
Information Fusion 79 (2022) 200–228

Available online 20 September 2021
1566-2535/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Supervised contrastive learning over prototype-label embeddings for
network intrusion detection

Manuel Lopez-Martin a,*, Antonio Sanchez-Esguevillas a, Juan Ignacio Arribas a,b, Belen Carro a

a Dpto. TSyCeIT, ETSIT, University of Valladolid, Paseo de Belén 15, Valladolid 47011, Spain
b Castilla-Leon Neuroscience Institute, University of Salamanca, Salamanca 37007, Spain

A R T I C L E I N F O

Keywords:
Label embedding
contrastive learning
Max margin loss
Deep learning
Embeddings fusion
Network intrusion detection

A B S T R A C T

Contrastive learning makes it possible to establish similarities between samples by comparing their distances in
an intermediate representation space (embedding space) and using loss functions designed to attract/repel
similar/dissimilar samples. The distance comparison is based exclusively on the sample features. We propose a
novel contrastive learning scheme by including the labels in the same embedding space as the features and
performing the distance comparison between features and labels in this shared embedding space. Following this
idea, the sample features should be close to its ground-truth (positive) label and away from the other labels
(negative labels). This scheme allows to implement a supervised classification based on contrastive learning.
Each embedded label will assume the role of a class prototype in embedding space, with sample features that
share the label gathering around it. The aim is to separate the label prototypes while minimizing the distance
between each prototype and its same-class samples. A novel set of loss functions is proposed with this objective.
Loss minimization will drive the allocation of sample features and labels in embedding space. Loss functions and
their associated training and prediction architectures are analyzed in detail, along with different strategies for
label separation. The proposed scheme drastically reduces the number of pair-wise comparisons, thus improving
model performance. In order to further reduce the number of pair-wise comparisons, this initial scheme is
extended by replacing the set of negative labels by its best single representative: either the negative label nearest
to the sample features or the centroid of the cluster of negative labels. This idea creates a new subset of models
which are analyzed in detail.

The outputs of the proposed models are the distances (in embedding space) between each sample and the label
prototypes. These distances can be used to perform classification (minimum distance label), features dimen
sionality reduction (using the distances and the embeddings instead of the original features) and data visuali
zation (with 2 or 3D embeddings).

Although the proposed models are generic, their application and performance evaluation is done here for
network intrusion detection, characterized by noisy and unbalanced labels and a challenging classification of the
various types of attacks. Empirical results of the model applied to intrusion detection are presented in detail for
two well-known intrusion detection datasets, and a thorough set of classification and clustering performance
evaluation metrics are included.

1. Introduction

Contrastive learning is attracting great research attention for its
interesting properties to implement classifiers [1]. In a contrastive
learning framework, each sample is translated into a representational
space (embedding) where it is compared with other similar and dissimilar
samples with the aim of pulling similar samples together while pushing
apart the dissimilar ones.

There is a plethora of strategies to fulfill this aim by considering
different alternatives: (a) Define similar and dissimilar: A similar
element can be a manually slightly modified replica of the original element
(self-supervised) [2] or an element in a closeness position (in time, space,
order…) to the original element (unsupervised) [3]. In this latter case,
similar elements can be obtained by sampling the data source (e.g.,
neighboring words in a sentence) in the “proximity” of the original
element. Furthermore, similarity between elements can also be defined by

* Corresponding author.
E-mail addresses: manuel.lopezm@uva.es (M. Lopez-Martin), antoniojavier.sanchez@uva.es (A. Sanchez-Esguevillas), jarribas@tel.uva.es (J.I. Arribas), belcar@

tel.uva.es (B. Carro).

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

https://doi.org/10.1016/j.inffus.2021.09.014
Received 24 March 2021; Received in revised form 27 July 2021; Accepted 15 September 2021

mailto:manuel.lopezm@uva.es
mailto:antoniojavier.sanchez@uva.es
mailto:jarribas@tel.uva.es
mailto:belcar@tel.uva.es
mailto:belcar@tel.uva.es
www.sciencedirect.com/science/journal/15662535
https://www.elsevier.com/locate/inffus
https://doi.org/10.1016/j.inffus.2021.09.014
https://doi.org/10.1016/j.inffus.2021.09.014
https://doi.org/10.1016/j.inffus.2021.09.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2021.09.014&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Information Fusion 79 (2022) 200–228

201

belonging to the same class/label (supervised) [4], which requires ele
ments to be explicitly labeled. (b) Type of elements represented in
embedding space: The elements represented in embedding space are
normally the sample features. Nevertheless, in this paper we propose to use
additional elements that can also be mapped to the same embedding space

and jointly compared with the sample features. Specifically, we propose to
use the labels as additional elements to be represented in embedding
space. (c) Define the separation process: Similar and dissimilar elements
with respect to a certain reference (anchor) element are usually referred to
as positive and negative, respectively. The separation process can be

Fig. 1. Contrastive learning reference view considering the embedding elements (vertical-axis) and separation process strategy (horizontal-axis). Distance
computation can be done: only between samples using their feature embeddings (Upper row), between each sample (using its feature embedding) and all its positive
and negative labels (Middle row), and between each sample and its positive label and a single representative of its negative labels (Lower row). The separation
process can be implemented: with a maximum margin between positive and negative points (features or labels) (Left column), with a maximum margin for negative
points and a minimum separation to the anchor for positive ones (Middle column), and with a maximum/minimum separation between negative/positive points to
the anchor (Right column). Type II and III solutions correspond to our proposed models. Below each type of solution, its most representative models are listed with a
reference to the Section that shows its architecture.

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

202

attained in different ways: The positive and negative elements can be
pulled/pushed to/from the anchor trying to reduce/increase the distance
as much as possible [5,6]. On the other hand, the objective can be to in
crease the distance between positive and negative just beyond a margin
[7]. Additionally, a combined objective can be to minimize the distance of
the positive to the anchor and maximize the distance to the negative
beyond a margin [8]. (d) Number and nature of positive and negative
samples used in each comparison: We can choose a single positive and
negative element per comparison [7,8], a group of positives and negatives
[5,9] or a representative(s) for the positive and negative groups serving as
proxy for the group [10]. (e) Distance function: Euclidean, Cosine… (f)
Loss function: contrastive [8], triplet [7], …

Considering the contrastive learning alternatives mentioned above,
there is a wide range of solutions found in the literature. These solutions
are mainly based on self-supervised and unsupervised settings, and only
recently on supervised schemes. They have achieved excellent results
[1–4], but they also have some significant drawbacks: (a) long training
periods, (b) the need to create complex sampling strategies to extract
negative samples, and (c) difficulties in creating representative pro
totypes for each class/label in a supervised scheme.

In this work, we propose a solution to these drawbacks by creating a
supervised contrastive learning scheme where the sample features and la
bels are mapped to the same embedding space, and the contrastive mech
anism (pulling/pushing of similar/dissimilar elements) is applied between
features and labels, instead of being applied exclusively between features.

The sample embeddings used in contrastive learning are usually created
from the features of the sample. The approach proposed here, which
combines features and label embeddings into the same representational
vector space, where they can be jointly manipulated, has been recently
applied in image [11] and text processing [12] as an intermediate feature
processing step, but has not been used, to our knowledge, in any systematic
approach within a contrastive learning framework. In this work, we pro
vide a systematic reference framework for current contrastive learning
solutions using the classic features-only embeddings approach (Fig. 1,
Type I), and our proposed solutions using jointly features and label
embeddings (Fig. 1, Type II and III).

Fig. 1 graphically shows where our proposed solutions fit in a generic
contrastive learning reference view. The charts in Fig. 1 are based on the
following definitions and notation. We assume to have a dataset with N
samples: {xi}

N
i=1. We also assume that each sample (xi) has a set of similar

(positive) samples (xP
i) and a set of dissimilar (negative) samples (xN

i).
Similar and dissimilar samples can be established by a “proximity” function
without requiring an explicit labeling (unsupervised and self-supervised) or
by belonging to the same explicit label/class (supervised). For the super
vised case, we have a set of C labels (classes): {Lj}

C
j=1, where each sample xi

is associated to a ground-truth label/class which we call its positive label,
implying that the rest C − 1 labels will be its negative labels. The positive
label for xi is identified as LP

xi
and any of the negative labels for xi as LN

xi
. We

can also select a representative label from the group of negative labels, this
representative can be one of the existing negative labels (the one that best
represents the set of negative labels for our task) or it can be a new one built
from them. We will denote as LN*

xi
the unique label acting as a representative

of the group of negative labels.
It is important to note that in Fig. 1 the elements represented are in

embedding space. The embedding transformation is represented as:
φ(a), where a is a generic input vector and its embedding is a low
dimensional representation of vector a. The function φ(a) is a mapping
of vector a into a space of different dimensionality (usually smaller)
where the objective is to maintain the representational capacity of the
original vector into the new mapped vector.

Fig. 1 provides a reference view for contrastive learning solutions
considering two axis: the elements represented in embedding space (ver
tical-axis), and the separation process adopted (horizontal-axis). In this
reference view, our research scope corresponds to Type II and III solutions:

• The embedding elements used (Fig. 1, vertical-axis) can be: (a)
only the sample features (xi) (Type I), (b) the sample features (xi)
plus the positive (LP

xi
) and all negative labels (LN

xi
) for that sample

(Type II), and (c) the sample features (xi) plus a reduced number of
its representative labels that provide all the required information for
our task (Type III). In this latter case, our proposal is to use for each
sample, its positive label (LP

xi
) and a single representative element of

its negative labels (LN*

xi
), as the two unique representatives. There are

several ways to choose a single representative for the negative labels;
we propose two useful alternatives: choose the element which is
nearest to the sample features (in embedding space), or choose the
centroid of the cluster formed by the negative labels (Fig. 3).

For Type II and III solutions, the positive and negative labels
depend on each sample (xi) and the aim is to pull closer the sample
features (xi) to its positive label (LP

xi
) while pushing apart all the

negative labels (LN
xi
), or their representatives (LN*

xi
). Type I solutions

have a similar aim, but in this case the objective is to attract similar
features and repel dissimilar ones. If similarity is based on class
membership, all types of solutions (Type I, II or III) will create a
cluster of samples for each label, however, only Type II and III so
lutions can use the labels as prototypes acting as cluster centers
attracting all their same-class samples and repelling others. Having
these prototypes is very important as they can be used as unique
representative elements of each class.

• The separation process (Fig. 1, horizontal-axis) may involve: (a) to
push apart the positive and negative points (features or labels)
beyond a certain margin m (Max-margin), (b) to push apart the
negative points beyond a certain margin m and to pull closer the
positive points as much as possible to the reference sample (Max-
MarginþMin-Separation), and (c) to push apart the negative points
and to pull closer the positive points (both) as much as possible to the
reference sample (Max-SeparationþMin-Separation). The separa
tion process is implemented by specific loss functions which are
based in combinations and variants of quadratic, exponential, logloss
and maximum-margin (hinge) losses.

Fig. 1 presents the names of the most representative models for each
type of solution (below each chart). These models are implemented
through a series of proposed architecture (Sections 3.3 and 3.4). In Fig. 1,
each of the proposed architectures is assigned a horizontal rectangle where
the different models implemented by that architecture are located, along
with a reference to the corresponding Section that explains it. There are
architectures that provide a single model (for example, the architecture in
Section 3.3.2 implements only the Contrastive over Label Embeddings
-ConLE model), while other architectures can implement different types of
models (with different properties) by changing the loss function used
within that architecture; for example, the architecture proposed in Section
3.4.1 implements all types of models, with different properties, and cor
responding to different separation approaches (different position on the
horizontal-axis of Fig. 1). The two main categories of models in relation to
this research are:

- The Type I solution models correspond to currently published
research works: Triplet [7], RankedList [13], SupCon [4], Contrastive
[8,14], Lifted [9], N-pair [5], NT-Xent [15], ProxyNCA [10,16],
InfoNCE [6]. SupCon is the only supervised contrastive learning
model identified in the literature, and it is located in two different
columns in Fig. 1, because it can adopt different separation
strategies based on the number of negative labels considered.

- The proposed models for Type II and III solutions are novel solutions
proposed in this paper (Sections 3.3 and 3.4): Max Margin over Label
Embeddings (MMoLE), Contrastive over Label Embeddings (ConLE),
Contrastive with Cross Entropy (ConCE), Max-Margin ((λ)MM), Cross

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

203

Entropy with Max-Margin (CE+(λ)MM), Cross Entropy plus Distances
with Max-Margin (CEDist+(λ)MM), Contrastive (Con(λ)), Exponen
tial loss for Max-Separation (E(λ)MS), Squared Exponential loss for
Max-Separation (E2(λ)MS), Cross Entropy with Exponential loss for
Max-Separation (CE+E(λ)MS) and Cross Entropy plus Distances with
Exponential loss for Max-Separation (CEDist+E(λ)MS). Where (λ)
stands for a dummy letter representing a particular loss function, as
defined in Sections 3.3 and 3.4.

We call the models included in Type II and III solutions as Label
Based Contrastive Learning (LB-CL) and Representative Label Based
Contrastive Learning (RLB-CL), respectively. They correspond to our
proposed models. These models can be used as: (a) Classifiers, pre
dicting the correct label for a new sample. (b) The embeddings of the
sample features and the distances between features and labels embed
dings can be used to replace the original features as a dimensionality
reduction technique. (c) Finally, the samples form clusters around the
label prototypes, which can help to assess the location of new samples in
a low dimensional graphical representation of sample and label em
beddings (e.g., security personnel identifying attacks in new samples).
The graph can be obtained directly using low dimensional embeddings
or by transforming the embeddings for visualization (e.g., PCA, t-SNE).

As mentioned earlier, Type I solutions are usually based in self-
supervised [2] or unsupervised learning [3]. The Type I solutions
based on supervised learning [4] establish two samples as similar when
they belong to the same class and dissimilar otherwise. In this case, the
classes are used only to select the group of positive and negative samples
corresponding to each reference sample (xi). Type II and III solutions use
the labels/classes in a different way. They use the labels as class pro
totypes in embedding space. The samples are clustered around their
same-class label prototype. The aim is to create maximum separated
label prototypes, as well as minimizing the distance between each pro
totype and their same-class samples. In this work, we propose new losses
specifically designed for the comparison of distances between the sam
ples and their labels or their label representatives (Sections 3.3 and 3.4).

