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In the present work, we consider a parabolic convection-diffusion-reaction
problem where the diffusion and convection terms are multiplied by two small
parameters, respectively. In addition, we assume that the convection coefficient
and the source term of the partial differential equation have a jump discontinu-
ity. The presence of perturbation parameters leads to the boundary and interior
layers phenomena whose appropriate numerical approximation is the main goal
of this paper. We have developed a uniform numerical method, which con-
verges almost linearly in space and time on a piecewise uniform space adaptive
Shishkin-type mesh and uniform mesh in time. Error tables based on several
examples show the convergence of the numerical solutions. In addition, several
numerical simulations are presented to show the effectiveness of resolving layer
behavior and their locations.
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1 INTRODUCTION

Boundary and interior layers originated by singularly perturbed problems (SPPs) are very frequent in several fields of
engineering like drift diffusion equation of semi conductor modeling,1 chemical reactor model,2 and fluid dynamics.3

In the present work, we consider the following two-parameter parabolic initial-boundary value problem (IBVP) on the
domain Γ = Ωx × Ωt, which combines the reaction-diffusion and convection-diffusion forms:

L𝜀,𝜇𝑦(x, t) ≡ (𝜀𝑦xx + 𝜇a𝑦x − b𝑦 − c𝑦t) (x, t) = 𝑓 (x, t), (x, t) ∈ (Γ− ∪ Γ+), (1)

𝑦(x, t) = 𝑝(x, t), (x, t) ∈ Γc, 𝑦(x, t) = q(x, t), (x, t) ∈ Γl, 𝑦(x, t) = r(x, t), (x, t) ∈ Γr. (2)

Here, 0 < 𝜀 ≪ 1, 0 ≤ 𝜇 ≤ 1 are two singular perturbation parameters. The coefficient functions b(x, t), c(x, t) are assumed
to be sufficiently smooth functions on Γ such that b(x, t) ≥ 𝛽 > 0, c(x, t) ≥ 𝜈 > 0. In addition, we assume a(x, t), f(x, t) are
sufficiently smooth on (Γ− ∪ Γ+) such that

a(x, t) ≤ −𝛼1 < 0, (x, t) ∈ Γ− and a(x, t) ≥ 𝛼2 > 0, (x, t) ∈ Γ+. (3)

Here, 𝛼1, 𝛼2 are positive constants. Let 𝛼 = min{𝛼1, 𝛼2}. In addition, we assume the jumps of a(x, t) and f(x, t) at (d, t)
satisfying |[a](d, t)| ≤ C, |[f](d, t)| ≤ C, where the jump of 𝜔 at (d, t) is defined as [𝜔](d, t) = 𝜔(d+ , t) − 𝜔(d−, t).
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In general, the presence of discontinuity in a(x, t) and f(x, t) leads to an interior layer in the neighborhood of the point
of discontinuity of y(x, t) in addition to the boundary layer phenomena due to the presence of perturbation parameters.
Under these assumptions, the problem (1)-(2) has a continuous unique solution y(x, t) on the whole domain.

There can be two special cases: reaction-diffusion (𝜇 = 0) and convection-diffusion (𝜇 = 1), which can appear cor-
responding to a general two-parameter SPPs. When the parameter 𝜇 = 0, the boundary layers appear in both sides of
the boundary points on the domain with an approximate width O(

√
𝜀). When 𝜇 = 1, the boundary layers appear in the

neighborhood of either left or right boundary point of width O(𝜀) and mainly depend on the sign of the convection coef-
ficient. The solution of this problem with only discontinuous source term contains weak interior layers when a(x, t) > 0
(or alternatively a(x, t) < 0) for any value of 𝜀. However, the discontinuity in the convection coefficient (a(x, t) < 0, x < d
with a(x, t) > 0, x > d) can lead to strong interior layers in the solution. A related discussion can be seen in Mukherjee
and Natesan4 for the particular case 𝜇 = 1. In this case, the sign of convection coefficient shifts the layers position in
the solution. The detailed discussion on this matter is given in the numerical section of the present article by considering
several examples.

In general, the discontinuity in the convection coefficient and source term for two-parameter SPPs can give rise to
interior layers along with boundary layers. It is observed that the sign of the convection coefficient and the magnitude
of the perturbation parameters have many influence on determining the nature of the layer. A discussion on the effect
of discontinuity at convection coefficient and source term for singularly perturbed convection-diffusion problems can be
seen in Farrell et al.5 for ordinary differential equations and in O'Riordan and Shishkin and Clavero et al.6,7 for partial
differential equations.

In the present work, we have presented in the numerical section these cases by taking several examples which satisfy
the condition (3) and also the reverse situation, ie, a(x, t) ≥ 𝛼1 > 0, (x, t) ∈ Γ−, and a(x, t) ≤ −𝛼2 < 0, (x, t) ∈ Γ+. Let
𝛾 = min(Γ−∪Γ+)

{
b(x,t)
𝛼∗(x,t)

}
, where 𝛼∗(x, t) = 𝛼1, (x, t) ∈ Γ−, and 𝛼∗(x, t) = 𝛼2, x ∈ Γ+. We divide the convergence analysis

for (1) to (2) into 2 cases: 𝛼𝜇2 ≤ 𝛾𝜀 and 𝛼𝜇2 ≥ 𝛾𝜀, ie, depending upon the ratio of the perturbation parameters 𝜇2 to 𝜀. In
the first case, the analysis follows closely that of parabolic reaction-diffusion type when 𝜇 = 08 ; however, in the second
case, the analysis is comparatively more difficult. This problem is well studied for parabolic convection-diffusion case
with smooth data in O'Riordan et al.9

For SPPs, the existence and uniqueness of classical solutions for steady state problems are well established in sev-
eral papers, say Feckan.10 The analysis for two-parameter problems mainly started by O'Malley, based on asymptotic
expansion methods.11 The numerical solution of these problems with smooth data12-15 and nonsmooth data16-19 are also
considered in several journals and proceedings. Singularly perturbed parabolic problems are also considered for numer-
ical analysis in Bansal et al. and Munyakazi and Patidar.20,21 An almost first-order accurate solution for two-parameter
singulary perturbed time-dependent problems with smooth data can be seen in O'Riordan et al.9 on a piecewise uni-
form mesh. In Kadalbajoo and Yadaw,22 the authors proposed a combination of finite element method in space with
implicit Euler method in temporal direction using Rothe's method and obtained an almost second-order accuracy in
space. First-order accurate methods for smooth data are also observed in other studies.23-26 Analysis on different meshes
like Shishkin-Bakhvalov meshes can be also seen in Jha and Kadalbajoo.27 The a posteriori based convergence analysis
for singularly perturbed parameterized problems is also carried out to get optimal order parameter uniform accuracy in
Das,28 which avoids the requirement of a priori derivative bound. An equidistribution based new adaptive mesh is pro-
posed in Das and Mehrmann29 for parabolic problems and in Das and Vigo-Aguiar30 for systems of reaction-diffusion
problems with smooth data. The first-order space time uniform convergence obtained in Das and Mehrmann29 is also
enhanced to higher order accuracy in Das31 by extrapolation methods. This mesh is generated by the equidistribution of
a special positive monitor function. Clavero et al.32 discussed the numerical analysis of a parabolic singularly perturbed
reaction-convection-diffusion problem where the source term has a discontinuity of first kind on the degeneration line
and obtained an almost first-order accuracy on Shishkin-type mesh when the convection parameter is less than the dif-
fusion parameter.7 In Clavero et al.,32 the authors have examined a parameter uniform numerical method for singularly
perturbed one-dimensional parabolic convection-diffusion problem, with degenerate convection term and discontinuous
source term at the same point inside the domain. A recent appraisal on different classes of boundary and interior layers
can be noticed in O'Riordan.33 In Chandru et al. and Cen,16,34 the authors have developed a higher order numerical scheme
for singularly perturbed ordinary differential equations with discontinuous convection coefficient and source term. In the
present work, we consider a parameter uniform numerical method for parabolic convection-diffusion-reaction problems
where both the convection coefficient and source term have discontinuity inside the domain, which leads to an interior
layer in addition to the boundary layers.
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Throughout the paper,  will be denoted as a generic positive constant, which is independent of the parameters 𝜀, 𝜇,Nx,
and Nt. Here, Nx,Nt are the number of mesh intervals used in space and time direction, respectively. We use the maximum
norm for our analysis, which is defined as: ||w||G = max(x,t)∈G|w(x, t)|, where G is a closed bounded region. The discrete

maximum norm is denoted as ||W ||
G

N = max
0≤i≤Nx ,0≤𝑗≤Nt

|W(xi, t𝑗)|, where G
N

denotes the discretized version of G in space

and time. To simplify the notation, we use ||.|| instead of ||.||G or ||.||
G

N . The following operators will be frequently used in
the later analysis

L0𝑦(x, t) = (−b𝑦 − c𝑦t) (x, t), L𝜇𝑦(x, t) = (a𝜇𝑦x + L0𝑦) (x, t), L𝜀,𝜇𝑦(x, t) =
(
𝜀𝑦xx + L𝜇𝑦

)
(x, t).

In addition, a function g(x, t) is said to be in class 𝑝 if the partial derivatives of all order up to p are continuous with
respect to its independent variables.

This article is sequentially divided as follows. We discuss the existence, uniqueness, and stability properties of the
continuous solution and its decomposition into regular (smooth) and singular components in Section 2. Their derivative
bounds are also mentioned here. The discretization of the continuous problem is presented in Section 3. In Section 4, the
truncation error analysis and stability of the numerical solution based on barrier function technique are considered. The
main result is highlighted in Section 5. Numerical examples are provided to show the convergent solution and its expected
rate of accuracy in Section 6, which indicates that the convergence does not depend on the parameters size. The overall
conclusion is mentioned in Section 7. In addition, for ease of reading, we provide a nomenclature table for frequently
used notations.

2 ANALYTICAL PROPERTIES OF THE SOLUTION

For the numerical analysis, the derivative bounds of (1) to (2) are useful, which will be addressed in this section. In this
paper, we consider that the solution of (1) to (2) is parameter uniformly bounded. Equations 1 and 2 are considered for
the parabolic case with 𝜇 = 1 in Farrell et al.,5 and the existence of the solution is considered for steady state case with
𝜇 = 0 in O'Riordan and Shishkin.6 Now, let us consider the following lemma, which shows the existence of solution.

Lemma 1. The problem (1) to (2) has a solution 𝑦(x, t) ∈ 0(Γ) ∩ 1(Γ) ∩ 2(Γ− ∪ Γ+).

Proof. The Lemma can be proved based on the constructive method by following the procedures given in Farrell et al.5

Consider the functions y1(x, t) and y2(x, t), which satisfy, respectively, the following singularly perturbed differential
equations:

(𝜀𝑦1xx + 𝜇a1𝑦1x − b𝑦1 − c𝑦1t) (x, t) = 𝑓 (x, t), (x, t) ∈ Γ−

and
(𝜀𝑦2xx + 𝜇a2𝑦2x − b𝑦2 − c𝑦2t) (x, t) = 𝑓 (x, t), (x, t) ∈ Γ+,

where a1(x, t), a2(x, t) ∈ C2(Γ) are such that these extended functions a1(x, t), a2(x, t) in Γ satisfy

a1(x, t) = a(x, t), (x, t) ∈ Γ−, such that a1(x, t) < 0, (x, t) ∈ Γ,
a2(x, t) = a(x, t), (x, t) ∈ Γ+, such that a2(x, t) > 0, (x, t) ∈ Γ.

Let us consider the function

𝑦(x, t) =
{
𝑦1(x, t) + (𝑦(0, t) − 𝑦1(0, t))𝜙1(x, t) + A1𝜙2(x, t), (x, t) ∈ Γ−,
𝑦2(x, t) + A2𝜙1(x, t) + (𝑦(1, t) − 𝑦2(1, t))𝜙2(x, t), (x, t) ∈ Γ+,

where 𝜙1(x, t) and 𝜙2(x, t) are, respectively, the solutions of the following two-parameter singularly perturbed
boundary value problems:

𝜀𝜙1xx + 𝜇a1𝜙1x − b𝜙1 − c𝜙1t = 0, (x, t) ∈ Γ, 𝜙1(0, t) = 1, 𝜙1(1, t) = 0, 𝜙1(x, 0) = 0

and
𝜀𝜙2xx + 𝜇a2𝜙2x − b𝜙2 − c𝜙2t = 0, (x, t) ∈ Γ, 𝜙2(0, t) = 0, 𝜙2(1, t) = 1, 𝜙2(x, 0) = 0.

Note that y(x, t) satisfies (1) to (2) in (Γ− ∪ Γ+) for two properly chosen constants A1 and A2, so that 𝑦(x, t) ∈ 1(Γ).
Observe that 0 < 𝜙i(x, t) < 1, for i = 1, 2 on Γ.35 Thus, 𝜙1 and 𝜙2 cannot have a maximum or minimum at the interior
points of the domain, and therefore,
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𝜙′
1(x, t) < 0, 𝜙′

2(x, t) > 0, (x, t) ∈ Γ.

Now, we impose

𝑦(d−, t) = 𝑦(d+, t) and 𝑦′(d−, t) = 𝑦′(d+, t).

Therefore, we need the following relation for the existence of the constants A1,A2,|||| 𝜙2(d, t) −𝜙1(d, t)
𝜙′

2(d, t) −𝜙
′
1(d, t)

|||| ≠ 0.

The proof follows from 𝜙′
2(d, t)𝜙1(d, t) − 𝜙′

1(d, t)𝜙2(d, t) > 0.
The differential operator L𝜀,𝜇 also satisfies the following continuous comparison principle on Γ = Ωx × Ωt.

Lemma 2. Assuming 𝑦(x, t) ∈ 0(Γ) ∩ 1(Γ) ∩ 2(Γ− ∪ Γ+), which satisfies

𝑦(x, t) ≤ 0, ∀ (x, t) ∈ Γ0, L𝜀,𝜇𝑦(x, t) ≥ 0, ∀ (x, t) ∈ (Γ− ∪ Γ+)

and [𝑦x](d, t) ≥ 0, t > 0, we get 𝑦(x, t) ≤ 0, ∀ (x, t) ∈ Γ.

