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Abstract: Since different varieties of crops have specific applications, it is therefore important to
properly identify each cultivar, in order to avoid fake varieties being sold as genuine, i.e., fraud.
Despite that properly trained human experts might accurately identify and classify crop varieties,
computer vision systems are needed since conditions such as fatigue, reproducibility, and so on,
can influence the expert’s judgment and assessment. Chickpea (Cicer arietinum L.) is an important
legume at the world-level and has several varieties. Three chickpea varieties with a rather similar
visual appearance were studied here: Adel, Arman, and Azad chickpeas. The purpose of this paper
is to present a computer vision system for the automatic classification of those chickpea varieties.
First, segmentation was performed using an Hue Saturation Intensity (HSI) color space threshold.
Next, color and textural (from the gray level co-occurrence matrix, GLCM) properties (features) were
extracted from the chickpea sample images. Then, using the hybrid artificial neural network-cultural
algorithm (ANN-CA), the sub-optimal combination of the five most effective properties (mean of
the RGB color space components, mean of the HSI color space components, entropy of GLCM
matrix at 90◦, standard deviation of GLCM matrix at 0◦, and mean third component in YCbCr
color space) were selected as discriminant features. Finally, an ANN-PSO/ACO/HS majority voting
(MV) ensemble methodology merging three different classifier outputs, namely the hybrid artificial
neural network-particle swarm optimization (ANN-PSO), hybrid artificial neural network-ant colony
optimization (ANN-ACO), and hybrid artificial neural network-harmonic search (ANN-HS), was used.
Results showed that the ensemble ANN-PSO/ACO/HS-MV classifier approach reached an average
classification accuracy of 99.10 ± 0.75% over the test set, after averaging 1000 random iterations.

Keywords: Cicer arietinum L.; chickpea; classification; computer vision; feature selection; hybrid
ANN; image processing; legume; machine learning; majority voting; segmentation

1. Introduction

In 2017, global production of chickpea (Cicer arietinum L.) was estimated in almost 15 million
tons/year. In addition, the average yield of chickpea in Iran is lower than the world average. This
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difference between the mean and potential yield of this product may be due to its susceptibility to
biotic and non-biotic constraints [1]. About 75% of chickpea is used for human consumption and
from the remaining, 14% is used for livestock consumption, 7% is used for seed production, and 4%
is wasted at different stages of processing [2]. The importance of chickpea grading is highlighted
when consumers go to different distributors and ask them to prepare their order. In other words,
different varieties of chickpea have different applications, properties and nutritional values. Therefore,
it is important to correctly identify the product variety. This assessment is often made by human
experts, but for various reasons, such as expert psychological changes, fatigue, and so on, errors in the
evaluation of different varieties may occur. For this reason, it might be important to provide rapid
detection systems using new technology. One can consider at least two main reasons why it might
be important to provide rapid detection systems using new technology: first, different applications
and price of each chickpea variety; second, separation of each chickpea variety when stored in the
same tank, once they have been harvested. Different methods have been proposed for the grading
of different products. Some of these systems are based on physical and mechanical properties [3–5].
Although these systems are simple and inexpensive, they are not popular because of their often low
efficiency and capacity. For instance, in order to separate ripe fruit from immature, fruits were fed
in a row on a v-shaped conveyor. At the sorting points, the piston behind the belt vibrated at a
predetermined resonance frequency, producing movement over the fruits. Vibrant immature fruits
were cut into the lateral conveyor belts and separated from ripened ones. Another example was
the use of elasticity feature in the sorting of ripe fruit. Fruits were given a free fall onto a rotating
cylinder. As the rotary cylinder moved, the fruits had a specific downward parabola motion. Ripe
fruit with soft texture would be directed to closer outlet and unripe fruit with firm texture would
be directed farther to the second outlet. Since these classical food separation systems have a high
response time as compared to new computer vision techniques, thus classical system capacity is low.
In addition, it is also possible to damage fruit piece texture due to free fall or mechanical vibration [6].
In recent years, the application of new technologies such as computer vision and machine learning
has been increasing in various areas of the agricultural and food industries. These systems play an
important role in the precise and uniform control of food quality by eliminating manual inspection
and providing an appropriate objective, automatic, and non-intrusive way to distinguish the desired
product characteristics (color, size, shape, texture, and pests) for separation and classification [7,8]
purposes. Iannace et al. developed a model based on the artificial neural network to detect unbalanced
blades in an unmanned aerial vehicle (UAV) propeller. An air collision or a defect in the propellers of a
drone can cause the aircraft to fall to the ground, and thus its consequent destruction [9]. LeCun et al.
recognized document content using a gradient-based learning rule [10]. Uijlings et al. introduce a
selective search which combines the strength of both an exhaustive search and segmentation for object
recognition that results in a small set of data-driven, class-independent, high quality locations, yielding
a 99% recall value [11]. Kurtulmus and Unal [12] studied on seven different varieties of rapeseed.
Mass level imaging method was selected instead of kernel surface imaging for rapeseed classification.
Mass surfaces were constituted by spreading rapeseed samples in a 15–20 mm layer in a square frame
in order to prevent the scanner light from passing through the mass layer. Before scanning of each
individual sample, the scanner glass was thoroughly cleaned. An imaging chamber was designed
using a charged-coupled device (CCD) scanner and a personal computer under laboratory-controlled
conditions. Samples were placed in a frame of 36 × 36 mm2 to obtain a uniform image. A total of
525 samples were obtained by scanning 75 rapeseed samples from each variety in lab. Three classes
of texture properties were extracted from rapeseed image samples: Gray Level Co-ocurrence Matrix
(GLCM), defined as a space frequency matrix between adjacent pixels in a digitized image, Gray Level
Run Length Matrix (GLRLM), defined as the number of runs with pixels of gray level i and run length
j at a given image direction, and local binary patterns, that transform an image into an array of integer
labels describing small-scale appearance on an image. Next, three classifiers including support vector
machine classifications, k-nearest neighbor, and stochastic gradient descent, were used to classify
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seven rapeseed varieties. Results showed that the classifiers clustered samples with good accuracy.
Other researchers have proposed a new approach based on image analysis techniques to discriminate
defective lentil seeds from healthy ones. They extracted several color, shape and texture features.
These features were then used as inputs for Support Vector Machine (SVM) classification. Results
showed that their method achieved accuracy was 98.9% [13].

