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Abstract: A review of the mathematical and physical aspects of the Ermakov systems is presented.
The main properties of Lie algebra invariants are extensively used. The two and tridimensional
Ermakov systems are fully analyzed and the correspondent invariants found. Then, we go over
quantization with special emphasis in the two dimensional case. An application to Nonlinear Optics
is hereby developed. We also treat the so-called “one dimensional” case, which is easily solved in
the classical case but offers special interest in the quantum realm, where one can find exactly the
Feynman propagator. We finish with the stationary phase approximation which contains also some
interesting features when compared with the exact solution. Some prospects for future research are
also discussed.
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1. Introduction

Determining exactly when the idea of Ermakov systems came into being remains a
difficult task even today. Almost certainly the pioneer paper written by V. Ermakov in
1880 [1] is a kind of natural starting point, but even in that work, an Ermakov System lacks
motivation in a well defined mathematical way. Here we have adopted a group theoretical
point of view based in the conformal SO(2,1) invariance of a dynamical system whose
functions depend just from the ratio of the coordinates. Relying in this point as the backbone
of a definition of an Ermakov system we can do justice to both Ermakov and scientists that
have done some work and contributed to this fascinating field of mathematical physics in
the last 50 years.

There exist a wide range of papers dealing with the Ermakov systems. To name
only a few the following references must be checked and read ([2–7]). The mentioned
pieces of work deal with different generalizations and the Hamiltonian conditions of the
Ermakov systems as well as the non-linear superposition techniques that may be defined
in this context.

However, it seems necessary to begin with a clear definition of what an Ermakov
System really is. The main idea relies on the motion of a non relativistic classical particle
which always follows Newton’s Law but is not necessarily a Hamiltonian motion. Suppose
that we confine ourselves to conformal motion, this means that the forces depend only
upon ratios of the coordinates and not of the coordinates themselves. The most general set
of forces to be included must necessarily contain the harmonic motion and an inverse cubic
force because the equations of motion must be invariant under the SO(2, 1) conformal
group ([8]). The geometric idea of conformal invariance is that the physical transformations
depend only upon ratios of coordinates that conserve the angles instead the form of the
trajectories. The natural generalization to a system of two particles reads [9]:
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d2x1

dt2 + Ω2(t) x1 =
1
x3

1
f1(ξ) (1)

d2x2

dt2 + Ω2(t) x2 =
1
x3

2
f2(ξ) (2)

where

ξ =
x2

x1
.

This system is not necessarily Hamiltonian but is SO(2, 1)-invariant (it shall be explic-
itly described in Equation (9)) and possesses the invariant quantity:

I =
1
2

(
x1

dx2

dt
− x2

dx1

dt

)2
+
∫ ξ
[

u f1(u)−
f2(u)

u3

]
du (3)

This invariant was derived by Ermakov in his original paper and generalized in a
number of well-known papers (see [10–14]). It reduces to the inverse cubic case in one
dimension just by trivially choosing:

f1(ξ) = 1 ; f2(ξ) = 0.

In this case, Equation (1) will be the inverse cubic potential which we shall be treating
at the end of this review, and (2) is the time dependent harmonic oscillator completely
solved by Lewis and Riesenfeld in a widely-known paper (see [14]). However the equations
of motion with arbitrary f1 and f2 still meet the requirements of being SO(2, 1)-invariant
with the general Ermakov invariant given by the I written in Equation (3).

In Sections 2–6, we shall present a review of previous result, including some of
one of the authors. Ermakov systems in two and three dimensions are also considered.
Sections 7–9 include original results related to aspects of quantum mechanics.

In order to establish symmetry properties of the Ermakov Systems and possible
generalizations to a higher number of particles and coordinates, as well as to field theory,
we move to the next section.

