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A new high-resolution 3-D 
quantitative method for analysing 
small morphological features: an 
example using a Cambrian trilobite
Jorge Esteve1, Yuan-Long Zhao2, Miguel Ángel Maté-González   3,4, Miguel Gómez-Heras   5,6 
& Jin Peng2

Taphonomic processes play an important role in the preservation of small morphological features such 
as granulation or pits. However, the assessment of these features may face the issue of the small size of 
the specimens and, sometimes, the destructiveness of these analyses, which makes impossible carrying 
them out in singular specimen, such as holotypes or lectotypes. This paper takes a new approach to 
analysing small-morphological features, by using an optical surface roughness (OSR) meter to create 
a high-resolution three-dimensional digital-elevation model (DEM). This non-destructive technique 
allows analysing quantitatively the DEM using geometric morphometric methods (GMM). We created 
a number of DEMs from three populations putatively belonging to the same species of trilobite 
(Oryctocephalus indicus) that present the same cranidial outline, but differ in the presence or absence 
of the second and third transglabellar furrows. Profile analysis of the DEMs demonstrate that all three 
populations show similar preservation variation in the glabellar furrows and lobes. The GMM shows that 
all populations exhibit the same range of variation. Differences in preservation are a consequence of 
different degrees of cementation and rates of dissolution. Fast cementation enhances the preservation 
of glabellar furrows and lobes, while fast dissolution hampers preservation of the same structures.

Preservation is an important factor that palaeontologists must deal with when studying fossils. This is a 
two-folded concept; firstly concerning with preservation in a taphonomic sense and secondly, concerning with 
the preservation of specimens when carrying out morphological studies. Vertebrates are paradigmatic fossils; 
taphonomic experiments can be carried out to test how decay affects their general morphology1, as well as pro-
cesses in bone diagenesis2. Invertebrates have also been the subject of taphonomic experiments that can have 
phylogenetic implications3 and biostratinomic factors are often well known in these animals4–6. Based on this, it 
is becoming increasingly clear that small morphological features (e.g. small furrows or pits) of fossil invertebrates 
are useless or at least difficult to use for taxonomic purposes due to the high variability in their preservation7; 
nevertheless, in many cases, taxonomists still use these characters to differentiate species.

The hard external skeleton of trilobites exemplifies this difficulty. Recently, Esteve et al.8, using geometric 
morphometric methods, demonstrated that the cranidial morphology of Oryctocephalus indicus9 from South 
China and Oryctocephalus “reticulatus”10 from the Molodo River in Siberia is rather constant and that both spe-
cies share the same morphospace. However, there is one morphological difference that remains: O. indicus (=O. 
“reticulatus”) from Siberia has one transglabellar furrow in most of the specimens, whereas O. indicus from South 
China exhibits more variation in the number of transglabellar furrows. Sundberg et al.11 suggested O. reticulatus 
might also be present in South China because some specimens from the Kaili Formation that were previously 
assigned to O. indicus possess only one transglabellar furrow. However, the co-occurrence of both taxa in the 
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same strata in China seems very unlikely and variation in taphonomy could be a better explanation for this appar-
ent morphological variation. Moreover, Oryctocephalus indicus from West USA typically has three transglabellar 
furrows in most specimens (Fred Sundberg personal communication, 2015), although some specimens with one 
or two transglabellar furrows have also been found8. There are two possible explanations for these differences. 
Firstly, even though geometric morphometrics suggests that both putative species are in fact the same species, it 
is known that different taxa can share the same cranidial morphospace12. Consequently, a different approach (e.g. 
outline-based) should be used to assess the results of the landmark-based approach employed by Esteve et al.8.  
The second possible explanation is that taphonomic bias is behind the obliteration of the second and third trans-
glabellar furrows in the specimens from Siberia. However, if the second statement is true, how can we assess the 
variation of morphological traits smaller than 100 µm?

