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1 | INTRODUCTION

Boundary and interior layers originated by singularly perturbed problems (SPPs) are very frequent in several fields of
engineering like drift diffusion equation of semi conductor modeling,' chemical reactor model,> and fluid dynamics.?
In the present work, we consider the following two-parameter parabolic initial-boundary value problem (IBVP) on the
domain T = ﬁx x €;, which combines the reaction-diffusion and convection-diffusion forms:

Leyy(xX, 1) = (eyn + payx — by —cy) (x,0) = f(x,0),  (x,0) € T~ UT™), (€]

¥, t) = p(x, 1), (x, 1) € T, y(x,8) = q(x, 1), (x, 1) €Ty, y(x, 1) = r(x, 1), (x,t) €T ()

Here, 0 < € < 1,0 < u < 1 are two singular perturbation parameters. The coefficient functions b(x, ), c(x, t) are assumed
to be sufficiently smooth functions on I" such that b(x, t) > f > 0,c(x, t) > v > 0. In addition, we assume a(x, t), fix, t) are
sufficiently smooth on (I'” U T'*) such that

a(x,t) < —ay <0, (x,) €l’" and a(x,t)>a, >0, (x,t) e, 3)

Here, a1, a, are positive constants. Let « = min{a;, a,}. In addition, we assume the jumps of a(x, ) and fi(x, t) at (d, )
satisfying |[al(d, )] < C,|[fl(d,t)] < C, where the jump of w at (d,t) is defined as [w](d,f) = w(d+,t) — w(d—,?).
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In general, the presence of discontinuity in a(x, t) and f(x, t) leads to an interior layer in the neighborhood of the point
of discontinuity of y(x, t) in addition to the boundary layer phenomena due to the presence of perturbation parameters.
Under these assumptions, the problem (1)-(2) has a continuous unique solution y(x, ) on the whole domain.

There can be two special cases: reaction-diffusion (u# = 0) and convection-diffusion (4 = 1), which can appear cor-
responding to a general two-parameter SPPs. When the parameter 4 = 0, the boundary layers appear in both sides of
the boundary points on the domain with an approximate width O(\/E). When p = 1, the boundary layers appear in the
neighborhood of either left or right boundary point of width O(¢) and mainly depend on the sign of the convection coef-
ficient. The solution of this problem with only discontinuous source term contains weak interior layers when a(x, t) > 0
(or alternatively a(x, t) < 0) for any value of . However, the discontinuity in the convection coefficient (a(x,t) < 0,x < d
with a(x, t) > 0,x > d) can lead to strong interior layers in the solution. A related discussion can be seen in Mukherjee
and Natesan* for the particular case 4 = 1. In this case, the sign of convection coefficient shifts the layers position in
the solution. The detailed discussion on this matter is given in the numerical section of the present article by considering
several examples.

In general, the discontinuity in the convection coefficient and source term for two-parameter SPPs can give rise to
interior layers along with boundary layers. It is observed that the sign of the convection coefficient and the magnitude
of the perturbation parameters have many influence on determining the nature of the layer. A discussion on the effect
of discontinuity at convection coefficient and source term for singularly perturbed convection-diffusion problems can be
seen in Farrell et al.’ for ordinary differential equations and in O'Riordan and Shishkin and Clavero et al.®” for partial
differential equations.

In the present work, we have presented in the numerical section these cases by taking several examples which satisfy
the condition (3) and also the reverse situation, ie, a(x,t) > a; > 0,(x,t) € I'", and a(x,t) < —a, < 0,(x,t) € I'". Let

y = ming-yr+) { ab(zc?)
for (1) to (2) into 2 cases: au® < ye and au® > ye, ie, depending upon the ratio of the perturbation parameters u? to €. In
the first case, the analysis follows closely that of parabolic reaction-diffusion type when u = 0% ; however, in the second
case, the analysis is comparatively more difficult. This problem is well studied for parabolic convection-diffusion case
with smooth data in O'Riordan et al.’

For SPPs, the existence and uniqueness of classical solutions for steady state problems are well established in sev-
eral papers, say Feckan.'” The analysis for two-parameter problems mainly started by O'Malley, based on asymptotic
expansion methods."! The numerical solution of these problems with smooth data'*!* and nonsmooth data'®*® are also
considered in several journals and proceedings. Singularly perturbed parabolic problems are also considered for numer-
ical analysis in Bansal et al. and Munyakazi and Patidar.?*** An almost first-order accurate solution for two-parameter
singulary perturbed time-dependent problems with smooth data can be seen in O'Riordan et al.” on a piecewise uni-
form mesh. In Kadalbajoo and Yadaw,* the authors proposed a combination of finite element method in space with
implicit Euler method in temporal direction using Rothe's method and obtained an almost second-order accuracy in
space. First-order accurate methods for smooth data are also observed in other studies.?*?® Analysis on different meshes
like Shishkin-Bakhvalov meshes can be also seen in Jha and Kadalbajoo.”” The a posteriori based convergence analysis
for singularly perturbed parameterized problems is also carried out to get optimal order parameter uniform accuracy in
Das,?® which avoids the requirement of a priori derivative bound. An equidistribution based new adaptive mesh is pro-
posed in Das and Mehrmann® for parabolic problems and in Das and Vigo-Aguiar® for systems of reaction-diffusion
problems with smooth data. The first-order space time uniform convergence obtained in Das and Mehrmann® is also
enhanced to higher order accuracy in Das® by extrapolation methods. This mesh is generated by the equidistribution of
a special positive monitor function. Clavero et al.** discussed the numerical analysis of a parabolic singularly perturbed
reaction-convection-diffusion problem where the source term has a discontinuity of first kind on the degeneration line
and obtained an almost first-order accuracy on Shishkin-type mesh when the convection parameter is less than the dif-
fusion parameter.” In Clavero et al.,** the authors have examined a parameter uniform numerical method for singularly
perturbed one-dimensional parabolic convection-diffusion problem, with degenerate convection term and discontinuous
source term at the same point inside the domain. A recent appraisal on different classes of boundary and interior layers
can be noticed in O'Riordan.* In Chandru et al. and Cen,'** the authors have developed a higher order numerical scheme
for singularly perturbed ordinary differential equations with discontinuous convection coefficient and source term. In the
present work, we consider a parameter uniform numerical method for parabolic convection-diffusion-reaction problems
where both the convection coefficient and source term have discontinuity inside the domain, which leads to an interior
layer in addition to the boundary layers.

}, where a*(x,t) = a1,(x,t) € I'",and a*(x,f) = ap,x € ['". We divide the convergence analysis
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Throughout the paper, C will be denoted as a generic positive constant, which is independent of the parameters €, p, Ny,
and N;. Here, Ny, N; are the number of mesh intervals used in space and time direction, respectively. We use the maximum
norm for our analysis, which is defined as: ||w]|z = max, <gIw(x, 1), where G is a closed bounded region. The discrete

N —_
maximum norm is denoted as ||W| |5N = max |W(x;,t;)|, where G denotes the discretized version of G in space
0<i<N,,0<j<N,

and time. To simplify the notation, we use ||.|| instead of ||. || or ||. ”EN. The following operators will be frequently used in
the later analysis

Loy(x, ) = (=by — cy) (6, 1), L,y(e,t) = (@puyx + Loy) (¢, 1), Le (e, ) = (€yie + Lyy) (X, 0).

In addition, a function g(x, t) is said to be in class C? if the partial derivatives of all order up to p are continuous with
respect to its independent variables.

This article is sequentially divided as follows. We discuss the existence, uniqueness, and stability properties of the
continuous solution and its decomposition into regular (smooth) and singular components in Section 2. Their derivative
bounds are also mentioned here. The discretization of the continuous problem is presented in Section 3. In Section 4, the
truncation error analysis and stability of the numerical solution based on barrier function technique are considered. The
main result is highlighted in Section 5. Numerical examples are provided to show the convergent solution and its expected
rate of accuracy in Section 6, which indicates that the convergence does not depend on the parameters size. The overall
conclusion is mentioned in Section 7. In addition, for ease of reading, we provide a nomenclature table for frequently
used notations.

2 | ANALYTICAL PROPERTIES OF THE SOLUTION

For the numerical analysis, the derivative bounds of (1) to (2) are useful, which will be addressed in this section. In this
paper, we consider that the solution of (1) to (2) is parameter uniformly bounded. Equations 1 and 2 are considered for
the parabolic case with u = 1 in Farrell et al.,’ and the existence of the solution is considered for steady state case with
u = 0in O'Riordan and Shishkin.® Now, let us consider the following lemma, which shows the existence of solution.

Lemma 1. The problem (1) to (2) has a solution y(x, t) € C°(T) n C* (") n C2(C~ U ™).

Proof. The Lemma can be proved based on the constructive method by following the procedures given in Farrell et al.?
Consider the functions y, (x, f) and y,(x, t), which satisfy, respectively, the following singularly perturbed differential
equations:

(ey1xx + pa1y1x — byr — cy1) (6, ) = f(x, 1), (x,0) €T
and
(EV2ax + HA2Y2 = bys —cy2) (X, 1) = f(x, 1), (x,t) €T,
where a;(x, 1), a,(x, £) € C*(') are such that these extended functions a, (x, t), a,(x, t) in I satisfy
a(x,t) =alx,t), (x,t)el’", suchthat a;(x,t)<0, (xt) €T,
a(x,t) = a(x,t), (x,t) €'", suchthat a,(x,t)>0, (x1) €erl.
Let us consider the function

1) = 16,8 + (10, 1) = y1(0, 1)) 1(x, 1) + Arha(x, 1), (X, 1) €T,
Y, y2(xe t) +A2¢1(x7 t) + (y(l’ t) - y2(1a t)) ¢2(x7 t)’ (x, t) € F+,

where ¢,(x,t) and ¢,(x,t) are, respectively, the solutions of the following two-parameter singularly perturbed
boundary value problems:

5¢1xx + ,“al(l)lx - bd)l - C¢ll = O’ (x’ t) € Fs ¢1(0’ t) = 1’ ¢1(1’ t) = Os ¢l(x’ 0) =0
and
£¢2xx + ﬂa2¢2x - bd)z - C¢2[ = Ov (x9 t) € F’ ¢2(07 t) = 09 ¢2(17 t) = 1’ ¢2(x’ 0) =0.