Liu et al. [14] identified different varieties of soybean as well as healthy versus unhealthy
seeds using image processing. For this purpose, 857 soybeans were collected, and then imaging
was performed. Shape, texture, and color characteristics were extracted. Finally, classification was
performed using an artificial neural network classifier with a 97% accuracy. Golpour et al. [15] used
texture features of digital images to identify paddy, brown, and white rice varieties. In this study,
2.5 kg with 11–12% moisture content of each variety was prepared. A total of 90 3D images of each
variety were captured under standard conditions. A total of 1350 images of 540 × 390 pixels were
generated. The classification was performed with a 97.67% accuracy.

The aim of the present paper is to develop a computer vision system in order to classify three
similar varieties of chickpea (Adel, Azad, and Arman) using an image processing and machine learning
ensemble ANN majority voting (MV) approach between hybrid artificial neural network- particle
swarm optimization (ANN-PSO), hybrid artificial neural network-ant colony optimization (ANN-ACO)
and hybrid artificial neural network-harmonic search (ANN-HS) outputs.

2. Materials and Methods

In this study, in order to train a computer vision system to be able to identify different chickpea
varieties, different steps are required. Figure 1 illustrates a flowchart for the various stages needed for
the proper design and functioning of our system. As can be seen in Figure 1, five main blocks exist in
our chickpea automatic classification system, being each block explained as follows.
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Figure 1. System block diagram for the classification of different chickpea (Cicer arietinum L.) varieties.

2.1. Varieties of Chickpea Used

Three different chickpea varieties, that are similar in appearance, were used to train the computer
vision system: Adel, Arman, and Azad. Adel variety is used mainly for making cakes and muffins in
the food industry, while Arman variety is used for livestock consumption, and Azad variety is used
as powder in various food preparations. Chickpeas are spread randomly, are not isolated and they
might touch one to each other. Each image contains around 60 chickpea samples. After each capture,
chickpeas were removed and replaced with a different batch sample. Samples were collected from
chickpea fields in Kermanshah, Iran (longitude 7.03◦ E; latitude 4.22◦ N). Figure 2 shows an example
image of each chickpea variety. 196, 192, and 197 images were obtained from Adel, Arman, and Azad
chickpea varieties, respectively. Images were taken using an industrial camera DFK 23GM021 (The
Imaging Source GmbH, Bremen, Germany), which has a 1/3 inch CMOS sensor, located at a fixed
distance of 15 cm over the samples. To create uniform light imaging conditions, white LEDs with 425
lux intensity were used.



Foods 2020, 9, 113 4 of 17
Foods 2020, 9, 113 4 of 18 

sensor, located at a fixed distance of 15 cm over the samples. To create uniform light 

(a) Adel (b) Arman (c) Azad

Figure 2. A sample image of each of the three chickpea (Cicer arietinum L.) varieties under 
consideration: (a) Adel, (b) Arman, and (c) Azad. 

2.2. Segmentation Operation 

As is well-known, a color space is an input space including three main color components. Each 
color space presents a particular value of a {3 × 1} vector size value for each pixel, comprising each 
of the three scalar color components in that particular color space. Since the values of pixels in 
background and chickpeas are different, it might be possible to separate pixels in chickpea 
(foreground) from pixels in the background. 

