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Abstract
In this study, bio-inspired computational techniques have been exploited to get the numerical solution of a nonlinear two-

point boundary value problem arising in the modelling of the corneal shape. The computational process of modelling and

optimization makes enormously straightforward to obtain accurate approximate solutions of the corneal shape models

through artificial neural networks, pattern search (PS), genetic algorithms (GAs), simulated annealing (SA), active-set

technique (AST), interior-point technique, sequential quadratic programming and their hybrid forms based on GA–AST,

PS–AST and SA–AST. Numerical results show that the designed solvers provide a reasonable precision and efficiency with

minimal computational cost. The efficacy of the proposed computing strategies is also investigated through a descriptive

statistical analysis by means of histogram illustrations, probability plots and one-way analysis of variance.

Keywords Stochastic numerical computing � Neural networks � Genetic algorithms � Corneal shape models �
Optimization techniques

1 Introduction

Vision is an essential sense in humans and many animals. It

is a fundamental issue for better understanding of biology,

as well as the physics of sight for dealing with different

diseases during treatment. The eye in the human body has a

significant role of sight; two-thirds of its refractive power

are due to its Cornea, which is commonly known as the

front part of the eye. Researchers have contributed signif-

icantly to have a detailed knowledge of corneal anatomy

and its optics (see [1]). The Cornea is considered to be

highly sensitive, and many sight disorders may be due to a

change in the corneal shape and its geometry. Possibly, an

incorrect corneal geometry is partly responsible for some

common diseases like astigmatism, hyperopia and myopia.

The accuracy of refractive surgery and adjustment of

contact lens is usually subject to a deep understanding of

the corneal topography and models [2–5]. Therefore, for a

better ophthalmological use, a detailed knowledge and

information of the corneal shape are of paramount

importance.

Researchers have conducted several investigations on

mathematical models for corneal shape [6]. Some studies
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address the variable eccentricity ratio of the conics based

on a complex shell theory model that describes its mathe-

matical interpretation [7]. The corneal biomechanical

behaviour is investigated through a finite element mod-

elling [8]. Zernike polynomial approximations are used for

corneal geometry modelling [9]. Models with rational

functions for video keratoscopy compression have been

used [10], and a Fourier series method (FSM) to identify

the crystalline lens shape has been considered [11]. In

general, the efficiency of the physical models of the eye is

greatly improved through the use of theoretical and math-

ematical considerations [12, 13]. These models help to

develop the equipments used in medicine without the

involvement of patients. Recently, a few scientists have

investigated collagen fibrils in soft tissues and have

developed a class of models that illustrates the biome-

chanics of the Cornea [14].

In this study, a mathematical model of the corneal shape

based on a nonlinear differential equation is studied, which

provides an effective solution to address different diseases

of the Cornea. The nonlinear corneal shape model (NCSM)

is represented by means of a two-point boundary value

problem (BVP) of second-order ordinary differential

equation (ODE) as:

d

dx

du

dx

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ du

dx

� �2
s0

@
1
A� auðxÞ þ b

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ du

dx

� �2
s

¼ 0;

x 2 ½0; 1�; a[ 0; b[ 0; u0ð0Þ ¼ 0; uð1Þ ¼ 0;

ð1Þ

where the curve u(x) = 0 represents a meridian of a surface

of revolution related to the corneal geometry, while a and b

are positive real constants. The N-dimensional counterpart

of model (1) is given as follows:

u ¼ 0 onX

div
ruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ ruj j2
q

0
B@

1
CA ¼ au� bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ ruj j2
q ; inX

8>><
>>: ð2Þ

The models in Eqs. (1–2) have been proposed as suit-

able models of the geometry of the human Cornea in [1–4].

However, in these studies, a simplified version of the above

model has been investigated with the replacement of the

mean curvature term div ru

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ruj j2

q� �
by its lin-

earization, divðruÞ, in a neighbourhood of 0.

As a particular case, when b 2 0; 3
ffiffiffiffi
3a

p

2 tanh
ffiffi
a

p
i h

, the NCSM

equation in (1) is modified as:

u00 � auþ bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ u

02
p ¼ 0

u0 0ð Þ ¼ 0; u 1ð Þ ¼ 0

8<
: x 2 ½0; 1�; ð3Þ

The existence of a unique solution for the problem in (3)

has been proven in [4].