Note that y(x, t) satisfies (1) to (2) in (I'” U I'*) for two properly chosen constants A; and A,, so that y(x,t) € C*(I).
Observe that 0 < ¢;(x, t) < 1,fori = 1,2 onI.* Thus, ¢, and ¢, cannot have a maximum or minimum at the interior
points of the domain, and therefore,
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P, ) <0, Py, ) >0, (x,t)eT.
Now, we impose
y(d—,t) = y(d+,t) and y'(d—, 1) = Y/ (d+,0).
Therefore, we need the following relation for the existence of the constants A;, A,,

bo(d.t) —by(d. 1)
ol(d, ) —pl(d, )| 7O

The proof follows from ¢/,(d, t)¢:1(d, t) — ¢/ (d, Hp2(d, £) > 0.
The differential operator L, , also satisfies the following continuous comparison principle on F=Q,xQ,. O

Lemma 2. Assuming y(x,t) € C°(T) n C1() n C3("~ U I'Y), which satisfies

y(x,£) <0, ¥V (x,t) €Ty, Le,y(x,t) >0, ¥V (x,t) € (" UTY)
and [y](d,t) > 0, t > 0, weget y(x,t) <0, V (x,t) € I.

Proof. Let us assume that y(x, ¢) is positive for some point (x, t) € I. Now, introduce the continuous function A(x, f),
defined by

(1) = e~ uHd-)/QeA(x, 1), for (x,t) < (d, ),
VU= erwut-a/@op, £), for (x,b) > (d, D).

Let A has its maximum value at a point (x, t) in I. Then, the above result becomes true when A(x, f) < 0. Now assume
A(x, t) > 0. We will get a contradiction. With this assumption on the boundary points, we have either (x,t) = (d,t) or
x, e ul™).

Case 1: Assume (x,t) = (d,t). Then, [y, ](d,t) = [Ax] — [2(a1 + a2)/€]A(d,t) < Osince [A](d,t) = [y](d,t) = 0and
[Ax] < 0. This gives a contradiction.

Case 2: Let (x,t) € T~ uT™).
If (x,t) € I'", then

2
Le ,y(x, 1) = e~ tmd=0/(€) <5Axx +(a+ o)A, + <a;” (g—l + a) - b> A-— cA,> () <0,
E E

which is a contradiction. Similarly, the operator L, , gives a contradiction for y(x, ) in I'*. Therefore, we obtain the
required result.

The consequence of the above comparison principle is the following stability estimate from which the uniqueness
of the solution can be established. O

Lemma 3. Let y(x, t) be the solution of (1) to (2) then
1
Iyl <€ max {|plr,. llgllr, Illr, } + E”Le,uy”(r-ul“f),

where n = min {a;/d, a; /(1 — d)}.

Proof. Consider the barrier functions

Y x”L‘_‘;y”’ for (x,t) e T~ u(d, 1)),
v, t) = CK £ y(x, 1), where K= A=0)lIL
- ’1(1—_d;y for (x,t) € T,

where y = max {||pllr,. llglir,, I7lr, }-
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Then, y.(x,t) € o), wi(x,t) <0, (x,t) € Iy for sufficiently chosen C and for each (x,t) € (' UT'"), we have
LE,MWi(x’ t) > 0.

Also, since y.(x, t) € C1(I'), we have

[Lepyll ILeyll
nd nl-d) —

[w:1(d, ) = £[yl(d, 1) = 0 and [y 1(d, 1) =

It follows from the comparison principle that y,.(x,t) <0V (x, t) € I, which completes the proof. O

Lemma 4. For1 <k + 2m < 3, the solution y(x, t) of (1) to (2) and its derivatives satisfy:
ifap? < ye, then

2 4 ; .
ak+m al+j d d! i
Ll <cetrmaxd iyl 3 e LIS || 28412 Hd—” ,
oxkorm || o, ot ||oxior || & dr det|lr,
and if ay? > ye, then
2 L 4 . )
ak+my Mk+2m 8L+J+1 al+jf g dlq dir
k =C fem ax 171l Z i+2j+2 i Z i 2| an il dn ’
oxkorm || . gh+m ST uAt2 || oxiot % det || daet|Ir,

where C is independent of € and p.

Proof. We follow the technique given in O'Riordan et al.® The bounds of the solution and its derivatives can be derived
by splitting the arguments into two cases au? < pe and au? > pe.

Casel:Letau? < pe. Now, consider the stretching variable & = x/ \/Z 7 = t. The transformed domain is given by G =
<(0, du,1/ \/Z)> x (0, T]. On the domain G, the transformed functions are defined as j(&, 7) = y(x,t), @(&, 1) =

a(x,t), B(é, 7) = b(x,1), 8&,7) = c(x,t), and f(&,7) = f(x,t). Then, we apply the above transformation for the
considered problem (1) to (2), from transformed equation we obtain the solution (&, 7).
Now, we denote the rectangle R; 5 = ((k=6,k+6) x Q)NG, and R; sisaclosure of R; 5, where & € ((O, dyu(d, 1/\/5))

and § > 0. For every (¥, 7), the above classical differential equation satisfies the following estimate® for 1 < k + 2m <

3:
2 4
sclnax{nyn,z 2[ +‘ ]}
o i+2j=0 0 L,

where I'c = Ry 55 N T, I} = Reo5 NI, T = Re p5 NIy, and Cis independent of R 5. Hence, these estimates hold for
any point (£, 7) € G. Finally, if we convert the variables (&, 7) into the original variables (x, t), we obtain the required
result.

ak+m)7
ockorm |,

dig
dri

al+
0EioTi

d_i?
drt

Case 2: If au® > pe, then consider two stretching variables ¢ = "?x and ¢ = ,472: The transformed domain is given
by G = ((0,d) U (d, u/e)) X <o, ﬂ) and the transformed functions are (¢, ¢) = a(x, t), b(&,¢) = b(x, 1), &(¢,c) =

c(x,b), f(¢&,¢) = f(x,b),and H(&,0) = y(x, b). Substituting the above defined transformation in (1) to (2), we get the
solution (¢, ¢) from the transformed equation.

Again, we denote another rectangle R; s = ((12 — 8,k +6) x (O, ”z—T] ) nGand R, ; +.¢ as the closure of R; s , where
ke ((0,dyu(d, u/e) and 5 > 0. For each (&, 6) € G and with the help of O'Riordan et al.,’ we get

ak+m); R 2 0i+jf 4 dlq dlf
ockogn Scmax{”y”’ 2 |5gog Z dl Tl HF [
g S Res i+2j=0 é: S =0 C S I S r,
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where, I'c = R, 55 N T, 1 = R p5n T, Ty = Ry 55N Ty, and C is independent of Ry .. Hence, these estimates hold
for any point (¢, c) € G. Finally, the transformed variables (¢, ¢) are replaced by the original variables (x, f) to get the
desired result. O

Corollary 1. The solution y(x, t) of (1) to (2) satisfies the bounds for second-order time derivative

C if ap® < ye
_< 9 —_— 9
”ylt”r = { CM48_2, ifauz > ye.

Proof. This follows from the argument given in Lemma 4 and the techniques in O'Riordan et al. and Gracia et al.*'?
Now, we decompose the solution y(x, t) into a regular component v(x, £) and a singular component w(x, t). The regular
component v(x, t) will be defined as the solution of the problem

L. ,v(x,t) = f(x,0), for (x,t) e T uT™),
v(0,t) = y(0,1), v(d—, t) = ui(t), v(d+,t) = ux(t), 4)
v(1,t) = y(1,t), v(x,0) = y(x,0),

where v(d+, t) = liglov(x, B, vd—,t) = litrinov(x, 1), and u, (t) and u,(t) are suitably chosen.
x—d+ x—d—

Case 1: ap? < ye.LetI'™ = [0,d) x Q, " = (d, 1] x &,. Now, we decompose v(x, ) by
VX, 5 €, 1) = Vo(X. 1) + VeV (X L £, 1) + Eva(x, L €, ), (5)
where vo(x, 1), v1(x, t; €, u) and v,(x, t; €, 1) are the solutions of the following problems:

L()V()(x, t) = f(x’ t)s V()(x, O) = y(x’ O)s (xs t) € (F_* U F+*)a (6)
\/gLovl(X, t) = (LO - LE,ﬂ)vo(x’ t)9 Vl(x, O) = O’ (x7 t) € (1—‘_>‘< U F+*)v (7)

eLe2(X, 6, 1) = Ve(Lo = Le (X L e, ), (x,1) € (I UTH),
va(x, 05 €, ) = v2(0, 156, p) = vo(1, 156, ) = 0, (®)
and vy(d—, t; €, u), vo(d+,t; €, u) are chosen appropriately.
Again,

V0, €, ) = Vo0, 1) + \/ev1 (0, L &, ), t € Qs

v(d—, t; €, 4) = vo(d—, £) + \/evi(d—, L; €, ), t € Q;,

v(d+, t; €, u) = vo(d+,t) + \/gvl(d+, tye, u), t €€y, 9
V(L e, ) = vo(L, D) + \Vem (L, L e, ), t € Qs

v(x, t;e, p) = r(x, b)), (x,t) €l

Now, the following lemma provides the derivative bounds of v(x, t) with respect to x and ¢. O

Lemma 5. The regular component solution v(x, t) and its derivatives of (4) satisfy the following bounds

ak+mv

o <C(1+€7?), for 0 < k+2m < 3 and ||vylir-ur+ < C.
X

r-ur+

Proof. The above bounds of the derivatives can be derived by following the techniques given in O'Riordan et al. and
Gracia et al.*'? Here, vy(x, t) and v; (x, ) are solutions of the first-order differential Equations 6 and 7, and the bound
for v, (x, t) of (8) can be obtained by using the techniques used in Lemmas 3 and 4. Next, by using the following relation

ak+m ak+mv

,forO0<k+2m<3,

ak+mv _ ak+mv0 \/g v te >
oxkotm  gxkorm oxkotm oxkotm

we obtain the required derivative bounds of v(x, t). Next, we can use the Corollary 1 to obtain

[Veelle-ur+ < C.