The second level of preservation, which is related to the conservation of singular specimens, such as those in 
museums and collections and specially type material, it is also a necessary concern, as preserving these specimens 
has a unique social and scientific importance. Hence, the use of non-destructive methodologies for morphological 
studies is, more often than not, a must. The aim of this work is to adopt a new high-resolution non-destructive method 
of 3-D reconstruction using an optical surface roughness meter to visualize small morphological structures around 
50–100 µm in size (i.e. transglabellar furrows in the glabella) and thereby assess morphological differences in the 
second and third transglabellar furrows within and among three O. indicus populations (USA, Siberia and China).

Results
Optical surface roughness meter (OSRM).  The OSRM analysis produced digital elevation models 
(DEM, Fig. 1) in sagittal and exsagittal profiles of each specimen. These profiles allowed visualization of the 
preservation of the transglabellar furrows, even those with poor development, and quantification of the differ-
ence of elevation rate between the populations. Both profiles (i.e. sagittal and exsagittal) provided similar results; 
consequently, here we only report the axial profile, which is the main focus of the current study. The DEMs of 
each specimen of the three populations show roughly the same ranges of elevation (Fig. 2). Though the DEMs of 
both, largest (Fig. 2a,b) and the smallest (e.g. Fig. 2g,k) specimens show the same variation in the elevation range. 
Supplementary information provides data to visualise all DEMs. DEMs show that small specimens also have well 
preserved transglabellar furrows (Fig. 2h,k), though they are unclear in some cases (Fig. 2l). The DEMs show 
that transglabellar furrows are relatively closer together in smaller specimens, and move further away from one 
another through ontogeny. Synoptically, Fig. 2 shows the axial profile of 12 specimens (4 from each palaeoconti-
nent) in which glabellar length ranges from c. 1.5 mm to c. 5 mm. The transglabellar furrows are visible in all spec-
imens with a glabellar length of around 5 mm. However, while in the specimens from the USA the glabellar lobes 
are rather rounded, in the specimens from Siberia and China the glabellar lobes are sharped/pointed. The same 
feature can be observed in the deep part of the transglabellar furrows, which are more rounded in the American 
specimens and pointed in Chinese and Siberian specimens. These two types of preservation allow us to define 
two kinds of glabellar furrows and lobes according to their profile: i) Sharper and ii) Rounded. These two types 
of furrows and lobes seem to be closely related with the preservation, and suggest that O. indicus from USA was 
subject to cementation early in diagenesis, whereas in the specimens from China and Siberia cementation was 
delayed until later in diagenesis (see discussion below).

The morphological variation of the profiles described by the DEMs is here illustrated in a boxplot (Fig. 3). 
This demonstrates that the individuals from the USA and, especially, China exhibit considerable variation. In 
contrast, the DEMs show a much more narrow range of elevations in the Siberian population. This suggests that 
the Siberian sample is more homogeneous in terms of differences of elevation while the American and Chinese 
population present more variation. This difference in the elevation ranges is not size related, since the large and 
small specimens share the same elevation ranges (Fig. 3).

Geometric morphometric analysis (GM).  Two different profiles have been analysed. Consequently, two 
GM analyses were performed, one for profile-1 (sagittal profile, Fig. 4a,b, Fig. 5a) and one for profile-2 (exsagittal 
profile, Fig. 4b,c, Fig. 5b).

