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A B S T R A C T

Fuel moisture content (FMC) plays a significant role in wildfire behavior and rate of spread (ROS). In addition,
FMC is a highly dynamic factor and very vulnerable to climate variations. Understanding the effect of FMC
on the behavior of fire spread models is crucial, and detailed analysis of specific aspects of complex models is
a very effective way to improve them. The simplified physical fire spread model PhyFire considers the effect
of FMC in a novel way, involving a multivalued maximal monotone operator. Several numerical experiments
have been carried out to confirm that the behavior of the ROS simulated with PhyFire involving FMC is
as expected in the reviewed literature: an exponential decrease in fire ROS compared to FMC, for different
scenarios, considering different fuel types, terrain slopes and wind speeds. PhyFire performs very accurately,
proving that the multivalued operator used is suitable and consistent.
1. Introduction

Fuel moisture content (FMC), defined as the mass of water con-
tained within vegetation in relation to the dry mass, plays a significant
role in wildfire behavior and rate of spread (ROS) (Chuvieco et al.,
2009). In addition, FMC is one of the most dynamic component of wild-
fire fuels, it varies rapidly in time and space and it is very vulnerable
to weather changes, including air temperature, relative humidity and
precipitation (Ellis et al., 2022). Understanding the effect of FMC on fire
occurrence and behavior is critical in future climate change scenarios,
especially in vulnerable areas as the European Mediterranean Basin (Vi-
lar et al., 2021). FMC is usually separated into dead (DFMC) and live
(LFMC) components. Most studies focus on DFMC to understand the
effect of FMC on fire spread behavior, as it is easier to reproduce in
laboratory experiments. LFMC also affects the flammability of plants,
but it is more complex and difficult to quantify this effect. FMC is one of
the primary variables in many fire behavior prediction models and fire
danger indices. The current capacity to measure FMC remotely (Yebra
et al., 2013; Quan et al., 2017) makes it an accessible variable for use
in fire behavior models. Therefore, any spread model should suitably
capture the effect of FMC on ROS. This paper sets out to prove that the
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simplified physical fire spread model PhyFire developed by the authors
accurately reflects the effect of FMC on the ROS of simulated fires,
both separately and in the presence of wind and a terrain slope, for
different fuel types. Accordingly, the literature on this effect has been
extensively reviewed, with a thorough exploration of experimental
studies on the subject. A brief description of PhyFire is accompanied
by a particular emphasis on how PhyFire considers FMC, involving a
multivalued maximal monotone operator, which is the main novelty of
this model compared to others in terms of how to represent the effect
of FMC. We also briefly present the latest improvements regarding
the numerical resolution of the model. PhyFire is part of a wildfire
simulation tool integrated into a geographic information system (GIS),
which includes its own wind field simulation model, HDWind. It is not
our intention here to provide a detailed description of the two models
or of the simulation tool developed accordingly. Numerous aspects of
the PhyFire and HDWind models, their numerical implementation, and
the GIS tool are described elsewhere (Ferragut et al., 2015, 2011; Prieto
et al., 2017; Asensio et al., 2021). Moreover, the PhyFire-HDWind
system is a work in progress. We are continuing with the ongoing
task of improving the physical models, their numerical implementation
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schemes, and their GIS integration. Several numerical experiments have
been conducted to confirm that the behavior of the ROS simulated
with PhyFire involving FMC is as expected in the reviewed literature
in different scenarios (terrain slope, wind speed, and fuel type); in
other words, it corresponds to an exponential function in decline, where
there is a coefficient 𝑘 of decay of the curve that explains the effect of
moisture. The experiments have been performed using the fire behavior
data of forest fuels in the Spanish region of Galicia shown in the
photo-guide (Arellano et al., 2016).

2. Model description

Understanding the behavior of a system as complex as a wild-
fire is an undeniably useful tool for wildfire management, and the
development of simulation models plays a key role in this complex
challenge (Cardil et al., 2021). There are a large number of models (Sul-
livan, 2009a,b) and operational tools (Papadopoulos and Pavlidou,
2011) designed for the prediction of wildfire behavior: empirical mod-
els (Group, 1992), quasi-empirical models (Rothermel, 1972; Lopes
et al., 2002) and physical-based models (Mell et al., 2007), the more
complex atmosphere–wildfire coupled models (Mandel et al., 2011),
and the recent data-driven or data-assimilation models (Yoo and Song,
2023).

The PhyFire-HDWind operational tool is a GIS-integrated wildfire
spread simulation tool developed by the research group on Numeri-
cal Simulation and Scientific Computation at the University of Sala-
manca (Prieto et al., 2017). It is based on the simplified physical
fire spread model, PhyFire, and the high-definition wind field model,
HDWind. The PhyFire-HDWind code is implemented in C++ using
the own Finite Element library Neptuno++ (Cascón et al., 2018), and
the API OpenMP for the multiprocessor platforms to reduce computa-
tional time (Álvarez et al., 2017). Both models are compatible with
any platform and can operate either together or separately. The GIS-
integrated PhyFire-HDWind tool was integrated into a web platform:
http://sinumcc.usal.es/. This platform was developed using the latest
communication and data processing technologies, such as API REST,
JSON, and ArcGIS Server (Asensio et al., 2021). This open-access sys-
tem enables any Internet user to use the PhyFire-HDWind tools without
any prior knowledge of either the models or the GIS tools. The system
carries out all the steps of the simulation process in a holistic manner,
providing the user with a rapid display of the simulation results. The
advantages of PhyFire’s technological improvements do not obviate the
key question of model reliability. The aim here is to further our under-
standing of the model’s performance regarding FMC, and find out if it
responds as expected in several scenarios, including different fuel types,
wind speeds and terrain slopes. We will therefore restrict ourselves to
the PhyFire model, with particular emphasis on the effect of humidity
through a multivalued operator. In addition, the experiments here use
a constant wind speed, so the HDWind model is not used, except in the
real example in Section 6. No further details on this model are included
here, but they can be found in Asensio et al. (2005), Ferragut et al.
(2011, 2013) and more recently in Prieto-Herráez et al. (2021).

2.1. The fire model: PhyFire

PhyFire is a simplified two-dimensional one-phase physical fire
spread model based on energy and mass conservation equations (Asen-
sio et al., 2021). This model considers convection and radiation as
dominant thermal transfer mechanisms (Morvan, 2011), and depends
mainly on meteorological data (wind direction and intensity, ambient
temperature, and humidity), topography, and fuel type and load. To
better understand the PhyFire model, we briefly present and explain
the equations of the current version of the model as well as the last
2

numerical scheme used to solve it (Asensio et al., 2023), focusing on the
multivalued function representing the effect of the FMC. The equations
of the PhyFire model are as follows,

𝜕𝑡𝑒 + 𝛽𝐯 ⋅ 𝛁𝑒 + 𝛼𝑢 = 𝑟(𝑢, 𝑐) in 𝑆 × (0, 𝑡𝑚𝑎𝑥) (1)
𝑒 ∈ 𝐺(𝑢) in 𝑆 × (0, 𝑡𝑚𝑎𝑥) (2)

𝜕𝑡𝑐 = −𝑔(𝑢) 𝑐 in 𝑆 × (0, 𝑡𝑚𝑎𝑥) (3)

where the unknowns are the dimensionless enthalpy 𝑒 = 𝐸∕𝑀𝐶𝑇∞, the
dimensionless solid fuel temperature 𝑢 = (𝑇 − 𝑇∞)∕𝑇∞, and the solid
fuel mass fraction 𝑐 = 𝑀∕𝑀0, defined on the surface 𝑆 where the fire
evelops. The physical quantities 𝐸 (J m−2), 𝑇 (K), and 𝑀 (kg m−2)
re enthalpy, the temperature of the solid fuel, and the fuel load,
espectively, and 𝐶 (J K−1 kg−1) is the heat capacity of the solid fuel,
∞ (K) is a reference temperature, and 𝑀0 (kg m−2) is the initial solid
uel load.

