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a b s t r a c t

In this work we consider a class of fractional order Volterra integro-differential equations
of first kind where the fractional derivative is considered in the Caputo sense. Here,
we consider the initial value problem and the boundary value problem separately. For
simplicity of the analysis, we reduce each of these problems to the fractional order
Volterra integro-differential equation of second kind by using the Leibniz’s rule. We
have obtained sufficient conditions for the existence and uniqueness of the solutions of
initial and the boundary value problems. An operator based method has been considered
to approximate their solutions. In addition, we provide a convergence analysis of
the adopted approach. Several numerical experiments are presented to support the
theoretical results.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The concept of the fractional calculus dates back to the times of Newton and Liouville. Since that time, the theoretical
development of fractional calculus was in the mind of several mathematicians. In recent years, it has experienced a
growing focus because of its application in real world problems. See for e.g., [1,2]. On the other hand, the problems
related to the integro differential equations have also obtained interest by several mathematicians. The question of
existence and uniqueness of solutions of fractional differential equations has been investigated in several papers [2–4].
But, most of the works deal with the numerical analysis of fractional integro differential equations without addressing
the existence and uniqueness of the solution inside its domain of definition. In the present work, we consider a
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I

lass of fractional order Volterra integro-differential equations and present a result about existence and uniqueness of
olutions inside their domain of definition. Different problems of physics, mechanics, and engineering can be modelled
y fractional integral equations (see [5,6]). As like most of the differential equations, several fractional integral models do
ot have a direct way of finding analytical solutions. Thus, there has been an increasing interest in developing numerical
pproaches for the solution of fractional-order integro differential equations. Recently, several methods for obtaining
uch approximate solutions have appeared. Among these methods, we can mention, Adomian decomposition method [7],
ariational iteration method [8], reproducing kernel method [9], fractional differential transform method [10], collocation
ethod [11], or wavelet method [12].
Volterra integral equations of first kind, appear in several real life situations, like Steady state heat distribution,

iological immunology model [13], Dirichlet problems in plane elasticity [14], etc. In general, two types (based on their
ernels) of first kind integral equations, are popular in literature. The first type comprises the well-behaved kernels,
.e., for sufficiently smooth functions defined on their domain of definition. The second one is for unbounded kernels,
.e, singular kernels. Since small changes in the kernels or in the given functions, can make a huge effect on the solutions,
he first kind integral equations lead to ill-posed problems, in general. More details on these type of problems can
e seen in [15]. Therefore, the theories on first kind integral equations are not much rich as compared to integral
quations of the second kind. Hence, we provide the existence and uniqueness properties of the present type of first kind
ntegral equations by reformulating them as a second kind form. In the literature, the approximate solutions of Volterra
ntegral equations of first kind, have achieved attentions by several researchers. Direct methods, including, quadrature
ethod [16], operational matrix method with block-pulse functions [17], Modified homotopy perturbation method [18,19]
nd Adomian decomposition method [20] are some of the most popular methods which are used after reducing the first
ind problem into the second kind form. One can also observe the Laplace transform method with special type of kernels,
nd variational iteration methods in [21] for approximating solutions of Volterra integro-differential equations of first
ind. In the present research, we propose an approximation method based on Homotopy perturbation [18,19] for solving
he fractional differential integral equations of first kind and provide the convergence analysis of this approach.

The paper is organized as follows. First, we define the fractional derivatives and integrals with some of their properties,
o set our model problems at Section 2. In Section 3, we consider the nonlinear fractional Volterra integro-differential
quation of first kind with initial value problem structure and boundary value problem structure. Here, we study the
xistence and uniqueness of the solution of first kind equation by reformulating it into second kind form. In Section 4,
homotopy perturbation based method is discussed for the solution approximation of the present model. In addition,
e provide the convergence of the adopted strategy and its error analysis, here. A concrete computational algorithm is
rovided with numerical experiments in Section 5. For polynomial approximation, we use the Chebyshev polynomials,
hose details are given in Appendix. In Section 6, conclusions of the present work, are summarized.

Notations: For a domain Ω , we define, Ω̄ as the closure of Ω . C(Ω) denotes the set of all continuous functions on Ω .
n addition, the set of all continuous function from [0, T ] to R is noted as C([0, T ],R). Define Cn(Ω) = {g(x)|gn(x) exists
and gn(x) ∈ C(Ω)}. For a function g(x), defined on Ω , we define ∥g(x)∥ = ∥g(x)∥∞ = maxx∈Ω |g(x)|. Let u =

∑
∞

i=0 p
iui

where p ∈ [0, 1], then the non-linear term N(u) can be approximated by He’s polynomial Hn, which is defined by

Hn(u0, u1, . . . , un) =
1
n!

∂n

∂pn
N

( n∑
k=0

pkuk

)
p=0

, n = 0, 1, 2, . . . . (1.1)

2. Preliminaries

This section defines the Liouville–Caputo fractional derivative and the Riemann–Liouville fractional integral [1,4] which
will be used to define our present problems and their approximate solutions. Additionally, some basic properties of these
fractional operators are listed below.

2.1. Riemann–Liouville fractional integral

The Riemann–Liouville fractional integral of order α > 0 of a function f (x) is defined as

Jα f (x) =
1

Γ (α)

∫ x

0
(x − τ )α−1f (τ )dτ , x > 0. (2.1)

The above integral exists almost everywhere for any absolutely integrable function f (x) (for more details see [1]).

2.2. Liouville-Caputo fractional derivative

The Liouville–Caputo fractional derivative of a function f is defined as

Dα f (x) = Jm−αDmf (x) =

⎧⎪⎪⎨⎪⎪⎩
1

Γ (m − α)

∫ x

0

f (m)(τ )
(x − τ )α+1−m dτ , if m − 1 < α < m,

dmf (x)
, α = m,

(2.2)
dxm
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here m ∈ N, and α is a positive real number called the order of the fractional derivative. Here, N defines the set of all
natural numbers. The above integral exists almost everywhere if a function f (x) and its derivatives up to order m− 1 are
absolutely continuous on Ω̄ (for more details see [1]).