Axial profile (orange, Figs 4 and 5): The Principal Component Analysis (PCA) of the axial profile shows over-
lap in the deepness of transglabellar furrow among the three populations analysed (Fig. 4a,b). The first three PCs 
account for 79% of the total shape variation providing a reasonable approximation of the total amount of shape 
variation across the transglabellar furrows. PC1 accounts for 50.8% of the total variation and relates primarily to 
the position of L1, L3 and L4 (landmarks 1, 3 and 7) and the position of the TF2 (landmark 4) to the rest of the 
glabellar profile. The position and depth of the TF3 is not affected in this axis. Negative scores in the PC1 cor-
respond to the more anterior position of L1 and L4 (landmarks 1 and 7), while L2 and TF2 (landmarks 3 and 4)  
move towards rear position. This morphospace is occupied mainly by specimens from Siberia and a few from 
China. Positive scores in the PC1 correspond with forms with the L4 (landmark 1) in rear position closer to the 
TF3 (landmark 2) and L1 in a more rear position further away of TF1. Differences in the relative position of the 
rest of the landmarks are negligible. Positive scores in the PC1 are occupied mainly by specimens from USA and 
China. PC2 accounts for 17.2% of the total variation and is primarily related to the development of the TF3 (land-
mark 2), poorly developed and situated close to the L3 (landmark 3) in negative scores and better developed in 
positive scores in more anterior position close to the L4 (landmark 1). Positive values correspond with specimens 
from Siberia as well as negative values, while most of the specimens from USA and China are close to the mean 
profile shape. Relatively high amount of variation, 11.8%, is accounted for in the PC3. The variation in the PC3 
relates mainly to the position of L2 and L3 (landmarks 3 and 5), which are closer in positive scores and closer to 
the mean shape in negative values. The depth of the TF3 (landmark 4) also varies from shallow forms in positive 
scores to deeper forms in negative scores. All populations encompass the scores in the PC3.
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The Goodall’s F test (Procrustes ANOVA) shows significant similarities among populations (Centroid size: 
F = 6.58, df = 2, p < 0.003, shape: F = 2.88, df = 20, p < 0.0001). Pairwise comparison shows no significant differ-
ences between samples (Table 1). The axial profile of the specimens from Siberia compared to those from the USA 
are the most different of the sample, however the F-value is still significant lower. The CV analysis (Fig. 5a) displays 
significant similarities among the three populations examined (10000 permutation runs). The Mahalanobis and 
Procrustes distances between samples are very small, suggesting that the shape of TFs and glabellar lobes in the 
sagittal profiles in all three samples are very similar in shape. (Table 2). While positive values in the CV1 are occu-
pied mainly by specimens from Siberia with the L4 (landmark 1) in an anterior position compared with the mean 
profile shape, negative scores in the CV1 are occupied by the tree populations with only American specimens 
in higher negative values. The variation in the negative CV1 values relates to the position of TF2 (landmark 4),  
which is slightly situated in a rear position and the L4 (landmark 1), which is slightly situated in a rear position.

Exsagittal profile (purple, Figs 4 and 5): The Principal Component Analysis (PCA) of the exsagittal pro-
file shows overlap in the amount of the transglabellar furrow deepness among the three populations analysed 
(Fig. 4c,d). The first three PCs account for 80% of the total shape variation providing a reasonable approximation 
of the total amount of shape variation across the transglabellar furrows. PC1 accounts for 48.3% of the total vari-
ation and relates primarily to the position of L4 (landmark 1) to the rest of the glabellar profile, while the depth of 
the TF3 is not affected in this axis. Negative scores in the PC1 correspond with L4 closer to the TF3 and positive 
scores correspond with L4 in a most anterior position. The relative position of the rest of the landmarks does not 
vary appreciably. PC2 accounts for 21.7% of the total variation and is primarily related to the development of the 
TF3 (landmark 2), which is not developed in negative scores and poorly developed in positive scores. A relatively 

Figure 1.  Digital elevation models (DEMs) (a–c) Oryctocephalus indicus (Reed, 1910) from Siberia (a) 
MPZ2017/448; (b) MPZ2017/449; (c) MPZ2017/450; (d–e) Oryctocephalus indicus (Reed, 1910) from Split 
Mountain, Nevada, Great Basin, USA d) MPZ2017/432; (e) MPZ2017/433; (f–g) Oryctocephalus indicus (Reed, 
1910) from the Kaili Formation, South China f) MPZ2017/467; (g) MPZ2017/468.
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high proportion of the variation between specimens is controlled by the position of the L3 and TF2 (landmarks 
3 and 4) (PC3, 11.6% of total variation). The two glabellar lobes show antagonist behaviour; positive scores have 
specimens with both lobes very separate and negative scores have specimens with lobes relatively closer.