Surface 𝑆 is defined by the mapping

∶ 𝑑 ⟼ R3

(𝑥, 𝑦) ⟼ (𝑥, 𝑦, ℎ(𝑥, 𝑦))

where ℎ(𝑥, 𝑦) is a known function representing the topography of the
surface 𝑆, and 𝑑 = [0, 𝑙𝑥] × [0, 𝑙𝑦] ⊂ R2 is a rectangle representing the
projection of the surface 𝑆.

Fuel is described by the given initial fuel load 𝑀0 and the moisture
content 𝑀𝑣 (kg of water∕kg of dry fuel), as well as the fuel type, which
are scalar functions defined on 𝑑. Fuel type determines the value of
some input variables of the model as shown in Table 1.

We use homogeneous Dirichlet boundary conditions, whereby the
model is valid as long as the fire does not reach the boundary. The
initial conditions represent the value of the nondimensional solid fuel
load, including eventual fire breaks, and the source of the fire. PhyFire
allows restarting the simulation using intermediate fire perimeters with
updated meteorological information.

The term 𝑟(𝑢, 𝑐) on the right-hand side of Eq. (1) represents the
energy due to radiation and depends on the radiation absorption
coefficient inside the flame, 𝑎, the first of the three model parameters
listed in Table 1 that should be adjusted. Thermal radiation has a
significant effect on ROS, drying the fuel at the fire’s leading edge, and
thus accelerating its ignition. The radiation term is highly nonlinear and
three-dimensional, so the computational cost of its numerical solution
in wildfire spread models makes it a challenging task. When the flame
is not vertical due to wind or terrain slope, the effect of thermal radi-
ation is higher downwind and upslope, respectively. To deal with this
effect, radiation is represented by a non-local radiation term, solving
the corresponding radiation intensity equation in a three-dimensional
domain representing the air layer 𝐷 over surface 𝑆,

𝐷 = {(𝑥, 𝑦, 𝑧) ∶ (𝑥, 𝑦) ∈ 𝑑, ℎ(𝑥, 𝑦) < 𝑧 < ℎ(𝑥, 𝑦) + 𝛿}

where 𝛿 is the height of the air layer assuming that the height of the
flames is always less than 𝛿. For more details about how to solve
the differential equation representing the radiation intensity and how
to compute incident radiation energy at each point on the surface 𝑆
see Ferragut et al. (2015). Notice note that the flame geometry affects
the radiation received at each point, so in the computation of the
radiation detailed in the previous reference it is distinguished whether
the flame is vertical or tilted.

As mentioned above, in this paper we pay particular attention to
how the PhyFire model addresses the effect of the FMC. The influence
of FMC and heat absorption by pyrolysis is handled by a multivalued
maximal monotone operator representing enthalpy (Ferragut et al.,
2007) in Eq. (2). As far as we know, PhyFire is the first and only
fire spread model that treats the enthalpy equation with a multivalued
operator, defined as follow,

𝐺(𝑢) =

⎧

⎪

⎪

⎨

⎪

⎪

𝑢 if 𝑢 < 𝑢𝑣,
[𝑢𝑣 , 𝑢𝑣 + 𝜆𝑣] if 𝑢 = 𝑢𝑣,
𝑢 + 𝜆𝑣 if 𝑢𝑣 < 𝑢 < 𝑢𝑝,
[𝑢𝑝 + 𝜆𝑣 , ∞] if 𝑢 = 𝑢𝑝,

(4)
⎩

http://sinumcc.usal.es/
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where 𝑢𝑣 and 𝑢𝑝 are the non-dimensional evaporation temperature of
he water and the non-dimensional pyrolysis temperature of the solid
uel, respectively. FMC, denoted in the model equations by 𝑀𝑣 (kg of
ater/kg of dry fuel), appears in the multivalued operator through 𝜆𝑣,

which is the non-dimensional evaporation heat,

𝜆𝑣 =
𝑀𝑣𝛬𝑣
𝐶𝑇∞

where 𝛬𝑣 = 2.25×106 (J kg−1) is the latent heat of evaporation of water.
It should be noted that in the burned area 𝜆𝑣 = 0. The use of a multi-
valued operator is informed by the classical two-phase Stefan problem,
and it has been adapted to model the two well-defined phases in a
wildfire combustion process (Cox, 1995): the endothermic phase that
includes the dehydration of the solid fuel, and the exothermic phase
in which the flammable mixture from fuel pyrolysis begins to release
energy. These are the solid and gaseous phase, respectively, which in
PhyFire are simplified by the multivalued operator 𝐺, the correction
factor 𝛽 in the convective term of Eq. (1), and flame temperature and
height in the radiation term.

Flame height depends on wind strength and surface slope (Asensio-
Sevilla et al., 2020). PhyFire has been provided with a flame height
sub-model depending on these two factors, based on the observation of
the experimental curves for different fuels (Arellano et al., 2016). The
flame height sub-model is as follows:

𝐹 = (𝐹𝐻 + 𝐹𝑣 |𝑣|(1∕2)) (1 + 𝐹𝑠𝑠
2) (5)

where 𝐹𝐻 is an independent flame-height parameter, 𝐹𝑣 is a wind cor-
rection factor, 𝐹𝑠 is a slope correction factor, |𝑣| is the wind strength in
m/s, and 𝑠 represents the slope at each point on the surface, providing
a flame height in meters.

Flame temperature is approximated in terms of solid fuel under
some simplifications. We assumed that this temperature does not vary
inside a stabilized flame, that heat losses inside the flame are mainly
due to local radiation, and that a maximum flame temperature 𝑇𝑓,𝑚𝑎𝑥
is available. In Asensio et al. (2023) can be found the details of how to
derive the following expression for flame temperature,

𝑇𝑓 = (𝑇 4
∞ + (𝑡 > 𝑡𝑝)(𝑇 4

𝑓,𝑚𝑎𝑥 − 𝑇 4
∞)𝑀)1∕4 (6)

where the term (𝑡 > 𝑡𝑝) is zero when the process is endothermic, and
one, when it is exothermic.

The other major heat transfer mechanism in a wildfire is convection,
which is represented in PhyFire through the convective term 𝛽𝑣 ⋅∇𝑒 in
Eq. (1). This term represents the energy convected by the gas pyrolyzed
through the elementary control volume, where the non-dimensional
surface wind speed 𝑣 can either be a constant value or variable both
spatially and temporally, for example, provided by the high definition
HDWind model. The correction factor 𝛽 represents the fraction of
transported enthalpy retained by the solid fuel in the aforementioned
one-phase simplification. 𝛽 is the second of the three model param-
eters that should be adjusted. For further details about parameter 𝛽,
see Prieto et al. (2015).

As regards the other terms, 𝛼𝑢 represents the energy lost by natural
vertical convection, where 𝛼 is the non-dimensional coefficient, that
depends on the natural convection coefficient 𝐻 , the third model
parameter to be adjusted.

The right-hand side of Eq. (3) represents the loss of solid fuel due to
combustion, assuming there is no loss below the pyrolysis temperature
and that the loss rate remains constant when this temperature is
reached. This rate is inversely proportional to the solid half-life time
𝑡1∕2 of the combustion of each type of fuel.

Eqs. (1), (2), (3) properly reflects the simplified combustion process
in the burning area, but these equations can be further simplified in the
burned area, assuming that once the fuel has been burned the enthalpy
3

is not recovered, and considering that an area is fully burned when the
Table 1
PhyFire input variables and parameters, with their symbols and units.

