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Catalytic synthesis of phenols with nitrous 
oxide

Franck Le Vaillant1, Ana Mateos Calbet1,3, Silvia González-Pelayo1,3, Edward J. Reijerse2, 
Shengyang Ni1, Julia Busch1 & Josep Cornella1 ✉

The development of catalytic chemical processes that enable the revalorization of 
nitrous oxide (N2O) is an attractive strategy to alleviate the environmental threat 
posed by its emissions1–6. Traditionally, N2O has been considered an inert molecule, 
intractable for organic chemists as an oxidant or O-atom transfer reagent, owing to 
the harsh conditions required for its activation (>150 °C, 50‒200 bar)7–11. Here we 
report an insertion of N2O into a Ni‒C bond under mild conditions (room temperature, 
1.5–2 bar N2O), thus delivering valuable phenols and releasing benign N2. This 
fundamentally distinct organometallic C‒O bond-forming step differs from the 
current strategies based on reductive elimination and enables an alternative catalytic 
approach for the conversion of aryl halides to phenols. The process was rendered 
catalytic by means of a bipyridine-based ligands for the Ni centre. The method is 
robust, mild and highly selective, able to accommodate base-sensitive functionalities 
as well as permitting phenol synthesis from densely functionalized aryl halides. 
Although this protocol does not provide a solution to the mitigation of N2O emissions, 
it represents a reactivity blueprint for the mild revalorization of abundant N2O as an O 
source.

The increasing emission of greenhouse gases represents a global envi-
ronmental threat, and strategies to address this issue have been the 
focus of intense research in recent times1,2. From the sustainability 
point of view, the development of chemical processes that extend 
beyond the traditional degradations and repurpose such gaseous 
by-products as useful synthons to produce valuable chemical feed-
stocks is highly desirable. Whereas the revalorization of CO2 or CH4 
as carbon sources for organic synthesis through catalytic strategies 
has received a great deal of attention12,13, much less interest has been 
focused on the chemical transformation of another major contribu-
tor to the global warming: N2O. Governmental reports and recent 
scientific evidence both warn of the consequences that result from 
the increasing presence of this undervalued gas in the atmosphere3–5. 
N2O exhibits a global warming potential >300 times that of CO2, with 
a decomposition half-time in the atmosphere of >100 years6. Human 
activities have accelerated the emissions, with an estimated rate of 
increase for N2O of 2% per decade. Yet, a detailed analysis through the 
lens of sustainable synthesis presents a unique opportunity for N2O 
revalorization, as it represents an excellent O-atom source: it is read-
ily available, non-toxic (laughing gas) and releases benign N2 as a by-
product on O removal. Conversely, N2O is an inert gas, whose activation 
requires high temperatures (140–350 °C) and pressures (50–200 bar), 
resulting in limited applications as an oxidant for organic synthesis7,8,14.  
Yet, the structure of N2O has captivated chemists, who studied in detail 
coordination modes and the reactivity thereof in a plethora of metal 
complexes9. However, few reports focused on its activation towards 
the formation of C‒O bonds10,15 (arguably among the most valuable 