Type I solutions demand a large number of comparisons (contrastive
learning) between a vast combinatorial space of pair-wise positive
(similar) and negative (dissimilar) samples. Type II solutions tremen
dously reduce the necessary pair-wise comparisons to the number of
labels (classes) only, which is necessarily much less than the number of
samples for a sensible learning process. Type III solutions reduce even
more the number of comparisons to just two: one between the sample
features and the positive label and other between the sample features
and the single representative of the cluster formed by all the negative
labels. In addition, in Type III solutions we offer a novel way of inputting
labels to the classifier at both training and prediction (test) phases, by
presenting all labels in parallel (Figs. 7–9). In this way we further reduce
the required training and prediction times (Section 4). Both, Type II and
III solutions are novel solutions proposed in this work.

Network intrusion detection (NID) is a complex field that faces the
problem of detecting cybersecurity issues (malicious activity or policy
attacks) on data networks by analyzing the information contained in the
exchanged data packets. The information in the data packets is trans
formed into a vector of continuous and categorical values (e.g., size,
addresses, flags...) that represent the network connection. This vector
can be compared, searching for similar patterns, with pre-registered
vectors associated to normal traffic or attacks (signature-based intru
sion detection), or the vector can be used as the input to statistical
methods or machine learning classification methods to detect attacks
(anomaly-based intrusion detection). In this work we apply the
anomaly-based approach.

NID is an active and challenging area of machine learning research
[17–19]. A wide range of machine learning methods have been applied
to NID, the most common being: linear models, decision trees, gradient
boosting methods, support vector classifiers, multilayer perceptron,
convolutional and recurrent neural networks, kernel methods and

generative models [20–22]
The proposed models are generic and applicable to any supervised

classification problem, and translating these models to NID is straight
forward. Network intrusion samples (NIS) are represented by vectors of
network features. NIS vectors length is usually large since each feature
brings information about a particular property of the network flow
carrying the attack. Intrusion labels are represented by one-hot-vectors
associated to each label. Label vectors length equal the number of
different labels. Labels and NIS vectors are of very different sizes. The
objective is to map the NIS and labels into a common representational
vector space (embedding space) where the fundamental original infor
mation is preserved and where semantically meaningful comparisons
can be established.

NID datasets, which contain the activity of network flows and their
associated status: normal or intrusion type, are characterized by being good
representatives of noisy and unbalanced datasets. We have chosen two
well-known NID datasets (NSL-KDD and UNSW-NB15) to carry out the
experiments for the novel proposed models (Type II and III solutions).
These datasets provide diverse and challenging scenarios for the proposed
models. A complete analysis of results is provided on the application of the
proposed solutions (Type I and II) to the two data sets (Section 4). The
results include: (a) classification performance metrics to detect the attacks,
(b) clustering performance metrics on the quality of the clusters of samples
around each label prototype and, (c) improvement in classification metrics
from several well-known machine learning (ML) algorithms, when using
the sample embeddings and their distances to label embeddings as new
features, replacing the original sample features.

The contributions offered by the proposed models are: (a) Introduce
a fusion of features and labels representation within a common vector
space. (b) Present a wide range of novel architectures and loss functions
that leverage this fused representation space. (c) Provide new alterna
tives to contrastive learning by avoiding negative sampling or any other
sophisticated selection strategy for negative/positive labels. (d) Signi
ficatively reduce the number of pair-wise comparisons required. (e)
Create a novel approach by replacing negative labels with their best
representatives, further reducing the number of comparisons and their
associated training and prediction times. (f) Show that the proposed
models create excellent classifiers for noisy and unbalanced datasets. (g)
Show that features embeddings, created as a by-product of the classifi
cation process, can be used instead of the original features. We show that
a wide range of classifiers improve their performance by using these
low-dimensional alternative features.

The rest of the paper follows this schema: Section 2 summarizes
related works. Section 3 describes the proposed model and its rela
tionship with related models. Section 4 describes the datasets, and the
experimental results and Section 5 presents the conclusions.

2. Related works

Referring to the three main topics of this research: contrastive learning,
label embeddings and NID. As far as we know, there is no work presenting
label embeddings within a contrastive framework; there are works using
label embeddings as a dimensionality reduction technique, and there are
works presenting Type I contrastive learning solutions (Fig. 1) for NID. We
have not identified any work proposing label embeddings for NID. The
main related works from the literature are as follows:

• Contrastive learning with feature embeddings for classification:
Contrastive learning is an active research topic with many recent works
following different approaches with an emphasis in: (a) Type of sepa
ration process (e.g., Max-Margin...)(Fig. 1). (b) Acquisition of similar/
dissimilar elements (supervised, self-supervised or unsupervised).(c)
Number of positive/negatives samples per comparison (single, group or
representative). All these works correspond to Type I solutions (Fig. 1):

Max-Margin
Triplet loss was presented in [7] with a max-margin separation for the

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

204

distances difference between an anchor point and a selection of its
negative and positive samples. One positive and negative sample is used
per comparison, and samples are acquired in a self-supervised or un
supervised manner. A group of positive and negative samples per
comparison is used in [13] with a max-margin loss called ranked list loss
based on weighting positive and negative examples with respect to their
distance to the anchor point using class information (supervised).

Max-MarginþMin-Separation
Authors in [23] present a k-nearest neighbor framework to minimize

Mahalanobis distance to positive samples and maximize distance with a
margin to negative samples. They use a subset of positive samples to
compute the loss which is a contrastive loss [14]. Contrastive loss is
presented in [8,14] with a quadratic loss for the distance to positive
samples and a quadratic max-margin loss to the distance of negative
samples. It is applied originally to image recognition using label infor
mation [8] and face recognition with a Siamese network [14] in a
self-supervised manner. The comparison in all cases is done between a
single positive and negative sample. Alternatively, in [9] all negative
samples are selected with a modified loss that comprises an exponential
loss with a margin for the distance to all negative samples plus the direct
distance to the positive sample. The experiments are done with a
self-supervised setting.

Max-Separation þMin-Separation
With a supervised learning framework, [16] proposes Neighborhood

Component Analysis (NCA) where a k-nearest neighbor with stochastic
(soft) neighbor assignments optimizes the probability of a sample to be
classified into the correct class. It has connections with Linear
Discriminant Analysis (LDA) [24] but it does not require all class dis
tributions to be Gaussian with equal covariance [16]. A single positive
sample and a group of negative samples is used per comparison. In [5]
the comparison is performed between a positive sample and a random
selected element for each negative class (multi-class N-pair). As with the
previous work the objective is to push apart or pull closer the neg
ative/positive points as much as possible to the reference sample. Au
thors in [15] present NT-Xent/SimCLR with a exponential loss over a
distance function between similar points normalized by the sum of
distances for the rest of points in the same training batch (assumed as
negative samples). The work in [25] extracts label prototypes by sam
pling and averaging their associated embedded features. There is no
fusion of labels and features in representation space. The label pro
totypes are used in a few-shot learning framework. A group of positive
and negative samples are implicitly used per comparison.

With a (self/un) supervised framework, the loss presented in NCA is
used also in ProxyNCA [10] where instead of using a group of negative
samples this method creates a reduced number of proxy elements that
can replace the original points in the comparison. The method creates
the proxy points among the original points as part of the learning pro
cess. It extends NCA to a subset of points represented by proxies instead
of the original points. A different loss is presented in [6] with InfoNCE
which is based on noise contrastive estimation and applied to sequential
data. The loss is based in a log-bilinear score between a latent variable
created by an autoregressive model applied to past samples embeddings
and future positive samples normalized by the sum of the scores for all
samples. A single positive sample and a group of negative samples are
used per comparison. The structure of the loss is similar to [5,15,16].
Based on SimCLR, [26] presents a sophisticated sampling mechanism
for negative points to minimize the number of false negative points
(positive points taken as negative). ProtoNCE [27] is a variant of
InfoNCE that creates prototypes of the positive and negative samples
with an unsupervised framework by constructing latent variables with
an expectation-maximization algorithm. The proposed loss includes the
original InfoNCE loss plus an additional loss (also based on InfoNCE)
formed by sampling a reduced number of negative and positive
prototypes.

• Alternative frameworks for contrastive learning: Traditional
pair-wise distance ranking applied in contrastive learning for

classification can be extended in different directions. Authors in [28]
propose an adversarial contrastive learning based in SimCLR. The
embedded features can be particularly useful for learning with an
small number of samples (few-shot learning) as proposed in [29].
Alternative models based on ranking the recovery error performed
by generative models (e.g. variational autoencoders) conditioned on
the labels can also be used for classification [30].

• Application of label embeddings: Label embedding has been
applied in image classification [11], text classification with attention
mechanism [12], text classification based on a bilinear ranking
function [31] and text classification in a multi-task setup [32]. It has
also been applied for multi-label embedding with a neural factor
ization machine [33]. None of these works uses a contrastive
learning approach. They employ the label embeddings as an inter
mediate step for downstream tasks.

• NID and contrastive learning: In latter survey studies on the
application of machine learning and deep learning to network
intrusion detection there is no mention to the application of
contrastive learning [18,20,22]. However, there is a growing interest
in these techniques in current works; for example, [34] proposes
anomaly detection by self-supervised contrastive learning, following
the framework proposed in SimCLR [15]. An unsupervised anomaly
detection with contrastive learning is proposed in [35], where a
neural network is trained by contrasting distances, only between
normal instances, and a threshold is used to detect outliers when its
distance to the center of normal instances is above the threshold.
Authors in [36] propose a supervised intrusion detector using a Si
amese network with similar and dissimilar samples being differen
tiated by belonging to the same class. A similar solution is adopted in
[37] to detect intrusions for the NSL-KDD and UNSW-NB15 datasets.
A dimensionality reduction technique, by applying a Siamese
network, is presented in [38]. Sample features are transformed into a
1D feature space. The resulting variable is used to identify attacks
with a simple visualization tool.

3. Methods description

We position the proposed models (LB-CL, RLB-CL), which correspond
to Type II and III solutions (Fig. 1), in relation with alternative
contrastive learning models and describe in detail the different archi
tectures used to implement them.

3.1. Contrastive learning overview

Contrast learning was originally thought [8,14] to perform a feature
transformation such that similar samples would be placed close to each
other (in the transformed feature space) according to a certain predefined
similarity goal. The similarity of the samples is based on a distance function
(usually Euclidean or cosine) and this distance is used to establish the
proximity of an anchor sample to a set of positive (similar) and negative
(different) samples (Fig. 2). Similarity is imposed on the transformed space
by training alternately with groups of similar and dissimilar samples. A
special loss function is used to penalize dissimilar elements approaching or
similar elements moving apart (Fig. 2). This method is especially useful for
creating a feature transformation into an embedding space that in
corporates domain-specific semantics using the distance between embed
dings. These embeddings can be used as features in downstream
classification tasks e.g., word2vec [39]. During training, samples can be
presented in pairs or in different combinations/group arrangements of
similar/dissimilar samples (e.g., triplets [7]).

Most of the loss functions used in the contrastive learning literature
are pairwise ranking losses, based on a combination of quadratic, log
arithmic, exponential and maximum-margin losses. As a summary, we
provide an overview of the most popular contrastive learning architec
tures with their associated loss function equations (Fig. 1, Upper charts):
Contrastive [8,14] (Eq. (1)), Triplet [7] (Eq. (2)), Lifted [9] (Eq. (3)),

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

205

N-pair [5] (Eq. (4)), InfoNCE [6] (Eq. (5)), SimCLR, NT-Xent [15] (Eq.
(6)) and NCA, proxy-NCA [10,16] (Eq. (7)):

1
N
∑

N

{
y+.(D+)

2
+ y− .[max(m − D− , 0)]2

}
(1)

1
N

∑

N
max

[
(D+)

2
− (D−)

2
+m, 0

]
(2)

1
2P
∑

P

[

max

(

log

[
∑

Pn

exp(m − D−)

]

+ D+, 0

)]2

(3)

1
N
∑

N
log

[

1+
∑

Pn

exp(S− − S+)

]

(4)

1
N

∑

N
− log

[
exp(S+/τ)

exp(S+/τ) +
∑

Pn
exp(S− /τ)

]

(5)

1
N

∑

N
− log

[
exp(S+/τ)

∑
Pn

exp(S− /τ)

]

(6)

1
N

∑

N
− log

[
exp(− D+)

∑
Pn

exp(− D−)

]

(7)

Note: In previous equations we have used the following simplified
notation: D+ and D− are distances to positive and negative points (e.g.,
Euclidean distance). S+ and S− are similarities to positive and negative
points (e.g., Cosine similarity). m is a margin. τ is a temperature
parameter. N is the number of samples. P is the number of pairs of
samples. Pn is the number of pairs of negative samples (for a particular
reference sample). y+ is an indicator function whose value is 1 if two
similar samples are compared during training and 0 otherwise; y− is also
an indicator function to mark dissimilar samples (y− = 1 − y+)

When considering the literature for contrastive learning, much of the
complexity and sophistication goes into finding a good representative set of
positive (similar) and negative (dissimilar) points to compare to a specific
anchor point. This creates implementation problems because the distance
computation between samples (sample-wise) demands a complex training
process. The training is performed by selecting a representative number of
positive and negative samples for each reference sample. To reduce vari
ance and ensure generalization of results the set of positive/negative

representative samples is usually large and difficult to choose.
Contrastive learning is generally applied in an unsupervised/self-

supervised scheme. In a self-supervised scheme, similar samples are
constructed (synthesized) by some controlled modification of the anchor
sample (e.g., rotate/translate an image). In an unsupervised scheme,
similar samples are selected by some proximity attribute imposed on the
data (e.g., time, location, order, position...). In this latter case, the se
lection is performed by random sampling conditioned on the proximity
attribute (e.g. similar words are selected by proximity to the anchor
word in a document corpus [39]). Contrastive learning has difficulties to
be applied in a supervised scheme, since we have to select a represen
tative number of samples per class to compare with a certain anchor
sample, and in the inference (prediction) phase we also need to compare
the new sample with a significant number of samples corresponding to
all classes. The label assigned to the new sample is selected by some form
of majority voting using the labels of the closest samples. The main
problem with this approach is the initial lack of a natural representative
for the classes; having this natural representative of the classes would
reduce the number of distance comparisons required at the time of
inference to a single comparison with each class representative.

The above mentioned problems: a) large number of pair-wise com
parisons, b) complexity in selecting representative sets of positive and
negative samples, and c) difficulty to integrate supervised learning, are
addressed by our proposed solutions using the labels themselves as the best
class representatives. This approach reduces drastically the number of
required pair-wise comparisons since the points to compare with now are
the labels, which we assume have a significant smaller number than the
number of samples. Additionally, label embeddings now get a natural
representative position in the cluster of points sharing their label; either by
choosing the geometric center of this cluster or simply the point with the
smallest distance to the majority of points within the same class.