2. Symmetries of the Ermakov Systems

In searching for symmetries of the Ermakov system of differential equations, we just
apply the Lie procedure described in well-known textbooks [15]. Let us perform the general
scale transformation:

x1(t) = λ(t)X1(T)

x2(t) = λ(t)X2(T)

dt = λ2(t)dT ; T =
∫ dt

λ2(t)

where time unavoidably scales as λ2(t) in order to cancel first derivatives in the equations
of motion. The result of this transformation is:

d2X1

dT2 + λ3(t)
[
λ̈(t) + Ω2(t)λ(t)

]
X1(T) =

f1

(
X2

X1

)
X3

1

d2X2

dT2 + λ3(t)
[
λ̈(t) + Ω2(t)λ(t)

]
X2(T) =

f2

(
X2

X1

)
X3

2
.

If λ(t) verifies the linear ordinary second order differential equation



Symmetry 2021, 13, 493 3 of 16

λ̈(t) + Ω2(t)λ(t) = 0 (4)

then the system reduces to the simplified form:

d2X1

dT2 =

f1

(
X2

X1

)
X3

1
.

d2X2

dT2 =

f2

(
X2

X1

)
X3

2
.

The condition (4) on λ(t) is not as restricted as it may seem at first sight as we shall
discuss later on. Another interesting feature of the constraint is the following: Let us
parametrize λ(t) in the integral form:

λ(t) = exp
[
±i
∫ t ds

ρ2(s)

]
ρ(t) (5)

which is called the quasilinear constraint. Simple substitution of this constraint for λ(t)
in (4), yields the following differential equation for ρ(t):

ρ̈(t) + Ω2(t)ρ(t) =
1

ρ3(t)
(6)

whose general solution [10] is given by:

ρ(t) =

√
λ2

1(t) +
λ2

2(t)
W2

0

where λ1(t) and λ2(t) form a fundamental set of solutions of the linear Equation (4) and
W0 is the well-known Wronskian, given by:

W0 = λ1(t)λ̇2(t)− λ2(t)λ̇1(t).

As mentioned above, the solution of the constraint (6) in ρ(t) relies heavily on the
solution of the constraint (4) in λ(t) which is a linear differential equation. This shows
that the Ermakov system is linearizable by virtue of the SO(2, 1) symmetry and its related
Ermakov Invariant I (3). If the Ermakov system possesses another invariant, this would
make it algebraically solvable and the constraint would be uneccessary.

In looking for an additional invariant which would solve completely the mechanical
problem, it is natural to look for the existence of a Hamiltonian. Remember that there is no
indication whatsoever that an Ermakov system is, or should be Hamiltonian. In order to
restrict ourselves to the Hamiltonian case, we should find the condition which leads an
Ermakov system to posses a Hamiltonian. Taking polar coordinates in the equations of
motion we have the transformation:

X1 = r cos φ

X2 = r sin φ

and then, the equations:

r̈− rφ̇2 =
1
r3

[
f1(tan φ)

cos2 φ
+

f2(tan φ)

sin2 φ

]
rφ̈ + 2ṙφ̇ =

1
r3

[
− f1(tan φ)

cos2 φ
tan φ +

f2(tan φ)

sin2 φ
tan φ

]
.
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These equations of motion possess the set of symmetries given by the following
infinitesimal generators [15]:

G1 =
i
2

[
(t2 − 1)

∂

∂t
+ t r

∂

∂r

]
(7a)

G2 = i
[

t
∂

∂t
+

r
2

∂

∂r

]
(7b)

G3 =
i
2

[
(t2 + 1)

∂

∂t
+ t r

∂

∂r

]
(7c)

whose commutation relations are given by:

[G1, G2] = −iG3 ; [G3, G1] = iG2 ; [G2, G3] = iG1 (8)

corresponding to the SO(2, 1) Lie group of finite transformations:

i(G1 − G3) =⇒ r′ = r; t′ = t− t0 (9a)

G2 =⇒ r′ = ear t′ = e2ar (9b)

i(G1 − G3) =⇒ r′ =
r

1 + Ωt
t′ =

t
1 + Ωt

(9c)

where {t0, a, Ω} are the parameters of the transformations. If a potential U(X1, X2) exists,
it should verify that:

d2X1

dT2 =
1

X3
1

f1

(
X2

X1

)
= −∂U(X1, X2)

∂X1

d2X2

dT2 =
1

X3
2

f2

(
X2

X1

)
= −∂U(X1, X2)

∂X2
.