Proof. Let us assume that y(x, t) is positive for some point (x, t) ∈ Γ. Now, introduce the continuous function Λ(x, t),
defined by

𝑦(x, t) =
{

e−𝛼1𝜇(d−x)∕(2𝜀)Λ(x, t), for (x, t) < (d, t),
e−𝛼2𝜇(x−d)∕(2𝜀)Λ(x, t), for (x, t) > (d, t).

Let Λ has its maximum value at a point (x, t) in Γ. Then, the above result becomes true when Λ(x, t) ≤ 0. Now assume
Λ(x, t) > 0. We will get a contradiction. With this assumption on the boundary points, we have either (x, t) = (d, t) or
(x, t) ∈ (Γ− ∪ Γ+).

Case 1: Assume (x, t) = (d, t). Then, [yx](d, t) = [Λx] − [2(𝛼1 + 𝛼2)∕𝜀]Λ(d, t) < 0 since [Λ](d, t) = [y](d, t) = 0 and
[Λx] ≤ 0. This gives a contradiction.

Case 2: Let (x, t) ∈ (Γ− ∪ Γ+).
If (x, t) ∈ Γ−, then

L𝜀,𝜇𝑦(x, t) = e−𝛼1𝜇(d−x)∕(2𝜀)
(
𝜀Λxx + (a + 𝛼1)𝜇Λx +

(
𝛼1𝜇

2

2𝜀

(
𝛼1

2𝜀
+ a

)
− b

)
Λ − cΛt

)
(x, t) < 0,

which is a contradiction. Similarly, the operator L𝜀,𝜇 gives a contradiction for y(x, t) in Γ+. Therefore, we obtain the
required result.

The consequence of the above comparison principle is the following stability estimate from which the uniqueness
of the solution can be established.

Lemma 3. Let y(x, t) be the solution of (1) to (2) then

||𝑦||Γ ≤ C max
{||𝑝||Γc , ||q||Γl , ||r||Γr

}
+ 1
𝜂
||L𝜀,𝜇𝑦||(Γ−∪Γ+),

where 𝜂 = min {𝛼1∕d, 𝛼2∕(1 − d)}.

Proof. Consider the barrier functions

𝜓±(x, t) = CK ± 𝑦(x, t), where K =
⎧⎪⎨⎪⎩
−𝜒 − x||L𝜀,𝜇𝑦||

𝜂d
, for (x, t) ∈ (Γ− ∪ (d, t)),

−𝜒 − (1−x)||L𝜀,𝜇𝑦||
𝜂(1−d)

, for (x, t) ∈ Γ+,

where 𝜒 = max
{||𝑝||Γc , ||q||Γl , ||r||Γr

}
.
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Then, 𝜓±(x, t) ∈ 0(Γ), 𝜓±(x, t) ≤ 0, (x, t) ∈ Γ0 for sufficiently chosen C and for each (x, t) ∈ (Γ− ∪ Γ+), we have

L𝜀,𝜇𝜓±(x, t) ≥ 0.

Also, since 𝜓±(x, t) ∈ 1(Γ), we have

[𝜓±](d, t) = ±[𝑦](d, t) = 0 and [𝜓 ′
±](d, t) =

||L𝜀,𝜇𝑦||
𝜂d

+
||L𝜀,𝜇𝑦||
𝜂(1 − d)

≥ 0.

It follows from the comparison principle that 𝜓±(x, t) ≤ 0 ∀ (x, t) ∈ Γ, which completes the proof.

Lemma 4. For 1 ≤ k + 2m ≤ 3, the solution y(x, t) of (1) to (2) and its derivatives satisfy:
if 𝛼𝜇2 ≤ 𝛾𝜀, then

‖‖‖‖‖ 𝜕
k+m𝑦

𝜕xk𝜕tm

‖‖‖‖‖Γ−∪Γ+

≤ C𝜀−k∕2 max

{||𝑦||Γ, 2∑
i+2𝑗=0

𝜀i∕2
‖‖‖‖‖ 𝜕

i+𝑗𝑓

𝜕xi𝜕t𝑗
‖‖‖‖‖ ,

4∑
i=0

[
𝜀i∕2

‖‖‖‖‖di𝑝

dxi

‖‖‖‖‖Γc

+
‖‖‖‖‖diq

dti

‖‖‖‖‖Γl

+
‖‖‖‖dir

dti

‖‖‖‖Γr

]}
,

and if 𝛼𝜇2 ≥ 𝛾𝜀, then

‖‖‖‖‖ 𝜕
k+m𝑦

𝜕xk𝜕tm

‖‖‖‖‖Γ−∪Γ+

≤ C𝜇
k+2m

𝜀k+m
max

{||𝑦||Γ, 2∑
i+2𝑗=0

𝜀i+𝑗+1

𝜇i+2𝑗+2

‖‖‖‖‖ 𝜕
i+𝑗𝑓

𝜕xi𝜕t𝑗
‖‖‖‖‖ ,

4∑
i=0

[
𝜀i

𝜇i

‖‖‖‖‖di𝑝

dxi

‖‖‖‖‖Γc

+ 𝜀i

𝜇2i

‖‖‖‖‖diq
dti

‖‖‖‖‖Γl

+ 𝜀i

𝜇2i

‖‖‖‖dir
dti

‖‖‖‖Γr

]}
,

where C is independent of 𝜀 and 𝜇.

Proof. We follow the technique given in O'Riordan et al.9 The bounds of the solution and its derivatives can be derived
by splitting the arguments into two cases 𝛼𝜇2 ≤ 𝜌𝜀 and 𝛼𝜇2 ≥ 𝜌𝜀.

Case 1: Let 𝛼𝜇2 ≤ 𝜌𝜀. Now, consider the stretching variable 𝜉 = x∕
√
𝜀, 𝜏 = t. The transformed domain is given by G̃ =(

(0, d) ∪ (d, 1∕
√
𝜀)

)
× (0,T]. On the domain G̃, the transformed functions are defined as 𝑦̃(𝜉, 𝜏) = 𝑦(x, t), ã(𝜉, 𝜏) =

a(x, t), b̃(𝜉, 𝜏) = b(x, t), c̃(𝜉, 𝜏) = c(x, t), and 𝑓 (𝜉, 𝜏) = 𝑓 (x, t). Then, we apply the above transformation for the
considered problem (1) to (2), from transformed equation we obtain the solution 𝑦̃(𝜉, 𝜏).

Now, we denote the rectangle R𝜅̃,𝛿 = ((𝜅̃−𝛿, 𝜅̃+𝛿) × Ωt)∩G̃, and R̃𝜅̃,𝛿 is a closure of R𝜅̃,𝛿 , where 𝜅̃ ∈
(
(0, d) ∪ (d, 1∕

√
𝜀)

)
and 𝛿 > 0. For every (𝜅̃, 𝜏), the above classical differential equation satisfies the following estimate36 for 1 ≤ k + 2m ≤

3: ‖‖‖‖‖ 𝜕k+m𝑦̃

𝜕𝜉k𝜕𝜏m

‖‖‖‖‖R𝜅̃,𝛿

≤ C max

{||𝑦̃||, 2∑
i+2𝑗=0

‖‖‖‖‖ 𝜕
i+𝑗𝑓

𝜕𝜉i𝜕𝜏𝑗

‖‖‖‖‖ ,
4∑

i=0

[‖‖‖‖‖di𝑝̃

d𝜉i

‖‖‖‖‖Γ̃c

+
‖‖‖‖‖diq̃

d𝜏 i

‖‖‖‖‖Γ̃l

+
‖‖‖‖ dir̃

d𝜏 i

‖‖‖‖Γ̃r

]}
,

where Γ̃c = R̃𝜅̃,2𝛿 ∩ Γc, Γ̃l = R̃𝜅̃,2𝛿 ∩ Γl, Γ̃r = R̃𝜅̃,2𝛿 ∩ Γr, and C is independent of R̃𝜅̃,𝛿 . Hence, these estimates hold for
any point (𝜉, 𝜏) ∈ G̃. Finally, if we convert the variables (𝜉, 𝜏) into the original variables (x, t), we obtain the required
result.

Case 2: If 𝛼𝜇2 ≥ 𝜌𝜀, then consider two stretching variables 𝜁 = 𝜇x
𝜀

and ς = 𝜇2t
𝜀

. The transformed domain is given

by Ĝ = ((0, d) ∪ (d, 𝜇∕𝜀)) ×
(

0, 𝜇
2T
𝜀

)
, and the transformed functions are 𝑎̂(𝜁, ς) = a(x, t), b̂(𝜁, ς) = b(x, t), ĉ(𝜁, ς) =

c(x, t), 𝑓 (𝜁, ς) = 𝑓 (x, t), and 𝑦̂(𝜁, ς) = 𝑦(x, t). Substituting the above defined transformation in (1) to (2), we get the
solution 𝑦̂(𝜁, ς) from the transformed equation.

Again, we denote another rectangle R𝜅̂,𝛿 =
(
(𝜅̂ − 𝛿, 𝜅̂ + 𝛿) ×

(
0, 𝜇

2T
𝜀

])
∩ Ĝ and R̂𝜅̂,𝛿 as the closure of R𝜅̂,𝛿 , where

𝜅̂ ∈ ((0, d) ∪ (d, 𝜇∕𝜀) and 𝛿 > 0. For each (𝜅̂, 𝛿) ∈ Ĝ and with the help of O'Riordan et al.,9 we get

‖‖‖‖‖ 𝜕k+m𝑦̂

𝜕𝜁k𝜕ςm

‖‖‖‖‖R𝜅̂,𝛿

≤ C max

{||𝑦̂||, 2∑
i+2𝑗=0

‖‖‖‖‖ 𝜕
i+𝑗𝑓

𝜕𝜁 i𝜕ς𝑗
‖‖‖‖‖ ,

4∑
i=0

[‖‖‖‖‖di𝑝̂

d𝜁 i

‖‖‖‖‖Γ̂c

+
‖‖‖‖‖diq̂

dςi

‖‖‖‖‖Γ̂l

+
‖‖‖‖dir̂

dςi

‖‖‖‖Γ̂r

]}
,
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where, Γ̂c = R̂𝜅̂,2𝛿 ∩ Γc, Γ̂l = R̂𝜅̂,2𝛿 ∩ Γl, Γ̂r = R̂𝜅̂,2𝛿 ∩ Γr, and C is independent of R̂𝜅̂,ς. Hence, these estimates hold
for any point (𝜁, ς) ∈ Ĝ. Finally, the transformed variables (𝜁, ς) are replaced by the original variables (x, t) to get the
desired result.

Corollary 1. The solution y(x, t) of (1) to (2) satisfies the bounds for second-order time derivative

||𝑦tt||Γ ≤

{
C, if 𝛼𝜇2 ≤ 𝛾𝜀,

C𝜇4𝜀−2, if 𝛼𝜇2 ≥ 𝛾𝜀.

Proof. This follows from the argument given in Lemma 4 and the techniques in O'Riordan et al. and Gracia et al.9,12

Now, we decompose the solution y(x, t) into a regular component v(x, t) and a singular component w(x, t). The regular
component v(x, t) will be defined as the solution of the problem

L𝜀,𝜇v(x, t) = 𝑓 (x, t), for (x, t) ∈ (Γ− ∪ Γ+),
v(0, t) = 𝑦(0, t), v(d−, t) = u1(t), v(d+, t) = u2(t),
v(1, t) = 𝑦(1, t), v(x, 0) = 𝑦(x, 0),

(4)

where v(d+, t) = lim
x→d+0

v(x, t), v(d−, t) = lim
x→d−0

v(x, t), and u1(t) and u2(t) are suitably chosen.

Case 1: 𝛼𝜇2 ≤ 𝛾𝜀. Let Γ−∗ = [0, d) × Ωt,Γ+∗ = (d, 1] × Ωt. Now, we decompose v(x, t) by

v(x, t; 𝜀, 𝜇) = v0(x, t) +
√
𝜀v1(x, t; 𝜀, 𝜇) + 𝜀v2(x, t; 𝜀, 𝜇), (5)

where v0(x, t), v1(x, t; 𝜀, 𝜇) and v2(x, t; 𝜀, 𝜇) are the solutions of the following problems:

L0v0(x, t) = 𝑓 (x, t), v0(x, 0) = 𝑦(x, 0), (x, t) ∈ (Γ−∗ ∪ Γ+∗), (6)√
𝜀L0v1(x, t) = (L0 − L𝜀,𝜇)v0(x, t), v1(x, 0) = 0, (x, t) ∈ (Γ−∗ ∪ Γ+∗), (7)

𝜀L𝜀,𝜇v2(x, t; 𝜀, 𝜇) =
√
𝜀(L0 − L𝜀,𝜇)v1(x, t; 𝜀, 𝜇), (x, t) ∈ (Γ− ∪ Γ+),

v2(x, 0; 𝜀, 𝜇) = v2(0, t; 𝜀, 𝜇) = v2(1, t; 𝜀, 𝜇) = 0,
and v2(d−, t; 𝜀, 𝜇), v2(d+, t; 𝜀, 𝜇) are chosen appropriately.

(8)

Again, ⎧⎪⎪⎨⎪⎪⎩

v(0, t; 𝜀, 𝜇) = v0(0, t) +
√
𝜀v1(0, t; 𝜀, 𝜇), t ∈ Ωt,

v(d−, t; 𝜀, 𝜇) = v0(d−, t) +
√
𝜀v1(d−, t; 𝜀, 𝜇), t ∈ Ωt,

v(d+, t; 𝜀, 𝜇) = v0(d+, t) +
√
𝜀v1(d+, t; 𝜀, 𝜇), t ∈ Ωt,

v(1, t; 𝜀, 𝜇) = v0(1, t) +
√
𝜀v1(1, t; 𝜀, 𝜇), t ∈ Ωt,

v(x, t; 𝜀, 𝜇) = r(x, t), (x, t) ∈ Γc.

(9)

Now, the following lemma provides the derivative bounds of v(x, t) with respect to x and t.

Lemma 5. The regular component solution v(x, t) and its derivatives of (4) satisfy the following bounds‖‖‖‖ 𝜕k+mv
𝜕xk𝜕tm

‖‖‖‖Γ−∪Γ+
≤ C

(
1 + 𝜀1−k∕2) , for 0 ≤ k + 2m ≤ 3 and ||vtt||Γ−∪Γ+ ≤ C.