To obtain the best refractive properties of the Cornea by

using such type of models (3), the Cornea geometry must

be shell-like with diameter 11 mm, inner thickness 0.5 mm

and peripheral part 0.7 mm [15]. Moreover, the Cornea

constructs a mechanical shield inside the eye for its dura-

bility [16, 17]. A schematic diagram of the human eye

anatomy showing the corneal shape is displayed in Fig. 1.

The Cornea has five different layers from the outermost

to the innermost; these layers are epithelium, Bowman’s

layer, stroma, fourth Descement’s membrane and the last

one known as endothelium. Each layer differs from another

due to its own biological properties. For example, the 90%

of the corneal thickness is due to stroma layer, which has

great importance in optics and for identifying purposes.

The reported studies to solve the corneal shape model are

based on renewed deterministic numerical procedures.

Nevertheless, stochastic computational techniques based

on artificial neural networks (ANNs) optimized by genetic

algorithms (GA), i.e. based on global search methods, have

been used to solve broad nonlinear systems [18, 19] but

they have not been applied yet for solving the nonlinear

corneal shape models arising in bioinformatics. In addition,

these approaches have many advantages over traditional

numerical schemes, since they provide a continuous solu-

tion over the domain of training inputs, their computational

requirements do not dependent upon sample size, and

through interpolation one can find the solution at any point

outside the trained interval.

ANNs have been applied to many problems modelled

by linear and nonlinear systems [20–25]. Recently,

stochastic solvers were used broadly in nanotechnology

problems [26], optimization of nonlinear prey–predator

systems [27], nonlinear pantograph systems [28],

Fig. 1 Human eye anatomy
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distribution of heat in porous fin models [29], solution

for micropolar fluid flow problem [30], models of elec-

trical conducting solids [31], mathematical problem

arising in electromagnetic theory [32], Bratu systems

arising in fuel ignition model [33], nonlinear Troesch’s

problems [34, 35], astrophysics [36], nonlinear electrical

circuit [37], atomic physics [38], thermodynamics [39],

nonlinear optics [40], heartbeat models [41], HIV

infection studies [42], mathematical model for wire

coating analyses [43], nonlinear Painlevé II systems [44],

nonlinear elliptic BVPs [45], fractional order Bagley–

Torvik systems [46], nonlinear Falkner–Skan systems

[47], nonlinear Flierl–Petviashivili system [48] and

fractional order system of Riccati equation [49]. These

are motivating factors to study the dynamics of the

nonlinear corneal shape problem using ANNs and their

optimization with standalone solver including interior-

point technique (IPT), active-set technique (AST),

sequential quadratic programming (SQP), genetic algo-

rithm (GA), simulating annealing (SA) and pattern

search (PS), as well as their hybrid combinations through

the SA–AST, PS–AST and GA–AST. The efficiency of

these techniques is evaluated through detailed statistical

analyses that include one-way analysis of variance

(ANOVA). The presented study is a novel investigation

in intelligent computing paradigm to determine the

approximate solution of the nonlinear corneal shape

models. The salient features of this study are summa-

rized as follows:

• Novel application of bio-inspired computational tech-

niques has been presented for the numerical solution of

BVPs arising in the modelling of the corneal shape.

• The computational process of modelling and optimiza-

tion is exploited to obtain accurate solutions for

governing relations of NCSM through ANNs, GAs,

PS, SA, IPT, AST, SQP and their hybrids PS–AST,

GA–AST and SA–AST.

• The convergence study through multiple autonomous

trials is conducted to authenticate the performance of

the stochastic methodologies to obtain an effective,

reliable and stable solution of the corneal geometry.

• Statistical assessments through ANOVA testing further

validate a better precision and convergence of comput-

ing solvers.

The rest of the paper is organized as follows. Design

methodology for NCSM by means of ANN-based differ-

ential equation models and learning methodologies is pre-

sented in Sect. 2. Results of numerical experimentations

for NCSM along with necessary interpretations are pre-

sented in Sect. 3. Some concluding remarks along with

future recommendations are given in Sect. 4.