Properties:

1. The Liouville–Caputo derivative of order α of a constant function f (x) = c satisfies Dαc = 0.
2. The Liouville–Caputo derivative and the Riemann–Liouville integral are linear operators. This means, if γ1 and γ2

are real constants, then

Dα(γ1f (x) + γ2g(x)) = γ1Dα f (x) + γ2Dαg(x),

Jα(γ1f (x) + γ2g(x)) = γ1Jα f (x) + γ2Jαg(x).

3. If n − 1 < α < n, n ∈ N, then

Dα Jαg(x) = g(x), (2.3)

and

JαDαg(x) = g(x) −

n−1∑
k=0

xk

k!
g (k)(0), x > 0. (2.4)

In particular, for 0 < α < 1, we have

JαDαg(x) = g(x) − g(0) . (2.5)

4. For β > −1 and x > 0, we have the following result

Jαxβ
=

Γ (β + 1)
Γ (β + α + 1)

xβ+α.

3. Fractional order Volterra integro differential equation of first kind model

3.1. Initial value problem

We consider the following first kind of nonlinear fractional order Volterra integro-differential initial value problem,
for 0 < α ≤ 1 :∫ x

0
k1(x, t)F (u(t)) dt +

∫ x

0
k2(t)Dαu(t) dt = f (x), x ∈ Ω = (0, 1],

u(0) = c0.
(3.1)

Here, f (x) is a sufficiently smooth function on Ω̄ and F (u(x)) is a nonlinear function of u(x). In addition, we assume that
he kernels k1(x, t) and k2(t) are also sufficiently smooth on Ω̄ × Ω̄ with k2(x) ̸= 0 on Ω̄ . We are interested to find a
ufficiently smooth solution u(x), defined on Ω̄ .
By using Leibniz’s rule, Eq. (3.1) can be written as

Dαu(x) = P(x) + Q (x)F (u(x)) +

∫ x

0
K (x, t)F (u(t))dt,

u(0) = c0,
(3.2)

here P(x),Q (x) and K (x, t) are defined by

P(x) =
f ′(x)
k2(x)

, Q (x) = −
k1(x, x)
k2(x)

, K (x, t) = −
1

k2(x)

[
∂

∂x
k1(x, t)

]
. (3.3)

y assuming f (0) = 0 and integrating (3.2), we can obtain (3.1). In addition, the following assumptions are required for
he rest of the analysis.

(I) The nonlinear function F (u(x)) satisfies the Lipschitz condition with respect to u(x), with Lipschitz constant L(> 0),
and F (0) = 0 for all x ∈ Ω̄ .

(II) The kernel K (x, t) at (3.2) is continuous and bounded by a positive real number M1 on Ω̄ × Ω̄ . In addition, we also
assume Q (x) and P(x) are continuous functions on Ω̄ and bounded by M (> 0) and M (> 0) respectively.
2 3



4 P. Das, S. Rana and H. Ramos / Journal of Computational and Applied Mathematics 404 (2022) 113116

3

u

T
k

T

N
p

T

3

f

Now, we derive a sufficient condition for the existence and uniqueness of the solution.

.1.1. Existence and uniqueness of solution
The following theorem uses the contraction mapping principle to obtain a sufficient condition on the existence and

niqueness of the solution.

heorem 3.1. Under the assumptions given in (I)–(II), the Volterra fractional integro differential initial value problem of first
ind (3.1) (equivalently (3.2)) has a unique solution u(x) for all x ∈ Ω , if the condition (M2(α + 1) + M1)L < Γ (α + 2) is

satisfied.

Proof. We apply Jα on both sides of (3.2) and obtain

u(x) = c0 + Jα(P(x)) + Jα(Q (x)F (u(x))) + Jα
[∫ x

0
K (x, t)F (u(t))dt

]
. (3.4)

Now, we write the above equation in the form Λu(x) = u(x), where the operator Λ is defined as

Λu(x) = c0 + Jα(P(x)) + Jα(Q (x)F (u(x))) + Jα
[∫ x

0
K (x, t)F (u(t))dt

]
. (3.5)

Let u1(x), u2(x) ∈ C[0, 1]. Then, for every x ∈ [0, 1], we have

|Λu1(x) − Λu2(x)| ≤ Jα(|Q (x)||F (u1(x)) − F (u2(x))|) + Jα
[∫ x

0
|K (x, t)||F (u1(t)) − F (u2(t))|dt

]
≤

M2L
Γ (α)

∫ x

0
(x − t)α−1

|u1(t) − u2(t)|dt +
M1L
Γ (α)

∫ x

0
(x − t)α−1

[∫ t

0
|u1(s) − u2(s)|ds

]
dt

≤
(M2(α + 1) + M1)L

Γ (α + 2)
∥u1 − u2∥.

his implies

∥Λu1(x) − Λu2(x)∥ ≤
(M2(α + 1) + M1)L

Γ (α + 2)
∥u1 − u2∥.

ote that (C[0, 1], ∥.∥) is a Banach space. Hence, by Banach’s Fixed-Point Theorem, we can conclude that the initial value
roblem (3.2) has a unique solution in C[0, 1] when

θ =
(M2(α + 1) + M1)L

Γ (α + 2)
< 1. (3.6)

his completes the proof. ■

.2. Boundary value problem

We consider the following fractional order nonlinear Volterra integro-differential boundary value problem (BVP) of
irst kind, for 0 < α ≤ 1:∫ x

0
k1(x, t)F (u(t)) dt +

∫ x

0
k2(t)Dαu(t) dt = f (x), x ∈ (0, T ],

a0u(0) + b0u(T ) = c0.
(3.7)

Let us reformulate the nonlinear fractional order Volterra integro-differential boundary value problem (3.7) as

Dαu(x) = P(x) + Q (x)F (u(x)) +

∫ x

0
K (x, t)F (u(t))dt, on (0, T ],

a0u(0) + b0u(T ) = c0,
(3.8)

where a0, b0, c0 ∈ R with a0 + b0 ̸= 0 and P(x),Q (x) and K (x, t) are as in (3.3).

