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Abstract

We prove a decomposition theorem for hesitant fuzzy sets, which states
that every typical hesitant fuzzy set on a set can be represented by a well-
structured family of fuzzy sets on that set. This decomposition is expressed
by the novel concept of hesitant fuzzy set associated with a family of hesi-
tant fuzzy sets, in terms of newly defined families of their cuts. Our result
supposes the first representation theorem of hesitant fuzzy sets in the liter-
ature. Other related representation results are proven. We also define two
novel extension principles that extend crisp functions to functions that map
hesitant fuzzy sets into hesitant fuzzy sets.

Keywords: Hesitant fuzzy set, cut set, decomposition theorem,
representation theorem, extension principle.

1. Introduction

This paper investigates some decomposition results for hesitant fuzzy sets
that permit to replicate the considerable significance of classical decomposi-
tion theorems for fuzzy sets stated in terms of their α-cuts. And it provides
novel extension principles that generalize the important principles in fuzzy
set theory to hesitant fuzzy set theory.

Klir and Yuan [32, Section 2.2] explain that α-cuts and strong α-cuts
of a fuzzy set have an important role in fuzzy set theory because they are
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capable of representing fuzzy sets. And by doing this, one has a tool to
extend some properties of crisp sets and operations on crisp sets to their fuzzy
counterparts. The classical representations by (strong) α-cuts are universally
applicable to all fuzzy sets. Moreover they permit to state decompositions of
any fuzzy set in terms of special fuzzy sets associated with either its α-cuts
or its strong α-cuts (cf., Dubois and Prade [20], Negoita and Ralescu [39]).

The extension principle is another long-established contribution to the
algebraic theory of fuzzy sets. It was introduced by Zadeh [56] and further
elaborated by Yager [53], Nguyen [41] or Bzowski and Urbański [14] among
others. Classical mathematical theories can be fuzzified thanks to this prin-
ciple (see e.g., Bednar [8], Gerla [23], Gerla and Scarpati [24] or Kaleva and
Seikkala [30]).

In our analysis we extend these developments by permitting hesitancy.
Our paper complements previous successful contributions by scholars like the
following short sample. Negoita and Ralescu [39] actually prove representa-
tion theorems for the lattice of L-sets (cf., Goguen [26]) of a set, from which
they deduce representation theorems for the lattice of fuzzy sets. Couso et
al. [16] derive a new interpretation of strong α-cuts of a normalized fuzzy
set. Li, Yuan and Lee [34] introduce three-dimensional fuzzy sets, a special
class of L-fuzzy sets for which decomposition and representation theorems are
given. These authors also claim that the cut sets, decomposition theorems
and representation theorems of the left, resp. right interval-valued intuition-
istic fuzzy sets can be easily derived from their results. Li [33] represents
intuitionistic fuzzy sets by level sets and Yuan, Li and Sun [54] prove some
decomposition theorems and representation theorems on intuitionistic fuzzy
sets and interval valued fuzzy sets (see also Martinetti, Janǐs and Montes
[35] for an investigation of cuts of intuitionistic fuzzy sets respecting fuzzy
connectives, and Rahman [43] for a definition of t-norm and t-conorm based
cuts of intuitionistic fuzzy sets and their generalised intuitionistic fuzzy op-
erations). Ngan [40] gives a unified representation of intuitionistic fuzzy sets,
hesitant fuzzy sets and generalized hesitant fuzzy sets based on their u-maps.
Mendel, John and Liu [37] prove that all discrete type-2 fuzzy sets can be
expressed as a union of simpler type-2 fuzzy sets (see also Mendel and John
[36]). Torra [47] or Akram and Nawaz [1] belong to different lines of works.
Torra shows that all hesitant fuzzy sets can be represented as fuzzy multi-
sets (Lemma 14) and as type-2 fuzzy sets (Lemma 16), whereas Akram and
Nawaz provide tabular representations for fuzzy soft graphs. The reader may
consult Bustince et al. [13] for a historical survey of types of fuzzy sets and
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their relationships.
Zadeh’s [55] introduction of fuzzy set theory was subsequently followed

by extended theories that attempt to better capture the possible subjectiv-
ity, uncertainty, imprecision of the evaluations, et cetera, that are usual in
applications. In particular, Torra [47] introduced hesitant fuzzy sets which
coincide with set-valued fuzzy sets in Grattan-Guinness [27] (cf., Bustince et
al. [13]). They are useful to model imprecise human knowledge (particularly
collective knowledge, e.g., Alcantud et al. [4]) which cannot be correctly cap-
tured by fuzzy sets. Relatedly, Zhu et al. [58] define dual hesitant fuzzy sets,
and Zhu et al. [57] define extended hesitant fuzzy sets. As to hybridization,
Wang, Li and Chen [50] introduced hesitant fuzzy soft sets by combining the
notion of hesitancy with Molodtsov’s [38] soft sets.

In this paper we define hesitant fuzzy sets associated with (possibly in-
finite) families of hesitant fuzzy sets. Then we introduce uniformly typical
hesitant fuzzy sets, an apposite notion that we relate with existing notions.
We define the characteristic of a hesitant fuzzy set and prove that it is an
useful notion for the purpose of identifying certain special types of hesitant
fuzzy sets. We also define a new notion of cuts for hesitant fuzzy sets that
enables us to prove decomposition theorems for typical hesitant fuzzy sets.
In a similar vein, we prove some properties of these cuts in the context of
uniformly typical hesitant fuzzy sets. Finally, we define two new extension
principles that extend crisp functions to functions that map (uniformly typi-
cal) hesitant fuzzy sets into (uniformly typical) hesitant fuzzy sets. We argue
that these extension principles are generalizations of the standard principles
for fuzzy sets, and we prove some additional properties.

This paper is organized as follows. Section 2 recalls some notation and
definitions. Here we introduce hesitant fuzzy sets associated with arbitrary
families of hesitant fuzzy sets. Section 3 presents the main new notions in
this paper, namely, uniformly typical hesitant fuzzy soft sets, characteristic
of a hesitant fuzzy set, and (α, k)-cuts. We also prove some useful fundamen-
tal properties of these concepts. In Section 4 we present our main results,
which prove that (α, k)-cuts are a fitting tool for providing decompositions
of typical hesitant fuzzy sets. Then we introduce and illustrate our new ex-
tension principles as well as some properties of them. And we also discuss
the relationships of our results with existing literature and their implications
for decision making. We conclude in Section 5.
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2. Notation and definitions

For any set X, P∗(X) denotes the set of non-empty subsets of X, P(X)
denotes the set of all subsets of X. Furthermore, F∗(X) denotes the set of
non-empty finite subsets of X and for each N ∈ N, F∗N(X) denotes the set
of non-empty subsets of X with N or fewer elements.