CHANDRU ET AL. WI LEY_I_7
Case 2: For ay? > ye. LetI'™ = [0,d) x Q;,T** = (d, 1] X Q,. Now, we decompose v(x, f) as follows:
VX, €, 1) = Vo(X, b 1) + EVi(X, L ) + €702, L €, ), (10)
where vo(x, t; u), v1(x, t; ) and v, (x, t; €, u) are the solutions of

Lyvo(x, t; ) = f(x, 1), (x,t) € T UT),

11
Vo(x,0; 1) = u(x, 0), vo(1,t; u) are chosen appropriately, (D

eLv1(x. £ 1) = (L — Lo Voe, 1 ), (6,0) € (7 UT),

(12)
V106,05 ) =vi(1, 5 4) =0,

£2L6,ﬂv2(x9 t’ £, ﬂ) = E(LM - LE,,u)vl (x9 t’ M)v (x7 t) € (F_ U F+)’
Va(x, 056, u) = v2(0, L5 €, u) = va(1, L€, 4) = 0, (13)
and v,(d—, t; €, u), v2(d+, t; €, u) are chosen accordingly.

We see that
W0, 6, €, u) = vo(0, £, 1) + ev1(0, 85 ), t € L,
v(d—, L e, p) = vo(d—, t; ) + evi(d—, t; p), t € C,
v(d+, t; e, u) = vo(d+, t; u) + evi(d+, t; u), t € Q, (14)
V(1,6 €, u) = vo(L, L, ), t € Q,
v(x, t; e, u) = r(x, t), (x,t) el

Now, consider the following first-order IBVP:

L,y (x,t) = (apuyx = by" —cy))x,0) = f(x,0), (x,0) e T"UI™) 1s)
y*(x’ t) = pl(x7 t)’ (x’ [) € FC? y*(X, t) = rl(x’ t)a (x’ t) € Fr- (16)
Note that L, satisfies the following comparison principle. O

Lemma 6. Assume in (15) and (16) y*(x,t) € COC* uT**)u CYI"* UT™) then

Y, ) <0, Ve, )e T Uly), Ly ¢e,t) >0, V(x,t)e T U '), [yild,5) >0
for t > 0. We can conclude that y*(x,t) <0, V (x,t) € T uT*™).

Proof. This lemma can be derived by following the procedure given in Lemma 2. O
Lemma 7. The solution y*(x, t) of (15) to (16) is stable, since it satisfies

1
ly*llr—+ur+ < C max { 1y llr,ur,)» ;”Lyy*”(l"*ul“ﬂ} ,

where n = min {a;/d, a2 /(1 — d)}.

Proof. Consider the following barrier function

<_ 7 w) +(x, 1), for (x,1) € (" U (d, 1)) and

(_ 5 U=0lLy"ll
n(1-d)

wi(x,t)=C
) +y(x, t),for (x,t) €T,

where 7 = max {||pllr.. lIllr, }. It satisfies y.(x,£) < 0, V (x,) € (T UT) and also

—am”L;%” -b <—)( - w) L,y 20, V(x,H)el™,

L. a=0lL,y"
vl <_ ) A
2K e

Ly.(x,t) =
>iLMy/i >0,V (x,t) €.
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Furthermore, at discontinuity point [(y.)y](d, t) > 0. Then, by applying Lemma 2, we obtain
wo(x, 1) <0, V(x,t) e @ *ul™),

which leads to obtain the bound on y*(x, t).
Following the analysis given in O'Riordan et al.” and Gracia et al.'? for smooth data, we can derive the following
lemmas. O

Lemma 8. Suppose y*(x,t) € C*+™ ('~ U T**) satisfies (15) to (16). Then, its derivatives satisfy

e (
U+ M

where A = min {0, a(x, t) ( %) (x, 1) }, and the constant C is independent of p.
t

k+m

)

j=0

k+m

+2,

j=0

k+m—1

X

ko+my=0

ak+m y*
oxkatm

ak+rnf
otk+m

kot f
dxko gt™o

a’ P1
dx

djrl

dt

—(k+m)AT
+|Iy*||>€(+’") ,

Lemma 9. The regular component v(x, t) at (10) and its derivatives satisfy the following bounds:

ak+mv
oxkatm

k-2
<C (1 + (ﬁ) > ,for0<k+2m<3 and |vg|lp-ur+ <C.
r-ur+ £

Proof. The first bound follows from the techniques given in O'Riordan et al. and Gracia et al.>'? and the procedure
given in Lemma 3 and Lemma 4 for the domain I'" U I'*. For the second part, we can extend the argument from
Corollary 1 to obtain

2,4

[lvell < C <1 + ;Z2> <Cca+u*<C.

Now, we decompose the solution u(x, t) as v(x, t) and w(x, t) for both cases. Then, the regular component satisfies
ak+mv
oxkotm

<C(1+€>%), for0 <k+2m < 3and |l < C. 17)

Now, we decompose the singular component w(x, t) as wy(x, t) and w,(x, t), which are defined as follows:

L ,wi(x,t) =0, for (x,t) e T uT™),

(18)
wi(x,0) =0, wi(0,t) = y(0,t) —v(0,t) — wr(0,1), wi(1,t) =0.

L, wy(x,t) =0, for (x,t) e " uT™),
w,(0, t) is suitably chosen, w,(1,t) = y(1,t) — v(0, t), wy(x,0) =0, (19)
(wel(d, t) = = (W] + [wi) (d, 1), [(Wr)](d, 1) = = ([ve] + [(W)i]) (d, D).

Note that w(d—, ) = y(d—,t) —v(d—,t) andw(d +,t) = y(d+,t) —v(d+,1).

For au? < ye, the singular components wy(x, t) and w,(x, t) satisfy the derivative bounds given in Lemma 4 and
Corollary 1. When au? > ye, the following decomposition helps us to find w,(0, t):

Wr(X, 15 €, 1) = Wo(X, 15 p1) + w1 (X, £ ) + £°Wo(x, L €, ), (20)
where
Lawo(x,0) =0, (x,t) € T*UTH), @D
wo(x, t) =0,(x,t) € I'e, wolx, t) =r(1,t) —vo(1,1),
eL,wi(x,t) = (L, — L ,)wo(x, ),  (x,0) € (T UT™H), 22)
wi(x,t)=0,(x,t) e T Ul}),
€L, ,wy(x, t) = (L, — L., )wi (x, 1), (x,t) € (T"UTH), 23)

wy(x,t) =0, (x,t) €I
O
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Lemma 10. From the above decomposition, it follows that w(x, t) satisfies the following bound
|Wr(0, t)lr_UF+ < e—2Bte—V//4 ,

where B < A = min {0, a(x, t)(%)t(x, t)}.

Proof. It follows from O'Riordan et al.’
The following lemmas provide the derivative bounds of wi(x, ) and w,(x, ), which will be required for the
convergence analysis. O

Lemma 11. When ay? < ye, the singular components wi(x, t) and w,(x, t) of (18) to (19) satisfy the following bounds

—0,x — —0,(d—x) —
e "X, x,p)yel", e , (x,p)yel,
[wi(x, O)|r-ur+ < C{ e_.s'l(x—d)7 (x,t) e, Wy, )| r-ur+ < C{ e_92(1_x), (x, 1) € r+,

where

Va7 Va7

0p=—— and 0,=

Ve 2

24

Proof. To find the bound for wy(x, £), let us first consider the following barrier functions:
wEC 1) = Ce % wi(x, t).
For the domain I'", it can be written as
wE(x, 1) = Cem Vs /CVe w(x, 1),

Applying the operator L, , to the above equation, we obtain

ay  Var

Leuwi=et) = C | 5 —apu"—= = b| e VPOV £L, e,
24/

<cC [% - % - b] e VIHICVO L L wi(x, 1) > 0.
Let us define the barrier functions wz‘-” onIt as

wECe, 1) = Cem Ve /o 4y (x, p).

Then, we have

Var
Lewireoty=C lay —au - b] e VI DIVE L T i, 1)

£
<C [ay —ay — b] e_\/"’_”("_d)/\/giLE,,,wl(x, 1) >0.
The above comparisons can be also developed for the right singular component w,(x, t) in I'" and I'*. Hence, by using

Lemma 2, we obtain the required bound. U

Lemma 12. For au? > ye, the singular components wy(x, t) and w,(x, t) of (18) to (19) satisfy

e (el e @ (x el
Wi, O)|r-ur+ < C{ 6—91("—(1)’ 1) eI+, [w,(x, O)|r-ur+ < C e—gz(l—x)’ (et e T+
where
a
0, = —” and 6, = L (25)



10 Wl LEY CHANDRU ET AL.

Proof. We follow the idea given in O'Riordan et al.’ for parabolic problems with smooth data. For the case au? > ye,

a careful examination will be needed since w,(0, t) # 0. Consider the following barrier functions of wy(x, t)

wiE(x, ) = Ce2Me %  2wi(x, 1) = Ce™ e/ wy(x, 1), (x,t) €T,

Wit (x, ) = Ce e 00D sy (x, 1) = Ce e /e wy(x, 1), (x,t) € T,

where A is previously defined. From Lemma 10 with sufficiently large C, we have wf(x, 1) >0, u/f(x, >0, (x,t) el
and L¢ ,y; (x,t) <0, L,y (x,t) < 0. Now, by using Lemma 2, we get the required bound. Similarly, we can derive

the corresponding bound for the right singular component w,(x, t) in both domain ' and I'*.