Fuel-type-dependent input variables Symbol Units

Heat capacity 𝐶 J K−1 kg−1

Pyrolysis temperature 𝑇𝑝 K
Flame temperature 𝑇𝑓 K
Combustion half-life time 𝑡1∕2 s
Maximum fuel load 𝑀0 kg m−2

Moisture content 𝑀𝑣
kg(𝑤𝑎𝑡𝑒𝑟)

kg(𝑑𝑟𝑦 𝑓𝑢𝑒𝑙)
Flame height factor 𝐹𝐻 m
Wind correction factor 𝐹𝑣 m1∕2 s1∕2

Slope correction factor 𝐹𝑠 –

Environmental input variables Symbol Units

Non-dimensional wind speed 𝑣 –
Reference temperature 𝑇∞ K
Height of the surface ℎ m
Fuel load 𝑀 kg m−2

Model parameters Symbol Units

Mean absorption coefficient 𝑎 m−1

Natural convection coefficient 𝐻 J s−1 m−2 K−1

Convective term correction factor 𝛽 –

mass fraction of solid fuel is less than 0.1. Then the only equation to
be solved in the burned area is

𝜕𝑡𝑢 + 𝛼𝑢 = 𝑟(𝑢, 𝑐) in 𝑆 × (0, 𝑡𝑚𝑎𝑥) (7)

where we are neglecting the heat transported by convection to the
burned area.

2.2. Numerical method

The numerical method used to solve this non-local radiation model
included a P1 finite element method for the spatial discretization on
a regular mesh, combined with a predictor–corrector finite difference
scheme for the time discretization. The predictor step is a Euler semi-
implicit scheme, and the corrector step is a modified Crank–Nicolson
scheme. After analyzing other numerical schemes throughout the
development process of the PhyFire model, its numerical resolution and
its practical implementation (see Asensio et al. (2023)), this scheme
has provided stable numerical solutions and a good balance between
efficiency and computational cost. The computational cost has been
reduced by defining what we define as Active Nodes, so that the equa-
tions are solved only in the neighborhood of the fire front, and by
adapting the numerical scheme and the corresponding code to parallel
computing (Ferragut et al., 2015). The spatial discretization varies
depending on the precision level, currently varies from precision level
0 corresponding to 50 m cell size, to precision level 5, corresponding
to 2.5 m cell size. For the experiments performed in this work we have
used precision level 4 (5 m cell size) for the study of the behavior of
ROS versus FMC in Section 4.4, and precision level 3 (7.5 m cell size)
for the simulation of the real case in Section 6.

Given the initial values 𝑢0 and 𝑐0 defined by the initial conditions,
we set the value of the initial enthalpy for each node 𝑖 of the spatial
discretization depending on the initial nondimensional temperature 𝑢0

as follow,

𝑒0𝑖 =
{

𝑢0𝑖 if 𝑢0𝑖 ≤ 𝑢𝑣,
𝑢0𝑖 + 𝜆𝑣 if 𝑢0𝑖 > 𝑢𝑣,

(8)

Given the values of the unknowns 𝑢𝑛, 𝑐𝑛 and 𝑒𝑛 at time step 𝑛, we
compute 𝑢𝑛+1, 𝑐𝑛+1 and 𝑒𝑛+1 by means of the following steps,

1. Build the set of Active Nodes.
2. Compute the Radiation Heat.
3. Prediction step: Semi-implicit Euler method.
4. Update the set of Active Nodes.
5. Update the Radiation Heat.
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6. Correction Step: Modified Crank–Nicolson method.

A node 𝑖 is considered an Active Node if 𝑢𝑖 > 0 and 𝑐𝑖 ≥ 0.1 or if
t belongs to the Radiation molecule associated to a node fulfilling the
revious condition. The Radiation molecule is a set of nodes consisting
f the node itself and the neighboring nodes defining the area affected
y the radiation emitted by the node in question

The numerical computation of the radiation term for each time step
𝑛 is fully described in Ferragut et al. (2015), we focus here on those
umerical aspects of the algorithm that are new compared to previous
ersions, specifically the predictor–corrector finite difference scheme.

We must first mention the total discretization of the convective term
f Eq. (1) that is carried out in each step of the predictor–corrector
cheme,

𝑡𝑒 + 𝛽𝐯.∇𝑒 ≈ 1
𝛥𝑡

(𝑒𝑛+1 − 𝑒𝑛)

here 𝑒𝑛 = 𝑒𝑛◦𝑋𝑛, and 𝑋𝑛(𝐱) = 𝑋(𝐱, 𝑡𝑛+1, 𝑡𝑛) ≈ 𝐱 − 𝛽𝐯𝛥𝑡 is the position
t time 𝑡𝑛 of the particle that is at position 𝐱 at time 𝑡𝑛+1.

redictor step. The discrete equations in the burning area in the predic-
or step correspond to a semi-implicit Euler scheme,

𝑒𝑛+1∕2 − 𝑒𝑛

𝛥𝑡
+ 𝛼𝑢𝑛+1∕2 = 𝑟𝑛, (9)

𝑒𝑛+1∕2 ∈ 𝐺(𝑢𝑛+1∕2), (10)
𝑐𝑛+1∕2 − 𝑐𝑛

𝛥𝑡
= −𝑔(𝑢𝑛+1∕2)𝑐𝑛+1. (11)

here 𝑒𝑛+1∕2, 𝑢𝑛+1∕2 and 𝑐𝑛+1∕2 stand for the predicted value of 𝑒𝑛+1,
𝑛+1 and 𝑐𝑛+1 respectively. The basic idea is to handle the linear term
mplicitly, and since the non-local radiation term 𝑟𝑛 depends strongly
n the temperature 𝑢𝑛 and on the solid fuel 𝑐𝑛, they are evaluated
xplicitly at time 𝑡𝑛. But even so, Eqs. (9)–(11) continue to be non-
inear due to the multivalued operator 𝐺. Nevertheless, the solution of
his problem can be reduced to explicit calculations.

The multivalued operator in Eq. (10) is maximal monotone and
ence its resolvent 𝐽𝜇 = (𝐼𝑑 + 𝜇𝐺)−1 is a well defined univalued
perator for any 𝜇 > 0. Moreover, the Yosida approximation (Bermúdez
nd Moreno, 1981) of 𝐺, 𝐺𝜇 = 𝐼𝑑−𝐽𝜇

𝜇 is a Lipschitz operator and the
nclusion in Eq. (10) is equivalent for all 𝜇 > 0 to the following equation

𝑛+1∕2 = 𝐺𝜇(𝑢𝑛+1∕2 + 𝜇𝑒𝑛+1∕2), (12)

r
𝑛+1∕2 = 𝐽𝜇(𝑢𝑛+1∕2 + 𝜇𝑒𝑛+1∕2). (13)

ow rearranging Eq. (9)

𝑛+1∕2 + 1
𝛼𝛥𝑡

𝑒𝑛+1∕2 = 1
𝛼𝛥𝑡

𝑒𝑛 + 1
𝛼
𝑟𝑛. (14)

nd taking 𝜇 = 1∕(𝛼𝛥𝜏) in Eq. (13), we obtain

𝑛+1∕2 = 𝐽1∕𝛼𝛥𝑡
( 1
𝛼𝛥𝑡

𝑒𝑛 + 1
𝛼
𝑟𝑛
)

(15)

hich it is equivalent to solve

𝛼𝛥𝑡 𝐼𝑑 + 𝐺)𝑢𝑛+1∕2 ∋ 𝑒𝑛 + 𝛥𝑡 𝑟𝑛. (16)

hus, denoting æ𝑛 = 𝑒𝑛 + 𝛥𝑡 𝑟𝑛, the value of 𝑢𝑛+1∕2 is given by,
æ𝑛

1+𝛼𝛥𝑡
if æ𝑛 < (1+𝛼𝛥𝑡) 𝑢𝑣,

𝑢𝑣 if æ𝑛 ∈ [(1+𝛼𝛥𝑡) 𝑢𝑣, (1+𝛼𝛥𝑡) 𝑢𝑣 + 𝜆𝑣],
æ𝑛 − 𝜆𝑣
1+𝛼𝛥𝑡

if æ𝑛 ∈ [(1+𝛼𝛥𝑡) 𝑢𝑣 + 𝜆𝑣, (1+𝛼𝛥𝑡) 𝑢𝑝 + 𝜆𝑣],

𝑢𝑝 if æ𝑛 ∈ [(1+𝛼𝛥𝑡) 𝑢𝑝 + 𝜆𝑣,∞]. (17)

