10.1016/0378-1119(92)90558-7
- McKenzie, N. L., & Nodwell, J. R. (2007). Phosphorylated AbsA2 Negatively Regulates Antibiotic Production in *Streptomyces coelicolor* through Interactions with Pathway-Specific Regulatory Gene Promoters. *Journal of Bacteriology*, *189*(14), 5284-5292. https://doi.org/10.1128/JB.00305-07
- Miyanaga, A. (2017). Structure and function of polyketide biosynthetic enzymes: Various strategies for production of structurally diverse polyketides. *Bioscience, Biotechnology, and Biochemistry, 81*(12), 2227-2236. https://doi.org/10.1080/09168451.2017.1391687
- Mouncey, N. J., Otani, H., Udwary, D., & Yoshikuni, Y. (2019). New voyages to explore the natural product galaxy. *Journal of Industrial Microbiology and Biotechnology*, *46*(3-4), 273-279. https://doi.org/10.1007/s10295-018-02122-w
- Nakajima, S., Satoh, Y., Yanashima, K., Matsui, T., & Dairi, T. (2015). Ergothioneine protects Streptomyces coelicolor A3(2) from oxidative stresses. Journal of Bioscience and Bioengineering, 120(3), 294-298. https://doi.org/10.1016/j.jbiosc.2015.01.013
- Navone, L., Casati, P., Licona-Cassani, C., Marcellin, E., Nielsen, L. K., Rodriguez, E., & Gramajo, H. (2014). Allantoin catabolism influences the production of antibiotics in *Streptomyces*

- coelicolor. Applied Microbiology and Biotechnology, 98(1), 351-360. https://doi.org/10.1007/s00253-013-5372-1
- Nett, M., Ikeda, H., & Moore, B. S. (2009). Genomic basis for natural product biosynthetic diversity in the actinomycetes. *Natural product reports*, *26*(11), 1362-1384. https://doi.org/10.1039/b817069j
- Nivina, A., Yuet, K. P., Hsu, J., & Khosla, C. (2019). Evolution and Diversity of Assembly-Line Polyketide Synthases. *Chemical Reviews*, 119(24), 12524-12547. https://doi.org/10.1021/acs.chemrev.9b00525
- O'Brien, J., & Wright, G. D. (2011). An ecological perspective of microbial secondary metabolism. *Current Opinion in Biotechnology*, 22(4), 552-558. https://doi.org/10.1016/j.copbio.2011.03.010
- O'Hagan, D. (1992). Biosynthesis of polyketide metabolites. *Natural Product Reports*, *9*(5), 447-479. https://doi.org/10.1039/NP9920900447
- Ou, X., Zhang, B., Zhang, L., Zhao, G., & Ding, X. (2009). Characterization of *rrdA*, a TetR Family Protein Gene Involved in the Regulation of Secondary Metabolism in *Streptomyces coelicolor*. *Applied and Environmental Microbiology*, *75*(7), 2158-2165. https://doi.org/10.1128/AEM.02209-08
- Paget, M. S. B., Leibovitz, E., & Buttner, M. J. (1999). A putative two-component signal transduction system regulates σE, a sigma factor required for normal cell wall integrity in *Streptomyces coelicolor* A3(2). *Molecular Microbiology*, 33(1), 97-107. https://doi.org/10.1046/j.1365-2958.1999.01452.x
- Palazzotto, E., Renzone, G., Fontana, P., Botta, L., Scaloni, A., Puglia, A. M., & Gallo, G. (2015). Tryptophan promotes morphological and physiological differentiation in *Streptomyces coelicolor*. *Applied Microbiology and Biotechnology*, *99*(23), 10177-10189. https://doi.org/10.1007/s00253-015-7012-4
- Paolo, S. S., Huang, J., Cohen, S. N., & Thompson, C. J. (2006). rag genes: Novel components of the RamR regulon that trigger morphological differentiation in *Streptomyces coelicolor*. *Molecular Microbiology*, 61(5), 1167-1186. https://doi.org/10.1111/j.1365-2958.2006.05304.x
- Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G. A., Bileschi, M. L., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D. H., Letunić, I., Marchler-Bauer, A., Mi, H., Natale, D. A., Orengo, C. A., Pandurangan, A. P., Rivoire, C., ... Bateman, A. (2023). InterPro in 2022. Nucleic Acids Research, 51(D1), D418-D427. https://doi.org/10.1093/nar/gkac993
- Perera, I. C., & Grove, A. (2011). MarR homologs with urate-binding signature. *Protein Science:* A *Publication of the Protein Society*, 20(3), 621-629. https://doi.org/10.1002/pro.588
- Pérez-Rueda, E., Collado-Vides, J., & Segovia, L. (2004). Phylogenetic distribution of DNA-binding transcription factors in bacteria and archaea. *Computational Biology and Chemistry*, 28(5-6), 341-350. https://doi.org/10.1016/j.compbiolchem.2004.09.004
- Plan Nacional frente a la Resistencia a los Antibióticos (PRAN) 2019-2021. (s. f.). Recuperado 17 de mayo de 2023, de http://resistenciaantibioticos.es/es/publicaciones/plan-nacional-frente-la-resistencia-los-antibioticos-pran-2019-2021
- Podgornaia, A. I., & Laub, M. T. (2013). Determinants of specificity in two-component signal transduction. *Current Opinion in Microbiology*, *16*(2), 156-162. https://doi.org/10.1016/j.mib.2013.01.004
- Pope, M. K., Green, B., & Westpheling, J. (1998). The *bldB* gene encodes a small protein required for morphogenesis, antibiotic production, and catabolite control in *Streptomyces coelicolor*. *Journal of Bacteriology*, 180(6), 1556-1562. https://doi.org/10.1128/JB.180.6.1556-1562.1998
- Prieto, C., & Barrios, D. (2019). RaNA-Seq: Interactive RNA-Seq analysis from FASTQ files to functional analysis. *Bioinformatics*, btz854. https://doi.org/10.1093/bioinformatics/btz854

- Ramos, J. L., Martínez-Bueno, M., Molina-Henares, A. J., Terán, W., Watanabe, K., Zhang, X., Gallegos, M. T., Brennan, R., & Tobes, R. (2005). The TetR Family of Transcriptional Repressors. *Microbiology and Molecular Biology Reviews*, 69(2), 326-356. https://doi.org/10.1128/MMBR.69.2.326-356.2005
- Richardson*, D. J., Berks, B. C., Russell, D. A., Spiro, S., & Taylor, C. J. (2001). Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. *Cellular and Molecular Life Sciences CMLS*, *58*(2), 165-178. https://doi.org/10.1007/PL00000845
- Rodríguez, E., Banchio, C., Diacovich, L., Bibb, M. J., & Gramajo, H. (2001). Role of an Essential Acyl Coenzyme A Carboxylase in the Primary and Secondary Metabolism of *Streptomyces coelicolor* A3(2). *Applied and Environmental Microbiology*, *67*(9), 4166-4176. https://doi.org/10.1128/AEM.67.9.4166-4176.2001
- Rodríguez, H., Rico, S., Díaz, M., & Santamaría, R. I. (2013). Two-component systems in *Streptomyces*: Key regulators of antibiotic complex pathways. *Microbial Cell Factories*, 12(1), 127. https://doi.org/10.1186/1475-2859-12-127
- Rodríguez, H., Rico, S., Yepes, A., Franco-Echevarría, E., Antoraz, S., Santamaría, R. I., & Díaz, M. (2015). The two kinases, AbrC1 and AbrC2, of the atypical two-component system AbrC are needed to regulate antibiotic production and differentiation in Streptomyces coelicolor. Frontiers in Microbiology, 6, 450. https://doi.org/10.3389/fmicb.2015.00450
- Rodríguez, S., Santamaría, R. I., Fernández-Ábalos, J. M., & Díaz, M. (2005). Identification of the sequences involved in the glucose-repressed transcription of the Streptomyces halstedii JM8 xysA promoter. *Gene*, *351*, 1-9. https://doi.org/10.1016/j.gene.2005.03.007
- Romero, J., Liras, P., & Martín, J. F. (1986). Utilization of ornithine and arginine as specific precursors of clavulanic acid. *Applied and Environmental Microbiology*, *52*(4), 892-897. https://doi.org/10.1128/aem.52.4.892-897.1986
- Romero-Rodríguez, A., Robledo-Casados, I., & Sánchez, S. (2015). An overview on transcriptional regulators in *Streptomyces*. *Biochimica et Biophysica Acta (BBA) Gene Regulatory Mechanisms*, 1849(8), 1017-1039. https://doi.org/10.1016/j.bbagrm.2015.06.007
- Ronda, C., Pedersen, L. E., Hansen, H. G., Kallehauge, T. B., Betenbaugh, M. J., Nielsen, A. T., & Kildegaard, H. F. (2014). Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. *Biotechnology and Bioengineering*, 111(8), 1604-1616. https://doi.org/10.1002/bit.25233
- Rozas, D., Gullón, S., & Mellado, R. P. (2012). A Novel Two-Component System Involved in the Transition to Secondary Metabolism in *Streptomyces coelicolor*. *PLoS ONE*, *7*(2), e31760. https://doi.org/10.1371/journal.pone.0031760
- Rudd, B. A. M., & Hopwood, D. A. (1979). Genetics of Actinorhodin Biosynthesis by *Streptomyces coelicolor* A3(2). *Microbiology*, 114(1), 35-43. https://doi.org/10.1099/00221287-114-1-35
- Rutledge, P. J., & Challis, G. L. (2015). Discovery of microbial natural products by activation of silent biosynthetic gene clusters. *Nature Reviews Microbiology*, 13(8), Article 8. https://doi.org/10.1038/nrmicro3496
- Saier, M. H., Reddy, V. S., Tsu, B. V., Ahmed, M. S., Li, C., & Moreno-Hagelsieb, G. (2016). The Transporter Classification Database (TCDB): Recent advances. *Nucleic Acids Research*, 44(D1), D372-D379. https://doi.org/10.1093/nar/gkv1103
- Sánchez de la Nieta, R., Antoraz, S., Alzate, J. F., Santamaría, R. I., & Díaz, M. (2020). Antibiotic Production and Antibiotic Resistance: The Two Sides of AbrB1/B2, a Two-Component System of *Streptomyces coelicolor*. *Frontiers in Microbiology*, *11*, 587750. https://doi.org/10.3389/fmicb.2020.587750
- Santamaría, R. I., Sevillano, L., Martín, J., Genilloud, O., González, I., & Díaz, M. (2018). The XRE-DUF397 Protein Pair, Scr1 and Scr2, Acts as a Strong Positive Regulator of Antibiotic Production in *Streptomyces. Frontiers in Microbiology*, *9*, 2791. https://doi.org/10.3389/fmicb.2018.02791

- Sawers, R. G., Fischer, M., & Falke, D. (2019). Anaerobic nitrate respiration in the aerobe Streptomyces coelicolor A3(2): Helping maintain a proton gradient during dormancy. Environmental Microbiology Reports, 11(5), 645-650. https://doi.org/10.1111/1758-2229.12781
- Seebeck, F. P. (2010). In Vitro Reconstitution of Mycobacterial Ergothioneine Biosynthesis. *Journal of the American Chemical Society*, 132(19), 6632-6633. https://doi.org/10.1021/ja101721e
- Seshasayee, A. S. N., Sivaraman, K., & Luscombe, N. M. (2011). An overview of prokaryotic transcription factors: A summary of function and occurrence in bacterial genomes. *Sub-Cellular Biochemistry*, *52*, 7-23. https://doi.org/10.1007/978-90-481-9069-0 2
- Severi, E., & Thomas, G. H. (2019). Antibiotic export: Transporters involved in the final step of natural product production. *Microbiology*, *165*(8), 805-818. https://doi.org/10.1099/mic.0.000794
- Sidar, A., Albuquerque, E. D., Voshol, G. P., Ram, A. F. J., Vijgenboom, E., & Punt, P. J. (2020). Carbohydrate Binding Modules: Diversity of Domain Architecture in Amylases and Cellulases From Filamentous Microorganisms. *Frontiers in Bioengineering and Biotechnology*, 8, 871. https://doi.org/10.3389/fbioe.2020.00871
- Som, N. F., Heine, D., Holmes, N., Knowles, F., Chandra, G., Seipke, R. F., Hoskisson, P. A., Wilkinson, B., & Hutchings, M. I. (2017). The MtrAB two-component system controls antibiotic production in *Streptomyces coelicolor* A3(2). *Microbiology (Reading, England)*, 163(10), 1415-1419. https://doi.org/10.1099/mic.0.000524
- Stankovic, N., Radulovic, V., Petkovic, M., Vuckovic, I., Jadranin, M., Vasiljevic, B., & Nikodinovic-Runic, J. (2012). *Streptomyces* sp. JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties. *Applied Microbiology and Biotechnology*, *96*(5), 1217-1231. https://doi.org/10.1007/s00253-012-4237-3
- StrepDB Database Commons. (s. f.). Recuperado 19 de mayo de 2023, de https://ngdc.cncb.ac.cn/databasecommons/database/id/3518
- Süssmuth, R. D., & Mainz, A. (2017). Nonribosomal Peptide Synthesis—Principles and Prospects.

 **Angewandte Chemie International Edition, 56(14), 3770-3821. https://doi.org/10.1002/anie.201609079
- Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120
- Tenconi, E., Traxler, M. F., Hoebreck, C., Wezel, G. P. V., & Rigali, S. (2018). Prodiginine Production in *Streptomyces coelicolor* Correlates Temporally and Spatially to Programmed Cell Death (p. 240689). bioRxiv. https://doi.org/10.1101/240689
- Tong, Y., Charusanti, P., Zhang, L., Weber, T., & Lee, S. Y. (2015). CRISPR-Cas9 Based Engineering of Actinomycetal Genomes. *ACS Synthetic Biology*, *4*(9), 1020-1029. https://doi.org/10.1021/acssynbio.5b00038
- Tuncer, M., Kuru, A., Isikli, M., Sahin, N., & Çelenk, F. g. (2004). Optimization of extracellular endoxylanase, endoglucanase and peroxidase production by *Streptomyces* sp. F2621 isolated in Turkey. *Journal of Applied Microbiology*, *97*(4), 783-791. https://doi.org/10.1111/j.1365-2672.2004.02361.x
- UI-Hassan, A., & Wellington, E. M. H. (2009). Actinobacteria. En *Encyclopedia of Microbiology* (*Third Edition*): Vol. 3rd Edition (pp. 25-44). Elsevier. http://dx.doi.org/10.1016/B978-012373944-5.00044-4
- van der Meij, A., Worsley, S. F., Hutchings, M. I., & van Wezel, G. P. (2017). Chemical ecology of antibiotic production by actinomycetes. *FEMS Microbiology Reviews*, *41*(3), 392-416. https://doi.org/10.1093/femsre/fux005


- van Wezel, G. P., & McDowall, K. J. (2011). The regulation of the secondary metabolism of *Streptomyces*: New links and experimental advances. *Natural Product Reports*, 28(7), 1311. https://doi.org/10.1039/c1np00003a
- Volff, J.-N., & Altenbuchner, J. (1998). Genetic instability of the *Streptomyces* chromosome. *Molecular Microbiology*, 27(2), 239-246. https://doi.org/10.1046/j.1365-2958.1998.00652.x
- Wang, W., Shu, D., Chen, L., Jiang, W., & Lu, Y. (2009). Cross-talk between an orphan response regulator and a noncognate histidine kinase in *Streptomyces coelicolor*. *FEMS Microbiology Letters*, 294(2), 150-156. https://doi.org/10.1111/j.1574-6968.2009.01563.x
- Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. *Nucleic Acids Research*, 46(W1), W296-W303. https://doi.org/10.1093/nar/gky427
- Watve, M., Tickoo, R., Jog, M., & Bhole, B. (2001). How many antibiotics are produced by the genus *Streptomyces? Archives of Microbiology*, *176*(5), 386-390. https://doi.org/10.1007/s002030100345
- Wietzorrek, A., & Bibb, M. (1997). A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. *Molecular Microbiology*, 25(6), 1181-1184. https://doi.org/10.1046/j.1365-2958.1997.5421903.x
- Willems, A. R., Tahlan, K., Taguchi, T., Zhang, K., Lee, Z. Z., Ichinose, K., Junop, M. S., & Nodwell, J. R. (2008). Crystal Structures of the *Streptomyces coelicolor* TetR-Like Protein ActR Alone and in Complex with Actinorhodin or the Actinorhodin Biosynthetic Precursor (S)-DNPA. *Journal of Molecular Biology*, *376*(5), 1377-1387. https://doi.org/10.1016/j.jmb.2007.12.061
- Willemse, J., Mommaas, A. M., & van Wezel, G. P. (2012). Constitutive expression of *ftsZ* overrides the *whi* developmental genes to initiate sporulation of *Streptomyces coelicolor*. *Antonie van Leeuwenhoek*, *101*(3), 619-632. https://doi.org/10.1007/s10482-011-9678-7
- Williamson, N. R., Fineran, P. C., Leeper, F. J., & Salmond, G. P. C. (2006). The biosynthesis and regulation of bacterial prodiginines. *Nature Reviews Microbiology*, *4*(12), Article 12. https://doi.org/10.1038/nrmicro1531
- Xie, Y., Wei, Y., Shen, Y., Li, X., Zhou, H., Tai, C., Deng, Z., & Ou, H.-Y. (2018). TADB 2.0: An updated database of bacterial type II toxin—antitoxin loci. *Nucleic Acids Research*, *46*(Database issue), D749-D753. https://doi.org/10.1093/nar/gkx1033
- Xu, D., Waack, P., Zhang, Q., Werten, S., Hinrichs, W., & Virolle, M.-J. (2014). Structure and regulatory targets of SCO3201, a highly promiscuous TetR-like regulator of *Streptomyces coelicolor* M145. *Biochemical and Biophysical Research Communications*, 450(1), 513-518. https://doi.org/10.1016/j.bbrc.2014.06.003
- Xu, Y., Willems, A., Au-yeung, C., Tahlan, K., & Nodwell, J. R. (2012). A Two-Step Mechanism for the Activation of Actinorhodin Export and Resistance in *Streptomyces coelicolor. mBio*, 3(5), e00191-12. https://doi.org/10.1128/mBio.00191-12
- Yanofsky, C. (2007). RNA-based regulation of genes of tryptophan synthesis and degradation, in bacteria. RNA, 13(8), 1141-1154. https://doi.org/10.1261/rna.620507
- Yepes, A., Rico, S., Rodríguez-García, A., Santamaría, R. I., & Díaz, M. (2011). Novel Two-Component Systems Implied in Antibiotic Production in *Streptomyces coelicolor*. *PLoS ONE*, 6(5), e19980. https://doi.org/10.1371/journal.pone.0019980
- Yu, Z., Reichheld, S. E., Savchenko, A., Parkinson, J., & Davidson, A. R. (2010). A Comprehensive Analysis of Structural and Sequence Conservation in the TetR Family Transcriptional Regulators. *Journal of Molecular Biology, 400*(4), 847-864. https://doi.org/10.1016/j.jmb.2010.05.062

- Yu, Z., Zhu, H., Dang, F., Zhang, W., Qin, Z., Yang, S., Tan, H., Lu, Y., & Jiang, W. (2012). Differential regulation of antibiotic biosynthesis by DraR-K, a novel two-component system in *Streptomyces coelicolor. Molecular Microbiology*, *85*(3), 535-556. https://doi.org/10.1111/j.1365-2958.2012.08126.x
- Zhu, Y., Lu, T., Zhang, J., Zhang, P., Tao, M., & Pang, X. (2020). A novel XRE family regulator that controls antibiotic production and development in *Streptomyces coelicolor*. *Applied Microbiology and Biotechnology*, 104(23), 10075-10089. https://doi.org/10.1007/s00253-020-10950-z

Anexos

A1 Construcción de plásmidos derivativos de pNG3

Como estrategia para futuros ensayos de complementación de mutantes se construyó otro plásmido integrativo derivado del plásmido pNG3 para cada una de las cepas mutantes expuestas en el capítulo 3. Este plásmido se integra en un sitio *aaB* localizado en el gen *SCO4848*. Todos los plásmidos derivativos fueron construidos y se comprobó sus insertos por secuenciación, con la excepción del plásmido pNG2253/52 que no se pudo comprobar que el inserto, fuera el correcto a partir de secuenciación.