Using the condition:

∂2U(X1, X2)

∂X1∂X2
=

∂2U(X1, X2)

∂X2∂X1
.

We finally obtain that U(r, φ) must be of the form:

U(r, φ) =
1

2r2

[
f1(tan φ)

cos2 φ
+

f2(tan φ)

sin2 φ

]
if and only if the following relationship holds:

sin2 φ
∂ f1(tan φ)

∂(tan φ)
+ cos2 φ

∂ f2(tan φ)

∂(tan φ)
= 0.

Using the above results one can easily prove that the Ermakov Invariant must read:

I =
1
2
(r2φ̇)2 +

∫ tan φ[
u f1(u)− u−3 f2(u)

]
du

=
1
2
(r2φ̇)2 +

1
2

[
u2 f1(u) + u−2 f2(u)

]
|u=tan φ −

−1
2

∫ tan φ
[

u2 d f1(u)
du

+ u−2 d f2(u)
du

]
du .

Or in another form:
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I =
1
2
(r2φ̇)2 +

1
2

[
f1(tan φ)

cos2 φ
+

f2(tan φ)

sin2 φ

]
. (10)

A Hamiltonian in two dimensional polar coordinates can always be written in the
general form:

H =
p2

r
2

+
p2

φ

2r2 + U(r, φ) (11)

Integrability is always dictated, in the Hamiltonian case, by separation of coordinates:

U(r, φ) = V(r)− F(φ)
r2 .

If F(φ) = 0, we recover the well-known case of radial symmetry with conserved
angular momentum pφ = r2φ̇. In the case of a Hamiltonian Ermakov System, the separation
of variables occurs in a very peculiar way as we deal with nonlinear differential equations.
In fact, taking into account the expressions ofH (11) and I (10), we easily see that there is a
relationship among them given by:

H =
p2

r
2

+
I
r2 .

As the functions f1(tan φ) and f2(tan φ) are arbitrary functions of φ, it is trivial to
conclude that a Hamiltonian Ermakov System in two dimensions is always of the form:

r̈− rφ̇2 =
F1(φ)

r3

rφ̈ + 2ṙφ̇ =
F2(φ)

r3

possessing always an Ermakov Invariant:

I =
1
2
(r2φ̇)2 +

F1(φ)

2
(12)

Besides that, a Hamiltonian Invariant exists:

H =
p2

r
2

+
1

2r2

[
p2

φ + F1(φ)
]
=

p2
r

2
+
I
r2

if and only if F1(φ) and F2(φ) satisfy:

F2(φ) = −
1
2

dF1(φ)

dφ
.

3. Ermakov Systems in Three Dimensions

For a generalization of the Ermakov Systems to more than two spatial dimensions, we
could in principle proceed in various ways [4] (see also [3]). We choose here to do it in a
way which preserves the symmetry of the original dynamical system. Therefore we impose
the set of equations to be invariant under the original S0(2,1) local symmetry and its natural
extensions of second and third order. As a consequence of this condition, the equations
must always display the general form:
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r̈− rθ̇2 − rφ̇2 sin2 θ =
1
r3 [F1(θ, φ)] (13a)

θ̈ + 2ṙθ̇ − rφ̇2 sin θ cos θ =
1
r3 [F2(θ, φ)] (13b)

sin2 θφ̈ + 2ṙφ̇ sin2 θ + 2rθ̇φ̇ sin θ cos θ =
1
r3 [F3(θ, φ)]. (13c)

In three dimensions the Ermakov Invariant does not always exist. However we can
consider the case in which F3(θ, φ) can be cast in the form:

F3(θ, φ) = − 1
2 sin2 θ

dU(φ)

dφ
. (14)

Simple manipulation of (13c) leads to:

d
dt

[
1
2
(r2φ̇ sin2 θ)2

]
= F3(θ, φ) sin2 θφ̇ = −1

2
dU(φ)

dφ
φ̇. (15)

Then, an invariant can easily be constructed from (15), in the form:

I1 =
1
2

(
r2 sin2 θφ̇

)2
+

1
2

U(φ). (16)