Lemma 13. When au? > ye, then w,(x, t) and wi(x, t) of (18) to (19) satisfy the bounds

ok om
ﬁ’ <C(ur+ute®), 1<k<3and Wr <C, m=12
OX* |- e o™ lir-urs
and
or 0?
TR <c(ue™). 1<k<3and | T2 <C(14 %),
N . 0% flr-ur+

O

Now, we write the solution of (1) to (2) as y(x, ) = v(x,t) + w(x, t). Note that both v(x, t) and w(x, t) are discontinuous

at (d, t),t > 0, but their sum is in C'(I'). Note

v, for (x,p e, _ [ wi(x,p), for ) €T, _ Jwixp, for (x,0) eI,
o= { vt 0), for (r) e I, WHD = { wree, o). for (.0 € 1+, 2WEED =\ Whie . for (r.r) € T

3 | DISCRETIZATION AND THE STABILITY OF THE DISCRETE PROBLEM

Now, we define an a priori defined space adaptive mesh on which the convergence of the solution will be discussed. To

obtain this, we first split Q, as follows:

Q. =[0,71]U[r1,d =] U[d - 75,d] U [d,d + 73] U [d + 73,1 — 2] U [1 — 74, 1].

Here, 71, 72, 73 and 74 are transition parameters. The subintervals [0, 71], [d — 72,d],[d,d + 73] and [1 — 74, 1] contain
N, /8 mesh intervals, and remaining are coarse regions with N, /4 mesh intervals. Here, N, denotes the number of mesh

intervals used in the x-direction. The interior mesh points are denoted by
N, N,
Qsz{xi : 15i57"—1}u{x1 : 7x+15i§Nx—1}.

_Nx . .
We choose xn_, = dand Q," = {x; }1(;& U {d}. The transition parameters are chosen as follows:

1-d 2 1

0

T =min{§,9%lan}, 12=min{%i,9%1an}, T3=min{T —lan}, andr;;:min{%d %lan},

591

(26)

_Nx N e . .
where 6; and 6, are defined in the earlier section. The above piecewise uniform space mesh for Q, on €, is containing
N, mesh elements. We use the uniform mesh to discretize Qfl‘ on Q; with N; mesh elements, ie, step-size is At = T/N;. In
practice, we use N, and N; are assumed to be of same order to reduce the computational cost. Let us denote N = (Ny, Ny).

Now, we discretize (1) to (2) as
LMY (xi,ty) = (662 + auDy — b — eD))Y (i, 1) = f(xi, ), (O ty) € MV~ TN,
Y(09 tj) = y(oa tj)? Y(la tj) = y(l» tj)’ ] > 05 Y(xia O) = }’(xh 0)7 i= 07 o '7Nx7 and.] = 17 o '7N£9

DY (XN 2, t) = DYY (XN 2, t)), j =1, -+ Ny,

(27
(28)

(29)
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2DF-D)Y (L) s ' _ ] DyY(x;,t5), i < Nyi/2 . v Y)Y ()
Xip1 X1 ’ DxY(x“ tj) - { D; Y(xi, tj)s i> Nx/2, with Dx Y(x” tj) - Xip1 =X

Y0.t)-Y(x_1.t)) and DIY(x,t)) = YOx.t)-Y(x;.t;_)
Xi=Xj_1 ’ ¢ v )

=t
The following lemmas show that the above discrete operator leads to a stable numerical solution.

where 62Y(x;,t;) = » DyY(a, b)) =

J

Lemma 14. Suppose that a mesh function Y(x;, ;) satisfies

NN,

Y1) <0, V (i, 1) €TY, Loy 'Y, 1) 20, V (x, 1) € TV UI™N), and

—N
(DY (i, t) = Dy Y(Xi, 1)) 20, V (x3, 1)) € ™% then Y(xi,t;) <0, V (x,t;) €T .

Proof. Let us assume that the maximum value of Y(%;,f;) attains at (%;, ;) in I_“N. Note that the result is obvious if
Y(%;,1;) < 0. Now, consider Y(X;, ;) < 0. An easy calculation shows that this leads to a contradiction for two separate
cases (%, ;) € (TN~ uTN*) and (%, 1)) = (d, t;), since either L5 Y (x;, t;) > 0 or (D} — D5 ) Y(d, ;) > 0. Therefore, the
desired result follows. O

Lemma 15. Let Y(x;, tj) be a discrete solution of (27) to (29), then

1

1Yl < Cmax { ¥y

UL Y v } :
where £ = min {a;/d, ay/(1 — d)}.

Proof. The proof of the discrete stability result is analogues to the continuous stability result. Consider Y. (x;, t;) =
SILEM Y
&d
¥.(x;, tj) > 0 and the discrete operator LIZ);N“{‘i(xi, t;) > 0 when (x;, t;) € (TN~ UT™F). Then, we have

<—||Y||1-0N - > +Y(d, t;), where we have considered (xy, ) as the point of discontinuity in I. Note that

N,.N, NN,
Ly Y1 ey Yl

+ _ - N —
(Dx Dx)lpi(d’tj) fd + f(l—d) =z Y,

and (ng - Dy ) Y(d,t;) = 0. Hence, by using the discrete comparison principle at Lemma 14, we have W, (x;,t;) <

=N
0,V (x;,t;) € I' . Therefore, the required result follows. O

4 | ERROR ANALYSIS

The convergence of the present method will be considered by combining the consistency analysis based on truncation
error and stability analysis. We decompose the discrete solution Y(x;, ¢j) into discrete regular component V(x;, ;) and dis-
crete singular component W(x;, ;) as Y(x;, ;) = V(x;, ;) + W(x;, tj). Now, we define the discrete problems corresponding
to V- (x;, ;) and V*(x;, t;), which approximate V(x;, ;) to the left and right side of discontinuity point (d, t;) as follows:

LNV (at) = £ ), ¥ Gaty) € TV,
V7(0,t;) =v(0,t), V (xn 2, L) =v(d—,t;), Vv (x;,0) =D, forsome 79,

and

Lf,ﬂNZVJ’(xiJj) = f(, 1), ¥V (x,t;) € TN,

V(X 2. t) = v(d+, t), Vo, 1) =v(1,t)  vh(x;,0) = u(x, 0) — .

Further, we decompose the discrete singular component as W(x;, tj) = W(x;, ;) + W (x;, ;). Then, we construct the mesh
functions W (xi, t)), Wl+(xl-, t;), and Wy (x;,t;), W;F(x;,t;) to approximate Wi(x;, ;) and Wy(x;, t;) on left and right sides of
discontinuity point (d, t;). Here, W (x;, t;) and W (x;, £;) correspond to the left boundary layer and right interior layer
part of the solution, respectively. Similarly, Wl+(xi, t;) and W, (x;, t;) are the solution parts of left interior layer and right
boundary layer. The problems of the singular component solutions are defined as follows:
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LMW () = 0V (6, 1) € TV, 0)
W (0,t) =w;(0,t), W/ (d.t;)=w,(d,t)),

LMW, ) = 0V (g, 1) € TV, an

Wl+(d, tj) = W,Jr(d, t;), Wl+(1’ tj) =0,
LN W (1) = 0V (. 1) € TV, 32

Wr_(O, tj) =0, Wr_(d, tJ) = W;(d, tj),

LMW (1) = 0V (6, 1) € TVY,

Wi(d,t;) =0, WS (1,t) =wi(L,t), (33)

(V+ W+ Wy )doty) = (VE+ W+ W) d, 1)),

where Wl‘(xi,O), Wl+(xi,0), W7 (x;,0), and W, (x;,0) are chosen suitably. Hence, the discrete solution Y(x;, ) can be

written as
(V_ + IJ/I_ + Wr_) (xi’ tj)7 (Xi, t/) € FN_9
Y t) =4 (V- + W+ W)@t = (VY + W+ W) @1,
(VE+ W+ W) (. tp), Ga.ty) € TV

Lemma 16. 2 The bounds for the singular components W (i, to), Wl+(xi, tv), W7, ty), and Wt (x;, ty) are

i
Wy eatl < CTJa+0:m)™ = vy 1<i<Ne/2 9y =C
j=1

i

Wil < ¢ [T a+omp™ =y, i<Nowi ,=C
J=N_/2+1
N./2
Wy a0l < C[[a+or)™ =y, 0<i<N/2, vy ,=C,
j=it1
NX
Wt < CTJa+6:h)" =w), i2N/2, yh =C,
j=itl
where 0; and 0, are defined as follows:
YT it a? < ve, 2—‘/? if ap? < ye,
01 = 2\/2 and 92 = €
i P o if au?
= fap’ > ve, e fau2ve,

(34)

(35)

(36)

(37

and hj = x; — xj_; and W (xi,t)), Wl+(xl-, t), Wi (xi,t;), and W) (x;, t;) are solutions of (30) to (33), respectively.

Lemma 17. The truncation error of the regular component satisfies

IV = vllpv-urss < C (Ne'+N;1).

Proof. The truncation error bound for regular component is estimated using the following classical argument at the

domain I'N~ by a similar technique provided in O'Riordan et al.” Observe from (17)

NN, e
LMW =)0 )| <

NN, 1 ,— _
LMV (1) = Loy (s ty)|

PN oy, ooy,
<e <5§ - ﬁ) V= (e, )] + aGxi, ) (Dx - &) V™ )] + cCa ) (D[ - E) v Can )|

< Cmax by (ellViull + pllvll) + CN; vl

< CIN;'+ N7,
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Similarly, we can derive the same error estimate at 'V*. Hence from Lemma 14, we have

IV = vllps-urss < C (Ng' + N7

Lemma 18. The truncation error of the left singular component satisfies

C(NZ'InNy + N, if ap?® < ye,

C(N;'InN, + N ), if au® < ye,
CINT'InN, + N, if au? > ye,

C(N;'(InNy)? + N7 ' InNy), if au? > ye.