3.2. Scenarios for contrastive learning

In this section we provide an alternative schematic view (Fig. 3)
showing the main elements that define contrastive learning frameworks
and how our proposed models relate to them. It is a complementary view
to Fig. 1. A visual summary of this alternative view is given in Fig. 3. The
upper-chart in Fig. 3 shows the process followed to create common
embeddings for features and labels. The middle-chart shows the alter
native contrastive learning scenarios corresponding to Type I, II and III
solutions (Fig. 1), where Type I solutions have been divided by the data

Fig. 2. Overview representation of contrastive learning. An anchor sample (xi) in embedding space (φ(xi)) is moved close to similar samples (by some similarity
criteria, e.g., same age faces) (φ(xk)) and is separated from dissimilar samples (φ(xj)).

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

206

acquisition process into self-supervised/unsupervised (I.A) or super
vised (I.B). Finally, the lower-charts present two variants of Type III
solutions (III.A and III.B), showing two alternative ways to choose the

representative element (prototype) assigned to the negative labels (LN*

xi
).

We now extend the definitions and notation given in Section 1; this
extended notation will be applied in the rest of this work. We assume to

Fig. 3. (Upper chart) Schema of the mapping of labels and predictor features into the same embedding representational space. The labels and sample features are
vectors of different dimensions (C and F respectively). The embedding mapping translates them into vectors of the same dimensionality (E) where their comparison is
feasible. (Middle charts) Four scenarios for contrastive learning with different defined distances between features (Type I) and between features and labels (Types II
and III). (Lower Charts) Detail of Type III solutions, describing the distances D NN(xi) (Lower-left) and D AN(xi) (Lower-right) between the sample to either its
nearest negative label (D NN(xi)) or the average point formed by all its negative labels (D AN(xi)), respectively. Which labels are positive or negative is set for each
sample (xi). The positive label for a sample xi is its ground-truth label, all others are negative labels for this particular sample. All distances are computed using the
vector embeddings.

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

207

have a dataset with N samples: {xi}
N
i=1, each sample having F features:

xi ∈ RF (predictor features). And a set of C labels (classes): {Lj}
C
j=1(Fig. 3,

upper-chart). Each sample xi can be associated to a ground-truth label/
class (yi) which we call its positive label, implying that the rest C − 1
labels will be its negative labels. We identify the index of the positive
label for xi as ki ∈ [1,C], such that Lki is the ground-truth label for xi, i.e.,
Lki = yi. We will also identify the positive label for xi as LP

xi
(i.e., LP

xi
= Lki

= yi) and any of the negative labels for xi as LN
xi

(i.e., LN
xi
∕= yi). Labels are

one-hot-encoded represented with a zero array of length C with a single
1 in a specific position assigned to each label; in particular, for the
ground-truth label yi, we indicate the position j in its one-hot-encoded
array as yj

i, that means that yj
i = 1 if j = ki and yj

i = 0 if j ∕= ki . The
same notation will be used for the predicted label (ŷi). In line with
Section 1, we will denote as LN*

xi
as the unique label acting as a repre

sentative of the group of negative labels (Type III solutions).
The labels and sample features are vectors of different dimensions (C

and F respectively). We define a specific embedding mapping for each of
these vectors (Fig. 3, upper-chart) with two aims: (a) translate them into
vectors of the same dimensionality (E) where their comparison is feasible
and, (b) create relationships between the embedded vectors with the
objective to classify each sample xi with its associated positive label LP

xi
. The

embedding transformation is represented as: φ(a) : Rm →Rn, where a is a
generic input vector a ∈ Rm and its embedding is a low dimensional rep
resentation of vector a: φ(a) ∈ Rn,where usually m > n. The function φ(a)
is a mapping of vector a into a space of different dimensionality (usually
smaller) where the objective is to maintain the representational capacity of
the original vector into the new mapped vector.

Fig. 3 (middle-charts) shows the different options available to
perform the approach between similar samples and the separation be
tween samples that are not similar or that do not belong to the same
class. The approach/separation process is done in embedding space
under four different scenarios:

• In Type I.A solutions (Fig. 3), we assume that each sample xi has a
set of associated samples xk which are similar/close to xi and are
identified as xk ∈ CloseTo(xi). In this scenario, the aim is to bring xi
closer to its similar samples (xk), while separating xi from samples
that do not belong to CloseTo(xi). The elements belonging to
CloseTo(xi) can be obtained by time, spatial or context proximity to
xi without requiring a direct labeling of the “close to” set. This set
can be obtained by simply sampling the data source (e.g., neigh
boring words, next sound) in the “proximity” of xi . This approach is
usually called unsupervised [3,6]. Another approach is the gener
ation of augmented replicas of each sample by introducing controlled
modifications to the original sample (self-supervised) [2]. In this
case, the replicas would be considered similar elements.

No labels are used in this scenario. Only distances between fea
ture-embeddings are employed. The contrastive mechanism is
applied to each sample xi and requires that the sample be compared
with a significant number of samples similar to xi ({xk ∈

CloseTo(xi)}) and also with a representative number of samples not
similar to xi ({xj ∕∈ CloseTo(xi)}) (sample-wise)

• A labeling of the samples is assumed in Type I.B solutions (Fig. 3).
The labeling is done in a supervised manner, and only distances
between feature-embeddings are employed. We call positive sam
ples those samples that share the same class as the reference sample,
and negative samples those samples with a different class from the
reference sample [4]. In much the same way as Type I.A solutions,
the aim is to bring xi closer to its positive samples, while separating xi
from its negative samples. The contrastive mechanism is also applied
(sample-wise) between each sample with other samples sharing the
same label, as well as samples with other labels. Using the
sample-wise distances, the classification can be done by majority
vote, if a distance threshold is previously established for the

similarity of the samples pair, or some other aggregated distance
computation (e.g., choose the class with a minimum sum of distances
between the reference sample and the representative samples of that
class). The process has similarities to a K-Nearest Neighbors (KNN)
model where the class of a new element is assigned according to the
majority class of its K nearest elements. The difference in our case is
that the set of elements to perform the distance comparison is not the
complete population (as in KNN) but a selection of samples from the
different classes, and the selection is made by random sampling of
these classes. We can see, that this solution has an implicit problem
due to the lack of a single representative that serves as a prototype
for the different classes [40]. This is the problem solved with Type II
and III solutions (Fig. 3) by building a best representative (prototype)
in embedding space for each of the classes. When using these class
prototypes, the objective will now be to reduce the distance between
a reference sample to its same-class (positive) prototype and to in
crease the distance to its different-class (negative) prototypes. By
using prototypes, the training and prediction pair-wise comparison
process is significantly reduced and creates clear references to
perform comparisons. Both Type II and III solutions correspond to
supervised models with a label associated with each training sample.

• In Type II solutions (LB-CL)(Fig. 3), the sample features and the
labels are embedded into the same vector space where their dis
tance can be easily computed. The aim in this scenario is for each
sample to be as close as possible to its label embedding while sepa
rating itself from all other label embeddings. We apply this scenario
to perform classification by comparing an anchor sample with its
positive and each of its negative labels (Label-wise) and choosing
the label with the shortest distance to the sample (in embedding
space). This is a supervised scenario. The models presented for this
scenario are part of this research work, and are novel in applying
contrastive learning and systematically extend other previous works
based exclusively on features embeddings to a new scenario that
simultaneously considers feature and label embeddings.

• Type III solutions (RLB-CL)(Fig. 3) are also part of our proposed
models. In this case, we also use the features and label embed
dings, but we replace all the negative labels corresponding to a
sample with a single element that represents them. This element is
assumed to be the most representative element of the cluster of
negative labels (this cluster is sample dependent). In this way, we
will not perform a comparison of the sample’s features with each of
the labels (as in Type II) but just with two labels: the same-class or
positive label, and the representative of the out-of-class or negative
labels (Representative Label-wise). We will consider two main
variants for choosing the most representative element of the cluster
of negative labels: (a) the nearest negative label to the sample (III.A,
Fig. 3, Lower-left) and (b) the centroid of the negative labels cluster
(III.B, Fig. 3, Lower-right). This is also a supervised scenario. There
is no work (in any field, as far as we know) proposing a similar
approach of using a single element (representative) of the negative
labels (in embedding space).

In Fig. 3, for Type II and III solutions, we can define different dis
tances between labels (Lj) and predictor features (xi) in embedding space
(Fig. 3, lower-charts): (a) D P(xi) (Eq. (8)) is the distance of the xi
embedding to its positive label embedding (Lki). (b) D N(xi, Lj) (Eq. (9))
is the distance of the xi embedding to one of its negative labels
embedding (Lj with j ∕= ki). (c) D NN(xi) (Eq. (10)) is the distance be
tween the xi embedding and its negative label embedding which is the
nearest to xi. (d) D AN(xi) (Eq. (11)) is the average distance of the
xi embedding to all its negative label embeddings. D NN and D AN
correspond to distances between a sample embedding (xi) and a repre
sentative of its negative labels (LN*

xi
).

D P(xi) = D [φ(xi), φ(Lki)] (8)

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

208

D N
(
xi, Lj

)
= D

[
φ(xi), φ

(
Lj
)]

where j ∕= ki (9)

D NN(xi) = min
j∕=ki

D
[
φ(xi), φ

(
Lj
)]

(10)

D AN(xi) =
1

C − 1
∑

j∕=ki

D
[
φ(xi), φ

(
Lj
)]

(11)

A schematic representation of D P, D NN and D AN is given in Fig. 3
(lower-charts). The average distance to the negative labels (D AN) is an
upper bound (Appendix. A) for the distance to the cluster’s centroid of
the negative labels, therefore, by maximizing this distance we can as
sume that the other is also maximized.

3.3. Label based contrastive learning (LB-CL) (Type II)

There are three proposed architectures for Label Based Contrastive
Learning (LB-CL) solutions (Type II solutions, Fig. 1): (a) Max Margin
over Label Embeddings (MMoLE), (b) Contrastive over label embed
dings (ConLE), and (c) Contrastive with Cross Entropy (ConCE). These
architectures implement a contrastive learning framework between the
sample features and all its labels (positive and negatives).

3.3.1. Max margin over label embeddings
The Max Margin over Label Embeddings architecture (MMoLE)

(Fig. 4) is based on a max margin loss acting over the distance between
the positive and one negative label for a sample xi. The MMoLE loss (Eq.
(12)) is defined as follows, where: N is the number of samples; C is the
number of labels; {Lj}

C
j=1is the set of C labels; ki ∈ {1..C} corresponds to

the index of the positive label of xi and the loss is extended to all
negative labels for all samples:

MMoLELoss=
1
N
∑N

i=1

∑C− 1

j=1
max

(
D [φ(xi),φ(Lki)]− D

[
φ(xi),φ

(
Lj∕=ki

)]
+1,0

)

(12)

This model implements a Max-Margin separation strategy (Fig. 1) by
increasing the difference, beyond a margin, between two distances: the
distance between the anchor-sample (xi) and the positive label, and the
distance between the anchor-sample and each negative label. MMoLEloss
is a novel max margin loss between the distance of a sample (xi) to its true
label (Lki) and each of the distances to the negative labels (Lj∕=ki).
MMoLEarchitecture analysis can be split between its training and pre
diction phases (Fig. 4). Three inputs per sample are required during

Fig. 4. Max Margin over Label Embeddings (MMoLE) architecture is based on a max margin loss acting over the distance between the positive and one of the
negative labels, for each sample xi. The loss is extended to all negative labels. The training phase (Upper chart) requires three inputs per sample: sample features (xi),
positive label (LP) and one of the negative labels (LN). Each sample has a training round with every negative label. In the prediction phase (Lower chart) we need to
try all labels to obtain the one with the smallest distance to the sample, and this operation requires as many forward-passes as labels. Since the training phase requires
two labels per forward-pass we treat only one of the labels and set to a dummy value the other.

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

209

training: sample features (xi), positive label (LP), and one of the negative
labels (LN). LP and LN correspond to Lki and Lj∕=ki , respectively in Eq. (12).
Each sample has a training round with each one of the negative labels, thus
requiring C-1 training samples per dataset sample. This requirement in
crements the dataset size required for training. The features and the two
labels (one hot encoded) are the inputs to two different neural networks
(NN): NN− Embedx and NN− EmbedL. The neural network for the labels
(NN− EmbedL) is shared for both the positive and negative labels (LP

andLN).These NNs have different input sizes and the same small dimension
output size. The outputs of the NNs are the respective features and label
embeddings: φ(xi), φ(LP) and φ(LN). Then, a distance function (Euclidean)
is applied to the label embeddings to compute two distances: the distance
between the features and the positive label (D [φ(xi), φ(LP)]) and the dis
tance between the features and each of the negative labels given as input
(D [φ(xi), φ(LN)]). These two distances are used as the input to the
MMoLEloss (Eq. (12)), and are also the output of MMoLE.

In the prediction phase, the inputs to the model are the features of the
test sample and the label we want to test with. Since the model requires

two labels as input, we provide a dummy label as the third input. The
distance to this dummy label is discarded and only the distance to the
first label is considered. As in previous LB-CL models, we need to try all
labels to obtain the one with the smallest distance to each sample, and
this operation requires as many forward-passes as labels. MMoLE is the
architecture that presents the worst results.

3.3.2. Contrastive over label embeddings
The Contrastive over label embeddings architecture (ConLE)

(Fig. 5) is based on the contrastive over label embedding loss
(ConLE Loss) (Eq. 13), defined as follows, where: D [a, b] is the Euclidean
or Cosine distance between vectors a and b; N is the number of samples;
yi is the ground-truth label for the xi sample; {Lj}

C
j=1is the set of C labels;

and, yi,Lj is an indicator function, such that:

yi,Lj =

{
1 if Lj = yi
0 if Lj ∕= yi

Fig. 5. Contrastive over Label Embeddings (ConLE) architecture: Model using a contrastive loss function. During training (Upper chart) three inputs per sample
are required: sample features (xi), label (Lj) and a binary value (yi,Lj) indicating if the label is positive or negative. Each sample has a training round with every label.
In the prediction phase (Lower chart) we need to try all labels to obtain the one with the smallest distance to the sample, and this operation requires as many
forward-passes as the number of different labels (classes).