bonds in organic synthesis), as it would permit access to highly coveted 
alcohols, ethers, epoxides and so on. Still, these few examples rely on 
traditional metal–oxo reactivity, which requires high temperatures 
(100–200 °C) and pressures (10 bar)11 or long reaction times (1 ton per 
week)16 (Fig. 1a). In a groundbreaking report17, a fundamentally different 
outcome was observed: on exposure to a N2O atmosphere, the O atom 
could be inserted into a Hf‒Ph bond of complex 1 forging the desired 
Hf‒O‒Ph (2) with extrusion of N2. However, regioselectivity issues arose, 
as the O atom was competitively transferred to the hydride ligand, thus 
also producing a Hf‒O‒H complex (3). Mechanistic studies on the O 
insertion step into various M‒C(sp2) bonds using N2O, peroxides or 
oxygen suggest that an organometallic Baeyer–Villiger (OMBV)-type 
mechanism is operating, whereby the anionic carbon migrates to the 
coordinated O atom, forging the M‒O‒C bond18–23. On the basis of this 
reactivity, we aimed at unlocking the potential of N2O as an O-atom 
source in a fundamentally different catalytic synthesis of phenols. 
In the canonical transition-metal-catalysed phenol synthesis from 
aryl halides24–28, th‑e C(sp2)‒O bond-forming step proceeds through 
the well-established ligand exchange with a nucleophilic O source. 
On reductive elimination with the aryl group, the desired C(sp2)‒O 
bond is formed while the metal center is twofold-reduced (Fig. 1b, left).  
The source of O in these cases is usually H2O or a protic O-based 
nucleophile  in combination with a base that lead to the correspond-
ing phenol29. In the alternative catalytic cycle proposed herein, the 
fundamental step for C(sp2)‒O bond formation capitalizes on the OMBV-
type mechanism: on N2O coordination to the metal centre, the electro-
philic O is eventually inserted into the M‒C bond, with concomitant 
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formation of N2 (Fig. 1b, right). In contrast to the traditional synthesis 
of phenols, after C‒O bond formation the oxidation state of the metal 
centre remains intact, thus requiring an external reductant to close the 
cycle. To orchestrate this reductive process, we focused our attention 
on Ni and its demonstrated ability to manoeuvre between different 
oxidation states through single-electron transfer30–32. Here we dem-
onstrate that a mechanistically guided approach for the activation of 
N2O with organometallic complexes results in the development of a 
mild and selective catalytic synthesis of high-value phenols from aryl 
halides using N2O as an electrophilic O source33. The mild conditions 
(25 °C and 1.5–2 atm) allow the accommodation of a variety of func-
tional groups, including base-sensitive moieties, thus providing an 
orthogonal strategy to the current technologies (Fig. 1c).

To investigate the feasibility of the M‒C(sp2) oxidation, we drew 
inspiration from previous work17, in which N2O was demonstrated to 
react with certain phosphine–Ni(II) complexes34,35. To this end, we syn-
thesized the product of oxidative addition 4, and studied its reactivity 

with N2O (Fig. 2a). As expected, 4 rapidly decomposes mainly towards 
homocoupling (5) when dissolved in DMA under argon, with only traces 
of protodemetallation (6) detected (path a). This reactivity is exac-
erbated by the presence of reducing agents such as Zn (path b). Yet, 
when the argon atmosphere is replaced by N2O, the bright red colour 
of the solution of 4 remains, thus pointing towards a slower decom-
position rate. After acidic workup, a 15% yield of phenol 7 is observed. 
However, when the same reaction is performed in the presence of a 
reducing agent, substantially higher yields of 7 were observed, with a 
73% yield obtained when a combination of Zn and NaI was used (path d).  
These results point to the feasibility of developing a reductive catalytic 
protocol based on Ni catalysis using aryl halide precursors. From our 
extensive ligand survey (see Supplementary Information), it was evi-
dent that tridentate nitrogenated ligands with the general pattern of 
2-substituted bipyridine were crucial to obtain catalytic activity, with 
terpyridine (L18) and 6-pyrazolyl-2,2'-bipyridine (L50) affording the 
highest yields of 9 (Fig. 2b and Supplementary Information). Analysis 
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of the R group revealed three key features of the ligand for catalytic 
activity: replacing the N atom with C‒H or S prevents catalytic activity 
(L48 and L61); steric encumbrance next to the N of the pyrazole unit 
inhibits productive catalysis (L55 and L58); and electron-deficient 
substituents on the pyrazole markedly reduce the yield of phenol.  
To confirm Ni–ligand ligation in the reaction mixture, complex 10 was 
prepared and structurally characterized. A 75% yield of 9 was obtained 
using 10 as a catalyst, thus confirming that the pre-ligated complex is 
catalytically competent. L50 represents a new ligand platform in Ni 
catalysis, with virtually no examples. As Fig. 2a, b suggests that formal 
Ni(I)‒C(sp2) species might be involved, we prepared terpyridine–Ni 
derivatives such as 11 (Fig. 2c), as greater stability of the correspond-
ing (terpy)Ni(I)‒Ar has been noted36–38. As for 4, reaction of 11 in the 
absence of reducing agent led to no phenol formation. Yet, despite 
the presence of two Me groups in ortho, reaction performed under 
N2O in the presence of Zn and NaI afforded the desired mesitol (12) in 
49% yield on acidic workup. To further confirm the involvement of a 
formal Ni(I)‒C(sp2) in the tridentate system, the (tBu-terpy)Ni(I)‒I (13) 
was reacted with Ph2Zn under N2O. Despite the reported instability of 
(terpy)Ni(I)‒Ph (ref. 37), a 20% yield of phenol (14) was obtained. These 
findings suggest that reduction of Ni(II) species to formal Ni(I) and 
the presence of iodide salts in the system are of importance to forge 