FiguraA1. Plásmido integrativo pNG3. Tomado de SnapGene https://www.snapgene.com/.

Tabla A1. Oligonucleótidos específicos para amplificar sistemas XRE/DUF delecionados.

Cebador	Secuencias (5'-3)	Aplicación
CR-164	TTTTTT <u>ACTAGT</u> GTCTCTCGCCTCC TTCCG	Cebador directo para amplificar los genes SCO2245/46 bajo su propio promotor. El sitio Spel está subrayado.
CR-165	TTTTTT <u>GATATC</u> CGTGCGTCCGAG GTAGAC	Cebador directo para amplificar los genes SCO2245/46 bajo su propio promotor Sitio EcoRV está subrayado.
CR-160	TTTTTT <u>ACTAGT</u> CGGATTCGGGGC CACCTC	Cebador directo para amplificar los genes SCO2252/53 bajo su propio promotor sitio Spel está subrayado.
CR-161	TTTTT <u>GATATC</u> AGTCCTCATCGC GGCAAC	Cebador directo para amplificar los genes SCO2252/53 bajo su propio promotor sitio EcoRV está subrayado.

CR-158	TTTTTT <u>ACTAGT</u> CAGCCCCCAGGA ACGCAG	Cebador directo para amplificar los genes SCO4678/79 bajo su propio promotor sitio Spel está subrayado.
CR-159	TTTTTT <u>GATATC</u> CAGCGGCTCCTG TGGTTC	Cebador directo para amplificar los genes SCO4678/79 bajo su propio promotor sitio EcoRV está subrayado.
CR-156	TTTTTT <u>ACTAGT</u> GACAGCGCCGAG CCGTAC	Cebador directo para amplificar los genes SCO6235/36 bajo su propio promotor sitio Spel está subrayado.
CR-157	TTTTTT <u>GATATC</u> GGCGGGGCGTTT CCAGTG	Cebador directo para amplificar los genes SCO6235/36 bajo su propio promotor sitio EcoRV está subrayado.
CR-162	TTTTTT <u>ACTAGT</u> GCGAGGGAAGG TCGAACC	Cebador directo para amplificar los genes SCO7615/16 bajo su propio promotor sitio Spel está subrayado.
CR-163	TTTTTT <u>GATATC</u> CCGGGAAGTGGT CCTTGC	Cebador directo para amplificar los genes SCO7615/16 bajo su propio promotor sitio EcoRV está subrayado.
CR-166	CCAGGCTTTACACTTTATGC	Cebador para la secuenciación de plantillas homológicas insertadas en el sitio EcoRV.
CR-167	GCTGAAGGAGGAAGACGAAG	Cebador para la secuenciación de plantillas homológicas insertadas en el sitio Spel.

Tabla A2. Plásmidos finales derivativos del plásmido integrativo pNG3, para ensayo de complementación de los sistemas XRE/DUF.

Vector	Características	Referencias
pNG3	Vector bifuncional Escherichia – Streptomyces.	
	Integrativo, contiene la integrasa del fago φBT1.	(González-Quiñonez et al.,
	Incluye el gen SCO4849 bajo su propio promotor.	2016)
	Resistencias: Ampicilina (bla), Higromicina (hyg)	
pNG2246/45	Derivado de pNG3. Este plásmido incluye los	Fata trabaja
	genes SCO2246/45 bajo su propio promotor.	Este trabajo
pNG4678/79	Derivado de pNG3. Este plásmido incluye los	Fata trabaja
	genes SCO4678/79 bajo su propio promotor.	Este trabajo
pNG6236/35	Derivado de pNG3. Este plásmido incluye los	Fata tualasia
	genes SCO6236/35 bajo su propio promotor.	Este trabajo
pNG7615/16	Derivado de pNG3. Este plásmido incluye los	Fata tualasia
	genes SCO7615/16 bajo su propio promotor.	Este trabajo

A2 Número total de genes diferencialmente sobrexpresados en el análisis transcripcional de la cepa Sscr1

A continuación, se muestra en tablas todos los genes que se encontraban diferencialmente expresados con significación estadística en el análisis transcripcional de la cepa Sscr1, 1308 y 1340 genes a las 36 horas y 48 horas respectivamente. Tablas A3 a la A18 todos los genes sobreexpresados 972 y 1169 genes a las 36 y 48 horas respectivamente, tablas A19 a la A22 todos los genes subexpresados 336 y 171 a las 36

y 48 horas respectivamente. En las tablas se muestra el SCO de cada gen, cambio en la log2FC y un padj (p valor ajustado) < 0.05.

Tabla A3. Genes sobreexpresados en el análisis transcripcional de las cepas Sscr1 vs control. Genes del SCO0446 al SCO0791 y el SCP1.237.

	36	horas	48	horas		36	horas	48	horas
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCP1.237	8.5	9.70E-34	5.7	2.40E-17	SCO0498			1.1	3.30E-02
SCO0046			1.2	2.60E-02	SCO0499			2.2	9.70E-12
SCO0070	1.1	1.30E-02			SCO0501			1.3	2.00E-03
SCO0071	2.0	3.40E-02			SCO0514			1.3	5.00E-03
SCO0072	1.6	6.20E-21			SCO0515			1.5	1.60E-02
SCO0105			1.5	2.70E-02	SCO0522			1.2	4.20E-02
SCO0106			1.4	4.40E-02	SCO0524			1.2	2.40E-02
SCO0107			2.2	8.30E-06	SCO0525			1.8	9.00E-09
SCO0134	1.7	5.00E-03			SCO0526			1.0	9.00E-03
SCO0149			1.7	2.70E-02	SCO0529			1.9	1.10E-06
SCO0152	1.1	1.00E-05			SCO0530			1.1	2.50E-02
SCO0154	1.6	4.80E-05			SCO0543	1.4	1.30E-08		
SCO0157	2.4	4.30E-05			SCO0554			1.0	4.10E-02
SCO0158	1.4	4.80E-06			SCO0564	1.6	1.80E-07	1.5	2.00E-03
SCO0182	2.2	5.00E-02			SCO0565	2.0	8.50E-10	1.5	3.00E-03
SCO0183	1.3	4.80E-05			SCO0568	1.9	2.70E-19	2.5	7.90E-09
SCO0184	1.0	2.10E-05			SCO0569	2.9	1.30E-26		l
SCO0192			1.0	1.30E-02	SCO0570	3.2	4.40E-44		
SCO0193			1.1	1.30E-02	SCO0573	1.2	2.00E-03		
SCO0194			1.3	2.90E-02	SCO0574			1.4	1.60E-02
SCO0195			1.4	1.10E-02	SCO0588			1.1	1.60E-02
SCO0222			1.3	2.50E-02	SCO0600	1.3	1.00E-16		
SCO0223			2.0	9.00E-03	SCO0601	1.1	4.40E-04		
SCO0224	2.0	9.10E-38	3.3	3.30E-32	SCO0618	2.3	3.50E-23	2.3	4.50E-06
SCO0227	1.4	3.00E-02			SCO0619	1.8	5.70E-12	1.4	1.00E-02
SCO0231	1.2	6.00E-03			SCO0620	1.1	9.20E-06		
SCO0236			1.9	7.20E-04	SCO0629			1.5	3.00E-03
SCO0237			2.5	2.70E-04	SCO0630			1.7	1.40E-02
SCO0256	1.5	2.50E-08			SCO0632	1.3	5.00E-03		
SCO0257	1.6	5.30E-08			SCO0636			1.5	1.20E-05
SCO0258	1.2	7.40E-04			SCO0638			1.4	1.10E-02
SCO0259	1.2	6.10E-05			SCO0639			1.2	3.00E-03
SCO0297	1.9	1.50E-41	1.8	4.00E-08	SCO0668	1.2	3.80E-06	1.4	3.00E-03
SCO0313	1.0	7.60E-04			SCO0670			1.5	6.10E-04
SCO0314			1.7	6.70E-05	SCO0696			2.5	8.20E-05
SCO0315			1.7	7.30E-05	SCO0697	1.3	4.40E-07	1.6	8.50E-08
SCO0319			3.1	3.10E-15	SCO0698	1.1	2.20E-04		
SCO0320			2.8	3.60E-17	SCO0727	1.1	2.00E-03		
SCO0321			2.0	9.00E-08	SCO0729	1.3	4.70E-15		
SCO0322			1.3	1.50E-04	SCO0757	1.1	2.00E-03		
SCO0338			1.8	3.00E-03	SCO0759	1.9	1.60E-12		
SCO0356			1.7	1.00E-03	SCO0760	3.1	1.40E-65	2.7	1.80E-12
SCO0357			1.0	2.20E-02	SCO0761	3.5	7.30E-128	2.6	8.50E-12
SCO0358			1.7	2.50E-04	SCO0762	3.4	2.60E-215	3.1	6.00E-28
SCO0377			1.7	2.40E-02	SCO0774	3.7	1.10E-56	3.5	1.00E-20
SCO0379	1.5	7.80E-29	1.4	8.10E-04	SCO0775	1.6	1.50E-08		ı
SCO0403			2.0	9.30E-09	SCO0776	1.8	3.70E-11		
SCO0408			2.5	1.10E-11	SCO0777	1.1	3.00E-05		
SCO0459			1.3	1.70E-02	SCO0783			3.0	3.40E-26
SCO0463			1.1	1.50E-02	SCO0784			1.8	7.50E-05
SCO0464	1.5	1.60E-15	1.7	8.60E-06	SCO0785			1.5	1.10E-02
SCO0465		,	1.4	4.60E-02	SCO0789	1.3	1.20E-04		
SCO0466	1.0	3.00E-03			SCO0790	1.2	7.00E-03		
SCO0473	1.0	5.00E-03			SCO0791	1.8	2.20E-08		
		2.232 00			1		_:_0_ 00		

Tabla A4. Genes sobreexpresados en el análisis transcripcional de las cepas S*scr1 vs* control. Genes del *SCO0792* al SCO*1134*.

	36	horas	/19	horas		36	horas	//0	horas
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCO0792	5.7	1.60E-78	4.6	1.10E-05	SCO0914	1.3	1.20E-05	10821 0	pauj
SCO0793	3.6	2.10E-26	2.6	3.00E-03	SCO0917	2.5	4.30E-54	2.8	3.80E-15
SCO0794	2.9	2.40E-67	2.8	1.90E-08	SCO0918	1.7	2.40E-24	2.0	7.80E-07
SCO0795			2.5	2.90E-11	SCO0926	1.2	3.70E-04		
SCO0796			1.7	1.60E-05	SCO0941	1.2	3.20E-04		
SCO0798			1.3	6.00E-03	SCO0953			1.2	1.70E-02
SCO0799			1.4	4.30E-02	SCO0958	1.4	4.10E-08	1.2	4.50E-02
SCO0803			1.1	4.00E-03	SCO0973			1.3	3.00E-03
SCO0804			1.2	5.00E-03	SCO0982	1.2	1.10E-04		
SCO0807	2.2	7.00E-03			SCO0991	1.3	2.80E-17		
SCO0809	1.0	4.00E-03			SCO0992			1.9	2.40E-05
SCO0823			1.4	5.10E-02	SCO0993	1.1	9.30E-11		
SCO0824			1.5	2.90E-02	SCO0994	1.0	9.70E-07	1.0	5.10E-02
SCO0833			1.9	6.00E-03	SCO0995			1.1	4.70E-02
SCO0841	1.5	3.10E-09			SCO0998			2.9	1.20E-16
SCO0842	1.6	1.40E-08			SCO0999	1.3	3.10E-17	4.4	1.80E-30
SCO0843	1.2	3.90E-02			SCO1009			1.1	1.80E-02
SCO0845	2.6	4.00E-03			SCO1016			1.6	5.50E-04
SCO0849			1.6	2.40E-02	SCO1021			1.3	2.00E-03
SCO0853	1.4	2.00E-03			SCO1024			1.1	1.00E-03
SCO0854			2.5	2.40E-08	SCO1028			2.0	3.80E-13
SCO0872	1.5	4.10E-14			SCO1032	1.0	1.80E-02		
SCO0875	1.1	5.40E-02			SCO1034	1.1	6.80E-05		
SCO0876	2.5	1.30E-02			SCO1035	1.7	4.70E-07		
SCO0882	4.3	1.10E-11	3.4	7.80E-05	SCO1036	1.7	3.40E-10		
SCO0884			1.4	1.00E-04	SCO1037	2.0	3.30E-05	2.0	1.30E-02
SCO0885	3.4	5.80E-125	1.2	1.70E-02	SCO1045	2.2	1.10E-02		
SCO0886	2.7	4.80E-74	1.2	1.60E-02	SCO1046	1.5	6.30E-13		
SCO0887	2.6	9.60E-41	1.2	3.30E-02	SCO1047	1.2	7.00E-03		
SCO0888	5.0	1.30E-282	3.8	2.00E-12	SCO1052	1.1	1.50E-02		
SCO0889	4.2	1.90E-111	2.7	1.00E-06	SCO1067	1.3	1.10E-04	1.5	2.00E-03
SCO0890	4.1	6.90E-64	2.9	8.00E-03	SCO1071			1.0	5.40E-02
SCO0891	2.5	8.30E-35	1.4	8.00E-03	SCO1077	2.1	1.00E-14	1.6	1.50E-02
SCO0892	3.4	1.10E-35	1.5	1.00E-02	SCO1080			1.3	4.00E-03
SCO0893	3.4	3.40E-22	2.2	2.10E-02	SCO1081	1.5	3.70E-27	2.0	3.10E-07
SCO0894	3.1	9.10E-14	2.3	2.10E-05	SCO1082	1.1	6.10E-15	1.2	3.40E-02
SCO0895	3.1	8.80E-20	2.4	1.10E-04	SCO1083	2.4	3.90E-40	2.7	4.50E-09
SCO0896	3.1	8.80E-08			SCO1084	2.6	1.70E-43	2.2	6.20E-06
SCO0897	2.0	7.00E-08			SCO1096	2.0	1.30E-02		
SCO0898	1.2	4.90E-08			SCO1105	1.7	2.10E-16	1.8	3.00E-07
SCO0899	1.8	3.60E-08			SCO1106	1.4	2.60E-05		
SCO0900			1.3	1.10E-02	SCO1107			1.2	4.60E-02
SCO0901			2.3	6.60E-10	SCO1109	2.4	1.40E-21	1.3	1.60E-02
SCO0902			1.7	5.90E-07	SCO1112	1.5	2.00E-12	2.0	2.40E-06
SCO0903	1.9	2.20E-02			SCO1118			1.1	1.40E-02
SCO0904	1.6	1.20E-02		0.005.00	SCO1126	1.0	1.00E-03	1.2	3.30E-02
SCO0906			1.4	9.00E-03	SCO1127	1.2	1.00E-03		
SCO0907			2.2	1.20E-09	SCO1128	1.5	8.30E-05		
SCO0908			2.3	1.60E-09	SCO1129	1.6	5.30E-05		
SCO0909	4.0	2.005.25	1.9	1.80E-09	SCO1130	1.2	1.30E-06		
SCO0910	1.8	2.00E-28			SCO1131	1.1	2.40E-05	1.3	2.005.02
SCO0911	1.7	8.00E-22			SCO1132	1.2	5.10E-09	1.2	2.00E-03
SCO0912	1.7	2.60E-15			SCO1133	1.2	6.60E-06	1.6	6.50E-05
SCO0913	1.7	1.30E-17			SCO1134	1.3	3.70E-08	1.4	1.00E-03

Tabla A5. Genes sobreexpresados en el análisis transcripcional de las cepas S*scr1 vs* control. Genes del *SCO1137* al SCO*1593*.

-	36	horas	48	horas		36	horas	48	horas
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCO1137	1.5	6.30E-10	-0 -		SCO1368	2.6	2.10E-16	-0	
SCO1142	3.5	4.20E-76	2.4	2.30E-10	SCO1369	1.6	1.80E-08	1.3	5.00E-03
SCO1143	2.8	9.80E-33	2.4	6.30E-09	SCO1370	1.6	6.80E-05	1.7	8.00E-03
SCO1144	2.6	7.10E-64	3.1	3.00E-34	SCO1371		ı	1.2	1.90E-02
SCO1148	1.3	6.10E-14			SCO1373	1.5	8.50E-13		
SCO1150		•	1.5	1.40E-02	SCO1374	1.2	5.20E-06	1.4	1.00E-03
SCO1151			1.5	2.30E-04	SCO1376			1.8	5.20E-06
SCO1164			1.5	1.00E-03	SCO1383			1.4	2.00E-03
SCO1167	1.1	3.60E-08			SCO1384			1.5	9.90E-04
SCO1170			1.4	8.90E-05	SCO1385			1.1	4.50E-02
SCO1220	1.3	3.00E-03			SCO1404			1.8	4.00E-07
SCO1244	2.1	8.40E-48			SCO1405			1.1	4.70E-02
SCO1245	2.5	1.30E-56			SCO1411	1.5	6.20E-16		
SCO1246	2.1	1.20E-32			SCO1413			2.9	2.60E-24
SCO1264	1.2	8.90E-04			SCO1416	1.0	1.30E-05	1.4	4.50E-04
SCO1174			3.1	2.00E-03	SCO1417			1.1	1.00E-02
SCO1175			2.1	2.00E-03	SCO1418			1.4	3.60E-02
SCO1176			2.0	1.80E-10	SCO1424		ı	1.2	3.50E-02
SCO1177			2.8	4.60E-13	SCO1429	1.6	5.60E-08		
SCO1178			3.7	9.50E-22	SCO1436			1.3	2.30E-04
SCO1192			1.5	5.30E-02	SCO1438			1.2	5.00E-03
SCO1193			1.4	2.40E-02	SCO1441			1.2	3.00E-03
SCO1294	1.6	7.40E-15	1.2	2.20E-02	SCO1442			1.5	3.00E-03
SCO1296	1.2	2.70E-14			SCO1448	1.1	8.20E-05		
SCO1199			1.1	4.00E-02	SCO1453	1.2	2.10E-08		
SCO1201			2.0	8.40E-07	SCO1454		ı	1.6	2.70E-04
SCO1207			1.4	5.00E-03	SCO1455	1.6	9.30E-11	2.7	8.40E-11
SCO1222			2.8	1.50E-15	SCO1456			2.7	6.90E-09
SCO1223			2.2	7.90E-11	SCO1457			3.4	2.20E-33
SCO1224			1.7	1.30E-06	SCO1459	1.7	5.70E-12	1.8	2.70E-05
SCO1225			1.6	3.20E-05	SCO1477	4.0	2 205 07	1.3	6.50E-04
SCO1296	4.5	4 405 25	1.8	3.30E-09	SCO1491	1.0	3.30E-07	1.0	4 605 03
SCO1304	1.5	1.40E-25	1.5	1.00E-03	SCO1493			1.0	1.60E-02
SCO1305	2.1	8.70E-43	2.4	4.50E-12	SCO1500			1.1	4.20E-02
SCO1306	2.4	1.80E-23	2.9	1.10E-15	SCO1501			1.6	3.00E-07
SCO1307			2.6	1.30E-15	SCO1502			2.2	4.40E-16
SCO1320			2.1	9.00E-12	SCO1503			1.2	3.00E-03
SCO1321 SCO1322			3.2	6.10E-26	SCO1507			1.3	3.00E-03
			2.3	4.10E-09	SCO1508			3.2 3.3	5.00E-33 2.60E-38
SCO1340			2.4	3.10E-16	SCO1509 SCO1519			1.2	
SCO1341 SCO1342			2.6 1.9	2.60E-19 1.60E-05	SCO1519			1.7	3.70E-02 1.20E-06
SCO1342 SCO1345	1.0	1.40E-04	1.9	1.00E-03	SCO1525			1.7	9.60E-07
SCO1345	1.1	8.10E-06			SCO1523			1.4	5.30E-05
SCO1340	1.9	7.70E-10	1.2	1.00E-02	SCO1545			1.0	9.00E-03
SCO1359	1.6	9.30E-14	3.0	3.20E-18	SCO1549	1.6	1.50E-10	3.2	6.10E-23
SCO1359	2.1	2.70E-31	2.1	2.10E-06	SCO1543	1.0	1.JUL-10	1.7	2.70E-04
SCO1361	1.6	1.70E-15	3.3	1.90E-20	SCO1557	1.5	1.30E-05	2.3	8.30E-07
SCO1361	1.9	6.10E-22	3.2	2.20E-15	SCO1558	1.4	4.60E-12	1.9	2.50E-07
SCO1363	4.0	8.80E-74	4.2	1.80E-20	SCO1567		001 12	1.1	1.70E-02
SCO1364	1.1	3.70E-09	2.2	4.50E-10	SCO1584			1.2	3.60E-02
SCO1365	4.5	1.50E-60	3.5	1.90E-06	SCO1585			3.5	3.40E-24
SCO1366	2.2	3.10E-59		1.552 00	SCO1586			3.0	1.00E-21
SCO1367	2.5	1.40E-06			SCO1588	1.1	4.70E-05	3.0	1.001 21
3001307	2.5	1.70L-00			5001555		T. / UL-UJ		

Tabla A6. Genes sobreexpresados en el análisis transcripcional de las cepas S*scr1 vs* control. Genes del *SCO1594* al SCO*2027*.