Once 𝑢𝑛+1∕2 has been obtained, we calculate 𝑒𝑛+1∕2 and 𝑐𝑛+1∕2 ex-
plicitly from Eq. (9) and (11) respectively,
4

𝑒𝑛+1∕2 = 𝑒𝑛 − 𝛼𝛥𝑡𝑢𝑛+1∕2 + 𝛥𝑡 𝑟𝑛, (18)
𝑛+1∕2 = 𝑐𝑛

1 + 𝛥𝑡𝑔(𝑢𝑛+1∕2)
. (19)

Notice that Eqs. (15), (18) and (19) can be solved simultaneously
n all Active Nodes, so parallel computation can be used to reduce
he computational cost. Indeed, the loop over all Actives Nodes to

compute 𝑢𝑛+1∕2, 𝑒𝑛+1∕2 and 𝑐𝑛+1∕2 has been parallelized using the API
OpenMP (Chapman et al., 2007).

In the burned area, only Eq. (7) needs to be solved, whose discrete
version using a semi-implicit Euler scheme is,

𝑢𝑛+1∕2 − 𝑢𝑛

𝛥𝑡
+ 𝛼𝑢𝑛+1∕2 = 𝑟𝑛 (20)

that can be solved explicitly,

𝑢𝑛+1∕2 = 𝑢𝑛 + 𝛥𝑡 𝑟𝑛

1 + 𝛼𝛥𝑡
(21)

Corrector step. The discrete equations in the burning area in the correc-
tor step correspond to a Crank–Nicolson scheme,

𝑒𝑛+1 − 𝑒𝑛

𝛥𝑡
+ 𝛼 𝑢

𝑛+1 + 𝑢𝑛

2
= 𝑟𝑛+1∕2 + 𝑟𝑛

2
(22)

𝑒𝑛+1 ∈ 𝐺(𝑢𝑛+1), (23)
𝑐𝑛+1 − 𝑐𝑛

𝛥𝜏
= −𝑔

(

𝑢𝑛+1 + 𝑢𝑛

2

)

𝑐𝑛+1 + 𝑐𝑛

2
(24)

where we have approximate 𝑟𝑛+1 by 𝑟𝑛+1∕2 computed in terms of 𝑢𝑛+1∕2
and 𝑐𝑛+1∕2, the estimations obtained in the prediction steps, as at
this point 𝑢𝑛+1 and 𝑐𝑛+1 are not known. As in the prediction step,
rearranging Eq. (22), we have,

𝑢𝑛+1 + 2
𝛼𝛥𝑡

𝑒𝑛+1 = 2
𝛼𝛥𝑡

𝑒𝑛 − 𝑢𝑛 + 𝑟𝑛+1∕2 + 𝑟𝑛

𝛼
. (25)

As in the predictor step, taking 𝜇 = 2
𝛼𝛥𝑡 , the multivalued Eq. (23)

can be written as

𝑢𝑛+1 = 𝐽 2
𝛼𝛥𝑡

(

2
𝛼𝛥𝑡

𝑒𝑛 − 𝑢𝑛 + 𝑟𝑛+1∕2 + 𝑟𝑛

𝛼

)

(26)

which it is equivalent to solve

( 2
𝛼𝛥𝜏

𝐼𝑑 + 𝐺)𝑢𝑛+1 ∋
(

2
𝛼𝛥𝑡

𝑒𝑛 − 𝑢𝑛 + 𝑟𝑛+1∕2 + 𝑟𝑛

𝛼

)

. (27)

Denoting now æ𝑛 = 2
𝛼𝛥𝑡 𝑒

𝑛 − 𝑢𝑛 + 𝑟𝑛+1∕2+𝑟𝑛
𝛼 , the value of 𝑢𝑛+1 is given by,

æ𝑛

1+ 𝛼𝛥𝑡
2

if æ𝑛 < (1+ 𝛼𝛥𝑡
2

) 𝑢𝑣,

𝑢𝑣 if æ𝑛 ∈ [(1+ 𝛼𝛥𝑡
2

) 𝑢𝑣, (1+
𝛼𝛥𝑡
2

) 𝑢𝑣 + 𝜆𝑣],

æ𝑛 − 𝜆𝑣
1+ 𝛼𝛥𝑡

2

if æ𝑛 ∈ [(1+ 𝛼𝛥𝑡
2

) 𝑢𝑣 + 𝜆𝑣, (1+
𝛼𝛥𝑡
2

) 𝑢𝑝 + 𝜆𝑣],

𝑢𝑝 if æ𝑛 ∈ [(1+ 𝛼𝛥𝑡
2

) 𝑢𝑝 + 𝜆𝑣,∞]. (28)

Again, once 𝑢𝑛+1 has been obtained, we can update the enthalpy
𝑒𝑛+1 from Eq. (22), and the fuel 𝑐𝑛+1 from Eq. (24),

𝑒𝑛+1 = 𝑒𝑛 − 𝛼𝛥𝑡 𝑢
𝑛+1 + 𝑢𝑛

2
+ 𝛥𝑡 𝑟

𝑛+1∕2 + 𝑟𝑛

2
, (29)

𝑐𝑛+1 =
1 − 𝛥𝑡

2 𝑔(
𝑢𝑛+1+𝑢𝑛

2 )

1 + 𝛥𝑡
2 𝑔(

𝑢𝑛+1+𝑢𝑛
2 )

𝑐𝑛. (30)

Once more, Eqs. (26), (29) and (30) can be solved simultaneously
in all Active Nodes, so again the parallel calculation allows us to reduce
the computational cost in the correction step.

In the burned area, only (22) needs to be considered, which can be
olved explicitly,

𝑛+1 =
(1 − 𝛼𝛥𝑡

2 )𝑢𝑛 + 𝛥𝜏
2 (𝑟𝑛+1∕2 + 𝑟𝑛)

1 + 𝛼𝛥𝑡
2
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Table 2
Literature review of 𝑘 coefficient values relating ROS and FMC through Eq. (31). ROS: rate of spread; FMC: weighted fuel moisture content according to the proportion of live
and dead fuel load; FMC𝑑𝑒𝑎𝑑 : fuel moisture content of dead fuel; FMC𝑙𝑖𝑣𝑒: fuel moisture content of live fuel.

Ref. Experiment type 𝑘 coeff. FMC (%) Fuel type Wind (km h−1)

Cheney et al. (1993) Field 0.0966 2.7–12.1 Grassland 7-25

Burrows (1999) Field

0.120

3.0-18.6
Litter bed of dead leaves,
twigs and bark of
Eucalyptus marginata

2.0-3.5
0.160 3.5-4.5
0.190 4.5-5.5
0.340 5.5-6.5
0.330 6.5

Fernandes et al. (2009) Field 0.039 3.7–41.7 Dead needles of Pinus
pinaster

Head fires 0.5-22
0.040 8.4–41.5 Back fires 0.5-23.1

Marino et al. (2012) Outdoor wind
tunnel burns 0.17

FMC𝑑𝑒𝑎𝑑 : 22–36 Erica, Ulex and 8.3
FMC𝑙𝑖𝑣𝑒: 49–84 Pterospartum
FMC𝑑𝑒𝑎𝑑 : 20–34 Ulex europaeus 8.3
FMC𝑙𝑖𝑣𝑒: 65–105
FMC𝑑𝑒𝑎𝑑 : 10–20 Ulex europaeus 12.6
FMC𝑙𝑖𝑣𝑒: 15–113

Anderson et al. (2015) Prescribed fires
and wildfires

0.0761 FMC𝑑𝑒𝑎𝑑 : 2-30 FMC𝑙𝑖𝑣𝑒:
58-236 Shrubland 4-250.0762

0.0721

Anderson et al. (2015) Prescribed fires
and wildfires

0.0761 FMC𝑑𝑒𝑎𝑑 : 2-30 FMC𝑙𝑖𝑣𝑒:
58-236 Shrubland 4-250.0762

0.0721

Rossa et al. (2016) Laboratory

0.0117 12.9–110.8 Acacia Dealbata

1.5
0.0059 25.5–179.3 Cytisus striatus
0.0122 18.3–145.9 Eucalyptus globulus
0.0089 12.9–179.3 All fuel types
0.0063 >50 All fuel types
3. Fuel moisture content as a wildfire spread factor

FMC has a direct relationship with wildfire ROS, being one of the
variables together with wind that most influences it (Chuvieco et al.,
2009), mainly through the process of heating and subsequently evapo-
rating the water in the fuel, enabling it to attain combustion conditions.
This process involves the consumption of the energy released by the
adjacent combustion fuel, and requires time, which reduces ROS as
moisture increases.