Now we recall concepts from fuzzy sets and hesitant fuzzy sets. Through-
out the remaining of this Section we refer to a fixed non-empty set of alter-
natives X.

2.1. Fuzzy and hesitant fuzzy sets

A fuzzy subset (FS) A of X is characterized by a function µA : X → [0, 1].
When x ∈ X, the number µA(x) ∈ [0, 1] is called the degree of membership of
x in the subset. It represents the degree of truth of the statement “x belongs
to A”. Zadeh’s fuzzy subsets of X are denoted by FS(X).

The following notion of hesitant fuzzy element is extensively used in this
paper:

Definition 1 (Xia and Xu [51]). A hesitant fuzzy element (HFE) is a
non-empty, finite subset of [0, 1]. The set of HFEs is denoted by F∗([0, 1]).

Generic HFEs are expressed as h = {h1, ..., hlh}, where h1 < . . . < hlh

and lh = |h| is the cardinality of the HFE h. In particular, h = {1} is usually
called the full HFE, and h = {0} is usually called the empty HFE.

We now recall the definition of hesitant fuzzy set and typical hesitant
fuzzy set:

Definition 2 (Torra [47]). A hesitant fuzzy set (HFS) on X is a function
hM : X −→ P([0, 1]). Henceforth HFS(X) means the set of HFSs on X.

Definition 3 (Bedregal et al. [9]). A typical hesitant fuzzy set (THFS)
on X is hM : X −→ F∗([0, 1]). Henceforth HFSt(X) denotes the set of all
THFSs on X.

Clearly, HFSt(X)⊆HFS(X). Each HFS on X defines a set of membership
values for each element of X, and in the case that the HFS is typical such
set is always finite and non-empty.

HFEs represent the set of possible membership values of a typical hesitant
fuzzy set at an alternative.
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Regarding Definitions 1 and 3, observe that on each alternative, at least
one assessment must be made because the respective codomains in these
definitions are P∗([0, 1]) and F∗([0, 1]).

In formal terms, the notions in Definitions 2 and 3 can be stated as follows.
A THFS is a subset M ⊆ X × F∗([0, 1]) such that for each x ∈ X, there is
exactly one element hM(x) ∈ F∗([0, 1]) with the property (x, hM(x)) ∈ M .
Here hM(x) 6= ∅. And HFSs are characterized as subsets M ⊆ X ×P([0, 1])
such that for each x ∈ X, there is exactly one element hM(x) ∈ P([0, 1])
with the property (x, hM(x)) ∈M , which may be ∅.

Therefore for practical purposes, any hesitant fuzzy set hM can be rep-
resented as M = {(x, hM(x)) | x ∈ X}. For example, Torra [47] defines the
ideal or full HFS on X by M∗ = {(x, {1}) | x ∈ X}, and the anti-ideal or
empty HFS on X by M− = {(x, {0}) | x ∈ X}.

Remark 1. Any FS on X with membership function µM : X −→ [0, 1]
such that µM(x) = Mx can be identified with the THFS hM described as
M = {(x, hM(x)) | x ∈ X, hM(x) = {Mx}}. In this fashion we can naturally
embed FS(X) into HFSt(X) and therefore into HFS(X).

In other words, FSs are special THFSs with the natural identification
explained above.

For each typical hesitant fuzzy set hM on X we let

hM(x) = {h1
M(x), ..., h

lM (x)
M (x)}

where h1
M(x) < . . . < h

lM (x)
M (x) and lM(x) = |hM(x)| is the cardinality of the

HFE hM(x). Since hM(x) is a set, repetitions are excluded by definition.
Torra [47, Definition 9] and Torra and Narukawa [48, Definition 11] define

the union of two HFSs h1 and h2 on X, denoted h1 ∪ h2, by reference to the
“lower bounds” of HFEs. The expression is: for each x ∈ X,

(h1 ∪ h2)(x) = {h ∈ h1(x) ∪ h2(x) : h > max{inf h1(x), inf h2(x)} }

When h1 and h2 are typical HFSs we obtain

(h1 ∪ h2)(x) = {h ∈ h1(x) ∪ h2(x) : h > max{h1
1(x), h1

2(x)} }

And if h1 and h2 are FSs onX then (h1∪h2)(x) = {max{h1
1(x), h1

2(x)} } which
produces the standard union of fuzzy set theory under the identification in
Remark 1.

Following the usual rationale in set theory, we naturally define inclusion
for HFSs as follows:

5



Definition 4. Let h1 and h2 be HFSs on X, then

h1 ⊆ h2 if and only if h1 ∪ h2 = h2

When we compare two typical hesitant fuzzy sets h1 and h2 on X by
inclusion, we deduce h1 ⊆ h2 implies h1

1(x) 6 h1
2(x) for all x ∈ X. In

particular, if h1 and h2 are fuzzy sets on X then h1 ⊆ h2 if and only if
h1(x) 6 h2(x) for all x ∈ X. This is the standard subsethood of fuzzy set
theory.

Remark 2. Equivalently, one can define h1 ⊆ h2 if and only if h1 ∩h2 = h1

where (h1∩h2)(x) = {h ∈ h1(x)∪h2(x) : h 6 min{suph1(x), suph2(x)} } and
suph1(x), suph2(x) respectively represent the “upper bounds” of h1(x), h2(x),
for each x ∈ X. The definition of intersection of two HFSs is first given by
Torra [47, Definition 10]. When specialized to FSs, it produces the standard
intersection of fuzzy set theory.

Extensive recent surveys of HFSs and their applications include Rodŕıguez
et al. [44], Rodŕıguez et al. [45], and Xu [52], which justify the importance
of hesitant fuzzy elements and sets from the perspective of theoretical and
applied approaches. Alcantud [2] relates hesitant fuzzy sets with other soft
computing models, and Alcantud and de Andrés [3] suggest a new approach
to analyze projects characterized by hesitant fuzzy sets.