Theorem 3.2. Let 0 < α < 1 and a0 + b0 ̸= 0. Assume that P(x),Q (x) and K (x, t) are sufficiently smooth on [0, T ]. Then,
the boundary value problem (3.8) is equivalent to the following integral equation of Volterra–Fredholm type

u(x) = h(x) −
b0

a0 + b0

1
Γ (α)

∫ T

0
(T − t)α−1

[
Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt

+
1

Γ (α)

∫ x

0
(x − t)α−1

[
Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt,

(3.9)

where h(x) =
c0

−
b0 1 ∫ T

0 (T − t)α−1P(t)dt +
1 ∫ x

0 (x − t)α−1P(t)dt.

a0 + b0 a0 + b0 Γ (α) Γ (α)
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roof. We apply Jα on both sides of (3.8) to get

u(x) = u(0) +
1

Γ (α)

∫ x

0
(x − t)α−1

[
P(t) + Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt. (3.10)

From the above equation, we readily get at x = T ,

u(T ) = u(0) +
1

Γ (α)

∫ T

0
(T − t)α−1

[
P(t) + Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt.

From the boundary condition and the above identity, we obtain

u(0) =
c0

a0 + b0
−

b0
a0 + b0

1
Γ (α)

∫ T

0
(T − t)α−1

[
P(t) + Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt.

ence, substituting the above value of u(0) in (3.10), we obtain the desired equivalent form.

Now, we use the Schaefer’s fixed point theorem to show the existence of the solution of the boundary value problem
n (3.8). This is as follows.

heorem 3.3 (Schaefer’s Fixed Point Theorem [22]). Let X be a Banach space. Consider, a continuous mapping F : X → X
hich is compact on each bounded subset A of X . Then, either

(a) F has a fixed point, or
(b) the set {u ∈ X : u = τF(u) for 0 < τ < 1} is unbounded.

emark 3.4. Note that in the context of the BVP, when we make any reference to assumptions (I)–(II), the set Ω̄ = [0, 1]
ust be replaced by [0, T ].

heorem 3.5. Let the assumptions given in (I)–(II) be satisfied. Additionally, we assume that |F (u(x))| ≤ M∗ for all x ∈ [0, T ]

nd for all u(x) ∈ R. Under these assumptions, the Volterra integro differential equation of first kind (3.7) (equivalently (3.8))
as at least one solution in [0, T ].

roof. Let us consider the operator Υ : C([0, T ],R) → C([0, T ],R), defined by

Υ (u(x)) = h(x) −
b0

a0 + b0

1
Γ (α)

∫ T

0
(T − t)α−1

[
Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt

+
1

Γ (α)

∫ x

0
(x − t)α−1

[
Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt,

(3.11)

where h(x) is defined in Theorem 3.2. Now we show that the operator Υ has a fixed point, which follows by proving
that Υ is continuous on C([0, T ],R) and compact on each bounded subset of C([0, T ],R), and the statement given in
Theorem 3.3(b) is not true. This will imply that Theorem 3.3(a) must be true. This result will be shown through several
steps.

First, we show that the operator Υ is continuous. To do this, consider a sequence of functions {un} such that un → u
in C([0, T ],R) as n → ∞. Therefore, for every x ∈ [0, T ]

|Υ (un(x)) − Υ (u(x))|

≤

⏐⏐⏐⏐ b0
a0 + b0

⏐⏐⏐⏐ 1
Γ (α)

∫ T

0
(T − t)α−1

[
|Q (t)∥F (un(t)) − F (u(t))| +

∫ t

0
|K (t, s)∥F (un(s)) − F (u(s))|ds

]
dt

+
1

Γ (α)

∫ x

0
(x − t)α−1

[
|Q (t)∥F (un(t)) − F (u(t))| +

∫ t

0
|K (t, s)∥F (un(s)) − F (u(s))|ds

]
dt

≤

(
1 +

|b0|
|a0 + b0|

)(
M2LTα

Γ (α + 1)
+

M1LTα+1

Γ (α + 2)

)
∥un − u∥.

or n → ∞, we have

∥Υ (un) − Υ (u)∥ ≤

(
1 +

|b0|
|a0 + b0|

)(
M2LTα

Γ (α + 1)
+

M1LTα+1

Γ (α + 2)

)
∥un − u∥ → 0.

This implies that Υ is continuous.
In a second step, we will show that the operator Υ maps bounded sets into bounded sets in C([0, T ],R), i.e., for

any κ > 0, there exists a m > 0 such that for every u ∈ Bκ , we have ∥Υ (u)∥ ≤ m, where Bκ is defined by
= {u ∈ C([0, T ],R) : ∥u∥ ≤ κ}.
κ
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For every x ∈ [0, T ],

|Υ (u(x))| ≤

⏐⏐⏐⏐ b0
a0 + b0

⏐⏐⏐⏐ 1
Γ (α)

∫ T

0
(T − t)α−1

[
|Q (t)∥F (u(t))| +

∫ t

0
|K (t, s)∥F (u(s))|ds

]
dt

+
1

Γ (α)

∫ x

0
(x − t)α−1

[
|Q (t)∥F (u(t))| +

∫ t

0
|K (t, s)∥F (u(s))|ds

]
dt

≤

(
1 +

|b0|
|a0 + b0|

)(
M2(α + 1) + M1T

Γ (α + 2)

)
LTα

∥u∥

≤

(
1 +

|b0|
|a0 + b0|

)(
M2(α + 1) + M1T

Γ (α + 2)

)
κLTα.

y choosing m =

(
1 +

|b0|
|a0 + b0|

)(
M2(α + 1) + M1T

Γ (α + 2)

)
κLTα , we have ∥Υ (u(x))∥ ≤ m.