Proof. The above bounds of the derivatives can be derived by following the techniques given in O'Riordan et al. and
Gracia et al.9,12 Here, v0(x, t) and v1(x, t) are solutions of the first-order differential Equations 6 and 7, and the bound
for v2(x, t) of (8) can be obtained by using the techniques used in Lemmas 3 and 4. Next, by using the following relation

𝜕k+mv
𝜕xk𝜕tm

= 𝜕k+mv0

𝜕xk𝜕tm
+

√
𝜀
𝜕k+mv1

𝜕xk𝜕tm
+ 𝜀 𝜕

k+mv2

𝜕xk𝜕tm
, for 0 ≤ k + 2m ≤ 3,

we obtain the required derivative bounds of v(x, t). Next, we can use the Corollary 1 to obtain

||vtt||Γ−∪Γ+ ≤ C.
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Case 2: For 𝛼𝜇2 ≥ 𝛾𝜀. Let Γ−∗ = [0, d) × Ωt,Γ+∗ = (d, 1] × Ωt. Now, we decompose v(x, t) as follows:

v(x, t; 𝜀, 𝜇) = v0(x, t;𝜇) + 𝜀v1(x, t;𝜇) + 𝜀2v2(x, t; 𝜀, 𝜇), (10)

where v0(x, t;𝜇), v1(x, t;𝜇) and v2(x, t; 𝜀, 𝜇) are the solutions of

L𝜇v0(x, t;𝜇) = 𝑓 (x, t), (x, t) ∈ (Γ−∗ ∪ Γ+),
v0(x, 0;𝜇) = u(x, 0), v0(1, t;𝜇) are chosen appropriately,

(11)

𝜀L𝜇v1(x, t;𝜇) = (L𝜇 − L𝜀,𝜇)v0(x, t;𝜇), (x, t) ∈ (Γ−∗ ∪ Γ+),
v1(x, 0;𝜇) = v1(1, t;𝜇) = 0,

(12)

𝜀2L𝜀,𝜇v2(x, t; 𝜀, 𝜇) = 𝜀(L𝜇 − L𝜀,𝜇)v1(x, t;𝜇), (x, t) ∈ (Γ− ∪ Γ+),
v2(x, 0; 𝜀, 𝜇) = v2(0, t; 𝜀, 𝜇) = v2(1, t; 𝜀, 𝜇) = 0,
and v2(d−, t; 𝜀, 𝜇), v2(d+, t; 𝜀, 𝜇) are chosen accordingly.

(13)

We see that ⎧⎪⎪⎨⎪⎪⎩

v(0, t; 𝜀, 𝜇) = v0(0, t;𝜇) + 𝜀v1(0, t;𝜇), t ∈ Ωt,

v(d−, t; 𝜀, 𝜇) = v0(d−, t;𝜇) + 𝜀v1(d−, t;𝜇), t ∈ Ωt,

v(d+, t; 𝜀, 𝜇) = v0(d+, t;𝜇) + 𝜀v1(d+, t;𝜇), t ∈ Ωt,

v(1, t; 𝜀, 𝜇) = v0(1, t;𝜇), t ∈ Ωt,

v(x, t; 𝜀, 𝜇) = r(x, t), (x, t) ∈ Γc.

(14)

Now, consider the following first-order IBVP:

L𝜇𝑦∗(x, t) = (a𝜇𝑦∗x − b𝑦∗ − c𝑦∗t )(x, t) = 𝑓 (x, t), (x, t) ∈ (Γ−∗ ∪ Γ+) (15)

𝑦∗(x, t) = 𝑝1(x, t), (x, t) ∈ Γc, 𝑦
∗(x, t) = r1(x, t), (x, t) ∈ Γr. (16)

Note that L𝜇 satisfies the following comparison principle.

Lemma 6. Assume in (15) and (16) 𝑦∗(x, t) ∈ 0(Γ−∗ ∪ Γ+∗) ∪ 1(Γ−∗ ∪ Γ+) then

𝑦∗(x, t) ≤ 0, ∀ (x, t) ∈ (Γc ∪ Γr), L𝜇𝑦∗(x, t) ≥ 0, ∀ (x, t) ∈ (Γ−∗ ∪ Γ+), [𝑦∗x](d, t) ≥ 0
for t > 0. We can conclude that 𝑦∗(x, t) ≤ 0, ∀ (x, t) ∈ (Γ−∗ ∪ Γ+∗).

Proof. This lemma can be derived by following the procedure given in Lemma 2.

Lemma 7. The solution y∗(x, t) of (15) to (16) is stable, since it satisfies

||𝑦∗||Γ−∗∪Γ+∗ ≤ C max
{||𝑦∗||(Γc∪Γr),

1
𝜂
||L𝜇𝑦∗||(Γ−∗∪Γ+)

}
,

where 𝜂 = min {𝛼1∕d, 𝛼2∕(1 − d)}.

Proof. Consider the following barrier function

𝜓±(x, t) = C
⎧⎪⎨⎪⎩

(
−𝜒 − x||L𝜇𝑦∗||

𝜂d

)
±𝑦(x, t), for (x, t) ∈ (Γ−∗ ∪ (d, t)) and(

−𝜒 − (1−x)||L𝜇𝑦∗||
𝜂(1−d)

)
±𝑦(x, t), for (x, t) ∈ Γ+,

where 𝜒 = max
{||𝑝||Γc , ||r||Γr

}
. It satisfies 𝜓±(x, t) ≤ 0, ∀ (x, t) ∈ (Γc ∪ Γr) and also

L𝜇𝜓±(x, t) =
⎧⎪⎨⎪⎩
−𝛼1𝜇

||L𝜇𝜓±||
𝜂d

− b
(
−𝜒 − x||L𝜇𝑦∗||

𝜂d

)
±L𝜇𝜓± ≥ 0, ∀ (x, t) ∈ Γ−∗,

𝛼2𝜇
||L𝜇𝜓±||
𝜂d

− b
(
−𝜒 − (1−x)||L𝜇𝑦∗||

𝜂(1−d)

)
±L𝜇𝜓± ≥ 0, ∀ (x, t) ∈ Γ+.



8 CHANDRU ET AL.

Furthermore, at discontinuity point [(𝜓±)x](d, t) ≥ 0. Then, by applying Lemma 2, we obtain

𝜓±(x, t) ≤ 0, ∀ (x, t) ∈ (Γ−∗ ∪ Γ+∗),

which leads to obtain the bound on y∗(x, t).
Following the analysis given in O'Riordan et al.9 and Gracia et al.12 for smooth data, we can derive the following

lemmas.

Lemma 8. Suppose 𝑦∗(x, t) ∈ (k+m)(Γ−∗ ∪ Γ+∗) satisfies (15) to (16). Then, its derivatives satisfy

‖‖‖‖‖𝜕
k+m𝑦∗

𝜕xk𝜕tm

‖‖‖‖‖Γ−∗∪Γ+∗

≤
C
𝜇k

(‖‖‖‖‖𝜕
k+m𝑓

𝜕tk+m

‖‖‖‖‖ +
k+m−1∑

k0+m0=0
𝜇r

‖‖‖‖‖ 𝜕
k0+m0𝑓

𝜕xk0𝜕tm0

‖‖‖‖‖ +
k+m∑
𝑗=0

‖‖‖‖d𝑗𝑝1

dx𝑗
‖‖‖‖ +

k+m∑
𝑗=0

‖‖‖‖d𝑗r1

dt𝑗
‖‖‖‖ + ||𝑦∗||) e−(k+m)AT ,

where A = min
{

0, a(x, t)
(

1
a

)
t
(x, t)

}
, and the constant C is independent of 𝜇.

Lemma 9. The regular component v(x, t) at (10) and its derivatives satisfy the following bounds:‖‖‖‖ 𝜕k+mv
𝜕xk𝜕tm

‖‖‖‖Γ−∪Γ+
≤ C

(
1 +

(
𝜇

𝜀

)k−2
)
, for 0 ≤ k + 2m ≤ 3 and ||vtt||Γ−∪Γ+ ≤ C.

Proof. The first bound follows from the techniques given in O'Riordan et al. and Gracia et al.9,12 and the procedure
given in Lemma 3 and Lemma 4 for the domain Γ− ∪ Γ+. For the second part, we can extend the argument from
Corollary 1 to obtain

||vtt|| ≤ C
(

1 + 𝜀2𝜇4

𝜀2𝜇2

)
≤ C(1 + 𝜇2) ≤ C.

Now, we decompose the solution u(x, t) as v(x, t) and w(x, t) for both cases. Then, the regular component satisfies‖‖‖‖ 𝜕k+mv
𝜕xk𝜕tm

‖‖‖‖ ≤ C
(
1 + 𝜀2−k) , for 0 ≤ k + 2m ≤ 3 and ||vtt|| ≤ C. (17)

Now, we decompose the singular component w(x, t) as wl(x, t) and wr(x, t), which are defined as follows:

L𝜀,𝜇wl(x, t) = 0, for (x, t) ∈ (Γ− ∪ Γ+),
wl(x, 0) = 0, wl(0, t) = 𝑦(0, t) − v(0, t) − wr(0, t), wl(1, t) = 0.

(18)

L𝜀,𝜇wr(x, t) = 0, for (x, t) ∈ (Γ− ∪ Γ+),
wr(0, t) is suitably chosen , wr(1, t) = 𝑦(1, t) − v(0, t), wr(x, 0) = 0,
[wr](d, t) = − ([v] + [wl]) (d, t), [(wr)x](d, t) = − ([vx] + [(wl)x]) (d, t).

(19)

Note that w(d−, t) = y(d−, t) − v(d−, t) and w(d+ , t) = y(d+ , t) − v(d+ , t).
For 𝛼𝜇2 ≤ 𝛾𝜀, the singular components wl(x, t) and wr(x, t) satisfy the derivative bounds given in Lemma 4 and

Corollary 1. When 𝛼𝜇2 ≥ 𝛾𝜀, the following decomposition helps us to find wr(0, t):

wr(x, t; 𝜀, 𝜇) = w0(x, t;𝜇) + 𝜀w1(x, t;𝜇) + 𝜀2w2(x, t; 𝜀, 𝜇), (20)

where
L𝜇w0(x, t) = 0, (x, t) ∈ (Γ−∗ ∪ Γ+),
w0(x, t) = 0, (x, t) ∈ Γc, w0(x, t) = r(1, t) − v0(1, t),

(21)

𝜀L𝜇w1(x, t) = (L𝜇 − L𝜀,𝜇)w0(x, t), (x, t) ∈ (Γ−∗ ∪ Γ+),
w1(x, t) = 0, (x, t) ∈ (Γc ∪ Γr),

(22)

𝜀2L𝜀,𝜇w2(x, t) = 𝜀(L𝜇 − L𝜀,𝜇)w1(x, t), (x, t) ∈ (Γ− ∪ Γ+),
w2(x, t) = 0, (x, t) ∈ Γ0.

(23)
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Lemma 10. From the above decomposition, it follows that wr(x, t) satisfies the following bound

|wr(0, t)|Γ−∪Γ+ ≤ e−2Bte−𝛾∕𝜇 ,

where B < A = min
{

0, a(x, t)
(

1
a

)
t
(x, t)

}
.

Proof. It follows from O'Riordan et al.9

The following lemmas provide the derivative bounds of wl(x, t) and wr(x, t), which will be required for the
convergence analysis.

Lemma 11. When 𝛼𝜇2 ≤ 𝛾𝜀, the singular components wl(x, t) and wr(x, t) of (18) to (19) satisfy the following bounds

|wl(x, t)|Γ−∪Γ+ ≤ C
{

e−𝜃2x, (x, t) ∈ Γ−,
e−𝜃1(x−d), (x, t) ∈ Γ+,

|wr(x, t)|Γ−∪Γ+ ≤ C
{

e−𝜃1(d−x), (x, t) ∈ Γ−,
e−𝜃2(1−x), (x, t) ∈ Γ+,

where

𝜃1 =
√
𝛼𝛾√
𝜀

and 𝜃2 =
√
𝛼𝛾

2
√
𝜀
. (24)

Proof. To find the bound for wl(x, t), let us first consider the following barrier functions:

𝜓±
1 (x, t) = Ce−𝜃2x ±wl(x, t).

For the domain Γ−, it can be written as

𝜓±
1 (x, t) = Ce−

√
𝛼𝛾x∕(2

√
𝜀) ±wl(x, t).

Applying the operator L𝜀,𝜇 to the above equation, we obtain

L𝜀,𝜇𝜓±l (x, t) = C

[
𝛼𝛾

4
− a𝜇

√
𝛼𝛾

2
√
𝜀
− b

]
e−

√
𝛼𝛾x∕(2

√
𝜀) ±L𝜀,𝜇wl(x, t)

≤ C
[
𝛼𝛾

4
− a𝛾

2
− b

]
e−

√
𝛼𝛾x∕(2

√
𝜀) ±L𝜀,𝜇wl(x, t) ≥ 0.

Let us define the barrier functions 𝜓±
2 on Γ+ as

𝜓±
2 (x, t) = Ce−

√
𝛼𝛾(x−d)∕(

√
𝜀) ±wl(x, t).

Then, we have

L𝜀,𝜇𝜓±2 (x, t) = C

[
𝛼𝛾 − a𝜇

√
𝛼𝛾√
𝜀

− b

]
e−

√
𝛼𝛾(x−d)∕

√
𝜀±L𝜀,𝜇wl(x, t)

≤ C
[
𝛼𝛾 − a𝛾 − b

]
e−

√
𝛼𝛾(x−d)∕

√
𝜀±L𝜀,𝜇wl(x, t) ≥ 0.

The above comparisons can be also developed for the right singular component wr(x, t) in Γ− and Γ+. Hence, by using
Lemma 2, we obtain the required bound.