W —w/ I < { and |W;r —wi||pw < {

Proof. OnT'N~, we have

N,.N,
Ley

Wy = w6 £)| <

NN, 11 ,— _
LMW 1) = Leuw] ()|

0% _ _ 0 _ _ 0 _
<e (6,% - ﬁ> w7 G 1] + @it (D5 = =) [ G 1) + 1) (D7 = 52 ) w7 G

< Cmax; by (€| (W) el + pll W) ell) + CNHI W) el

(38)
and similarly for I"*, we have
LN W —whie )] < Cmax by (ellWsell + #llW)sell) + CNTHIW - (39)

Now we consider two cases (1) 7; < %’ and (2) 7, = é for the singular component analysis.
Case2:7; < % implies mesh is piecewise uniform. In I'N~, let us first consider [z, d) X Qf" to find the required bound
from Lemma 11 and (34). Note

_ -N,/8
Wi Gov, )

< C(1+6:h))

-N,/8
Ny

< C(1+16N;" InN,) ™%,

where we have used the inequality In(1 + x) > x(1 — x/2) for x > 0 with x = 16N ! In Ny, to get the last inequality.
Hence,

’W'l_(xNx/g, t,-)‘ < CN;', for (x;,t)) € [r1,d) X Q.
From the Lemmas 11 and 12, we have
|Wl‘(x, t)| < Ce %* < Ce™% < Ce2"Ne < CN2.
Now, combining the results of Wl‘(xi, t;) and wl‘(x, t), we obtain
| (W = w0 )| < ONEY, for (1)) € [r1,d) x .
Now, consider the fine mesh region (0, 71) X tav[ in 'V, First, consider the case au? < ye. Observe

N = - C -
LMW — w1 < et O+ N, "

. 16y/€ A
Since 71 < 3, therefore hip1 = h; = == N-!1In N, and hence
8 y X

\/a_

LZ’;N’(WZ‘ - w))(x;, t,»)| <C(Ny'InNy+N;1).
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The required bound follows from the discrete comparison principle. Now, consider au? > ye. Then (38) reduces to

— W) 4 )| < Cu ™ (hiy1 + ) + CN7P < CN7'In N, + CN7,
since hjy1 = h; = 167“Nx‘1 In N,.. Hence, we have
’(Wl‘ —w)(x, t,)| <CN;'InNg+ CN7' (. t;) € TV,

from Lemma 14. To find the bounds for Wl+(xi, t;)and wl+(x, t) on the domain I'V*, we first divide it into [d, d+73) X Q[N‘
and [d + 73,1) X Qi\]‘. Let us consider [d + 73,1) X Qf]‘. From Lemmas 11 and 12, we have in 'Y,

’w;’(x, t)‘ < Ce®* < CeOm < Ce~2INe < ONZ2.
From the bounds at (35), it follows at [d + 73, 1) x Q7 that

|Wl+(x5Nx/g, tj)| < C(l + elhj)_NX/s

—-N,/8
8‘[3 *
<Cl1+6

< C(1+16N:' InN,) ™/*
< CN¢t.

Combining the bounds of Wl+(xl-, t;) and wl+(x, t), we have
(W —whee )| <ONFL for () € [d+ 7 ) x Q)"

Let us start with the case au? < ye on the fine region [d, d + 73) X Qf]‘ in °’N*. Here,

NN,

C _
(W+ ;—)(xi, tj)| < T(h”l + hl) + CNt L
£

Ast3 <5/8and hjy = h; = 1\6/§Nx‘ 11n N,, therefore

W =W 1)| < C(NF InNG + N

The required result follows from the discrete comparison principle. Now, consider the second case au® > ye and
hiy1=h; = %NX‘ !1n N,. The truncation error bound given in (39) reduces to

2 2
r(W+ l+)(x"’ [j)| < CNx—l InN, + CNx—lﬂ? InN, + CNt_l <1 " //l?> .
Consider the following barrier functions
ll/li = <Nx_1 In N, +Nz_l + <(r3 X)) = > (N‘l InN, +N; 1)) +(W+ _ W+)(xl,t N

which becomes nonnegative for sufficiently large C at all points of FN and Lg o ‘V1 (xi,t;)) <0, (xi,t;) € TV,
Therefore, using ;3 = jj‘l In N, in TN*, we have from Lemma 14

(Wl+—wl+)(xl-,tj)| < C<N;1 InNy + N7+ <(73 i >(N‘1 InN, + N 1)) < C(Nf'(InNo? + N7 InNy) .

5

Case 2: In the first case, the mesh is uniform. Now, assume au? < ye. If 7; = % then glln N, < % where 0, =
2

%

from (24). By the classical arguments given in (38) on I'N-, it follows

LMW — w0, )] < C (N InNe + N7
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Now, consider the condition au? > ye. Here, 6, = ﬁ from (25). Hence from (38), we can write

LEN W = w6 t)] < € (N InNG + N

Ifr3 = % then %lan < % where 6; = % from (24) for au? < ye. Using (39) in '+, we have

MW —wha, t,)| < C(N;'InN, +N;1).

Now, for au® > ye, we use 6, = "?" from (24), to get

SN W - wh e, tj)| < C(Nf'(nNy? + N'InN,) .
From the above results and the discrete comparison principle Lemma 14, we can obtain the desired results

o CIN;'InNy +NY, if ap® < ye,
W, =wpllrv- < { C(N;!'In Ny +Nt‘1), if ap? > ye,

and

W — W[ < C(N;'InN, + N, if ap® < ye,
I I = CONFAnNo)? + N7 HInNy), if ap? > ye. O

Lemma 19. The truncation error of the right singular component satisfies

- C(Ng'InN, + N1, if au® < ye,
[|W; Wy |Ipv- < { C(Nx—l(lan)Z +Nt_1 InNy), ifaﬂz > ve,

and

CIN;'InN, + N7, if ap? < ye
+ _ oyt + X o ! ’ ’
Wy = e e < { C(Ng'InNx + N7, if ap? > ye.

Proof. We follow a similar procedure provided in Lemma 18 to find the error estimate for the right singular

component. On I'N~, we have

e WG 1) = Lewr ()|
02 0 _
<52 - —) |wr (6, £)| + ax, tj)u <D - —) |wi G, 1) + i, £7) ( E) |wr (i, )]

< Cmax by (el W el + #ll(WPell) + CN;HI W7 el

LN W7 —w)ea )| < |t

(40)

Similarly for TN*, we have

LMW —wi), )] < Cmax by (el Wl + ullWsell) + CNFHIW - (41)

Here, we consider two cases (1) d — 7, < g and (2)d — 1, = % for the singular component analysis.

Case 1: The conditiond — 7; < g gives the piecewise uniform mesh. In TV, first consider [0, d — 75) X Qi\]‘ to find the
required bound from Lemma 11 and (36). Note

-N,/8
Wi Gean, )| < C(1+0ih;) ™ < c<1+91 <§VT2>> < C(1+16N;" InN,) ™",

X
where we have used the inequality In(1 + x) > x(1 — x/2) with x = 16N ! In Ny, to get the last inequality. Hence
Wy (e, gs, )] < CNZ?, for (xi, 1) € [0,d — 72) X Q.

From the Lemmas 11 and 12, we have
|Wr_(x, t)l < Ce‘el(d‘x) < Ce_elfz < Ce—21nN < CN_
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Now, combining the bounds of W (x;, t;) and wy; (x, t), we obtain
|(Wy = wi)x, £)] < ONZY, for () € [0,d — 72) X .

Now, consider the fine mesh region (d — 7,, d) X Q in "N~ First, consider the case au? < ye. Note

LN W — wi)e ¢ )| < Ce V2(hyy; + hy) + CN7L.

. 16 _
Sinced — 15 < %, therefore, hi, = h; = \/aif N; n Ny. So,

—w,)(xl,t)| < C (N7 InNy +N;Y).

The expected bound follows from the comparison principle. Now, consider au? > ye with hjy, = h; = MT”NX‘ 'n N,.
Then, (40) reduces to

7 - W 6| < —(/’ll+1+h)+CN_ < CN:'InNy + CN7.

Using Lemma 14, we obtain |[|W; —wj; || < CN;' In N, + CN;'. To find the bounds for W/ (x;, t;) and w; (x, t) on the
domain I'V*, we first divide it into [d, 1 — 74) X Qi\" and [1—174,1) X Qf]‘. Let us begin with the domain [d, 1 — 74) X Qf]‘
to obtain the bounds from (35).

|Wr+(X7Nx/3,tj)| < C(l + ezhj)—Nx/x < C(l Lo, <§]g\;.4

N,/8
>> <C(1+16N" InN,) ™ < oNp?,
pe
for (x;, t;) € [d,d — 74) X th\]’. Again from Lemmas 11 and 12, we have in 't
[wif (x, )] < Ce™®079 < Cef>™s < Ce™?™Ns < ON;2.
Therefore, by combining the above bounds of W} (x;, t;) and wi (x, ), we obtain

|(Wi —wi)(a, )| < CN; L, for (i, 1)) € [d, 1 — 74) X Q).

Now consider the case au? < yeon [d,1 — 74) X QﬁV‘ in 'N*. Here

W —wh, )| < —(hl+1 +h;) + CN; .
<

Sincel — 14 < g and hi;1 = h; = ljaifN; 11n N,, therefore

LMW —whe )] < C (N InNe + N7

The required result follows from the discrete comparison principle. Now, consider the second case au® > ye and
hiz1 =h; = lﬁN‘1 In Ny. The error in (41) reduces to

2
’(W+—w+)(xl,t)|<CN‘1lnN +CN—1” InN, + CN < “—>.
&

Consider the following barrier functions:
+ _ -1 - _ M -1 -1 + V(v f
c( In Ny + N;1 (((1 ) xl)e)(Nx In Ny + N; ))i(W, W £).