Note however, that when θ = π
2 , this invariant becomes the Ermakov Invariant (12)

previously discussed in the two dimensional case. To follow this analogy we call, I1 the
generalized Ermakov Invariant. As it is expected, this is not the only Invariant than can be
constructed in three dimensions. In fact, if now the conditions are:

F2(θ, φ) = −1
2

∂W(θ, φ)

∂θ
and F3(θ, φ) = −1

2
∂W(θ, φ)

∂φ
, (17)

then, from the first pair of equations of the Ermakov System, we easily obtain:

1
2

d
dt

[
(r2θ̇)2 +

(r2 sin2 θφ̇)2

sin2 θ

]
= θ̇F2(θ, φ) + φ̇F3(θ, φ).

And using now the conditions (17), we arrive to:

I2 =
1
2

[
(r2θ̇)2 +

(r2 sin2 θφ̇)2

sin2 θ
+ W(θ, φ)

]
. (18)

The two dimensional limit is obtained when θ = π
2 . The comparison between the

definitions (14) and (17) yields in this case:

W
(

θ =
π

2
, φ
)
= U(φ) =⇒ F2(θ, φ) = 0

.
Thus I2 → I1 and both invariants coalesce in just one invariant.

limθ= π
2
I2 =

1
2

[
r2φ̇2 + U(φ)

]
= limθ= π

2
I1

4. Hamiltonian Ermakov Systems in Three Dimensions

The three dimensional Ermakov system can be Hamiltonian only if:

F2(θ, φ) = −1
2

∂F1(θ, φ)

∂θ
and F3(θ, φ) = −1

2
∂F1(θ, φ)

∂φ
.
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The form of the potential necessarily is:

V(r, θ, φ) =
1

2r2 F1(θ, φ).

Taking into account all the previous statements, we are led to the unavoidable
conclusion that:

W(θ, φ) = F1(θ, φ).

So, the invariant I2 (18) always exists if there is a W(θ, φ) generating F2(θ, φ) and
F3(θ, φ). If besides the W(θ, φ) equals F1(θ, φ) the system is Hamiltonian and this Hamilto-
nian takes the form:

H =
p2

r
2

+
1
r2

[
p2

θ

2
+

p2
φ

2 sin2 θ
+

F1(θ, φ)

2

]
=

p2
r

2
+
I2

r2

which clearly shows the existence of two invariants: I2 andH.
The much more restrictive condition:

F1(θ, φ) =
U(φ)

sin2 θ

yields the following Hamiltonian with three invariants: I1, I2, andH:

H =
p2

r
2

+
1
r2

[
p2

θ

2
+

1
sin2 θ

(
p2

φ

2
+

U(φ)

2

)]
=

p2
r

2
+

1
r2

[
p2

θ

2
+
I1

sin2 θ

]
= (19)

=
p2

r
2

+
I2

r2 .

It is natural to call the case with two invariants “Weak Ermakov System” while the
case with three invariants shall be called “Strong Ermakov System”.

5. Examples of Ermakov Systems in Non-Linear Optics

The formalism just discussed will now be applied to the case of both the propagation
of Gaussian light beams in nonlinear optical fibers [16] and the wave function of a Bose–
Einstein condensate described for the Gross–Pitaevskii equation [17]. We shall fully develop
only the first case. Suppose we set the experimental device such that the fiber goes along
the x3-direction. The perpendicular plane to the propagation line is defined by the two
coordinates x1 and x2 which describe the elliptical gaussian plane. The equation governing
the behaviour of the beam inside the fiber is:

∂2E(x1, x2)

∂x2
1

+
∂2E(x1, x2)

∂x2
2

− 2ik
∂E(x1, x2)

∂x3
− (20)

−α2(x2
1 + x2

2)E(x1, x2) + β | E(x1, x2) |2 E(x1, x2) = 0

where α is the proper frequency of vibration of the light beam and β is the non-linear
parameter which accounts for the interaction between the electric field E(x1, x2) of the laser
beam and the fiber crystal. For elliptic gaussian beams, the form of the electric field carried
by the laser is of the form:

Em(x1, x2, x3) = E0
m exp

[
−

x2
1

ξ2
1
−

x2
2

ξ2
2
− ik

x1x2

2ξ0

]

with initial conditions given by:
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E(x1, x2) = E0 exp

[
x2

1
a2

0
−

x2
2

b2
0
− ik

x1x2

2R0

]
.