Finally, for the third step, let x1, x2 ∈ (0, T ], with x1 < x2. For u ∈ Bκ , (here Bκ is a bounded set and is defined in

econd step) we have

|Υ (u(x2)) − Υ (u(x1))| =

⏐⏐⏐⏐ 1
Γ (α)

∫ x2

0
(x2 − t)α−1

[
Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt

−
1

Γ (α)

∫ x1

0
(x1 − t)α−1

[
Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt

⏐⏐⏐⏐
=

⏐⏐⏐⏐ 1
Γ (α)

∫ x1

0

(
(x2 − t)α−1

− (x1 − t)α−1
)[

Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt

+
1

Γ (α)

∫ x2

x1

(x2 − t)α−1
[
Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt

⏐⏐⏐⏐
≤

M2L∥u∥
Γ (α + 1)

|2(x2 − x1)α + (xα
1 − xα

2 )| +
M1L∥u∥

Γ (α + 2)
|2(x2 − x1)α+1

+ (xα+1
1 − xα+1

2 )|.

From the above inequality, it holds that |Υ (u(x2)) − Υ (u(x1))| → 0 as x1 → x2. This shows that the operator maps

a bounded set into an equicontinuous set of C([0, T ],R). Therefore, by the Arzelà–Ascoli theorem, the operator Υ is

compact.

For the last step, let us consider the set ω, which is defined by

ω = {u ∈ C([0, T ],R) : u = τΥ (u) for 0 < τ < 1}.

Now we show that the above set is bounded.

Let us consider u ∈ ω. For every x ∈ [0, T ], we have from (3.11)

u(x) = τ

(
h(x) −

b0
a0 + b0

1
Γ (α)

∫ T

0
(T − t)α−1

[
Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt

+
1

Γ (α)

∫ x

0
(x − t)α−1

[
Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt

)
,

where h(x) is defined in Theorem 3.2.

Note that, |P(x)| ≤ M3 from assumption (II). Hence, we have

|h(x)| ≤
|c0|

|a0 + b0|
+

(
1 +

|b0|
|a0 + b0|

)
M3

Γ (α + 1)
= M4.
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herefore, for every x ∈ [0, T ], using |F (u(x))| ≤ M∗, we obtain

|u(x)| =

⏐⏐⏐⏐τ (
h(x) −

b0
a0 + b0

1
Γ (α)

∫ T

0
(T − t)α−1

[
Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt

+
1

Γ (α)

∫ x

0
(x − t)α−1

[
Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt

) ⏐⏐⏐⏐
≤ |h(x)| +

|b0|
|a0 + b0|

1
Γ (α)

∫ T

0
(T − t)α−1

[
|Q (t)∥F (u(t))| +

∫ t

0
|K (t, s)∥F (u(s))|ds

]
dt

+
1

Γ (α)

∫ x

0
(x − t)α−1

[
|Q (t)∥F (u(t))| +

∫ t

0
|K (t, s)∥F (u(s))|ds

]
dt

≤ M4 +

(
1 +

|b0|
|a0 + b0|

)(
M2(α + 1) + M1T

Γ (α + 2)

)
M∗Tα.

Define m∗
= M4+

(
1+

|b0|
|a0 + b0|

)(
M2(α + 1) + M1T

Γ (α + 2)

)
M∗Tα . Therefore ∥u∥ ≤ m∗. This shows that any u ∈ ω is bounded.

herefore, the set ω is bounded.
Hence, the operator Υ has a fixed point which follows from Schaefer’s fixed point theorem. This implies that Eq. (3.8)

as at least one solution u(x) for all x ∈ [0, T ]. ■

In addition, with the assumptions in (I) and (II), we can show that the boundary value problem (3.8) has a unique
ontinuous solution on [0, T ], if the condition

Θ =
(M2(α + 1) + M1T )

Γ (α + 2)
LTα

(
1 +

|b0|
|a0 + b0|

)
< 1, (3.12)

is satisfied. This can be derived by a similar fashion to that described in the proof of Theorem 3.1. Note that the above
bound keeps a restriction on T depending on the given data.

. Approximation of the solutions of IVP and BVP

In this section, we provide a method to approximate the solutions of (3.2) and (3.8) by homotopy based perturbation
trategy (see [18,19,23]). First, we discuss the approximation of the solution for the initial value problem. For this, we
onstruct the following homotopy equation corresponding to (3.2)

H(v, p) ≡ Dα(v(x, p)) + p
(
Q (x)F (v(x, p)) +

∫ x

0
K (x, t)F (v(t, p))dt

)
− P(x) = 0. (4.1)

Here, p is a small parameter such that 0 ≤ p ≤ 1 and v(x, p) is a generic function, defined on an appropriate domain
according to the type of the problem considered. We consider that the solution of (4.1) can be written as a power series
of p, of the form

v(x, p) =

∞∑
i=0

vi(x)pi. (4.2)

By substituting (4.2) in (4.1) and comparing the coefficients of the like powers of p, we obtain the following recurrence
relations⎧⎨⎩Dαv0(x) = P(x),

Dαvi+1(x) = Q (x)F (vi(x)) +

∫ x

0
K (x, t)F (vi(t))dt, i ≥ 0. (4.3)

For solution approximation of IVP, we solve the above relation with initial condition. We choose the initial conditions for
(4.3) in such a way that the initial conditions play an important role to construct the solution and the recurrence relations
can be solved easily.

Now, for the boundary value problem, we construct a homotopy equation corresponding to (3.9) as follows

H(v, p) ≡ v(x, p) + p
( b0

a0 + b0

1
Γ (α)

∫ T

0
(T − t)α−1

[
Q (t)F (v(t, p)) +

∫ t

0
K (t, s)F (v(s, p))ds

]
dt

−
1

Γ (α)

∫ x

0
(x − t)α−1

[
Q (t)F (v(t, p)) +

∫ t

0
K (t, s)F (v(s, p))ds

]
dt

)
−h(x) = 0.