For sufficiently large C, we have y"(x;, t;) is nonnegative at all points FN and LE by 1//1 £(xi,t;) <0, (x;,t;) € 'V, and
so by discrete comparison principle, we have

|(W+—w+)(xl,t)|<C< N7'InN, + N7+ (((1—14) W )(N—llnN +N1))
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Since 74 = 47” In N, we obtain
|(W;F = whH(xi, t)| < C (N7'(InNy)? + N; ' InN) , for (x;,t;) € TN

Case 2: Now, consider apy? < ye. If d—1, = 3 then 93 InN, < 3» where 0; = % from (24). By the classical arguments
1
for (40) in '™, it follows

LYWy = when )] < € (NTHInN + N

Now, consider the condition au? > ye. Here, 6; = % from (25). Hence, from (40), we can write

LN W = wi) e, t,-)| < C(N;'(InNo)*> + N7 InN,) .

Forl -1z, = % we have 93 InN, < % where 0, = g from (24) for au? < ye. Using (41) in I'N*, we get
2

N_.N,
€.

L

(W — wh(x, t,-)‘ < C(Ny'InNc+N;).
For au? > ye, we take 0, = ﬁ from (25) and get

NN,
€.

L

W —whH)(x, t,)| < C(N;'InN, +N;1).
Therefore, from the above results and the discrete comparison principle, we can write
_ _ C(N;'InN, + N, if ap® < ye,
”Wr — W, IlFN— < { C(Nx—l(lan)Z +Nt_1 lan)’ if aMZ > ye,
and

CIN;'InN, + N7Y), if ap® < ye

+ ot . X x ) s
”Wr w, ”FN < { C(Nx—l lan +Nt_1)9 if aMZ > yE,

which is the required bound.
At the point (x;, ;) = (d, ), we have (D} — D) Y(d,t;) = 0. Therefore,

|(DF = D7) (¥ = »(d. )| = |(DF - D) Y(d. ) = (Df = DY) y(d. )| < |(Df = D7) (. 1)

Now, note that h; = i{ﬁ and hy = % on either side of (d, t;). Therefore,

x

|(Df = D7) (v = »)(d. )| < | (DF - D7) widh. )|

<D+ - i) y(d+,tj)

<
- dx

_d
+ <D —E>y(d_’tj)

h h
< c?3|yxx|m, + c?4|yxx|rm

< C(h3 + hy)

[Vl rn-urn+,
2

@ (i) , if ap? < ye,

2
—(h3;h“) <f) , if ap? > ye.

|(DF - D) (¥ - »id.tp)| <

5 | ERROR ESTIMATE

Theorem 1. The continuous solution y(x, t) of (1) to (2) and the numerical solution Y(x;, t;) of (27) to (29) satisfy the
following error estimate:
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1Y — i < { € (N INNc+ N7, if a® < v,
Y= o (NS AnN? + NV In ) | if ap? > ve,

ie, the difference scheme (27) to (29) converges with almost first-order accuracy in space and time.

Proof. Combining the Lemmas 17, 18, and 19, we obtain the following error bound for (x;, ;) # (d, ;)

C(Nx_llan+N[_1), ifap? < ye,

42
C (N'(nNo? + N1 InNy ), if ap? > ye. (42)

|(Y = »)(a. )] < {

Using the techniques given in Clavero et al. and Chandru et al.,”'® we can also obtain the error for (x;, ) = (d, ).
First, we obtain the result for the case au? < ye. Consider the following discrete barrier function:

W (Ns'InNe + N71) + G2 22((d — 72) — )%e(x), for xi € (d — 72,d) X Q)
(X, t) =
e C; (Nx‘1 InN, +N;') + C4grzz(x —(d+ m))xex), for x; € (d, d + 73) X Qf]‘,

where h; = % hy = % and h = max{hs, hs}. Then, it is easy to verify that

. N
07 (X, 8) <0, V (x,t;) €Ty,

for sufficiently large C;. We also have

7NN,

e @07 ( 1) 20, V (g, ) € (V" Ul

and
(Df = D) wi(d, 1)) 20,
for suitably large C,. Thus, from the discrete comparison principle, we get
—N
o (X, t;) <0, V() el .
Therefore, for sufficiently larger N,, we obtain the following estimate
|(Y = », £ < C (NJ'InNe + N, if ap® < ye. (43)
In the second case au® > ye, consider the discrete barrier function
Cs (N;'In N2 + N7 InN) + (Co (Ni' InNs + N;1) 4 €22
(d = 72— x)%e(x), X € (d - 72,d) X Q",
Cs (N7 N2 + N7 InN) + (Co (NG In Ny + N71) £ 4 €22 )
(06 — (d + m3)*e(x), x; € (d,d + 73) X Q.

w?(xb tj) =

Using a similar procedure from the above technique based on discrete comparison principle, we also obtain the error
estimate

(Y = )i, t)|v < C(NFIAnN)? + NP InNy),  if  au® > ye. (44)
JIT t

Hence, we have the required result. O

The above bound provides the parameter uniform estimate as the constant C is independent of singular perturbation
parameters € and u. In practice, we will only take N; = O(N,) to reduce the computational cost. Hence, the numerical
solution will converge to the continuous solution almost linearly.

6 | NUMERICAL EXAMPLES

Here, we consider four test problems with discontinuous convection coefficient and discontinuous source term to show
that our estimated rate of convergence is true in practice. Motivated from the examples and their error analysis given in
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Das and Mehrmann,” we construct the following examples. Here, we only mention the coefficients and source terms
with initial data to define the parabolic IBVP in (1).

Example 1.
=1 +exp)), 0 <x <04, =1 +xM, 0<x<04,
alx, ) = { 1 +exp), 0d<x<1, TED=9 11x) od<x<l.
b(x,t) =1+4x%, c(x,t) =1, and ¥(0,t) = y(1,t) = y(x,0) = 0.
Example 2.
_x+2, 0<x<0.5, _J 2x+1t, 0<x<0.5,
ax, 0 = { —(x+3),05<x<1, J&D= { —Gx+4), 05<x<1,
b(x,t) = 1 +exp(x), c(x,t) =1, and y(0,) = y(1,t) = y(x,0) = 0.
Example 3.

-1 +e™),0<x<0.5, [ =1DA+xt),0<x<0.5,
ate ) = { 2+x+1, 05<x<1, DT\ Zoine T o5<x<l,

b(x,t) =2 +xt, c(x,t) =1, and y(0,t) = y(1,t) = y(x,0) = 0.

04— |
c 0.2
2 s
=1 -
S 2 0
% )
£ 8 02
Q B
[
E £
z 3 -04
-0.6 -
0
0 Tim
fme 1 0.8 0.6 0.4 0
Space
(A) e=2""and p=27* (B) e=2""%and p =272,

FIGURE1 Numerical solutions for N, = 64 for Example 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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0.8
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0.6

0.4

Numerical Solution
Numerical Solution

0
04 02

Space

.2 0 0.6
1, 0.8 0.6 04 0 1 0.8

Space
(A)e=2"1and p=2"* (B) e=2"" and p=2"%.

FIGURE 2 Numerical solutions for N, = 64 for Example 2 [Colour figure can be viewed at wileyonlinelibrary.com]
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Numerical Error
Numerical Error
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.2
1, 08 06 0.4 0
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(A)e=2"Pand u=27*

FIGURE 3 Maximum point-wise errors for N, = 64 for Example 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Maximum point-wise errors for N, = 64 for Example 2 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Maximum point-wise errors of Example 3 for N, = 64 [Colour figure can be viewed at wileyonlinelibrary.com]|
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FIGURE 6 Maximum point-wise errors of Example 4 for N, = 64 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Numerical solution with Ny = 64,e = 2720, and 4 = 1 of Examples 1 and 2, respectively [Colour figure can be viewed at

wileyonlinelibrary.com|
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FIGURE 8 Numerical solutions with N, = 64,6 = 271%and y = 272° of the Example 1 whose source term is replaced by f(x, ) = (1 + x*)t
and Example 2 whose source term is replaced by f(x,t) = (2x + 1)t, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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Numerical Solution

FIGURE 9

FIGURE 10

FIGURE 11
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(A)e=2""and p=2* (B)e=2"""and p=2"%.

Numerical solutions of Example 3 for N, = 64 [Colour figure can be viewed at wileyonlinelibrary.com]
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Numerical solutions of Example 4 for N, = 64 [Colour figure can be viewed at wileyonlinelibrary.com]
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Numerical solution for N, = 64,6 = 272 and 4 = 1 of Examples 3 and 4, respectively [Colour figure can be viewed at

wileyonlinelibrary.com]


http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

CHANDRU ET AL.
Example 4.
_J1+xQ-x)+t 0<x<0.5, _J @+x)('-1),0<x<0.5,
alx.f) = { —A+3,  05<x<1, J&D= { (-2+x)t  05<x<1,
b(x,t) =1+x+t, cx,t) =1, and y(0,) = y(1,t) = y(x,0) = 0.
s
5 S
3 3
3 @
E £
E

0.6 0.4
Space

1 0.8

0.6 0.4
Space

WILEY——2

0.2 0

FIGURE 12 Numerical solution with Ny = 64, = 271°, 4 = 2720 of Example 3 whose source function is replaced by
feet) = (e‘2 — 1)(1 + xt) and Example 4 whose source function is replaced by fix, ) = (1 + x)(e' — 1), respectively [Colour figure can be
viewed at wileyonlinelibrary.com|