2.2. HFSs associated with families of hesitant fuzzy sets

Since [47, Definition 5], a notion of HFS associated with a finite family
of membership functions or fuzzy sets F = {µ1, . . . , µn} has been present in
the literature about hesitancy (see also Rodŕıguez et al. [44, Definition 2],
Rodŕıguez et al. [45, Definition 2]). The novel Definition 5 below shows that
we can generalize this construction because a similar approach can be used
to define HFSs from possibly infinite families of hesitant fuzzy sets:

Definition 5. Let F = {hM(i)}i∈J be a family of hesitant fuzzy sets on X,
indexed by the set of indices J . Then the HFS associated with F , denoted
by either hF or

⋃
i∈J hM(i), is defined as:

hF : X −→ P([0, 1])
x

⋃
i∈J hM(i)(x)
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Through the standard identification of FSs with special types of THFSs
(cf., Remark 1), Definition 5 generalizes [47, Definition 5].

Clearly, the HFS associated with a finite family of THFSs is a THFS too.
In particular, the HFS associated with a finite family of FSs is a THFS.

3. Some novel concepts related to hesitant fuzzy sets

In this Section we introduce the main new notions in this paper, namely,
uniformly typical hesitant fuzzy sets, characteristic of a hesitant fuzzy sets,
and (α, k)-cuts and strong (α, k)-cuts. We also prove some particular prop-
erties that are needed in our subsequent decomposition theorems.

3.1. Uniformly typical hesitant fuzzy sets

In applications virtually all HFSs verify the following novel concept:

Definition 6. A typical hesitant fuzzy set hM on X is uniformly typical if
there is N such that lM(x) 6 N for each x ∈ X. We abbreviate uniformly
typical HFS by UHFS. Henceforth UHFS(X) means the set of UHFSs on X

We have introduced Definition 6 because typical and uniformly typical
HFS are related but different notions, as the following Proposition proves:

Proposition 1. Every uniformly typical HFS is a typical HFS, but the con-
verse is not true. Any typical HFS on a finite set is uniformly typical.

Proof. Clearly, UHFSs are THFSs. We proceed by example to prove that
there are typical HFSs that are not uniformly typical.

Let I = [0, 1] and define for each y ∈ I,

hM(y) =

{
{ 1
n
, 1
n−1

, . . . , 1}, if y = 1
n

for some n ∈ N,
{0} otherwise.

Then M = {(y, hM(y)) such that y ∈ I} defines a typical HFS on I because
each hM(y) is a finite subset of membership values. However there is no
bounding number N with the property that every hM(y) contains at most N
membership values. Hence M is not a UHFS.

Let us now prove the second assertion. Fix a typical hesitant fuzzy set
hM on a finite X. Then it is immediate to check that hM is uniformly typical
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because the number char(hM) = max{lM(x) : x ∈ X} ∈ N is well defined
due to finiteness of X, and it verifies the required property. �

We now introduce the characteristic of a HFS. This is an element from
N ∪ {+∞} defined as follows:

Definition 7. For each hesitant fuzzy set hM on X,

char(hM) =


min{N ∈ N : |hM(x)| 6 N, ∀x ∈ X}, if there is N ∈ N with

|hM(x)| 6 N for all x ∈ X,
+∞, otherwise.

The following straightforward Lemma shows the usefulness of this new
notion in order to identify special classes of hesitant fuzzy sets:

Lemma 1. For each hesitant fuzzy set hM on X,
(1) hM is a UHFS if and only if char(hM) < +∞ and hM is a THFS.
(2) hM is a FS if and only if char(hM) = 1 and hM is a THFS.
(3) If X is finite then char(hM) < +∞ when hM is a THFS.

In any uniformly typical HFS, there is a number N with the property
that every HFE of the form hM(x) has N or fewer elements. In that case,
char(hM) is the smallest number with such feature. Corollary 1 and section
4.3 below are additional evidence of the usefulness of that concept.

A uniformly typical HFS hM with characteristic N = char(hM) can
be formally defined as a subset M ⊆ X × F∗N([0, 1]) such that for each
x ∈ X, there is exactly one element hM(x) ∈ F∗N([0, 1]) with the property
(x, hM(x)) ∈M .

Remark 3. In relation to Definition 5, we observe that if F = {hM(i)}i∈J is
a finite family of UHFSs on X, then hF associated with F produces a UHFS
too. In that case, char(hF) 6

∑
i∈J char(hM(i)).

Therefore in particular, if F = {hM(i)}i=1,...,N is a finite family of FSs
then hF associated with F produces a UHFS with characteristic at most N .
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3.2. A new notion of cuts for hesitant fuzzy sets

It is known that α-cuts and strong α-cuts are important notions that
draw a bridge between classical and fuzzy set theory. Here we define new
generalized concepts that permit to extend the decomposition results for
fuzzy sets to hesitant fuzzy sets.

Let us fix a hesitant fuzzy set hM on X. Then for any α ∈ [0, 1] and any
k ∈ {1, 2, . . .}, let

α,kA = {x ∈ X : |{a ∈ hM(x) : a > α}| > k}

α+,kA = {x ∈ X : |{a ∈ hM(x) : a > α}| > k}

be the (α, k)-cut, resp. strong (α, k)-cut associated with hM .
The (α, k)-cut, resp. strong (α, k)-cut, associated with hM is the set of

elements from X such that at least k membership values of hM at x are
higher or equal, resp. strictly higher, than α. Hence the following properties
are immediate:

Proposition 2. Let hM be a HFS on X. Fix x ∈ X, and let L(x) = |hM(x)|
be the cardinality of hM(x), which may be 0 or +∞. Let α ∈ [0, 1] and
k ∈ {1, 2, . . .}. Then:

(a) If k > L(x) then x /∈α,k A.

(b) If α 6 inf hM(x) and k 6 L(x) then x ∈α,k A.

(c) If hM(x) is a typical HFE and α 6 h
L(x)−k
M (x) then x ∈α,k+1 A.