Lemma 12. For 𝛼𝜇2 ≥ 𝛾𝜀, the singular components wl(x, t) and wr(x, t) of (18) to (19) satisfy

|wl(x, t)|Γ−∪Γ+ ≤ C
{

e−𝜃2x, (x, t) ∈ Γ−,
e−𝜃1(x−d), (x, t) ∈ Γ+,

|wr(x, t)|Γ−∪Γ+ ≤ C
{

e−𝜃1(d−x), (x, t) ∈ Γ−,
e−𝜃2(1−x), (x, t) ∈ Γ+,

where

𝜃1 = 𝛼𝜇

𝜀
and 𝜃2 = 𝛾

2𝜇
. (25)
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Proof. We follow the idea given in O'Riordan et al.9 for parabolic problems with smooth data. For the case 𝛼𝜇2 ≥ 𝛾𝜀,
a careful examination will be needed since wr(0, t) ≠ 0. Consider the following barrier functions of wl(x, t)

𝜓
±
3 (x, t) = Ce−2Ate−𝜃2x ±wl(x, t) = Ce−2Ate−𝛾x∕(2𝜇) ±wl(x, t), (x, t) ∈ Γ−,

𝜓
±
4 (x, t) = Ce−2Ate−𝜃1(x−d) ±wl(x, t) = Ce−2Ate−𝛼𝜇x∕𝜀±wl(x, t), (x, t) ∈ Γ+,

where A is previously defined. From Lemma 10 with sufficiently large C, we have𝜓±
3 (x, t) ≥ 0, 𝜓±

4 (x, t) ≥ 0, (x, t) ∈ Γ0
and L𝜀,𝜇𝜓±

3 (x, t) ≤ 0, L𝜀,𝜇𝜓±
4 (x, t) ≤ 0. Now, by using Lemma 2, we get the required bound. Similarly, we can derive

the corresponding bound for the right singular component wr(x, t) in both domain Γ− and Γ+.

Lemma 13. When 𝛼𝜇2 ≥ 𝛾𝜀, then wr(x, t) and wl(x, t) of (18) to (19) satisfy the bounds‖‖‖‖‖𝜕
kwr

𝜕xk

‖‖‖‖‖Γ−∪Γ+

≤ C
(
𝜇−k + 𝜇−1𝜀2−k) , 1 ≤ k ≤ 3 and

‖‖‖‖𝜕mwr

𝜕tm

‖‖‖‖Γ−∪Γ+
≤ C, m = 1, 2

and ‖‖‖‖‖𝜕
kwl

𝜕xk

‖‖‖‖‖Γ−∪Γ+

≤ C
(
𝜇k𝜀−k) , 1 ≤ k ≤ 3 and

‖‖‖‖𝜕2wl

𝜕t2

‖‖‖‖Γ−∪Γ+
≤ C

(
1 + 𝜇2𝜀−1) .

Now, we write the solution of (1) to (2) as y(x, t) = v(x, t) + w(x, t). Note that both v(x, t) and w(x, t) are discontinuous
at (d, t), t > 0, but their sum is in 1(Γ). Note

v(x, t) =
{

v−(x, t), for (x, t) ∈ Γ−,
v+(x, t), for (x, t) ∈ Γ+,

wl(x, t) =
{

w−
l (x, t), for (x, t) ∈ Γ−,

w+
l (x, t), for (x, t) ∈ Γ+,

and wr(x, t) =
{

w−
r (x, t), for (x, t) ∈ Γ−,

w+
r (x, t), for (x, t) ∈ Γ+.

3 DISCRETIZATION AND THE STABILITY OF THE DISCRETE PROBLEM

Now, we define an a priori defined space adaptive mesh on which the convergence of the solution will be discussed. To
obtain this, we first split Ωx as follows:

Ωx = [0, 𝜏1] ∪ [𝜏1, d − 𝜏2] ∪ [d − 𝜏2, d] ∪ [d, d + 𝜏3] ∪ [d + 𝜏3, 1 − 𝜏4] ∪ [1 − 𝜏4, 1].

Here, 𝜏1, 𝜏2, 𝜏3 and 𝜏4 are transition parameters. The subintervals [0, 𝜏1], [d − 𝜏2, d], [d, d + 𝜏3] and [1 − 𝜏4, 1] contain
Nx∕8 mesh intervals, and remaining are coarse regions with Nx∕4 mesh intervals. Here, Nx denotes the number of mesh
intervals used in the x-direction. The interior mesh points are denoted by

ΩNx
x ≡

{
xi ∶ 1 ≤ i ≤ Nx

2
− 1

}
∪

{
xi ∶

Nx

2
+ 1 ≤ i ≤ Nx − 1

}
.

We choose xNx∕2 = d and Ω
Nx
x = {xi}

Nx
0 ∪ {d}. The transition parameters are chosen as follows:

𝜏1 = min
{

d
4
,

2
𝜃2

ln Nx

}
, 𝜏2 = min

{
d
4
,

2
𝜃1

ln Nx

}
, 𝜏3 = min

{
1 − d

4
,

2
𝜃1

ln Nx

}
, and 𝜏4 = min

{
1 − d

4
,

2
𝜃2

ln Nx

}
,

(26)
where 𝜃1 and 𝜃2 are defined in the earlier section. The above piecewise uniform space mesh for Ω

Nx
x on Ωx is containing

Nx mesh elements. We use the uniform mesh to discretize ΩNt
t on Ωt with Nt mesh elements, ie, step-size is 𝛥t = T∕Nt. In

practice, we use Nx and Nt are assumed to be of same order to reduce the computational cost. Let us denote N = (Nx,Nt).
Now, we discretize (1) to (2) as

LNx ,Nt
𝜀,𝜇 Y (xi, t𝑗) = (𝜀𝛿2

x + a𝜇D∗
x − b − cD−

t )Y (xi, t𝑗) = 𝑓 (xi, t𝑗), (xi, t𝑗) ∈ (ΓN− ∪ ΓN+), (27)

Y (0, t𝑗) = 𝑦(0, t𝑗), Y (1, t𝑗) = 𝑦(1, t𝑗), 𝑗 > 0, Y (xi, 0) = 𝑦(xi, 0), i = 0, · · ·,Nx, and 𝑗 = 1, · · ·,Nt, (28)

D−
x Y (xNx∕2, t𝑗) = D+

x Y (xNx∕2, t𝑗), 𝑗 = 1, · · ·,Nt, (29)
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where 𝛿2
x Y (xi, t𝑗) =

2(D+
x −D−

x )Y (xi,t𝑗 )
xi+1−xi−1

, D∗
x Y (xi, t𝑗) =

{
D−

x Y (xi, t𝑗), i < Nx∕2
D+

x Y (xi, t𝑗), i > Nx∕2, with D+
x Y (xi, t𝑗) =

Y (xi+1,t𝑗 )−Y (xi,t𝑗 )
xi+1−xi

, D−
x Y (xi, t𝑗) =

Y (xi,t𝑗 )−Y (xi−1,t𝑗 )
xi−xi−1

, and D−
t Y (xi, t𝑗) =

Y (xi,t𝑗 )−Y (xi,t𝑗−1)
t𝑗−t𝑗−1

.
The following lemmas show that the above discrete operator leads to a stable numerical solution.

Lemma 14. Suppose that a mesh function Y(xi, tj) satisfies

Y (xi, t𝑗) ≤ 0, ∀ (xi, t𝑗) ∈ ΓN
0 , LNx ,Nt

𝜀,𝜇 Y (xi, t𝑗) ≥ 0, ∀ (xi, t𝑗) ∈ (ΓN− ∪ ΓN+), and(
D+

x Y (xi, t𝑗) − D−
x Y (xi, t𝑗)

)
≥ 0, ∀ (xi, t𝑗) ∈ ΓN±, then Y (xi, t𝑗) ≤ 0, ∀ (xi, t𝑗) ∈ Γ

N
.

Proof. Let us assume that the maximum value of Y (x̃i, t̃𝑗) attains at (x̃i, t̃𝑗) in Γ
N

. Note that the result is obvious if
Y (x̃i, t̃𝑗) ≤ 0. Now, consider Y (x̃i, t̃𝑗) < 0. An easy calculation shows that this leads to a contradiction for two separate
cases (x̃i, t̃𝑗) ∈ (ΓN− ∪ΓN+) and (x̃i, t̃𝑗) = (d, t𝑗), since either LNx ,Nt

𝜀,𝜇 Y (xi, t𝑗) ≥ 0 or
(

D+
x − D−

x
)

Y (d, t𝑗) ≥ 0. Therefore, the
desired result follows.

Lemma 15. Let Y(xi, tj) be a discrete solution of (27) to (29), then

||Y ||ΓN ≤ C max
{||Y ||ΓN

0
,

1
𝜉
||LNx ,Nt

𝜀,𝜇 Y ||(ΓN−∪ΓN+)

}
,

where 𝜉 = min {𝛼1∕d, 𝛼2∕(1 − d)}.

Proof. The proof of the discrete stability result is analogues to the continuous stability result. Consider Ψ±(xi, t𝑗) =(
−||Y ||ΓN

0
− xi||LNx ,Nt

𝜀,𝜇 Y ||
𝜉d

)
±Y (d, t𝑗), where we have considered (xd, tj) as the point of discontinuity in Γ. Note that

𝛹±(xi, tj) > 0 and the discrete operator LNx ,Nt
𝜀,𝜇 Ψ±(xi, t𝑗) ≥ 0 when (xi, t𝑗) ∈ (ΓN− ∪ ΓN+). Then, we have

(
D+

x − D−
x
)
Ψ±(d, t𝑗) =

||LNx ,Nt
𝜀,𝜇 Y ||
𝜉d

+
||LNx ,Nt

𝜀,𝜇 Y ||
𝜉(1 − d)

⩾ 0,

and
(

D+
x − D−

x
)

Y (d, t𝑗) = 0. Hence, by using the discrete comparison principle at Lemma 14, we have Ψ±(xi, t𝑗) ≤

0,∀ (xi, t𝑗) ∈ Γ
N

. Therefore, the required result follows.

4 ERROR ANALYSIS

The convergence of the present method will be considered by combining the consistency analysis based on truncation
error and stability analysis. We decompose the discrete solution Y(xi, tj) into discrete regular component V(xi, tj) and dis-
crete singular component W(xi, tj) as Y(xi, tj) = V(xi, tj) + W(xi, tj). Now, we define the discrete problems corresponding
to V−(xi, tj) and V+(xi, tj), which approximate V(xi, tj) to the left and right side of discontinuity point (d, tj) as follows:

LNx ,Nt
𝜀,𝜇 V−(xi, t𝑗) = 𝑓 (xi, t𝑗), ∀ (xi, t𝑗) ∈ ΓN−,

V−(0, t𝑗) = v(0, t𝑗), V−(xNx∕2, t𝑗) = v(d−, t𝑗), v−(xi, 0) = ṽ, for some ṽ,

and

LNx ,Nt
𝜀,𝜇 V+(xi, t𝑗) = 𝑓 (xi, t𝑗), ∀ (xi, t𝑗) ∈ ΓN+,

V+(xNx∕2, t𝑗) = v(d+, t𝑗), V+(xNx , t𝑗) = v(1, t𝑗) v+(xi, 0) = u(x, 0) − ṽ.

Further, we decompose the discrete singular component as W(xi, tj) = Wl(xi, tj) + Wr(xi, tj). Then, we construct the mesh
functions W−

l (xi, t𝑗), W+
l (xi, t𝑗), and W−

r (xi, t𝑗), W+
r (xi, t𝑗) to approximate Wl(xi, tj) and Wr(xi, tj) on left and right sides of

discontinuity point (d, tj). Here, W−
l (xi, t𝑗) and W−

r (xi, t𝑗) correspond to the left boundary layer and right interior layer
part of the solution, respectively. Similarly, W+

l (xi, t𝑗) and W+
r (xi, t𝑗) are the solution parts of left interior layer and right

boundary layer. The problems of the singular component solutions are defined as follows:
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LNx ,Nt
𝜀,𝜇 W−

l (xi, t𝑗) = 0 ∀ (xi, t𝑗) ∈ ΓN−,

W−
l (0, t𝑗) = w−

l (0, t𝑗), W−
l (d, t𝑗) = w−

l (d, t𝑗),
(30)

LNx ,Nt
𝜀,𝜇 W+

l (xi, t𝑗) = 0 ∀ (xi, t𝑗) ∈ ΓN+,

W+
l (d, t𝑗) = w+

l (d, t𝑗), W+
l (1, t𝑗) = 0,

(31)

LNx ,Nt
𝜀,𝜇 W−

r (xi, t𝑗) = 0 ∀ (xi, t𝑗) ∈ ΓN−,

W−
r (0, t𝑗) = 0, W−

r (d, t𝑗) = w−
r (d, t𝑗),

(32)

LNx ,Nt
𝜀,𝜇 W+

r (xi, t𝑗) = 0 ∀ (xi, t𝑗) ∈ ΓN+,

W+
r (d, t𝑗) = 0, W+

r (1, t𝑗) = w+
r (1, t𝑗),(

V− + W−
l + W−

r
)
(d, t𝑗) =

(
V+ + W+

l + W+
r
)
(d, t𝑗),

(33)

where W−
l (xi, 0), W+

l (xi, 0), W−
r (xi, 0), and W+

r (xi, 0) are chosen suitably. Hence, the discrete solution Y(xi, tj) can be
written as

Y (xi, t𝑗) =
⎧⎪⎨⎪⎩

(
V− + W−

l + W−
r
)
(xi, t𝑗), (xi, t𝑗) ∈ ΓN−,(

V− + W−
l + W−

r
)
(d, t𝑗) =

(
V+ + W+

l + W+
r
)
(d, t𝑗),(

V+ + W+
l + W+

r
)
(xi, t𝑗), (xi, t𝑗) ∈ ΓN+.

Lemma 16. 12 The bounds for the singular components W−
l (xi, tk), W+

l (xi, tk), W−
r (xi, tk), and W+

r (xi, tk) are

|W−
l (xi, tk)| ≤ C

i∏
𝑗=1

(1 + 𝜃2h𝑗)−1 = 𝜓−
li , 1 ≤ i ≤ Nx∕2, 𝜓−

l0 = C, (34)

|W+
l (xi, tk)| ≤ C

i∏
𝑗=Nx∕2+1

(1 + 𝜃1h𝑗)−1 = 𝜓+
li , i ≤ Nx, 𝜓

+
lNx∕2 = C, (35)

|W−
r (xi, tk)| ≤ C

Nx∕2∏
𝑗=i+1

(1 + 𝜃1h𝑗)−1 = 𝜓−
ri , 0 ≤ i ≤ Nx∕2, 𝜓−

rNx∕2 = C, (36)

|W+
r (xi, tk)| ≤ C

Nx∏
𝑗=i+1

(1 + 𝜃2h𝑗)−1 = 𝜓+
ri , i ≥ Nx∕2, 𝜓+

rNx
= C, (37)

where 𝜃1 and 𝜃2 are defined as follows:

𝜃1 =
⎧⎪⎨⎪⎩

√
𝛼𝛾

2
√
𝜀
, if 𝛼𝜇2 ≤ 𝛾𝜀,

𝛼𝜇

2𝜀
, if 𝛼𝜇2 ≥ 𝛾𝜀,

and 𝜃2 =
⎧⎪⎨⎪⎩

√
𝛼𝛾

2
√
𝜀
, if 𝛼𝜇2 ≤ 𝛾𝜀,

𝛾

2𝜇
, if 𝛼𝜇2 ≥ 𝛾𝜀,

and hj = xj − xj−1 and W−
l (xi, t𝑗), W+

l (xi, t𝑗), W−
r (xi, t𝑗), and W+

r (xi, t𝑗) are solutions of (30) to (33), respectively.