The Goodall’s F test (Procrustes ANOVA) shows significant similarities between populations (Centroid size: 
F = 5.53, df = 2, p < 0.007, shape: F = 3.06, df = 20, p < 0.0001). Pairwise comparison shows no significant differ-
ences between samples (Table 1). As for the sagittal profile, the exsagittal profile of O. indicus from Siberia com-
pared to those from the USA are the most different of the sample, however the F-value still significant lower. The 
CV analysis (Fig. 5b) displays significant similarities among the three populations examined (10000 permutation 
runs) The Mahalanobis and Procrustes distances between samples are very small, suggesting that the shape of TFs 
and glabellar lobes in the exsagittal profiles in all samples are very similar in shape (Table 3). Positive values in the 
CV1 are occupied mainly by specimens from Siberia with the L3 (landmark 1) in a very anterior position and the 
TF2 in a posterior position compared to the mean profile shape. Few specimens from Siberia and USA take place 
in the negative values of the CV1. Positive scores in the CV1 are occupied mainly by American specimens with 
the TF1 (landmark 6) and TF2 (landmark 6) slightly deeper than the mean shape. Chinese samples takes place in 
negative values of the CV2 and differ from the American population in having shallower transglabellar furrows.

Figure 2.  Profiles obtained with the DEM of a-d) Specimens from Split Mountain, Nevada, Great Basin, USA; 
(a) MPZ2017/434; (b) MPZ2017/435; (c) MPZ2017/436; (d) MPZ2017/436; (e–h) Specimens from Siberia; 
(e) MPZ2017/451; (f) MPZ2017/452; (g) MPZ2017/453; (h) MPZ2017/454; (i–l) Specimens from the Kaili 
Formation, South China; (i) MPZ2017/469; (j) MPZ2017/470; ki) MPZ2017/471; (l) MPZ2017/442. (Vertical 
and horizontal axis in mm).

Figure 3.  Boxplot showing the range variation in the axial profiles of the three analysed populations.
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Discussion and Conclusions
The optical surface roughness meter (OSRM) is a powerful tool that can be used to generate digital elevation 
models (DEMs) for assessing small morphological features (<0.1 µm). This new technique allows us to better 
understand the effects of taphonomy on the transglabellar furrows (TFs) of Oryctocephalus indicus. Thanks to 
the OSRM, we were able to assess the variation in very small morphological features by means of a geometric 
morphometric approach. The DEMs allowed a 3-D quantification of these morphological traits and comparison 
between populations.

All studied sections bear specimens typically preserved as high-quality internal and external molds, preserv-
ing in many cases fine details of exoskeletal prosopon (Fig. 6). This is especially true (42% of the external moulds 
preserve remains of ornamentation, n = 72) in the external molds from Siberia (Fig. 6A–G). By contrast, there 
are fewer specimens preserving fine details in the material from China (<5% of the specimens show ornamen-
tation, n = 554, Fig. 6H–N) and very few examples of this in the material from the USA (<2% of the specimens 
show remains of ornamentation, n = 331, Fig. 6O–W). In addition, in China is very common to find specimens 
preserved through mineral replacement as calcite; during weathering, the original cuticle was dissolved, and 
sometime later calcite was precipitated in the voids. The brown parts in fossils arise from where the calcite was 
stained black by Fe-oxides (from weathering of pyrite in the rocks) and Mn. The preservation mode is closely 
related to how the dissolution of the original exoskeleton occurred, which could happen following compaction 
of the sediments during burial or after burial. It is important to know how dissolution occurred (during or after 
burial) because this establishes new features in the architecture and general morphology of the cephalon. The 
OSRM analysis has been especially useful to assess the effects of dissolution. While specimens with a low degree 
of dissolution present glabelar lobes and furrows that are well defined and rounded (e.g. O. indicus from USA), 
the specimens that suffered more dissolution generally show sharper glabellar lobes and furrows (e.g. O. indicus 
from Siberia and China). This result agrees with an early cementation in diagenesis for O. indicus from the USA, 
which is supported by the wide spacing and lack of compaction of the cranidia and the lack of fine ornamenta-
tion. In addition, the presence of compaction-related fractures fits with this observation. Specimens from Siberia 