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

210

This model implements a Max-Margin+Min-Separation separation
strategy (Fig. 1) by increasing the distance, beyond a margin, between
the anchor-sample (xi) and each negative label while reducing the dis
tance, as much as possible, between the anchor-sample (xi) and the
positive label. ConLE loss is similar to contrastive loss (Eq. (13)) with no
squared distances. ConLE architecture can be differentiated between its
training and prediction phases (Fig. 5). Three inputs per sample are
required during training : sample features (xi), label (Lj), and a binary
indicator (yi,Lj). The binary indicator marks if the label is positive
(ground truth label) o negative (wrong label). Each sample has a training
round with each of the labels, thus requiring C training samples per
dataset sample. This requirement increments the dataset size required
for training. The features and the label (one hot encoded) are the inputs
to two different neural networks (NN): NN − EmbedX and NN − EmbedL .
These NNs have different input sizes and the same small dimension
output size. The outputs of the NNs are the respective features and label
embeddings: φ(xi) and φ(Lj). Then, a distance function (Euclidean or
Cosine) is applied to the label embeddings to compute their distance

(D [φ(xi), φ(Lj)]) which is used as an input, together with the indicator
variable, to the ConLE loss (Eq. (13)). The output of ConLE is the dis
tance between the features and the label (a single label) that are used as
inputs. In the prediction phase we need to try all labels to obtain the one
with the smallest distance to each sample, and this operation requires as
many forward-passes as the number of different labels (classes).

3.3.3. Contrastive with cross entropy
The Contrastive with Cross Entropy architecture (ConCE) (Fig. 6)

is based on contrastive learning implemented with a binary Cross En
tropy loss function (ConCE Loss) (Eq. (14)), with the following defini
tion, where: N is the number of samples; C is the number of labels; yi is
the ground-truth label for xi; ̂yi,Lj

is the output of the model for sample xi

and label Lj; and, finally yi,Lj is an indicator function, such that:

yi,Lj =

{
1 if Lj = yi
0 if Lj ∕= yi

with ŷi,Lj
∈ [0, 1]

Fig. 6. Contrastive with Cross Entropy (ConCE) architecture: Model using a contrastive learning framework implemented with a cross entropy loss. The training
phase (Upper chart) requires three inputs per sample: sample features (xi), label (Lj) and a binary value (yi,Lj) indicating if the label is positive or negative. Each
sample has a training round with every label. In the prediction phase (Lower chart) we need to try all labels to obtain the one with the smallest distance to the
sample, and this operation requires as many forward-passes as labels.

ConLE Loss =
1
N
∑N

i=1

∑C

j=1

[
yi,Lj ⋅D

[
φ(xi), φ

(
Lj
)]

+
(

1 − yi,Lj

)
⋅max

(
1 − D

[
φ(xi), φ

(
Lj
)]
, 0
)]

(13)

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

211

ConCE Loss = −
1
N
∑N

i=1

∑C

j=1

[

yi,Lj ⋅log

(

ŷi,Lj

)

+
(

1 − yi,Lj

)
⋅log

(

1 − ŷi,Lj

)]

(14)

This model implements a Max-Separation+Min-Separation separa
tion strategy (Fig. 1) by reducing, as much as possible, the distance
between the anchor-sample (xi) and the positive label, while increasing,
as much as possible, the distance between the anchor-sample (xi) and
each negative label. In this model the distances are transformed to a
range of values between 0 and 1 by means of a sigmoid function, which
allows us to interpret them as a probability and apply the cross-entropy
loss. The proposed ConCE loss is roughly similar to negative sampling in
word2vec [39] but adapted to contrastive learning over label embed
dings. The architecture of ConCE (Fig. 6) is similar to ConLE for both the
training and prediction phases, the main difference with ConLE being
that the distance computation is now a dot product with an additional
sigmoid function to scale the output in the range of values [0,1] (ŷi,Lj

).
This value will be the output value of ConCE, and is interpreted as the a
posteriori probability that the features (xi) and the label (Lj) (a single
label) given as inputs correspond to a true pair, meaning that the label is
the right one for the sample. The Cross Entropy loss will try to reduce the
distance between embeddings for true pairs and increase the distance for
false pairs. During prediction we need to try all labels to obtain the one
with the smallest distance to each sample, and this operation requires as
many forward-passes as labels.

3.4. Representative Label Based Contrastive Learning (RLB-CL) (Type
III)

There are three groups of proposed architectures for Representative
Label Based Contrastive Learning (RLB-CL) solutions (Type III solutions,
Fig. 1): (1) Representative Label Contrastive architectures: (λ)MM, Con
(λ), E(λ)MS, E2(λ)MS, (2) Cross Entropy over Labels with Contrastive
Regularization architectures: CEþ(λ)MM, CEþE(λ)MS, and (3) Cross
Entropy over Labels and Distances with Contrastive Regularization ar
chitectures: CEDistþ(λ)MM, CEDistþE(λ)MS. These architectures
implement a contrastive learning framework between the sample fea
tures and its positive label and a single representative for the cluster of
negative labels.

3.4.1. Representative label contrastive
The Representative Label Contrastive architectures ((λ)MM, Con

(λ), E(λ)MS, E2(λ)MS) Fig. 7) is a novel group of architectures based in a
combination of max-margin, exponential and contrastive losses. They
are based on novel losses that depend exclusively on the distances to the
representative labels, that is, to the positive label and a representative
point for the cluster of negative labels: D P, D NN,D AN (Eqs. (8),(10)
and (11)) (Fig. 3). The group of positive and negative labels are estab
lished for each sample. These architectures have three types of losses: (a)
Max-margin: (λ)MM, (b) Max-Margin+Min-Separation: Con(λ) (c) Max-
Separation+Min-Separation: E(λ)MS, E2(λ)MS. Where (λ) stands for a

Fig. 7. (λ)MM, E(λ)MS, E2(λ)MS and Con(λ) architectures: Each of these models use a different related loss function with different distances defined for the
negative labels. The training phase (Upper chart) requires C+2 inputs per sample: sample features (xi), all C labels (L1, L2, ..LC) and the integer index (ki ∈ {1…C})
of the positive label. In the prediction phase (Lower chart) we need a single forward pass to obtain the label with the smallest distance to the sample.

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

212

dummy letter representing the loss function (see description below).
All these models share the same fundamental architecture Fig. 7)

with different implementations for their loss function (Eqs. (15)–(24)).
The architecture can be differentiated between its training and predic
tion phases Fig. 7). During training, the architecture requires C+2 in
puts: one input is the sample features (xi), other inputs are the one-hot-
encoded labels (L1, L2,..LC) and, finally, an integer ki acting as the index

of the positive label in the set {1...C}. By providing all the necessary
inputs, it is not necessary to perform several rounds of training for each
sample as it happens in the other models (Type I and II). The features
and the C labels are the inputs to C different neural networks (NN): NN −
Embedx,NN − EmbedL1 , ..NN − EmbedLC . These NNs have different entry
sizes and the same small dimension output size. The outputs of the NNs
are the respective features and label embeddings: φ(xi), φ(L1),..,φ(LC).
Then, a distance function (Euclidean) is applied to the label embeddings
to compute the distances between the features and each label (D [φ(xi),

φ(L1)], ..,D [φ(xi), φ(LC)]). These distances are the output of the archi
tecture, and are also used by a function (“Main Distance Computation”,
Fig. 7) that knowing the index of the positive label (ki) will obtain the
distance to the positive label (D P), the distance to the nearest negative
label (D NN) and the average distance to all the negative labels (D AN).
These three distances are used as the inputs for all subsequent losses
(Eqs. (15)–(24)), and are also the output of the architectures. The loss
functions Eqs. (15)–(24) provide an average loss for all N samples.

In the prediction phase (Fig. 7), the inputs to the model are the
features of the test sample and all the labels. The C output distances,
between the sample features and each label, will be used by a label
generator module that will simply compare the distances and choose the
smallest as the distance associated with the predicted label. We need a
single forward pass to obtain the label with the shortest distance to the
test sample. This approach substantially reduces the prediction times, as
corroborated by experimental results (c.f. Section 4).

The Representative Label Contrastive architectures share the same
base architecture (Fig. 7) and their differences correspond to different
loss functions:

- Max-margin losses: The loss functions for the (λ)MM models Fig. 7)
are the following; where (λ) stands for a dummy letter to be replaced
by N, A, NA or WNA) (Eqs. (15)–(18)). They are novel max-margin
losses for the difference of distance between the positive label
(D P) and one of the selected representatives of the negative labels
(D NN, D AN). These losses try to make the distance difference
greater than a margin (Max-margin)(Fig. 1). NAMM proposes a loss
combining the distance to both D NN and D AN, while WNAMM ex
tends NAMM with configurable weights for each distance term.
NMM and AMM consider a single distance difference, while NAMM
simultaneously considers two distance differences:
- Positive to Nearest negative label Max-Margin Loss (NMM Loss):

NMM Loss =
1
N
∑N

i=1
max[(D P(xi) − D NN(xi)+ 1), 0] (15)

- Positive to Average negative label Max_Margin Loss (AMM Loss):

AMM Loss =
1
N
∑N

i=1
max[(D P(xi) − D AN(xi)+ 1), 0] (16)

- Positive to Nearest and Average negative labels Max-Margin Loss
(NAMM Loss):

- Weighted Positive to Nearest and Average negative labels Max-
Margin Loss (WNAMM Loss):

WNAMM Loss =

1
N

(
∑N

i=1
max[(μ0D P(xi) − μ1D NN(xi) + 1), 0]

+
∑N

i=1
max[(μ2D P(xi) − μ3D AN(xi) + 1), 0]

)

,

with weights μ0, μ1, μ2, μ3 > 0

(18)

- Max-MarginþMin-Separation losses: The loss functions for the
Con(λ) models Fig. 7) are the following; where (λ) stands for a
dummy letter to be replaced by N, A) (Eqs. (19),(20)). They are novel
contrastive losses including the distance to the positive label (D P)
and one of the selected representatives of the negative labels (either
D NN or D AN). These losses try to make the distance to the positive
label as small as possible, while keeping the distance to one of the
representatives of the negative labels greater than a margin (Max-
Margin+Min-Separation)(Fig. 1):
- Contrastive Loss with positive and nearest negative labels

(ConN Loss):

ConN Loss =
1
N
∑N

i=1
D P(xi) + max[(1 − D NN(xi)), 0] (19)

- Contrastive Loss with positive and average negative labels
(ConA Loss):

ConA Loss =
1
N

∑N

i=1
D P(xi) + max[(1 − D AN(xi)), 0] (20)

- Max-SeparationþMin-Separation losses: The loss functions for the
E(λ)MS and E2(λ)MS models Fig. 7) are the following; where (λ)
stands for a dummy letter to be replaced by N, NA, WNA) (Eqs. (21)–
(24)). They are novel exponential or squared exponential losses for
the difference of distance between the positive label (D P) and one of
the selected representatives of the negative labels (D NN, D AN). The
exponential function (exp) grows rapidly for increasing positive
values (difference of distances) and moves to zero also rapidly for
negative values. The loss produces small values of D P and large
values for D NN or D AN , which results in trying to separate, as
much as possible, the positive and negative labels from the reference
sample (Max-Separation+Min-Separation) (Fig. 1). The squared

exponential function ((exp())2) makes this behavior even more

NAMM Loss =
1
N

(
∑N

i=1
max[(D P(xi) − D NN(xi)+ 1), 0] +

∑N

i=1
max[(D P(xi) − D AN(xi)+ 1), 0]

)

(17)

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

213

pronounced. The loss E2NAMS combines the D NN and
D AN distances, and E2WNAMS is its weighted version:
- Positive to Nearest negative label Maximum Separation with

Exponential Loss (ENMS Loss):

ENMS Loss =
1
N
∑N

i=1
exp[D P(xi) − D NN(xi)] (21)

- Positive to Nearest negative label Maximum Separation with
squared Exponential Loss (E2NMS Loss):

E2NMS Loss =
1
N

∑N

i=1
(exp[D P(xi) − D NN(xi)])

2 (22)

- Positive to Nearest and Average negative label Maximum Separa
tion with squared Exponential Loss (E2NAMS Loss):

E2NAMS Loss =
1
N

∑N

i=1
(exp[D P(xi) − (D NN(xi) + D AN(xi))])

2 (23)

- Weighted Positive to Nearest and Average negative labels
Maximum Separation with squared Exponential Loss
(E2WNAMS Loss):

E2WNAMS Loss =

1
N

∑N

i=1
(exp[μ0D P(xi) − μ1D NN(xi) − μ2D AN(xi)])

2
,

with weights μ0, μ1, μ2 > 0

(24)

3.4.2. Cross entropy over labels with contrastive regularization
The previous models use the distance between embeddings as the

transformed features used for classification in a contrastive framework.
In these models we will use the embeddings and their distances as the
features used in a classic supervised classification framework based in a
cross-entropy (CE) loss and a softmax nonlinear activation function. In
this latter case, we will use the max-margin and max/min-separation
losses (e.g., NMM, AMM, ENMS...) as a regularizer input to a com
bined loss function that incorporate these losses together with the cross-
entropy loss. The objective here is to reduce the error between expected
and predicted labels (achieved by the CE loss) while keeping the dis
tances between positive/negative labels as close/separate as possible
from the samples (regularization term). This approach corresponds to
the CE+(λ)MM and CE+E(λ)MS architectures (Fig. 8).

The Cross Entropy over Labels with Contrastive Regularization
architectures (CEþ(λ)MM, CEþE(λ)MS) Fig. 8) is based in extending
the previously presented losses with a categorical Cross Entropy (CE)
(Eq. (25)) term. The novel losses for the CE+(λ)MM and CE+E(λ)MS

Fig. 8. CE+(λ)MM and CE+E(λ)MS architectures: General architecture for the models with a cross entropy term added to the loss function. The addition of this
extra term requires to use the ground-truth label (yi) for network training (Upper chart) and to produce a label prediction (ŷi). This model directly produces a label
prediction facilitating the prediction phase (Lower chart)

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

214

architectures (Fig. 8) are presented in Eqs. (26)–(29); where, as above,
(λ) stands for a dummy letter to be replaced by N, A or NA:

yj
i =

{
1 if j = ki
0 if j ∕= ki

with ŷj
i ∈ [0, 1] and

∑

j=1..C
ŷj

i = 1

CrossEntropy
(

yi, ŷi

)

= −
1
N
∑N

i=1

∑C

j=1
yj

ilog

(

ŷj
i

)

(25)

- CE Loss plus Positive to Nearest negative label Max-Margin Loss (CE
+ NMM Loss):

CE + NMM Loss = NMMLoss + CrossEntropy
(

yi, ŷi

)

(26)

- CE Loss plus Positive to Average negative label Max-Margin Loss (CE
+ AMM Loss):

CE + AMM Loss = AMM Loss + CrossEntropy
(

yi, ŷi

)

(27)

- CE Loss plus Positive to Nearest and Average negative labels Max-
Margin Loss (CE+ NAMM Loss):

CE + NAMM Loss = NAMM Loss + CrossEntropy
(

yi, ŷi

)

(28)

- CE Loss plus Positive to Nearest negative Maximum Separation with
Exponential Loss (CE+ ENMSLoss):

CE + ENMS Loss = ENMS Loss + CrossEntropy
(

yi, ŷi

)

(29)

Note: In the above expressions: ̂yi is the predicted label for sample xi.
It is a vector of dimension C (i.e., ̂yj

i|j=1..C), generated by a neural network
(NN) i.e., ŷi = NN − Predict[φ(xi)] (Fig. 8) with a softmax activation in
the last layer. Each vector component (ŷj

i) is interpreted as the proba
bility that label Lj is associated with sample xi. Additionally, yi is the
ground-truth label for xi, where yj

i is its one-hot-encoded representation
with yj

i = 1 if j = ki and yj
i = 0 if j ∕= ki , where ki corresponds to the

index of the positive label of xi
These models inherit the separation strategy provided by the

contrastive part of the loss function, for example, a CE+(λ)MM model
will implement a Max-margin separation strategy (same as (λ)MM),
while a CE+E(λ)MS will implement a Max-Separation+Min-Separation
separation strategy (same as E(λ)MS). The CE+(λ)MM and CE+E(λ)MS
architectures Fig. 8) are identical to their counterparts: (λ)MM and E(λ)
MS, with the addition of a small neural network: NN − Predict, which
has as inputs the features embedding and generate the predicted label
(ŷi). The distances between embeddings plus the predicted and ground-
truth label will be the inputs to the compound losses for this architecture
(Eqs. (26)–(29)). During training, the model requires C+3 inputs per
sample: the sample features, all C labels (one-hot-encoded), an integer
ki acting as the index of the positive label in the set {1… C} and the

Fig. 9. CEDist+(λ)MM and CEDist+E(λ)MS architectures: Similar architecture to CE+(λ)MM and CE+E(λ)MS, where the neural network that generates the pre
dicted label (ŷi) takes as input the features embedding plus the distance of xi to all labels.