(4.4)

We construct this homotopy equation in such a way that the obtaining solution satisfy the boundary condition automati-
cally. Similarly as for IVPs, we consider that the solution of the BVP can be expressed as in (4.2). By substituting (4.2) into
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t
he above equation and comparing the coefficients of the like powers of p, we obtain the following recurrence relations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v0(x) = h(x),

vi+1(x) = −

( b0
a0 + b0

1
Γ (α)

∫ T

0
(T − t)α−1

[
Q (t)F (vi(t)) +

∫ t

0
K (t, s)F (vi(s))ds

]
dt

+
1

Γ (α)

∫ x

0
(x − t)α−1

[
Q (t)F (vi(t)) +

∫ t

0
K (t, s)F (vi(s))ds

]
dt

)
, i ≥ 0.

(4.5)

For BVP, we obtain the solution by solving the above relation only.
On each case, the solution u(x), for the IVP or for the BVP, can be obtained as

u(x) = lim
p→1

∞∑
i=0

pivi(x) =

∞∑
i=0

vi(x), (4.6)

if the series (4.2) is uniformly convergent for all p. Now, by solving (4.3) and using the initial condition, or by solving
(4.5), we obtain the approximate solution of (3.1) or of (3.8) respectively by taking the partial sum of the series with N
terms, as

ΦN (x) ≡

N−1∑
i=0

vi(x). (4.7)

4.1. Convergence analysis

Here, we discuss about the convergence of the above approximate solution for the IVP analogous to [18,19].

Theorem 4.1. Assume that the conditions (I) and (II) hold. In addition, consider 0 < θ < 1 as described in (3.6). Then, the
series (4.6) is uniformly convergent on Ω̄ to the solution u(x) of the IVP in (3.1). Furthermore, an approximate solution of u(x)
is given by the partial sum (4.7).

Proof. Observe that v0(x) ∈ C(Ω̄), since P(x) ∈ C(Ω̄). Hence, there exist M ∈ R and M > 0 such that |v0(x)| ≤ M for all
x ∈ Ω̄ . Now, we show that the ith term of the series (4.6) satisfies the following bound

|vi(x)| ≤ Mθ i on Ω̄, (4.8)

where θ was defined in (3.6). We use induction on i ∈ N. For i = 1, we have

|v1(x)| =

⏐⏐⏐⏐Jα[Q (x)F (v0(x)) +

∫ x

0
K (x, t)F (v0(t)) dt

]⏐⏐⏐⏐
≤ M2L|v0(x)|Jα(1) + M1L|v0(x)|Jα(x)

=
M2L

Γ (α + 1)
|v0(x)|xα

+
M1L

Γ (α + 2)
|v0(x)|xα+1

≤ θ |v0(x)| ≤ Mθ.

Now we assume that (4.8) is true for i = k − 1, i.e., |vk−1(x)| ≤ Mθ k−1. Proceeding as before, for i = k, we have

|vk(x)| =

⏐⏐⏐⏐Jα[Q (x)F (vk−1(x)) +

∫ x

0
K (x, t)F (vk−1(t)) dt

]⏐⏐⏐⏐
≤ θ |vk−1(x)| ≤ Mθ k.

.

Hence, we get the desired result at (4.8).
Therefore, for all x ∈ Ω̄ ,

∞∑
i=0

|vi(x)| ≤

∞∑
i=0

Mθ i. (4.9)

For 0 < θ < 1,
∑

∞

i=0 Mθ i is a convergent geometric series. Therefore, by the Weierstrass M-test, we conclude that∑
∞

i=0 vi(x) converges uniformly on Ω̄ .
Note that for all p ∈ [0, 1] and for all x ∈ Ω̄ , we have

∞∑
i=0

pivi(x) ≤

∞∑
i=0

|vi(x)| ≤

∞∑
i=0

Mθ i.

Therefore, again by the Weierstrass M-test, the series (4.2) is uniformly convergent on Ω̄ . Hence, the partial sum in (4.7)

is an approximate solution of (3.2). ■
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The convergence of the approximate solution for the boundary value problem can be proved similarly, as was discussed
n Theorem 4.1. This is also given below.

heorem 4.2. Assume that the conditions (I) and (II) hold on [0, T ]. Let 0 < Θ < 1 be as defined in (3.12). Then, the
series (4.6) is uniformly convergent on [0, T ] to u(x), the true solution of the boundary value problem in (3.7). Furthermore,
an approximate solution of (3.8) can be obtained from the partial sum (4.7).

Here, we discuss error analysis and required minimum number of terms for tolerance for initial value problem.

.2. Error analysis

Let u(x) =
∑

∞

i=0 vi(x) be the solution of (3.2). Now consider the approximate solution ΦN (x) in (4.7), where N is
he number of terms in the partial sum. In this case, for the initial value problem, an upper bound of the approximate

olution will be given by
MθN

1 − θ
(see (4.9) of Theorem 4.1), where θ was defined in (3.6) and M was the bound described

n Theorem 4.1.
Thus, a lower bound of N for a given error tolerance ϵ can be estimated as follows.

emark 4.3. Given an error tolerance ϵ of the absolute error of the approximate solution ΦN (x) of (3.2), to reach this
rror the number of terms N in (4.7) must verify

N ≥

⌊
ln(ϵ(1 − θ )/M)

ln(θ )

⌋
+ 1,

here ⌊x⌋ defines the floor function, which gives the greatest integer less than or equal to x. Here θ is taken from (3.6)
nd M is defined in the proof of Theorem 4.1.
In a similar way, we can obtain an upper bound of the absolute error of the approximate solution ΦN (x) of the boundary

value problem, which will be given by
M4Θ

N

1 − Θ
. Now, to reach a given error tolerance ϵ of the approximate solution, the

number of terms N must verify

N ≥

⌊
ln(ϵ(1 − Θ)/M4)

ln(θ )

⌋
+ 1,

where ⌊x⌋ is again the floor function. Here Θ is given in (3.12) and M4 is defined in Theorem 3.5.