Hue Saturation Intensity (HSI) color space was used to segment chickpeas from background. In 
fact, after examining different color spaces and applying different thresholds, this color space was 
selected. Equation (1) describes segmentation threshold. This equation indicates that if the pixel with 
the first Hue channel of the color space is less than 0.4 or the second Saturation channel of this color 
space is greater than 0.15 or the third channel Intensity of this color space is greater than 0.07, then 
the pixel belongs to chickpea (foreground), otherwise pixel is part of background. 
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Figure 3 shows a flowchart to better understand the meaning of segmentation Equation (1). 
In Figure 4, a sample image through the whole segmentation process is shown. As a first step, 

the original image is converted to HSI color space. In the second step, based on Equation (1), most 
background pixels are removed. Finally, the remaining background pixels are removed based on 
morphology operator, removing objects with a number of pixels of less than 100. The last value was 
selected after trial and error. 

Figure 3. HSI color space segmentation Equation (1) flowchart for clarification purposes: background 
and foreground (chickpea) pixel segmentation. 

Figure 2. A sample image of each of the three chickpea (Cicer arietinum L.) varieties under consideration:
(a) Adel, (b) Arman, and (c) Azad.

2.2. Segmentation Operation

As is well-known, a color space is an input space including three main color components. Each
color space presents a particular value of a {3× 1} vector size value for each pixel, comprising each of
the three scalar color components in that particular color space. Since the values of pixels in background
and chickpeas are different, it might be possible to separate pixels in chickpea (foreground) from pixels
in the background.

Hue Saturation Intensity (HSI) color space was used to segment chickpeas from background. In
fact, after examining different color spaces and applying different thresholds, this color space was
selected. Equation (1) describes segmentation threshold. This equation indicates that if the pixel with
the first Hue channel of the color space is less than 0.4 or the second Saturation channel of this color
space is greater than 0.15 or the third channel Intensity of this color space is greater than 0.07, then the
pixel belongs to chickpea (foreground), otherwise pixel is part of background.

if either H < 0.4 OR S > 0.15 OR I > 0.07 then foreground (chickpea), else background (1)

Figure 3 shows a flowchart to better understand the meaning of segmentation Equation (1).
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Figure 3. HSI color space segmentation Equation (1) flowchart for clarification purposes: background
and foreground (chickpea) pixel segmentation.

In Figure 4, a sample image through the whole segmentation process is shown. As a first step,
the original image is converted to HSI color space. In the second step, based on Equation (1), most
background pixels are removed. Finally, the remaining background pixels are removed based on
morphology operator, removing objects with a number of pixels of less than 100. The last value was
selected after trial and error.
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Figure 4. An example in the chickpea (Cicer arietinum L.) image segmentation process. (a): Original
image, (b): Image converted to HSI color space, (c): Image after application of Equation (1), (d): Binary
image, (e): Improved binary after remove objects with pixels less than 100 (this value select with try
and error), (f): Segmented image.

2.3. Extraction of Different Properties of Each Chickpea Sample Image

After segmentation, different color and texture properties (features) of the chickpea samples were
extracted. The extracted color properties follow next: mean and standard deviation of the first, second,
third channels (components), and the mean of all three channels for RGB, HSV, HSI, YCbCr, CMY, and
YIQ color spaces [16]. Table 1 defines the six color spaces used in the present study, including proper
transformation equations from RGB color space.

Table 1. Definition of the various color spaces used in the present work. Equations to obtain these
channels from the original RGB values are also provided.

Color Space Color Channel Transformation from RGB Color Space

V V = M; withM = max{R, G, B}; m = min{R, G, B}; p = 60 m/M
HSV S S = (M−m)/M

H H =
{
p(G− B)ifM = R; 120 + p(B−R)ifM = G;

240 + p(R−G)ifM = B
}

HSI I I = (R + G + B)/3
S S = 255−m/I

YCrCb Cr Cr = 0.713(R−Y) + 128
Cb Cb = 0.564(B−Y) + 128

YIQ I I = −0.595716·R− 0.274453·G− 0.321263·B
Q Q = 0.211456·R− 0.522581·G− 0.311135·B

CMY C C = 255−R
M M = 255−G
Y Y = 255− B
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Since there are two properties, four channels (three color components plus the average of all them
three) and six color spaces, the total number of extractable properties in this case equals 2× 4× 6 = 48.
Texture properties from the input samples are related to the GLCM matrix. These properties were
extracted for four different neighborhood angles, including 0, 45, 90, and 135 degrees. Table 2 shows
the 20 extracted texture properties of each sample. Since there are 20 texture properties and four
possible neighborhood angles, the total extractable GLCM texture properties are 20× 4 = 80.

Table 2. Texture features extracted from the gray level co-occurrence matrix (GLCM) [17].