Lemma 17. The truncation error of the regular component satisfies

||V − v||ΓN−∪ΓN+ ≤ C
(

N−1
x + N−1

t
)
.

Proof. The truncation error bound for regular component is estimated using the following classical argument at the
domain ΓN− by a similar technique provided in O'Riordan et al.9 Observe from (17)|||LNx ,Nt

𝜀,𝜇 (V− − v−)(xi, t𝑗)
||| ≤ |||LNx ,Nt

𝜀,𝜇 V−(xi, t𝑗) − L𝜀,𝜇v−(xi, t𝑗)
|||

≤ 𝜀

(
𝛿2

x −
𝜕2

𝜕x2

) ||v−(xi, t𝑗)|| + a(xi, t𝑗)𝜇
(

D−
x − 𝜕

𝜕x

) ||v−(xi, t𝑗)|| + c(xi, t𝑗)
(

D−
t − 𝜕

𝜕t

) ||v−(xi, t𝑗)||
≤ C max

i
hi (𝜀||v−xxx|| + 𝜇||v−xx||) + CN−1

t ||v−tt ||
≤ C(N−1

x + N−1
t ).
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Similarly, we can derive the same error estimate at ΓN+. Hence from Lemma 14, we have

||V − v||ΓN−∪ΓN+ ≤ C
(

N−1
x + N−1

t
)
.

Lemma 18. The truncation error of the left singular component satisfies

||W−
l −w−

l ||ΓN− ≤

{
C(N−1

x ln Nx + N−1
t ), if 𝛼𝜇2 ≤ 𝛾𝜀,

C(N−1
x ln Nx + N−1

t ), if 𝛼𝜇2 ≥ 𝛾𝜀,
and ||W+

l −w+
l ||ΓN+ ≤

{
C(N−1

x ln Nx + N−1
t ), if 𝛼𝜇2 ≤ 𝛾𝜀,

C(N−1
x (ln Nx)2 + N−1

t ln Nx), if 𝛼𝜇2 ≥ 𝛾𝜀.

Proof. On ΓN−, we have|||LNx ,Nt
𝜀,𝜇 (W−

l − w−
l )(xi, t𝑗)

||| ≤ |||LNx ,Nt
𝜀,𝜇 W−

l (xi, t𝑗) − L𝜀,𝜇w−
l (xi, t𝑗)

|||
≤ 𝜀

(
𝛿2

x −
𝜕2

𝜕x2

) |||w−
l (xi, t𝑗)

||| + a(xi, t𝑗)𝜇
(

D−
x − 𝜕

𝜕x

) |||w−
l (xi, t𝑗)

||| + c(xi, t𝑗)
(

D−
t − 𝜕

𝜕t

) |||w−
l (xi, t𝑗)

|||
≤ Cmaxi hi

(
𝜀||(w−

l )xxx|| + 𝜇||(w−
l )xx||) + CN−1

t ||(w−
l )tt||,

(38)
and similarly for ΓN+, we have|||LNx ,Nt

𝜀,𝜇 (W+
l − w+

l )(xi, t𝑗)
||| ≤ C max

i
hi

(
𝜀||(w+

l )xxx|| + 𝜇||(w+
l )xx||) + CN−1

t ||(w+
l )tt||. (39)

Now we consider two cases (1) 𝜏1 <
1
8
, and (2) 𝜏1 = 1

8
for the singular component analysis.

Case 2: 𝜏1 <
1
8

implies mesh is piecewise uniform. In ΓN−, let us first consider [𝜏1, d)×ΩNt
t to find the required bound

from Lemma 11 and (34). Note |||W−
l (xNx∕8,t𝑗 )

||| ≤ C
(
1 + 𝜃2h𝑗

)−Nx∕8

≤ C
(

1 + 𝜃2

(
8𝜏1

Nx

))−Nx∕8

≤ C
(
1 + 16N−1

x ln Nx
)−Nx∕8

,

where we have used the inequality ln(1 + x) > x(1 − x∕2) for x > 0 with x = 16N−1
x ln Nx, to get the last inequality.

Hence, |||W−
l (xNx∕8, t𝑗)

||| ≤ CN−1
x , for (xi, t𝑗) ∈ [𝜏1, d) × ΩNt

t .

From the Lemmas 11 and 12, we have|||w−
l (x, t)

||| ≤ Ce−𝜃2x ≤ Ce−𝜃2𝜏1 ≤ Ce−2 ln Nx ≤ CN−2
x .

Now, combining the results of W−
l (xi, t𝑗) and w−

l (x, t), we obtain

|||(W−
l − w−

l )(xi, t𝑗)
||| ≤ CN−1

x , for (xi, t𝑗) ∈ [𝜏1, d) × ΩNt
t .

Now, consider the fine mesh region (0, 𝜏1) × ΩNt
t in ΓN−. First, consider the case 𝛼𝜇2 ≤ 𝛾𝜀. Observe

|||LNx ,Nt
𝜀,𝜇 (W−

l − w−
l )(xi, t𝑗)

||| ≤ C√
𝜀
(hi+1 + hi) + CN−1

t .

Since 𝜏1 <
1
8
, therefore hi+1 = hi =

16
√
𝜀√

𝛼𝛾
N−1

x ln Nx and hence

|||LNx ,Nt
𝜀,𝜇 (W−

l − w−
l )(xi, t𝑗)

||| ≤ C
(

N−1
x ln Nx + N−1

t
)
.
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The required bound follows from the discrete comparison principle. Now, consider 𝛼𝜇2 ≥ 𝛾𝜀. Then (38) reduces to|||LNx ,Nt
𝜀,𝜇 (W−

l − w−
l )(xi, t𝑗)

||| ≤ C𝜇−1(hi+1 + hi) + CN−1
t ≤ CN−1

x ln Nx + CN−1
t ,

since hi+1 = hi = 16𝜇
𝛾

N−1
x ln Nx. Hence, we have

|||(W−
l − w−

l )(xi, t𝑗)
||| ≤ CN−1

x ln Nx + CN−1
t (xi, t𝑗) ∈ ΓN−,

from Lemma 14. To find the bounds for W+
l (xi, t𝑗) and w+

l (x, t) on the domainΓN+, we first divide it into [d, d+𝜏3) ×ΩNt
t

and [d + 𝜏3, 1) × ΩNt
t . Let us consider [d + 𝜏3, 1) × ΩNt

t . From Lemmas 11 and 12, we have in Γ+,|||w+
l (x, t)

||| ≤ Ce−𝜃1x ≤ Ce−𝜃1𝜏1 ≤ Ce−2 ln Nx ≤ CN−2
x .

From the bounds at (35), it follows at [d + 𝜏3, 1) × ΩNt
t that|||W+

l (x5Nx∕8, t𝑗)
||| ≤ C

(
1 + 𝜃1h𝑗

)−Nx∕8

≤ C
(

1 + 𝜃1

(
8𝜏3

Nx

))−Nx∕8

≤ C
(
1 + 16N−1

x ln Nx
)−Nx∕8

≤ CN−1
x .

Combining the bounds of W+
l (xi, t𝑗) and w+

l (x, t), we have|||(W+
l − w+

l )(xi, t𝑗)
||| ≤ CN−1

x , for (xi, t𝑗) ∈ [d + 𝜏3, 1) × ΩNt
t .

Let us start with the case 𝛼𝜇2 ≤ 𝛾𝜀 on the fine region [d, d + 𝜏3) × ΩNt
t in ΓN+. Here,

|||LNx ,Nt
𝜀,𝜇 (W+

l − w+
l )(xi, t𝑗)

||| ≤ C√
𝜀
(hi+1 + hi) + CN−1

t .

As 𝜏3 < 5∕8 and hi+1 = hi =
16

√
𝜀√

𝛼𝛾
N−1

x ln Nx, therefore

|||LNx ,Nt
𝜀,𝜇 (W+

l − w+
l )(xi, t𝑗)

||| ≤ C
(

N−1
x ln Nx + N−1

t
)
.

The required result follows from the discrete comparison principle. Now, consider the second case 𝛼𝜇2 ≥ 𝛾𝜀 and
hi+1 = hi = 16𝜀

𝛼𝜇
N−1

x ln Nx. The truncation error bound given in (39) reduces to

|||LNx ,Nt
𝜀,𝜇 (W+

l − w+
l )(xi, t𝑗)

||| ≤ CN−1
x ln Nx + CN−1

x
𝜇2

𝜀
ln Nx + CN−1

t

(
1 + 𝜇2

𝜀

)
.

Consider the following barrier functions

𝜓±
1 = C

(
N−1

x ln Nx + N−1
t +

(
(𝜏3 − xi)

𝜇

𝜀

)
(N−1

x ln Nx + N−1
t )

)
±(W+

l − w+
l )(xi, t𝑗),

which becomes nonnegative for sufficiently large C at all points of ΓN
0 and LNx ,Nt

𝜀,𝜇 𝜓±
1 (xi, t𝑗) ≤ 0, (xi, t𝑗) ∈ ΓN .

Therefore, using 𝜏3 = 2𝜀
𝛼𝜇

ln Nx in ΓN+, we have from Lemma 14

|||(W+
l − w+

l )(xi, t𝑗)
||| ≤ C

(
N−1

x ln Nx + N−1
t +

(
(𝜏3 − xi)

𝜇

𝜀

)
(N−1

x ln Nx + N−1
t )

)
≤ C

(
N−1

x (ln Nx)2 + N−1
t ln Nx

)
.

Case 2: In the first case, the mesh is uniform. Now, assume 𝛼𝜇2 ≤ 𝛾𝜀. If 𝜏1 = 1
8

then 2
𝜃2

ln Nx ≤
1
8
, where 𝜃2 =

√
𝛼𝛾

2
√
𝜀

from (24). By the classical arguments given in (38) on ΓN−, it follows|||LNx ,Nt
𝜀,𝜇 (W−

l − w−
l )(xi, t𝑗)

||| ≤ C
(

N−1
x ln Nx + N−1

t
)
.
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Now, consider the condition 𝛼𝜇2 ≥ 𝛾𝜀. Here, 𝜃2 = 𝛾

2𝜇
from (25). Hence from (38), we can write

|||LNx ,Nt
𝜀,𝜇 (W−

l − w−
l )(xi, t𝑗)

||| ≤ C
(

N−1
x ln Nx + N−1

t
)
.

If 𝜏3 = 1
8

then 2
𝜃1

ln Nx ≤
1
8
, where 𝜃1 =

√
𝛼𝛾√
𝜀

from (24) for 𝛼𝜇2 ≤ 𝛾𝜀. Using (39) in ΓN+, we have

|||LNx ,Nt
𝜀,𝜇 (W+

l − w+
l )(xi, t𝑗)

||| ≤ C
(

N−1
x ln Nx + N−1

t
)
.

Now, for 𝛼𝜇2 ≥ 𝛾𝜀, we use 𝜃1 = 𝛼𝜇

𝜀
from (24), to get|||LNx ,Nt

𝜀,𝜇 (W+
l − w+

l )(xi, t𝑗)
||| ≤ C

(
N−1

x (ln Nx)2 + N−1
t ln Nx

)
.

From the above results and the discrete comparison principle Lemma 14, we can obtain the desired results

||W−
l − w−

l ||ΓN− ≤

{
C(N−1

x ln Nx + N−1
t ), if 𝛼𝜇2 ≤ 𝛾𝜀,

C(N−1
x ln Nx + N−1

t ), if 𝛼𝜇2 ≥ 𝛾𝜀,

and

||W+
l − w+

l ||ΓN+ ≤

{
C(N−1

x ln Nx + N−1
t ), if 𝛼𝜇2 ≤ 𝛾𝜀,

C(N−1
x (ln Nx)2 + N−1

t ln Nx), if 𝛼𝜇2 ≥ 𝛾𝜀.

Lemma 19. The truncation error of the right singular component satisfies

||W−
r − w−

r ||ΓN− ≤

{
C(N−1

x ln Nx + N−1
t ), if 𝛼𝜇2 ≤ 𝛾𝜀,

C(N−1
x (ln Nx)2 + N−1

t ln Nx), if 𝛼𝜇2 ≥ 𝛾𝜀,

and

||W+
r − w+

r ||ΓN+ ≤

{
C(N−1

x ln Nx + N−1
t ), if 𝛼𝜇2 ≤ 𝛾𝜀,

C(N−1
x ln Nx + N−1

t ), if 𝛼𝜇2 ≥ 𝛾𝜀.

Proof. We follow a similar procedure provided in Lemma 18 to find the error estimate for the right singular
component. On ΓN−, we have|||LNx ,Nt
𝜀,𝜇 (W−

r − w−
r )(xi, t𝑗)

||| ≤ |||LNx ,Nt
𝜀,𝜇 W−

r (xi, t𝑗) − L𝜀,𝜇w−
r (xi, t𝑗)

|||
≤ 𝜀

(
𝛿2

x −
𝜕2

𝜕x2

) ||w−
r (xi, t𝑗)|| + a(xi, t𝑗)𝜇

(
D−

x − 𝜕

𝜕x

) ||w−
r (xi, t𝑗)|| + c(xi, t𝑗)

(
D−

t − 𝜕

𝜕t

) ||w−
r (xi, t𝑗)||

≤ C max
i

hi (𝜀||(w−
r )xxx|| + 𝜇||(w−

r )xx||) + CN−1
t ||(w−

r )tt||.
(40)

Similarly for ΓN+, we have|||LNx ,Nt
𝜀,𝜇 (W+

r − w+
r )(xi, t𝑗)

||| ≤ C max
i

hi
(
𝜀||(w+

r )xxx|| + 𝜇||(w+
r )xx||) + CN−1

t ||(w+
r )tt||. (41)

Here, we consider two cases (1) d − 𝜏2 <
3
8

and (2) d − 𝜏2 = 3
8

for the singular component analysis.