	36	horas	48	horas		36	horas	48	horas
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCO1594		<u> </u>	1.2	2.00E-04	SCO1824	1.3	5.40E-11		
SCO1595			3.1	4.50E-32	SCO1837			1.8	1.90E-06
SCO1596			2.5	2.10E-18	SCO1840			1.9	7.00E-09
SCO1597	2.0	2.30E-30	1.7	3.30E-04	SCO1861			1.3	3.00E-03
SCO1598			1.1	4.20E-02	SCO1862			1.5	1.90E-02
SCO1599			1.1	4.40E-02	SCO1864	1.5	2.90E-12		
SCO1600	1.0	3.20E-13	1.5	1.30E-04	SCO1865	1.1	1.50E-08		
SCO1617	1.5	5.20E-09	1.6	1.00E-03	SCO1866	1.2	5.80E-07		
SCO1618			1.5	6.80E-05	SCO1867	1.1	6.00E-11		
SCO1623			1.1	1.60E-02	SCO1868	1.2	3.20E-13	2.5	2.30E-22
SCO1624			1.3	1.00E-03	SCO1869	2.5	2.70E-57	2.0	2.60E-05
SCO1631			1.5	1.20E-07	SCO1874			1.6	8.00E-03
SCO1632			1.1	1.50E-02	SCO1891			1.4	4.00E-02
SCO1663	1.7	4.20E-31			SCO1903			1.7	2.20E-06
SCO1669			1.2	7.00E-03	SCO1905			1.7	2.20E-06
SCO1672			1.8	5.30E-09	SCO1906			1.0	2.60E-02
SCO1679	2.0	3.10E-19	2.0	3.00E-03	SCO1909			2.3	5.20E-11
SCO1680	1.9	5.50E-18	1.7	1.10E-02	SCO1912			1.4	7.00E-03
SCO1681	1.6	8.90E-08			SCO1916			1.5	1.20E-04
SCO1682	1.8	1.30E-08			SCO1917			2.5	2.40E-10
SCO1683	2.0	2.50E-15	1.3	1.90E-02	SCO1922			1.3	2.00E-03
SCO1684	2.2	2.30E-12	1.4	1.10E-02	SCO1923			1.5	2.00E-03
SCO1691		•	1.2	5.10E-02	SCO1924			1.1	5.00E-03
SCO1693	1.3	5.90E-06			SCO1925			1.2	4.60E-02
SCO1696		•	1.1	1.30E-02	SCO1927			2.2	5.60E-04
SCO1704			1.1	2.30E-02	SCO1932			1.1	3.80E-02
SCO1705			1.1	1.80E-02	SCO1936			1.5	2.10E-04
SCO1706			1.2	5.00E-03	SCO1937			1.1	4.90E-02
SCO1711	2.6	4.50E-40	1.9	1.50E-05	SCO1946			1.2	1.00E-03
SCO1714	1.0	3.30E-07	1.2	1.50E-02	SCO1954	1.8	7.30E-13	1.7	3.00E-04
SCO1720			1.3	1.00E-03	SCO1962			1.3	9.00E-03
SCO1726			2.6	2.60E-22	SCO1963			1.5	1.00E-03
SCO1727			1.9	3.60E-09	SCO1968	2.5	3.90E-89	2.9	1.00E-26
SCO1729			2.1	1.90E-07	SCO1969			1.0	3.50E-02
SCO1734			1.4	1.40E-02	SCO1972	1.2	2.60E-09		
SCO1750			1.2	2.10E-02	SCO1979	1.1	1.80E-05		
SCO1751	1.2	1.90E-08			SCO1980	1.1	2.10E-09	1.3	5.00E-03
SCO1758			2.0	1.30E-11	SCO1984	2.4	1.40E-22	2.1	1.70E-04
SCO1759	1.0	1.90E-06			SCO1985	2.4	5.30E-31	1.3	9.00E-03
SCO1761			1.2	8.00E-03	SCO1986	1.5	4.00E-12	2.0	2.40E-04
SCO1764			1.2	4.20E-02	SCO1987	1.3	5.80E-06		
SCO1776	1.1	2.80E-10			SCO1988	1.0	3.80E-06	1.3	2.20E-02
SCO1787			1.1	5.10E-02	SCO1989	1.0	5.50E-13	2.6	1.80E-14
SCO1799			1.5	2.70E-04	SCO1990	2.0	1.10E-32	1.3	3.10E-02
SCO1801			1.5	9.40E-07	SCO1991			1.2	3.00E-03
SCO1802	1.6	6.10E-21	2.0	3.60E-12	SCO1992		ı	1.9	1.30E-06
SCO1803	3.7	2.50E-60	5.9	9.00E-56	SCO1994	3.0	6.50E-73	2.5	3.20E-10
SCO1804	3.1	2.80E-40	5.4	1.30E-07	SCO1995	2.6	2.90E-50	2.3	4.20E-10
SCO1805	4.9	5.40E-67	2.6	3.40E-05	SCO1996	1.8	1.90E-31	2.1	1.40E-10
SCO1807	1.8	1.30E-20			SCO1997	2.7	8.70E-112	2.3	1.10E-11
SCO1812	1.5	7.10E-11			SCO1999	1.1	3.90E-04		
SCO1813	1.1	3.80E-05			SCO2018			1.1	1.00E-03
SCO1816			1.8	5.30E-05	SCO2026	1.8	3.00E-29	1.5	1.30E-06
SCO1817			1.2	1.30E-02	SCO2027			1.3	1.80E-05

Tabla A7. Genes sobreexpresados en el análisis transcripcional de las cepas S*scr1 vs* control. Genes del *SCO2028* al SCO*2633*.

	36	horas	48	horas		36	horas	48	horas
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCO2028	1.4	5.50E-08		p.e.s,	SCO2383	2.3	1.40E-48		p.e.e.j
SCO2055			2.3	1.60E-20	SCO2394			1.5	6.00E-03
SCO2056			1.6	2.00E-03	SCO2395			1.5	4.00E-03
SCO2062			1.1	6.00E-03	SCO2397	1.8	5.40E-12		
SCO2099			1.4	1.20E-02	SCO2398	1.5	1.50E-06		
SCO2142			1.5	2.20E-04	SCO2399	1.1	3.00E-04		
SCO2166			1.9	2.20E-10	SCO2426	1.5	2.90E-09	1.1	3.70E-02
SCO2174	1.2	1.60E-05			SCO2435	2.2	3.90E-58	1.4	3.00E-03
SCO2189			2.7	2.40E-09	SCO2436	2.1	6.00E-39	1.6	2.60E-04
SCO2190	1.0	1.90E-05	1.1	2.00E-02	SCO2437	1.6	5.60E-19	1.1	3.00E-02
SCO2200	1.2	1.00E-06	1.3	2.10E-02	SCO2438	1.4	2.40E-25		
SCO2203	1.3	1.00E-05	1.7	6.60E-04	SCO2447	1.1	1.10E-10	1.3	2.70E-04
SCO2212			1.4	1.60E-02	SCO2449			1.1	5.00E-03
SCO2213			2.6	2.00E-15	SCO2463			2.3	2.90E-14
SCO2214			1.8	1.60E-04	SCO2464			1.6	4.90E-06
SCO2248	1.6	2.10E-07	2.6	7.20E-04	SCO2467			1.5	3.60E-04
SCO2254	2.0	5.50E-15	1.7	2.30E-04	SCO2477			1.7	4.30E-04
SCO2256	1.2	3.70E-10			SCO2478			2.5	8.00E-08
SCO2259			1.8	5.30E-07	SCO2479	1.2	1.50E-02	2.1	5.00E-03
SCO2268			1.4	5.80E-04	SCO2480	2.5	6.50E-18	2.5	4.70E-07
SCO2269	1.2	2.70E-05	2.4	8.40E-08	SCO2481	2.5	2.70E-19	2.1	4.30E-06
SCO2271	1.8	4.90E-11			SCO2498	3.0	2.10E-40	1.6	3.00E-03
SCO2272	1.4	2.40E-05			SCO2499	1.7	5.70E-30		
SCO2273	1.1	2.00E-03			SCO2500	1.1	2.00E-03	2.2	8.70E-07
SCO2276	1.0	6.00E-03			SCO2501			1.4	2.60E-06
SCO2292	1.4	1.50E-05			SCO2502	1.0	2.90E-04		
SCO2298	1.2	6.80E-07			SCO2528			1.4	4.70E-04
SCO2304			1.2	1.70E-02	SCO2532			2.4	2.50E-13
SCO2305	1.3	1.00E-05			SCO2533			1.9	2.20E-07
SCO2306	2.8	9.10E-14	1.7	1.10E-02	SCO2534			1.7	4.40E-07
SCO2307	2.0	2.20E-20			SCO2535			1.8	7.00E-03
SCO2308	1.6	8.90E-13			SCO2536		1	1.6	7.50E-04
SCO2309	1.7	5.20E-37	3.4	1.80E-33	SCO2537	1.5	4.40E-15		
SCO2310	4.3	3.70E-114	3.0	7.80E-04	SCO2541	2.1	5.40E-16	1.4	2.00E-03
SCO2317			1.5	1.10E-02	SCO2542	2.0	3.60E-07		
SCO2318		1	1.1	2.00E-02	SCO2543	1.7	1.50E-05		
SCO2326	3.1	1.50E-12	2.2	1.80E-02	SCO2547			1.4	5.80E-04
SCO2327	3.9	4.00E-07	2.5	1.60E-02	SCO2549			1.1	1.00E-03
SCO2328			1.8	2.00E-03	SCO2552			1.1	2.40E-02
SCO2329			1.4	8.00E-03	SCO2553			1.4	5.70E-04
SCO2336	1.8	1.50E-10			SCO2567	1.2	1.80E-09		
SCO2342	1.2	1.70E-04	1.7	9.10E-04	SCO2568			1.7	5.70E-05
SCO2343	1.4	6.10E-07	2.1	7.70E-08	SCO2569			1.9	2.00E-10
SCO2344	1.5	3.30E-16	1.7	1.60E-05	SCO2570			1.8	1.20E-09
SCO2346	2.6	1.10E-33	2.2	2.10E-04	SCO2587			1.9	4.60E-08
SCO2350	1.8	4.40E-04	2.3	1.20E-04	SCO2591			1.2	2.00E-02
SCO2355	2.6	7.50E-19		5 00 T 5 F	SCO2595	1.9	9.70E-46	1.5	2.00E-05
SCO2358			1.1	5.00E-02	SCO2598	1.2	3.60E-06	2.0	4 405 46
SCO2366			1.4	5.00E-03	SCO2615			2.0	1.40E-10
SCO2367			1.8	2.70E-05	SCO2619	1.0	1 005 00	1.4	1.00E-03
SCO2373			2.6	3.70E-25	SCO2625	1.0	1.00E-09	3.3	4.50E-42
SCO2377			1.3	3.00E-03	SCO2626	4.0	2 605 06	2.4	9.10E-18
SCO2379			2.4	5.90E-08	SCO2631	1.6	2.60E-08	2.5	E 005 34
SCO2380			1.9	5.60E-08	SCO2633			3.6	5.80E-24

Tabla A8. Genes sobreexpresados en el análisis transcripcional de las cepas S*scr1 vs* control. Genes del *SCO2634* al SCO*3081*.

	36 horas 48 horas			horas		48	horas		
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	horas padj	log2FC	padj
SCO2634	2.5	1.00E-63	1.5	8.40E-04	SCO2856		py	1.1	4.90E-02
SCO2637	2.2	1.80E-59	2.0	3.10E-10	SCO2872			1.7	4.00E-05
SCO2640			2.2	5.70E-15	SCO2873			1.6	1.20E-02
SCO2645	1.8	5.90E-09	1.5	8.00E-03	SCO2876	1.1	4.40E-08	1.8	5.00E-06
SCO2646	1.2	4.80E-04			SCO2878			1.3	2.00E-03
SCO2649	1.7	3.50E-24			SCO2885			1.1	1.10E-02
SCO2651	2.2	1.60E-19	1.7	5.00E-03	SCO2896	1.3	3.40E-05		
SCO2652	1.2	1.30E-08			SCO2897			1.4	3.00E-05
SCO2653	1.9	6.50E-15	1.8	9.00E-05	SCO2902			1.8	1.20E-08
SCO2672	1.5	1.20E-21	1.2	4.40E-04	SCO2903			1.6	2.70E-04
SCO2673	1.5	1.30E-15	1.2	4.20E-04	SCO2910	2.3	1.70E-47		
SCO2674			1.3	4.00E-03	SCO2911	3.1	3.30E-59	1.9	8.10E-07
SCO2695	2.2	1.80E-71	4.2	7.40E-42	SCO2912	2.3	3.10E-14		
SCO2696			3.3	4.80E-29	SCO2915			1.0	4.90E-02
SCO2697			2.0	2.60E-09	SCO2924			3.2	4.70E-26
SCO2721			1.9	3.90E-06	SCO2925			2.6	3.90E-15
SCO2722			1.6	2.00E-03	SCO2926			1.1	3.70E-02
SCO2723			2.3	3.30E-07	SCO2937	2.2	1.20E-33	3.3	5.00E-25
SCO2726			1.7	1.90E-05	SCO2946			2.0	2.50E-06
SCO2727			1.4	1.00E-03	SCO2952	1.1	4.20E-11		
SCO2729			3.1	3.60E-10	SCO2955	1.9	1.30E-05		
SCO2730			1.3	4.00E-03	SCO2956	1.4	6.00E-03		
SCO2732	1.3	2.40E-04	1.6	1.10E-02	SCO2957	1.1	4.00E-03		
SCO2733	1.8	1.70E-09	1.8	5.60E-04	SCO2964	3.4	4.20E-54	2.2	6.00E-04
SCO2762	2.4	2.20E-09			SCO2965	3.0	4.10E-76	1.5	6.00E-03
SCO2763	2.5	1.30E-55	1.3	1.00E-03	SCO2966			1.1	9.00E-03
SCO2770			1.4	2.70E-04	SCO2981	1.6	1.50E-14		
SCO2773	1.6	9.50E-13	1.6	3.00E-03	SCO2982	2.0	4.40E-19	1.4	4.70E-04
SCO2774	2.0	1.90E-33	2.1	3.30E-05	SCO2983	2.7	3.00E-36	1.9	1.00E-04
SCO2775	1.3	1.00E-09	1.0	4.90E-02	SCO2984	3.0	3.30E-34	2.0	3.00E-04
SCO2776	1.5	3.00E-24	2.3	1.80E-11	SCO2986	4.2	1.40E-121	3.0	4.10E-12
SCO2777	1.7	1.30E-44	2.0	2.90E-06	SCO2987	2.2	4.20E-18		
SCO2778	2.3	2.90E-53	2.3	4.40E-08	SCO2990			1.2	4.10E-02
SCO2779	2.4	6.70E-85	2.4	6.50E-08	SCO2991			1.2	2.40E-02
SCO2780			2.1	4.80E-06	SCO2995			1.3	7.00E-03
SCO2784	1.1	4.60E-02			SCO3006	1.0	1.20E-04	2.8	4.70E-12
SCO2789			1.1	5.00E-02	SCO3007			1.1	5.00E-03
SCO2792			1.5	1.80E-08	SCO3023			1.1	3.30E-02
SCO2803			1.2	4.20E-02	SCO3026			1.1	4.40E-02
SCO2812	1.7	6.20E-09	1.2	2.30E-02	SCO3028			1.0	2.80E-02
SCO2815	1.1	4.00E-03	2.5	2 225 24	SCO3029	1.0	4.80E-04	1.2	6.00E-03
SCO2816	4.8	1.00E-149	3.5	3.00E-04	SCO3035	1.3	8.50E-06	1.6	1.00E-03
SCO2817	2.5	1.50E-66	1.6	4.00E-03	SCO3042	1.6	7.50E-08	4.0	4 405 00
SCO2818	2.8	3.00E-39			SCO3051	1.2	3.00E-16	1.0	1.40E-02
SCO2821	2.0	7.60E-14			SCO3058	2.0	1 005 00	1.1	5.00E-03
SCO2828	1.8	1.90E-13			SCO3064	2.0	1.90E-30	2.2	4.30E-02
SCO2829	1.5	3.00E-08			SCO3068	1.1	5.80E-11		
SCO2830	1.2	1.30E-04			SCO3072	1.4	2.90E-12	1.3	2.005.02
SCO2831	1.7	7.90E-20	2.7	1 105 00	SCO3073	2.8	4.80E-95	1.2	2.00E-03
SCO2839	3.7	2.40E-34	2.7	1.10E-06	SCO3074	1.0	1.00E-05		
SCO2849	2.7	1.30E-39	1.5	4.00E-03	SCO3075	1.7	7.00E-18		
SCO2850	1.1	1.80E-05	2.0	2.005.04	SCO3079	1.7	1.80E-29	1.0	E 60E 0E
SCO2851	1.3	7.40E-04	2.0	3.00E-04	SCO3080			1.8	5.60E-05
SCO2853			1.4	1.60E-02	SCO3081			1.1	5.40E-02

Tabla A9. Genes sobreexpresados en el análisis transcripcional de las cepas S*scr1 vs* control. Genes del *SCO3089* al SCO*3418*.