The laboratory and field fires analyzed in Rossa and Fernandes
(2018b) have evidenced that wind explains 61.9% of ROS variance,
while DFMC explains the remaining 38.1%. Furthermore, the damping
effect of moisture on ROS is not affected by the wind, remaining
constant (Rossa and Fernandes, 2017).

There is consensus on the crucial influence that DFMC has on
ROS, but there are discrepancies over the influence of LFMC (Finney
et al., 2013), which are manifested in theoretical propagation mod-
els (Rothermel, 1972; Albini, 1976; Stocks et al., 1989), and are based
on experimental trials. Contradictory results are obtained between field
tests involving controlled burning, where LFMC barely influences ROS,
and laboratory studies, in which there is a clear relationship between
LFMC and ROS (Rossa and Fernandes, 2018b).

Consequently, propagation models based on laboratory studies often
use a weight of live and dead fuel based on their mass, while those
informed by field experiments consider only dead fuel (Rossa and
Fernandes, 2018b).

This difficulty in detecting the influence of live fuel on ROS in
field tests is because it can be concealed in two different ways: on
the one hand, live fuel maintains an almost constant moisture content
throughout the year (e.g., mature pine needles, or other fuels in non-
Mediterranean climates), or on the other, their variation follows a
similar pattern to that of dead fuel (measured as a monthly aver-
age). Many models are therefore based solely on dead fuel, but it
should be noted that this is only true if the moisture implicit in the
live fuel (albeit not accounted for) remains within the same ranges
as during the experimentation informing the model. If, for example,
FMC is much lower due to drought, the model will no longer hold
5

(Rossa and Fernandes, 2018a), and will even pose a threat if used
in prevention/extinction operations. Experiments carried out in the
laboratory using a mix of live and dead fuel seem to confirm that LFMC
reduces ROS in the same proportion as dead fuel, without finding any
significant differences between the two (Marino et al., 2012; Rossa
and Fernandes, 2017). The decisive variable is therefore the moisture
content weighted according to mass (in dry weight), regardless of
whether it is alive or dead. Moreover, live and dead fuels influence
ROS through the same mechanism; that is, through the absorption of
the heat generated by the fire to raise its temperature and subsequently
evaporate before the fuel can begin to burn. This means the pheno-
logical state of the vegetation is not relevant, but instead its moisture
content (Rossa and Fernandes, 2017). There are indications, however,
that the ignition mechanism of live fuel may be different, as it may
ignite before all the water content has evaporated (Finney et al., 2013;
Rossa and Fernandes, 2018a). After conducting a series of laboratory
experiments with live fuel involving four common mountain species
in Portugal, (Rossa et al., 2016) conclude that there is a threshold
for LFMC of between 50% and 70% (although in another paper they
report 100%, (Rossa and Fernandes, 2017)), whereby the influence the
increase has on ROS is small (although present), which is consistent
with field observations. Viegas et al. (2013) report a threshold in the
proportion of dead fuel to live one below which the fire stops spreading
(ROS = 0). This value depends on the moisture content of both types
of fuel and environmental conditions.

To explain the influence of FMC on ROS, several authors (Cheney
et al., 1993; Burrows, 1999; Fernandes et al., 2009; Marino et al., 2012;
Anderson et al., 2015; Rossa et al., 2016) use an exponential function
in decline, where there is a coefficient 𝑘 of decay of the curve that
explains the effect of moisture in both laboratory and field experiments.
The function is as follows,

𝑅𝑂𝑆 = 𝑐 𝑒−𝑘𝐹𝑀𝐶 (31)

This function is usually integrated as a term into a general function
of ROS including other variables, such as wind speed, slope, depth of
the fuel bed, or degree of cure of the herbaceous fuel. Table 2 shows
coefficient 𝑘 values for different studies, with 𝑘 values corresponding

−1
mainly to ROS measurements in m min .
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Table 3
Fuel load, weighted height and flame height coefficients according to flame height Eq. (5) for the five fuel types selected from the photo-guide (Arellano et al.,
2016) and the corresponding NFFL classification fuel type. 𝐹𝐻 : flame height independent parameter; 𝐹𝑣: wind correction factor; 𝐹𝑠: slope correction factor; 𝑅2:
coefficient of determination.

NFFL fuel type (Arellano class) Main species Fuel load (kg m−2) Weighted height (m) Eq. (5) fit (𝐹𝐻 , 𝐹𝑣 , 𝐹𝑠) 𝑅2

1 Short grass (Ac-01) Agrostis curtisii,
Pterospartum tridentatum 1.254 0.14

0.204
0.9790.615

5.449

4 Chaparral (Ea-08) Erica australis, Erica
arborea, Pterospartum tridentatum 4.907 2.21

2.569
0.9610.911

2.981

5 Brush (Ea-01) Erica australis, Pterospartum
tridentatum, Halimium alyssoides 1.257 0.45

2.499
0.9520.519

2.798

6 Dormant brush,
hardwood slash

(Es-01) Erica scoparia, Ulex
breoganii 1.901 1.03

2.693
0.9550.641

2.908

7 Southern rough (Cl-02) Cistus ladanifer 1.456 1.03
2.370

0.9600.637
2.888
l
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Part of the literature reviewed reports other versions of this expo-
ential relationship, including the effect of wind and terrain slope. Ch-
ney et al. (1993), Burrows (1999), Fernandes et al. (2009), Anderson
t al. (2015) propose the following equation,

𝑂𝑆 = 𝑐 𝑣𝑏 𝑒−𝑘𝐹𝑀𝐶 (32)

where 𝑣 is surface wind speed.
Marino et al. (2012) propose a linear model for wind, as their ex-

perimental study is limited to two wind figures, but they stress that this
model has no predictive value for wind effect. This study is of particular
interest because it compares experimental data and predictions from
the physically-based model FIRETEC, as in this article with PhyFire.
One of the problems mentioned in Marino et al. (2012) is the difference
in scale between experiments and simulations with FIRETEC. This is not
an issue in our study, as PhyFire allows computations at different scales
by changing the precision level.

Other authors also suggest that the impact of FMC upon the fire
behavior was also affected by the wind conditions and substantiate
this with numerical experiments (Morvan, 2013), but do not propose
a particular expression of this relationship.

The model suggested in Fernandes et al. (2009) describes ROS in
terms of surface wind speed and FMC, and also slope terrain (s), through
the following function,

𝑅𝑂𝑆 = 𝑐 𝑣𝑏 𝑒𝑝 𝑠−𝑘𝐹𝑀𝐶 (33)

4. Methodology

4.1. Description of the experiments

The spatial domain for the experiments is an even sloping surface
with a manageable but realistic scale, namely, 6000 m × 3000 m. The
fire focus is a line 25 m wide located at a distance of 1000 m from the
lower short side. Wind and slope are taken in the same direction, that
is, the fire front follows both the slope and the wind.