Case 1: The condition d− 𝜏2 <
3
8

gives the piecewise uniform mesh. In ΓN−, first consider [0, d− 𝜏2) ×ΩNt
t to find the

required bound from Lemma 11 and (36). Note

|||W−
r (x3Nx∕8,t𝑗 )

||| ≤ C
(
1 + 𝜃1h𝑗

)−Nx∕8
≤ C

(
1 + 𝜃1

(
8𝜏2

Nx

))−Nx∕8

≤ C
(
1 + 16N−1

x ln Nx
)−Nx∕8

,

where we have used the inequality ln(1 + x) > x(1 − x∕2) with x = 16N−1
x ln Nx, to get the last inequality. Hence||W−

r (x3Nx∕8, t𝑗)|| ≤ CN−1
x , for (xi, t𝑗) ∈ [0, d − 𝜏2) × ΩNt

t .

From the Lemmas 11 and 12, we have

|w−
r (x, t)| ≤ Ce−𝜃1(d−x) ≤ Ce−𝜃1𝜏2 ≤ Ce−2 ln Nx ≤ CN−2

x .
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Now, combining the bounds of W−
r (xi, t𝑗) and w−

r (x, t), we obtain||(W−
r − w−

r )(xi, t𝑗)|| ≤ CN−1
x , for (xi, t𝑗) ∈ [0, d − 𝜏2) × ΩNt

t .

Now, consider the fine mesh region (d − 𝜏2, d) × ΩNt
t in ΓN−. First, consider the case 𝛼𝜇2 ≤ 𝛾𝜀. Note|||LNx ,Nt

𝜀,𝜇 (W−
r − w−

r )(xi, t𝑗)
||| ≤ C𝜀−1∕2(hi+1 + hi) + CN−1

t .

Since d − 𝜏2 <
3
8
, therefore, hi+1 = hi =

16
√
𝜀√

𝛼𝛾
N−1

x ln Nx. So,

|||LNx ,Nt
𝜀,𝜇 (W−

r − w−
r )(xi, t𝑗)

||| ≤ C
(

N−1
x ln Nx + N−1

t
)
.

The expected bound follows from the comparison principle. Now, consider 𝛼𝜇2 ≥ 𝛾𝜀 with hi+1 = hi = 16𝜇
𝛾

N−1
x ln Nx.

Then, (40) reduces to |||LNx ,Nt
𝜀,𝜇 (W−

r − w−
r )(xi, t𝑗)

||| ≤ C
𝜇
(hi+1 + hi) + CN−1

t ≤ CN−1
x ln Nx + CN−1

t .

Using Lemma 14, we obtain ||W−
r − w−

r || ≤ CN−1
x ln Nx + CN−1

t . To find the bounds for W+
r (xi, t𝑗) and w+

r (x, t) on the
domain ΓN+, we first divide it into [d, 1− 𝜏4)×ΩNt

t and [1− 𝜏4, 1)×ΩNt
t . Let us begin with the domain [d, 1− 𝜏4)×ΩNt

t
to obtain the bounds from (35).

||W+
r (x7Nx∕8, t𝑗)|| ≤ C

(
1 + 𝜃2h𝑗

)−Nx∕8
≤ C

(
1 + 𝜃2

(
8𝜏4

Nx

))−Nx∕8

≤ C
(
1 + 16N−1

x ln Nx
)−Nx∕8

≤ CN−1
x ,

for (xi, t𝑗) ∈ [d, d − 𝜏4) × ΩNt
t . Again from Lemmas 11 and 12, we have in Γ+

||w+
r (x, t)|| ≤ Ce−𝜃2(1−x) ≤ Ce𝜃2𝜏4 ≤ Ce−2 ln Nx ≤ CN−2

x .

Therefore, by combining the above bounds of W+
r (xi, t𝑗) and w+

r (x, t), we obtain||(W+
r − w+

r )(xi, t𝑗)|| ≤ CN−1
x , for (xi, t𝑗) ∈ [d, 1 − 𝜏4) × ΩNt

t .

Now consider the case 𝛼𝜇2 ≤ 𝛾𝜀 on [d, 1 − 𝜏4) × ΩNt
t in ΓN+. Here

|||LNx ,Nt
𝜀,𝜇 (W+

r − w+
r )(xi, t𝑗)

||| ≤ C√
𝜀
(hi+1 + hi) + CN−1

t .

Since 1 − 𝜏4 <
7
8

and hi+1 = hi =
16

√
𝜀√

𝛼𝛾
N−1

x ln Nx, therefore

|||LNx ,Nt
𝜀,𝜇 (W+

r − w+
r )(xi, t𝑗)

||| ≤ C
(

N−1
x ln Nx + N−1

t
)
.

The required result follows from the discrete comparison principle. Now, consider the second case 𝛼𝜇2 ≥ 𝛾𝜀 and
hi+1 = hi = 16𝜀

𝛼𝜇
N−1

x ln Nx. The error in (41) reduces to

|||LNx ,Nt
𝜀,𝜇 (W+

r − w+
r )(xi, t𝑗)

||| ≤ CN−1
x ln Nx + CN−1

x
𝜇2

𝜀
ln Nx + CN−1

t

(
1 + 𝜇2

𝜀

)
.

Consider the following barrier functions:

𝜓±
1 = C

(
N−1

x ln Nx + N−1
t +

(
((1 − 𝜏4) − xi)

𝜇

𝜀

)
(N−1

x ln Nx + N−1
t )

)
±(W+

r − w+
r )(xi, t𝑗).

For sufficiently large C, we have 𝜓±
1 (xi, t𝑗) is nonnegative at all points ΓN

0 and LNx ,Nt
𝜀,𝜇 𝜓±

1 (xi, t𝑗) ≤ 0, (xi, t𝑗) ∈ ΓN , and
so by discrete comparison principle, we have

||(W+
r − w+

r )(xi, t𝑗)|| ≤ C
(

N−1
x ln Nx + N−1

t +
(
((1 − 𝜏4) − xi)

𝜇

𝜀

)
(N−1

x ln Nx + N−1
t )

)
.
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Since 𝜏4 = 4𝜇
𝛾

ln Nx, we obtain

||(W+
r − w+

r )(xi, t𝑗)|| ≤ C
(

N−1
x (ln Nx)2 + N−1

t ln Nx
)
, for (xi, t𝑗) ∈ ΓN+.

Case 2: Now, consider 𝛼𝜇2 ≤ 𝛾𝜀. If d−𝜏2 = 3
8

then 2
𝜃1

ln Nx ≤
3
8
, where 𝜃1 =

√
𝛼𝛾

2𝜀
from (24). By the classical arguments

for (40) in ΓN−, it follows |||LNx ,Nt
𝜀,𝜇 (W−

r − w−
r )(xi, t𝑗)

||| ≤ C
(

N−1
x ln Nx + N−1

t
)
.

Now, consider the condition 𝛼𝜇2 ≥ 𝛾𝜀. Here, 𝜃1 = 𝛼𝜇

𝜀
from (25). Hence, from (40), we can write

|||LNx ,Nt
𝜀,𝜇 (W−

r − w−
r )(xi, t𝑗)

||| ≤ C
(

N−1
x (ln Nx)2 + N−1

t ln Nx
)
.

For 1 − 𝜏4 = 7
8
, we have 2

𝜃2
ln Nx ≤

1
8
, where 𝜃2 =

√
𝛼𝛾

2𝜀
from (24) for 𝛼𝜇2 ≤ 𝛾𝜀. Using (41) in ΓN+, we get

|||LNx ,Nt
𝜀,𝜇 (W+

r − w+
r )(xi, t𝑗)

||| ≤ C
(

N−1
x ln Nx + N−1

t
)
.

For 𝛼𝜇2 ≥ 𝛾𝜀, we take 𝜃2 = 𝛾

2𝜇
from (25) and get

|||LNx ,Nt
𝜀,𝜇 (W+

r − w+
r )(xi, t𝑗)

||| ≤ C
(

N−1
x ln Nx + N−1

t
)
.

Therefore, from the above results and the discrete comparison principle, we can write

||W−
r − w−

r ||ΓN− ≤

{
C(N−1

x ln Nx + N−1
t ), if 𝛼𝜇2 ≤ 𝛾𝜀,

C(N−1
x (ln Nx)2 + N−1

t ln Nx), if 𝛼𝜇2 ≥ 𝛾𝜀,

and

||W+
r − w+

r ||ΓN+ ≤

{
C(N−1

x ln Nx + N−1
t ), if 𝛼𝜇2 ≤ 𝛾𝜀,

C(N−1
x ln Nx + N−1

t ), if 𝛼𝜇2 ≥ 𝛾𝜀,

which is the required bound.
At the point (xi, tj) = (d, tj), we have

(
D+

x − D−
x
)

Y (d, t𝑗) = 0. Therefore,|||(D+
x − D−

x
)
(Y − 𝑦)(d, t𝑗)

||| = |||(D+
x − D−

x
)

Y (d, t𝑗) −
(

D+
x − D−

x
)
𝑦(d, t𝑗)

||| ≤ |||(D+
x − D−

x
)
𝑦(d, t𝑗)

||| .
Now, note that h3 = 8𝜏2

Nx
and h4 = 8𝜏3

Nx
on either side of (d, tj). Therefore,

|||(D+
x − D−

x
)
(Y − 𝑦)(d, t𝑗)

||| ≤ |||(D+
x − D−

x
)
𝑦(d, t𝑗)

|||
≤

|||||
(

D+ − d
dx

)
𝑦(d+, t𝑗)

||||| +
|||||
(

D− − d
dx

)
𝑦(d−, t𝑗)

|||||
≤ C h3

2
|𝑦xx|ΓN− + C h4

2
|𝑦xx|ΓN+

≤ C (h3 + h4)
2

|𝑦xx|ΓN−∪ΓN+ ,

|||(D+
x − D−

x
)
(Y − 𝑦)(d, t𝑗)

||| ≤ C
⎧⎪⎨⎪⎩

(h3+h4)
2

(
1
𝜀

)
, if 𝛼𝜇2 ≤ 𝛾𝜀,

(h3+h4)
2

(
𝜇

𝜀

)2
, if 𝛼𝜇2 ≥ 𝛾𝜀.

5 ERROR ESTIMATE

Theorem 1. The continuous solution y(x, t) of (1) to (2) and the numerical solution Y(xi, tj) of (27) to (29) satisfy the
following error estimate:
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||Y − 𝑦||ΓN ≤

{
C

(
N−1

x ln Nx + N−1
t

)
, if 𝛼𝜇2 ≤ 𝛾𝜀,

C
(

N−1
x (ln Nx)2 + N−1

t ln Nx
)
, if 𝛼𝜇2 ≥ 𝛾𝜀,

ie, the difference scheme (27) to (29) converges with almost first-order accuracy in space and time.

Proof. Combining the Lemmas 17, 18, and 19, we obtain the following error bound for (xi, tj) ≠ (d, tj)

||(Y − 𝑦)(xi, t𝑗)|| ≤ {
C

(
N−1

x ln Nx + N−1
t

)
, if 𝛼𝜇2 ≤ 𝛾𝜀,

C
(

N−1
x (ln Nx)2 + N−1

t ln Nx
)
, if 𝛼𝜇2 ≥ 𝛾𝜀.

(42)

Using the techniques given in Clavero et al. and Chandru et al.,7,16 we can also obtain the error for (xi, tj) = (d, tj).
First, we obtain the result for the case 𝛼𝜇2 ≤ 𝛾𝜀. Consider the following discrete barrier function:

𝜔±
1 (xi, t𝑗) =

{
C1

(
N−1

x ln Nx + N−1
t

)
+ C2

h
𝜀
𝜏2

2 ((d − 𝜏2) − x)±e(xi), for xi ∈ (d − 𝜏2, d) × ΩNt
t ,

C3
(

N−1
x ln Nx + N−1

t
)
+ C4

h
𝜀
𝜏2

2 (x − (d + 𝜏3))±e(xi), for xi ∈ (d, d + 𝜏3) × ΩNt
t ,

where h3 = 8𝜏2
N
, h4 = 8𝜏3

N
and h = max{h3, h4}. Then, it is easy to verify that

𝜔±
1 (xi, t𝑗) ≤ 0, ∀ (xi, t𝑗) ∈ Γ

N
0 ,

for sufficiently large C1. We also have

LNx ,Nt
𝜀,𝜇 𝜔±

1 (xi, t𝑗) ≥ 0, ∀ (xi, t𝑗) ∈ (ΓN− ∪ ΓN+)

and (
D+

x − D−
x
)
𝜔±

1 (d, t𝑗) ≥ 0,

for suitably large C2. Thus, from the discrete comparison principle, we get

𝜔±
1 (xi, t𝑗) ≤ 0, ∀ (xi, t𝑗) ∈ Γ

N
.

Therefore, for sufficiently larger Nx, we obtain the following estimate||(Y − 𝑦)(xi, t𝑗)||ΓN ≤ C
(

N−1
x ln Nx + N−1

t
)
, if 𝛼𝜇2 ≤ 𝛾𝜀. (43)

In the second case 𝛼𝜇2 ≥ 𝛾𝜀, consider the discrete barrier function

𝜔±
2 (xi, t𝑗) =

⎧⎪⎪⎨⎪⎪⎩

C5
(

N−1
x (ln Nx)2 + N−1

t ln Nx
)
+

(
C6

(
N−1

x ln Nx + N−1
t

)
𝜇

𝜀
+ C7

h𝜇
𝜀2 𝜏

2
2

)
(d − 𝜏2 − xi)±e(xi), xi ∈ (d − 𝜏2, d) × ΩNt

t ,

C8
(

N−1
x (ln Nx)2 + N−1

t ln Nx
)
+

(
C9

(
N−1

x ln Nx + N−1
t

)
𝜇

𝜀
+ C10

h𝜇
𝜀2 𝜏

2
2

)
(xi − (d + 𝜏3))±e(xi), xi ∈ (d, d + 𝜏3) × ΩNt

t .