5. Numerical experiments

This section presents some examples to show that the present approach is very effective for approximating the solution
of fractional order nonlinear Volterra integro differential equations of first kind. To solve each problem, we convert it into
an integral equation of second kind, as explained in (3.2) and (3.8). The examples considered are required to satisfy the
existence and uniqueness condition in (3.6) for IVPs, or the condition in (3.12) for BVPs. The following algorithm will be
used to approximate the exact solution.

5.1. Computational algorithm

tep 1. Fix ϵ as an user chosen desired tolerance, and find N from Remark 4.3.
tep 2. Obtain vi from (4.3) for the initial value problem (3.1) or from (4.5) for the boundary value problem (3.7),

i = 0, 1, . . . ,N − 1.
tep 3. Consider Φ0(x) = 0. Now, compute Φi(x) = Φi−1(x) + vi−1(x) for i = 1, . . . ,N . Define ΦN (x) as an approximate

solution.

Example 5.1. Let us consider the following non-linear fractional order Volterra integro-differential equation of first kind:⎧⎨⎩
1
10

∫ x

0
(1 + 2x − t)u2(t) dt +

∫ x

0
(8/(2 + 3t))D1/2u(t) dt = f (x), x ∈ (0, 1],

u(0) = 1,
(5.1)

here f (x) =
x
5

(
1
2

+
3x
4

+
x2

3
+

5x3

12
+

x4

10
+

7x5

60

)
−

256x1/2

27
√

π
+

128x3/2

27
√

π
+

256
27

√
2
3π

tan−1(
√
3x/2).

For this choice of f (x), the exact solution of Example 5.1 is u(x) = x2 + 1.
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Table 1
Absolute point-wise errors of Example 5.1.
x E∞

6 (x) E∞

7 (x) x E∞

6 (x) E∞

7 (x)

0.1 3.38896E−11 7.18757E−13 0.6 2.88031E−06 3.78431E−07
0.2 9.24018E−10 3.34467E−11 0.7 1.49243E−05 2.54891E−06
0.3 1.03652E−08 5.53495E−10 0.8 7.30229E−05 1.60628E−05
0.4 8.05188E−08 5.97289E−09 0.9 3.42636E−04 9.64305E−05
0.5 5.12190E−07 5.10794E−08 1 1.55743E−03 5.58302E−04

Table 2
L2 norm errors of Example 5.1.
x n = 3 n = 4 n = 5 n = 6

1 9.83216E−02 2.93216E−02 9.26138E−03 3.03772E−03

Applying Leibniz rule to the above equation, we obtain⎧⎨⎩D
1
2 u(x) = P(x) + Q (x)u2(x) +

∫ x

0
K (x, t) u2(t)dt,

u(0) = 1,
(5.2)

where P(x) =
1
40

(
1+

9x
2

+
13x2

2
+

19x3

3
+6x4 +

29x5

10
+

21x6

10

)
+

8x3/2

3
√

π
, Q (x) = −

2 + 5x + 3x2

80
and K (x, t) = −

2 + 3x
40

.

Now, we consider the following homotopy

H(v, p) ≡ D
1
2 v(x) − P(x) + p

(
−Q (x)v2(x) −

∫ x

0
K (x, t) v2(t)dt

)
= 0 . (5.3)

Substituting (4.2) into the above equation and equating the identical powers of p, we obtain

D
1
2 v0 = P(x).

ow applying (2.1) on both sides of the above equation and using the initial condition, we obtain v0(x) = 1 +

√
x

20
√

π
+

3
20

√
π
x3/2 + x2 +

13
75

√
π
x5/2 +

4x7/2

25
√

π

(
19
21

+
16
21

x +
132
693

x2 +
32
143

x3
)
. Similarly, by equating the identical powers of p

e obtain

D
1
2 v1(x) = Q (x)v2

0(x) +

∫ x

0
K (x, t) v2

0(t)dt.

Applying (2.1) on both sides of the above equation and using initial condition, we obtain v1(x). Now we use the following
relation to obtain the next terms of the series in (4.7). For i ≥ 1,

D
1
2 vi+1(x) = Q (x)Hi(v0, v1, . . . , vi) +

∫ x

0
K (x, t) Hi(v0, v1, . . . , vi)dt, (5.4)

where Hi(v0, v1, . . . , vi) is the He’s polynomial and can be obtained by (1.1), i.e., H1(v0, v1) = 2v0v1.
Let us define the approximate solution Φn(x) by Φn(x) =

∑n−1
m=0 vm(x) for all the numerical examples. Using this

approximation, we produce the absolute error E∞
n (x) to show the effectiveness of our present method. These point-wise

errors are obtained as follows [24–27]:

E∞

n (x) = |u(x) − Φn(x)| =

⏐⏐⏐⏐⏐u(x) −

n−1∑
m=0

vm(x)

⏐⏐⏐⏐⏐ . (5.5)

For Example 5.1, we took n = 6 and n = 7 respectively, at (4.2) to produce the errors which are given in Table 1. In
addition, we produce the error with respect to L2 norm over Ω as

E2
n =

(∫ 1

0
(u(x) − Φn(x))2 dx

)1/2

, (5.6)

t Table 2 to show the effectiveness of our present approach. These results show that the present perturbation approach
an be considered as an alternative approach compared to adaptive discretization methods [28,29] (see Fig. 1). Here Fig. 1
a) shows the convergence of the computed solutions to exact solution as the number of terms in the series approximation
ncreases. This convergence can also be pointed out from the absolute errors graph in Fig. 1 (b). It shows that the errors
re gradually decreasing as the number of term in the series increases.
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Fig. 1. Solution approximations and error plots of Example 5.1 for different values of n.