Proof. Statement (a) follows from |{a ∈ hM(x) : a > α}| 6 L(x) < k.
Statement (b) follows from |{a ∈ hM(x) : a > α}| = L(x) > k. And state-

ment (c) follows from |{a ∈ hM(x) : a > α}| > |{hL(x)−k
M (x), . . . , h

L(x)
M (x)}| >

k + 1. �

The (α, k)-cuts, resp. strong (α, k)-cuts, extend the standard α-cuts,
resp. strong α-cuts, from fuzzy set theory. When µM is a fuzzy set on X,
Remark 1 and Lemma 1 identifies it with a UHFS hM with characteristic 1.
Then with respect to the (α, k)-cuts and strong (α, k)-cuts of hM , we note
that α,1A = {x ∈ X : |{a ∈ hM(x) : a > α}| > 1} returns the α-cut of
µM . Similarly, α+,1A returns its strong α-cut. Proposition 2 (a) proves that

α,kA =α+,k A = ∅ when k > 1.
We now introduce a running example that aims at clarifying the notion

of (α, k)-cut and will be referred to hereafter:
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Example 1. Let Y = {x, y} and hM = {(x, {0.2, 0.5}), (y, {0.4})} be a
uniformly typical HFS on Y . Then the characteristic of hM is 2 because
lM(x) = 2 > lM(y). We can compute

0.2,1A = {x, y} = 0.4,1A

0.2,2A = {x} = 0.5,1A

0.2,3A = ∅ = 0.4,2A = 0.5,2A

These are all distinct (α, k)-cuts associated with hM . In precise terms:

α,1A =


{x, y}, if α 6 0.4,
{x}, if 0.4 < α 6 0.5,
∅ otherwise.

α,2A =

{
{x}, if α 6 0.2,
∅ otherwise.

α,3A = ∅ for each α ∈ [0, 1].

The behavior of (α, k)-cuts in Example 1 derives from the following uni-
versal property, whose proof consists of a direct checking:

Lemma 2. Let hM be a hesitant fuzzy set on X. Then:
(1) For any α, α′ ∈ [0, 1] and any k, k′ ∈ {1, 2, . . .}, if α > α′ and k > k′

then α,kA ⊆α′,k′A.
(2) If hM is uniformly typical then α,kA = ∅ for each k > char(hM).

Lemma 2 in particular assures that α,kA ⊆α′,kA when α > α′ irrespective
of k, and α,kA ⊆α,k′A when k > k′ irrespective of α.

Proposition 2 and Lemma 2 are concerned with (α, k)-cuts. It is trivial
to derive related statements for strong (α, k)-cuts, whose proofs are closely
linked to those that prove these results.

4. Results

We proceed to prove results of two kinds. In section 4.1 we show that
we can represent HFSs by either finite or infinite families of membership
functions. Then in section 4.2 we prove a decomposition theorem for typical
HFSs in terms of cut sets as defined in section 3.2, which by contrast with the
latter representation theorem, provides a bridge between crisp and hesitant
fuzzy concepts. Finally, section 4.3 proves that the notion of UHFS permits
to define a new extension principle in the setting of hesitant fuzzy sets. Such
principle can be defined in more general settings without effort.
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4.1. A direct representation result by membership functions

Torra [47, Definition 5] defined the HFS associated with a finite family of
membership functions F = {µ1, . . . , µn}, which can be extended to infinite
families (cf., Definition 5). The latter construction enables us to state the
following representation result:

Theorem 1. Let hM be a hesitant fuzzy set on X. Then hM is the hesitant
fuzzy set associated with a (possibly infinite) family of membership functions.

Proof. Consider the family

F = {µ : X −→ [0, 1] such that for each x ∈ X,µ(x) ∈ hM(x)}

of membership functions. Let us check that hM is the hesitant fuzzy set
associated with F through Definition 5.

It is clear that
⋃
µ∈F µ(x) ⊆ hM(x) for each x ∈ X, by construction of F .

In order to prove hM(x) ⊆
⋃
µ∈F µ(x) for each x ∈ X, we proceed to chek

that when x ∈ X and α ∈ hM(x) with α ∈ [0, 1] we can assure the existence
of µαx : X −→ [0, 1] such that µαx ∈ F and µαx(x) = α. We accomplish that
aim by the recourse of the Axiom of Choice, which permits to associate an
arbitrary αy ∈ µ(y) with each y 6= x and then define

µαx(y) =

{
α, if y = x,
αy otherwise.

This proves our claim. �

Theorem 1 bears comparison with representation results for other notions
like Mendel, John and Liu [37, Theorem 1], in that this result also expresses
its focal notion (interval type-2 fuzzy set) as a union of simpler type-2 fuzzy
sets where their secondary type-1 membership functions are singletons.

We have made explicit use of the Axiom of Choice in the proof of Theorem
1. Proponents of limited forms of constructive mathematics deny the valid-
ity of the Axiom of Choice, even though to most mathematicians it seems
quite plausible. Thus it is often pertinent to know whether mathematical
statements can be proven without invoking it (cf., Jech [29, p. 47]).

We do not know if Theorem 1 can be proven without the recourse to the
Axiom of Choice. Nevertheless we do not need to use it in order to prove the
following particular instance:
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Corollary 1. Let hM be a UHFS on X with characteristic N . Then hM
is the hesitant fuzzy set associated with a family of N membership functions.
Furthermore, hM is not the hesitant fuzzy set associated with any family of
fewer than N membership functions.

Proof. The second claim is trivial, since HFSs associated with families of
N − 1 membership functions have characteristic at most N − 1 (cf., Remark
3).

To prove the first claim, observe that we can describe

hM(x) = {h1
M(x), ..., h

lM (x)
M (x)}

where h1
M(x) < . . . < h

lM (x)
M (x) and lM(x) 6 N . For i = 1, . . . , N we define

µi : X −→ [0, 1] by the constructive expression

µi(x) =

{
hiM(x), if i 6 lM(x),

h
lM (x)
M otherwise.

It is straightforward to check that hM is the hesitant fuzzy set associated
with F = {µi}i=1,...,N . �

4.2. A decomposition theorem for typical hesitant fuzzy sets

Just like α-cuts and strong α-cuts are the main tools to represent fuzzy
sets, we proceed to show that we can benefit from (α, k)-cuts to propose a
decomposition result for THFSs. To that purpose, suppose that for a given
THFS hM , the collection {α,kA : α ∈ [0, 1], k ∈ {1, 2, . . .}} of subsets of X is
known. Let us define the fuzzy subsets tH of X (t = 1, 2, . . .) by the following
recursive expressions:

1H(x) = max{α ∈ [0, 1] : x ∈α,1 A} = h
lM (x)
M (x) for each x ∈ X.