-	36	horas	48	horas		36	horas	48	horas
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCO3089	- 0	1	2.3	4.20E-02	SCO3237	1.2	3.30E-05	3.0	9.50E-08
SCO3090			2.2	3.10E-02	SCO3238	1.7	5.60E-08	2.4	1.30E-07
SCO3091	1.7	2.30E-31	1.7	3.30E-08	SCO3239	1.7	1.60E-06	3.2	3.70E-10
SCO3100			1.2	2.00E-03	SCO3240	1.5	2.70E-05	2.2	5.10E-04
SCO3105			1.3	2.60E-02	SCO3241	1.9	1.50E-11	2.5	8.30E-08
SCO3110			1.3	2.00E-03	SCO3242	2.1	3.80E-09	1.6	7.00E-03
SCO3111			1.9	2.00E-12	SCO3243	2.1	7.40E-17	2.8	1.80E-13
SCO3117			1.5	5.00E-03	SCO3244	2.6	1.10E-29	4.0	6.50E-23
SCO3118			1.3	2.30E-02	SCO3245	1.8	1.00E-13	2.6	8.10E-10
SCO3125	1.5	2.50E-11			SCO3246	2.2	2.10E-11	3.1	2.00E-09
SCO3126	1.3	6.70E-05			SCO3247	2.0	2.70E-23	2.3	7.90E-10
SCO3132	1.4	2.20E-06	1.5	7.00E-03	SCO3248	2.0	1.20E-22	1.7	4.60E-05
SCO3156	1.3	1.20E-23	1.0	4.30E-02	SCO3249	1.8	6.90E-11	2.3	3.50E-05
SCO3162	2.4	1.60E-60	1.7	2.00E-05	SCO3276	1.4	3.00E-11	1.9	7.30E-07
SCO3163	1.0	3.00E-03	1.3	3.60E-02	SCO3277	1.1	1.80E-05	3.0	6.40E-10
SCO3164	1.7	5.50E-13	3.2	2.90E-16	SCO3278	4.3	2.00E-03		•
SCO3165			4.0	1.10E-22	SCO3279	1.7	1.40E-07		
SCO3166	1.1	5.70E-12			SCO3280	1.1	1.30E-02		
SCO3189			1.5	4.00E-03	SCO3284	1.1	8.10E-08		
SCO3192			1.1	2.40E-02	SCO3285			1.0	2.40E-02
SCO3197	1.3	8.10E-08	1.2	3.50E-02	SCO3286			1.8	9.90E-10
SCO3198	1.4	1.50E-11	1.6	3.80E-04	SCO3287			1.5	2.60E-02
SCO3199	1.7	1.60E-20	1.9	1.30E-04	SCO3296	1.1	2.00E-06	1.3	4.80E-02
SCO3200	3.7	1.30E-51	2.3	3.60E-04	SCO3299			1.3	4.00E-03
SCO3201	2.0	5.40E-34	1.5	1.10E-02	SCO3303			2.2	1.30E-19
SCO3202	2.6	1.00E-97	2.0	3.40E-05	SCO3306			1.1	1.00E-02
SCO3203	1.2	1.40E-06			SCO3334			1.1	1.90E-02
SCO3204	3.5	7.30E-36	1.9	1.00E-03	SCO3335			1.7	1.70E-04
SCO3205	1.3	1.40E-06		i	SCO3339			1.5	2.30E-02
SCO3206	4.7	0.00E+00	4.3	2.40E-21	SCO3340			1.2	1.00E-02
SCO3207	4.1	8.00E-229	3.4	1.30E-18	SCO3341			1.6	9.60E-05
SCO3208	1.2	8.20E-05			SCO3342			1.5	2.00E-03
SCO3210	1.7	3.00E-10			SCO3360			2.4	7.00E-13
SCO3211	1.9	4.60E-09		ı	SCO3361	1.3	9.20E-05		ı
SCO3212	1.5	1.20E-05	1.5	1.00E-02	SCO3363			1.7	2.00E-03
SCO3213	1.6	2.00E-03	1.9	2.00E-03	SCO3366			2.0	8.20E-10
SCO3214	1.6	4.70E-09		ı	SCO3368	1.7	4.80E-20	1.2	1.70E-02
SCO3215	1.5	4.30E-06	1.4	6.00E-03	SCO3382			1.1	2.20E-02
SCO3217	1.1	7.40E-17	2.3	8.30E-20	SCO3384			1.3	9.00E-03
SCO3218	2.0	7.50E-23	3.5	4.00E-27	SCO3385			2.2	2.00E-09
SCO3219			1.2	1.70E-02	SCO3386			2.0	1.00E-03
SCO3220	2.1	2.10E-07	4.4	6.40E-23	SCO3388			1.9	1.90E-05
SCO3221	2.5	3.90E-31	3.6	1.40E-17	SCO3389			1.7	1.20E-04
SCO3222	2.3	5.30E-18	5.6	8.70E-46	SCO3390			2.0	1.00E-08
SCO3227	4.6	2 505 00	2.6	3.00E-14	SCO3391	4.0	4 505 00	1.2	2.20E-02
SCO3228	1.6	3.50E-08	3.1	6.70E-13	SCO3396	1.2	1.50E-09	1.2	0.005.00
SCO3229	2.3	1.80E-23	3.5	1.30E-25	SCO3397	1.9	2.50E-27	1.3	9.00E-03
SCO3230	1.4	1.00E-27	3.1	2.40E-34	SCO3398	1.4	2 105 00	1.2	1.70E-02
SCO3231	1.7	6.80E-29	2.9	4.50E-24	SCO3399	1.4	2.10E-08	1.5	1.30E-02
SCO3232	1.9	1.50E-46	3.2	7.60E-26	SCO3402	1.1	2 105 12	1.1	6.00E-03
SCO3233	2.3	1.60E-21	4.4	4.60E-28	SCO3403	1.1	3.10E-12	1.1	2 705 02
SCO3234	2.1	3.90E-19	4.3	1.20E-07	SCO3408			1.1	3.70E-02
SCO3235	2.0	6.30E-26	3.2	1.60E-22	SCO3417			1.5	1.40E-02
SCO3236	2.0	3.20E-20	3.9	1.50E-21	SCO3418			1.6	2.00E-03

Tabla A10. Genes sobreexpresados en el análisis transcripcional de las cepas S*scr1 vs* control. Genes del *SCO3426* al SCO*3959*.

	36 horas 48 horas			horas	36 horas			48 horas		
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj	
SCO3426			1.5	1.00E-03	SCO3743	1.3	5.00E-03	1.2	3.60E-02	
SCO3509	2.6	7.90E-30			SCO3745	1.4	4.00E-03			
SCO3556	1.1	1.20E-05			SCO3746	2.0	2.30E-14	1.6	2.00E-03	
SCO3557	1.3	1.70E-05			SCO3747			1.1	1.70E-02	
SCO3562			1.9	4.40E-07	SCO3749	1.0	1.60E-05			
SCO3573			1.1	2.10E-02	SCO3752	1.4	2.00E-03			
SCO3581			2.1	8.40E-11	SCO3758	1.4	2.80E-06			
SCO3592	1.1	1.00E-03			SCO3759	1.5	7.60E-07	1.2	1.20E-02	
SCO3596	1.1	2.20E-02			SCO3760	1.2	1.90E-06	1.5	1.70E-02	
SCO3602			1.7	1.40E-06	SCO3764			1.6	4.70E-07	
SCO3603			1.1	3.40E-02	SCO3765			1.7	2.70E-08	
SCO3607			1.2	2.00E-03	SCO3770			1.7	3.50E-05	
SCO3630	1.5	2.10E-06			SCO3771			1.3	3.00E-03	
SCO3661			1.8	1.00E-08	SCO3776			1.6	3.00E-03	
SCO3662	2.9	1.00E-133	1.9	4.40E-08	SCO3777	1.6	1.30E-08	2.1	4.30E-07	
SCO3663	2.8	6.80E-64	1.6	4.00E-03	SCO3778			3.1	4.60E-23	
SCO3666	1.1	2.80E-08	1.3	6.00E-03	SCO3786	1.7	4.40E-04			
SCO3671			1.7	5.80E-05	SCO3787	1.0	5.00E-03			
SCO3673	1.1	6.40E-14	1.2	7.00E-03	SCO3788	1.2	1.40E-02	1.9	5.00E-02	
SCO3674	1.3	7.50E-06			SCO3789			1.3	3.00E-02	
SCO3679	1.4	1.20E-10			SCO3792			1.6	5.70E-06	
SCO3682	1.5	3.70E-07			SCO3794			1.0	1.80E-02	
SCO3687	2.1	2.50E-07			SCO3795			1.4	3.30E-04	
SCO3688	2.2	2.70E-12	1.3	2.80E-02	SCO3796	1.1	2.10E-06			
SCO3690	2.0	1.30E-15			SCO3797	1.1	1.00E-03			
SCO3691	3.1	1.20E-36	2.2	1.30E-05	SCO3800	2.1	9.20E-37	1.3	2.20E-02	
SCO3692	4.0	2.30E-29	2.6	2.30E-04	SCO3801			1.0	2.00E-02	
SCO3694	1.3	2.10E-07	1.4	1.10E-02	SCO3813			1.2	2.10E-02	
SCO3695	2.4	8.00E-25	3.5	6.60E-10	SCO3823			1.1	4.40E-02	
SCO3696	2.5	1.30E-19	1.4	5.00E-03	SCO3824	1.0	2.30E-06	3.1	2.00E-24	
SCO3697	2.5	1.00E-39	2.1	4.90E-07	SCO3825			2.4	1.60E-17	
SCO3698	2.9	1.40E-32	2.3	1.90E-05	SCO3827			1.1	3.90E-02	
SCO3699	2.7	1.00E-06	2.4	4.50E-02	SCO3831	1.4	1.00E-03			
SCO3700	3.5	2.10E-11			SCO3835			1.0	1.30E-02	
SCO3701	4.4	1.60E-05			SCO3855			1.0	4.60E-02	
SCO3702	1.9	6.80E-10			SCO3866	1.0	9.10E-08			
SCO3704	2.0	2.00E-26			SCO3880	1.1	3.40E-06			
SCO3705	1.4	7.70E-07			SCO3889	1.4	1.50E-21			
SCO3706	1.3	4.70E-07			SCO3890	2.0	3.20E-46	2.1	1.40E-10	
SCO3707	1.7	5.30E-06			SCO3910	1.1	5.00E-07	3.7	8.30E-28	
SCO3709	1.0	2.00E-02			SCO3912	1.1	6.70E-08	2.7	5.30E-22	
SCO3710			1.1	5.00E-03	SCO3915	1.5	3.50E-12	1.7	5.00E-03	
SCO3730	1.3	7.60E-05			SCO3916			2.4	4.00E-07	
SCO3732	1.3	2.40E-20	2.3	4.90E-14	SCO3917			2.8	3.50E-13	
SCO3733	1.1	6.10E-06	1.5	6.00E-03	SCO3925			1.4	4.90E-04	
SCO3734	1.1	3.70E-05	1.3	3.00E-02	SCO3931	1.4	4.90E-02			
SCO3735	1.3	8.00E-03			SCO3945			1.1	3.20E-02	
SCO3736	1.4	6.60E-06			SCO3951			1.1	5.00E-03	
SCO3737	1.5	3.40E-06			SCO3952			3.6	1.90E-18	
SCO3738	1.7	9.60E-07			SCO3953			3.5	1.10E-37	
SCO3739	1.8	2.90E-10	1.5	1.50E-02	SCO3956			2.9	1.70E-15	
SCO3740	1.1	5.30E-06	1.2	1.70E-02	SCO3957			2.6	8.80E-11	
SCO3741	1.1	7.80E-04			SCO3958			2.0	5.00E-07	
SCO3742	1.9	1.90E-07	2.0	3.00E-03	SCO3959			1.1	1.70E-02	

Tabla A11. Genes sobreexpresados en el análisis transcripcional de las cepas Sscr1 vs control. Genes del SCO3960 al SCO4308.

	36	36 horas 48 horas			36	horas	48 horas		
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCO3960			1.6	6.00E-09	SCO4199			1.1	5.00E-03
SCO3961			2.5	4.10E-18	SCO4201			1.7	3.90E-06
SCO3964			1.1	3.00E-03	SCO4202	1.0	4.70E-08		
SCO3966			1.2	1.90E-02	SCO4203	1.9	1.10E-09		
SCO3971			1.1	5.00E-03	SCO4204	3.4	1.20E-97	2.8	2.00E-03
SCO3972	2.5	3.90E-26			SCO4207	1.6	1.90E-09		
SCO3973	1.7	2.20E-15			SCO4208	1.0	1.60E-06		
SCO3975	1.1	2.20E-08			SCO4214	3.0	1.10E-19	4.2	8.30E-28
SCO4004			2.1	1.40E-02	SCO4223			1.1	1.50E-02
SCO4005			2.1	6.50E-07	SCO4233			1.6	4.00E-06
SCO4006			2.7	1.50E-12	SCO4234			1.6	1.00E-03
SCO4017	1.2	2.00E-03			SCO4242	1.5	2.60E-14		
SCO4018	1.4	3.00E-03			SCO4243	1.7	8.20E-05		
SCO4021	1.1	1.00E-04			SCO4244	1.8	4.10E-21		
SCO4022	1.1	2.60E-04			SCO4245	2.0	3.50E-09		
SCO4023	1.1	1.40E-06			SCO4246	2.0	2.00E-37		
SCO4029	1.4	2.30E-04		1	SCO4247	1.8	3.60E-14		
SCO4055			2.2	2.40E-10	SCO4248	1.9	2.60E-11		
SCO4058			1.6	1.30E-05	SCO4249	1.4	9.30E-06		
SCO4059			1.6	5.70E-04	SCO4250	1.9	2.10E-40		
SCO4075			1.1	5.00E-02	SCO4251	2.0	4.90E-48		
SCO4082	1.7	1.30E-10	1.7	3.00E-03	SCO4252	2.2	3.80E-45		
SCO4083	2.0	1.60E-18	1.4	9.00E-03	SCO4253	2.3	4.60E-73		
SCO4084	1.0	5.70E-04		ı	SCO4254	1.0	2.50E-10		
SCO4085	1.6	3.90E-10	1.4	1.40E-02	SCO4255	2.2	4.00E-26		
SCO4096	1.4	2.30E-28			SCO4256	1.8	2.20E-41		
SCO4098			1.9	2.20E-04	SCO4257	1.8	5.30E-25		
SCO4104	1.7	3.30E-04			SCO4258	2.1	1.10E-45		
SCO4109	2.9	3.40E-47	2.6	1.50E-08	SCO4259	1.8	1.80E-26		
SCO4110	1.7	2.80E-18	1.1	3.50E-02	SCO4260	1.9	4.60E-30		
SCO4111	1.2	1.10E-07	1.0	2 205 02	SCO4261	1.5	3.00E-13	1 /	7 505 05
SCO4119 SCO4120	1.0	5.40E-07	1.0 2.0	3.20E-02 2.30E-08	SCO4263 SCO4264			1.4	7.50E-05 1.20E-22
SCO4121	1.1	4.70E-08	2.0	1.40E-10	SCO4265			2.8	1.50E-22 1.50E-08
SCO4121 SCO4123	1.1	4.70E-08 4.10E-06	2.1	1.406-10	SCO4266				2.20E-22
SCO4124	2.0	2.50E-16	1.8	2.30E-04	SCO4267			3.1 1.2	1.10E-02
SCO4125	2.0	2.30L-10	2.2	9.40E-13	SCO4271	1.2	5.40E-04	1.2	1.10L-02
SCO4123			2.2	9.20E-12	SCO4271	2.8	3.40E-04 3.00E-12	2.0	7.00E-03
SCO4134 SCO4141	1.4	7.60E-05	2.2	J.20L-12	SCO4274	1.5	1.60E-09	2.3	1.90E-03
SCO4141	1.1	7.00E-05			SCO4276	1.5	1.002 03	2.7	1.70E-09
SCO4159		7.002 03	1.0	3.90E-02	SCO4278	1.0	4.30E-09	3.4	5.40E-43
SCO4164	3.7	4.40E-29	1.6	2.90E-04	SCO4279	2.0	5.90E-43	3.7	8.30E-31
SCO4165	3.6	2.30E-18	1.6	2.00E-02	SCO4280	2.2	1.80E-47	3.5	5.30E-27
SCO4168	1.4	4.90E-05	1.0	2.002 02	SCO4288		1.001 17	1.2	8.00E-03
SCO4169	1.4	5.10E-04	1.5	2.20E-02	SCO4291	1.6	1.80E-06	1.8	3.00E-03
SCO4172		3.202 0 .	1.8	1.00E-03	SCO4292	1.6	3.20E-15	1.9	1.90E-06
SCO4173			1.4	1.10E-02	SCO4295	1.4	1.80E-27		
SCO4174	1.2	1.70E-04	2.2	6.50E-06	SCO4297	3.7	2.10E-134	2.7	8.90E-07
SCO4175			2.0	3.70E-05	SCO4298	1.2	1.40E-12	1.6	1.50E-04
SCO4177			1.8	2.40E-04	SCO4302	1.5	2.00E-05	1.5	8.00E-03
SCO4186	1.5	9.80E-30	1.6	3.10E-09	SCO4304	2.1	3.10E-22	2.3	1.50E-05
SCO4195			1.1	1.10E-02	SCO4305	1.0	5.90E-05		
SCO4196	1.7	1.60E-18	1.8	5.30E-04	SCO4307	1.1	6.90E-05	1.3	2.60E-02
SCO4198		· 	1.1	8.00E-03	SCO4308	1.0	6.70E-04	1.4	2.00E-03

Tabla A12. Genes sobreexpresados en el análisis transcripcional de las cepas S*scr1 vs* control. Genes del *SCO4310* al SCO*4903*.

	36	horas	48	horas		36	horas	48	horas
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCO4310			1.6	3.00E-03	SCO4612			1.6	4.30E-07
SCO4311			2.2	1.60E-12	SCO4615	1.2	6.50E-05		
SCO4312			2.2	1.80E-09	SCO4622	1.5	2.00E-03		
SCO4316	1.0	1.10E-07		ı	SCO4630			1.7	8.10E-06
SCO4319	1.8	3.20E-04	2.2	6.00E-03	SCO4634			1.3	9.00E-03
SCO4320	1.5	4.90E-04	1.9	7.00E-03	SCO4640	2.4	6.00E-43		
SCO4336	1.8	7.30E-19		ı	SCO4641	1.8	1.70E-14		
SCO4337	2.1	7.00E-39	1.6	8.60E-08	SCO4642	2.0	3.70E-04		ı
SCO4339			1.3	1.40E-02	SCO4644			1.2	9.00E-03
SCO4340			1.3	9.00E-03	SCO4645			1.0	6.00E-03
SCO4341	1.3	1.00E-02	2.3	3.00E-03	SCO4658	1.1	2.60E-08		
SCO4374			1.6	2.80E-05	SCO4664	1.2	1.40E-06		
SCO4344	1.1	1.00E-02			SCO4665	1.4	7.00E-03		
SCO4374	1.5	2.80E-16			SCO4666	1.7	1.30E-05		
SCO4375	2.2	1.60E-18	2.0	8.40E-05	SCO4667			1.3	1.90E-02
SCO4376	1.7	4.00E-11	2.1	1.50E-05	SCO4683	1.1	7.00E-10		
SCO4378	1.2	2.00E-03			SCO4685	1.2	1.30E-10	1.4	5.30E-04
SCO4388		ı	2.1	9.50E-15	SCO4733	1.0	1.00E-03		ı
SCO4392	1.3	8.20E-05	1.4	2.40E-02	SCO4748			1.8	8.00E-03
SCO4404			1.1	5.10E-02	SCO4749	1.3	2.50E-09		
SCO4406	1.1	2.80E-02			SCO4754	1.3	3.00E-10		
SCO4410	1.5	9.40E-05			SCO4755	2.3	3.00E-18		
SCO4415	1.2	4.10E-05			SCO4756	2.6	2.50E-07		
SCO4416	1.0	6.20E-04		ı	SCO4757	1.3	2.30E-08		
SCO4417			1.7	1.00E-03	SCO4759	1.6	1.40E-05		
SCO4418	1.2	8.10E-04	1.4	2.40E-02	SCO4760	1.7	1.10E-05		
SCO4419	1.9	4.00E-07	1.9	5.00E-04	SCO4764			2.5	1.90E-08
SCO4425	1.1	5.50E-05			SCO4765			3.3	3.10E-35
SCO4431			1.3	2.60E-02	SCO4766	1.2	5.30E-09		
SCO4432			1.7	2.00E-03	SCO4767	2.1	1.50E-06		
SCO4437	1.0	1.40E-04	1.3	1.20E-02	SCO4778	1.5	3.40E-15	1.9	2.90E-06
SCO4441	1.8	6.60E-58	1.7	1.10E-06	SCO4783			1.9	3.00E-03
SCO4448			2.1	4.40E-06	SCO4784			1.8	8.50E-05
SCO4449			2.7	1.10E-17	SCO4788			1.6	7.50E-04
SCO4465	4.0	4 605 00	1.5	4.80E-04	SCO4791	4.0	- 40F 06	1.2	9.90E-04
SCO4471	1.9	1.60E-23	1.2	1.40E-02	SCO4799	1.2	5.10E-06		F 40F 00
SCO4496	2.0	7.005.04	1.6	4.70E-04	SCO4810			1.1	5.40E-02
SCO4498	2.9	7.00E-84	1.9	3.40E-07	SCO4811			1.5	9.20E-04
SCO4499	1.3	3.80E-14			SCO4812			1.3	2.30E-05
SCO4501	1.2	3.90E-05			SCO4814	1.0	E 40E 04	1.1	2.20E-02
SCO4502	1.8	3.90E-10	4.3	0.005.00	SCO4815	1.0	5.10E-04	1.1	4 005 03
SCO4503	1.0	2.005.02	1.2	8.00E-03	SCO4827	1.0	2 205 04	1.1	1.90E-02
SCO4531	1.0	3.90E-02			SCO4828	1.0	2.20E-04		
SCO4553	1.3	4.70E-02	4.3	4 405 03	SCO4831	1.1	2.60E-06		
SCO4564	1 -	1 705 24	1.2	1.10E-02	SCO4863	1.4	1.80E-02		
SCO4583	1.5	1.70E-24	1.4	2 005 02	SCO4864	1.3	5.00E-03		
SCO4584	1.0	4 405 43	1.4	2.00E-03	SCO4866	2.0	8.20E-09		
SCO4586	1.9	4.40E-42	1.0	1.10E-02	SCO4867	1.2	7.00E-05	1.1	0.005.03
SCO4587	3.8	9.50E-95	1.7	1.60E-04	SCO4886			1.1	9.00E-03 3.00E-03
SCO4591 SCO4592			1.5	2.00E-03	SCO4887			1.2	
	2.1	4 20E 20	1.3	3.00E-03	SCO4888 SCO4901			1.3	1.00E-02
SCO4593	2.1	4.20E-20	1.3	1.30E-02				1.2	5.00E-03
SCO4609			1.6	3.90E-06	SCO4902			2.1	1.50E-08
SCO4611			1.8	5.60E-08	SCO4903			1.8	5.00E-08

Tabla A13. Genes sobreexpresados en el análisis transcripcional de las cepas Sscr1 vs control. Genes del SCO4912 al SCO5366.