the desired C(sp2)‒O bond. Mechanistic investigations on M‒Ar oxy 
insertions for late transition metals (Pd, Ni and Fe) reveal that subtle 
changes in the ligand environment also lead to differences between the 
metal‒oxo/oxyl or concerted Baeyer-Villiger pathways for Ar‒O bond 
formation18–23. In this case, we suggest that in the continuum between 
the two extreme possibilities offered in the OMBV reaction, the oxy 
insertion of N2O in a d9 complex lies towards the formation of the M‒O 
bond and N2, before Ar migration39.

With the optimized catalytic system in hand, a preliminary scope 
of the aryl halide counterpart was interrogated. As shown in Fig. 3, 
aryl iodides bearing other halogens in both para (9, 15 and 16) and 
meta (17–19) positions smoothly afforded the corresponding phenol 
in excellent yields. The presence of electron-withdrawing groups such 
as CF3 (7), ketone (20), ester (21 and 24) or nitrile (22–23) posed no 
difficulty for the C‒O bond formation. Electron-donating substituents 
such as alkyl (25), aryl (26), or even methoxy and thiomethyl (27 and 28) 
delivered phenol in good yields. Moreover, a fluorene derivative (29) 
featuring benzylic C‒H bonds was also amenable for phenol synthesis, 
albeit in 38% yield. A classical feature of reductive couplings is that steric 
hindrance at the ortho position can impede reactivity. Indeed, C‒O 
bond formation from indanone (31) and 1-chloro-2-iodobenzene (30) 
derivatives afforded slightly diminished yields. In contrast to 30, 32 was 
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obtained in 79% yield, illustrating a possible beneficial chelating effect 
of the ortho OMe and the Ni centre. A silylated benzylic alcohol (33) or 
a diethylphosphonate (34) were also tolerated in this protocol. Hetero-
cycles such as indole (35), quinoline (36), carbazole (37) or dibenzo-
thiophene (38) also afforded the corresponding phenol in good yields. 
Substrates prone to rapid oxidation after C‒O bond formation could be 
further functionalized in situ, as exemplified by the 68% yield obtained 
for the pivaloyl derivative 39. An iodide derivative of the biologically 
active agent clofibrate could be converted to phenol 40 in 78% yield 
despite the presence of a tertiary α-oxy ester. This protocol does not 
require the use of nucleophilic alkoxy surrogates, and hence base-sensi-
tive functionalities such as esters or sensitive amides, can be tolerated. 
An example of this chemoselectivity is observed in the derivatization 
of a substrate containing pinacol boronate. In this case, phenol 41 was 
still obtained in 56% yield, thus providing an orthogonal tool to classi-
cal oxidation. The observation of 7% yield of sulfoxide in the reaction 
of 28 (ref. 40), and the low yield obtained for fluorenol 29, suggest that 
the oxy-insertion step lies towards the oxo/oxyl–pathway in the con-
tinuum postulated for OMBV-type reactions. N2 was detected using a 

gas chromatography–thermal conductivity detector in the headspace 
after the reaction had finished for 7, 9, 18, 25 and 34 (Fig. 3). When 
the oxygen on the solvent was labelled ([18O]DMF, 25% 18O), no 18O was 
incorporated in 9. On the other hand, when N15N18O was used (ca. 23%  
18O), 22% ± 1 of the O in 9 was labelled (Supplementary Information). 
Together, these data point to N2O as the source of O.