If 1H, . . . , tH are known then:

t+1H(x) =

{
max{α ∈ [0, 1] : x ∈α,t+1 A}, if x ∈α,t+1 A some α ∈ [0, 1],

tH(x) otherwise.

Example 2. In the situation of Example 1,

1H : Y −→ [0, 1]
x 0.5
y 0.4
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2H : Y −→ [0, 1]
x 0.2
y 0.4

and 2H = 3H = 4H = . . .

The last statement of Example 2 holds for the tH fuzzy subsets associated
with (α, k)-cuts derived from UHFSs. In such case, the following Lemma
applies:

Lemma 3. Let hM be a uniformly typical hesitant fuzzy set on X and N =
char(hM). Then the tH fuzzy subsets associated with (α, k)-cuts verify:

(1) For each x ∈ X, lM (x)H(x) = h1
M(x) .

(2) NH(x) = h1
M(x) for each x ∈ X.

(3) If k > N then kH = NH.

We are ready to prove our first decomposition theorem for HFSs, where
we apply Definition 5 after the standard convention that regards every FS as
a HFS:

Theorem 2. Let hM be a typical hesitant fuzzy set on X. Then hM is the
HFS associated with the family of fuzzy sets F = {kH}k∈N, i.e.,

hM =
⋃

k=1,2,...

kH.

Proof. For every x ∈ X, we proceed to check two set inclusions.
Let us first prove that α ∈ hM(x) implies α ∈

⋃
k=1,2,... kH(x), i.e., α ∈

kH(x) for some k.

If α = h
lM (x)
M (x) then α ∈ 1H(x) and we are done.

If α = h
lM (x)−1
M (x) then x ∈α,2 A because {a ∈ hM(x) : a > α} =

{hlM (x)−1
M (x), h

lM (x)
M (x)} has exactly 2 elements. Furthermore, α′ > α implies

that {a ∈ hM(x) : a > α′} = {hlM (x)
M (x)} has only 1 element. Therefore

α ∈ 2H(x) and we are done.
A direct recursive argument completes this part of the proof: when α =

h
lM (x)−t
M (x) then x ∈α,t+1 A for t = 2, . . . , lM(x)− 1.

Let us now prove that α ∈ hM(x) when α ∈
⋃
k=1,2,... kH(x), i.e., when

α ∈ kH(x) for some k = 1, 2, . . . Hence we assume α ∈ k′H(x) for some k′,
and we let k be the smallest index with that property.
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If k = 1 then we are done because α ∈ 1H(x) means α = h
lM (x)
M (x).

Therefore we proceed with the case k > 1.
One must conclude that for some α′ ∈ [0, 1], x ∈α′,k A because otherwise

α = kH(x) = k−1H(x) which contradicts the choice of the k index. Therefore
α = kH(x) = max{α′ ∈ [0, 1] : x ∈α′,k A}.

Now the latter fact boils down to |{a ∈ hM(x) : a > α′}| < k if α′ > α,
and |{a ∈ hM(x) : a > α}| > k. The combination of both properties produce
the desired conclusion α ∈ hM(x). �

Theorem 2 produces a decomposition of any THFS in terms of the sim-
plest THFSs, which are the fuzzy sets.

Example 3. In the situation of Example 1, hM =
⋃
k=1,2,... kH = 1H ∪ 2H

because 2H = 3H = 4H = . . . This equality is simple to check with our data.

4.3. New extension principles

Principles for fuzzifying crisp functions are called extension principles (cf.,
Klir and Yuan [32, Section 2.3]). Concerning hesitant fuzzy sets, to the best
of our knowledge there are no similar extension principles in the literature.

We proceed to define a new principle that extends crisp functions (say,
from X to Y ) to functions defined on typical hesitant fuzzy sets. The argu-
ment will be more clear if we restrict ourselves to UHFSs, which are the most
relevant cases for possible applications. Afterwards we establish properties
that prove that our principle indeed generalizes the aforementioned extension
principle for fuzzy sets.

Subsequently we define an extended version of the inverse of that crisp
mapping to functions defined on hesitant fuzzy sets. And then we investigate
some of its main fudamental properties.

In the remaining of this section we fix a crisp mapping f : X −→ Y .
Unless otherwise stated, we assume that f is surjective.

4.3.1. First extension principle

The mapping f can be extended to f̄ : UHFS(X) −→ UHFS(Y )
through the following expression. For each hM ∈ UHFS(X) with char-

acteristic N , we decompose hM(x) = {h1
M(x), ..., h

lM (x)
M (x) } where h1

M(x) <

. . . < h
lM (x)
M (x) and lM(x) 6 N . There must be x ∈ X with lM(x) = N .

Then we define

f̄(hM) : Y −→ F∗([0, 1])
y

⋃
i=1,...N{ sup{hiM(x) : f(x) = y, x ∈ X} }

14



with the natural convention { sup∅ } = 0 when there is no x ∈ X such
that f(x) = y. Clearly f̄(hM) is another UHFS with characteristic N .
Observe that surjectivity of f guarantees the key fact f̄(hM)(y) 6= ∅, because
{x ∈ X : f(x) = y} 6= ∅, for each y ∈ Y .

By notational convenience we also denote the standard decomposition of
the typical HFE f̄(hM)(y) as

f̄(hM)(y) = {h̄1
M(y), . . . , h̄

l̄M (y)
M (y)} (1)

and then h̄iM(y) = sup{hiM(x) : f(x) = y, x ∈ X} for each i = 1, . . . , l̄M(y).
Implicit in this expression is the fact that h̄1

M(y) = (f̄(hM))−(y), the lower
bound of the HFE f̄(hM)(y) as defined in Torra and Narukawa [48, Definition
11].

The following example illustrates the application of our new extension
principle.

Example 4. Let X = {x, y, z, t} and let

hM = { (x, {0.2, 0.5}), (y, {0.4}), (z, {0.2, 0.4, 0.6}), (t, {0.1, 0.3, 0.7}) }

be a UHFS on X. The characteristic of hM is 3 because lM(z) = lM(t) =
3 > lM(x) = 2 > lM(y) = 1.