ROS is computed as the slope of the linear regression line used to fit
the position of the fire front in real time every five minutes from minute
10 to minute 60, measured lengthwise. The ROS calculation code pro-
vides controls to detect if the fire goes out or if it is approaching the
limit of the domain, avoiding unnecessary or unrealistic calculations.

Uniform fuel distribution is considered for four types of brush and
one type of grass selected from the comprehensive report (Arellano
et al., 2016). This is a photo-guide that provides valuable information
about the main forestry fuels in Galicia, in northwest Spain, and specif-
ically the main physical features of fuels related to their fire behavior,
6

which are of particular interest to this study. This guide provides a
system for estimating the probable behavior of a wildfire that involves
the fuels analyzed, including flame height and ROS under a range of
scenarios: three different slopes (0%, 20%, and 40%) and wind speed
ranging between 0 and 60 km h−1. There is also information on the fuel
oad and its weighted height. These data have allowed us to adjust the
arameters and certain input variables in PhyFire.

Table 3 lists some of the properties of the five fuels selected: the
odel corresponding to one of the 13 standard fuels according to the

Northern Forest Fire Laboratory (NFFL) classification system (Ander-
son, 1982), the specific fuel from the photo-guide (Arellano et al.,
2016), and certain characteristics such as fuel load or weighted height.

4.2. Flame height adjustment

The first step involved adjusting the flame height sub-model co-
efficients in Eq. (5) for each one of the five fuel types selected by a
nonlinear least square approximation of flame height data obtained
from graphics in the photo-guide (Arellano et al., 2016) for different
slopes (0%, 20%, and 40%) and wind speed at intervals of 5 km h−1 from

to 45 km h−1. As regards the four types of brush, flame height data for
wind speed of 0 km h−1 was not considered due to its high uncertainty.
onversely, grassland analyzed in Arellano et al. (2016) report that
he fire does not spread in conditions of no wind and no slope, and
lame height is zero, so these flame height data should be included.
he adjustment has been performed using CFTool, the MatLab Curve
itting Toolbox, selecting a Levenberg–Marquardt algorithm, reaching
coefficient of determination 𝑅2 > 0.95 in all cases. Table 3 contains

he flame height model coefficients computed, and the goodness of fit
n terms of the coefficients of determination 𝑅2. The goodness of flame
eight sub-model Eq. (5) has been discussed in detail in Asensio-Sevilla
t al. (2020), so here we only provide the value of the coefficient of
etermination 𝑅2 to justify the adjustment, without specifying other
rror metrics, as this is not the aim of this study.

.3. Parameter adjustment

The second step is the adjustment of the three PhyFire parameters,
amely, the mean absorption coefficient 𝑎; the natural convection
oefficient 𝐻 , and the correction factor of the convective term 𝛽, using
hese five fuel models and ROS data from the photo-guide (Arellano
t al., 2016) for the given ranges of wind speed and terrain slope. The
nitial aim was to follow the same parameter adjustment strategy as
n Prieto et al. (2015), where we first adjusted 𝑎 and 𝐻 for no wind
nd no slope fire data, with 𝛽 then being adjusted with all the other
OS data for the given terrain slopes and wind speeds. This strategy
as shown to be effective in Prieto et al. (2015), and responded to
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Table 4
Mean absorption coefficient (𝑎) values for all the scenarios.

Slope 5 km h−1 10 km h−1 15 km h−1 20 km h−1 25 km h−1

Fuel 1
0% – 0.258 0.319 0.337 0.375
20% 0.209 0.630 0.715 1.076 1.026
40% 0.155 0.997 1.609 1.723 4.812

Fuel 4
0% 0.122 0.119 0.084 0.078 0.085
20% 0.140 0.120 0.135 0.168 0.200
40% 0.085 0.173 0.224 0.369 0.776

Fuel 5
0% 0.063 0.033 0.021 0.020 0.019
20% 0.054 0.055 0.049 0.048 0.055
40% 0.079 0,060 0.065 0.099 0.091

Fuel 6
0% 0.110 0.057 0.071 0.060 0.051
20% 0.133 0.088 0.089 0.094 0.154
40% 0.114 0.114 0.145 0.190 0.325

Fuel 7
0% 0.098 0.051 0.063 0.053 0.047
20% 0.125 0.099 0.080 0.093 0.136
40% 0.107 0.107 0.135 0.158 0.266

the conclusions derived from the sensitivity analysis and parameter
adjustment reported there, where 𝑎 and 𝐻 did not vary significantly for
ifferent scenarios, including slope, wind, and fuel moisture content,
lways recording the same order of magnitude. 𝛽 became the most
elevant input factor for ROS, strongly dependent on wind magnitude.
his strategy has proven inadequate here due to the incorporation of
he new flame height sub-model given by Eq. (5). An in-depth study of
he parameter adjustment process revealed an important change in the
ensitivity of the model parameters. A new global sensitivity analysis
GSA) of PhyFire parameters showed a major change in the importance
f both the mean absorption coefficient 𝑎, and the correction factor
f convective term 𝛽. This new GSA was performed using the SAFE
Sensitivity Analysis For Everybody) MatLab Toolbox (Pianosi et al.,
015) with the Elementary Effect Test (Saltelli et al., 2008). The results
f this GSA revealed the greater importance of the mean absorption
oefficient 𝑎 in all scenarios, whereby the flame height sub-model
orrects the undue importance of the correction factor of convective
erm 𝛽. Although not the subject of this study, the results of this GSA
ave been used here to design a better model parameter adjustment
trategy. We have fixed 𝐻 in a previous adjustment using only no wind
nd no slope ROS data, obtaining a mean value of 10.605 J s−1 m−2 K−1.
has been selected in the order of hundredths (𝛽 = 0.02), its typical

alue (Prieto et al., 2015), but with the aim of assuring the existence
f an optimum value of the third parameter 𝑎 in all scenarios. The
bjective here is to verify whether PhyFire simulations confirm the
xponential function (31) assessing the isolated effect of FMC on ROS,
s well as functions (32) and (33) when wind speed and terrain slope
re considered. It is therefore important to best fit the model to each
cenario and choose the scenarios with the least uncertainty among
ll those previously analyzed. A bisection method has been used to
etermine the value of the parameter 𝑎 that equals the value of the
omputational ROS with the experimental ROS for each scenario. The
arameter adjustment has been implemented in C++ as PhyFire in
rder to optimize the adjustment process, as the evaluation of the
odel is the costliest part. The total number of cases analyzed amounts

o 74, corresponding to the five fuel types, three terrain slopes (0%,
0%, and 40%), and five wind speeds (5, 10, 15, 20, and 25 km h−1),
xcept for grass and 0% slope, where the wind speed of 5 km h−1 is
ot considered. Scenarios with a lower degree of uncertainty have been
onsidered, avoiding very low or very high winds in which the data are
ess reliable. The results of this adjustment are shown in Table 4.

.4. Data analysis ROS versus FMC

Once the model parameters have been adjusted for each scenario,
ach wind speed, terrain slope, and fuel type, PhyFire has been eval-
ated by varying the FMC to test whether the simulated ROS record
7

a

n exponential decay as a function of FMC, as in the empirical models
eviewed. FMC ranges from 3% to 244%, using 17 values following an
xponential distribution, as previous observation of the results showed
hat high FMC produces few changes in ROS. This is the first positive
bservation of the good behavior of the PhyFire model in this study: the
verall trend in the ROS-FMC relationship suggests an FMC threshold
f 50 − 70%, above which its response to increasingly higher FMC is
eak (Rossa et al., 2016). Nonlinear regression analyses have been
erformed to summarize the behavior of ROS for the simulation data
n terms of FMC, Eq. (31), FMC and wind speed, Eq. (32), and FMC,
ind speed, and terrain slope, Eq. (33), for all the fuel types selected.
routine has been built in MatLab based on the function lsqcurve-

it, which solves nonlinear curve-fitting (data-fitting) problems in the
east-squares sense, selecting the Levenberg–Marquardt algorithm. This
atLab function returns the adjusted parameters, the squared 2-norm

f the residual, and the residual array itself. This allows easy calculation
f the coefficient of determination (𝑅2) and an overall indicator of
oodness of fit, as well as the adjusted coefficient of determination 𝑅2

𝐴𝑑𝑗
a modified version of 𝑅2 for the number of independent variables in

the model.