Example 5.2. Now consider the following fractional order Volterra integro-differential equation:⎧⎨⎩
2
15

∫ x

0
(1 + xt)u2(t) dt +

∫ x

0
(4/(1 + 2t))D3/4u(t) dt = 3x2 − 2x3, x ∈ (0, 1],

u(0) = 0.
(5.7)

The exact solution of Example 5.2 is unknown.
Using Leibniz rule, we obtain⎧⎨⎩D

3
4 u(x) = P(x) + Q (x)u2(x) +

∫ x

0
K (x, t) u2(t)dt,

u(0) = 0,
(5.8)

where P(x) =
3x
2

(
1 + x − 2x2

)
, Q (x) = −

1 + 2x + x2 + 2x3

30
and K (x, t) = −

t + 2xt
30

.
Now, let us construct the homotopy as follows

H(v, p) ≡ D
3
4 v(x) − P(x) + p

(
−Q (x)v2(x) −

∫ x

0
K (x, t) v2(t)dt

)
= 0 . (5.9)

ubstituting (4.2) into the above equation and equating the identical powers of p, we obtain

D
3
4 v0(x) = P(x).

Now applying Jα from (2.1) on both sides of the above equation and using the initial condition, we obtain

v0(x) =
8x7/4

7Γ (3/4)
+

64x11/4

77Γ (3/4)
−

512x15/4

385Γ (3/4)
.

Now, we use the following relation to obtain the next terms of the series for i ≥ 0:

D
3
4 vi+1(x) = Q (x)Hi(v0, v1, . . . , vi)(x) +

∫ x

0
K (x, t) Hi(v0, v1, . . . , vi)(t)dt, (5.10)

where Hi(v0, v1, . . . , vi) is the He’s polynomials, which can be obtained from (1.1), i.e., H0(v0) = v2
0 , H1(v0, v1) = 2v0v1.

The approximate solution Φn(x) is defined by Φn(x) =
∑n−1

m=0 vm(x). Now, we produce the absolute residual error E∞
n (x)

to show the effectiveness of our present method. These point-wise errors are defined as follows [24,26,27,30,31]:

E∞

n (x) = |A(Φn(x)) − P(x)| =

⏐⏐⏐⏐⏐A
(n−1∑

m=0

vm(x)
)

− P(x)

⏐⏐⏐⏐⏐ , (5.11)

where A is defined as

A(Φn)(x) ≡ D
3
4 (Φn(x)) − Q (x)(Φn(x))2 −

∫ x

0
K (x, t)(Φn(t))2dt.

For Example 5.2, we took n = 3 and n = 4 respectively, to obtain the errors. They are given in Table 3.
Now we present the errors with respect to L2 norm from (5.6) at Table 4 to show the effectiveness of our present

approach. This clearly shows that the errors are decreasing as n increases. Hence the semianalytical methods can be
considered as an alternative approach compared to numerical discretizations, available in [26,27,30,31] (see Fig. 2).
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Table 3
Absolute point-wise errors of Example 5.2.
x E∞

3 (x) E∞

4 (x) x E∞

3 (x) E∞

4 (x)

0.1 7.74521E−14 2.53200E−17 0.6 4.00389E−06 5.90583E−08
0.2 5.32632E−11 2.71633E−14 0.7 1.98466E−05 4.86019E−07
0.3 2.95633E−09 4.93499E−12 0.8 7.49114E−05 2.84490E−06
0.4 5.65572E−08 2.27652E−10 0.9 2.19169E−04 1.21747E−05
0.5 5.86245E−07 4.78438E−09 1 4.92942E−04 3.80106E−05

Table 4
L2 norm errors of Example 5.2.
x n = 2 n = 3 n = 4 n = 5

1 1.89450E−02 1.26255E−03 8.48495E−05 5.72371E−06

Fig. 2. Computed solutions and error plots of Example 5.2 for different values of n.

xample 5.3. Now consider the following fractional order Volterra integro-differential equation:⎧⎨⎩
1
20

∫ x

0
t2e2xu(t) dt +

∫ x

0
etD3/4u(t) dt = xex, x ∈ (0, 1],

u(0) = 0.
(5.12)

The exact solution of Example 5.3 is unknown. Using Leibniz rule, we obtain⎧⎨⎩D
3
4 u(x) = P(x) + Q (x)u(x) +

∫ x

0
K (x, t) u(t)dt,

u(0) = 0,
(5.13)

where P(x) = x + 1, Q (x) = −
x2ex

20
and K (x, t) = −

t2ex

10
. For simplification, we approximate ex by Chebyshev

polynomial of order 3 which is given by ex ≈ 0.999509 + 1.01563x + 0.424301x2 + 0.27824x3. Based on this Chebyshev
approximation, the errors accumulated due to this third order polynomial can be at most 0.0006. Details of the Chebyshev
based approximations are given in Appendix.

Now, let us construct the homotopy as follows

H(v, p) ≡ D
3
4 v(x) − P(x) + p

(
−Q (x)v(x) −

∫ x

0
K (x, t) v(t)dt

)
= 0 . (5.14)

Substituting (4.2) into the above equation and equating the identical powers of p, we obtain

D
3
4 v0 = P(x).

ow applying J3/4 from (2.1) on both sides of the above equation and using the initial condition, we obtain

v0(x) =
x3/4

+
x7/4

.