Define Y = {a, b} and let f : X −→ Y be the surjective mapping f(x) =
f(y) = a, f(z) = f(t) = b.

We can compute f̄(hM) : Y −→ F∗([0, 1]) as follows. In order to calculate
f̄(hM)(a) we use

f̄(hM)(a) =
⋃
i=1,2,3{ sup{hiM(x̄) : f(x̄) = a, x̄ ∈ X }

f̄(hM)(a) =
⋃
i=1,2,3{ sup{hiM(x), hiM(y)} }

f̄(hM)(a) = { sup{h1
M(x), h1

M(y)} }∪{ sup{h2
M(x), h2

M(y)} }∪{ sup{h3
M(x), h3

M(y)} }
f̄(hM)(a) = { sup{0.2, 0.4} } ∪ { sup{0.5} } ∪ { sup{∅} } = { 0.4, 0.5 }.
In order to calculate f̄(hM)(b) we use a similar methodology, which pro-

duces f̄(hM)(b) = { 0.2, 0.4, 0.7 }.
In conclusion, f can be extended to f̄ : UHFS(X) −→ UHFS(Y ) in

such way that its application to hM is

f̄(hM) : Y −→ F∗([0, 1])
a { 0.4, 0.5 } = {h̄1

M(a), h̄2
M(a)} (l̄M(a) = 2)

b { 0.2, 0.4, 0.7 } = {h̄1
M(b), h̄2

M(b), h̄3
M(b)} (l̄M(b) = 3)
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Fuzzy sets are particular UHFSs with characteristic 1 by Lemma 1. Thus
our extension principle generalizes the classical extension principle for fuzzy
sets (cf. Klir and Yuan [32, Section 2.3]), in the sense that if hM is a FS on
X then our formula for f̄(hM) boils down to

f̄(hM) : Y −→ P∗([0, 1])
y {sup{hM(x) : f(x) = y, x ∈ X}}

which is the classical expression defining the extension principle in fuzzy set
theory. In particular, if hM is a FS on X then f̄(hM) is a FS on Y . 1

In order for our construction to be fully acceptable, the standard proper-
ties of that extension principle should be preserved. For expositional purposes
here we only prove one key proposition, that will be subsequently generalized.

Klir and Yuan [32, Theorem 2.8 (ii)] demonstrate that if A1, A2 are fuzzy
sets on X with A1 ⊆ A2 then f(A1) ⊆ f(A2) when f is defined by the
application of the extension principle for fuzzy sets. Our next result proves
that this property holds true in our model of extension principle for UHFSs
too.

Proposition 3. Let f̄ : UHFS(X) −→ UHFS(Y ) be the extension of the
surjective mapping f : X −→ Y . Then h1 ⊆ h2 and h1, h2 ∈ FS(X) imply
f̄(h1) ⊆ f̄(h2).

Proof. We use the comments on the application of Definition 4 to FSs.
We know f̄(h1)(y) = {sup{h1(x) : f(x) = y, x ∈ X}} and f̄(h2)(y) =
{sup{h2(x) : f(x) = y, x ∈ X}} for each y ∈ Y . The fact h1 ⊆ h2 reduces to
h1(x) 6 h2(x) for all x ∈ X. Therefore f̄(h1)(y) 6 f̄(h2)(y) for each y ∈ Y
and we conclude f̄(h1) ⊆ f̄(h2) because both f̄(h1) and f̄(h2) are FSs on Y .

�

What further behavior can we assure for the extension principle with
respect to inclusion of HFSs? In order to derive a more general property, we
next prove a technical lemma that exploits the structure of the inclusion of
HFSs.

1The reader is reminded that Remark 1 formally identifies FSs with adequate HFSs.
For this reason the codomain here is P∗([0, 1]) instead of [0, 1]. We insist that surjectivity
of f permits to ensure that the supremum is taken in a non-empty set of numbers.
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Lemma 4. Suppose that f̄ : UHFS(X) −→ UHFS(Y ) is the extension of
the surjective mapping f : X −→ Y . Then h1 ⊆ h2 and h1, h2 ∈ UHFS(X)
with X finite imply h̄1

1(y) 6 h̄1
2(y) for each y ∈ Y .

Proof. We recall that h̄1
1(y) denotes the lower bound of f̄(h1)(y) and h̄1

2(y)
is the lower bound of f̄(h2)(y). Hence h̄1

2(y) = sup{h1
2(x) : f(x) = y}. By

the finiteness assumption, the supremum is attained at a point x0. Hence
there is x0 ∈ X with f(x0) = y, h̄1

2(y) = h1
2(x0) ∈ h2(x0) = h1(x0) ∪ h2(x0)

because h1 ⊆ h2, and also f(x) = y implies h1
2(x0) > h1

2(x) whenever x ∈ X.
d Similarly, h̄1

1(y) = sup{h1
1(x) : f(x) = y} guarantees the existence of x′0

with f(x′0) = y and h̄1
1(y) = h1

1(x′0).
We deduce from the properties of x0 that h̄1

2(y) = h1
2(x0) > h1

2(x′0).
Now the fact h1

2(x′0) ∈ h2(x′0) = h1(x′0) ∪ h2(x′0) guarantees by definition
that h1

2(x′0) > max{h1
1(x′0), h1

2(x′0)} > h1
1(x′0).

These inequalities assure h̄1
2(y) > h1

2(x′0) > h1
1(x′0) = h̄1

1(y). �

Proposition 4 and Example 5 below investigate if Proposition 3 can be
extended to general UHFSs. Example 5 shows that the answer is negative.
Although Proposition 4 applies when X is finite, the case of a general X is
similar but requires a longer argument.

Proposition 4. Let f̄ : UHFS(X) −→ UHFS(Y ) be the extension of the
surjective mapping f : X −→ Y with X finite. Then h1 ⊆ h2 and h1, h2 ∈
UHFS(X) imply f̄(h2)(y) ⊆ (f̄(h1) ∪ f̄(h2))(y) for each y ∈ Y .

Proof. We use that max{h̄1
1(y), h̄1

2(y)} = h̄1
2(y) by Lemma 4. As recalled in

the proof of this Lemma, h̄1
1(y) and h̄1

2(y) are the lower bounds of f̄(h1)(y)
and f̄(h2)(y) respectively. Fix any y ∈ X.