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

215

ground-truth label (yi). This latter input is required functionally but not
physically since can be extracted by knowing the index of the positive
label (ki). In the prediction phase (Fig. 8), we only require the sample
features as input to the model and the features embedding NN (NN
− Embedx) and the prediction NN (NN − Predict) to generate the pre
dicted label. This approach reduces even more the prediction times, as
corroborated by experimental results (c.f. Section 4).

3.4.3. Cross entropy over labels and distances with contrastive
regularization

The Cross Entropy over Labels and Distances with Contrastive
Regularization architectures (CEDistþ(λ)MM, CEDistþE(λ)MS)
(Fig. 9), are a variant of their counterpart CE+(λ)MM and CE+E(λ)MS
models, where ŷi is a function of the features embedding (φ(xi)) and the
distances between each label embedding (φ(Lj)|j=1..C) and the features
embedding. i.e., ŷi = NN − Predict[φ(xi),D [φ(xi), φ(L1)], …D [φ(xi),

φ(LC)]] . To generate the predicted label (ŷi), we concatenate all the
inputs to the neural network. Apart from this difference, this

architecture is completely similar to its CE+(λ)MM and CE+E(λ)MS
counterparts.

The complexity of the neural networks implementing the embedding
functions are quite low. For the NN − EmbedL: 1 hidden layer with 10
nodes, ReLU activation and linear activation for the output layer. For the
NN − Embedx: 2 hidden layers with 100/50 nodes, ReLU activation and
linear activation for the output layer. All the embedding NNs share the
same configuration. Likewise, for the models with added Cross Entropy,
the NN that implements the final classification stage (NN − Predict), is
also small: 2 hidden layers with 20/20 nodes, ReLU activation and
softmax activation for the output layer.

3.5. Summary of proposed models and application scenarios

This Section presents a summary of the main characteristics of the
proposed models with a comparison between them Table 1 in terms of
prediction performance, complexity and execution times (prediction
phase). This information is extracted from their architectures and from
the results obtained with the two datasets used in the experiments

Table 1
Application scenarios of the proposed models: comparison of global characteristics of the different models.

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

216

(Section 4). The comparison provided in Table 1 can be useful to
establish the application scenarios of the different models.

Table 2 provides a unified summary classification of the different
contrastive learning solutions which were presented under two different
points of view in Figs. 1 and 3. The summary classification in Table 2
offers a taxonomy of the contrastive learning solutions based on the
following differentiation parameters: a) the types of embeddings used,
b) the separation strategy, and c) labels availability (whether the models
are either supervised or unsupervised/self-supervised)

All the models presented in this work have been implemented with
neural networks trained with gradient descent, with a batch size of 100,
100 epochs and early-stopping with a waiting period of 10 epochs and a
validation set of 20% of the training set. The optimizer employed was
Adam with the original default parameters [41]. The source code for the
most representative models of the proposed solutions is provided in a
freely accessible repository [42].

Table 2
Taxonomy of contrastive learning solutions: unified classification of the solutions following the presentation given in Figs. 1 and 3.

Fig. 10. Labels distribution in the training and test sets for NSL-KDD (Upper charts) and UNSW-NB15 (Lower charts) for multi-class (5 or 10 labels) and binary (2
labels) classification scenarios.

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

217

4. Results

4.1. Selected datasets

We have selected two network intrusion detection datasets (NSL-
KDD and UNSW-NB15) as experimental benchmarks to apply the pro
posed models. They are good representatives of a field characterized by
noisy and unbalanced datasets.

The NSL-KDD dataset [43] is a well-known intrusion detection (ID)
dataset. It contains 125,973 training samples and 22,544 test samples
with 122 features (after one-hot encoding categorical features). The
continuous features have been scaled in the [0,1] range. It has 40 labels
with a dissimilar frequency distribution in the training and test sets.
These 40 labels are usually aggregated into 5 or 2 labels [43] (Fig. 10).
The UNSW-NB15 [44] is a newer ID dataset. It contains 2,540,044
training samples and 82,332 test samples. After a similar pre-processing
(one-hot encoding and scaling) to that performed for NSL-KDD, the final
number of features is 196. It has 10 distinct labels which can be
aggregated into 2 (normal and attack) (Fig. 10). NSL-KDD and
UNSW-NB15 present very different label distributions for the training
and test sets with the common characteristic of being noisy and strongly
unbalanced. The scenarios presented by the two datasets under their
different multi-class and binary configurations allow exploring the
performance of the proposed model in a wide range of challenging
contexts.

4.2. Performance metrics

We have used a complete set of metrics to compare results for the two
datasets with the different models. We provide metrics for classification,
clustering and training/prediction execution times. The classification
metrics applied are: accuracy, F1-score, precision, recall, and Matthews
Correlation Coefficient (MCC) with their usual definitions [45,46]. MCC
is particularly useful for unbalanced datasets. The metric for clustering
quality are Normalized Mutual Information (NMI) [5,9,10] and
Silhouette coefficient [47]. NMI is invariant to label permutation, which
is needed to perform a correct clustering evaluation, it is also a label
based metric assessing the correct identification of labels to clusters.
Silhouette coefficient is an unsupervised metric that is not based on
knowing the ground-truth label; it provides a good indication of the
separation between clusters. To identify the execution times of the al
gorithms, we present the training and prediction times as a comparative
indicator of complexity and computational load, knowing that these
values cannot be considered in an absolute but relative way to help the
comparison between algorithms, since their absolute values depend on
the nature and capacity of the processor used.

All the proposed metrics are associated to better results in a mono
tonic increasing way; their range of values is [0,1], with the exception of
MCC which is a correlation coefficient with a range [-1,1] (where +1
indicates a high correlation between ground-truth and predicted results
and -1 total disagreement between them) and the Silhouette coefficient
with also a range [-1,1] (where +1 indicates a high separation between
clusters and -1 highly mixed clusters).

Clustering scores have not been considered for the ML models
because it is not the purpose of these models to perform clustering and,
additionally, the high dimensionality of the original feature space
(>100) makes clustering a challenging task in itself, with different
applicable techniques and interpretation of results [48]. It is precisely
the translation of the original features into a low-dimension embedding
space (in LB-CL and RLB-CL models) that allows the classification task to
be interpreted from a clustering perspective.

4.3. NSL-KDD results

The results for the NSL-KDD dataset are divided by the type of
classification into binary classification (2 labels) and multi-class

classification (5 labels) (Section 4.1). We focus on providing the results
of several representative LB-CL and RLB-CL models (Sections 3.3 and
3.4) in comparison with several well-known machine learning (ML)
models: logistic regression, random forest, Gradient Boosting Machine
(GBM), Support Vector Machine with radial kernel (SVM-RBF), Multi-
Layer Perceptron (MLP), Convolutional Neural Network (CNN) and a
Linear Model with a Kernel Approximation (LM+KA). The last two
models have been selected for having obtained very good performance
results in recent works for both NSL-KDD and UNSW-NB15 datasets
[49], and CNN models are some of the most widely used deep learning
models in IDS [20,21,50]. In particular, we will use a CNN with a
one-dimensional kernel (CNN-1D) due to the one-dimensional vector
structure of the features in the two datasets used in this work. The
LM+KA models [49] correspond to a recent trend towards fast shallow
linear models that can handle non-linearities through a feature trans
formation that approximates a kernel SVM. The interest of these models
lies in being especially fast. We have not considered applying recurrent
networks (e.g., long short term memory (LSTM)) as the selected datasets
are not based on sequential data.

Two types of results are provided: (1) classification results using the
models (ML, LB-CL and RLB-CL) and (2) improvement of the classifi
cation results of the ML models when using the original features versus
the transformed features obtained by the LB-CL and RLB-CL models.

4.3.1. Classification with proposed models
A comparison of classification and clustering performance metrics

for a representative number of ML, LB-CL and RLB-CL models is pro
vided in Fig. 11. The metrics are separated into two groups by the
number of labels to detect (2 and 5 labels). For the LB-CL and RLB-CL
models, we identify the dimension of the embedding space and the
distance adopted between embeddings (Cosine or Euclidean). All results
are computed over the test set (Section 4.1). The two rightmost columns
in Fig. 10 provide the number of trainable weights and the number of
Floating Point Operations (Flops) required for each model. These two
metrics, along with the training and prediction execution times, offer a
good insight into the computational complexity and performance of the
models. A more detailed analysis of the complexity of the models is
provided in Section 4.7.

Fig. 11 shows the two best results in bold-italic text style. Addi
tionally, a color code is used where a dark-green is associated with better
results and a dark-red with worse results, with an interpolated color-
palette that is used for intermediate values. The color code and the
best-two values are applied column-wise and independently (separately)
for the blocks of 2 and 5 labels.

2 labels
For binary classification, the LB-CL models (Type II) present best

overall results (F1 and MCC) for classification and clustering. Model
complexity is also smaller for LB-CL models. Considering training and
prediction times, the RLB-CL models have the best times, which is as
expected since the number of comparisons is less than for LB-CL models.
The reduction in the execution times of the proposed models is at least
an order of magnitude compared with most of the classic ML models.
Interestingly, the training and prediction times of the RLB-CL models are
better than those of the logistic regression and LM + KA models which
are specially designed to be fast.

5 labels
For multi-class classification (5 labels) the RLB-CL models (Type III)

present some of the best classification metrics after the CNN-1D and
LM+KA models which have previously shown particularly good per
formance for this dataset [49]. The RLB-CL models have also some of the
best clustering metrics (NMI metric). The best prediction times are for
the RLB-CL models and second best for the training times (after LM+KA
model). The best RLB-CL model is ENMS considering F1 and MCC as our
main classification metric. It is interesting to note the poor behavior of
AMM, which incorporates exclusively the average distance to the group
of negative labels. The unsupervised clustering metric (Silhouette)

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

218

obtains its maximum with contrastive models (ConLE) in both binary
and multi-class scenarios. The best overall performance results are for
the LM+KA model which was selected for being particularly effective
with this dataset and being a tough competitor to other models.
Nevertheless, considering the prediction performance and prediction
speed together, the ENMS model has the third best prediction result with

very short prediction times, while a similar model (CE+ENMS) provides
the shortest prediction times.

4.3.2. Improvement of ML models
As mentioned in the introduction, the embedding of the features and

the distances between them and each of the label embeddings can be

Fig. 11. NSL-KDD dataset: comparison of classification and clustering performance metrics between a selection of classic ML models vs. a representative set of the
proposed LB-CL and RLB-CL models. A color code is used where dark-green is for better results and dark-red for worse results, an interpolated color-palette is used for
intermediate values. The best-two values are in bold-italic. The color code and the best-two values are applied column-wise and separately for the blocks of 2 and 5
labels. All results are computed over the test set (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.).

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

219

used as a replacement for the original features, implementing a de facto
supervised dimensionality reduction. These transformed features can be
used as original features in a subsequent classifier, implementing a
stacked-ensemble configuration [51]. In a stacked-ensemble, it is
important not to incur in data leakage or compromise the test set in the
sequence of classifiers used. To avoid using the test set in the learning
process we use always the same LB-CL/RLB-CL model as base model
(level 0 classifier) [51] and one of several classic ML models as meta
model (level 1 classifier) [51]. We do not use the best base model
(Fig. 11) using the results of the test data, as it would involve using the
information from the test set during training. Our proposed model for
stacked generalization is also different from [51] because we do not use
the predictions of the base model as inputs to the metamodel, but rather
an intermediate transformation of the original features created by the
base model.

Fig. 12 provides the results when using the original features versus
the transformed ones produced by one of our proposed models (used as
base model). The base model selected is the NMM model (RLB-CL/Type
III). This model is the one used for all experiments in this Section and
Section 4.4.2. We can observe how using the transformed features im
proves the prediction performance of all classic ML models used as a
reference (logistic regression, random forest, GBM, SVM and MLP)
compared with the same models using the original features. To facilitate
the comparison, we have marked in bold-italic the best value in a pair-
wise comparison between each metric using original and transformed
features.

We identified F1 and MCC as the two metrics that best represent the
overall performance of the models, and considering these metrics we
observe (Fig. 12) the improvement obtained when using the transformed
features. This improvement is achieved (for F1 and MCC) for all ML

models. The average performance is also improved in all cases, with a
significant reduction in the dispersion of values for the different models
(standard deviation).

4.4. UNSW-NB15 results

The presentation of results for the UNSW-NB15 dataset follows the
same principles that for the NSL-KDD dataset (Section 4.3). Therefore,
we will not repeat the details provided in Section 4.3, focusing directly
on the analysis of results.

4.4.1. Classification with proposed models
A comparison of classification and clustering performance metrics

for a representative number of ML, LB-CL and RLB-CL models is pro
vided in Fig. 13. The metrics are separated into two groups by the
number of labels to detect (either 2 or 10 labels).

2 labels
For binary classification, the LB-CL models (Type II) present best

results for classification and clustering. The training and prediction
times are also among the smallest, principally for training, but at pre
diction the RLB-CL models have smaller times, which is as expected
since the number of comparisons is less than those for LB-CL models. The
reduction in execution times for the proposed models is more striking
compared to the classic ML models, with a reduction of at least an order
of magnitude compared to most ML models. The RLB-CL models provide
shorter prediction times than even LM+KA.