2 Design methodology for NCHM

The proposed designed scheme for solving the NCHM is

presented here in two parts; firstly, the mathematical

modelling of NCHM is presented with the help of neural

networks, while in the second part, optimization schemes

are introduced, which are used for finding the decision

variables of the networks. The workflow of the proposed

design procedure is shown in Fig. 2.

2.1 Mathematical modelling for NCHM

In this section, mathematical modelling used for the solu-

tion of the two-point nonlinear BVP arising in the model of

the corneal shape is presented. The approximate ANN

solution is developed by using the continuous mapping of

the solution u(x) and its derivatives as follows:

û xð Þ ¼
Pm
i¼1

dif bi þ xixð Þ

dû xð Þ
dx

¼
Xm
i¼1

di
d

dx
f bi þ xixð Þ

..

.

dnû xð Þ
dxn

¼
Xm
i¼1

di
dn

dxn
f bi þ xixð Þ

8>>>>>>>>>><
>>>>>>>>>>:

; ð4Þ

where û(x) denotes the estimated solutions and W ¼
½di; bi;xi�; i ¼ 1; 2; 3. . .;m: are weights of the ANN model

with m neurons and f is the log-sigmoid activation func-

tion. The weights W of the ANN in (4) are the decision

variables of the optimization mechanism used for training.

Additionally, these weights W are optimization variables

represented with arbitrary real numbers in a bounded

domain. The effectiveness of log-sigmoid as an activation

function in hidden layers of ANNs (4) is well proven over

other counterparts due to its rapid convergence rates, better

windowing characteristics and stability [50, 51].

The networks in (4) up to second-order derivatives can

be written as follows:

ûðxÞ ¼
Pm
i¼1

di
1 þ eð�xix�biÞ

û0ðxÞ ¼
Pm
i¼1

dixi

2 1 þ coshðxixþ biÞð Þ

û00ðxÞ ¼
Pm
i¼1

dix2
i �2cschðxixþ biÞ3

sinh
xixþ bi

2

� �4
 !

:

8>>>>>>><
>>>>>>>:

ð5Þ

The networks in the set of Eqs. (5) are arbitrarily

combined to represent the differential equation along with

its boundary conditions, where the decision variables of the

system depend upon the weights of ANNs. The fitness
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function is computed by defining two mean-square errors

of the two-point BVP for the corneal shape model as

2 ¼ 21 þ 22 : ð6Þ

21¼
1

N þ 1

XN
k¼0

û00k � aûk þ
bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ û
02
k

q
0
B@

1
CA

2

; ð7Þ

22¼
1

2
ûð1Þ2 þ û0ð0Þ2
h i

ð8Þ

2 ¼ 1

N þ 1

XN
k¼0

û00k � aûk þ
bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ û
02
k

q
0
B@

1
CA

2

þ 1

2
ûð1Þ2 þ û0ð0Þ2
h i

:

ð9Þ

Our main goal is to minimize the value 2 by searching

suitable weights of the network in (5) for which the value 2
approaches zero, i.e. 2! 0. Thus, accordingly, the

obtained solution û will approximate the reference exact

solution u of the BVP that models the corneal shape. The

fitness function represented in Eq. (9) is presented in the

layered structure of neural networks as shown in Fig. 3.

2.2 Learning techniques

In this section, a brief overview of optimization schemes

AST, IPA, SQP, PS, SA and GA for ANN models is

presented.

AST, SQP and IPTs belong to a class of local search

methodologies that were exploited effectively for con-

strained and unconstrained optimization tasks [52]. In the

procedure of both AST and SQP algorithms, the given

optimization task is segmented/transformed into relatively

easier sub-problems and procedures mainly based on

Karush–Kuhn–Tucker conditions, which are adopted for

iterative refinements. The IPT iteratively updates the

weights by exploiting the feasible interior region of the

Fig. 2 Generic workflow of hybrid computing methods for nonlinear corneal shape model
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optimization problem. The AST, SQP and IPT have been

widely applied to many stiff and non-stiff optimization

problems of practical interest (see [53, 54] and references

cited therein).