	36	horas	48	horas		36	horas	48	horas
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCO4912			1.5	5.30E-05	SCO5076	1.1	1.40E-08	1.6	4.20E-09
SCO4913			2.2	2.30E-15	SCO5077	1.1	1.60E-07	1.6	3.90E-06
SCO4914			1.9	1.80E-12	SCO5078			1.9	3.60E-13
SCO4916			1.0	1.60E-02	SCO5079	1.0	5.00E-08	2.6	1.10E-11
SCO4930	1.6	5.70E-15	1.6	7.00E-03	SCO5080			1.7	6.70E-09
SCO4931	1.7	9.00E-15	1.3	2.00E-02	SCO5081		i	2.0	2.30E-07
SCO4932	2.0	8.60E-40	1.4	3.60E-05	SCO5082	1.2	1.30E-14	2.0	9.10E-09
SCO4935			1.1	2.40E-02	SCO5083	2.4	1.80E-69	1.8	2.10E-05
SCO4938			1.5	9.00E-03	SCO5084	2.7	7.60E-82	2.0	1.70E-09
SCO4939			1.4	3.30E-02	SCO5085	1.3	2.00E-16		1
SCO4945	4.6	2.80E-197	3.3	4.00E-04	SCO5086			2.6	1.60E-13
SCO4946	3.6	9.00E-57	3.4	1.30E-08	SCO5087			2.7	4.40E-14
SCO4947			1.8	6.40E-12	SCO5088			2.5	2.70E-19
SCO4948	1.3	4.90E-12	1.7	1.10E-07	SCO5089			3.0	8.00E-03
SCO4949	1.8	3.10E-09	1.7	6.30E-04	SCO5090			2.5	4.90E-16
SCO4950	1.4	2.10E-06	1.4	3.30E-02	SCO5091			2.3	2.60E-13
SCO4951	1.2	1.20E-04	1.5	5.00E-03	SCO5092			2.9	2.70E-22
SCO4952			1.5	5.10E-04	SCO5093			1.7	6.20E-07
SCO4953			1.8	4.40E-02	SCO5094			2.4	3.20E-08
SCO4954			3.1	1.90E-13	SCO5096		1	1.8	4.60E-04
SCO4955			1.3	4.90E-04	SCO5160	1.3	1.30E-10		
SCO4956	2.2	1.10E-78			SCO5161	1.7	5.40E-28		ı
SCO4963			2.4	2.30E-18	SCO5162	2.7	2.20E-38	2.0	1.80E-04
SCO4964			2.1	1.50E-08	SCO5163	3.6	3.80E-20		
SCO4967	1.2	2.00E-21			SCO5166	1.4	3.30E-20		1
SCO4971			2.7	2.80E-25	SCO5178	1.6	3.60E-35	1.6	9.60E-06
SCO4972			1.7	3.50E-08	SCO5183	1.6	1.60E-27		
SCO4976			1.9	2.40E-05	SCO5186		1	1.1	1.70E-02
SCO4977			1.2	1.80E-02	SCO5187	2.2	9.20E-41	2.1	1.10E-09
SCO4980			1.3	8.30E-04	SCO5189		1	2.1	4.50E-13
SCO4981			3.2	1.10E-36	SCO5190	1.4	6.10E-19	3.8	2.90E-43
SCO4982			2.8	1.80E-24	SCO5191	1.1	4.30E-12	3.7	1.60E-44
SCO4983			2.3	4.20E-12	SCO5192			1.2	9.20E-04
SCO4987	1.3	3.30E-06			SCO5199			1.0	2.00E-03
SCO4994	1.4	3.20E-08		ı	SCO5215		ı	1.3	2.60E-02
SCO5024			2.3	2.50E-15	SCO5216	1.5	3.80E-34	1.2	6.00E-03
SCO5025			3.5	5.30E-27	SCO5222			1.5	3.00E-03
SCO5026			3.1	2.80E-20	SCO5223	1.0	1.70E-07	1.1	3.20E-02
SCO5027			2.8	6.80E-15	SCO5228			1.4	6.00E-03
SCO5037			1.3	7.00E-03	SCO5235	1.2	4.70E-05		
SCO5038			1.7	1.90E-09	SCO5237	3.3	5.70E-43		
SCO5042	1.8	3.50E-35	2.3	2.50E-15	SCO5257		4 2 2 5 2 7	1.9	5.70E-08
SCO5050	1.4	2.80E-06	1.1	2.20E-02	SCO5261	1.4	4.20E-27	1.6	5.40E-08
SCO5051	1.1	7.80E-05			SCO5264	1.2	9.60E-09	1.1	3.70E-02
SCO5057	1.3	1.20E-07	- 1	7.005.00	SCO5265	1.1	4.40E-09	2.6	2 205 24
SCO5065	3.3	3.10E-106	2.1	7.80E-06	SCO5285	2.0	1.50E-43	3.6	3.00E-31
SCO5066	1.4	1.50E-04			SCO5286	2.1	4.80E-18	1.2	3.20E-02
SCO5069	1.5	1.10E-05	1.5	E COE 05	SCO5305	1.0	0.405.04	1.7	2.00E-03
SCO5070	4.5	7.405.00	1.5	5.60E-05	SCO5309	1.0	8.10E-04		
SCO5071	1.5	7.40E-09	3.3	1.10E-18	SCO5328	1.0	2.20E-04		
SCO5072	1.1	5.60E-09	2.1	2.70E-10	SCO5341	1.1	2.00E-03	4.0	2 005 05
SCO5073	1.1	8.50E-08	1.8	3.70E-09	SCO5360			1.3	2.00E-03
SCO5074	1.3	3.60E-10	2.6	2.00E-10	SCO5361	1.0	4.005.65	1.2	3.10E-02
SCO5075	1.1	1.70E-08	1.8	2.20E-10	SCO5366	1.0	4.00E-09	1.1	2.20E-02

Tabla A14. Genes sobreexpresados en el análisis transcripcional de las cepas S*scr1 vs* control. Genes del *SCO5367* al SCO*5867*.

	36	horas	48	horas		36	horas	48	horas
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCO5367	1.1	1.30E-12	- 0		SCO5596	1.1	2.50E-04	- 0	
SCO5370	1.0	3.60E-11			SCO5603			2.4	2.10E-13
SCO5378			1.2	7.00E-03	SCO5651			1.0	2.10E-02
SCO5379			1.6	5.80E-04	SCO5662			1.1	7.00E-03
SCO5389	2.4	1.70E-97	2.6	4.20E-12	SCO5665			1.3	3.00E-03
SCO5399	1.3	3.30E-19	1.5	3.50E-06	SC05672			2.4	1.40E-06
SCO5400	1.2	3.30E-14			SC05673			1.3	2.00E-03
SCO5401			1.3	2.00E-03	SC05676			1.1	1.00E-03
SCO5404			1.2	9.00E-03	SC05679			1.3	3.10E-04
SCO5405	1.4	6.10E-25			SCO5681			1.2	2.00E-02
SCO5411			1.5	2.10E-04	SCO5683			1.2	1.00E-02
SCO5436	1.1	1.10E-04		l	SCO5699			2.8	7.90E-33
SCO5437	1.2	8.00E-03			SCO5700			2.0	6.70E-05
SCO5448	1.0	4.20E-07			SCO5701	1.1	2.30E-02		
SCO5449			1.3	8.00E-04	SCO5702	1.2	1.90E-06		
SCO5450			1.4	1.00E-04	SCO5705	1.1	8.50E-13		
SCO5451			1.9	3.50E-12	SC05707			1.8	1.90E-08
SCO5465	1.4	6.80E-22		'	SCO5708			1.7	4.90E-07
SCO5473			1.6	2.50E-04	SCO5709			2.4	1.30E-15
SCO5474			1.3	5.60E-04	SCO5713	1.1	9.80E-04		
SCO5482			1.4	6.00E-03	SCO5714	1.0	4.00E-03		
SCO5484	1.0	7.00E-03	3.3	1.30E-06	SCO5718			1.0	3.00E-02
SCO5485			2.3	1.80E-05	SCO5739			1.3	1.20E-02
SCO5486			2.2	2.20E-11	SCO5740			2.0	1.50E-05
SCO5487			1.8	2.90E-07	SCO5741			3.2	2.80E-43
SCO5488			1.7	3.00E-08	SCO5742			1.9	2.20E-13
SCO5489	1.5	3.20E-20	2.2	4.20E-10	SCO5746	1.3	3.00E-03		
SCO5490	3.1	1.90E-40	2.4	1.80E-09	SCO5754	1.8	3.60E-34		
SCO5492			1.2	3.00E-02	SCO5756			1.2	3.00E-02
SCO5497			1.5	4.00E-03	SCO5757	1.5	2.10E-02	2.6	2.30E-02
SCO5498			1.4	3.00E-03	SCO5760	1.3	1.20E-09		
SCO5499		_	1.7	2.70E-10	SCO5765			1.2	3.60E-02
SCO5502	1.1	3.90E-07	1.1	9.00E-03	SCO5772	1.2	1.20E-04	1.8	5.00E-03
SCO5506			1.3	2.30E-05	SCO5779	1.0	1.70E-04		
SCO5521			2.1	7.50E-05	SCO5784	1.3	4.40E-17		
SCO5522		_	2.2	8.70E-08	SCO5786	2.2	1.40E-26	1.7	6.80E-04
SCO5524	1.5	9.20E-10		1	SCO5791			2.3	5.20E-15
SCO5525			1.7	8.00E-03	SCO5792			1.2	2.10E-02
SCO5526	1.1	4.60E-05	1.2	8.00E-03	SCO5795	1.1	2.20E-05		
SCO5529			1.2	4.30E-02	SCO5796			2.2	1.60E-15
SCO5531	1.5	2.30E-07	2.0	1.30E-05	SCO5805			1.4	9.00E-04
SCO5532	1.4	1.10E-05	1.2	3.90E-02	SCO5812			1.1	3.00E-03
SCO5533	1.7	2.20E-08			SCO5813			1.2	8.00E-03
SCO5548	1.1	2.10E-02		1	SCO5816			1.1	2.30E-02
SCO5551			1.4	1.00E-03	SCO5819			1.1	3.00E-02
SCO5552			2.5	8.10E-16	SCO5821			1.7	2.50E-09
SCO5556			1.3	9.40E-04	SCO5837			1.0	2.10E-02
SCO5573	1.0	6.90E-07	1.4	2.30E-05	SCO5847			1.7	7.40E-05
SCO5588			1.6	1.00E-03	SCO5848			1.8	1.80E-05
SCO5589	2.9	7.90E-62	2.1	3.00E-10	SCO5849			1.1	3.70E-02
SCO5591			1.1	1.50E-02	SCO5856			1.4	9.00E-03
SCO5592			1.2	2.00E-03	SCO5857			1.0	3.70E-02
SCO5593	1.2	4.40E-07	2.8	6.40E-12	SCO5861	1.1	8.70E-07		
SCO5594	1.0	1.40E-05	2.0	9.60E-08	SCO5867	2.1	1.40E-21	1.8	6.00E-03

Tabla A15. Genes sobreexpresados en el análisis transcripcional de las cepas S*scr1 vs* control. Genes del *SCO5878* al SCO*6292*.

	36	horas	48	48 horas		36	horas	48 horas		
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj	
SCO5878	1.1	2.30E-13			SCO6125			1.8	7.70E-07	
SCO5903	2.0	1.00E-03			SCO6127	1.0	3.10E-12	1.2	6.90E-04	
SCO5920	1.2	1.40E-05			SCO6130	1.8	1.00E-03			
SCO5929	1.7	2.00E-06	1.9	3.90E-04	SCO6131	1.0	1.20E-05			
SCO5933	1.0	2.00E-03			SCO6132	1.4	7.50E-06			
SCO5949			2.2	2.50E-05	SCO6133	1.4	5.20E-16	1.0	3.50E-02	
SCO5970			1.4	1.30E-04	SCO6135	1.1	8.70E-04			
SCO5971			2.0	1.60E-11	SCO6136	1.4	1.00E-12	1.2	1.90E-02	
SCO5972			1.4	1.00E-03	SCO6142	1.1	5.20E-02	2.0	2.30E-02	
SCO5977	1.4	8.70E-09		1	SCO6143			1.7	2.00E-03	
SCO5997	3.5	8.20E-27	1.6	3.70E-02	SCO6145	1.4	2.80E-08	1.1	7.00E-03	
SCO5999			1.2	1.10E-02	SCO6149			3.4	3.00E-25	
SCO6014			1.1	1.70E-02	SCO6150			1.8	2.10E-07	
SCO6019	1.1	3.10E-11			SCO6165			1.1	8.00E-03	
SCO6021	1.6	1.40E-14			SCO6166			1.2	7.20E-04	
SCO6022	1.4	2.10E-08			SCO6178	1.2	1.40E-05			
SCO6024	1.1	2.70E-06			SCO6180	1.3	4.80E-07			
SCO6025	1.0	1.80E-05		1	SCO6192			1.2	6.00E-03	
SCO6027	1.2	1.90E-13	1.6	1.10E-04	SCO6198	1.2	1.80E-18			
SCO6029			1.7	5.10E-04	SCO6222			1.2	3.60E-02	
SCO6034	1.3	1.30E-05			SCO6228			1.8	7.20E-06	
SCO6035	1.3	5.20E-05	1.0	2.30E-02	SCO6229			2.7	1.10E-14	
SCO6036	1.9	1.60E-04			SCO6230			1.9	1.70E-04	
SCO6037	1.7	1.20E-09			SCO6237			2.4	4.70E-05	
SCO6040	2.0	3.30E-12			SCO6238		ı	1.4	3.80E-02	
SCO6043	1.2	7.30E-13	1.2	1.40E-02	SCO6241	1.9	6.00E-03			
SCO6044	1.7	5.70E-21			SCO6252	3.1	6.00E-03			
SCO6045	1.1	5.10E-15			SCO6265	1.9	2.90E-40			
SCO6051	1.1	3.30E-05		6 005 00	SCO6266	1.7	3.70E-17	4.0	4 2 2 5 2 2	
SCO6052	1.1	2.70E-07	1.1	6.00E-03	SCO6267	2.3	1.10E-29	1.0	4.20E-02	
SCO6054			1.8	1.90E-07	SCO6268	2.3	2.20E-21	2.3	2.30E-09	
SCO6055			2.6	2.70E-11	SCO6269	1.8	4.30E-13	3.0	4.10E-12	
SCO6056	4.7	0.005.33	2.1	1.70E-08	SCO6270	3.5	4.80E-74	2.7	1.10E-17	
SCO6062	1.7	9.90E-23			SCO6271	4.0	1.50E-08	4.1	2.10E-05	
SCO6063	1.8	7.90E-07			SCO6272	4.9	1.80E-56	3.6	2.10E-22	
SCO6064	1.1	3.00E-03	4.4	2 4 0 5 0 4	SCO6273	5.6	0.00E+00	5.5	1.60E-120	
SCO6075			1.4	2.10E-04	SCO6274	4.9	0.00E+00	4.8	1.90E-105	
SCO6076	1.4	2 005 00	2.0	1.20E-09	SCO6275	5.0	0.00E+00	4.9	8.90E-129 1.40E-102	
SCO6089	1.4	2.00E-06	4.7	9.80E-22 2.80E-13	SCO6276	7.5	1.30E-194	8.2	7.40E-102 7.40E-06	
SCO6090 SCO6091			2.7 2.1	6.20E-13	SCO6277	2.6 7.5	6.60E-79	3.5		
SCO6091	1.3	2 005 05	2.1	0.2UE-U0	SCO6278	7.5 8.0	2.70E-244	7.5	1.20E-100	
	3.2	2.80E-05 5.30E-11			SCO6279 SCO6280	5.5	0.00E+00 0.00E+00	8.0 6.1	1.90E-119 3.10E-141	
SCO6094 SCO6095	2.9	2.70E-20			SCO6281	5.1	1.00E-129	6.0	5.40E-69	
			1 /	6 00E 02	SCO6281	7.4			1.70E-229	
SCO6096 SCO6097	3.3	2.40E-15 9.80E-60	1.4 1.1	6.00E-03 3.20E-02	SCO6282	7.4 5.8	0.00E+00 0.00E+00	7.6 6.0	2.10E-229	
SCO6097	4.3	1.70E-24	1.1	3.20E-02 3.30E-04	SCO6284	4.4	4.30E-201	4.7	6.70E-74	
SCO6098	4.0	1.70E-24 1.30E-34	2.0	6.00E-03	SCO6284	4.4	1.20E-59	4.7	3.90E-23	
SCO6100	4.0	6.80E-25	2.0	9.10E-05	SCO6286	4.5 5.9	3.30E-166	6.2	1.30E-23	
SCO6100 SCO6101	4.3	1.70E-05	2.0	3.10E-03	SCO6286	3.1	1.30E-166	2.2	3.80E-07	
SCO6101	3.6	2.30E-29	1.9	4.70E-07	SCO6288	3.5	1.60E-38	3.3	5.60E-07	
SCO6102 SCO6108	1.2	8.70E-18	1.3	+./UL-U/	SCO6289	2.0	1.50E-38	1.6	5.30E-19	
SCO6108	1.0	1.20E-11	1.1	1.90E-02	SCO6291	2.0	1.50L-13	1.2	1.00E-02	
SCO6109	1.0	1.20L-11	2.2	3.60E-05	SCO6291			1.8	3.60E-02	
3000124			2.2	3.00E-03	3000232			1.0	J.UUE-U0	

Tabla A16. Genes sobreexpresados en el análisis transcripcional de las cepas Sscr1 vs control. Genes del SCO6293 al SCO6824.