Suppose h ∈ f̄(h2)(y). Then it is obvious that h ∈ f̄(h1)(y) ∪ f̄(h2)(y).
Clearly it is also the case that h > h̄1

2(y) = max{h̄1
1(y), h̄1

2(y)}. Hence we
have checked the claim h ∈ (f̄(h1) ∪ f̄(h2))(y). �

In order to clarify the definitions and relationships above, the following
example is useful.

Example 5. In the conditions of Proposition 4, the property f̄(h1) ⊆ f̄(h2)
when h1 ⊆ h2 is not universally true.

Consider the situation of Example 4. Define

hR = { (x, {0.2, 0.5}), (y, {0.4, 0.6}), (z, {0.2, 0.4, 0.6}), (t, {0.1, 0.3, 0.7}) }.
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It is a UHFS on X with characteristic 3 because 3 = lR(z) = lR(t) > lR(x) =
lR(y) = 2. The reader can easily check that hM ⊆ hR, i.e., that hM∪hR = hR.

We can compute f̄(hR) : Y −→ F∗([0, 1]) as in Example 4. We conclude
that the application of f̄ : UHFS(X) −→ UHFS(Y ) to hR is

f̄(hR) : Y −→ F∗([0, 1])
a { 0.4, 0.6 } = {h̄1

R(a), h̄2
R(a)} (l̄R(a) = 2)

b { 0.2, 0.4, 0.7 } = {h̄1
R(b), h̄2

R(b), h̄3
R(b)} (l̄R(b) = 3)

It is now apparent that f̄(hM) ⊆ f̄(hR) is false, therefore f̄(hM) ∪ f̄(hR) =
f̄(hR) cannot be proven.

Nevertheless f̄(hR)(a) ⊆ (f̄(hM) ∪ f̄(hR))(a) and f̄(hR)(b) = (f̄(hM) ∪
f̄(hR))(b), in agreement with Proposition 4.

4.3.2. Second extension principle

It is also possible to define an extended version of the inverse of the crisp
mapping f that generalizes the standard construction in Klir and Yuan [32,
Equation (2.11)]. This extension should map HFSs on Y into HFSs on X.
We proceed to do this and then we investigate its main properties.

The (not necessarily surjective) mapping f : X −→ Y generates a map-
ping f̄−1 : HFS(Y ) −→ HFS(X) by the expression: for each hM ∈ HFS(Y ),

f̄−1(hM) : X −→ P([0, 1])
x hM(f(x))

Clearly, this construction is the natural generalization of the usual defi-
nition for FSs [32, Equation (2.11)] to HFSs.

Remark 4. We have stated that our construction of the second extension
principle is valid when f is not surjective. Nevertheless the reader should be
aware that some of its properties crucially depend on surjectivity. We are
explicit in explaining when we impose this requirement in the remaining of
this section.

Now we present some immediate properties of our second extension prin-
ciple and its relationships with the first extension principle in section 4.3.1.

1. For each typical hM ∈ HFS(Y ), f̄−1(hM)(x) is a typical HFS, and

f̄−1(hM)(x) = {h1
M(f(x)), . . . , h

lM (f(x))
M (f(x))}

Furthermore, f̄−1(hM) is a UHFS on X when hM is uniformly typical.
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2. For each hM ∈ UHFS(Y ), if f is surjective then f̄(f̄−1(hM)) = hM .
In particular, this is true when hM is a FS on Y .
To check this claim we only need to recall that the standard decom-
position of the typical HFE f̄(f̄−1(hM))(y) = {h̃1

M(y), . . . , h̃
lM (y)
M (y)}

verifies h̃iM(y) = sup{[f̄−1(hM)]i(x) : f(x) = y, x ∈ X}. The assump-
tion that f is surjective ensures that we obtain a number (i.e., we do
not take the supremum of a void set). This figure is hiM(y) because
[f̄−1(hM)]i(x) = hiM(f(x)) for each i by definition.

3. For each hM ∈ UHFS(X), and each x ∈ X,

[f̄−1(f̄(hM))](x) = {sup{h1
M(x) : x ∈ X}, . . . , sup{hNM(x) : x ∈ X}}

because [f̄−1(f̄(hM))](x) = [f̄(hM)](f(x)) 6= ∅.
The standard decomposition [f̄(hM)](f(x)) = {ĥ1

M(f(x)), . . . , ĥNM(f(x))}
is computed by replacing y = f(x) in equation (1), which produces

ĥiM(x) = sup{hiM(x) : f(x) = f(x), x ∈ X}.

This formula gives the expression above, since all x ∈ X verify the
property f(x) = f(x).
We deduce that when hM is a FS on Y then hM ⊆ f̄−1(f̄(hM)).

4. If h1, h2 ∈ HFS(Y ) are typical and h1 ⊆ h2 then f̄−1(h1) ⊆ f̄−1(h2).
To prove this claim we need to check f̄−1(h1)∪ f̄−1(h2) = f̄−1(h2). Let
us fix x ∈ X. We need to verify the equality [f̄−1(h1) ∪ f̄−1(h2)](x) =
(f̄−1(h2))(x).
Firstly we observe that h ∈ [f̄−1(h1)∪f̄−1(h2)](x) implies h ∈ f̄−1(h2)(x)
by definition of the union of HFSs.
Secondly we select an arbitrary h ∈ f̄−1(h2)(x) = h2(f(x)). Since
h1, h2 are typical and h1 ⊆ h2 we can assure inf h1(f(x)) = h1

1(f(x)) 6
h1

2(f(x)) = inf h2(f(x)). Therefore h ∈ f̄−1(h1)(x) ∪ f̄−1(h2)(x), and
h > max{h1

1(f(x)), h1
2(f(x))} = h1

2(f(x)) because h ∈ h2(f(x)). By
definition we have stated that h ∈ [f̄−1(h1) ∪ f̄−1(h2)](x), because
h1

1(f(x)), resp. h1
2(f(x)), is the lower bound of f̄−1(h1)(x) = h1(f(x)),

resp. f̄−1(h2)(x) = h2(f(x)) due to Property 1 in this list.
5. If h1, h2 ∈ HFS(Y ) are typical then f̄−1(h1 ∪ h2) = f̄−1(h1)∪ f̄−1(h2).