The SA technique is a simple computational technique

based on two characteristics of material, i.e. controlled

cooling process and meticulous heating [55, 56]. The main

objective of SA method is to adjust the approximate

solutions successfully and effectively within a controlled

interval of time. Complex optimization problems can be

solved through the SA technique, and thus, it is widely

applied by researchers in optimization of vehicle routing

problem [57], capacitated vehicle routing problem with 2D

loading constraints [58] and optimization of machine

scheduling problem [59].

The PS technique is known for working without prior

knowledge of the gradient of the function. This technique

was proposed firstly by Hooke and Jeeves [60], while Yu

was the first one to provide the convergence of the PS

method with the help of the theory of positive bases [61].

The PS technique process through a set of patterns called

mesh points in the close vicinity of the optimal location

[62]. The PS method has been also used as a convenient

procedure for the solution of optimization problems with

bounded as well as linear constraints (see [60–63] and

references cited therein).

A GA was firstly presented to simulate a simple picture

of the natural selection by Holland [64], and its perfor-

mance was subject to appropriate selection of data of the

initial population, suitable choices for chromosomes to the

next generation, survival of valuable genes to provide the

seed for the next generation (called mutation). The GAs

work on the evolutionary principle and are widely used by

many researchers in stiff optimization tasks by exploiting

its characteristic of robustness, avoidance of local mini-

mum with moderate, divergence-free adaptation and con-

sistent as compared to other counterparts [65–68].

In the present study, the optimization task is performed in

the MATLAB environment using algorithms available in the

graphical user interface optimization toolbox based on IPT,

AST, SQP, PS, SA, GA, PS–SQP, SA–SQP and GA–SQP.

The procedural process blocks of the proposed scheme are

presented in Fig. 2, while the settings of the parameters are

given in Table 1. Additionally, the pseudocode of the opti-

mization procedure is given in Algorithm 1.

Fig. 3 Layered structure of neural network models for nonlinear corneal shape model
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3 Results and discussion

The ANN-based proposed method is applied for computing

the solution of the corneal shape model (3) with unit value

of coefficient a and b as

u00 � auþ bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ u02

p ¼ 0;

u0 0ð Þ ¼ 0; u 1ð Þ ¼ 0;

8<
: x 2 ½0; 1�;

The proposed standalone computing algorithms, i.e.

SQP, AST, IPT, PS, GA and SA, as well as hybrid pro-

cedures, i.e. GA–AST, PS–AST and SA–ASTs, are applied

to find the weights to solve the corneal shape model with

the parameter settings given in Table 1 and procedure

presented in Algorithm 1. The graphical representation of

trained weights in terms of three-dimensional and two-di-

mensional plots is shown in Figs. 4 and 5, respectively,

while numerical results are shown in Table 2.

The approximate solutions ûGA�AST, ûPS�AST and

ûSA�AST are obtained for a number of 10 neurons in ANN

and with the help of weights trained by hybrid optimization

Table 1 Parameter settings of the local and global search algorithms

AST/SQP/IPTs PS GA SA

Index Set Index Set Index Set Index Set

Initial weight vectors Randomly (1,1) Solver PS Ini penalty 10 Max Itera 100,000

Number of variables 30 Start point Random (1,30) Penalty factor 100 Max Fun Eval 107

Iteration limit 1000 Poll method GPS positive 2 N Crossover rate 0.8 Time limit Inf

Function count limit 100,000 Complete Poll Off Population size 200 FunTol C

Derivative By solvers Polling order Connective Mutation rate 0.1 Stall Itera 108

Finite difference Central Initial Size 1 Elite count 2 Anneali Fun Fast

Hessian BFGS Max iteration 106 Time limit Inf Initial Temp 100

Algorithm AST/SQP/IPA Max Fun Eval 107 Scaling Fun Rank Data type Double

Others Sefaults Others Defaults Others Defaults Others Defaults
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procedures based on GA–AST, PS–AST and SA–AST as