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦)2

2
𝐴𝑑𝑗 = 1 −

(1 − 𝑅2)(𝑛 − 1)
𝑛 − (𝑑 + 1)

Other deviation measures computed to evaluate the model’s perfor-
mances were the root-mean-square error (RMSE) and the mean absolute
error (MAE), as well as their normalized versions: the normalized
root-mean-square error (NRMSE) and the normalized mean absolute
error (NMAE), in order to relate the corresponding error measures to
the observed range of the variable. We also provide the mean biased
error (MBE) to discover whether the models tend to overestimate or
underestimate ROS.
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𝑀𝐵𝐸 = 1
𝑛

𝑛
∑

𝑖=1
(�̂�𝑖 − 𝑦𝑖)

he 95% confidence intervals have been calculated for estimating the
oefficients of the three models, and they are all significant. Although
he CFTool used previously for adjusting the flame height Eq. (5) can
e used for Eqs. (31) and (32), it cannot be used for Eq. (33) because
t depends on three variables: FMC, wind speed, and terrain slope.
FTool provides a flexible interface for fitting curves and surfaces
o data, but not for more than two independent variables. The use
f the lsqcurvefit function is more flexible for computing the
rror metrics, and upholds uniformity in the analysis of the three
odels. PhyFire states all data in SI units, although in the fitting of
qs. (31), (32) and (33), ROS has been measured in m min−1, as in the
iterature reviewed, for obtaining values of the exponential coefficient
comparable to those found in the references. FMC is measured in %,

−1
nd wind speed in m s .
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Table 5
Statistical measures of performance for Eq. (31) fitted with PhyFire data (𝑛 = 17). ROS: rate of spread; 𝑘: exponential coefficient; FMC: fuel moisture
content; 𝑅2: coefficient of determination; 𝑅2

𝐴𝑑𝑗 : coefficient of determination adjusted to degrees of freedom; RMSE: root-mean-square error; NRMSE:
normalized root-mean-square error; MAE: mean absolute error; NMAE: normalized mean absolute error; MBE: mean bias error.

Eq. (31) 𝑅𝑂𝑆 = 𝑐 𝑒−𝑘𝐹𝑀𝐶 Slope: 20%, Wind: 20 km h−1 (mean values)

𝑘 𝑅2 𝑅2
𝐴𝑑𝑗 RMSE NRMSE MAE NMAE MBE

Fuel 1 0.0057 0.8856 0.8779 2.728 0.1030 2.205 0.0925 −0.1184
(0.005) (0.831) (0.819) (2.296) (0.0965) (1.908) (0.0947) (−0.110)

Fuel 4 0.0059 0.8858 0.8782 2.669 0.1040 2.252 0.1002 −0.1455
(0.0057) (0.836) (0.826) (2.478) (0.1211) (2.144) (0.1193) (−0.132)

Fuel 5 0.0034 0.7544 0.7380 1.150 0.1060 1.306 0.0970 −0.0309
(0.0035) (0.773) (0.758) (1.364) (0.0963) (1.189) (0.9255) (−0.044)

Fuel 6 0.0051 0.8104 0.7977 2.235 0.1235 2.016 0.1234 −0.0999
(0.0050) (0.811) (0.799) (1.954) (0.1168) (1.674) (0.1124) (−0.094)

Fuel 7 0.0055 0.8303 0.8290 2.309 0.1212 2.088 0.1240 −0.1179
(0.0050) (0.815) (0.802) (1.973) (0.1165) (1.690) (0.1119) (−0.097)

Mean 0.0048 0.8131 0.8006 2.009 0.1096 1.719 0.1063 −0.0953
Table 6
Statistical measures of performance for Eq. (32) fitted with PhyFire data (𝑛 = 17). ROS: rate of spread; 𝑐, 𝑏, 𝑘: model coefficients; FMC: fuel moisture
content; 𝑅2: coefficient of determination; 𝑅2

𝐴𝑑𝑗 : coefficient of determination adjusted to degrees of freedom; RMSE: root-mean-square error; NRMSE:
normalized root-mean-square error; MAE: mean absolute error; NMAE: normalized mean absolute error; MBE: mean bias error. The three values of each
cell correspond to each slope, 0%, 20%, and 40%, respectively.

Eq. (32) 𝑅𝑂𝑆 = 𝑐 𝑣𝑏 𝑒−𝑘𝐹𝑀𝐶 Slope: 0% − 20% − 40%.

Fuel 𝑐 𝑏 𝑘 𝑅2 𝑅2
𝐴𝑑𝑗 RMSE NRMSE MAE NMAE MBE

1 0.406 2.297 0.006 0.889 0.886 3.224 0.233 2.703 0.263 −0.604
1.175 2.104 0.006 0.920 0.917 5.431 0.191 4.558 0.216 −0.809
6.722 1.424 0.003 0.926 0.924 7.584 0.137 6.009 0.133 −0.122

4 5.134 0.718 0.005 0.902 0.899 1.606 0.146 1.282 0.130 −0.062
8.865 0.797 0.006 0.928 0.926 2.796 0.136 2.347 0.141 −0.239
12.78 0.954 0.005 0.963 0.962 4.078 0.106 3.313 0.109 −0.208

5 2.743 0.679 0.001 0.920 0.918 0.675 0.103 0.562 0.098 −0.004
6.038 0.618 0.003 0.924 0.901 1.415 0.119 1.138 0.099 −0.046
11.59 0.597 0.005 0.881 0.878 3.016 0.128 2.519 0.140 −0.164

6 3.859 0.705 0.003 0.914 0.912 1.007 0.124 0.880 0.116 −0.006
6.650 0.782 0.005 0.874 0.871 2.679 0.171 0.878 0.063 −0.006
12.78 0.751 0.006 0.932 0.930 3.612 0.128 3.019 0.132 −0.279

7 3.752 0.727 0.003 0.918 0.916 1.079 0.124 0.880 0.114 −0.008
7.345 0.740 0.005 0.887 0.884 2.566 0.158 2.033 0.149 −0.193
13.49 0.731 0.006 0.935 0.933 3.505 0.124 2.927 0.126 −0.250
f

5. Results and discussion

The exponential relationship between ROS and FMC described by
Eq. (31) explains on average 80% of the cases in all the scenarios,
with better results in cases with steeper slopes and higher wind speeds.
Table 5 shows fitted values and all the metrics computed to assess the
goodness of fit for each one of the five fuel types and an intermediate
scenario of 20% slope and 20 km h−1 wind speed. No significant
ifferences are observed between the chosen intermediate scenario
nd the mean values of all scenarios. All the fuels record a similar
erformance, with fuel 5 having a worse 𝑅2 but better MAE. The
egative but small values of the MBE imply that the model slightly
nderestimates ROS. Values of pre-exponential factor 𝑐 are not shown
ecause they vary considerably depending on wind speed and terrain
lope, as expected. The pre-exponential factor of Eqs. (32) and (33)
eflects this behavior. Fig. 1 shows the predicted ROS values for all the
uel types and the scenario selected for Table 5, namely, 20% terrain
lope and 20 km h−1 wind speed. The behavior of the different types
f fuels can be appreciated. ROS values are in full agreement with the
hoto-guide data Arellano et al. (2016).