TABLE1 Maximum pointwise error EY and order of convergence pY for £ € S, and

different values of y for Example 1

Hl
1

2—2

2—10

2—12

2= 14

N, —
B
o
e
o
Ey
o
e
o
Ey
o
Ey
o
E)
o
Iz
P
By
o
e
o
Ey
o
Ey
o
EY

o

64

7.88687E-03
2.77675E-01
1.72968E-02
2.96503E-01

1.44482E-02
2.17959E-01

1.78930E-02
5.15312E-01

1.74626E-02
4.79237E-01

1.73432E-02
4.69204E-01

1.73126E-02
4.66637E-01
1.73048E-02

4.65997E-01

1.73010E-02
4.65954E-01

1.73024E-02
4.65795E-01

1.72721E-02
4.67810E-01

1.72947E-02
4.66282E-01

1.73022E-02
4.65666E-01

128

6.50604E-03
4.62061E-01
1.40835E-02
4.91576E-01

1.24223E-02
4.32192E-01

1.25187E-02
4.34585E-01

1.25269E-02
4.33654E-01

1.25281E-02
4.33336E-01

1.25282E-02
4.33243E-01
1.25281E-02

4.33219E-01

1.25258E-02
4.33158E-01

1.25282E-02
4.33236E-01

1.24888E-02
4.32259E-01

1.25184E-02
4.32974E-01

1.25292E-02
4.33456E-01

256

4.72305E-03
5.96834E-01
1.00169E-02
5.91600E-01

9.20659E-03
5.61125E-01

9.26266E-03
5.62531E-01

9.27471E-03
5.62785E-01

9.27763E-03
5.62734E-01

9.27834E-03
5.62740E-01
9.27842E-03

5.62733E-01

9.27711E-03
5.62700E-01

9.27838E-03
5.62691E-01

9.25542E-03
5.62187E-01

9.27278E-03
5.62598E-01

9.27766E-03
5.62412E-01

512

3.12290E-03
7.26247E-01
6.64725E-03
7.58048E-01

6.23998E-03
7.39769E-01

6.27187E-03
7.42515E-01

6.27892E-03
7.42299E-01

6.28112E-03
7.42453E-01

6.28158E-03
7.42438E-01
6.28166E-03

7.42436E-01

6.28092E-03
7.42399E-01

6.28181E-03
7.42557E-01

6.26846E-03
7.41851E-01

6.27843E-03
7.42296E-01

6.28254E-03
7.42804E-01

1024
1.88771E-03

3.93049E-03

3.73672E-03

3.74868E-03

3.75345E-03

3.75437E-03

3.75468E-03

3.75473E-03

3.75438E-03

3.75451E-03

3.74836E-03

3.75317E-03

3.75430E-03
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Since exact solutions of these examples are not available, the maximum point-wise errors and rates of convergence will
be calculated using the double mesh principle (see Das and Mehrmann and Das®+*'). We define the double mesh error
and corresponding order of convergence for fixed values of € and y as follows:

N
—2N
N N N e
Eg, = max [Y*-Y | and pg, =log, -~ |
(x;.t;)Er Ee,u

where YV defines the numerical solution by taking N = N, = N,, (here, N, is the number of partitions in space, and
N; is the number of partitions in time), and ?ZN is the piecewise linear interpolant of the solution Y2V on the same mesh
points, obtained with 2N = 2N, = 2N,. In addition, we also compute the error and order of convergence by fixing x and
varying ¢ from a larger set, say € € S, and name them as

N
N _ N N _ u

E, = E%%?EW and p, = log, N
U

The parameter uniform error and order of convergence will be calculated as

EN
EN= max EY, and pV=log, (= ).
(xS, xS, P &\ N
The solution surface plots over all time level in Figures 1 and 2 show that the boundary and interior layers inside the
domain appears because of the presence of perturbation parameters and discontinuous data. These layers become sharper
as u decreases. Here, we have taken « = 2, = 1,and y = 0.5 for the Examples 1 and 2. Note that the error plots in

TABLE 2 Maximum point-wise error E} and order of convergence p} for € € S, and
various values of y for Example 2

ul  Ny— 64 128 256 512 1024

1 EY  129224E-02 9.03664E-03 6.20094E-03 3.84505E-03  2.26100E-03
oy 5.16012E-01 ~ 5.43300E-01  6.89486E-01  7.66040E-01

22 EY  15185E-02 1.12136E-02 7.91271E-03 501053E-03 2.95183E-03
oy 4.37411E-01  5.03009E-01 6.59210E-01  7.63355E-01

274 Eﬁ:’ 2.17182E-02  1.20962E-02  6.46309E-03 4.17747E-03  2.45903E-03
pl‘:] 8.44352E-01 9.04253E-01 6.29594E-01 7.64543E-01

P EI,:’ 2.37882E-02 1.83583E-02 1.26131E-02 8.07884E-03 4.72060E-03
p]‘f 3.73812E-01 5.41508E-01 6.42704E-01 7.75178E-01

278 Eﬁ)’ 2.31625E-02  1.80327E-02 1.24177E-02 7.96677E-03  4.65211E-03
pﬁ] 3.61175E-01  5.38221E-01 6.40330E-01 7.76109E-01

o Ef:’ 2.30061E-02 1.79514E-02 1.23689E-02 7.93878E-03 4.63500E-03
pﬁ] 3.57921E-01 5.37382E-01 6.39725E-01 7.76348E-01

2712 Eﬁ:’ 2.29670E-02  1.79311E-02 1.23567E-02 7.93178E-03  4.63072E-03
pi:] 3.57102E-01  5.37172E-01 6.39573E-01 7.76409E-01

D Eﬁ:’ 2.29572E-02 1.79259E-02 1.23536E-02 7.93000E-03 4.62963E-03
p]‘:] 3.56897E-01 5.37120E-01 6.39535E-01 7.76425E-01

2716 Ef:’ 2.29534E-02 1.79234E-02 1.23518E-02  7.92886E-03  4.62890E-03
pl);] 3.56862E-01 5.37126E-01 6.39538E-01 7.76445E-01

2 Eﬁ:’ 2.29542E-02 1.79244E-02 1.23527E-02 7.92949E-03  4.62932E-03
p]‘;] 3.56832E-01 5.37102E-01 6.39523E-01 7.76428E-01

2% EN 2.29540E-02 1.79243E-02 1.23526E-02 7.92947E-03  4.62930E-03
oy 3.56829E-01 5.37101E-01  6.39522E-01  7.76429E-01

- 2.29540E-02 1.79243E-02 1.23526E-02 7.92945E-03  4.62929E-03
oy 3.56828E-01 5.37101E-01  6.39522E-01  7.76429E-01

272 EN 2.29536E-02 1.79240E-02 1.23524E-02 7.92927E-03  4.62918E-03

M

pfj 3.56832E-01 5.37106E-01 6.39525E-01 7.76433E-01
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Figures 3 and 4 depict that the errors are mainly dominating from the boundary and interior layer regions for Examples 1
and 2. The same behavior can be also noticed for Examples 3 and 4 from Figures 5 and 6, respectively. In the subsequent
figures, we discus the behavior of the solution for various values of € and u, which helps us to understand the impact
of parameter values and their effect in the layer appearance due to the discontinuity in convection coefficient as well as
source term.

To show the nature of the layer phenomena for all possible variation of signs between a(x, f) and f(x, f), we con-
sider four different examples. Figure 7 shows the layer behavior for two possible sign changes of discontinuous
convection-coefficient at the interior part of the domain for the Examples 1 and 2 with 4 = 1. One can see that the
solution of Example 1 has only interior layer and the solution of Example 2 has only boundary layers. Note also that
it is numerically observed in O'Riordan and Shishkin® that the discontinuity in convection coefficient can lead to only
interior layer, when the source function is continuous. The layer shifting towards an interior point can be related with
the sign of convection-coefficient inside the domain. Note also that, the interior layer(s) may not appear even if the
convection-coefficient is discontinuous, which can be clarified from Figure 8 where the boundary layers are observed cor-
responding to smooth source functions. To develop this figure, we only replace the source functions in Examples 1 and 2
by smooth functions which are f(x,t) = (1 + x*)tand fix,t) = (2x + 1)t, respectively. In this case, we have unchanged
a(x, t), b(x, t), c(x, t) and the initial data to modify the Examples 1 and 2.

The solution surface plot at Figure 8 observes only boundary layers for both of the modified examples. Therefore, the
sign of the convection coefficient also has an influence in generating interior and boundary layers in addition to the
presence of perturbation parameters € and p.

In Figures 9 and 10, we have shown the solution and error plots for Examples 3 and 4 with variable coefficient functions.
For these two examples, we takea = 2, = 2,y = landa = 1,§ = 1,y = 1, respectively. Example 3 is chosen to

TABLE 3 Maximum point-wise error E} and order of convergence p} for & € S, and
various values of u for Example 3

ul Ny— 64 128 256 512 1024

1 EY  9.96942E-03 6.90947E-03 3.92427E-03 238737E-03  2.20056E-03
oY 5.28935E-01 8.16149E-01  7.17003E-01  1.17553E-01

22 EN  1.16972E-02 9.19025E-03 5.44939E-03 3.33415E-03  2.26340E-03
oY 3.47992E-01 7.54010E-01  7.08775E-01  5.58827E-01

274 Eff 1.33814E-02  9.06223E-03  5.54733E-03 3.41629E-03  1.98305E-03
pg 5.62293E-01  7.08073E-01 6.99363E-01 7.84711E-01

Pad Efj 1.32785E-02 1.15506E-02 8.62831E-03 5.85880E-03 3.47676E-03
pf;’ 2.02385E-01 4.21979E-01 5.59037E-01 7.52707E-01

278 Eﬁy 1.33602E-02 1.16115E-02 8.66681E-03 5.88265E-03  3.49129E-03
pf,’ 2.02385E-01 4.21979E-01  5.59037E-01  7.52707E-01

Pl Efy 1.33806E-02 1.16268E-02 8.67646E-03 5.88862E-03  3.49492E-03
pf,\’ 2.02697E-01 4.22270E-01 5.59177E-01  7.52669E-01

2712 E,Iy 1.33857E-02 1.16306E-02 8.67887E-03 5.89011E-03  3.49583E-03
pf,’ 2.02774E-01 4.22343E-01  5.59212E-01  7.52660E-01