listed in Table 2. These solutions are given by

ûGA�AST xð Þ ¼ 1:947736

1 þ e 1:49876þ2:020087xð Þ þ
1:396893

1 þ e :47495þ:39565xð Þ

þ � � � þ �2:59037

1 þ e :94018�1:969659xð Þ

ð10Þ

ûPS�AST xð Þ ¼ �0:625902

1 þ e :25572�7:853314xð Þ þ
�0:40317

1 þ e 4:35784þ8:957554xð Þ

þ � � � þ �:86932

1 þ e :28391�3:368182xð Þ

ð11Þ

ûSA�AST xð Þ ¼ �5:5354

1 þ e 0:95399þ0:12536xð Þ þ
�:78324

1 þ e �5:3268þ4:116746xð Þ

þ � � � þ 1:153815

1 þ e �1:47945þ6:04943xð Þ

ð12Þ

The solutions provided by Eqs. (10–12) can be calcu-

lated with reasonable accuracy for continuous values in [0,

1] and are presented numerically in Table 3, while their

graphical representations are shown in Fig. 6.

The values of absolute errors (AEs), i.e. uðxÞ � ûðxÞj j,
are also determined for the proposed algorithms from the

reference solution provided with an implicit RK method

with the help of Mathematica using the built-in software

Fig. 4 Three-dimensional

representation of weights of

ANNs optimized with the

proposed schemes

Fig. 5 Two-dimensional representation of weights of ANN optimized with proposed schemes
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package ‘‘NDSolve’’ with default values of adaptive step

size, accuracy goal and tolerances. The results are given in

Table 4, while their graphical representation is shown in

Fig. 7 for inputs in the interval [0,1] with step size 0.1. The

detailed statistical observations for 100 independent runs of

each solver are tabulated in Table 5, while the fitness

values are shown in Fig. 8 for the considered problem for

each stochastic numerical solver.

From the results of detailed simulations, it is observed

that the AEs are in the range 10-03–10-08, for AST; 10-03–

10-07 for SQP; 10-03–10-06 for IPT; 10-02–10-03 for PS;

10-02–10-03 for GA; 10-02–10-03 for SA; 10-03–10-09

for PS–AST; 10-03–10-08 for GA–AST and 10-03–10-09

for SA–AST. The mean value of AEs (MAE) is calculated

by the formula

MAE ¼ 1

11

X10

i¼0

uðxiÞ � ûðxiÞj j; ð13Þ

and the values of MAE for each optimization solver are

shown in Fig. 9. It is seen that the MAEs for standalone

approaches AST, SQP, IPT, PS, GA and SA are in the

range 10-01–10-04, while for the hybrid methodologies

PS–AST, GA–AST and SA–AST are in the range 10-05–

10-07.

Table 3 Comparative analysis from the reference numerical solution

Inputs Reference results Proposed solutions

x Numerical ûAST ûIPT ûSQP ûPS ûGA ûSA ûPS�AST ûGA�AST ûSA�AST

0.0 0.484338 0.47865 0.478656 0.47865 0.478802 0.479218 0.480466 0.478657 0.478666 0.478631

0.1 0.478773 0.473978 0.473984 0.473978 0.474121 0.47452 0.477676 0.473985 0.473993 0.473962

0.2 0.463957 0.459963 0.459967 0.459963 0.460072 0.460469 0.467959 0.459969 0.459975 0.459952

0.3 0.439879 0.436595 0.436598 0.436596 0.436676 0.437133 0.449426 0.436601 0.436606 0.436586

0.4 0.406504 0.403843 0.403845 0.403843 0.40392 0.404398 0.421233 0.403846 0.40385 0.403832

0.5 0.363748 0.361626 0.361628 0.361626 0.361712 0.362141 0.382983 0.361627 0.36163 0.361616

0.6 0.311452 0.3098 0.309802 0.309799 0.309879 0.310292 0.334443 0.309802 0.309804 0.309794

0.7 0.249355 0.248133 0.248134 0.248132 0.248186 0.248696 0.275409 0.248136 0.248137 0.248131

0.8 0.17709 0.176283 0.176285 0.176283 0.176325 0.17697 0.205622 0.176285 0.176286 0.176282

0.9 0.094159 0.093779 0.09378 0.09378 0.093836 0.094521 0.124717 0.09378 0.09378 0.093777