In other words, the variables ξ1 and ξ2 are actually functions of x3, i.e.,

ξ1 = ξ1(x3) ; ξ2 = ξ2(x3)

with initial conditions:

ξ1(0) = a0 ; ξ2(0) = b0 ; ξ0(0) = R0.

Inserting the form of the solutions and these boundary conditions into the non-linear
Equation (21), we obtain the following set of equations for ξ1(x3) and ξ2(x3):

d2ξ1

dz2 + α2ξ1 =
1
ξ3

1
f1

[
ξ2

ξ1

]
d2ξ2

dz2 + α2ξ2 =
1
ξ3

2
f2

[
ξ2

ξ1

]
where:

z = kx3

The form of the functions reads:

f1(u) = f2(u) = f (u) =
1
u

[
4(1− κ1u) + κ2

1 + 3u
(1− u2)3

]
, where u =

ξ2

ξ1

and the constants are defined in terms of the physical data as:

κ1 =
β

2
k2E2

0a0b0

κ2 =

√
k

R0

(
a2

0 − b2
0
)
.

This two dimensional Ermakov System can be derived from a Hamiltonian of the form:

H =
1
2

ξ̇2
1 +

1
2

ξ̇2
2 +

α2

2

(
ξ2

1 + ξ2
2

)
+

2ξ2
1 + 2ξ2

2 − 4κ1ξ1ξ2

ξ2
1ξ2

2
+

1
2

κ2
2
(ξ2

1 + ξ2
2)

(ξ2
1 − ξ2

2)
2

whilst the Ermakov Invariant remains:

I =
1
2
(ξ̇1ξ2 − ξ1ξ̇2)

2 + (ξ2
1 + ξ2

2)

[
2ξ2

1 + 2ξ2
2 − 4κ1ξ1ξ2

ξ2
1ξ2

2
+

1
2

κ2
2
(ξ2

1 + ξ2
2)

(ξ2
1 − ξ2

2)
2

]
.

It is straightforward but tedious to check that:

[H, I ] = 0.

For reasons that will become clearer a little later, let us now proceed to define planar
polar coordinates:

ξ1 = ρ cos φ

ξ2 = ρ sin φ.

In these coordinates both the Invariant and the Hamiltonian take the form:
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I =
p2

φ

2
+

1
2

[
16(1− κ1 sin 2φ)

sin2 2φ
+

κ2
2

cos2 2φ

]
(21)

H =
p2

ρ

2
+

1
ρ2

[
p2

φ

2
+

1
2

(
16(1− κ1 sin 2φ)

sin2 2φ
+

κ2
2

cos2 2φ

)]
+

α2

2
ρ2 =

=
p2

ρ

2
+

α2

2
ρ2 +

I
ρ2 . (22)

In the classical realm, it is trivial to see that the system is totally integrable as it can be
reduced to quadratures. Trayectories can be obtained in various ways from the Hamiltonian
expresion through quadratures involving only the radius ρ.

6. Quantum Ermakov Systems: The Two Dimensional Case

Before going too much into detail, we would like to look for the eigenvectors and
eigenvalues of the Ermakov Invariant:

I | Φm〉 = εm | Φm〉 where 〈φ | Φm〉 = Φm(φ).

In the angular coordinate representation:

I =
p2

φ

2
+

1
2

[
16(1− κ1 sin 2φ)

sin2 2φ
+

κ2
2

cos2 2φ

]

since as we choose h̄ = 1,

p2
φ = − ∂2

∂φ2 .

Thus, we finally obtain for the eigenvalue equation of the Ermakov Invariant:[
−1

2
∂2

∂φ2 +
1
2

(
16(1− κ1 sin 2φ)

sin2 2φ
+

κ2
2

cos2 2φ

)]
Φm(φ) = εmΦm(φ).