D Ef;] 1.33870E-02 1.16315E-02 8.67947E-03 5.89048E-03  3.49606E-03
pﬁ’ 2.02794E-01 4.22361E-01 5.59221E-01  7.52658E-01

2716 E,Ij 1.33873E-02 1.16318E-02 8.67961E-03 5.89056E-03  3.49610E-03
p;'}' 2.02799E-01 4.22367E-01  5.59224E-01  7.52658E-01

DS Efy 1.33871E-02 1.16315E-02 8.67934E-03 5.89035E-03  3.49595E-03
pff 2.02808E-01 4.22379E-01  5.59232E-01 7.52670E-01

2720 Efj 1.33825E-02 1.16266E-02 8.67456E-03  5.88660E-03  3.49324E-03
pg 2.02923E-01 4.22563E-01 5.59358E-01  7.52868E-01

272 Ef:] 1.33874E-02 1.16318E-02 8.67967E-03  5.89061E-03  3.49613E-03
pg 2.02800E-01 4.22367E-01  5.59224E-01 7.52657E-01

2% Efy 1.33874E-02 1.16318E-02 8.67966E-03 5.89059E-03  3.49612E-03
pﬁ’ 2.02801E-01 4.22368E-01 5.59225E-01  7.52658E-01
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be different from other problems by alternatively changing the sign of the function values a(x, ), f(x, t) at each partition
of the domain. For Examples 3 and 4, we again note from Figure 11 with 4 = 1 that the discontinuity in the source term
and convection term can lead to any of the following cases: a) the appearance of only interior layer b) the appearance of
only boundary layers.

In addition, we again consider Examples 3 and 4 whose source terms are replaced by smooth functions: f(x, t) = (e —
11 +xt) and fix, £) = (1 + x)(e' — 1), respectively. In this case, Figure 12 shows that the interior layer phenomena may
not appear when the source functions are considered to be smooth even when the convection coefficient is discontinuous.
From the Figures 7 - 8 and 11 - 12, we can say that the discontinuity in the source term can create the interior layer(s)
and the discontinuity in convection coefficient can only produce the layer shifting in the solution.

TABLE 4 Maximum point-wise error Eﬁ:’ and order of convergence pff fore € S, and
various values of y for Example 4

ul N,—> 64 128 256 512 1024

1 EY 1.67332B-02 1.23727E-02 8.72716E-03  5.54483E-03  3.26259E-03
oy 4.35551E-01 5.03580E-01 6.54371E-01  7.65123E-01

272 EN 1.88593E-02 145140E-02 1.03177E-02 6.68495E-03  3.93497E-03
oy 3.77833E-01 4.92320E-01 6.26136E-01  7.64563E-01

274 Efy 1.99440E-02 1.36983E-02 9.77397E-03  6.33137E-03  3.72655E-03
pﬁ:’ 5.41964E-01 4.86975E-01 6.26428E-01 7.64676E-01

276 Eﬁ’ 2.18762E-02  1.79030E-02  1.28458E-02  7.85065E-03  4.65296E-03
pﬁ’ 2.89159E-01 4.78910E-01 7.10411E-01 7.54662E-01

278 Ef;’ 2.18515E-02 1.78774E-02 1.28332E-02  7.84020E-03 4.64661E-03
p]l:’ 2.89595E-01 4.78257E-01 7.10915E-01 7.54714E-01

Pl Eﬁ’ 2.18451E-02 1.78709E-02  1.28300E-02 7.83758E-03  4.64530E-03
pf}’ 2.89699E-01 4.78091E-01 7.11042E-01 7.54637E-01

2712 Eﬁy 2.18435E-02 1.78693E-02 1.28292E-02 7.83691E-03  4.64496E-03
pﬁ:’ 2.89726E-01 4.78049E-01 7.11074E-01 7.54617E-01

2714 Eﬁ’ 2.18427E-02 1.78684E-02 1.28286E-02 7.83651E-03  4.64475E-03
pf}’ 2.89745E-01 4.78044E-01 7.11080E-01  7.54610E-01

2716 Eﬁ] 2.18430E-02 1.78687E-02  1.28289E-02 7.83670E-03  4.64486E-03

pfj 2.89734E-01 4.78036E-01 7.11083E-01  7.54611E-01
Dt E,Iy 2.18430E-02 1.78688E-02 1.28290E-02 7.83672E-03  4.64487E-03
pg 2.89733E-01 4.78036E-01 7.11084E-01 7.54611E-01

2720 Eff 2.18430E-02 1.78687E-02  1.28289E-02 7.83669E-03  4.64486E-03
pff 2.89734E-01 4.78036E-01  7.11084E-01  7.54611E-01

Rz Efj 2.18426E-02 1.78682E-02 1.28285E-02 7.83646E-03  4.64473E-03
pf;’ 2.89747E-01 4.78041E-01 7.11083E-01 7.54608E-01

2% Eﬁ:’ 2.18430E-02 1.78687E-02  1.28289E-02 7.83669E-03  4.64485E-03
pf,’ 2.89734E-01 4.78036E-01  7.11084E-01  7.54611E-01

TABLE 5 Uniform error EN and order of convergence pN fore € S,, u € S, for Examples 1 to 4
Example N-—> 64 128 256 512 1024
Example 1 EN 1.78930E-02 1.40835E-02 1.00169E-02 6.64725E-03  3.93049E-03
N 3.45390E-01 4.91580E-01 5.91600E-01  7.58050E-01

Example 2 EN 2.37882E-02 1.83583E-02 1.26131E-02 8.07884E-03 4.72060E-03
Al 3.73810E-01  5.41510E-01 6.42700E-01  7.75180E-01

Example3 EN  1.33874E-02 1.16318E-02 8.67966E-03 5.89059E-03 3.49612E-03
N 2.02801E-01 4.22368E-01  5.59225E-01 7.52658E-01

Example 4 EN 2.18430E-02 1.78687E-02  1.28289E-02  7.83669E-03  4.64485E-03
N 2.89734E-01 4.78036E-01 7.11084E-01 7.54611E-01
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FIGURE 13 Loglog plot of the maximum point-wise errors of Examples 1 and 2, respectively [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 14 Loglog plot of the maximum pointwise errors of Examples 3 and 4, respectively [Colour figure can be viewed at
wileyonlinelibrary.com]

Tables 1 to 4 show that the maximum point-wise errors are converging with almost first-order accuracy in space and time
for all the test problems, as expected from the analysis. These errors do not depend on the magnitude of the convection
and diffusion parameters and hence, they are parameter uniform. To generate these tables, ¢ is considered from a set
S, = {1,272,...,2739) for each fixed value of u. Table 5 shows the uniform error and corresponding order of convergence
for various values of € and y, which are taken from the set e € S, and u € S, where S, = {1,272,---272*}. In addition,
we have plotted the errors on loglog scale in Figures 13 and 14 for Examples 1 to 2 and 3 to 4, respectively for ¢ = 2719
and y = 274,220,275 to show that the expected rate of convergence is true in practice.

7 | CONCLUSIONS

A convergent numerical method is presented for a two-parameter singularly perturbed parabolic problem, which has dis-
continuous convection-coefficient and source term. In general, the solution of this kind of problems have both boundary
and interior layers, which makes the numerical analysis different. Here, we provide a convergent solution by discretizing
the continuous problem with backward Euler scheme for time variable on uniform mesh and an upwind scheme on an a
priori layer adaptive piecewise uniform mesh for the spatial variable. The theoretical analysis shows that the numerical
method is almost first-order accurate in space and time, which is also validated by several numerical experiments. Note
that boundary layers appear because of the presence of perturbation parameters. However, it is observed that the interior
layers can appear because of the discontinuity in the source term. In addition, we observe that the discontinuity in the
convection coefficient can shift the layer position. Several simulations depict the layer appearances and their behavior in
different locations.
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N

OMENCLATURE
Notations Explanations
Q.and Q, (0,1)and [0,1]
_Nx . .
ij*andszx {x; :1<i<Ny—1}and {x; : 0 <i< Ny}
Q7 and Qf (0,d) and (d, 1)
Qﬁ;’x_andﬁxl\]fr {xizlsig%—l}and{xi:%+1§i§Nx—1}
Q and Q" (0,T1and {t;,t; = jT/N, for 1 < j <N}
Iand IV Qe xQand {(x, 1) : 1<i<Ne—1,1<j <N}
— —N —
Fand QxQ and {(x;,1;) : 0<i<Np,1<j <N}
[~andIt Q; x Q; and Qf x Q;

I'*and I'™* [0,d) x Q; and (d, 1] x &
™= and IV+ {(xiatj) 11<i< %—1,1 gjgNt}and{(xi,tj) . %+1S1SN)¢_1,1 <jJj SN:}

I'* and v+ {(d,t) : 0<t<T}and {(d,t) : 1 <j<N;}
I; and ¥ [0,d] x {t = 0}and [d,1] X {t = 0}
I.and 'Y I;ulfand {(x.t) : 0<i< Ny, j=0}

I',T,and T, {((0,0) : 0<t<T){(1,0):0<t<T)and [0,1]x {t = 0}
Y, Y and Ty {0a,4) 1 i = 0,1 <j <N}, {( 1) 1 i = Ny, 1 <j<NJand {(x, ) : 0 <i<Ny,j =0}

_N
o and I Tyul,uly)and T NTYy)

y(x, £) Continuous solution of (1)-(2) on (' UT*)

v(x, t) Regular component (continuous) of y(x, t) on (' UT™)

w(x, t) Singular component (continuous) of y(x, ) on (I'" UT™)

y(x, t) Solution of the initial-boundary value problem (15)-(16) on (I'"* U T't*)

Y(x;, ) Discrete solution of fully discretized problem (27)-(29) on ('N~ U I'N¥)

V(xi, t;) Regular component of discrete solution Y(x;, ;) on ('~ U TN*)

Wix;, t;) Singular component of discrete solution Y(x;, ;) on (TN~ U TN*)
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