Figure 4.  Principal Component Analysis (PCA) of mature Oryctocephalus indicus (Reed, 1910); percent 
variation summarized by each axis shown the text. The reconstruction shows the position of the seven 
landmaks. (a,b) Morphospace defined by the first three principal components of PCA of the sagittal profiles, 
showing the wireframe visualization of the profile variation along PC1, PC2 and PC3. (c,d) Morphospace 
defined by the first three principal components of PCA of the exsagittal profiles, showing the wireframe 
visualization of the profile variation along PC1, PC2 and PC3.
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often present fractures which suggest that dissolution of the original exoskeleton must have occurred following 
compaction of the sediments during burial (Fig. 6A,E,F). This can greatly impact the preservation of small mor-
phological features such as the TFs, which are often obliterated in the population from Siberia. However, the 
OSRM analysis shows that even some of those obliterated furrows can be visualized using new technologies, and 
the DEMs of specimens with obliterated furrows enable their analysis.

Geometric morphometric (GM) analysis quantifies the shape and variation of morphological traits. GM anal-
ysis demonstrates that an overlap of all shapes exists, but there is a trend towards effaced TFs in O. indicus from 

Figure 5.  Canonical Variates Analysis (CVA) of mature Oryctocephalus indicus (Reed, 1910); percent variation 
summarized by each axis shown the text. The reconstruction shows the position of the seven landmaks (a) 
Morphospace defined by the first two canonical axis of the sagittal profiles, showing the wireframe visualization 
of the profile variation along CV1 and CV2. (b) Morphospace defined by the first two canonical axis of the 
exsagittal profiles, showing the wireframe visualization of the profile variation along CV1 and CV2.

Profiles comparison

Goodall’s F-test

F P

China SP to Siberia SP 2.38 0.0098

China SP to USA SP 1.58 0.110

Siberia SP to USA SP 5.17 <0.0001

China EP to Siberia EP 2.24 0.0157

China EP to USA EP 0.75 0.6733

Siberia EP to USA EP 4.26 <0.0001

Table 1.  Goodall’s F-test among groups corresponding to the sagittal profiles (SP) and exsagittal profiles (EP).
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Mahalanobis distance Procrustes distance

China Siberia China Siberia

R P R P R P R P

Siberia 1.4501 0.0756 0.0627 0.0628

USA 1.4244 0.0619 1.4958 0.0258 0.0417 0.1733 0.0814 0.0036

Table 2.  Mahalanobis and Procrustes distances with P-values from permutation tests (10000 permutation 
rounds) for Mahalanobis and Procrustes distances among groups corresponding to the sagittal profiles.

Mahalanobis distance Procrustes distance

China Siberia China Siberia

R P R P R P R P

Siberia 1.3790 0.0745 0.0506 0.0740

USA 0.8743 0.8036 1.9611 0.0005 0.0395 0.2361 0.0836 0.0084

Table 3.  Mahalanobis and Procrustes distances with P-values from permutation tests (10000 permutation 
rounds) for Mahalanobis and Procrustes distances among groups corresponding to the exsagittal profiles.