10 labels
For multi-class classification (10 labels) the RLB-CL models (Type III)

present the best classification metrics and some of the best clustering
metrics (NMI metric). The best training and prediction times are also for

Fig. 12. NSL-KDD dataset: Performance classification metrics when using the original features versus the transformed ones produced by the NMM model (RLB-CL/
Type III). The comparison is done with a representative set of classic ML models used as a reference. Bold-italic is used to mark the best value in a pair-wise
comparison between each metric using original and transformed features. All results are computed over the test set.

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

220

the RLB-CL models. The LM+KA model also has very short prediction
times (as expected). The best RLB-CL models are NMM/NAMM or their
cross-entropy counterparts depending on taking F1 or MCC as our main
classification metric. An interesting finding is again the poor behavior of

AMM, which indicates that exclusively using the average distance to the
group of negative labels is not as good as considering the distance to the
nearest negative label, or a combination of both distances. Similar to
what happens with NSL-KDD, the unsupervised clustering metric

Fig. 13. UNSW-NB15 dataset: comparison of classification and clustering performance metrics between a selection of classic ML models vs. a representative set of the
proposed LB-CL and RLB-CL models. A color code is used where dark-green is for better results and dark-red for worse results, an interpolated color-palette is used for
intermediate values. The best-two values are in bold-italic. The color code and the best-two values are applied column-wise and separately for the blocks of 2 and 10
labels. All results are computed over the test set (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.).

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

221

(Silhouette) obtains its maximum with contrastive models (ConLE) in
both binary and multi-class scenarios. The LM+KA model presents poor
prediction results for this dataset and the CNN-1D model (with the
second best prediction results) has long training and prediction times.

4.4.2. Improvement of ML models
Following an analysis similar to that performed in Section 4.3.2 for

NSL-KDD, Fig. 14 shows the improvement in classification performance
when using the transformed features generated by the NMM model
(used as a reference base model) instead of the original features. The
comparison is done with a set of classic ML models used as a reference
(logistic regression, random forest, GBM, SVM and MLP). To facilitate
the comparison in Fig. 14, we have marked in bold-italic the best value
in a pair-wise comparison between each metric using original and
transformed features.

Considering F1 and MCC as the two metrics that best represent the
overall performance of the models, we observe (Fig. 14) the improve
ment obtained when using the transformed features. This improvement
is also achieved for all average performance metrics with a reduction in
the standard deviation of values.

4.5. Detection of unknown intrusions

In this section we present a comparison of the capabilities of some of
the models discussed in Sections 4.3 and 4.4 to detect unknown in
trusions. We propose to assess the ability of a model to detect unknown
intrusions with a methodology based on removing a particular intrusion
from the training set and to evaluate the ability of the model to detect
this intrusion as an anomaly in the test set. The details of the proposed

methodology are based on the following steps:

1 Select some of the best performing and representative models for the
two datasets.

2 Select the two most frequent attacks for the two datasets (i.e., DOS
and PROBE for NSL-KDD; and, Generic and Exploits for UNSW-
NB15)

3 For each selected attack in each dataset:
a Remove the samples corresponding to this attack in the training

set. The resulting training set will have either 4 labels (NSL-KDD)
or 9 labels (UNSW-NB15) since we have removed one of the
attacks.

b Keep the samples corresponding to this attack in the test set. The
test set does not change.

c Train the model with the new training set. Prior to training, we
collapse all attacks into a single anomaly label. Therefore, we train
the model with a binary classification scheme (normal/anomaly).

d Predict results for the test set. The prediction will be a binary label
(normal/anomaly). Using this prediction, we now obtain the
detection rate (recall metric) for each original class in the test set i.
e., the percentage of samples detected as anomaly (with the binary
classifier) among the samples of each original class.

As a particular example, assuming we select to remove the DOS
attack from the NSL-KDD dataset. The steps mentioned above will be: a)
We remove the DOS samples in the training set. b) We keep the test set
unchanged. c) We train a binary classifier (normal/anomaly labels) with
the resulting training set after collapsing all remaining attacks in the
training set (PROBE, R2L and U2R) to a single anomaly label. d) We

Fig. 14. UNSW-NB15 dataset: Performance classification metrics when using the original features versus the transformed ones produced by the NMM model (RLB-
CL/Type III). The comparison is done with a representative set of classic ML models used as a reference. Bold-italic is used to mark the best value in a pair-wise
comparison between each metric using original and transformed features. All results are computed over the test set.

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

222

predict the normal/anomaly label for each sample in the (unchanged)
test set. Then, we select the subset of samples from the test set that had
the DOS attack as their original label (ground-truth label). Using this
subset, we obtain the percentage of correct detections as anomaly (using
the binary classifier) for all elements in this subset. This percentage of
correct detections is also known as detection rate or recall. Likewise, we
create similar subsets of the test set for the samples associated with the
PROBE and NORMAL labels (ground-truth). For these additional subsets
we also obtain their corresponding detection rates. The reason for
including the detection rate for NORMAL samples (even though the
NORMAL samples are never removed from the training set) is to check
how this metric changes by altering the distribution of attacks in the
training set. At the end, we present the detection rates for the three
subsets of samples (for the PROBE, DOS, and NORMAL labels) for each
attack elimination exercise. We also provide the global binary

classification scores obtained with the binary classifier.
The methodology mentioned above aims to evaluate the ability of the

models to classify a sample as carrying an attack even when its associ
ated training samples have been removed from the training set. To
perform the experiments, it is necessary to use different levels of gran
ularity in the hierarchy of security attacks (e.g., attack − > DOS − >

Neptune) since otherwise a multi-class classifier trained without the
knowledge of a particular class cannot produce a classification for that
class. However, by playing at different levels of granularity, we can
predict a sample as an anomaly, since the anomaly class has been used at
training time.

Following this methodology, we have obtained expected results,
such as having the smallest detection rate for each attack in the test set
when the corresponding attack is missing in the training set. However, it
is interesting to note that the proposed models behave better than

Fig. 15. Detection rates for specific subsets of attacks in the test set for the datasets: NSL-KDD (Upper chart) and UNSW-NB15 (Lower chart). Detection rates are
obtained separately when all samples in the training set are used and when samples corresponding to selected attacks are removed. Different types of classifiers are
used in a binary classification scheme to predict each sample in the test set as normal/anomaly. The detection rate for a class in the test set is the percentage of
samples correctly identified as normal/anomaly for that class. A color code is used where a dark-green is associated with better results and a dark-red with worse
results, with an interpolated color-palette that is used for intermediate values. The color code is applied column-wise and independently (separately) for the results of
each model (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

223

alternative ML models (Fig. 15), showing in general better detection
rates for the missing attacks. It is also interesting that these detection
rates are quite high in many cases (e.g., a detection rate of 0.992 for the
Generic attack in UNSW-NB15, with the ENMS model) considering the
absence of these attacks in the training set.

In Fig. 15 we can see that the best global classification scores are
obtained with the complete training set (all attacks present), being the
worst when we remove the most frequent attack (DOS and Generic,
respectively). As mentioned above, the smallest detection rate is ob
tained when the corresponding attack is missing from the training set.
For the NORMAL samples, the detection rate tends to increase when one
of the attacks is missing, which could be understood as having less dif
ficulty discriminating the attacks.

4.6. Behavior with small datasets

Considering the particularities of the proposed models, based on
optimizing the number of comparisons required to implement the

contrastive mechanism, it is interesting to evaluate the behavior of these
models with a reduced number of training samples. In this Section we
present the classification results for the most representative models, for
both datasets, with a reduction of several orders of magnitude in the
number of training samples, while keeping the test sets unchanged (for
both datasets). For each dataset and model, the results are presented for
the complete dataset and for several reduced versions of the dataset
(Fig. 16). Training sets reduction is done by stratified sampling (random
sampling keeping the proportions of the labels as far as possible). In its
smallest version, the training sets have been reduced to just 100 sam
ples. In general, as expected, the results improve monotonically with the
number of training samples, but in general the results are extremely
good with a number of samples above 1000–10000 (Fig. 17).

Fig. 17 presents in two graphs the evolution of the F1-score for the
two datasets and for several of the proposed models. The horizontal-axis
of the graphs has a logarithmic scale, since we have obtained the results
by reducing the number of samples by several orders of magnitude. The
rightmost points in these graphs (Fig. 17) represent the nominal number

Fig. 16. Main classification metrics for the two datasets and some representative models, when the number of training samples is reduced by several orders of
magnitude (from the complete training set to 100 training samples). Training set reduction is done by random sampling, maintaining the proportions of the labels as
far as possible (stratified sampling).

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

224

of training samples (complete training sets). We can observe how this
number varies widely between models. The LB-CL models require a
significantly higher number of training samples, as these models need to
compare each sample with all available labels. While the RLB-CL models
only require comparing each sample with the positive label and a single

representative of the negative ones (two comparisons in total). As the
number of classes/labels increases, this difference becomes more
important.

It is very interesting how the LB-CL models when applied to multi-
class classification rapidly deteriorate below a certain number of

Fig. 17. Evolution of the F1-score for several models and the two datasets, as the number of training samples increases (horizontal-axis in logarithmic scale). Each
model is identified by the model name, the configuration by number of labels used in the dataset (e.g., 5L for the 5-labels configuration), and the model category (i.e.,
LB-CL or RLB-CL). The graphs are dataset dependent: (Left chart) NSL-KDD and (Right chart) UNSW-NB15.

ConCE; 2L,LB-CL

ConCE;
2L,LB-CL

E2NMS; 2L,RLB-CL

CEDist+NMM; 2L,RLB-CL

CEDist+NMM; 2L,RLB-CL

ConCE; 5L,LB-CL

ConLE; 5L,LB-CL

ConLE; 5L,LB-CL

E2NMS;
5L,RLB-CL

ENMS; 5L,RLB-CL

CE+ENMS; 5L,RLB-CL

NMM; 5L,RLB-CL

NMM; 5L,RLB-CL

CE+NMM; 5L,RLB-CL

CEDist+NMM; 5L,RLB-CL
CEDist+NMM; 5L,RLB-CL

NAMM; 5L,RLB-CL

ConN; 5L,RLB-CL

ConN; 5L,RLB-CL

32000

34000

36000

38000

40000

42000

44000

46000

48000

50000

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Fl
op

s

NSL-KDD, Training Time (min)

2L,LB-CL 2L,RLB-CL 5L,LB-CL 5L,RLB-CL

ConLE; 2L,LB-CL

ConLE; 2L,LB-CL

ENMS; 2L,RLB-CL

CE+NMM; 2L,RLB-CL

CEDist+NMM; 2L,RLB-CL

CEDist+NMM; 2L,RLB-CL

ConN; 2L,RLB-CL

ConCE; 5L,LB-CL

ConLE; 5L,LB-CL

ConLE; 5L,LB-CL
ENMS; 5L,RLB-CL

ENMS; 5L,RLB-CL

CE+ENMS; 5L,RLB-CL

CE+NMM; 5L,RLB-CL

CEDist+NMM; 5L,RLB-CL

CEDist+NMM; 5L,RLB-CL

NAMM; 5L,RLB-CL

ConN; 5L,RLB-CL

32000

34000

36000

38000

40000

42000

44000

46000

48000

50000

0.005 0.015 0.025 0.035 0.045 0.055 0.065

Fl
op

s

NSL-KDD, Predic on Time (min)

2L,LB-CL 2L,RLB-CL 5L,LB-CL 5L,RLB-CL

Fig. 18. Comparison of the proposed models in terms of Flops vs. Training Time (Left chart) and Flops vs. Prediction Time (Right chart) for the NSL-KDD dataset.
Each model is identified by the model name, the configuration by number of labels used in the dataset (e.g., 5L for the 5-labels configuration), and the model category
(i.e., LB-CL or RLB-CL).

ConCE; 2L,LB-CL

ConCE; 2L,LB-CL

NMM; 2L,RLB-CL

CEDist+NMM; 2L,RLB-CL

CEDist+NMM;
2L,RLB-CL

ConCE; 10L,LB-CL

ConLE; 10L,LB-CL

ConLE; 10L,LB-CL

E2NAMS; 10L,RLB-CL
ENMS; 10L,RLB-CL

CE+ENMS; 10L,RLB-CL
CE+NMM; 10L,RLB-CL

CEDist+NMM; 10L,RLB-CL
CEDist+NMM; 10L,RLB-CL

NAMM; 10L,RLB-CL

NAMM; 10L,RLB-CL

AMM; 10L,RLB-CL
ConN; 10L,RLB-CL

ConN; 10L,RLB-CL

46000

51000

56000

61000

66000

71000

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Fl
op

s

UNSW-NB15, Training Time (min)

2L,LB-CL 2L,RLB-CL 10L,LB-CL 10L,RLB-CL

ConCE; 2L,LB-CL

ConCE; 2L,LB-CL

ConLE; 2L,LB-CL

CEDist+NMM; 2L,RLB-CL

CEDist+NMM; 2L,RLB-CL

ConN; 2L,RLB-CL
ConCE; 10L,LB-CL

ConCE; 10L,LB-CL

ConLE; 10L,LB-CL

ConLE; 10L,LB-CL

E2NMS; 10L,RLB-CL

CE+ENMS;
10L,RLB-CL

NMM; 10L,RLB-CL

CE+NMM; 10L,RLB-CL

CEDist+NMM; 10L,RLB-CL

CEDist+NMM; 10L,RLB-CL

NAMM; 10L,RLB-CL

AMM; 10L,RLB-CL

AMM; 10L,RLB-CL

46000

51000

56000

61000

66000

71000

0.00 0.10 0.20 0.30 0.40 0.50 0.60

Fl
op

s

UNSW-NB15, Predic on Time (min)

2L,LB-CL 2L,RLB-CL 10L,LB-CL 10L,RLB-CL

Fig. 19. Comparison of the proposed models in terms of Flops vs. Training Time (Left chart) and Flops vs. Prediction Time (Right chart) for the UNSW-NB15
dataset. Each model is identified by the model name, the configuration by number of labels used in the dataset (e.g., 10L for the 10-labels configuration), and
the model category (i.e., LB-CL or RLB-CL).

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

225

training samples. This deterioration is much stronger than for the RLB-
CL models and occurs earlier in the graph, that is, the LB-CL models,
when doing multi-class classification, require many more training
samples than the alternative RLB-CL models. Collapsing all negative
labels into their best representative avoids the need to make a
comparison between the sample and all negative labels (number that
increases with the number of labels) and this more effective
representation also makes the training process more efficient.