Number Feature Name Number Feature Name

1 Contrast 11 Inverse difference normalized (INN)
2 Sum of squares 12 Inverse difference moment normalized
3 Second diagonal moment 13 Diagonal moment
4 Mean 14 Sum average
5 Sum entropy 15 Variance
6 Difference variance 16 Sum variance
7 Difference entropy 17 Standard deviation
8 Information measure of correlation 1 18 Coefficient of variation
9 Information measure of correlation 2 19 Maximum probability
10 Inverse difference (INV) is homogeneity 20 Correlation

2.4. Feature Selection

Since the purpose of the proposed algorithm is to identify different chickpea varieties on-line, the
computation time is a critical parameter. For this reason, it is not possible to use all extracted properties
because of their time-consuming calculations in the classifications, together with the fact of potential
over-learning and thus poor generalization capability to the disjoint test set of an excessive number of
input features resulting in an excessive complex network. Therefore, it is necessary to select effective
properties among all extracted properties. In this paper, a hybrid artificial neural network-cultural
algorithm (ANN-CA) was used to select effective discriminant properties. CA is an optimization
algorithm that is inspired by cultural evolution and the impact of cultural and social space. In a society,
everyone who is most well- known has the most direct and indirect influence on cultural evolution. In
fact, these people will influence how they live, talk, walk, dress, and so on. In fact, the ultimate goal of
this algorithm is to find and develop these elites for cultural evolution [18]. In order to select effective
properties, this algorithm first considers the whole properties as a vector and then generates different
vectors of different smaller sizes and sends them as input to the artificial neural network. In order
to select effective properties, this algorithm first considers the whole properties as a vector and then
generates different vectors of different smaller sizes such as 3, 5, 9, and 11, and sends them as input to
the artificial neural network. Data samples were randomly divided into three disjoint sets. The first set
contains 70% of the data samples for training, the second one contains 15% of the data for validation
and the third one contains 15% of the data for testing, being all sets disjoint. In fact, the input of the
artificial neural network contains the extracted properties selected by CA algorithm and its outputs are
the class of the different chickpea varieties to whom the sample is expected to belong to. The mean
squared error (MSE) of each vector that enters the ANN is recorded. Finally, any feature vector with
the lowest MSE is selected as the optimal vector, and the properties within that vector are selected as
the effective discriminant properties. Table 3 gives the parameters of the neural network used to select
effective properties with CA algorithm.



Foods 2020, 9, 113 7 of 17

Table 3. Parameter values in the artificial neural network (ANN) that are used in hybrid ANN-CA
architecture in order to select the most effective (discriminant) features [19].

ANN Parameter Value

Number of hidden layers 2
Number of neurons of the hidden layer 8, 19

Transfer function tribas, tansig
Backpropagation network training function trainlm

Backpropagation weight/bias learning function learncon

2.5. Ensemble Classification of Different Chickpea Varieties: Majority-Voting (MV)

Since the main purpose of the ANN majority-voting (MV) method [20] is to perform a merged
(combined) classification of three chickpea cultivars, three hybrid neural network classifiers were
performed: ANN-PSO, ANN-ACO and ANN-HS. MV decision is based on voting from each
independent classifier and agreeing as final consensus winning output the class which was voted most
among the various single classifiers.

2.5.1. Hybrid ANN-PSO Classifier

The multilayer perceptron (MLP) ANN has several adjustable parameters that optimally adjust
to ensure its high performance [21]. These adjustable parameters include: the number of neurons,
the number of layers, the transfer function, the back-propagation network training function, and the
back-propagation weight/bias learning function. The number of neurons per layer ranged between 0
and 25 (first layer being between 1 and 25 neurons). The number of layers is at least 1 and at most
3. Transfer functions that can be selected including: tansig, logsig, purelin, hardlim, compet, hardlims,
netinv, poslin, radbas, satlin, satlins, softmax, tribas. The backpropagation training algorithm will be
selected from: trainlm, trainbfg, trainrp, traincgb, traincgf, traincgp, traincgb, trainscg, trainoss, traingda,
traingdx, trainb, trainbfgc, trainbr, trainbuwb, trainc, traingdm, trainr, trains. Finally, the weight/bias
learning function can be selected among functions: learngdm, learngd, learncon, learnh, learnhd, learnis,
learnk, learnlv1, learnlv2, learnos, learnp, learnpn, learnsom, learnsomb, learnwh. These abbreviations are
functions defined under MatlLab software, [19]. Here, particle swarm optimization (PSO) was used in
order to adjust parameter values. PSO is a meta-heuristic algorithm that mimics the mass movements
of birds/bees to optimize different problems. This algorithm was first proposed by Kennedy and
Eberhart [22]. Each answer to the problem is considered a bit. Every single particle is constantly
searching and moving. The motion of each particle depends on three factors: the current position of
the particle, the best position the particle has ever had, and the best position the entire set of particles
has ever had. This algorithm considers the parameters in the form of a vector with a minimum size of
4 and a maximum of 8 to adjust the parameters of the artificial neural network. For example, consider
the vector x = [12, 17, tansig, poslin, traingda, learnhd]. This vector shows that the proposed neural
network is formed by a two-layer ANN through particle swarm algorithm with 12 and 17 neurons and
tansig and poslin transfer functions. It is also a function of the proposed traingda back-propagation
network training and learnhd back-propagation weight/bias learning function. After adjusting the
artificial neural network parameters by this algorithm, the MSE of the ANN output for each input
vector selected by the PSO algorithm is stored. This way, the inputs of the ANN are the selected
discriminant features and its output are the different classes (chickpea varieties). Finally, any vector
with the least MSE is considered as the optimal vector and the values of the parameters in that vector
are considered as optimal values. In the present study, more than 2500 different structures of the
network were investigated, and an optimal structure was finally selected. After selecting the optimal
structure to evaluate its validity, 1000 repetitions (replicates) were performed uniform selecting train,
validation, and test set samples. It should be noted that 70% of the data were used for training and
validation and 30% for testing.
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2.5.2. Hybrid ANN-ACO Classifier