	36	horas	48	horas		36	horas	48	horas
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCO6293			1.7	3.80E-06	SCO6551			2.4	1.70E-12
SCO6295			4.0	5.90E-63	SCO6553	1.2	5.40E-06		
SCO6296			3.0	6.50E-19	SCO6589			3.0	1.50E-17
SCO6297			3.1	5.50E-15	SCO6604			1.3	3.00E-03
SCO6308			1.6	3.00E-03	SCO6605			1.3	5.00E-03
SCO6324	1.9	6.10E-07			SCO6643			1.2	7.00E-03
SCO6327	1.3	4.70E-02			SCO6644			1.5	1.00E-03
SCO6328	2.0	1.10E-02			SCO6662	1.0	1.80E-04		
SCO6356			1.9	3.70E-08	SCO6663	1.7	2.00E-18		
SCO6357			1.2	7.00E-03	SCO6682	1.2	2.00E-07		
SCO6381			1.4	5.00E-03	SCO6684	1.4	1.80E-09		
SCO6383	1.1	2.00E-03			SCO6685	2.4	6.40E-23		
SCO6386	1.4	4.40E-02			SCO6689	1.1	3.00E-06		
SCO6395			1.5	8.70E-06	SCO6690	1.6	3.70E-08		
SCO6408	1.6	7.10E-19	1.9	7.90E-10	SCO6691	2.4	1.70E-40	1.3	4.00E-03
SCO6409	1.2	1.90E-08	2.1	1.30E-08	SCO6692	2.3	2.30E-26	1.6	6.40E-04
SCO6415			1.1	3.00E-02	SCO6693	2.7	2.00E-31	2.6	6.40E-12
SCO6420	2.7	1.60E-18	2.2	2.80E-04	SCO6694	2.0	3.40E-36	2.0	2.90E-11
SCO6421		ı	1.7	2.00E-03	SCO6703			1.2	2.20E-02
SCO6423	1.6	1.60E-40			SCO6719			2.7	8.10E-11
SCO6425	1.3	1.00E-03			SCO6720			3.4	4.40E-30
SCO6446		1	1.5	8.30E-05	SCO6721			1.8	1.60E-08
SCO6447	1.5	1.20E-08	1.3	4.30E-02	SCO6723			1.3	1.10E-02
SCO6448			1.2	3.00E-03	SCO6726			1.6	1.40E-05
SCO6451			1.8	9.20E-11	SCO6730	1.1	5.50E-04		
SCO6452			1.9	9.80E-08	SCO6734	1.1	1.40E-06		
SCO6453			1.4	6.00E-03	SCO6745	1.2	1.40E-05		
SCO6454			1.7	1.00E-03	SCO6764	1.0	9.50E-11		
SCO6455	1.3	1.10E-06	1.8	2.00E-03	SCO6765	1.6	2.50E-11		
SCO6456	1.6	3.40E-24	1.0	4 005 04	SCO6766	1.4	4.90E-16		
SCO6458			1.8	1.80E-04	SCO6767	1.2	1.30E-13		
SCO6463 SCO6464			2.7 2.4	2.70E-19	SCO6768	1.1	3.30E-12		
SCO6473	1.2	9.40E-06	2.4	2.30E-16	SCO6769 SCO6776	1.1	8.30E-09	1.4	5.20E-04
SCO6475	1.6	9.40E-00 9.90E-12			SCO6777			1.0	5.40E-02
SCO6487	1.0	J.JUL-12	1.2	4.00E-03	SCO6780			1.0	4.70E-02
SCO6489			1.1	4.50E-03	SCO6793			1.2	6.00E-03
SCO6500	1.6	6.30E-04	1.1	4.30L 02	SCO6802			2.3	4.50E-04
SCO6501	1.3	1.90E-04			SCO6805			2.5	2.60E-19
SCO6503	1.2	6.00E-03			SCO6809	2.4	1.10E-23	2.3	2.002 13
SCO6511	1.0	2.60E-04			SCO6810	2.8	9.00E-19		
SCO6512	1.0	2.002 01	1.9	4.00E-07	SCO6811	3.4	5.00E-98	2.3	3.10E-06
SCO6513			1.7	2.10E-04	SCO6812	1.7	1.00E-26	2.3	3.102 00
SCO6516	1.2	5.20E-02		2.202 0 .	SCO6813	1.9	4.50E-18	2.3	8.90E-11
SCO6517			2.4	1.40E-15	SCO6814	2.8	5.80E-41	2.5	1.00E-13
SCO6519			1.4	2.30E-02	SCO6815	3.0	2.40E-70	2.0	1.80E-04
SCO6520	2.7	1.60E-23			SCO6816	3.0	9.70E-31	1.9	3.00E-03
SCO6521	3.0	4.20E-15	1.6	3.00E-03	SCO6817	2.7	1.40E-14		
SCO6522	1.4	3.30E-12			SCO6818	2.1	3.00E-26		
SCO6523	1.2	1.40E-06			SCO6819	2.3	2.60E-26		
SCO6529			1.5	3.00E-03	SCO6820	2.0	2.70E-23		
SCO6530			1.6	1.30E-04	SCO6821	3.2	9.20E-56	2.0	2.20E-05
SCO6548	1.2	2.00E-06			SCO6822	2.2	2.70E-20		
SCO6550	1.1	1.30E-05	1.5	9.00E-04	SCO6824	1.1	6.30E-05		

Tabla A17. Genes sobreexpresados en el análisis transcripcional de las cepas Sscr1 vs control. Genes del SCO6826 al SCO7412.

	36	horas	48	horas		36	horas	48	horas
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCO6826	1.4	2.00E-05			SCO7052	1.7	1.90E-02		
SCO6827	2.5	1.90E-77	1.0	1.00E-03	SCO7066	1.7	2.20E-17	1.1	4.00E-03
SCO6828	2.3	6.70E-62	1.2	4.00E-03	SCO7069	1.2	8.90E-04		
SCO6829	1.2	1.70E-07	1.2	3.70E-02	SCO7070	1.0	3.20E-04		
SCO6831	2.4	5.20E-04	2.8	2.10E-04	SCO7107			1.6	4.50E-02
SCO6832	1.8	1.10E-14	1.7	1.30E-05	SCO7138	2.0	1.70E-02		
SCO6834	1.9	1.00E-11			SCO7140	2.4	3.30E-23	1.7	1.00E-04
SCO6835	2.1	2.10E-07			SCO7141	2.7	8.00E-14	2.3	2.20E-04
SCO6836	2.0	6.90E-06	1.9	2.40E-02	SCO7145	1.5	1.50E-02		
SCO6837	2.1	8.90E-17	1.9	3.60E-04	SCO7147	1.8	1.80E-07		
SCO6838	1.7	3.00E-09			SCO7148	1.5	2.10E-02		
SCO6840	1.1	1.20E-06			SCO7149	1.3	2.90E-02		
SCO6841	2.0	1.00E-10			SCO7151	1.0	8.00E-03		
SCO6842	1.6	2.00E-08	1.2	1.70E-02	SCO7152	1.1	4.00E-03		
SCO6844	1.2	1.20E-04			SCO7169			1.3	4.30E-02
SCO6845	1.2	2.00E-03			SCO7192			1.5	5.00E-03
SCO6851	1.2	1.10E-02			SCO7199	1.3	4.90E-02	1.8	2.80E-10
SCO6865	1.3	3.50E-05			SCO7200	1.2	3.40E-02		
SCO6866	1.2	2.00E-04			SCO7213	1.4	1.30E-06		
SCO6869	1.1	1.00E-02			SCO7220	1.0	9.80E-08		
SCO6876	1.3	2.40E-02			SCO7221	1.6	2.00E-10		
SCO6888	1.0	2.00E-02			SCO7237	1.2	1.40E-02		
SCO6890	1.2	1.90E-02			SCO7261	1.4	2.90E-04		
SCO6892	1.2	3.70E-02			SCO7264			1.9	4.20E-04
SCO6894	1.5	2.40E-04			SCO7265			2.2	3.20E-08
SCO6896	1.3	2.90E-04			SCO7266			1.2	2.10E-02
SCO6898	2.5	1.80E-08	1.4	4.00E-03	SCO7276	1.2	1.10E-02		
SCO6899	1.9	5.10E-10	1.2	3.70E-02	SCO7282			2.1	2.30E-04
SCO6900	1.4	5.20E-04			SCO7285			1.0	4.80E-02
SCO6916			2.2	7.80E-06	SCO7302	1.3	3.00E-03		
SCO6917			1.4	1.00E-03	SCO7308	1.4	8.00E-03		
SCO6931	2.4	6.20E-10			SCO7309	1.1	1.70E-04		
SCO6933			2.2	3.70E-02	SCO7310	1.4	8.00E-03		
SCO6938			1.1	5.10E-02	SCO7311	1.1	2.10E-04		
SCO6952			2.4	7.50E-14	SCO7312	2.1	3.70E-02		
SCO6957			1.4	4.90E-02	SCO7313	1.4	2.90E-02		
SCO6975			1.5	4.10E-05	SCO7330	2.2	3.70E-02		
SCO6976			1.4	1.10E-02	SCO7350	1.7	2.10E-07		
SCO6977			1.4	2.50E-02	SCO7354	1.0	2.10E-06		
SCO6978			1.1	3.00E-02	SCO7356			1.2	4.00E-02
SCO6985			2.0	2.20E-05	SCO7363		1	1.5	4.00E-03
SCO7000			1.1	3.20E-02	SCO7365	1.8	4.20E-02		
SCO7008			2.7	8.60E-16	SCO7366			2.1	1.00E-10
SCO7028			1.2	5.00E-03	SCO7367		1	1.8	4.40E-08
SCO7039	1.1	8.00E-03			SCO7369	1.4	2.30E-07		
SCO7040	1.6	1.60E-23			SCO7376	1.1	1.40E-02		
SCO7044	1.6	3.30E-07		ı	SCO7381	1.5	2.10E-02		
SCO7045	1.4	1.00E-02	2.5	4.20E-02	SCO7383	1.2	2.30E-02		
SCO7046	1.3	2.00E-03		ı	SCO7384	1.4	1.50E-06		
SCO7047		ı	1.3	3.60E-02	SCO7387	1.5	1.10E-02		
SCO7048	1.1	1.70E-07	1.3	3.70E-02	SCO7396			2.9	9.30E-15
SCO7049	1.3	7.10E-09			SCO7397			2.1	1.40E-05
SCO7050	3.1	3.70E-35	2.4	2.30E-06	SCO7404			1.1	7.00E-03
SCO7051	4.1	1.90E-50	2.9	7.70E-08	SCO7412	1.0	4.70E-05		

Tabla A18. Genes sobreexpresados en el análisis transcripcional de las cepas Sscr1 vs control. Genes del SCO7413 al SCO7822.

	36	horas	48	horas	_	36	horas	48	horas
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCO7413	1.0	5.00E-03			SCO7541	1.2	1.60E-08		
SCO7414	1.0	5.00E-03			SCO7542	1.0	8.70E-04		
SCO7415	1.3	9.40E-05			SCO7575	1.8	2.30E-02		
SCO7416	2.5	1.20E-05			SCO7586	1.5	1.10E-06		
SCO7417	2.4	4.60E-24	1.8	4.90E-04	SCO7593	1.8	1.30E-02		
SCO7418	1.8	3.30E-11			SCO7597	1.0	1.00E-03		
SCO7419	1.7	6.30E-04			SCO7599			2.0	2.60E-10
SCO7420	1.5	3.50E-02			SCO7600			3.6	6.30E-51
SCO7421	1.4	1.10E-02			SCO7606			3.3	4.80E-30
SCO7422	1.8	7.40E-15			SCO7607			2.3	8.30E-09
SCO7426	1.4	1.70E-02			SCO7608			1.5	4.40E-02
SCO7432	1.0	2.00E-02			SCO7609			1.6	1.00E-03
SCO7440			1.1	4.30E-02	SCO7619	2.8	2.10E-08		
SCO7442	1.4	7.70E-04			SCO7620	1.9	1.10E-04		
SCO7445			1.6	5.00E-03	SCO7621	1.7	1.40E-04		
SCO7446	1.1	2.30E-05			SCO7625			1.3	5.00E-02
SCO7447			2.1	1.20E-04	SCO7626			2.0	5.20E-06
SCO7463	2.4	3.30E-38			SCO7632	2.1	6.50E-29		
SCO7464	2.2	4.10E-12			SCO7636	1.1	1.70E-04		
SCO7465	2.8	9.90E-17			SCO7639	1.2	1.70E-02		
SCO7466	2.9	1.00E-26			SCO7644			1.1	3.70E-02
SCO7467	2.1	3.20E-28	1.5	3.00E-03	SCO7650			1.5	2.00E-03
SCO7468	2.0	4.60E-43	1.2	2.60E-04	SCO7651			2.9	6.10E-11
SCO7472			1.0	2.00E-02	SCO7652			2.5	1.40E-18
SCO7473			1.2	1.00E-03	SCO7653			3.4	3.60E-42
SCO7474			1.3	1.00E-03	SCO7654			1.2	2.00E-03
SCO7477			1.5	5.10E-04	SCO7659	1.1	3.30E-08		
SCO7478			2.4	1.30E-13	SCO7662		ı	2.5	3.60E-12
SCO7479			2.7	1.40E-11	SCO7692	1.9	9.00E-03		
SCO7480			1.3	2.00E-03	SCO7693	1.1	4.60E-04		
SCO7486	1.0	5.80E-06			SCO7710			2.4	1.80E-12
SCO7487	1.2	5.20E-04			SCO7711			2.2	7.80E-08
SCO7489			1.3	7.00E-03	SCO7716			2.9	1.90E-12
SCO7490			2.7	3.70E-10	SCO7717			3.1	3.70E-11
SCO7491			1.5	1.80E-02	SCO7721			3.1	1.20E-22
SCO7506			2.7	1.90E-11	SCO7722			3.8	5.80E-24
SCO7507	1.4	3.50E-14	3.4	4.40E-37	SCO7729			1.0	4.80E-02
SCO7517	1.1	1.20E-04	1.7	4.00E-04	SCO7731			3.6	6.10E-35
SCO7524	1.1	4.30E-02	1.0	- 40- 6:	SCO7784	2.5	1.90E-25	2.0	0.005.05
SCO7536			1.6	5.40E-04	SCO7805			2.2	8.20E-07
SCO7537			1.2	1.30E-02	SCO7806			2.1	9.10E-07
SCO7539			2.5	6.00E-15	SCO7809			1.3	3.40E-02
SCO7540			1.2	1.70E-04	SCO7822			1.4	2.00E-03

Tabla A19. Genes subexpresados en el análisis transcripcional de las cepas S*scr1 vs* control. Genes del *SCO005* al SCO*1330*.

	36	horas	48	horas	_	36	horas	48	horas
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCO0005	-1.2	3.60E-33			SCO0494	-1.7	1.00E-03		
SCO0006	-1.6	2.00E-15			SCO0495	-1.1	3.60E-09		
SCO0010	-1.4	1.00E-16			SCO0498	-1.0	3.10E-02		
SCO0011	-1.2	1.30E-13			SCO0530	-1.2	1.20E-08		
SCO0012	-1.4	4.50E-23	-1.0	9.30E-09	SCO0584	-1.7	1.70E-36		
SCO0019	-1.0	1.60E-04	-1.2	1.90E-04	SCO0585	-1.9	4.00E-33		
SCO0113	-1.5	3.00E-02			SCO0586	-1.8	2.40E-27		
SCO0119	-1.0	5.30E-04			SCO0587	-1.7	5.40E-28		
SCO0129	-1.3	4.00E-03			SCO0588	-1.3	1.10E-25		
SCO0038			-1.1	2.00E-03	SCO0591			-1.2	1.10E-10
SCO0058			-1.3	4.50E-06	SCO0597			-1.2	1.70E-06
SCO0072			-1.1	3.20E-06	SCO0598			-1.1	5.70E-07
SCO0108			-2.1	9.00E-03	SCO0644	-4.2	1.70E-151		
SCO0141	-2.5	8.10E-27	-1.4	1.30E-07	SCO0672	-1.4	1.20E-18		
SCO0161	-1.5	1.40E-21	-1.3	3.20E-10	SCO0673	-1.9	4.40E-58	-1.4	1.20E-14
SCO0162	-1.5	3.90E-04	-1.2	1.00E-14	SCO0681	-1.1	1.70E-16	-1.7	3.20E-15
SCO0163	-1.2	1.30E-12			SCO0682	-4.3	8.70E-213	-3.0	2.40E-35
SCO0165	-1.4	9.70E-09			SCO0683	-4.0	5.00E-118	-1.7	3.30E-08
SCO0166	-1.3	1.20E-04			SCO0684	-2.6	1.20E-45	-1.5	4.30E-08
SCO0167	-1.6	3.00E-07	-1.2	1.40E-13	SCO0685	-3.3	5.10E-110	-2.4	4.60E-30
SCO0168	-1.4	1.00E-08			SCO0703			-1.4	3.50E-10
SCO0169	-1.2	2.20E-06			SCO0732	-1.3	1.30E-26		
SCO0170	-1.2	5.60E-05	-1.1	7.70E-12	SCO0752	-2.8	1.10E-31		
SCO0171	-1.2	8.50E-04	-1.3	1.20E-11	SCO0767	-1.1	2.30E-28		
SCO0172	-1.4	3.00E-14	-1.1	7.50E-13	SCO0867	-1.1	2.10E-15	-1.1	3.30E-10
SCO0173	-1.1	2.90E-04			SCO0902	-1.1	3.60E-22		
SCO0174	-1.1	2.10E-05			SCO0922			-1.7	3.50E-17
SCO0175			-1.2	6.00E-03	SCO0928	-1.0	1.40E-22		
SCO0177	-1.6	1.00E-05	-1.5	9.90E-20	SCO0930	-4.4	7.30E-117	-1.7	1.30E-14
SCO0179	-1.4	1.50E-05			SCO0931	-1.9	3.40E-11		
SCO0180	-1.3	1.40E-06			SCO0932	-2.1	1.40E-35		
SCO0181	-1.2	1.30E-04			SCO0943	-1.3	1.70E-16		ı
SCO0200	-1.1	5.00E-03			SCO0944	-2.3	3.60E-37	-1.1	3.40E-08
SCO0201	-1.2	4.50E-05	-1.2	1.70E-11	SCO0986	-1.2	9.50E-11		ı
SCO0204	-1.2	4.90E-15						-2.0	8.40E-11
SCO0208	-1.1	2.00E-03			SCO1013	-1.2	2.90E-18		
SCO0209	-2.1	3.50E-70			SCO1029	-1.1	4.60E-13		
SCO0210	-1.3	1.70E-15			SCO1054	-1.0	1.40E-13		
SCO0211	-1.2	1.60E-10	-1.0	6.80E-08	SCO1121	-2.6	2.70E-50		
SCO0212	-1.4	5.00E-04			SCO1157	-1.1	7.70E-09		
SCO0213	-1.2	1.00E-03			SCO1158	-2.7	4.10E-16	4.0	4 005 04
SCO0215	-1.2	5.80E-05			SCO1159	-2.3	5.20E-13	-1.3	4.80E-04
SCO0216	-1.1	1.20E-04			SCO1160	-2.2	2.10E-41		
SCO0238	-1.0	8.00E-03			SCO1161	-1.9	1.70E-15		
SCO0242	-1.0	1.10E-13			SCO1165	-1.3	1.70E-20		
SCO0323	-2.0	8.70E-13	1 -	7 005 17	SCO1166	-1.6	5.30E-25		
SCO0328	1.6	4 705 42	-1.5	7.00E-17	SCO1189	-1.1	2.10E-10		
SCO0374	-1.6	4.70E-43	17	1 205 21	SCO1205	-1.4	8.70E-12		
SCO0409	-1.6	2.90E-26	-1.7	1.30E-21	SCO1240	-1.3	3.90E-23		
SCO0436	2.2	E 10F 04	-2.2	1.50E-02	SCO1241	-1.3	3.60E-32		
SCO0489	-2.3	5.10E-04			SCO1276 SCO1288	-1.4	7.10E-05		
SCO0490	-1.3	2.00E-02				-1.2	6.60E-05		
SCO0491	-1.4	1.00E-02			SCO1289	-1.0	1.30E-19	2.2	1 705 17
SCO0492	-1.5	9.80E-04			SCO1330			-2.2	1.70E-17

Tabla A20. Genes subexpresados en el análisis transcripcional de las cepas S*scr1 vs* control. Genes del *SCO1356* al SCO*3328*.