To prove this claim we fix x ∈ X in order to check the set equality
[f̄−1(h1 ∪ h2)](x) = [f̄−1(h1) ∪ f̄−1(h2)](x).
By definition, h ∈ f̄−1(h1 ∪ h2)(x) is equivalent to h ∈ (h1 ∪ h2)(f(x)),
which is equivalent to h ∈ h1(f(x))∪h2(f(x)) and h > max{h1

1(f(x)), h1
2(f(x))}

by the definition of union of HFSs.
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This definition also shows that h ∈ [f̄−1(h1)∪ f̄−1(h2)](x) is equivalent
to h ∈ f̄−1(h1)(x)∪ f̄−1(h2)(x) and h > max{h1

1(f(x)), h1
2(f(x))}. The

latter inequality uses Property 1 in this list in order to identify the
lower bounds of f̄−1(h1)(x) and f̄−1(h2)(x).
Now we can observe that the respective equivalent statements coincide.
Put shortly, we have checked that h ∈ [f̄−1(h1 ∪ h2)](x) holds if and
only if h ∈ [f̄−1(h1) ∪ f̄−1(h2)](x) holds.

6. If h1, h2 ∈ HFS(Y ) are typical then f̄−1(h1 ∩ h2) = f̄−1(h1)∩ f̄−1(h2).
The proof of this claim is an immediate modification of the proof of
the previous property.

4.3.3. Relationship with the literature and decision making

Our novel extension principles are new in the literature on HFSs. Hav-
ing said that, it is worth mentioning that an altogether different extension
principle had been stated before, and that our results are related to existing
principles in fuzzy set theory.

Torra and Narukawa [48, Section IV] already refer to an extension prin-
ciple for extending crisp functions to hesitant fuzzy sets. Nonetheless their
idea originates from a completely independent motivation. These authors
extend operators O : [0, 1]N −→ [0, 1] (like the arithmetic mean) in such way
that they can operate on HFSs, by considering all values in such sets and
the application of O on them. This practical position is unrelated to our
perspective in this paper, which in fact owes to the standard viewpoint on
extension principles for fuzzy sets.

Extension principles were introduced by Zadeh [56] in the fundamental
theory of fuzzy sets, and their relevance is highlighted in many textbooks
and articles [10, 14, 32, 41, 53]. They allow us to compute an (approximate)
functional dependence among variables even when the argument of a given
precise mapping is only approximately known as a fuzzy set. For example,
one may define arithmetic operations for fuzzy numbers from the application
of the extension principle to the standard operations for real numbers. In
connection with applications, Bělohlávek [10] explains that “[t]he extension
principle is used mainly in situations where no precise description of the input
data is available, e.g., if a linguistic variable is used to describe the inputs”.
Dubois [19, section 4] assures that fuzzy intervals have been widely used in
fuzzy decision analysis, in a way that comes down to applying the extension
principle to existing evaluation tools. Recently de Barros et al. [17, Example
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2.10] illustrate this point with a practical transport situation. In addition,
[17, Chapter 2] concludes with a relationship of the extension principle and
problems with probabilities. Clearly these remarks can be exported to our
setting too, since our results generalize the original statements in fuzzy set
theory. Our extension principles are therefore directly applicable in decision
making.

However the extension principle applied to arithmetic operators yields an
unwieldy nonlinear programming problem hence it is unfeasible for real time
calculation in many applications [5]. Authors like Kaufmann and Gupta [31]
or Giachetti and Young [25] showed that using α-cuts to represent fuzzy
numbers by crisp intervals, one can apply interval arithmetic operations
(e.g., addition and subtraction, multiplication and division, power) in order
to perform fuzzy arithmetic in a computationally efficient manner (see also
[21]). Such parametric representation is easily understood by practitioners,
and provides accuracy and efficiency at a time. The fuzzy arithmetic that
arises has been used in applications to engineering (e.g., industrial machin-
ing processes [18], classical control design [49]), experimental measurement
in physics [46], mining investments [6, 7], management sciences [28, 31], nu-
trition [11, 12], .... Therefore the new notion of α-cuts is also at the core of
potential applications of HFSs by assimilation to the fundamental techniques
in fuzzy set theory.

5. Conclusions

In this paper we have introduced some new notions in the fundamental
theory of hesitant fuzzy sets. The novel notion of uniformly typical HFS
simplifies many theoretical and practical arguments. It is a particular case
of typical HFSs which remained undefined albeit it is thoroughly used in real
world applications, where both the number of alternatives and attributes are
finite (Proposition 1). Uniformly typical HFSs are HFSs for which not only
all HFEs that define it are typical, but also their cardinality is bounded by
some fixed number. The characteristic of a HFS is a related operator on
HFSs. When a HFS is uniformly typical, its characteristic is the smallest in-
teger with the above mentioned bounding property. Otherwise its character-
istic is infinite. This novel operator facilitates the analysis of computational
complexity of algorithmic solutions hence it is relevant for the discussion of
feasibility and implementability issues in decision making.
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The construction of HFSs from a finite family of membership functions
has been extended to arbitrary families. This enabled us to prove a represen-
tation result that resembles other approaches for interval type-2 fuzzy sets
(see section 4.1).

We have also defined (α, k)-cuts for HFSs. These are the HFS counterpart
of α-cuts in fuzzy set theory which were missing in the literature. With these
new elements we have proved a decomposition theorem for typical HFSs in
section 4.2. In addition we have defined two novel extension principles in sec-
tion 4.3, the first of which applies to uniformly typical HFSs and the second
to generic HFSs. We have proved several properties of these principles. Here
some explanatory examples help the reader to understand their application,
which may underlie corresponding decision making mechanisms (cf., section
section 4.3.3). We have also studied their relationships with other methods
from the literature

These results show that the novel notion of uniformly typical HFSs is very
promising and deserves careful consideration. They also demonstrate that the
fundamental theory of hesitant fuzzy sets is still open to novel contributions.

Some of the ideas that we present can be developed further. For example,
the interaction of the extension principles with unions and intersections may
be the subject of an additional analysis. Their relationship with (α, k)-cuts
can be discussed too.

In addition, it is plausible to extend the present study to the case of
Generalized hesitant fuzzy sets (GHF-sets), introduced in Qian et al. [42],
and subsequently studied e.g., by Farhadinia [22] and N. Chen et al. [15].
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