4.7. Computational complexity comparison

Computational complexity information, for the proposed models, is
provided in this Section and in Figs.11 and 13. The number of trainable
weights and number of Floating Point Operations (Flops) required for
each model are given in detail in Figs. 11 and 13. These figures also
contain the training and prediction times per model. The number of
Flops is calculated for the complete computational graph [52] for each
model. This Section shows an overview comparison between the
different models considering the number of Flops in relation to the
training and prediction times (for the two datasets). Figs. 18 and 19
provide these comparison with a separate graph for Flops vs. Training
Time and Flops vs. Prediction Time. Points in the graphs represent
particular models. For reasons of space, not all models are identified,
only the most representative ones.

The location of the models on the charts (Figs. 18 and 19) follows a
noisy pattern for the charts that include training times. Conversely, we
find very stable patterns in the charts that consider prediction times
(even for different data sets).Training times are noisy due to the early-
stopping criteria used during training, which is stochastic in nature
(Section 3.5). The charts of Flops vs. Prediction Time have a well-
established pattern for the distribution of the different models:

- High prediction times with a low Flops number is for LB-CL models
with the multi-label configuration.

- Large Flops number with low prediction times is for the models based
on cross-entropy with contrastive regularization (RLB-CL) with the
multi-label configuration (e.g., CE+NMM, CEDist+NMM).

- Low Flops number with low prediction times is for LB-CL models
with binary-labels and most RLB-CL models with binary and multi-
label configurations. It is worth mentioning the particularly low
Flops number and prediction times, with the multi-label configura
tion, for the following models: NMM, AMM, ConN, ENMS and
E2NMS.

- It is interesting that there is no model with both high prediction times
and large Flops number, which means that the proposed models
compensate a complex architecture with a faster operation (fewer
comparisons required).

The number of trainable weights perfectly correlates with the num
ber of Flops needed for each model. The number of Flops is approxi
mately twice the number of trainable weights, as expected considering
the well-established relationship between Flops and matrix/vector di
mensions [53]. It is interesting that the main contribution to the Flops
required by each model is determined mainly by its number of weights
and much less, comparatively, by the operations necessary to calculate
the loss function.

The LB-CL models, for multi-class classification, show extremely low
Flops requirements but the highest prediction times. This is due to its
architecture, which at the time of prediction requires comparing each
sample with each of the labels to find the one closest to the sample; these
multiple comparisons, at the time of prediction, strongly penalize them.

4.8. Generic results

It is interesting how the increase in the dimensionality of the em
beddings does not necessarily produce an increase in performance, being
the opposite in many cases. It is also interesting that consistently good
performances are obtained with very low dimensionality embeddings.

With a reduced number of classes (labels), the LB-CL models have the
best classification and clustering performance, but, when the number of
classes increases, the RLB-CL models provide the best results. This is the
expected behavior because, as we replace the negative labels with their
best individual representative, we make the label separation process
more effective. The MMoLE architecture provides the worst perfor
mance, and its results are not shown to concentrate the presentation area
to the best models. The idea behind providing the different loss functions
(Sections 3.3 and 3.4) was to exploit the taxonomy given in Fig. 1 and
Table 2, trying to create models that implemented all the different types
of separation strategies (columns in Fig. 1). That is the reason for
creating the proposed loss functions as each one fits into different sep
aration strategies. The original aim was to check whether the separation
strategy had a significant impact on performance, which appears not to
be the case, as the best results are fairly evenly distributed among the
different separation strategies. What makes a clear difference is to use
LB-CL or RLB-CL methods, with a great impact depending on whether we
are doing binary or multiclass classification; with the LB-CL models

Fig. 20. Binary clusters: Shapes adopted by the clusters formed by the samples in embedding space around their corresponding label embeddings (points in red-
bold). The clusters correspond to the binary-class scenarios for NSL-KDD (Upper row) and UNSW-NB15 (Lower row). The columns correspond to different LB-CL/
RLB/CL models used to create the embeddings. All models use a 2-dimensional embedding space.

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

226

excelling in binary classification and the RLB-CL models in multiclass
classification.

Considering the results presented in the above sections, we can
conclude that the proposed models offer a competitive and alternative
framework to build classifiers for noisy and unbalanced datasets. The
reason for this can be found in the ability of these models to not only
bring the samples closer to their positive label, but also separate them
from their negative label representatives. That means that, for each
training iteration, all negative labels are considered at all times. Among
the negative labels there is a high probability of presence for the infre
quent ones, which implies that for each training iteration we will be
acting not only on the most frequent labels (which will appear more
often as a positive label), but also on the less frequent ones (which will
necessarily appear more often as part of the negative label sets).
Robustness to noise can also be explained by this constant iteration
between each sample and the full set of labels. This constant iteration
between a reduced set of label representatives with all samples provides
an averaging effect that limits the influence of labeling errors or sample
features noise.

While providing best classification performance, these models also
offer the possibility to employ the generated embeddings (in a low
dimensional space) to enhance other models when these embeddings are
used as a replacement for the original features. The embeddings can also
be used to create visual representation of the distribution of labels and
samples in embedding space. Considering that the models performance
is very remarkable even with 2-dimensional embeddings, we can use
them to perform visualizations without any additional dimensionality
reduction (e.g., PCA, t-SNE). Figs. 20 and 21 provide some examples of

the clusters formed by the samples in embedding space around their
corresponding label embeddings. These visualizations could be used to
facilitate the location in embedding space of a new sample and identify
outliers. We can also observe the different distributions of samples
around their labels depending on the model; with the exponential and
contrastive losses giving a more clustered distribution around the label
and the NMM a star-shaped distribution of samples around the labels
which occupy a central position in the graph.

All neural network models were implemented in python with Ten
sorflow/Keras [52]. To obtain the performance metrics we have used the
scikit-learn python package [54]. All computations were performed in a
commercial PC (i7-4720-HQ, 16 GB RAM).

5. Conclusion

This work presents a set of novel architectures and loss functions
applied to supervised contrastive learning, with the following
characteristics:

- Map sample features and labels to the same representation space.
- Create a type of classifiers based on ranking distances between

sample features and their labels, such that same-class samples will
gather around their label prototype in a common representation
space (embedding). We demonstrate that these classifiers outperform
other leading alternative algorithms in a variety of scenarios.

- Create an implicit dimensionality reduction technique by adopting
the sample embeddings and their distances to the label embeddings
as a substitute to the original features. We demonstrate that these

Fig. 21. Multi-class clusters: Shapes adopted by the clusters formed by the samples in embedding space around their corresponding label embeddings (points in
red-bold). The clusters correspond to the multi-class scenarios for NSL-KDD (Upper row) with 5 labels and UNSW-NB15 (Lower row) with 10 labels. The columns
correspond to different LB-CL/RLB/CL models used to create the embeddings. All models use a 2-dimensional embedding space.

M. Lopez-Martin et al.

Information Fusion 79 (2022) 200–228

227

low-dimensionality features increase the prediction performance of a
wide range of machine learning algorithms.

- Significatively reduce the number of pair-wise comparisons required
by alternative contrastive learning methods (sample-wise methods)
by ranking each sample against its positive/negative labels, rather
than its positive/negative samples, which is a much larger set.

- Introduce a way to further reduce the required comparisons by
replacing all negative labels with a single proxy-label to represent
them.

- Provide excellent prediction results with a very low dimensionality
of the embedding space, even with a dimension as low as 2.

We present a taxonomy of contrastive learning solutions to compare
the proposed methods with those existing in the literature. This taxon
omy is articulated using these differentiation parameters: a) the types of
embeddings used, b) the separation strategy, and c) labels availability
(whether the models are either supervised or unsupervised/self-
supervised). Following this taxonomy, the proposed models are group
ed into two categories according to whether all labels are used (LB-CL)
or only two labels are used (positive label and a proxy-label represen
tative of all negative labels) (RLB-CL). Several models and architectures
are proposed for each of these categories, analyzing their properties and
behavior under different conditions: small datasets, detection of un
known labels and computational complexity.

The experiments performed show that the proposed models are
consistently among the best in all experiments, being competitive in
prediction performance and low execution times. We show that the
proposed models can be particularly useful for noisy and unbalanced
multi-class classification problems by applying them to two well-known
intrusion detection datasets: NSL-KDD and UNSW-NB15.

We believe that the line of research presented here could yield
fruitful results in various fields. For future research, we intend to explore
further developments of the proposed framework in the following di
rections: combine it with knowledge distillation for contrastive learning
[55], create more sophisticated weighted losses and extend it to struc
tured outputs [56].

CRediT authorship contribution statement

Manuel Lopez-Martin: Investigation, Formal analysis, Software,
Writing – original draft. Antonio Sanchez-Esguevillas: Resources,
Writing – review & editing. Juan Ignacio Arribas: Funding acquisition,
Validation, Writing – review & editing. Belen Carro: Funding acquisi
tion, Supervision, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

The preparation of the article and the study of algorithms were
funded with Grant RTI2018-098958-B-I00 from Proyectos de I+D+i
«Retos investigación», Programa Estatal de I+D+i Orientada a los Retos
de la Sociedad, Plan Estatal de Investigación Científica, Técnica y de
Innovación 2017-2020. Spanish Ministry for Science, Innovation and
Universities; the Agencia Estatal de Investigación (AEI) and the Fondo
Europeo de Desarrollo Regional (FEDER).

Appendix. A

We will show the relationship between (a) the distance to a cluster’s centroid and (b) the average distance to all elements in the cluster. We refer to
the reference vector to which we want to compute the distance as A. X is the centroid of N vectors Xi i.e. X = 1

N
∑N

i=1Xi. We represent the distance
between vectors A and B as ‖ A − B ‖ which is the norm of the difference of the vectors, where ‖ A ‖= AT.A

Distance to centroid:
‖ X− A ‖=(X − A)T.(X − A) = XT

.X − 2XTA + AT.A=‖ X‖ − 2XTA+ ‖ A ‖= ‖ X‖ − 2ATX + ‖ A ‖ since XTA is a scalar.
Therefore, ‖ X − A ‖= ‖ X‖ − 2ATX+ ‖ A ‖ = 1

N ‖
∑N

i=1Xi‖ − 2ATX+ ‖ A ‖

Average distance to the N elements of the cluster:

1
N
∑N

i=1
‖Xi− A ‖=

1
N
∑

(Xi − A)T
.(Xi − A) =

1
N
∑

Xi
T .Xi − 2AT

(
1
N
∑

Xi

)

+
1
N
∑

AT .A =
1
N
∑

‖Xi‖ − 2AT X + ‖ A ‖

By the triangle inequality:
∑N

i=1‖Xi‖≥‖
∑N

i=1Xi‖, therefore:

1
N

∑N

i=1
‖Xi− A ‖≥

1
N
‖
∑N

i=1
Xi‖ − 2AT X+ ‖ A ‖= ‖X− A ‖

That means, that the average distance to the points of the cluster is an upper bound for the distance to the centroid of the cluster, and a mini
mization of that distance will also imply a minimization of the distance to the centroid.

References

[1] P.H. Le-Khac, G. Healy, A.F. Smeaton, Contrastive Representation Learning: A
Framework and Review, IEEE Access, 2020, https://doi.org/10.1109/
access.2020.3031549.

[2] A. Jaiswal, A.R. Babu, M.Z. Zadeh, D. Banerjee, F. Makedon, A survey on
contrastive self-supervised learning, (2020). http://arxiv.org/abs/2011.00362
(accessed January 23, 2021).

[3] S. Arora, H. Khandeparkar, M. Khodak, O. Plevrakis, N. Saunshi, A theoretical
analysis of contrastive unsupervised representation learning, (2019). http://arxiv.
org/abs/1902.09229 (accessed January 22, 2021).

[4] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, D.
Krishnan, Supervised contrastive learning, (2020). http://arxiv.org/abs/2
004.11362 (accessed December 14, 2020).

[5] K. Sohn, Improved deep metric learning with multi-class n-pair loss objective, in:
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, R. Garnett (Eds.), In Proceedings of the
30th International Conference on Neural Information Processing Systems (NIPS’16),
Curran Associates, Inc., Red Hook, NY, USA, 2016, pp. 1857–1865, in: https://proc
eedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-
Paper.pdf.

[6] A. van den Oord, Y. Li, O. Vinyals, Representation learning with contrastive
predictive coding, (2018). http://arxiv.org/abs/1807.03748 (accessed January 23,
2021).

[7] F. Schroff, D. Kalenichenko, J. Philbin, Facenet: a unified embedding for face
recognition and clustering, in: Proceedings of the 2015 IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 815–823, https://doi.org/
10.1109/CVPR.2015.7298682.

[8] R. Hadsell, S. Chopra, Y. LeCun, Dimensionality reduction by learning an invariant
mapping, in: Proceedings of the 2006 IEEE Computer Society Conference on

M. Lopez-Martin et al.

https://doi.org/10.1109/access.2020.3031549
https://doi.org/10.1109/access.2020.3031549
http://arxiv.org/abs/2011.00362
http://arxiv.org/abs/1902.09229
http://arxiv.org/abs/1902.09229
http://arxiv.org/abs/2004.11362
http://arxiv.org/abs/2004.11362
https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
http://arxiv.org/abs/1807.03748
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682

Information Fusion 79 (2022) 200–228

228

Computer Vision and Pattern Recognition, 2006, pp. 1735–1742, https://doi.org/
10.1109/CVPR.2006.100.

[9] H.O. Song, Y. Xiang, S. Jegelka, S. Savarese, Deep metric learning via lifted
structured feature embedding, (2015). http://arxiv.org/abs/1511.06452 (accessed
February 16, 2021).

[10] Y. Movshovitz-Attias, A. Toshev, T.K. Leung, S. Ioffe, S. Singh, No fuss distance
metric learning using proxies, (2017). https://arxiv.org/abs/1703.07464 (accessed
February 16, 2021).

[11] Z. Akata, F. Perronnin, Z. Harchaoui, C. Schmid, Label-embedding for image
classification, IEEE Trans. Pattern Anal. Mach. Intell. 38 (2015) 1425–1438,
https://doi.org/10.1109/TPAMI.2015.2487986.

[12] G. Wang, C. Li, W. Wang, Y. Zhang, D. Shen, X. Zhang, R. Henao, L. Carin, Joint
embedding of words and labels for text classification, in: Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics, Melbourne,
Australia, Long Pap., Association for Computational Linguistics, 2018,
pp. 2321–2331, https://doi.org/10.18653/v1/P18-1216. Volume 1.

[13] X. Wang, Y. Hua, E. Kodirov, G. Hu, R. Garnier, N.M. Robertson, Ranked list loss
for deep metric learning, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 5202–5211, https://doi.org/10.1109/
CVPR.2019.00535.