1.0 0.00E?00 5.40E-08 5.46E-07 1.32E-08 4.33E-05 6.95E-04 0.03215 2.27E-09 1.15E-07 8.87E-08
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Fig. 6 Graphical representation

of the approximate solutions

along with reference solution
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The efficiency of the proposed solutions is further jus-

tified by using Monte Carlo simulations and their statistical

analysis. The statistics by means of standard deviation

(STD) and mean parameters are calculated in order to

check the behaviour of the proposed solvers. Another

metric based on the mean-square error is defined for 100

observations as

MSE ¼ 1

100

X100

i¼0

ð uðxÞ � ûiðxÞj jÞ2 ð14Þ

where‘i’ is the index of independent runs of the solvers.

The descriptive statistical analyses for 100 runs of each

scheme to solve the corneal shape model are conducted,

and the results are tabulated in Table 5. It is seen that the

results of the proposed scheme achieved reasonably

accurate values based on minimum, maximum, mean,

MAE, MSE and RMSE indicators.

The reliable and effective statistical method based on

analysis of variance (ANOVA) is exploited to analyse the

small variation in the results of proposed methodologies.

Therefore, the average efficiency based on MAE values for

each optimization technique has been analysed via

descriptive statistical operators in terms of plots of the

confidence intervals as well as ANOVA outcomes. Results

of ANOVA analyses are graphically presented in Figs. 10

and 11 for 95% confidence interval and numerically tabu-

lated in Table 6. It is seen that in case of 95% confidence

interval plot of ANOVA, the performance of the hybrid

scheme is slightly better than that of PS and GA perfor-

mance on both accuracy operators of MAEs and AEs. The

Table 4 Comparative analysis on AEs from the reference numerical solution

Inputs Values of absolute error for algorithms

x AST IPT SQP PS GA SA PS–AST GA–AST SA–AST

0.0 5.69 9 10-3 5.69 9 10-3 5.69 9 10-3 2.21 9 10-3 3.87 9 10-3 4.76 9 10-3 6.81 9 10-3 5.69 9 10-3 5.69 9 10-3

0.1 4.80 9 10-3 4.79 9 10-3 4.80 9 10-3 1.65 9 10-3 2.94 9 10-3 6.01 9 10-3 4.79 9 10-3 4.80 9 10-3 4.79 9 10-3

0.2 3.99 9 10-3 3.99 9 10-3 3.40 9 10-3 1.30 9 10-3 2.13 9 10-3 5.04 9 10-3 3.40 9 10-3 4.00 9 10-3 3.99 9 10-3

0.3 3.28 9 10-3 3.28 9 10-3 3.29 9 10-3 8.92 9 10-4 1.57 9 10-3 3.28 9 10-3 3.28 9 10-3 3.29 9 10-3 3.28 9 10-3

0.4 2.66 9 10-3 2.66 9 10-3 2.67 9 10-3 4.26 9 10-4 1.22 9 10-3 1.65 9 10-3 2.66 9 10-3 2.67 9 10-3 2.66 9 10-3

0.5 2.12 9 10-3 2.12 9 10-3 2.13 9 10-3 3.92 9 10-5 9.41 9 10-4 5.95 9 10-4 2.12 9 10-3 2.13 9 10-3 2.12 9 10-3

0.6 1.65 9 10-3 1.65 9 10-3 1.66 9 10-3 2.56 9 10-4 5.87 9 10-4 2.27 9 10-4 1.65 9 10-3 1.65 9 10-3 1.65 9 10-3

0.7 1.22 9 10-3 1.22 9 10-3 1.23 9 10-3 5.69 9 10-4 9.32 9 10-5 4.65 9 10-4 1.22 9 10-3 1.22 9 10-3 1.22 9 10-3

0.8 8.07 9 10-4 8.06 9 10-4 8.13 9 10-4 9.60 9 10-4 4.65 9 10-4 1.15 9 10-3 8.05 9 10-4 8.07 9 10-4 8.05 9 10-4

0.9 3.80 9 10-4 3.79 9 10-4 3.87 9 10-4 1.40 9 10-3 9.46 9 10-4 2.18 9 10-3 3.79 9 10-4 3.80 9 10-4 3.80 9 10-4