Using a similar procedure from the above technique based on discrete comparison principle, we also obtain the error
estimate ||(Y − 𝑦)(xi, t𝑗)||ΓN ≤ C

(
N−1

x (ln Nx)2 + N−1
t ln Nx

)
, if 𝛼𝜇2 ≥ 𝛾𝜀. (44)

Hence, we have the required result.

The above bound provides the parameter uniform estimate as the constant C is independent of singular perturbation
parameters 𝜀 and 𝜇. In practice, we will only take Nt = O(Nx) to reduce the computational cost. Hence, the numerical
solution will converge to the continuous solution almost linearly.

6 NUMERICAL EXAMPLES

Here, we consider four test problems with discontinuous convection coefficient and discontinuous source term to show
that our estimated rate of convergence is true in practice. Motivated from the examples and their error analysis given in
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Das and Mehrmann,29 we construct the following examples. Here, we only mention the coefficients and source terms
with initial data to define the parabolic IBVP in (1).

Example 1.

a(x, t) =
{

−(1 + exp(x)), 0 ≤ x ≤ 0.4,
(1 + exp(x)), 0.4 < x ≤ 1, 𝑓 (x, t) =

{
−(1 + x4)t, 0 ≤ x ≤ 0.4,
(1 + x6)t, 0.4 < x ≤ 1,

b(x, t) = 1 + x2, c(x, t) = 1, and 𝑦(0, t) = 𝑦(1, t) = 𝑦(x, 0) = 0.

Example 2.

a(x, t) =
{

x + 2, 0 ≤ x ≤ 0.5,
−(2x + 3), 0.5 < x ≤ 1, 𝑓 (x, t) =

{
(2x + 1)t, 0 ≤ x ≤ 0.5,
−(3x + 4)t, 0.5 < x ≤ 1,

b(x, t) = 1 + exp(x), c(x, t) = 1, and 𝑦(0, t) = 𝑦(1, t) = 𝑦(x, 0) = 0.

Example 3.

a(x, t) =
{

−(1 + e−xt), 0 ≤ x ≤ 0.5,
2 + x + t, 0.5 < x ≤ 1, 𝑓 (x, t) =

{
(et2 − 1)(1 + xt), 0 ≤ x ≤ 0.5,
−(2 + x)t2, 0.5 < x ≤ 1,

b(x, t) = 2 + xt, c(x, t) = 1, and 𝑦(0, t) = 𝑦(1, t) = 𝑦(x, 0) = 0.
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FIGURE 1 Numerical solutions for Nx = 64 for Example 1 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Numerical solutions for Nx = 64 for Example 2 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 3 Maximum point-wise errors for Nx = 64 for Example 1 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Maximum point-wise errors for Nx = 64 for Example 2 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Maximum point-wise errors of Example 3 for Nx = 64 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 6 Maximum point-wise errors of Example 4 for Nx = 64 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Numerical solution with Nx = 64, 𝜀 = 2−20, and 𝜇 = 1 of Examples 1 and 2, respectively [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 8 Numerical solutions with Nx = 64, 𝜀 = 2−10 and 𝜇 = 2−20 of the Example 1 whose source term is replaced by f(x, t) = (1 + x4)t
and Example 2 whose source term is replaced by f(x, t) = (2x + 1)t, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 9 Numerical solutions of Example 3 for Nx = 64 [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 10 Numerical solutions of Example 4 for Nx = 64 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Numerical solution for Nx = 64, 𝜀 = 2−20 and 𝜇 = 1 of Examples 3 and 4, respectively [Colour figure can be viewed at
wileyonlinelibrary.com]
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Example 4.

a(x, t) =
{

1 + x(1 − x) + t, 0 ≤ x ≤ 0.5,
−(1 + 3xt), 0.5 < x ≤ 1, 𝑓 (x, t) =

{
(1 + x)(et − 1), 0 ≤ x ≤ 0.5,
(−2 + x)t, 0.5 < x ≤ 1,

b(x, t) = 1 + x + t, c(x, t) = 1, and 𝑦(0, t) = 𝑦(1, t) = 𝑦(x, 0) = 0.

FIGURE 12 Numerical solution with Nx = 64, 𝜀 = 2−10, 𝜇 = 2−20 of Example 3 whose source function is replaced by
𝑓 (x, t) = (et2 − 1)(1 + xt) and Example 4 whose source function is replaced by f(x, t) = (1 + x)(et − 1), respectively [Colour figure can be
viewed at wileyonlinelibrary.com]

TABLE 1 Maximum pointwise error EN
𝜇 and order of convergence 𝜌N

𝜇 for 𝜀 ∈ S𝜀 and
different values of 𝜇 for Example 1

𝜇↓ Nx → 64 128 256 512 1024

1 EN
𝜇 7.88687E-03 6.50604E-03 4.72305E-03 3.12290E-03 1.88771E-03
𝜌N
𝜇 2.77675E-01 4.62061E-01 5.96834E-01 7.26247E-01

2−2 EN
𝜇 1.72968E-02 1.40835E-02 1.00169E-02 6.64725E-03 3.93049E-03
𝜌N
𝜇 2.96503E-01 4.91576E-01 5.91600E-01 7.58048E-01

2−4 EN
𝜇 1.44482E-02 1.24223E-02 9.20659E-03 6.23998E-03 3.73672E-03
𝜌N
𝜇 2.17959E-01 4.32192E-01 5.61125E-01 7.39769E-01

2−6 EN
𝜇 1.78930E-02 1.25187E-02 9.26266E-03 6.27187E-03 3.74868E-03
𝜌N
𝜇 5.15312E-01 4.34585E-01 5.62531E-01 7.42515E-01

2−8 EN
𝜇 1.74626E-02 1.25269E-02 9.27471E-03 6.27892E-03 3.75345E-03
𝜌N
𝜇 4.79237E-01 4.33654E-01 5.62785E-01 7.42299E-01

2−10 EN
𝜇 1.73432E-02 1.25281E-02 9.27763E-03 6.28112E-03 3.75437E-03
𝜌N
𝜇 4.69204E-01 4.33336E-01 5.62734E-01 7.42453E-01

2−12 EN
𝜇 1.73126E-02 1.25282E-02 9.27834E-03 6.28158E-03 3.75468E-03
𝜌N
𝜇 4.66637E-01 4.33243E-01 5.62740E-01 7.42438E-01

2−14 EN
𝜇 1.73048E-02 1.25281E-02 9.27842E-03 6.28166E-03 3.75473E-03
𝜌N
𝜇 4.65997E-01 4.33219E-01 5.62733E-01 7.42436E-01

2−16 EN
𝜇 1.73010E-02 1.25258E-02 9.27711E-03 6.28092E-03 3.75438E-03
𝜌N
𝜇 4.65954E-01 4.33158E-01 5.62700E-01 7.42399E-01

2−18 EN
𝜇 1.73024E-02 1.25282E-02 9.27838E-03 6.28181E-03 3.75451E-03
𝜌N
𝜇 4.65795E-01 4.33236E-01 5.62691E-01 7.42557E-01

2−20 EN
𝜇 1.72721E-02 1.24888E-02 9.25542E-03 6.26846E-03 3.74836E-03
𝜌N
𝜇 4.67810E-01 4.32259E-01 5.62187E-01 7.41851E-01

2−22 EN
𝜇 1.72947E-02 1.25184E-02 9.27278E-03 6.27843E-03 3.75317E-03
𝜌N
𝜇 4.66282E-01 4.32974E-01 5.62598E-01 7.42296E-01

2−24 EN
𝜇 1.73022E-02 1.25292E-02 9.27766E-03 6.28254E-03 3.75430E-03
𝜌N
𝜇 4.65666E-01 4.33456E-01 5.62412E-01 7.42804E-01

http://wileyonlinelibrary.com
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Since exact solutions of these examples are not available, the maximum point-wise errors and rates of convergence will
be calculated using the double mesh principle (see Das and Mehrmann and Das29,31). We define the double mesh error
and corresponding order of convergence for fixed values of 𝜀 and 𝜇 as follows:

EN
𝜀,𝜇 = max

(xi,t𝑗 )∈Γ
N
|Y N − Y

2N | and 𝜌N
𝜀,𝜇 = log2

(
EN
𝜀,𝜇

E2N
𝜀,𝜇

)
,

where YN defines the numerical solution by taking N = Nx = Nt, (here, Nx is the number of partitions in space, and
Nt is the number of partitions in time), and Y

2N
is the piecewise linear interpolant of the solution Y2N on the same mesh

points, obtained with 2N = 2Nx = 2Nt. In addition, we also compute the error and order of convergence by fixing 𝜇 and
varying 𝜀 from a larger set, say 𝜀 ∈ S𝜀 and name them as

EN
𝜇 = max

𝜀∈S𝜀
EN
𝜀,𝜇 and 𝜌N

𝜇 = log2

(
EN
𝜇

E2N
𝜇

)
.

The parameter uniform error and order of convergence will be calculated as

EN = max
(𝜀,𝜇)×∈S𝜀×S𝜇

EN
𝜀,𝜇 and 𝜌N = log2

(
EN

E2N

)
.

The solution surface plots over all time level in Figures 1 and 2 show that the boundary and interior layers inside the
domain appears because of the presence of perturbation parameters and discontinuous data. These layers become sharper
as 𝜇 decreases. Here, we have taken 𝛼 = 2, 𝛽 = 1, and 𝛾 = 0.5 for the Examples 1 and 2. Note that the error plots in

TABLE 2 Maximum point-wise error EN
𝜇 and order of convergence 𝜌N

𝜇 for 𝜀 ∈ S𝜀 and
various values of 𝜇 for Example 2

𝜇↓ Nx → 64 128 256 512 1024

1 EN
𝜇 1.29224E-02 9.03664E-03 6.20094E-03 3.84505E-03 2.26100E-03
𝜌N
𝜇 5.16012E-01 5.43300E-01 6.89486E-01 7.66040E-01

2−2 EN
𝜇 1.51852E-02 1.12136E-02 7.91271E-03 5.01053E-03 2.95183E-03
𝜌N
𝜇 4.37411E-01 5.03009E-01 6.59210E-01 7.63355E-01

2−4 EN
𝜇 2.17182E-02 1.20962E-02 6.46309E-03 4.17747E-03 2.45903E-03
𝜌N
𝜇 8.44352E-01 9.04253E-01 6.29594E-01 7.64543E-01

2−6 EN
𝜇 2.37882E-02 1.83583E-02 1.26131E-02 8.07884E-03 4.72060E-03
𝜌N
𝜇 3.73812E-01 5.41508E-01 6.42704E-01 7.75178E-01

2−8 EN
𝜇 2.31625E-02 1.80327E-02 1.24177E-02 7.96677E-03 4.65211E-03
𝜌N
𝜇 3.61175E-01 5.38221E-01 6.40330E-01 7.76109E-01

2−10 EN
𝜇 2.30061E-02 1.79514E-02 1.23689E-02 7.93878E-03 4.63500E-03
𝜌N
𝜇 3.57921E-01 5.37382E-01 6.39725E-01 7.76348E-01

2−12 EN
𝜇 2.29670E-02 1.79311E-02 1.23567E-02 7.93178E-03 4.63072E-03
𝜌N
𝜇 3.57102E-01 5.37172E-01 6.39573E-01 7.76409E-01

2−14 EN
𝜇 2.29572E-02 1.79259E-02 1.23536E-02 7.93000E-03 4.62963E-03
𝜌N
𝜇 3.56897E-01 5.37120E-01 6.39535E-01 7.76425E-01

2−16 EN
𝜇 2.29534E-02 1.79234E-02 1.23518E-02 7.92886E-03 4.62890E-03
𝜌N
𝜇 3.56862E-01 5.37126E-01 6.39538E-01 7.76445E-01

2−18 EN
𝜇 2.29542E-02 1.79244E-02 1.23527E-02 7.92949E-03 4.62932E-03
𝜌N
𝜇 3.56832E-01 5.37102E-01 6.39523E-01 7.76428E-01

2−20 EN
𝜇 2.29540E-02 1.79243E-02 1.23526E-02 7.92947E-03 4.62930E-03
𝜌N
𝜇 3.56829E-01 5.37101E-01 6.39522E-01 7.76429E-01

2−22 EN
𝜇 2.29540E-02 1.79243E-02 1.23526E-02 7.92945E-03 4.62929E-03
𝜌N
𝜇 3.56828E-01 5.37101E-01 6.39522E-01 7.76429E-01

2−24 EN
𝜇 2.29536E-02 1.79240E-02 1.23524E-02 7.92927E-03 4.62918E-03
𝜌N
𝜇 3.56832E-01 5.37106E-01 6.39525E-01 7.76433E-01
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Figures 3 and 4 depict that the errors are mainly dominating from the boundary and interior layer regions for Examples 1
and 2. The same behavior can be also noticed for Examples 3 and 4 from Figures 5 and 6, respectively. In the subsequent
figures, we discus the behavior of the solution for various values of 𝜀 and 𝜇, which helps us to understand the impact
of parameter values and their effect in the layer appearance due to the discontinuity in convection coefficient as well as
source term.

To show the nature of the layer phenomena for all possible variation of signs between a(x, t) and f(x, t), we con-
sider four different examples. Figure 7 shows the layer behavior for two possible sign changes of discontinuous
convection-coefficient at the interior part of the domain for the Examples 1 and 2 with 𝜇 = 1. One can see that the
solution of Example 1 has only interior layer and the solution of Example 2 has only boundary layers. Note also that
it is numerically observed in O'Riordan and Shishkin6 that the discontinuity in convection coefficient can lead to only
interior layer, when the source function is continuous. The layer shifting towards an interior point can be related with
the sign of convection-coefficient inside the domain. Note also that, the interior layer(s) may not appear even if the
convection-coefficient is discontinuous, which can be clarified from Figure 8 where the boundary layers are observed cor-
responding to smooth source functions. To develop this figure, we only replace the source functions in Examples 1 and 2
by smooth functions which are f(x, t) = (1 + x4)t and f(x, t) = (2x + 1)t, respectively. In this case, we have unchanged
a(x, t), b(x, t), c(x, t) and the initial data to modify the Examples 1 and 2.