Figure 6.  Oryctocephalus indicus (Reed, 1910). (A–G); MPZ2017/448—MPZ2017/454 from Siberia; 
(H–N); MPZ2017/475—MPZ2017/481 from the Guizhou Province, South China South China and (O-W); 
MPZ2017/434—MPZ2017/442 from the Split Mountain, Nevada, Great Basin, USA.
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Siberia. The available data and the results suggest that the obliteration or effacement of the TFs could be as con-
sequence of an early dissolution and diagenetic cementation of fossils. However, with regard to O. indicus from 
China, most of the specimens show a compaction-related plastic deformation and this suggests that the disso-
lution of the original exoskeleton must have occurred following compaction after burial (Fig. 6H–N). Esteve13 
demonstrated that preservation of glabellar furrows does not depend on the lithology, thus specimens preserved 
in the same bed can show different degrees of preservation. PCA shows how the deepest of the TFs varies from 
obliterated TFs typical of the Siberian population to well-marked TFs in the American population, but overlap 
of both morphologies is seen in all populations. However, CVA shows a clear separation between O. indicus from 
Siberia with obliterated TFs and O. indicus from USA with well-marked TFs. These populations are linked by the 
Chinese population, which presents taphonomic features of specimens from USA (i.e. well-marked transglabel-
lar furrows) and Siberia (i.e. obliterate transglabellar furrows). Although, O. indicus from USA and China show 
small Mahalanobis and Procrustes distances and low F-values, some of the tests are not statistically significant as 
a consequence of a small sample size and the extremely different shape of the furrows and lobes in few specimens. 
If only samples from the USA and China were analysed, it could be concluded that those samples represented 
different groups diagnosable by a unique range of continuous characters due to the absence of significantly differ-
ent means and a minimal overlap. However, the sample of O. indicus from China overlap with USA and Siberia 
and cannot be distinguished from one another. Therefore, the authors do not believe these results warrant on 
themselves the separation of these groups into different species given the substantial overlap of samples in mor-
phospace obtained thanks to the new 3-D quantitative method.

Material and Methods
Fossil sample.  All the material used in this study is housed in the Paleontological Collections of the College 
of Resources and Environmental Engineering, Guizhou University, China (GTB, M) or at the Museo de Ciencias 
Naturales, University of Zaragoza (MPZ).

Guizhou Province, South China: Specimens come from the Wuliu-Zengjiayan section at Balang Village, Jianhe 
County, in the Miaoling Mountains, eastern Guizhou, China, which is one of the candidates to obtain the GSSP 
for the base of the Miaolingian Series and the Wuliuan Stage (former Cambrian Series 3, Stage 5 for geological 
details of this section, see8,14–16). 554 specimens from a short stratigraphic range (from a c. 10 m interval in the 
beds 14–15, see14) were photographed and used in this study, housed in the Paleontological Collections of the 
College of Resources and Environmental Engineering, Guizhou University, China, but 19 specimens (from a 
single population from the bed 14) that were scanned to create a digital elevation model are housed at the Museo 
de Paleontologia de la Universidad de Zaragoza (MPZ2017/467–485).

Molodo Section, Siberia, Russia: 72 cranidia of O. “reticulatus” were collected from a 10 cm interval in 
the Member IV slightly above the middle part of the Kuonamaka Formation. For more geological details of 
this section see8,17. 18 specimens from a single level Siberia were scanned to create a digital elevation model 
(MPZ2017/448–466).

Split Mountain, Nevada, Great Basin, USA: The Split Mountain section is the second candidate to obtain 
the GSSP for the base of the Miaolingian Series and the Wuliuan Stage (local Lincolnian Series and Delamaran 
Stage, former Cambrian Series 3, Stage 5 for geological details of this section, see18,19). 331 specimens to support 
the present study. These specimens were collected from two beds with different lithologies. The first bed corre-
sponds with mudstones and the second with fissile shales. These specimens are housed at the Museo de Ciencias 
Naturales of the University of Zaragoza (MPZ). 16 specimens from a single population preserved in mudstones 
were scanned to create a digital elevation model (MPZ2017/432–447).