1.0 5.40 9 10-8 1.67 9 10-7 7.86 9 10-6 1.79 9 10-3 1.25 9 10-3 3.50 9 10-3 2.27 9 10-9 4.67 9 10-8 3.32 9 10-8
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Fig. 7 Absolute errors for the

proposed computing algorithms
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Table 5 Statistical indicators of

the different approaches for the

corneal shape model

Method x Descriptive statistical analysis

Minimum Maximum Mean MAE MSE RMSE

AST 0.0 0.005657 0.513958 0.010768 0.010768 0.002674 0.051706

0.2 0.003973 0.488573 0.008837 0.008837 0.002403 0.094008

0.4 0.002649 0.498503 0.007619 0.007619 0.002492 0.087286

0.6 0.00164 0.540016 0.007035 0.007035 0.002919 0.083875

0.8 0.000803 0.614654 0.006944 0.006944 0.003779 0.083332

SQP 0.0 0.005349 0.005764 0.00568 0.00568 3.23E-05 0.00568

0.2 0.003706 0.004045 0.003986 0.003986 1.59E-05 0.003987

0.4 0.002542 0.002679 0.002658 0.002658 7.06E-06 0.002658

0.6 0.001523 0.001681 0.00165 0.00165 2.72E-06 0.00165

0.8 0.000579 0.000831 0.000802 0.000802 6.44E-07 0.000803

IPT 0.0 0.005677 0.005698 0.005685 0.005685 3.23E-05 0.005685

0.2 0.003986 0.004001 0.003991 0.003991 1.59E-05 0.003991

0.4 0.002656 0.002664 0.00266 0.00266 7.08E-06 0.00266

0.6 0.001648 0.001655 0.001651 0.001651 2.73E-06 0.001651

0.8 0.000805 0.000807 0.000806 0.000806 6.49E-07 0.000806

PS 0.0 0.00062 0.006556 0.00501 0.00501 0.00501 0.005144

0.2 0.000085 0.004634 0.003426 0.003426 0.003426 0.00355

0.4 0.000415 0.004234 0.002273 0.002273 0.002273 0.002366

0.6 4.52E-05 0.006812 0.001452 0.001452 0.001452 0.001724

0.8 1.76E-06 9.71E-03 8.74E-04 0.000874 0.000874 0.001725

GA 0.0 0.001406 0.245335 0.008216 0.008216 0.000646 0.025421

0.2 0.00213 0.238281 0.006723 0.006723 0.000603 0.024552

0.4 0.000788 0.245346 0.005834 0.005834 0.000641 0.025322

0.6 2.92E-05 0.263804 0.005473 0.005473 0.000752 0.027421

0.8 7.49E-06 2.96E-01 5.50E-03 0.005497 0.000954 0.030883

SA 0.0 0.003872 0.305123 0.105186 0.105186 0.105186 0.129161

0.2 0.001783 0.269699 0.087174 0.087174 0.087174 0.110189

0.4 0.000379 0.266888 0.084959 0.084959 0.084959 0.107013

0.6 0.000227 0.386658 0.097487 0.097487 0.097487 0.119672

0.8 0.001154 0.653429 0.115119 0.115119 0.115119 0.145025

PS–AST 0.0 0.004143 0.0065 0.005678 0.005678 0.005678 0.005686

0.2 0.002867 0.004583 0.003986 0.003986 0.003986 0.003992

0.4 0.001919 0.003051 0.002657 0.002657 0.002657 0.002661

0.6 0.001212 0.001883 0.001649 0.001649 0.001649 0.001652

0.8 0.000606 0.000911 0.000805 0.000805 0.000805 0.000806

GA–AST 0.0 0.005621 0.005727 0.005683 0.005683 0.005683 0.005683

0.2 0.003944 0.004019 0.00399 0.00399 0.00399 0.00399

0.4 0.00263 0.002682 0.002659 0.002659 0.002659 0.002659

0.6 0.001632 0.001665 0.001651 0.001651 0.001651 0.001651

0.8 0.000797 0.000812 0.000806 0.000806 0.000806 0.000806

SA–AST 0.0 0.005483 0.00574 0.005685 0.005685 0.005685 0.005685

0.2 0.003844 0.004027 0.003991 0.003991 0.003991 0.003991

0.4 0.002549 0.002682 0.00266 0.00266 0.00266 0.00266

0.6 0.001601 0.001675 0.001651 0.001651 0.001651 0.001651

0.8 0.000747 0.000812 0.000804 0.000804 0.000804 0.000804
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comparative study on the basis of histogram illustrations is