The solution surface plot at Figure 8 observes only boundary layers for both of the modified examples. Therefore, the
sign of the convection coefficient also has an influence in generating interior and boundary layers in addition to the
presence of perturbation parameters 𝜀 and 𝜇.

In Figures 9 and 10, we have shown the solution and error plots for Examples 3 and 4 with variable coefficient functions.
For these two examples, we take 𝛼 = 2, 𝛽 = 2, 𝛾 = 1 and 𝛼 = 1, 𝛽 = 1, 𝛾 = 1, respectively. Example 3 is chosen to

TABLE 3 Maximum point-wise error EN
𝜇 and order of convergence 𝜌N

𝜇 for 𝜀 ∈ S𝜀 and
various values of 𝜇 for Example 3

𝜇 ↓ Nx → 64 128 256 512 1024

1 EN
𝜇 9.96942E-03 6.90947E-03 3.92427E-03 2.38737E-03 2.20056E-03
𝜌N
𝜇 5.28935E-01 8.16149E-01 7.17003E-01 1.17553E-01

2−2 EN
𝜇 1.16972E-02 9.19025E-03 5.44939E-03 3.33415E-03 2.26340E-03
𝜌N
𝜇 3.47992E-01 7.54010E-01 7.08775E-01 5.58827E-01

2−4 EN
𝜇 1.33814E-02 9.06223E-03 5.54733E-03 3.41629E-03 1.98305E-03
𝜌N
𝜇 5.62293E-01 7.08073E-01 6.99363E-01 7.84711E-01

2−6 EN
𝜇 1.32785E-02 1.15506E-02 8.62831E-03 5.85880E-03 3.47676E-03
𝜌N
𝜇 2.02385E-01 4.21979E-01 5.59037E-01 7.52707E-01

2−8 EN
𝜇 1.33602E-02 1.16115E-02 8.66681E-03 5.88265E-03 3.49129E-03
𝜌N
𝜇 2.02385E-01 4.21979E-01 5.59037E-01 7.52707E-01

2−10 EN
𝜇 1.33806E-02 1.16268E-02 8.67646E-03 5.88862E-03 3.49492E-03
𝜌N
𝜇 2.02697E-01 4.22270E-01 5.59177E-01 7.52669E-01

2−12 EN
𝜇 1.33857E-02 1.16306E-02 8.67887E-03 5.89011E-03 3.49583E-03
𝜌N
𝜇 2.02774E-01 4.22343E-01 5.59212E-01 7.52660E-01

2−14 EN
𝜇 1.33870E-02 1.16315E-02 8.67947E-03 5.89048E-03 3.49606E-03
𝜌N
𝜇 2.02794E-01 4.22361E-01 5.59221E-01 7.52658E-01

2−16 EN
𝜇 1.33873E-02 1.16318E-02 8.67961E-03 5.89056E-03 3.49610E-03
𝜌N
𝜇 2.02799E-01 4.22367E-01 5.59224E-01 7.52658E-01

2−18 EN
𝜇 1.33871E-02 1.16315E-02 8.67934E-03 5.89035E-03 3.49595E-03
𝜌N
𝜇 2.02808E-01 4.22379E-01 5.59232E-01 7.52670E-01

2−20 EN
𝜇 1.33825E-02 1.16266E-02 8.67456E-03 5.88660E-03 3.49324E-03
𝜌N
𝜇 2.02923E-01 4.22563E-01 5.59358E-01 7.52868E-01

2−22 EN
𝜇 1.33874E-02 1.16318E-02 8.67967E-03 5.89061E-03 3.49613E-03
𝜌N
𝜇 2.02800E-01 4.22367E-01 5.59224E-01 7.52657E-01

2−24 EN
𝜇 1.33874E-02 1.16318E-02 8.67966E-03 5.89059E-03 3.49612E-03
𝜌N
𝜇 2.02801E-01 4.22368E-01 5.59225E-01 7.52658E-01
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be different from other problems by alternatively changing the sign of the function values a(x, t), f(x, t) at each partition
of the domain. For Examples 3 and 4, we again note from Figure 11 with 𝜇 = 1 that the discontinuity in the source term
and convection term can lead to any of the following cases: a) the appearance of only interior layer b) the appearance of
only boundary layers.

In addition, we again consider Examples 3 and 4 whose source terms are replaced by smooth functions: 𝑓 (x, t) = (et2 −
1)(1 + xt) and f(x, t) = (1 + x)(et − 1), respectively. In this case, Figure 12 shows that the interior layer phenomena may
not appear when the source functions are considered to be smooth even when the convection coefficient is discontinuous.
From the Figures 7 - 8 and 11 - 12, we can say that the discontinuity in the source term can create the interior layer(s)
and the discontinuity in convection coefficient can only produce the layer shifting in the solution.

TABLE 4 Maximum point-wise error EN
𝜇 and order of convergence 𝜌N

𝜇 for 𝜀 ∈ S𝜀 and
various values of 𝜇 for Example 4

𝜇 ↓ Nx → 64 128 256 512 1024

1 EN
𝜇 1.67332E-02 1.23727E-02 8.72716E-03 5.54483E-03 3.26259E-03
𝜌N
𝜇 4.35551E-01 5.03580E-01 6.54371E-01 7.65123E-01

2−2 EN
𝜇 1.88593E-02 1.45140E-02 1.03177E-02 6.68495E-03 3.93497E-03
𝜌N
𝜇 3.77833E-01 4.92320E-01 6.26136E-01 7.64563E-01

2−4 EN
𝜇 1.99440E-02 1.36983E-02 9.77397E-03 6.33137E-03 3.72655E-03
𝜌N
𝜇 5.41964E-01 4.86975E-01 6.26428E-01 7.64676E-01

2−6 EN
𝜇 2.18762E-02 1.79030E-02 1.28458E-02 7.85065E-03 4.65296E-03
𝜌N
𝜇 2.89159E-01 4.78910E-01 7.10411E-01 7.54662E-01

2−8 EN
𝜇 2.18515E-02 1.78774E-02 1.28332E-02 7.84020E-03 4.64661E-03
𝜌N
𝜇 2.89595E-01 4.78257E-01 7.10915E-01 7.54714E-01

2−10 EN
𝜇 2.18451E-02 1.78709E-02 1.28300E-02 7.83758E-03 4.64530E-03
𝜌N
𝜇 2.89699E-01 4.78091E-01 7.11042E-01 7.54637E-01

2−12 EN
𝜇 2.18435E-02 1.78693E-02 1.28292E-02 7.83691E-03 4.64496E-03
𝜌N
𝜇 2.89726E-01 4.78049E-01 7.11074E-01 7.54617E-01

2−14 EN
𝜇 2.18427E-02 1.78684E-02 1.28286E-02 7.83651E-03 4.64475E-03
𝜌N
𝜇 2.89745E-01 4.78044E-01 7.11080E-01 7.54610E-01

2−16 EN
𝜇 2.18430E-02 1.78687E-02 1.28289E-02 7.83670E-03 4.64486E-03
𝜌N
𝜇 2.89734E-01 4.78036E-01 7.11083E-01 7.54611E-01

2−18 EN
𝜇 2.18430E-02 1.78688E-02 1.28290E-02 7.83672E-03 4.64487E-03
𝜌N
𝜇 2.89733E-01 4.78036E-01 7.11084E-01 7.54611E-01

2−20 EN
𝜇 2.18430E-02 1.78687E-02 1.28289E-02 7.83669E-03 4.64486E-03
𝜌N
𝜇 2.89734E-01 4.78036E-01 7.11084E-01 7.54611E-01

2−22 EN
𝜇 2.18426E-02 1.78682E-02 1.28285E-02 7.83646E-03 4.64473E-03
𝜌N
𝜇 2.89747E-01 4.78041E-01 7.11083E-01 7.54608E-01

2−24 EN
𝜇 2.18430E-02 1.78687E-02 1.28289E-02 7.83669E-03 4.64485E-03
𝜌N
𝜇 2.89734E-01 4.78036E-01 7.11084E-01 7.54611E-01

TABLE 5 Uniform error EN and order of convergence 𝜌N for 𝜀 ∈ S𝜀, 𝜇 ∈ S𝜇 for Examples 1 to 4

Example N → 64 128 256 512 1024

Example 1 EN 1.78930E-02 1.40835E-02 1.00169E-02 6.64725E-03 3.93049E-03
𝜌N 3.45390E-01 4.91580E-01 5.91600E-01 7.58050E-01

Example 2 EN 2.37882E-02 1.83583E-02 1.26131E-02 8.07884E-03 4.72060E-03
𝜌N 3.73810E-01 5.41510E-01 6.42700E-01 7.75180E-01

Example 3 EN 1.33874E-02 1.16318E-02 8.67966E-03 5.89059E-03 3.49612E-03
𝜌N 2.02801E-01 4.22368E-01 5.59225E-01 7.52658E-01

Example 4 EN 2.18430E-02 1.78687E-02 1.28289E-02 7.83669E-03 4.64485E-03
𝜌N 2.89734E-01 4.78036E-01 7.11084E-01 7.54611E-01
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FIGURE 13 Loglog plot of the maximum point-wise errors of Examples 1 and 2 , respectively [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 14 Loglog plot of the maximum pointwise errors of Examples 3 and 4, respectively [Colour figure can be viewed at
wileyonlinelibrary.com]

Tables 1 to 4 show that the maximum point-wise errors are converging with almost first-order accuracy in space and time
for all the test problems, as expected from the analysis. These errors do not depend on the magnitude of the convection
and diffusion parameters and hence, they are parameter uniform. To generate these tables, 𝜀 is considered from a set
S𝜀 = {1, 2−2, · · · , 2−50} for each fixed value of 𝜇. Table 5 shows the uniform error and corresponding order of convergence
for various values of 𝜀 and 𝜇, which are taken from the set 𝜀 ∈ S𝜀 and 𝜇 ∈ S𝜇, where S𝜇 = {1, 2−2, · · · 2−24}. In addition,
we have plotted the errors on loglog scale in Figures 13 and 14 for Examples 1 to 2 and 3 to 4, respectively for 𝜀 = 2−10

and 𝜇 = 2−4, 2−20, 2−50 to show that the expected rate of convergence is true in practice.

7 CONCLUSIONS

A convergent numerical method is presented for a two-parameter singularly perturbed parabolic problem, which has dis-
continuous convection-coefficient and source term. In general, the solution of this kind of problems have both boundary
and interior layers, which makes the numerical analysis different. Here, we provide a convergent solution by discretizing
the continuous problem with backward Euler scheme for time variable on uniform mesh and an upwind scheme on an a
priori layer adaptive piecewise uniform mesh for the spatial variable. The theoretical analysis shows that the numerical
method is almost first-order accurate in space and time, which is also validated by several numerical experiments. Note
that boundary layers appear because of the presence of perturbation parameters. However, it is observed that the interior
layers can appear because of the discontinuity in the source term. In addition, we observe that the discontinuity in the
convection coefficient can shift the layer position. Several simulations depict the layer appearances and their behavior in
different locations.
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NOMENCLATURE

Notations Explanations
Ωxand Ωx (0, 1) and [0, 1]
ΩNx

x and Ω
Nx
x {xi ∶ 1 ≤ i ≤ Nx − 1} and {xi ∶ 0 ≤ i ≤ Nx}

Ω−
x and Ω+

x (0, d) and (d, 1)
ΩNx−

x and Ωx
Nx+

{
xi ∶ 1 ≤ i ≤ Nx

2
− 1

}
and

{
xi ∶

Nx
2
+ 1 ≤ i ≤ Nx − 1

}
Ωt and ΩNt

t (0,T] and
{

t𝑗 , t𝑗 = 𝑗T∕Nt for 1 ≤ 𝑗 ≤ Nt
}

Γ and ΓN Ωx × Ωt and
{
(xi, t𝑗) ∶ 1 ≤ i ≤ Nx − 1, 1 ≤ 𝑗 ≤ Nt

}
Γ and Γ

N
Ωx × Ωt and

{
(xi, t𝑗) ∶ 0 ≤ i ≤ Nx, 1 ≤ 𝑗 ≤ Nt

}
Γ− and Γ+ Ω−

x × Ωt and Ω+
x × Ωt

Γ−∗ and Γ+∗ [0, d) × Ωt and (d, 1] × Ωt

ΓN− and ΓN+
{
(xi, t𝑗) ∶ 1 ≤ i ≤ Nx

2
− 1, 1 ≤ 𝑗 ≤ Nt

}
and

{
(xi, t𝑗) ∶

Nx
2
+ 1 ≤ i ≤ Nx − 1, 1 ≤ 𝑗 ≤ Nt

}
Γ± and ΓN± {(d, t) ∶ 0 < t ≤ T} and {(d, tj) ∶ 1 ≤ j ≤ Nt}
Γ−

c and Γ+
c [0, d] × {t = 0} and [d, 1] × {t = 0}

Γc and ΓN
c Γ−

c ∪ Γ+
c and

{
(xi, t𝑗) ∶ 0 ≤ i ≤ Nx, 𝑗 = 0

}
Γl,Γr and Γc {(0, t) ∶ 0 < t ≤ T}, {(1, t) ∶ 0 < t ≤ T} and [0, 1] × {t = 0}
ΓN

l , Γ
N
r and ΓN

c {(xi, tj) ∶ i = 0, 1 ≤ j ≤ Nt}, {(xi, tj) ∶ i = Nx, 1 ≤ j ≤ Nt} and {(xi, tj) ∶ 0 ≤ i ≤ Nx, j = 0}

Γ0 and ΓN
0 (Γl ∪ Γr ∪ Γc) and (Γ

N
∩ Γ0)

y(x, t) Continuous solution of (1)-(2) on (Γ− ∪ Γ+)
v(x, t) Regular component (continuous) of y(x, t) on (Γ− ∪ Γ+)
w(x, t) Singular component (continuous) of y(x, t) on (Γ− ∪ Γ+)
y∗(x, t) Solution of the initial-boundary value problem (15)-(16) on (Γ−∗ ∪ Γ+∗)
Y(xi, tj) Discrete solution of fully discretized problem (27)-(29) on (ΓN− ∪ ΓN+)
V(xi, ti) Regular component of discrete solution Y(xi, ti) on (ΓN− ∪ ΓN+)
W(xi, ti) Singular component of discrete solution Y(xi, ti) on (ΓN− ∪ ΓN+)
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