Γ (7/4) Γ (11/4)
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Table 5
Absolute point-wise errors of Example 5.3.
x E∞

2 (x) E∞

3 (x) x E∞

2 (x) E∞

3 (x)

0.1 4.98859E−08 4.54542E−08 0.6 3.46644E−04 1.07404E−05
0.2 6.14506E−07 3.44489E−07 0.7 1.09558E−03 8.07762E−06
0.3 3.46540E−06 1.02970E−07 0.8 3.02440E−03 1.35582E−05
0.4 1.94060E−05 2.40845E−06 0.9 7.54262E−03 1.16908E−04
0.5 9.16005E−05 7.31310E−06 1 1.74502E−02 6.17948E−04

Now, we use the following relation to obtain the next terms of the series, for i ≥ 0:

D
3
4 vi+1(x) = Q (x)vi(x) +

∫ x

0
K (x, t)vi(t)dt. (5.15)

For Example 5.3, we took n = 2 and n = 3 respectively, to obtain the maximum errors from the formula (5.11), where
A is defined as

A(Φn)(x) ≡ D
3
4 (Φn(x)) − Q (x)Φn(x) −

∫ x

0
K (x, t)Φn(t)dt.

These errors are given at Table 5 and clearly show that the residual errors are decreasing as n increases.

Example 5.4. Now consider the following fractional order Volterra integro-differential equation with a boundary
condition:⎧⎨⎩

1
12

∫ x

0
(2t − 1)e3xu(t) dt +

∫ x

0
e3tD1/2u(t) dt = (x2 + 3x − 2x3)e3x, x ∈ (0, 1],

u(0) + 2u(1) = 3.
(5.16)

We formulate the above boundary value problem as⎧⎨⎩D
1
2 u(x) = P(x) + Q (x)u(x) +

∫ x

0
K (x, t) u(t)dt,

u(0) + 2u(1) = 3,
(5.17)

where P(x) = 3 + 11x − 3x2 − 6x3, Q (x) =
2x − 1
12

and K (x, t) =
2t − 1

4
.

Finding the solution of Eq. (5.16) is equivalent to find the solution of the integral equation, (based on (3.9) of
heorem 3.2) which is given by

u(x) = h(x) −
2

3Γ (1/2)

∫ 1

0
(1 − t)−1/2

[
Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt

+
1

Γ (1/2)

∫ x

0
(x − t)−1/2

[
Q (t)F (u(t)) +

∫ t

0
K (t, s)F (u(s))ds

]
dt,

(5.18)

where h(x) = 1−
2

3Γ (1/2)

∫ 1
0 (1− t)−1/2P(t)dt +

1
Γ (1/2)

∫ x
0 (x− t)−1/2P(t)dt . Now, we solve the above equation by using

omotopy perturbation method. By relation (4.3), we obtain

v0(x) = h(x) = 1 −
2516

315
√

π
+

6x1/2
√

π
+

44x3/2

3
√

π
−

16x5/2

5
√

π
−

192x7/2

35
√

π
.

Similarly, we obtain

v1(x) = Q (x)v0(x) +

∫ x

0
K (x, t) v0(t)dt.

This implies

v1(x) =
x1/2

3
√

π

(
1
2

+
x
3

−
4x2

5

)
−

1258x1/2

945π

(
1 +

2x
3

−
8x2

5

)
+

x
4

+
11x2

24
−

55x3

72
−

59x4

96
+

19x5

80
+

9x6

80
.

Now, we use the following relation to obtain the next terms of the series, for i ≥ 1:

vi+1(x) = Q (x)vi(x) +

∫ x

K (x, t) vi(t)dt. (5.19)

0
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Table 6
Absolute point-wise errors of Example 5.4.
x E∞

4 (x) E∞

5 (x) x E∞

4 (x) E∞

5 (x)

0.1 7.10869E−06 1.83915E−07 0.6 3.99378E−06 9.91608E−08
0.2 6.39764E−06 1.44964E−07 0.7 3.50314E−06 9.64669E−08
0.3 6.13705E−06 1.17742E−07 0.8 3.32471E−06 9.36716E−08
0.4 5.58433E−06 1.04115E−07 0.9 4.65206E−06 1.12852E−07
0.5 4.75636E−06 1.00451E−07 1 1.37257E−05 3.24812E−07

For Example 5.4, we took n = 4 and n = 5 respectively, to obtain the errors from (5.11) where A is defined as

A(Φn)(x) ≡ D
1
2 (Φn(x)) − Q (x)Φn(x) −

∫ x

0
K (x, t)Φn(t)dt.

They are given at Table 6 which clearly show that the errors are decreasing as n increases.

6. Conclusions

In this work, the existence uniqueness and the approximation of the solution of a fractional order nonlinear Volterra
integro-differential equations of first kind with an initial condition or a boundary condition, respectively, are considered.
It is observed that we require a sufficient condition for the existence and uniqueness of the solution. We also provide a
perturbation based computational algorithm for the approximate solutions of the IVP and BVP. Numerical experiments
with error analysis show that the present approach is effective to obtain an efficient approximation of the solution.
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Appendix

Let f (x) be a real valued function on [a, b] where a, b ∈ R such that f ∈ Cn+1
[a, b]. On [a, b], we can obtain a best

approximation of f by using Chebyshev polynomials. Considering interpolating points as zeros of nth order Chebyshev
polynomial (after transforming the domain [a, b] to [−1, 1])

xk =

(
b − a
2

)
cos

(2k + 1)π
2(n + 1)

+

(
b + a
2

)
, k = 0, 1, 2, . . . , n,

we can obtain a nth order polynomial Pn(x) by Lagrange interpolation. The interpolating error will be

∥f − Pn∥ ≤
(b − a)(n+1)

22n+1(n + 1)!
max
c∈[a,b]

|f n+1(c)|.

or more details of the analysis, one can see [32].
For Example 5.3, we approximate ex by a third order polynomial P3(x) on [0, 1]. The interpolating points (based on

Chebyshev zeros) are x0 =
1
2
(cos( π

8 ) + 1), x1 =
1
2
(cos( 3π8 ) + 1), x2 =

1
2
(cos( 5π8 ) + 1) and x3 =

1
2
(cos( 7π8 ) + 1). Therefore,

by Lagrange interpolation, we obtain P3(x) = 0.999509 + 1.01563x + 0.424301x2 + 0.27824x3. The error is given by

∥e − P3∥ ≤
1

27(4)!
max
c∈[0,1]

|ec | ≤ 0.0006.
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