	36	horas	48 hora	s		36	horas	48 hora	<u> </u>
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCO1356	-2.1	5.10E-19			SCO2492	-1.7	3.80E-36		<u> </u>
SCO1357	-1.0	1.20E-07			SCO2495	-2.7	7.20E-45		
SCO1375	-1.5	1.80E-31			SCO2511			-1.6	2.20E-02
SCO1426			-1.6	9.40E-16	SCO2512	-2.3	1.00E-03	-1.2	1.50E-02
SCO1474	-1.0	6.70E-18			SCO2513	-2.8	2.80E-91	-1.4	3.20E-11
SCO1570			-1.4	2.80E-07	SCO2514	-1.4	3.40E-29	-1.2	9.00E-09
SCO1573	-3.4	2.60E-23	-1.4	4.10E-13	SCO2516	-1.3	1.20E-22		
SCO1574	-2.7	3.20E-26			SCO2517	-2.2	4.70E-49		
SCO1575	-2.0	6.90E-15	-1.0	2.40E-04	SCO2518	-1.8	4.80E-43		
SCO1576			-1.5	9.00E-09	SCO2519	-2.6	6.40E-75		
SCO1577			-1.1	1.40E-06	SCO2529	-2.1	5.30E-59		
SCO1578			-1.8	1.10E-09	SCO2530	-2.4	7.50E-38		
SCO1579			-1.6	2.20E-10	SCO2555			-1.0	1.10E-09
SCO1580			-1.1	2.70E-05	SCO2560	-2.1	6.60E-60		
SCO1593			-1.1	1.20E-05	SCO2573	-1.7	6.10E-49	-1.1	1.80E-11
SCO1604	-1.5	4.10E-29	-1.1	1.60E-07	SCO2574	-1.3	1.70E-08		
SCO1625	-2.2	5.10E-78	-1.6	1.40E-11	SCO2575	-1.0	7.00E-21	-1.2	6.00E-08
SCO1626	-2.4	5.10E-105			SCO2586	-1.3	1.20E-16		
SCO1627	-2.4	1.90E-80			SCO2680	-1.0	1.90E-11		
SCO1628	-2.5	1.20E-66			SCO2699	-1.6	1.10E-29	-1.1	2.00E-06
SCO1629	-2.8	6.70E-73			SCO2716	-2.0	4.30E-10		
SCO1630	-2.3	5.80E-77			SCO2717	-2.5	3.10E-18		
SCO1635	-1.0	3.90E-09			SCO2718	-2.9	1.00E-47		
SCO1674	-1.6	1.40E-45			SCO2719	-1.8	7.30E-12		
SCO1675	-2.3	1.10E-94			SCO2728	-1.3	1.10E-02		
SCO1723	-1.4	2.00E-03			SCO2765			-1.3	1.50E-09
SCO1766	-1.2	1.90E-27			SCO2819	-1.9	8.50E-42		
SCO1800	-2.0	1.70E-77	-1.3	1.40E-09	SCO2832	-1.1	1.20E-26		
SCO1838	-1.3	3.50E-40			SCO2905			-1.2	1.30E-05
SCO1839	-1.2	6.00E-33	-1.0	1.00E-11	SCO2921	-1.2	6.80E-24	-2.3	1.30E-27
SCO1860	-1.5	1.50E-35			SCO2922			-1.6	2.70E-12
SCO1913	-1.3	3.70E-05			SCO2948	-1.3	7.30E-21		
SCO2162	-1.5	6.50E-43			SCO2953	-1.7	1.40E-32		ı
SCO2184			-1.2	3.00E-06	SCO2954	-3.2	6.20E-102	-2.1	9.90E-27
SCO2207	-2.4	1.30E-48	-1.3	3.90E-08	SCO2961	-1.1	1.50E-18		
SCO2208	-2.0	7.90E-33			SCO2962	-1.0	8.50E-19		
SCO2217	-5.0	3.20E-242	-2.1	2.10E-24	SCO2975	-1.0	2.80E-26		
SCO2218	-5.2	2.60E-65	-1.8	6.30E-09	SCO2976	-3.3	1.10E-26	-1.4	1.70E-09
SCO2229	-1.1	5.70E-05			SCO2977	-2.0	1.90E-29		
SCO2231	-1.8	1.20E-32			SCO2999	-1.2	1.10E-32		
SCO2247			-2.5	3.00E-03	SCO3013			-1.2	1.10E-10
SCO2250	-1.3	3.90E-25			SCO3105	-1.2	1.20E-07		
SCO2255	-1.1	3.70E-12			SCO3134	-1.6	4.30E-37		
SCO2258	-1.1	3.70E-14			SCO3140			-1.1	3.00E-03
SCO2371	-1.6	3.00E-51			SCO3195	-1.2	3.60E-23		
SCO2401			-1.4	5.50E-09	SCO3270	-1.2	1.40E-10		
SCO2402		4 00= 0=	-1.4	3.90E-11		-1.3	3.80E-24		
SCO2404	-1.1	1.80E-07			SCO3274	-1.2	5.90E-22		
SCO2405			-1.2	7.70E-09	SCO3288	-5.3	1.70E-272		
SCO2406			-1.0	1.30E-05	SCO3289	-4.7	1.30E-247		
SCO2408	-3.1	2.60E-58	-1.0	7.20E-05	SCO3290	-4.8	4.10E-239		
SCO2409	-1.3	8.40E-08			SCO3291	-2.0	2.30E-77		
SCO2458			-1.3	7.90E-05	SCO3327	-1.5	5.80E-36	-1.5	9.30E-13
SCO2469	-1.0	2.10E-17			SCO3328	-1.4	3.20E-26	-1.4	9.00E-12

Tabla A21. Genes subexpresados en el análisis transcripcional de las cepas S*scr1 vs* control. Genes del *SCO3329* al SCO*5723*.

	36	horas	48	horas		36	horas	48	horas
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCO3329	-1.4	1.90E-16	-1.1	1.90E-07	SCO4719			-1.1	1.30E-09
SCO3412			-1.5	2.70E-15	SCO4720			-1.8	3.20E-08
SCO3442			-1.1	1.10E-07	SCO4721			-1.7	1.10E-13
SCO3463	-1.1	6.40E-06			SCO4730			-1.2	1.50E-13
SCO3508			-1.2	2.00E-05	SCO4768	-1.1	1.10E-22		
SCO3532			-1.4	8.00E-03	SCO4772	-1.6	5.10E-33	-1.6	2.30E-12
SCO3547			-1.5	6.20E-19	SCO4789	-1.2	3.00E-15		
SCO3548			-1.0	2.00E-14	SCO4793	-2.1	2.40E-94		
SCO3578	-1.3	4.30E-39	-1.6	8.50E-17	SCO4859	-1.4	5.50E-16		
SCO3579	-1.7	1.90E-78	-2.2	7.50E-31	SCO4868			-1.0	9.00E-09
SCO3630			-1.1	2.00E-07	SCO4883	-2.1	1.80E-101		
SCO3712	-1.4	6.80E-33			SCO4884	-1.2	1.90E-25		
SCO3713	-2.1	4.10E-46			SCO4903	-1.4	1.70E-23		
SCO3714	-2.6	4.00E-172			SCO4908	-1.2	4.30E-38		
SCO3814	-1.2	1.00E-13			SCO4910	-1.3	1.10E-15		
SCO3897			-1.1	1.10E-04	SCO4920	-1.5	1.40E-55	-1.1	2.00E-09
SCO3943	-1.4	1.40E-10			SCO4997			-1.0	1.30E-05
SCO3956	-1.2	4.40E-20			SCO5014	-1.4	1.40E-31		
SCO3988			-1.3	9.20E-04	SCO5015	-1.3	5.60E-17		
SCO4000	-1.2	1.50E-11			SCO5031			-1.2	2.50E-08
SCO4002	-2.6	9.20E-32			SCO5063	-1.0	4.30E-08		
SCO4004	-1.4	6.00E-03			SCO5100	-1.2	7.20E-27	-1.4	4.20E-19
SCO4005	-1.2	2.60E-22			SCO5101	-1.3	2.90E-35	-1.3	1.20E-14
SCO4053	-1.4	5.70E-17			SCO5104	-1.1	1.40E-26		
SCO4184	-1.1	1.60E-26			SCO5123	-1.3	2.10E-29	-2.5	8.20E-31
SCO4190	-1.0	1.80E-19			SCO5124	-1.2	4.70E-22	-1.9	2.50E-28
SCO4226	-1.7	1.30E-47			SCO5137	-1.3	1.10E-24		
SCO4227	-2.2	3.10E-66	-1.9	7.20E-20	SCO5147	-1.1	5.70E-27		
SCO4239	-1.4	7.70E-38		•	SCO5175	-1.2	1.80E-19		
SCO4251			-1.3	4.00E-07	SCO5176	-1.1	5.80E-27		
SCO4301	-1.3	5.30E-37			SCO5177	-1.4	1.10E-37		
SCO4317	-1.4	2.10E-29			SCO5248			-1.0	1.00E-11
SCO4332	-1.2	1.40E-27			SCO5272			-2.2	1.30E-11
SCO4335	-1.5	2.30E-19	-1.4	8.50E-11	SCO5311	-2.1	2.70E-26		
SCO4370			-1.1	1.00E-03	SCO5338			-1.4	2.60E-02
SCO4399			-2.9	1.20E-41	SCO5350			-1.5	9.00E-11
SCO4408	-1.3	1.40E-33		_'	SCO5351	-1.6	9.00E-69	-1.3	1.90E-17
SCO4409	-1.1	6.40E-24			SCO5356			-1.4	4.00E-11
SCO4411	-1.0	7.30E-18			SCO5390	-2.3	2.50E-122	-1.4	1.90E-11
SCO4412	-3.4	5.70E-117	-2.5	3.00E-24	SCO5391	-1.5	1.80E-42		
SCO4442	-1.4	9.00E-23	-1.7	1.40E-09	SCO5396	-1.0	1.40E-37		
SCO4505			-1.5	3.00E-09	SCO5431	-1.0	1.10E-16		
SCO4518			-1.4	7.00E-11	SCO5432	-1.0	1.80E-05		
SCO4522			-1.1	1.50E-02	SCO5444	-1.5	1.80E-47		
SCO4576	-2.2	4.50E-63			SCO5511	-1.3	1.20E-35		
SCO4581	-2.0	1.30E-91			SCO5539	-1.0	2.60E-13		
SCO4582	-1.7	7.40E-55			SCO5582	-2.0	7.80E-101	-1.2	1.20E-09
SCO4676	-1.2	3.70E-25			SCO5629	-1.5	6.60E-39		
SCO4677	-1.5	4.60E-41			SCO5632	-1.2	2.60E-32	-1.6	6.60E-11
SCO4689	-1.2	1.10E-13			SCO5636	-1.2	1.10E-25		
SCO4690	-1.3	2.40E-10			SCO5659	-1.3	3.60E-22		
SCO4698	-1.3	1.00E-03			SCO5676	-1.3	1.10E-04		
SCO4701			-1.0	2.30E-06	SCO5680	-1.3	3.30E-10		
SCO4716			-1.0	1.70E-06	SCO5723	-1.2	1.10E-29		

Tabla A22. Genes subexpresados en el análisis transcripcional de las cepas S*scr1 vs* control. Genes del *SCO5768* al SCO*7802* y el *SCP2.01*.

	36	horas	48	horas		36	horas	48	horas
Gen	log2FC	padj	log2FC	padj	Gen	log2FC	padj	log2FC	padj
SCO5768	-1.3	9.10E-23	- 0	1,	SCO6623	-1.2	4.70E-39	- 0	
SCO5775			-1.2	2.00E-06	SCO6625	-1.9	4.80E-42	-1.3	2.60E-09
SCO5810	-1.0	1.70E-23			SCO6627	-1.0	6.80E-23		
SCO5811	-1.2	2.00E-21			SCO6628	-1.1	8.70E-05		
SCO5834	-1.6	2.60E-10	-1.1	4.10E-05	SCO6647	-3.7	1.20E-53	-1.7	1.20E-09
SCO5840	-1.0	6.80E-08			SCO6650	-3.6	7.90E-34	-1.5	3.40E-09
SCO5862	-1.6	2.80E-37			SCO6651	-3.2	1.50E-42	-1.4	6.00E-08
SCO5863	-1.4	2.80E-27			SCO6652	-3.2	9.10E-53	-1.7	1.50E-09
SCO5883		•	-1.6	1.90E-04	SCO6653	-2.3	2.20E-35		
SCO5884			-1.7	3.50E-08	SCO6654	-2.1	1.40E-20	-1.1	4.10E-07
SCO5885			-1.4	2.00E-03	SCO6655	-2.9	6.50E-28	-1.2	1.10E-07
SCO5886			-2.0	1.50E-15	SCO6749	-1.9	2.60E-54	-1.3	3.10E-08
SCO5887			-1.1	6.90E-05	SCO6762	-1.3	5.90E-25		
SCO5888			-2.3	4.60E-17	SCO6794	-1.9	6.70E-65		
SCO5889			-1.7	4.50E-02	SCO6795	-2.7	2.00E-52		
SCO5890			-1.5	2.70E-12	SCO6796	-2.4	2.70E-48		
SCO5891			-1.3	3.80E-07	SCO6797	-2.3	5.80E-53		
SCO5893			-1.4	2.70E-05	SCO6798	-2.2	2.10E-43		
SCO5894			-1.4	2.50E-06	SCO6905	-1.3	6.50E-07		
SCO5896			-1.0	2.80E-08	SCO6906	-1.3	8.60E-33		
SCO5897			-1.0	1.50E-05	SCO6908	-1.5	1.10E-16		
SCO5904			-1.1	6.00E-02	SCO6926		•	-1.3	7.80E-07
SCO5915			-1.2	2.30E-06	SCO6959	-1.1	1.50E-09		
SCO5978			-1.7	2.70E-09	SCO6960	-1.1	2.00E-20		
SCO6172			-1.2	4.30E-11	SCO6961	-1.3	2.10E-23		
SCO6173			-1.8	2.40E-13	SCO6962	-1.1	1.20E-31		
SCO6174			-1.5	2.00E-05	SCO7036			-1.7	7.20E-07
SCO6128	-1.1	2.70E-07			SCO7079	-2.4	2.40E-27		
SCO6157	-1.1	2.60E-36			SCO7085			-1.3	5.00E-02
SCO6160	-1.7	3.10E-08			SCO7092			-1.4	6.60E-05
SCO6161	-1.5	3.10E-17			SCO7112	-1.3	3.40E-18		
SCO6162	-1.2	9.80E-21			SCO7207	-1.1	2.60E-08		
SCO6164	-1.4	1.40E-07			SCO7208	-1.7	1.00E-02		
SCO6165	-1.1	4.10E-04			SCO7226	-1.3	3.60E-21		
SCO6166	-1.2	9.40E-06			SCO7227	-1.2	2.00E-15		
SCO6167	-1.4	4.90E-07			SCO7252			-1.2	1.30E-12
SCO6173	-1.0	2.10E-06			SCO7573			-2.9	1.10E-25
SCO6200	-1.2	3.90E-16			SCO7257	-1.4	1.70E-21		
SCO6208	-1.2	4.30E-17			SCO7291	-1.7	3.70E-28		
SCO6209	-1.3	2.10E-06			SCO7399	-1.2	2.90E-02		
SCO6210	-1.6	5.60E-06			SCO7536	-1.4	5.10E-49		
SCO6211	-1.7	1.00E-13			SCO7540	-1.2	1.80E-18		
SCO6212	-1.0	3.00E-05			SCO7573	-3.4	4.40E-42		
SCO6235	-1.0	6.50E-07			SCO7700	-1.1	4.30E-08		
SCO6247	-1.7	2.80E-36			SCO7701	-1.5	3.00E-13	-1.2	1.30E-08
SCO6248	-1.8	1.20E-30			SCO7734	-1.1	2.30E-10		
SCO6323	-1.5	1.40E-11			SCO7765			-1.1	7.50E-11
SCO6374	-1.3	1.50E-15			SCO7771	-1.4	3.30E-25	-1.1	1.10E-10
SCO6384	-1.1	1.50E-12			SCO7781			-1.4	1.70E-07
SCO6393	-1.1	1.60E-27			SCO7787			-1.7	3.10E-05
SCO6394	-1.3	2.70E-31			SCO7788			-2.1	1.00E-03
SCO6403			-1.2	2.00E-03	SCO7797	-1.5	1.10E-02		
SCO6484	-1.1	1.70E-22			SCO7798	-1.6	9.60E-14	-1.1	2.00E-05
SCO6493	-1.1	2.00E-15			SCO7802	-1.3	4.40E-10		
SCO6537			-1.0	3.00E-09	SCP2.01			-1.3	1.10E-11

A3 Expresión diferencial de cada uno de los metabolitos secundarios que varían en el análisis transcripcional de la cepa Sscr1

En este apartado se muestra la expresión diferencial de cada uno de los metabolitos secundarios que varían en el análisis transcripcional de la cepa Sscr1, logrado a través de la comparación con los clústeres biosintéticos que muestra el programa antiSMASH https://antismash.secondarymetabolites.org/ (Blin et al., 2021). En las tablas se muestra el nombre del gen, el producto y cambio en la log2FC a las 36 y 48 horas.

Tabla A23. Genes del análisis transcripcional de las cepas S*scr1 vs* control, que convergen con los genes del **clúster biosintético del Isorenierateno.**

Gen	Nombre	Tipo de gen	producto	36 horas	48 horas
			·	Log2FC	Log2FC
SCO0179	SCJ1.28c	Gen biosintético adicional	Posible deshidrogenasa que contiene zinc	-1.4	
SCO0180	SCJ1.29c	Otro gen	Proteína hipotética conservada	-1.3	
SCO0181	SCJ1.30c	Otro gen	Proteína hipotética	-1.2	
SCO0182	SCJ1.31c	Otro gen	Proteína hipotética	2.2	
SCO0183	SCJ1.32	Otro gen	Desoxirribopirimidina fotoliasa	1.3	
SCO0184	SCJ1.33	Otro gen	Proteína hipotética conservada	1.0	
SCO0192	SCJ12.04c	Gen biosintético adicional	Posible oxidorreductasa		1.0
SCO0193	SCJ12.05c	Otro gen	Regulador transcripcional de la familia Merr		1.1
SCO0194	SCJ12.06	Gen regulador	Factor sigma putativo		1.3
SCO0195	SCJ12.07	Otro gen	Posible lipoproteína		1.4
SCO0200	SCJ12.12c	Otro gen	Proteína hipotética conservada	-1.1	
SCO0201	SCJ12.13c	Otro gen	Posible proteína de membrana integral	-1.2	-1.2

Tabla A24. Genes del análisis transcripcional de las cepas S*scr1 vs* control, que convergen con los genes del **clúster biosintético coelichelina**.

Gen	Nombre	Tipo de gen	producto	36 horas	48 horas
		pe de gen	p	Log2FC	Log2FC
SCO0473	SCF76.13c	Gen relacionado con el transporte	Proteína de unión al sustrato del sistema de transporte de zinc/manganeso	1.0	
SCO0489	SCF34.08c	Gen biosintético adicional	Proteína hipotética conservada	-2.3	
SCO0490	SCF34.09	Gen biosintético adicional	Posible esterasa	-1.3	
SCO0491	SCF34.10c	Gen relacionado con el transporte	Probable proteína transmembrana transportadora ABC	-1.4	
SCO0492	SCF34.11c	Gen biosintético central	Probable péptido sintetasa	-1.5	
SCO0494	SCF34.13c	Gen relacionado con el transporte	Probable lipoproteína de unión a sideróforo de hierro	-1.7	
SCO0495	SCF34.14c	Gen relacionado con el transporte	Probable proteína de unión a ATP del transportador ABC del sideróforo de hierro	-1.1	
SCO0498	SCF34.17c	Gen biosintético adicional	Probable péptido monooxigenasa	-1.0	1.1
SCO0499	SCF34.18	Gen biosintético adicional	Posible formiltransferasa		2.2
SCO0501	SCF34.20c	Otro gen	Supuesta proteína secretada		1.3

Tabla A25. Genas del análisis transcripcional de las cepas S*scr1 vs* control, que convergen con los genes del **clúster biosintético ectoína**.