The steps of selecting the ANN- ACO adjustable parameters are exactly like the PSO algorithm
used in the hybrid ANN-PSO approach. This algorithm is a method for solving optimization problems.
The algorithm is implemented based on ants’ path to find food. In fact, depending on the path length
and quality of food, the ants put some amount of substance called pheromone in their path. Other
ants also sense the pheromone odor and follow the same path, so the pheromone value in that path
increases. The shortest route from the nest to the food source has more pheromones, so the shortest
route is chosen by ants [23]. Based on this principle, an ant-community optimization algorithm was
implemented in MatLab software and used for the present study.

2.5.3. Hybrid ANN-HS Classifier

In this case, HS algorithm, like the two above mentioned algorithms, adjusts the adjustable
parameters of the MLP neural network. This algorithm is also a meta-heuristic algorithm that imitates
the natural process of music optimization. In song composition, the gamut of each instrument
determines the beauty and harmony of the song when several instruments are played at the same time,
in other words, each instrument must be optimized, and therefore the value of the objective function is
determined by the values of the variables [24].

2.5.4. Ensemble Final Classification through MV

After performing classification with hybrid ANN-PSO, hybrid ANN-ACO and hybrid ANN-HS
algorithms, the MV approach was used to finalize the results combining their outputs. In precise terms,
according to the MV method, the output class with the highest vote among the three independent
classifiers is selected as the final winning output class.

2.6. Optimal Structures of ANNs Adjusted by Different Algorithms

Table 4 gives the optimal structure of the ANN-PSO, ANN-ACO, and ANN-HS hybrid classifiers.

Table 4. Optimal architecture of hidden ANN layers determined by PSO, ACO and HS algorithms. [19]

Classifier Num. of
Layers

Number of
Neurons Transfer Function

Backpropagation
Network Training

Function

Backpropagation
Weight/Bias Learning

Function

ANN-PSO 3 First layer: 16 First layer: netinv learnlv1 traingdx
Second layer: 9 Second layer: satlins
Third layer: 18 Third layer: compet

ANN-ACO 3 First layer: 12 First layer: satlin learnlv2 traingd
Second layer: 3 Second layer: satlin
Third layer: 13 Third layer: poslin

ANN-HS 3 First layer: 13 First layer: tansig learnp trainlm
Second layer: 10 Second layer: satlin
Third layer: 17 Third layer: logsig

As can be inferred from Table 4, the best structure for all methods is a structure with three layers.
Also, in this table it is shown that the best number of neurons of each layer that was selected, based on
the ACO, PSO, and HS algorithms, are below 20, thus implying that there is no need for networks to be
highly complex.

2.7. Criteria Used to Evaluate the Performance of the Different Classifiers: Confusion Matrices and Receiver
Operating Curves (ROC) (Test Set)

Two categories of indices were used to evaluate the performance of different classifiers. First
group consists in the parameters related to the confusion matrix. This matrix is a square matrix that
has the number of classes as number of rows and columns. For example, if there are 3 classes, the
matrix has a 3× 3 dimension. Rows in this matrix show the actual (true) class value and columns the
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predicted class value. Parameters that evaluate the performance of the classifiers based on this matrix
include sensitivity or recall, accuracy, specificity, precision, and F1-score. In the following, we will
define each parameter:

Below are the formulas to be used inside confusion matrix:

• Sensitivity, recall, true positive (TP) rate or probability of detection: measures the proportion of
actual positives that are correctly identified as such (2)

• Accuracy or correct classification rate (CCR): total percentage of correct system classifications (3)
• Specificity or true negative (TN) rate: percentage of inaccurate samples that are correctly

identified (4)
• Precision or positive predictive value: is the fraction of relevant instances among the retrieved

instances (5)
• F1-score: recall and precision harmonic weighted average (6).