The 0 < φ < 2π range is divided into eight intervals. Although it may seem that we
have many different shapes for the wells, we actually have only two classes of spectra:

ε+m : For
{

0 < φ <
π

4

}
,
{π

4
< φ <

π

2

}
,
{

π < φ <
5π

4

}
and

{
5π

4
< φ <

3π

2

}
ε−m : For

{
π

2
< φ <

3π

4

}
,
{

3π

4
< φ < π

}
,
{

3π

2
< φ <

7π

4

}
and

{
7π

4
< φ < 2π

}
.

Rounding up the φ interval: {0 < φ < 2π}, we obtain Figure 1 for the equipotential
lines which obviouly exhibits two axis of a discrete symmetry of the crystallographic type.
One can actually identify these axis with the two (x = ±y) diagonals in the form shown by
Figure 1.
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Figure 1. {ξ1; ξ2}-axis. Equipotential curves in the Potential with α = 0 at different energies. Brown
E = 5, Green E = 9, Blue E = 10, and Yellow E = 12. Also κ1 and κ2 are both set to unity.

For the complete diagonalization of the Hamiltonian we proceed as follows. The en-
ergy eigenvalue equation is:

H | Enm〉 = εnm | Enm〉

and the Hamiltonian operator has the already known form:

H =
p2

ρ

2
+

ω2

2
ρ2 +

I
ρ2

Since we know how to diagonalize I , the states | Enm〉must be a direct product of two
commuting operators: H and I .

| Enm〉 =| Rn〉⊗ | Φm〉 .

The eigenstates of I have already been found. The radial part is then reduced to:[
p2

ρ

2
+

ω2

2
ρ2 +

ε±m
ρ2

]
| Rn〉 = Enm | Rn〉.

It possesses a spectrum exactly valid for all values of the parameters and given by
the expression:

Enm = ω

[
2n + 1 +

√
2ε±m +

1
4

]
= 2ω(n + rm)
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and the radial wavefunctions are:

Rn(ρ) = 〈ρ | Rn〉 =
[

2Γ(n + 1)
Γ(n + 2rm)

] 1
2
(ωρ2)rm− 1

4L2rm−1
n (ωρ2) exp

[
−ωρ2

2

]
.

The total wavefunction is then:

〈ρ, φ | {| Rn〉⊗ | Φm〉} = 〈ρ | Rn〉 ⊗ 〈φ | Φm〉 = Rn(ρ)Φm(φ). (23)

7. Quantum Mechanics of the “One Dimensional” Ermakov System

In the last three sections some originals results are presented. We would like to
motivate the reader by unifying all what has been said in the previous part of the review
with ordinary classical and quantum mechanics of an elementary one dimensional system
that retains as a symmetry the SO(2, 1) Lie Algebra and present notorious similarities
with an Ermakov system in one dimension. Consider the one dimensional Schrödinger
Equation. The potential is represented in Figure 2.[

− h̄2

2m
d2

dx2 +
1
2

mω2x2 +
h̄2g2

2mx2

]
Ψ(x) = EΨ(x). (24)

One can solve quite easily this equation. Solutions at the zero and infinity must be of
the form:

Ψ(x) = xγ exp

[
− x2

2a2
0

]
f (x). (25)

Figure 2. The potential of the Schrödinger Equation (24) at different values of g2. Note the similarity
with the potential in Figure 1. The wavefunctions have been calculated for the right part as the left
part of the curve is symmetric and possesses the same spectrum.
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We shall use henceforth some dimensions to compare them with the rest of the paper.
The fundamental expressions are:

a2
0 =

h̄
mω

; ξ =

(
x
a0

)2
(26)

and now one obtains the following dimensionless equations for f (ξ):[
ξ

d2

dξ2 + (2r0 − ξ)
d

dξ
+

1
2

(
E

h̄ω
− 2r0

)]
f (ξ) = 0

where r0 has been defined as:

2r0 = 1 +

√
g2 +

1
4

. (27)

Let us now rewrite the equation for f (ξ) in the form, to be compared with the equation
for the Associated Laguerre Equation:[

ξ
d2

dξ2 + (β + 1− ξ)
d

dξ
+ n

]
Lβ

n(ξ) = 0. (28)

The solution of the Associated Laguerre Equation (28) are the polynomials Lβ
n(ξ)

which take the form:

Lβ
n(ξ) =

[
1

n!ξβ

]
eξ dn

dξn

[
ξn+βe−ξ

]
and the final normalized wave function is:

Ψn(x) =

√
2Γ(n + 1)

a0Γ(n + 2r0)
x2r0− 1

2 exp

[
− x2

2a2
0

]
L2r0−1

n

(
x2

a2
0

)
.