The same optimized reaction conditions for aryl iodides permitted 
C‒O bond formation of more accessible and commercially available 
aryl bromides. Yet, electron-withdrawing substituents were required 
to allow C(sp2)‒Br cleavage to occur. In this sense, phenols bearing CF3 
(7), Ac (20) and CN (22) in the para position, as well as paraben (21), 
could be obtained in high yields (Fig. 4a). Medicinally relevant phthal-
ide was also smoothly converted to the phenol (42), thus providing a 
method to synthesize this building block with three fewer steps com-
pared with the reported method41. Phenols derived from π-extended 
or conjugated systems such as naphthoate 43 or cinnamate 44 were 
also obtained in 65% and 78% yields, respectively. In contrast to current 
light-mediated processes, no isomerization of the double bond in 44 
was observed30. Finally, another base-sensitive group such as the aryl 
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methyl sulfone could be tolerated and the corresponding phenol 45 
was obtained in 82% yield. Heterocyclic bromides are not compatible 
with the current protocol.

Complex aryl halides functionalized with sensitive moieties were 
then tested. For example, an empagliflozin derivative, which contains 
a plethora of weak C‒H bonds prone to HAT, was smoothly converted 
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to the corresponding phenol (46) in excellent yield (Fig. 4b). An ester 
derivative of the natural product eugenol afforded the desired phenol 
(47) in an 84% yield, highlighting the high chemoselectivity of this pro-
cess over alternative oxidation through metal–oxo pathways. Despite 
the triphasic nature of the protocol, synthesis of 47 could be scaled up 
to 5 mmol with only a slight reduction in the yield (66%). Substrates con-
taining saturated N-heterocycles such as piperazinone 48, azetidine 49, 
pyrrolidinone (aniracetam intermediate) 50 and nortropinone deriva-
tive 51 are well tolerated. The requirement of an electron-withdraw-
ing group to activate the aryl bromide can be turned into a synthetic 
advantage, thus permitting regioselective control on the activated 
aryl bromide (52, 78%). Finally, a derivative ezetimibe, the drug used 
to treat high blood cholesterol, could be smoothly converted into the 
corresponding phenol (53), without altering the chiral and unprotected 
secondary alcohol, the ester and the strained β-lactam. Similar chem-
oselectivity can be observed in the conversion of paroxetine derivative 
54. Finally, Fig. 4c illustrates a proof-of-concept of the potential for 
the revalorization of greenhouse gases for organic synthesis. It is now 
possible to combine N2O and CO2 revalorization strategies and obtain 
metaxolone (59), in which 66% of the oxygen atoms originate from 
waste gaseous feedstock42. A more striking example is illustrated in 
the synthesis of bazedoxifene (68), a drug candidate against breast 
and pancreatic cancer. The three phenolic building blocks could be 
rapidly obtained from the parent halides in good yields (64–66). Sub-
sequent Fischer-indole synthesis allows access to indole 67, enabling 
the synthesis of bazedoxifene (68) with all O atoms originating from 
N2O (refs. 43–46). Whereas a 42% yield could be obtained for precursor 
63 with 1 mol% catalyst loading, a <10% yield of 14 was observed with 
the same catalyst loading, with substantial protodehalogenation of 
the parent iodide 61, which highlights the subtle differences between 
aryl iodides and aryl bromides in this system.

Conclusions
Through a distinct fundamental organometallic step, a catalytic pro-
tocol for the revalorization of N2O as a green, mild and chemoselective 
O-atom insertion reagent for organic synthesis has been unlocked. 
Mechanistically guided insights into the reactivity of N2O with Ni com-
plexes point to formally low-valent Ni(I)‒aryl permitting the O insertion 
in an efficient manner. The inert N2O molecule succumbs to activation 
under mild conditions for the selective synthesis of phenols from aryl 
halides. The catalytic system features an electronically asymmetric tri-
dentate bipyridine-based ligand (L50) for the Ni centre, which enables 
selective C‒O bond formation. The reported conditions are simple and 
robust, allowing phenol formation in densely functionalized molecules. 
Whereas other catalytic protocols capitalize on nucleophilic HO‒ coun-
terparts, this method represents a unique example of catalytic C‒O 
bond formation with an electrophilic O-atom source, which in turn 
can accommodate base-sensitive functionalities. Furthermore, this 
protocol demonstrates the feasibility of accessing relevant drugs for 
which N2O is the sole source of oxygen atoms.
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