Optical surface roughness meter.  The need to make accurate and repeatable measurements of surface 
roughness is important in serval branches of geomorphology20,21, and the optical surface roughness meter is 
commonly used for this purpose in studies of the conservation of archaeological sites22,23. However, this is the 
first time the method has been applied to fossils. Select specimens were scanned with an optical surface roughness 
meter (TRACEiT, Innowep GMBH). This instrument measures the surface topography of a 5 × 5 mm area by 
acquiring three images angled at 120° apart with a resolution of 1500 lines in both x and y directions. From these 
images, the built-in software creates a 3D point cloud of the surface with a maximum accuracy of 1.5 μm, which 
is below the size of the structures to be analysed. Because of the limitations of the area covered by the equipment, 
measurements were focused on the glabella in large specimens, but smaller specimens fit fully within the measur-
able area. In addition to graphical information, the equipment output includes a *.MAP file, which corresponds 
to the 3D point cloud in text format in Cartesian coordinates. This file needed to be transformed into an absolute 
coordinates format so it could be opened with a 3D point cloud processing software, and custom software was 
used for this purpose. After this step, the file was imported into Global Mapper software to generate a digital 
elevation model (DEM) and subsequently obtain the profiles to be analysed (Figs 1, 2, 3). The DEMs are available 
under from the corresponding author on reasonable request, the dataset of each axial profile generated during the 
current study is available in this publication (Supplementary data 1).

Shape analysis of the glabellar furrows and lobes.  Geometric morphometric analyses were performed 
using an image of the profiles obtained with the optical surface roughness meter. Seven landmarks were chosen: 
landmarks 1, 3, 5 and 7 for glabellar lobes 4, 3, 2 and 1; and landmarks 2, 4 and 6 for transglabellar furrows 3, 2 
and 1 (Figs 4–5). X–Y coordinates were obtained for all landmarks and the shape information was extracted using 
a full Procrustes fit, in order to standardize size, orientation and the position of each specimen. The morpholog-
ical variation from different levels and from the whole section was analysed and synoptically viewed using prin-
cipal component analysis (PCA) based on the covariance matrix. A Goodall’s F-test of Procrustes coordinates24 
or Procustes ANOVA25 was used to test the significant morphological differences between samples25–27. Goodall’s 
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F-test is a statistical approach that partitions variance of Procrustes distance rather than of landmark coordinates. 
Goodall’s F-test is the ratio of explained (between-group) to unexplained (within-group) variation in these dis-
tances. A bootstrapped F-test is more appropriate because it does not assume any isotropic normal distribution 
of landmarks around the mean; which is very unrealistic in biological or palaeontological samples. Thus, this test 
summarized the proportion of the shape variation that is not predicted by size. This test allows smaller sample 
size what other statistical test like MANOVA does not allow, and it is especially useful in geometric morphometric 
with small sample, where the number of free variables exceeding the number of degrees of freedom27. Therefore, 
when the F-value is very small it means that the variation between groups is negligible. The degree of variation 
in each sample was measured as within-group variance in Procrustes distance away from the group mean. The 
range of F-values obtained by randomly assigning specimens to populations is used to assess the probability that 
the observed F-value could be due to a random subdivision of an underlying single population. In order to test 
the difference of all multivariate samples, we also carried out a canonical variates analysis (CVA). CVA provides 
a scatter plot of specimens along the two first canonical axes, producing maximal and second to maximal sepa-
ration between all groups (multigroup discriminant analysis28). In addition, we have calculated the Mahalanobis 
and Procrustes distances. The Mahalanobis distances in the transformed space measure the differences between 
groups relative to the within-group variation, and reflect the degree of separation between two groups relative to 
the within-group variation. Differences between pairs of shapes or deviations of individual shapes from the pop-
ulation average can be characterized by their magnitude, measured as a Procrustes distance, and their direction 
in the tangent space29. These transformations are a central idea for computing the canonical variate analysis29.
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