Sensitivity = Recall(r) =
TP

TP + FN
× 100 (2)

Accuracy (CCR) =
TP + TN

TP + TN + FP + FN
× 100 (3)

Specificity =
TN

TN + FP
× 100 (4)

Precision(p) =
TP

TP + FP
× 100 (5)

F1− score = 2
pr

p + r
(6)

Here, TP is equal to the number of samples in each class that are correctly classified. TN is equal
to the number of samples on the main diagonal of the confusion matrix minus the number of samples
correctly classified in the class in question. False negative (FN) is defined as the sum of the horizontal
samples of the class under consideration minus the number of samples that are correctly classified in
the class in question. Finally, false positive (FP) is the sum of the vertical samples of the class examined
minus the number of samples that are correctly classified in the considered class [25].

Second performance category comprises the ROC chart (plot). This chart has two axes and a
bisector straight line: the horizontal axis being the FP rate, FP

TN+FP , (1 − specificity), and the vertical
axis being the TP rate, sensitivity, c.f. Equation (2). The ROC curve is generated by slowly varying
the output detection threshold of the classifier and counting the fraction of FP and TP rates over
the test set for each given classifier detection threshold level. The closer the ROC curve goes to the
upper-left corner, the high performance of the classification system. Therefore, whenever the diagram
has an orthogonal look, this indicates high performance of the classification system [26]. A numerical
objective criterion that examines the performance of the classifier in the

{
1− specificity, sensitivity

}
ROC chart plane, or alternatively the {FPR, TPR} plane, is the area under the ROC graph (AUC). The
minimum value for this criterion is 0.5 (equivalent to the toss of a coin) and the maximum is 1 (perfect
classification with 100% accuracy, FP = FN = 0).

3. Results

3.1. Effective Discrimiant Property (Feature) Selection

Discriminant properties selected by the ANN-CA include five features: average channels of first,
second and third RGB color space, average first channel of HSI color space, neighborhood entropy of
90◦ and 0◦ in GLCM, and the third channel of YCbCr color space.
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3.2. Classification Using Hybrid ANN-PSO Classifier

Table 5 gives confusion matrix, classification error (per class) and the accuracy (CCR) of the hybrid
ANN-PSO classifier, after 1000 iterations. As can be observed, from the 177,000 data samples, only
2385 samples are incorrectly classified in a class other than their original true class, which reduces the
maximum possible accuracy of ANN-PSO classification by a factor of only 1.35%.

Table 5. Confusion matrix including correct classification rate (CCR) for the ANN-PSO classifier:
Adel, Arman and Azad chickpea (Cicer arietinum L.) varieties (1000 random iterations, test, train and
validation sets).

Classifier Data Set
Type

Real/Estimated
Class Adel (1) Arman (2) Azad (3) Total

Data
Classification Error

Per Class (%)
CCR
(%)

ANN-PSO

Test
Adel 57,854 1048 98 59,000 1.94

98.65Arman 852 57,147 1 58,000 1.47
Azad 386 0 59,614 60,000 0.643

Train
Adel 114,418 3582 0 118,000 3.03

98.71Arman 0 115,000 0 115,000 0
Azad 936 0 117,064 118,000 0.793

Validation
Adel 18,721 272 7 19,000 1.47

98.09Arman 68 18,932 0 19,000 0.358
Azad 741 0 18,259 19,000 3.9

Figure 5 shows a box diagram of CCR and AUC levels below the ROC curve of Adel, Arman, and
Azad classes (AUC1, AUC2, and AUC3, respectively). Among the 1000 replicates, only 10 replicates
had a CCR below 95%. Also, more than 50% of replicates have a CCR above 99%. Therefore, it can be
concluded that this classifier has been able to be performed the classification with high accuracy.
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3.3. Classification Using Hybrid ANN-ACO Classifier

Table 6 gives the confusion matrix, error rate and the correct classification rate of the ANN-ACO
classifier after averaging 1000 random iterations. As can be seen, the highest classification error belongs
to the Adel variety class where from 59,000 input samples, a total of 941 samples are incorrectly
classified resulting in a classification error of 1.59%. The lowest classification error belongs to the Azad
class, which is less than 0.5%. Interestingly, both the ANN-PSO and ANN-ACO classifiers did not
misclassify any single Azad samples as Arman ones, indicating the robustness of the classifiers.
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Table 6. Confusion matrix including correct classification rate (CCR) for ANN-ACO classifier: Adel,
Arman and Azad chickpea (Cicer arietinum L.) varieties (1000 uniform random iterations, test train and
validation sets).