presented in Fig. 12, while two types of probability plots

are shown in Figs. 13 and 14. Results presented in all these

graphs show that each algorithm is effective with reason-

able accuracy, but the performance of integrating com-

puting solvers is relatively superior to the rest.

The computational complexity of six standalone algo-

rithms AST, SQP, IPT, PS, GA and SA, as well as hybrid

heuristic of PS–AST, GA–AST and SA–AST is analysed to

determine the efficiency on the basis of multiple autono-

mous runs (100 runs). The computational averaged data in

terms of execution times, iterations/generations executed

and fitness functions evaluated are calculated for the

analysis. The results are provided in Table 7 for all nine

algorithms. These results show that AST algorithm is the

most efficient in standalone methodologies with computa-

tion time around 6.45 ± 3 s, iterations around

340.5 ± 175 and fitness functions executed around

20,844 ± 10,783, while in combined computational

heuristic GA–AST outperformed the rest with complexity
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Fig. 10 Confidence intervals of 95% for ANOVA
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indices around 189 ± 50, 2029 ± 635 and

508,267 ± 133,710. The results of all simulations are

conducted on Dell Latitude E0420, Intel(R) Core(TM) i5-

2520 M CPU 2.50 GHz, 6 GB RAM, running MATLAB

2018a on operating system Microsoft Window 10.

4 Conclusions

Integrated neuro-heuristic computing paradigm is pre-

sented to calculate the approximate results of BVPs arising

in the modelling of the corneal shape using neural networks

and their optimization with standalone methods AST, GA,

SQP, IPT, PS and SA, along with the approximate solu-

tions of hybrid schemes GA–AST, PS–AST and SA–AST.

The comparison of the approximated results with the

numerical solution obtained through an implicit Runge–

Kutta method illustrates the validity of the proposed

stochastic numerical solvers; however, hybrid methodolo-

gies achieved relatively better precision. The convergence

analyses based on 100 autonomous runs for each solver

also certify the performance of the stochastic solvers for

reliable, viable and robust solutions of the mathematical

model of the corneal shape. The ANOVA-based statistics

show a better precision and performance of the PS- and

GA-based standalone proposed stochastic methods on the

basis of 95% confidence interval as well as error bar plots.

Similarly, the hybrid scheme based on PS–AST and GA–

AST provides better accuracy and convergence.

In future, one may exploit the strength of the proposed

stochastic solvers as good alternatives for solving govern-

ing differential equations representing stiff and non-stiff

applications of linear and nonlinear physical systems,

particularly the complex mathematical models arising in

bioinformatics [69–71].
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Fig. 11 Comparison on AE

values calculated for 100 runs

Table 6 Outcomes of the ANOVA test for each solver
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Fig. 12 Histograms illustrating the proposed approaches

Fig. 13 Comparison through

probabilities
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Table 7 Data on computational complexity

Index Execution times Iterations/generations Functions executed

Values Standard deviation Values Standard deviation Values Standard deviation

AST 6.45 3.19 340.50 175.99 20,844.10 107,83.55

IPT 18.41 1.91 800.00 0.00 50,284.10 958.14

SQP 19.27 7.38 800.00 0.00 63,978.00 21,660.22
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GA 177.09 43.47 1606.90 397.03 482,370.00 119,108.73

SA 8552.57 597.87 1,000,001.00 0.00 1,152,948.00 545.67
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GA–AST 189.03 51.09 2029.60 635.22 508,267.60 133,710.41

SA–AST 8559.74 600.78 1,000,492.30 230.30 1,183,042.00 14,659.42

Neural Computing and Applications (2021) 33:5753–5769 5767

123



Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Barbosa YM, Hernández DM (2001) A review of methods for

measuring corneal topography. Optom Vis Sci 78:240–253
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