Eq. (32) incorporates the effect of wind speed, achieving a better
it, explaining on average 90% of cases for all the slopes and fuel types
n terms of 𝑅2 and also 𝑅2

𝐴𝑑𝑗 , so the improvement in fit cannot be
ttributed to increased degrees of freedom. RMSE and MAE increase
ith the slope, but this is due to higher values of ROS. However,
8

he normalized versions of these error measures, NRMSE and NMAE,
Fig. 1. Relationship between ROS (m min−1) PhyFire calculations and FMC for all the
uel types analyzed corresponding to a scenario of 20% terrain slope and 20 km h−1

wind speed.

remain in the same range for all slopes and fuel types. Table 6 shows

fitted values and all the metrics computed.
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Table 7
Statistical measures of performance for Eq. (33) fitted with PhyFire data (𝑛 = 17). ROS: rate of spread; 𝑐, 𝑏, 𝑝, 𝑘: model coefficients; FMC: fuel moisture
content; 𝑅2: coefficient of determination; 𝑅2

𝐴𝑑𝑗 : coefficient of determination adjusted to degrees of freedom; RMSE: root-mean-square error; NRMSE:
normalized root-mean-square error; MAE: mean absolute error; NMAE: normalized mean absolute error; MBE: mean bias error.

Eq. (33) 𝑅𝑂𝑆 = 𝑐 𝑒𝑝 𝑠−𝑘𝐹𝑀𝐶

Fuel 𝑐 𝑏 𝑝 𝑘 𝑅2 𝑅2
𝐴𝑑𝑗 RMSE NRMSE MAE NMAE MBE

1 1.472 1.577 3.172 0.004 0.940 0.9406 6.529 0.201 4.784 0.188 0.208
4 3.805 0.908 3.231 0.006 0.970 0.970 3.118 0.134 2.470 0.141 −0.297
5 3.504 0.606 2.904 0.004 0.936 0.935 3,105 0.161 1.538 0.128 −0.109
6 3.854 0.754 2.995 0.006 0.951 0.950 2.737 0.156 2.078 0.144 −0.236
7 4.103 0.733 2.949 0.006 0.954 0.954 2.658 0.150 2.024 0.139 −0.199
Fig. 2. Simulated burned areas each hour and fire front at 20.00 considering the simulation area defined by the black rectangle. Fire ignition point and real final perimeter were
reported by the fire-suppression team.
Finally, Eq. (33), which also incorporates the effect of the slope,
achieves an optimal fit, with 𝑅2

𝐴𝑑𝑗 > 0.95 for almost all the fuel
types, except grassland (fuel type 1) with 𝑅2

𝐴𝑑𝑗 > 0.94, probably due
to fewer data, and fuel type 5 (𝑅2

𝐴𝑑𝑗 > 0.936), the worst performing
brush in all the settings, as can be seen in Table 6. Coefficients 𝑝 and
𝑘, reflecting the effect of slope and FMC, respectively, record similar
values for all the fuels, as in the experimental cases appearing in the
Refs. (Fernandes et al., 2009). The exponential coefficient of wind term
records a similar value for grassland (fuel type 1) and brush, as well as
the pre-exponential factor 𝑐, which is explained by the different fire
behavior of grasslands and brushlands. The normalized versions of the
error measures, NRMSE and NMAE, maintain acceptable values, as does
MBE. Eq. (33) slightly overestimates the ROS for grassland (fuel type
1), and slightly underestimates the ROS for brushlands (see Table 7).

Eq. (31) is fulfilled for several fuel types, wind speeds, and terrain
slopes, and the value of the coefficient 𝑘 obtained also remains within
the same range for Eqs. (32) and (33), which considers wind and slope,
and it is within the limits set by the studies that have evaluated it.

Certain discrepancies of a quantitative nature that can be observed
in the values obtained for the exponential factor and the ROS, may be
due to the fact that the model parameters have been adjusted based on
the data available at Arellano et al. (2016), constrained to an FMC of
6%. The radiation absorption coefficient 𝑎 can be sensitive to FMC, and
wider flame length and ROS data would provide a more reliable fit of
the model parameters and would reduce the observed discrepancies.
9

6. A real example

The real example used to illustrate this study occurred in an area
of the autonomous region of Galicia, since the analysis carried out
corresponds to fuels typical of this area of north-western Spain. This
case has already been used in two previous publications (Prieto et al.,
2017; Asensio et al., 2021), where details of the fire extension, the
characteristics of the affected area and the meteorological conditions
can be found. However, we summarize here the most relevant data.
This wildfire occurred in Osoño (Orense), at 15:25 (local time) on
August 17, 2009, burning 224 ha of Pinus pinaster, shrubland and
grassland. Ambient temperature was above 30 ◦C and humidity below
30%. The wind was increasing from 2 m∕s to almost 5 m∕s. The fire
developed during the afternoon, and in the areas most exposed to solar
radiation (western face) the fire spread more rapidly. This is precisely
the feature that we have sought to capture with this new simulation,
the fuel in areas more exposed to solar radiation has lower moisture
content and this affects the fire behavior in these areas.

We have simulated four different scenarios: taking into account
some of the actions of the firefighting teams, in particular three large
firebreaks on the right flank, without these actions, with a constant
FMC throughout the simulation domain, and with a variable FMC
depending on the solar radiation received, reducing it by 5% in the
west-facing areas. The simulation of each scenario involved about 150 s
of computing time on a laptop computer equipped with an Intel i7
processor (dual-core, 3.50 GHz) and 16 GB of RAM, for a rectangular
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Fig. 3. Simulated burned areas each hour and fire front at 20.00 considering the simulation area defined by the black rectangle. FMC was reducing by 5% in the west-facing
areas.
simulation area of 3320 m × 2745 m and a resolution of 7.5 m for the
finite element mesh.

Fig. 2 shows the result of the simulation with the PhyFire model
of the Osoño fire during the first four and a quarter hours, assuming
that the fuel moisture is spatially uniform and without considering the
actions of the firefighting teams. In Fig. 3, we have considered the
effect of solar radiation on the west-facing areas, reducing humidity
by 5%, which shows how the fire advances more rapidly and affects a
larger area in these areas. Fig. 4 shows how the fire lines designed by
the firefighters were effective in preventing the fire from reaching the
nearby population even in the worst case scenario in terms of FMC.
This scenario is consistent with the report of the firefighting teams,
which designed three firebreaks to prevent the fire from reaching the
nearest population. Nevertheless, the actions of the fire truck water
tanks on flanks during the last part of the fire, were not considered
in the simulation. This may explain why our simulation exceeds the
perimeter.

7. Summary and conclusions

This study has explored the sensitivity of fire ROS and certain
environmental conditions, mainly FMC, but also wind speed and terrain
slope, in numerical simulations performed by the simplified physical
PhyFire model. The results are qualitatively compared to field and
tunnel-based experiments and with others numerical experiments found
in the literature. The conclusion is that the PhyFire model is highly
consistent with an exponential decay of fire ROS compared to FMC
alone, and also in the presence of wind speed and terrain slope. PhyFire
therefore performs as expected with respect to FMC according to the
experimental models reviewed, with a high degree of accuracy in all
the scenarios analyzed. This study therefore proves that the innovative
and original way in which PhyFire considers the effect of FMC through
a multivalued operator is highly significant. We have also observed
the existence of an FMC threshold above which the response of ROS
to increasingly higher FMC is weak, as in the experimental studies.
Overall, this work shows the expediency of studying specific aspects
of complex simulation models to improve their understanding with a
view to increasing their overall efficiency. The development of wildland
10
fire simulation models is a very complex task and their applicability
is a matter of discussion (Alexander and Cruz, 2013). One way to
tackle this challenge is to conduct a detailed analysis of specific aspects
that allow for the model’s overall improvement. Updated information
on time and space for FMC will provide better simulation results, as
evidenced by the real fire simulation. Therefore, in order to improve
the accuracy of fire spread simulation, it would be highly desirable to
use all the technology and new methods at our disposal to enhance the
FMC information (Sharples et al., 2009; Miller et al., 2022; Quan et al.,
2017).
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