Classifier Data Set
Type

Real/Estimated
Class Adel (1) Arman (2) Azad (3) Total

Data
Classification Error

Per Class (%)
CCR
(%)

ANN-ACO

Test
Adel 58,059 895 46 59,000 1.59

98.94Arman 656 57,315 29 58,000 1.18
Azad 243 0 59,757 60,000 0.405

Train
Adel 117,074 926 0 118,000 0.785

99.52Arman 753 114,247 0 115,000 0.655
Azad 0 0 118,000 118,000 0

Validation
Adel 18,847 153 0 19,000 0.805

98.88Arman 0 18,804 196 19,000 1.03
Azad 0 289 18,711 19,000 1.52

Figure 6 illustrates a box diagram of CCR and AUC under ROC curve of the three classes for
ANN-ACO classifier, 1000 random repeated simulations. As can be seen from Figure 6, in this case only
two simulations out of 1000 have a correct classification rate below 95%. On the other hand, the boxplot
diagrams for the areas under the ROC curve (AUC) of the three chickpea varieties are presented, with
values above 0.95 in all 1000 simulations. The more compact box diagram, however, indicates the
closer proximity of the results in different iterations, resulting in a high level of classification accuracy
with very limited dispersion.
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3.4. Classification Using Hybrid ANN-HS Classifier

Table 7 gives the confusion matrix, the correct and incorrect classification rates of each class for the
ANN-HS classifier case, after performing 1000 independent iterations. The mean correct classification
rate of this classifier is 98.99% being able to have the least classification error among the three different
classifier techniques implemented.
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Table 7. Confusion matrix including correct classification rate (CCR) for ANN-HS classifier: Adel,
Arman and Azad chickpea (Cicer arietinum L.) varieties (1000 uniform random iterations, test train and
validation sets).

Classifier Data Set
Type

Real/Estimated
Class Adel (1) Arman (2) Azad (3) Total

Data
Classification Error

Per Class (%)
CCR
(%)

ANN-HS

Test
Adel 58,059 895 46 59,000 1.59

98.99Arman 601 57,381 18 58,000 1.07
Azad 235 0 59,765 60,000 0.392

Train
Adel 116,841 1159 0 118,000 0.982

99.67Arman 0 115,000 0 115,000 0
Azad 0 0 118,000 118,000 0

Validation
Adel 18,841 159 0 19,000 0.837

99.56Arman 89 18,911 0 19,000 0.468
Azad 0 0 19,000 19,000 0

Figure 7 shows the box diagram of the CCR, and AUC of hybrid ANN-HS after 1000 iterations. It
also shows that more than half of the simulations have a correct classification rate over 99%.
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4. Discussion

Table 8 gives confusion matrix and correct and incorrect classification rates of each class using
ANN ensemble PSO/ACO/HS majority-voting (MV) ensemble of neural networks. Among the 177,000
samples, only 1592 samples were incorrectly classified resulting in a correct classification rate of 99.10%.
This rate is very high and reflects the superiority of the combined neural network ensemble majority
voting approach over other single hybrid ANN classification methods, as expected given the fact that
it makes use of information coming from three independent classifiers.

Table 8. Confusion matrix including correct classification rate (CCR) for ensemble ANN Majority-Voting
(MV): Adel, Arman and Azad chickpea (Cicer arietinum L.) varieties (1000 uniform random iterations,
test set).

Ensemble
Classifier

Real/Estimated
Class

Adel
(1)

Arman
(2)

Azad
(3)

Total
Data

Classification Error
Per Class (%)

CCR
(%)

PSO/ACO/HS
ensemble

Majority-Voting

Adel 58,184 804 12 59,000 1.38
99.10Arman 508 57,490 2 58,000 0.879

Azad 266 0 59,734 60,000 0.443



Foods 2020, 9, 113 13 of 17

Figure 8 shows a box diagram of the correct classification rate (CCR) and areas under the ROC
curve (ACU) of the three classes by the neural ensemble Majority-Voting (MV) after 1000 iterations. As
shown in the box diagrams MV CCR is above 99% in more than 50% of the simulations.
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(Cicer arietinum L.) varieties (1000 uniform random simulations, test set).

Regarding boxplot diagrams for AUC, they also show that more than half of the simulations have
values above 0.99. It can be concluded that MV method performs very well in classifying different
chickpea varieties.

Table 9 gives the different criteria for evaluating the performance of different classifiers used
here after 1000 iterations. All classifiers have accuracy mean values above 98%, implying that all
classifiers have high performance in classifying different chickpea varieties. By comparing the accuracy
of the classifiers, it can be found that the highest accuracy is for the MV method with a mean value of
99.10%. Also, the MV method has a lower standard deviation value than other classifiers, indicating the
robustness of the MV method in accurately classifying all three chickpea varieties. Figure 9 shows the
ROC curves by the four hybrid classifiers: ANN-PSO, ANN-ACO, ANN-HS and ANN-PSO/ACO/HS
ensemble majority-voting (MV). As can be seen, the ROC curves for each of the three classes produced
by the ANN-MV scheme are very close to the top-left chart corner, indicating its superior performance.

Table 9. Comparison of the performance of the four classifiers (ANN-PSO, ANN-ACO, ANN-HS and
ensemble ANN PSO/ACO/HS-MV): recall, specificity, precision, f1-score, AUC and accuracy (1000
iterations, test set).

Classifier Class Recall
(%)

Specificity
(%)

Precision
(%)

F1-Score
(%)

AUC (Mean ± Std.
Dev.)

Accuracy % (Mean
± Std. Dev.)