[14] S. Chopra, R. Hadsell, Y. LeCun, Learning a similarity metric discriminatively, with
application to face verification, in: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2005, pp. 539–546,
https://doi.org/10.1109/CVPR.2005.202, vol. 1.

[15] T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A simple framework for contrastive
learning of visual representations, (2020). https://arxiv.org/abs/2002.05709
(accessed January 22, 2021).

[16] J. Goldberger, S. Roweis, G.E. Hinton, R. Salakhutdinov, Neighbourhood
Components Analysis, NIPS, 2004.

[17] K.A.P. da Costa, J.P. Papa, C.O. Lisboa, R. Munoz, V.H.C. de Albuquerque, Internet
of things: a survey on machine learning-based intrusion detection approaches,
Comput. Netw. 151 (2019) 147–157, https://doi.org/10.1016/j.
comnet.2019.01.023.

[18] S. Gamage, J. Samarabandu, Deep learning methods in network intrusion
detection: a survey and an objective comparison, J. Netw. Comput. Appl. 169
(2020), 102767, https://doi.org/10.1016/j.jnca.2020.102767.

[19] S. Mahdavifar, A.A. Ghorbani, Application of deep learning to cybersecurity: a
survey, Neurocomputing 347 (2019) 149–176, https://doi.org/10.1016/j.
neucom.2019.02.056.

[20] H. Liu, B. Lang, Machine learning and deep learning methods for intrusion
detection systems: a survey, Appl. Sci. 9 (2019), https://doi.org/10.3390/
app9204396.

[21] D. Berman, A. Buczak, J. Chavis, C. Corbett, A survey of deep learning methods for
cyber security, Information 10 (2019) 122, https://doi.org/10.3390/
info10040122.

[22] A. Aldweesh, A. Derhab, A.Z. Emam, Deep learning approaches for anomaly-based
intrusion detection systems: a survey, taxonomy, and open issues, Knowl. Based
Syst. 189 (2020), 105124, https://doi.org/10.1016/j.knosys.2019.105124.

[23] K.Q. Weinberger, L.K. Saul, Distance metric learning for large margin nearest
neighbor classification, J. Mach. Learn. Res. 10 (2009) 207–244.

[24] B. Ghojogh, F. Karray, M. Crowley, Fisher and kernel fisher discriminant analysis:
tutorial, (2019). http://arxiv.org/abs/1906.09436 (accessed February 24, 2021).

[25] J. Snell, K. Swersky, R.S. Zemel, Prototypical networks for few-shot learning,
(2017). https://arxiv.org/abs/1703.05175 (accessed March 5, 2021).

[26] C.Y. Chuang, J. Robinson, L. Yen-Chen, A. Torralba, S. Jegelka, Debiased
contrastive learning, (2020). https://arxiv.org/abs/2007.00224 (accessed
December 14, 2020).

[27] J. Li, P. Zhou, C. Xiong, R. Socher, S.C.H. Hoi, Prototypical contrastive learning of
unsupervised representations, ArXiv. (2020). http://arxiv.org/abs/2005.04966
(accessed January 22, 2021).

[28] M. Kim, J. Tack, S.J. Hwang, Adversarial self-supervised contrastive learning,
(2020). https://arxiv.org/abs/2006.07589 (accessed December 14, 2020).

[29] H. Hindy, C. Tachtatzis, R. Atkinson, D. Brosset, M. Bures, I. Andonovic, C. Michie,
X. Bellekens, Leveraging Siamese networks for one-shot intrusion detection model,
(2020). http://arxiv.org/abs/2006.15343 (accessed January 23, 2021).

[30] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, J. Lloret, Conditional
variational autoencoder for prediction and feature recovery applied to intrusion
detection in iot, Sensors 17 (2017), https://doi.org/10.3390/s17091967
(Switzerland).

[31] N. Pappas, J. Henderson, GILE: a generalized input-label embedding for text
classification, (2018). http://arxiv.org/abs/1806.06219 (accessed December 14,
2020).

[32] H. Zhang, L. Xiao, W. Chen, Y. Wang, Y. Jin, Multi-task label embedding for text
classification, (2017). https://arxiv.org/abs/1710.07210 (accessed January 23,
2021).

[33] C. Chen, H. Wang, W. Liu, X. Zhao, T. Hu, G. Chen, Two-stage label embedding via
neural factorization machine for multi-label classification, in: Proceedings of the
AAAI Conference on Artificial Intelligence. 33(01), AAAI Press, 2019,
pp. 3304–3311, https://doi.org/10.1609/aaai.v33i01.33013304.

[34] J. Tack, S. Mo, J. Jeong, J. Shin, CSI: Novelty detection via contrastive learning on
distributionally shifted instances, (2020). http://arxiv.org/abs/2007.08176
(accessed February 27, 2021).

[35] S.F. Yilmaz, S.S. Kozat, Unsupervised anomaly detection via deep metric learning
with end-to-end optimization, (2020). https://arxiv.org/abs/2005.05865
(accessed February 3, 2021).

[36] P. Bedi, N. Gupta, V. Jindal, Siam-IDS: handling class imbalance problem in
intrusion detection systems using Siamese neural network, Proced. Comput. Sci.
171 (2020) 780–789, https://doi.org/10.1016/j.procs.2020.04.085.

[37] H. Jmila, M. Ibn Khedher, G. Blanc, M.A. El Yacoubi. Siamese network based
feature learning for improved intrusion detection, Springer International
Publishing, Cham, 2019, pp. 377–389, https://doi.org/10.1007/978-3-030-36708-
4_31.

[38] S. Moustakidis, P. Karlsson, A novel feature extraction methodology using Siamese
convolutional neural networks for intrusion detection, Cybersecurity 3 (2020) 16,
https://doi.org/10.1186/s42400-020-00056-4.

[39] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed representations
of words and phrases and their compositionality, (2013). https://arxiv.org/abs/
1310.4546 (accessed March 2, 2021).

[40] Y. Gao, N. Fei, G. Liu, Z. Lu, T. Xiang, S. Huang, Contrastive prototype learning
with augmented embeddings for few-shot learning, (2021). https://arxiv.
org/abs/2101.09499 (accessed February 3, 2021).

[41] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, ArXiv. (2014). htt
ps://arxiv.org/abs/1412.6980 (accessed January 15, 2021).

[42] M. Lopez-Martin, Mlopezm/Supervised-contrastive-learning-over-prototype-label-
embeddings: code for the paper: “supervised contrastive learning over prototype-
label embeddings for network intrusion detection,” (n.d.). https://github.com/ml
opezm/Supervised-contrastive-learning-over-prototype-label-embeddings
(accessed June 2, 2021).

[43] M. Tavallaee, E. Bagheri, W. Lu, A.A. Ghorbani, A detailed analysis of the KDD CUP
99 data set, in: Proceedings of the Second IEEE International Conference Computer
Intelligence Security Definition Application, IEEE Press, 2009, pp. 53–58.

[44] N. Moustafa, J. Slay, UNSW-NB15: a comprehensive data set for network intrusion
detection systems (UNSW-NB15 network data set), in: Proceedings of the 2015
Military Communications and Information Systems Conference, 2015, pp. 1–6,
https://doi.org/10.1109/MilCIS.2015.7348942.

[45] C.D. Manning, P. Raghavan, H. Schutze, Introduction to Information Retrieval,
Cambridge University Press, 2008, https://doi.org/10.1017/cbo9780511809071.

[46] D.M.W. Powers, Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation, (2020). https://arxiv.org/abs/2
010.16061 (accessed March 10, 2021).

[47] J.O. Palacio-Niño, F. Berzal, Evaluation metrics for unsupervised learning
algorithms, (2019). http://arxiv.org/abs/1905.05667 (accessed March 11, 2021).

[48] M. Steinbach, L. Ertöz, V. Kumar, The challenges of clustering high dimensional
data. New Directions in Statistical Physics, Springer Berlin, 2004, pp. 273–309,
https://doi.org/10.1007/978-3-662-08968-2_16.

[49] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, J. Lloret, Shallow neural
network with kernel approximation for prediction problems in highly demanding
data networks, Expert Syst. Appl. 124 (2019) 196–208, https://doi.org/10.1016/j.
eswa.2019.01.063.

[50] A.M. Aleesa, B.B. Zaidan, A.A. Zaidan, N.M. Sahar, Review of intrusion detection
systems based on deep learning techniques: coherent taxonomy, challenges,
motivations, recommendations, substantial analysis and future directions, Neural
Comput. Appl. 32 (2020) 9827–9858, https://doi.org/10.1007/s00521-019-
04557-3.

[51] D.H. Wolpert, Stacked generalization, Neural Netw. 5 (1992) 241–259, https://doi.
org/10.1016/S0893-6080(05)80023-1.

[52] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S.
Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, Tensorflow: large-scale machine
learning on heterogeneous distributed systems, ArXiv. (2016). https://arxiv.
org/abs/1603.04467 (accessed September 17, 2020).

[53] R. Tibshirani, Flops for basic operations. Convex Optimization, Carnegie Mellon
University, 2015. http://www.stat.cmu.edu/~ryantibs/convexopt-F18/scribes
/Lecture_19.pdf (accessed June 7, 2021).

[54] F. Pedregosa, V. Michel, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
J. Vanderplas, D. Cournapeau, F. Pedregosa, G. Varoquaux, A. Gramfort,
B. Thirion, O. Grisel, V. Dubourg, A. Passos, M. Brucher, M. Perrot, E. Duchesnay,
Scikit-learn: machine learning in python, J. Mach. Learn. Res. 12 (2011)
2825–2830. http://scikit-learn.sourceforge.net (accessed September 17, 2020).

[55] Y. Tian, D. Krishnan, P. Isola, Contrastive representation distillation, (2019). htt
ps://arxiv.org/abs/1910.10699 (accessed March 5, 2021).

[56] S. Belharbi, R. Hérault, C. Chatelain, S. Adam, Deep neural networks regularization
for structured output prediction, Neurocomputing 281 (2018) 169–177, https://
doi.org/10.1016/j.neucom.2017.12.002.

M. Lopez-Martin et al.

https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
http://arxiv.org/abs/1511.06452
https://arxiv.org/abs/1703.07464
https://doi.org/10.1109/TPAMI.2015.2487986
https://doi.org/10.18653/v1/P18-1216
https://doi.org/10.1109/CVPR.2019.00535
https://doi.org/10.1109/CVPR.2019.00535
https://doi.org/10.1109/CVPR.2005.202
https://arxiv.org/abs/2002.05709
http://refhub.elsevier.com/S1566-2535(21)00191-3/sbref0016
http://refhub.elsevier.com/S1566-2535(21)00191-3/sbref0016
https://doi.org/10.1016/j.comnet.2019.01.023
https://doi.org/10.1016/j.comnet.2019.01.023
https://doi.org/10.1016/j.jnca.2020.102767
https://doi.org/10.1016/j.neucom.2019.02.056
https://doi.org/10.1016/j.neucom.2019.02.056
https://doi.org/10.3390/app9204396
https://doi.org/10.3390/app9204396
https://doi.org/10.3390/info10040122
https://doi.org/10.3390/info10040122
https://doi.org/10.1016/j.knosys.2019.105124
http://refhub.elsevier.com/S1566-2535(21)00191-3/sbref0023
http://refhub.elsevier.com/S1566-2535(21)00191-3/sbref0023
http://arxiv.org/abs/1906.09436
https://arxiv.org/abs/1703.05175
https://arxiv.org/abs/2007.00224
http://arxiv.org/abs/2005.04966
https://arxiv.org/abs/2006.07589
http://arxiv.org/abs/2006.15343
https://doi.org/10.3390/s17091967
http://arxiv.org/abs/1806.06219
https://arxiv.org/abs/1710.07210
https://doi.org/10.1609/aaai.v33i01.33013304
http://arxiv.org/abs/2007.08176
https://arxiv.org/abs/2005.05865
https://doi.org/10.1016/j.procs.2020.04.085
https://doi.org/10.1007/978-3-030-36708-4_31
https://doi.org/10.1007/978-3-030-36708-4_31
https://doi.org/10.1186/s42400-020-00056-4
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/2101.09499
https://arxiv.org/abs/2101.09499
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://github.com/mlopezm/Supervised-contrastive-learning-over-prototype-label-embeddings
https://github.com/mlopezm/Supervised-contrastive-learning-over-prototype-label-embeddings
http://refhub.elsevier.com/S1566-2535(21)00191-3/sbref0043
http://refhub.elsevier.com/S1566-2535(21)00191-3/sbref0043
http://refhub.elsevier.com/S1566-2535(21)00191-3/sbref0043
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1017/cbo9780511809071
https://arxiv.org/abs/2010.16061
https://arxiv.org/abs/2010.16061
http://arxiv.org/abs/1905.05667
https://doi.org/10.1007/978-3-662-08968-2_16
https://doi.org/10.1016/j.eswa.2019.01.063
https://doi.org/10.1016/j.eswa.2019.01.063
https://doi.org/10.1007/s00521-019-04557-3
https://doi.org/10.1007/s00521-019-04557-3
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
http://www.stat.cmu.edu/~ryantibs/convexopt-F18/scribes/Lecture_19.pdf
http://www.stat.cmu.edu/~ryantibs/convexopt-F18/scribes/Lecture_19.pdf
http://scikit-learn.sourceforge.net
https://arxiv.org/abs/1910.10699
https://arxiv.org/abs/1910.10699
https://doi.org/10.1016/j.neucom.2017.12.002
https://doi.org/10.1016/j.neucom.2017.12.002

	Supervised contrastive learning over prototype-label embeddings for network intrusion detection
	1 Introduction
	2 Related works
	3 Methods description
	3.1 Contrastive learning overview
	3.2 Scenarios for contrastive learning
	3.3 Label based contrastive learning (LB-CL) (Type II)
	3.3.1 Max margin over label embeddings
	3.3.2 Contrastive over label embeddings
	3.3.3 Contrastive with cross entropy

	3.4 Representative Label Based Contrastive Learning (RLB-CL) (Type III)
	3.4.1 Representative label contrastive
	3.4.2 Cross entropy over labels with contrastive regularization
	3.4.3 Cross entropy over labels and distances with contrastive regularization

	3.5 Summary of proposed models and application scenarios

	4 Results
	4.1 Selected datasets
	4.2 Performance metrics
	4.3 NSL-KDD results
	4.3.1 Classification with proposed models
	4.3.2 Improvement of ML models

	4.4 UNSW-NB15 results
	4.4.1 Classification with proposed models
	4.4.2 Improvement of ML models

	4.5 Detection of unknown intrusions
	4.6 Behavior with small datasets
	4.7 Computational complexity comparison
	4.8 Generic results

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	Appendix A
	References