The spectrum is:

εn = 2h̄ω0(n + r0)

where we should remember that (according to (26) and (27)):

a0 =

(
h̄

mω0

) 1
2

and 2r0 − 1 =

√
g2 +

1
4

.

Actually it causes no surprise the similarity of these results with the ones describing
the previous two dimensional case since both exhibit the SO(2, 1)-symmetry as it has been
fully demonstrated and widely discussed by several authors (see references [9,18–20]).

8. The Feynman Propagator

As the potential exhibits a pure discrete spectrum (see Figure 2), we shall calculate the
Feynman Propagator just with the help of the explicit form of its discrete eigenfunctions:

Gg(x1, x2, T) =
∞

∑
n=0

exp
[
− i

h̄
εnt
]

Ψn(x1)Ψn(x2).

Now we shall use the Moeller Formula for the Associated Laguerre Polynomials
which takes the form:
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∞

∑
n=0

Γ(n + 1)un

Γ(n + α + 1)
Lβ

n(y)L
β
n(z) =

=
1

1− u
(uyz)−

β
2 exp

[
u

1− u
(y + z)

]
Iβ

[
2

1− u
(uyz)

1
2

]
where Iβ(ξ) is the Modified Bessel Function. In our case, the identification of the variables
is quite straightforward:

u = exp[−2iω0t] ; y =

(
x1

a0

)2
; z =

(
x2

a0

)2
; β = 2r0 − 1.

Inserting this set of variables and constants into the propagator Gg(x1, x2, T) one obtains:

Gg(x1, x2, T) =
[

mω0

ih̄ sin ω0t

] 1
2

exp
[

imω0

2h̄
(x2

1 + x2
2) cot ω0t

]
z

1
2 Iβ(z) (29)

where

z =
mω0x1x2

ih̄ sin ω0t
.

We have obtained the exact propagator for any value of g2. In fact taking the g2 ⇒ 0
limit, one should recover the propagator of the harmonic oscillator which is a wel-kknown
expression. We have only to take care of a simple fact that occurs in the index of the
Modified Bessel Function. In the g2 = 0 case the index can take two values α = ± 1

2 .
For these values:

I 1
2
[z] =

[
2

πz

] 1
2

sinh[z]

I− 1
2
[z] =

[
2

πz

] 1
2

cosh[z]

and we should take the average of these two functions:

1
2

[
I 1

2
[z] + I− 1

2
[z]
]
=

1

(2πz)
1
2

exp[z].

The smooth limit for g2 ⇒ 0 takes then the easy form

lim
g⇒0

Gg(x1, x2; t) =
[

mω0

2πih̄ sin ω0t

] 1
2

exp[z] exp
[

imω0

2h̄ sin ω0t
(x2

1 + x2
2) cos ω0t

]
(30)

and z is:

z =

[
mω0x1x2

ih̄ sin ω0t

]
.

One can finally write for the limit g⇒ 0 the expression:

lim
g⇒0

Gg(x1, x2; t) =
[

mω0

2πih̄ sin ω0t

] 1
2

exp

[
imω0

[
(x2

1 + x2
2) cos ω0t− 2x1x2

]
2h̄ sin ω0t

]

which is the usual expression for the Feynman propagator of a harmonic oscillator.
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9. The Stationary Phase Approximation

In this section we shall apply the method of the stationary phase approximation to the
previous quantum system. One could ask themselves whether why such an approximate
method should be applied to a quantum system whose exact solution is already known.
The aim is to use this venerable approximation of semiclassical nature in order to compare
the result with the previously exact result with the purpose of calibrate the goodness of the
approximation. The classical Lagrangian is:

L(x, ẋ) =
1
2

mẋ2 − 1
2

mω2
0x2 − h̄2g2

2mx2

and the corresponding equations of motion are (τ = ω0t):

d2x
dτ2 + x = g2 a4

0
x3 con a2

0 =
h̄

mω0
.