ANN-PSO
Adel 97.91 99.03 98.06 97.98 0.9963 ± 0.0097

98.65 ± 1.31Arman 98.19 99.28 98.53 98.36 0.9988 ± 0.0026
Azad 99.83 99.66 99.36 99.59 0.9999 ± 0.0011

ANN-ACO
Adel 98.47 99.2 98.4 98.44 0.9978 ± 0.0047

98.94 ± 0.89Arman 98.46 99.42 98.82 98.64 0.9888 ± 0.0029
Azad 99.87 99.79 99.59 99.73 0.9999 ± 0.0006

ANN-HS
Adel 98.58 99.2 98.4 98.49 0.9975 ± 0.0051

98.99 ± 0.87Arman 98.46 99.48 98.93 98.69 0.9984 ± 0.0035
Azad 99.89 99.79 99.61 99.75 1.0000 ± 0.0004

ensemble ANN
PSO/ACO/HS

Majority-Voting

Adel 98.69 99.31 98.62 98.65 0.9898 ± 0.0088
99.10 ± 0.75Arman 98.62 99.57 99.12 98.87 0.9822 ± 0.0083

Azad 99.97 99.77 99.56 99.77 0.9977 ± 0.0037
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We have also computed precision-recall curves AUC as an additional measure of the classifier
performance, as shown in Table 10. Consistent results are shown for all four classifiers, but the best
pr-AUC for Adel and Arman varieties is found with the ANN-ACO classifier, while the best pr-AUC
value for Azad variety is found with the ANN-HS classifier.

Table 10. Mean ± std. AUC values for the precision-recall curves(pr-AUC): ANN-PSO, ANN-ACO,
ANN-HS and ensemble ANN PSO/ACO/HS-MV classifiers (1000 iterations, test set).

Chickpea Variety/Classifier Adel Arman Azad

ANN-PSO 0.9763 ± 0.0206 0.9794 ± 0.0098 0.9822 ± 0.0295
ANN-ACO 0.9799 ± 0.0083 0.9796 ± 0.0085 0.9831 ± 0.0031
ANN-HS 0.9795 ± 0.0081 0.9775 ± 0.0132 0.9832 ± 0.0024

ensemble ANN PSO/ACO/HS
Majority-Voting 0.9766 ± 0.1001 0.9756 ± 0.0122 0.9818 ± 0.0029

Finally, although it is not possible to directly compare the results of the present study due to
different seed, different imaging conditions, different image database and other parameters, it may
be useful to compare the accuracy of the method here proposed with others from the state of the art.
To that aim, Table 11 compares the accuracy of different classifiers used by other authors in classify
different legume varieties. The proposed method has a higher number of input samples and higher
accuracy as compared to others.
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Table 11. Accuracy of the classifiers reported in different food seeds. Please note no direct comparison
possible given the various works do not share the same image database and are for different food seeds.

Paper Number of Seed Samples Correct Classification Rate (%)

Li et al. [27] (corn) 100 96.67
Men [28] (pea) 120 95

Aznan et al. [29] (rice) 120 96
Kurtulmus et al. [30] (pepper) 832 84.94

Here proposed (chickpea) 177,000 99.10

To sum up, the proposed system works in four different stages described as follows:

1. Chickpea bunch imaging acquisition under light controlled conditions, with white LEDs with 425
lux intensity.

2. Automatic chickpea image segmentation.
3. Automatic extraction of different discriminant features, including: average channels of first,

second, and third RGB color space, average first channel of HSI color space, neighborhood Entropy
of 90◦ and 0◦ in GLCM, and third channel of YCbCr color space, from each input sample image.

4. Output chickpea variety classification by a neural network ensemble majority-voting.

5. Conclusions

Given that there is always some powder amount in the pile, segmentation should be performed
with high accuracy, since if the powder is not properly eliminated during segmentation, results will be
produced in the feature extraction phase. After examining different color spaces, HSI was selected as a
suitable color space for segmentation purposes.

Among the effective (discriminant) properties selected by the hybrid ANN-CA, there are three
color and two texture properties, the last ones belonging to the gray surface co-occurrence matrix. This
implies that it is important to identify Adel, Arman, and Azad chickpea varieties using a combination
of both color and texture properties.

The evaluation of classifier results with multiple iterations is more realistic than only single run
due to the random nature of neural networks learning phase. For that reason, after determining the
best structure of neural networks, 1000 iterations were performed to obtain statistically valid results.

The combined majority voting ensemble provides more confident results since it is based on the
classification of the majority of three different hybrid ANN classifiers. The results showed that majority
voting had the highest classification accuracy and lower dispersion (variance) as compared to the single
hybrid ANN classifiers. Given the high accuracy of the proposed approach, we believe it could in
principle be extended and applied under real conditions in the food industry in order to automatically
classify several chickpea varieties. The input digitized chickpea image database is included as a 37 s
mp4 video file for reproducibility and comparison purposes as Video S1.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/2/113/s1.
Video S1: Input data digitized chickpea image database.
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