Gen	Nombre	Tipo de gen	producto	36 horas	48 horas
				Log2FC	Log2FC
SCO1862	SCI39.09c	Otro gen	Proteína hipotética		1.5
SCO1864	ectA	Otro gen	L-2,4-diaminobutírico ácido acetiltransferasa	1.5	
SCO1865	ectB	Gen biosintético adicional	Diaminobutirato2-oxoglutarato aminotransferasa	1.1	
SCO1866	ectC	Gen biosintético central	L-ectoína sintasa	1.2	
SCO1867	ectD	Otro gen	Ectoína hidroxilasa	1.1	
SCO1868	SCI39.15c	Gen biosintético adicional	Proteína hipotética conservada	1.2	2.5
SCO1869	SCI39.16c	Otro gen	Proteína hipotética conservada	2.5	2.0

Tabla A26. Genes del análisis transcripcional de las cepas S*scr1 vs* control, que convergen con los genes del **clúster biosintético del CDA**.

Gen	Nombre	Tipo de gen	producto	36 horas	48 horas
-				Log2FC	Log2FC
SCO3215	SCE8.08c	Gen biosintético adicional	Proteína hipotética	1.5	1.4
SCO3217	cdaR	Gen regulador	Posible regulador transcripcional	1.1	2.3
SCO3218	SCE8.11c	Gen biosintético adicional	Proteína hipotética conservada pequeña	2.0	3.5
SCO3219	SCE8.12c	Otro gen	Supuesta lipasa (supuesta proteína secretada)		1.2
SCO3220	SCE8.13c	Otro gen	Supuesta proteína secretada	2.1	4.4
SCO3221	SCE8.14c	Otro gen	Prefenato deshidrogenasa	2.5	3.6
SCO3222	SCE8.15c	Otro gen	Supuesta proteína secretada	2.3	5.6
SCO3227	SCE63.06	Gen biosintético adicional	(S)-3,5-dihidroxifenilglicina transaminasa		2.6
SCO3228	SCE63.05	Otro gen	Probable glicolato oxidasa	1.6	3.1
SCO3229	SCE63.04	Otro gen	ácido 4-hidroxifenilpirúvico dioxigenasa	2.3	3.5
SCO3230	cdaPSI	Gen biosintético central	CDA péptido sintetasa I,	1.4	3.1
SCO3231	cdaPS2	Gen biosintético central	CDA péptido sintetasa II	1.7	2.9
SCO3232	CdaPS3	Gen biosintético central	CDA péptido sintetasa III	1.9	3.2
SCO3233	SCE29.0	Gen biosintético adicional	Probable hidrolasa	2.3	4.4
SCO3234	hasP	Gen biosintético adicional	Posible fosfotransferasa	2.1	4.3
SCO3235	SCE29.04c	Gen relacionado con el transporte	Posible transportador ABC	2.0	3.2
SCO3236	asnO	Otro gen	L-asparagina oxigenasa	2.0	3.9
SCO3237	SCE29.06c	Otro gen	Proteína hipotética	1.2	3.0
SCO3238	SCE29.07c	Otro gen	Proteína hipotética	1.7	2.4
SCO3239	SCE29.08c	Otro gen	Proteína hipotética conservada	1.7	3.2
SCO3240	SCE29.09c	Otro gen	Proteína hipotética	1.5	2.2
SCO3241	SCE29.10c	Otro gen	Posible isomerasa	1.9	2.5
SCO3242	SCE29.11c	Otro gen	Posible transferasa	2.1	1.6
SCO3243	SCE29.12c	Otro gen	Posible mioinositol fosfato sintasa	2.1	2.8
SCO3244	SCE29.13c	Otro gen	Supuesta proteína secretada	2.6	4.0
SCO3245	SCE29.14c	Gen biosintético adicional	Posible salicilato hidroxilasa	1.8	2.6

SCO3246	fabH2	Gen biosintético adicional	3-oxoacil-[proteína portadora de acilo] sintasa III	2.2	3.1
SCO3247	SCE29.16c	Gen biosintético adicional	Posible acil CoA oxidasa	2.0	2.3
SCO3248	FabF3	Gen biosintético adicional	3-oxoacil-[proteína portadora de acilo] sintasa II	2.0	1.7
SCO3249	SCE29.18c	Gen biosintético adicional	Probable proteína portadora de acilo	1.8	2.3

Tabla A27. Genes del análisis transcripcional de las cepas S*scr1 vs* control, que convergen con los genes del **clúster biosintético de la ACT**.

Gen	Nombre	Tipo de gen	producto	36 horas	48 horas Log2FC
SCO5057	SCK7.30c	Gen biosintético adicional	Posible aminoácido permeasa	1.3	LUGZFC
SCO5063	SCBAC20F6.06c	Otro gen	Proteína hipotética	-1.0	
SCO5065	SCBAC20F6.08c	Gen regulador	Posible regulador transcripcional	3.3	2.1
SCO5066	SCBAC20F6.09	Otro gen	Posible betalactamasa	1.4	2.1
SCO5069	SCBAC20F6.12	Gen biosintético adicional	Posible oxidorreductasa	1.5	
SCO5070	SCBAC20F6.13c	Otro gen	ORFB hidroxilacil-CoA deshidrogenasa	1.3	1.5
SC05070	SCBAC20F6.14c	Otro gen	Biosíntesis de actinorrodina proteína actVA	1.5	3.3
SCO5072	oRF1	Gen biosintético adicional	Hidroxilacil-CoA deshidrogenasa	1.1	2.1
SCO5073	oRF2	Gen biosintético adicional	Posible oxidorreductasa	1.1	1.8
SCO5074	SCBAC20F6.17	Otro gen	Posible deshidratasa	1.3	2.6
SCO5075	oRF4	Gen biosintético adicional	Posible oxidorreductasa	1.1	1.8
SCO5076	actVA1	Gen relacionado con el transporte	Proteína de membrana integral	1.1	1.6
SCO5077	actVA2	Otro gen	Proteína hipotética	1.1	1.6
SCO5078	actVA3	Otro gen	Posible proteína		1.9
SCO5079	actVA4	Gen biosintético adicional	Proteína hipotética	1.0	2.6
SCO5080	actVA5	Gen biosintético adicional	Monooxigenasa dependiente de flavina de dos componentesa NcnH		1.7
SCO5081	actVA6	Otro gen	Gen biosintético de actinorrodina	1.0	2.0
SCO5082	actII-1	Gen regulador	Supuesta proteína reguladora transcripcional	1.2	2.0
SCO5083	actII-2	Gen relacionado con el transporte	Supuesto transportador de actinorrodina	2.4	1.8
SCO5084	actII-3	Gen biosintético adicional	Supuesta proteína de membrana	2.7	2.0
SCO5085	actII-ORF4	Gen regulador	Proteína activadora de grupos de actinorrodina	1.3	
SCO5086	actIII	Gen biosintético adicional	Cetoacil reductasa		2.6
SCO5087	actIORF1	Gen biosintético central	Subunidad alfa de la beta-cetoacil sintasa de policétido de actinorrodina		2.7
SCO5088	actIORF2	Gen biosintético central	Subunidad beta de la beta-cetoacil sintasa del poliquétido de actinorrodina		2.5
SCO5089	actIORF3	Gen biosintético adicional	Actinorrodina policétido sintasa acp; Proteína transportadora de acilo		3.0
SCO5090	actVII	Gen biosintético adicional	Actinorrodina policétido sintasa bifuncional ciclasa/deshidratasa		2.5
SCO5091	actIV	Gen biosintético adicional	Ciclasa		2.3
SCO5092	actVB	Gen biosintético adicional	Policétido de actinorrodina posible dimerasa		2.9
SCO5093	oRF7	Otro gen	Supuesta proteína del minicírculo		1.7
SCO5094	oRF8	Gen biosintético adicional	Supuesta metiltransferasa		2.4
SCO5096	SCBAC28G1.22c	Gen regulador	Pertenece a la familia reguladora transcripcional LysR		1.8
SCO5100	SCBAC28G1.26	Gen regulador	Posible proteína reguladora de la familia gntR	-1.2	-1.4

SCO5101	SCBAC28G1.27	Otro gen	Proteína hipotética conservada	-1.3	-1.3
SCO5104	SCBAC28G1.30	Otro gen	Proteína hipotética	-1.1	

Tabla A28. Genes del análisis transcripcional de las cepas S*scr1 vs* control, que convergen con los genes del **clúster biosintético Albaflavenona**.

Gen	Nombre	Tipo de gen	producto	36 horas Log2FC	48 horas Log2FC
SCO5215	SC7E4.12	Otro gen	Proteína hipotética		1.3
SCO5216	sigR	Gen regulador	RNA polimerasa factor sigma-70	1.5	1.2
SCO5222	cyc1	Gen biosintético central	Posible liasa		1.5
SCO5223	SC7E4.20	Gen biosintético adicional	Supuesto citocromo P450	1.0	1.1
SCO5228	SC7E4.25c	Otro gen	Posible acetiltransferasa		1.4

Tabla A29. Genes del análisis transcripcional de las cepas S*scr1 vs* control, que convergen con los genes del **clúster biosintético del pigmento de esporas**.

Gen	Nombre	Nombre Tipo de gen	producto	36 horas	48 horas
		ripo de gen	producto	Log2FC	Log2FC
SCO5285	lon	Otro gen	Proteasa dependiente de ATP	2.0	3.6
SCO5286	SCCB12.10c	Otro gen	Supuesta hidrolasa secretada	2.1	1.2
SCO5288	SCCB12.12c	Otro gen	Proteína hipotética		1.2
SCO5305	SC6G9.28	Otro gen	Posible lipoproteína		1.7
SCO5309	SC6G9.24c	Otro gen	Proteína hipotética	1.0	
SCO5311	SC6G9.22	Otro gen	Supuesta proteína secretada;	-2.1	
SCO5314	SC6G9.19	Gen biosintético adicional	Proteína hipotética	1.0	
SCO5328	SC6G9.05	Otro gen	Supuesto pseudogen transposasa	1.0	
SCO5338	pra2	Otro gen	Probable proteína reguladora		-1.4
SCO5340	SCBAC5H2.09	Otro gen	Proteína hipotética		1.1
SCO5341	SCBAC5H2.10	Otro gen	Proteína spdA2	1.1	
SCO5342	SCBAC5H2.11	Otro gen	Proteína spdB2	1.3	
SCO5346	SCBAC5H2.15	Otro gen	Proteína hipotética	1.1	-1.4
SCO5350	SCBAC5H2.19	Otro gen	Proteína hipotética		-1.5
SCO5351	SCBAC5H2.20	Gen regulador	Posible proteína reguladora	-1.6	-1.3

Tabla A30. Genes del análisis transcripcional de las cepas S*scr1 vs* control, que convergen con los genes del **clúster biosintético de la RED**.

Gen	Nombre	Tipo de gen	producto	36 horas	48 horas
				Log2FC	Log2FC
SCO5878	RedX	Gen biosintético adicional	Familia de beta-cetoacil-ACP sintasas	1.1	
SCO5883	redU	Gen biosintético adicional	Proteína hipotética		-1.6
SCO5884	SC3F7.04c	otro gen	Proteína hipotética		-1.7
SCO5885	SC3F7.05c	otro gen	Supuesta proteína de membrana		-1.4
SCO5886	RedR	Gen biosintético adicional	3-oxoacil-ACP sintasa		-2.0
SCO5887	RedQ	Gen biosintético central	Probable proteína transportadora de acilo		-1.1
SCO5888	fabH3	Gen biosintético adicional	3-oxoacil-ACP sintasa III		-2.3
SCO5889	RedO	Gen biosintético central	Proteína transportadora de péptidos		-1.7
SCO5890	RedN	Gen biosintético central	8-amino-7-oxononanoato sintasa		-1.5
SCO5891	redM	Gen biosintético central	L-prolina[proteína transportadora de l-prolilo] ligasa		-1.3
SCO5893	RedK	Gen biosintético adicional	Oxidorreductasa		-1.4
SCO5894	RedJ	Gen biosintético adicional	Tioesterasa		-1.4
SCO5896	RedH	Gen biosintético adicional	Prodigiosina/undecilprodigiosina sintetasa		-1.0
SCO5897	redG	otro gen	Supuesta oxidasa		-1.0
SCO5904	SC10A5.09c	otro gen	Proteína hipotética		-1.1
SCO5909	SC10A5.14	otro gen	Proteína hipotética	-1.4	

Tabla A31. Genes del análisis transcripcional de las cepas Sscr1 vs control, que convergen con los genes del clúster biosintético de la geosmina.

Gen	Nombre	Tipo de gen	producto	48 horas
Gen	Nombre	ripo de gen	producto	Log2FC
SCO6075	SC9B1.22c	otro gen	Proteína hipotética conservada	1.4
SCO6076	SC9B1.23	Gen biosintético adicional	Posible dipeptidasa	2.0

Tabla A32. Genes del análisis transcripcional de las cepas S*scr1 vs* control, que convergen con los genes del **clúster biosintético enduracina**.

Gen	Nombre	Tipo de gen	producto	36 horas	48 horas
SCO6222	SC2H4.04c	Gen biosintético adicional	Aminotransferasa		1.2
SCO6223	SC2H4.05	Gen regulador	Proteína hipotética conservada		1.8
SCO6224	SC2H4.06c	otro gen	Proteína secretada		2.7
SCO6225	SC2H4.07c	otro gen	Proteína secretada		1.9

Tabla A33. Genes del análisis transcripcional de las cepas S*scr1 vs* control, que convergen con los genes del **clúster biosintético de la coelimicina P1.**

Gen	Nombre	Tipo de gen	producto	36 horas Log2FC	48 horas Log2FC
SCO6265	SCAH10.30c	Gen regulador	Proteína de unión a gamma- butirolactona	1.9	LOGZIC
SCO6266	scbA	Gen biosintético central	Proteína ScbA	1.7	
SCO6267	SCAH10.32	Otro gen	Proteina scoa	2.3	1.0
SCO6268	SCAH10.33c	Gen regulador	Posible histidina guinasa	2.3	2.3
SCO6269	SCAH10.34c	Otro gen	Supuesta subunidad beta de la oxidorreductasa	1.8	3.0
SCO6270	SCAH10.35c	Otro gen	Posible subunidad alfa de oxidorreductasa	3.5	2.7
SCO6271	accA1	Gen biosintético adicional	Probable complejo acil-CoA carboxilasa	4.0	4.1
SCO6272	SC2C4.02	Gen biosintético adicional	Posible proteína de unión a FAD	4.9	3.6
SCO6273	SC2C4.03c	Gen biosintético central	Probable policétido sintasa de tipo I	5.6	5.5
SCO6274	SC2C4.04c	Gen biosintético central	Probable policétido sintasa de tipo I	4.9	4.8
SCO6275	SC1G7.01c	Gen biosintético central	Probable policétido sintasa de tipo I	5.0	4.9
SCO6276	SC1G7.02	Gen biosintético adicional	Supuesta proteína secretada	7.5	8.2
SCO6277	SC1G7.03	Gen biosintético adicional	Posible epóxido hidrolasa	2.6	3.5
SCO6278	SC1G7.04	Gen relacionado con el transporte	Posible proteína de transporte de membrana integral	7.5	7.5
SCO6279	SC1G7.05	Gen biosintético adicional	5-hidroxidodecatetraenal 1- aminotransferasa	8.0	8.0
SCO6280	SC1G7.06	Gen regulador	Posible proteína reguladora	5.5	6.1
SCO6281	SC1G7.07	Gen biosintético adicional	Probable proteína de unión a FAD	5.1	6.0
SCO6282	SC1G7.08c	Gen biosintético adicional	Probable 3-oxoacil-[proteína transportadora de acilo] reductasa	7.4	7.6
SCO6283	SC1G7.09	Otro gen	Proteína hipotética conservada	5.8	6.0
SCO6284	SC1G7.10	Gen biosintético adicional	Probable descarboxilasa	4.4	4.7
SCO6285	SC1G7.11	Otro gen	Proteína hipotética	4.5	4.3
SCO6286	SC1G7.12c	Otro gen	Supuesta proteína reguladora	5.9	6.2
SCO6287	scoT	Gen biosintético adicional	Tioesterasa II	3.1	2.2
SCO6288	SC1G7.14	Gen regulador	Probable proteína reguladora	3.5	3.3
SCO6289	SCBAC8D1.02	Gen biosintético adicional	Supuesta oxidorreductasa secretada	2.0	1.6
SCO6290	SCBAC8D1.03	Otro gen	Proteína hipotética	1.1	1.9
SCO6291	SCBAC8D1.04	Gen biosintético adicional	Subunidad alfa de la D-hidroxiprolina deshidrogenasa		1.2

Tabla A34. Genes del análisis transcripcional de las cepas S*scr1 vs* control, que convergen con los genes del **clúster biosintético nogalamicina**.

Gen	Nombre	Tipo de gen	producto	36 horas	48 horas
		bo ac be	piodatto	Log2FC	Log2FC
SCO6420	SC1A6.09c	Otro gen	Proteína de unión al DNA	2.7	2.2
SCO6421	SC1A6.10	Gen regulador	Probable quinasa sensora del sistema de dos componentes		1.7
SCO6422	ecrE2	Gen regulador	Probable proteína reguladora del sistema de dos componentes		1.1
SCO6423	SC1A6.12c	Otro gen	Lipoato-proteína ligasa	1.6	
SCO6425	SC1A6.14	Gen regulador	Proteína hipotética	1.3	
SCO6446	SC9B5.13	Otro gen	Proteína hipotética		1.5
SCO6447	SC9B5.14c	Otro gen	Posible NAD(P)H oxidorreductasa	1.5	1.3
SCO6448	SC9B5.15	Gen regulador	Regulador transcripcional tipo AraC		1.2
SCO6451	SC9B5.18	Gen relacionado con el transporte	Proteína de unión al sustrato del sistema de transporte de péptidos/níquel		1.8
SCO6452	SC9B5.19	Gen relacionado con el transporte	Proteína permeasa del sistema de transporte de péptidos/níquel		1.9
SCO6453	SC9B5.20	Gen relacionado con el transporte	Permeasa de transporte probable		1.4
SCO6454	SC9B5.21	Gen relacionado con el transporte	Sistema de transporte de péptidos/níquel Proteína de unión atp		1.7
SCO6455	SC9B5.22	Gen relacionado con el transporte	Sistema de transporte de péptidos/níquel Proteína de unión atp	1.3	1.8
SCO6456	SC9B5.23c	Otro gen	Probable proteína hidrolítica	1.6	

Tabla A35. Genes del análisis transcripcional de las cepas S*scr1 vs* control, que convergen con los genes del **clúster biosintético Sap B.**

Gen	Nombre	Tipo de gen	producto	36 horas	48 horas
			·	Log2FC	Log2FC
SCO6679	SC5A7.29c	Otro gen	Proteína hipotética	-2.1	
SCO6682	SC5A7.32	Gen biosintético adicional	Proteína hipotética	1.2	1.3
SCO6684	ramA	Gen relacionado con el transporte	Supuesto Transportador ABC	1.4	
SCO6685	ramR	Gen regulador	Regulador de respuesta del sistema de dos componentes	2.4	

Tabla A36. Genes del análisis transcripcional de las cepas S*scr1 vs* control, que convergen con los genes del **clúster biosintético hopeno**.

Gen	Nombre	Tipo de gen	producto	36 horas
			•	Log2FC
SCO6762	SC6A5.11	Gen biosintético adicional	Posible fitoeno deshidrogenasa	-1.3
SCO6764	SC6A5.13	Gen biosintético central	Probable escualeno-hopeno ciclasa	1.0
SCO6765	SC6A5.14	Otro gen	Supuesta lipoproteína	1.6
SCO6766	SC6A5.15	Gen biosintético adicional	Proteína hipotética	1.4
SCO6767	ispG1	otro gen	(E)-4-hidroxi-3-metilbut-2-enil-difosfato sintasa	1.2
SCO6768	dxs1	Gen biosintético adicional	1-desoxi-D-xilulosa-5-fosfato sintasa	1.1
SCO6769	SC6A5.18	Gen biosintético adicional	Ornitinaoxo-ácido transaminasa	1.1