The classical solution is easily found to be:

x(t) =

 x2
0

2
−

√
x4

0
4
− g2a4

0 cos(2ω0(t− t0))


1
2

(31)

which for the g2 ⇒ 0 reduces to the well-known solution of the classical harmonic oscillator:

lim
g⇒0

x(t) = x0

√
1− cos(2ω0(t− t0))

2
= x0 sin(ω0(t− t0)).

Let us now calculate the action on the classical solution (31):

S [xcl ] =
∫ t2

t1

L(xcl(t), ẋcl(t))dt.

An easy but tedious calculation between the extremes t1 and t2 yields:

S [xcl ] =

 h̄
4

√(
x0

a0

)4
− (2g)2 sin(2ω0(t− t0))

t2

t1

−

− ih̄
2

g ln
[

tan(ω0(t− t0))− A
tan(ω0(t− t0)) + A

]t2

t1

(32)

where

A = i

 x2
0 − a2

0

√(
x0
a0

)4
− (2g)2

x2
0 + a2

0

√(
x0
a0

)4
− (2g)2


1
2

.

The action must be expressed in terms of the physical variables. That is to say in
terms of {x1, x2} and the time difference {t2 − t1 = T}. To do this we need to know x2

0 as
a function of the two extremes: x(t1) = x1 , x(t2) = x2 and also {t2 − t1 = T}. We finally
find the following expression:

x2
0 =

(x2
1 + x2

2)− 2
√

x2
1x2

2 − g2a4
0 sin2 ω0T cos ω0T

sin2 ω0T
. (33)
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Inserting (33) in the classical action (32), one clearly obtains the two following terms:

S [xcl ] = S0[xcl ] + S1[xcl ]

where:

S0[xcl ] =

(
mω0

2 sin ω0T

)[
(x2

1 + x2
2) cos ω0T − 2

√
x2

1x2
2 − g2a4

0 sin2 ω0T
]

and the second contribution is:

S1[xcl ] = −ih̄
g
2

{
ln
[

tan(ω0(t− t0))−A
tan(ω0(t− t0)) +A

]t2

t1

}
= −h̄g arctan

[
R

tan ω0T

]
(34)

for t0 = t1 and t2 − t1 = T. R trivially also is:

R =

 x2
0 − a2

0

√(
x0
a0

)4
− (2g)2

x2
0 + a2

0

√(
x0
a0

)4
− (2g)2


1
2

where the expression of x2
0 is given by (33):

The interesting property of the classical action is that it is composed as the sum of very
different contributions. The term S0[xcl ] is of a purely semiclassical nature. One should
remember that in the limit g ⇒ 0, the action of the Harmonic Oscillator emerges solely
from this term whereas the contribution (34) vanishes identically in this limit and has
nothing to do with the classical limit. This leads us to consider this contribution as a purely
quantal term. A numerical comparison can be made between the exact expression (29) by
using MathematicaT for fixed values x1 y x2 and different values of T.

10. Conclusions

In this review we tried to unify all theoretical knowledge that is known about Ermakov
Systems. Indeed many systems exhibiting the basic symmetries and properties hereby
discussed can be treated along the same lines. The most remarkable example is that
of Ermakov Systems of dimensions larger than three. We conjecture–with additional
conditions similar to (14) and (17) in Section 4–that more weak Ermakov invariants can be
found, i.e., three in the four dimensional cases, four in the five dimensional case, and so on.
This hypothesis remains to be proved.

Many physical systems have appeared exhibiting the basic Ermakov properties [21].
The invariants eliminate one of the angular variables and substituting it with an Ermakov
invariant. This is due to the symmetry SO(2,1) given by (8) although one should firstly
to accommodate the representation of this Lie Algebra [22] to the variables of the real
physical system. The important property of the SO(2,1) invariance must be always present
regardless of the dimension. It is actually the basic symmetry of an Ermakov invariant in
any dimension.
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