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Multivariate analysis reveals 
differentially expressed genes 
among distinct subtypes of diffuse 
astrocytic gliomas: diagnostic 
implications
Nerea González‑García1,2, Ana Belén Nieto‑Librero1,2, Ana Luisa Vital3, Herminio José Tao4, 
María González‑Tablas2,5,6, Álvaro Otero2, Purificación Galindo‑Villardón1,2, 
Alberto Orfao2,5,6 & María Dolores Tabernero2,5,6,7*

Diagnosis and classification of gliomas mostly relies on histopathology and a few genetic markers. 
Here we interrogated microarray gene expression profiles (GEP) of 268 diffuse astrocytic gliomas—33 
diffuse astrocytomas (DA), 52 anaplastic astrocytomas (AA) and 183 primary glioblastoma 
(GBM)—based on multivariate analysis, to identify discriminatory GEP that might support precise 
histopathological tumor stratification, particularly among inconclusive cases with II–III grade 
diagnosed, which have different prognosis and treatment strategies. Microarrays based GEP was 
analyzed on 155 diffuse astrocytic gliomas (discovery cohort) and validated in another 113 tumors 
(validation set) via sequential univariate analysis (pairwise comparison) for discriminatory gene 
selection, followed by nonnegative matrix factorization and canonical biplot for identification of 
discriminatory GEP among the distinct histological tumor subtypes. GEP data analysis identified a set 
of 27 genes capable of differentiating among distinct subtypes of gliomas that might support current 
histological classification. DA + AA showed similar molecular profiles with only a few discriminatory 
genes overexpressed (FSTL5 and SFRP2) and underexpressed (XIST, TOP2A and SHOX2) in DA vs AA 
and GBM. Compared to DA + AA, GBM displayed underexpression of ETNPPL, SH3GL2, GABRG2, SPX, 
DPP10, GABRB2 and CNTN3 and overexpression of CHI3L1, IGFBP3, COL1A1 and VEGFA, among other 
differentially expressed genes.

Diffuse gliomas comprise a variety of tumor entities of different cell lineages and histopathological features 
which are classified into distinct subtypes by the World Health Organization (WHO)1,2, from which astrocytic 
lineage tumors (i.e. astrocytomas and glioblastomas) are by far the most common (around 90%)3. Relevant his-
tological and immunohistochemical features together with the presence of codeletion of chromosome 1p/19q 
and isocitrate dehydrogenase 1 (IDH1) gene mutation, are currently used for the differential diagnosis between 
oligodendroglial tumors and diffuse  astrocytomas1,4. However, further differential diagnoses among the distinct 
subtypes of diffuse astrocytomas might be challenging and they might even lead to inconclusive results, particu-
larly among grade II and III tumors. For this purpose molecular characteristics of these tumors have been recur-
rently investigated. However, while genetic alterations are found in the majority of tumors, they are not entirely 
specific, and thereby they are not considered in the current WHO-2016 classification of gliomas. Thus, astrocytic 

open

1Department of Statistics, University of Salamanca, Salamanca, Spain. 2Instituto de Investigación biomédica de 
Salamanca, IBSAL- University Hospital of Salamanca, Salamanca, Spain. 3Centre for Neuroscience and Cell Biology 
and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal. 4Neurosurgery Service, University Hospital 
of Coimbra, Coimbra, Portugal. 5Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department 
of Medicine, University of Salamanca, Salamanca, Spain. 6Biomedical Research Networking Centre on Cancer–
CIBERONC (CB16/12/00400),, Institute of Health Carlos III, Madrid, Spain. 7Instituto de Estudios de Ciencias de La 
Salud de Castilla y León (IECSCYL-IBSAL), Salamanca, Spain. *email: taberner@usal.es

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-67743-7&domain=pdf


2

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:11270  | https://doi.org/10.1038/s41598-020-67743-7

www.nature.com/scientificreports/

gliomas are currently divided in non-diffuse (pilocytic astrocytoma grade-I, PA; WHO-I) and diffuse tumors 
based on conventional histopathology. The latter tumors were further divided on histopathological grounds 
into three grades of malignancy associated with distinct median survival rates (range: from 1 to > 10 years)5,6: 
WHO grade-II diffuse astrocytoma (DA), WHO grade-III anaplastic astrocytoma (AA) and WHO grade-IV 
glioblastoma (GBM). Of note, DA might evolve to AA, and AA might transform to  GBM7,8. Because of this, 
GBM is further subdivided into primary de novo GBM (pGBM) and secondary GBM (sGBM) resulting from 
progression of a prior lower grade astrocytic tumor (e.g. AA)7.

At present, the IDH1-mutation together with codeletion of chromosomes 1p/19q have become a major cri-
terion for the differential diagnosis between oligodendrocytic and oligoastrocytic tumors vs diffuse astrocytic 
 gliomas1,2. However, DA and AA also show a variable frequency of IDH-mutation, while this mutation is absent 
in the great majority of  GBM9, which limits its diagnostic utility among diffuse astrocytic tumors. Other genetic 
markers that have been associated with specific subtypes of astrocytomas and diffuse astrocytic tumors could 
be useful for glioma  classification10,11, include gains and losses of specific chromosomal regions together with 
mutations of the EGFR, MDM4, PTEN, PDGFRA and CDKN2A genes, but they are not considered in the WHO-
2016  classification2. Altogether, this highlights the need for deeper genomic analysis of astrocytic tumors to gain 
further insight in those gene profiles that might help to unequivocally distinguish among the different subtypes 
of astrocytic tumors and support the differential diagnosis and subclassification of diffuse gliomas, particularly 
in  cases12,13 with an inconclusive histopathological diagnosis.

Despite the expression levels of specific genes, such as CHI3L1 and TOP2A, which have been related to 
necrosis in  GBM14,15, and IGFBP2 and VEGFA involved in tumor  progression12, mRNA-based gene expression 
profiling (GEP) has frequently shown discrepant results in gliomas, hampering application of GEP in clinical 
practice. To a certain extent such discrepancies are due to: (i) analysis of small patient  cohorts16, (ii) focused 
on individual tumor types such as  GBM17, together with (iii) the use of different microarray platforms, and/
or iv) diverse mathematical approaches and multivariate data analysis  algorithms12. As an example, principal 
component analysis (PCA)18 has been frequently used for GEP analysis, despite its limitations for the analysis of 
high-dimensional databases that contain a number of variables that significantly exceeds the number of tumors. 
For such situations, variable selection techniques together with other matrix factorization algorithms, such as 
nonnegative matrix factorization (NMF)19, have been proposed for the discovery of clusters that might gather 
important biological information, as recently demonstrated in pancreatic  cancer20.

In this study we aimed at identifying a panel of informative genes for subclassification of a large series of 268 
astrocytic diffuse gliomas into their DA, AA and GBM subtypes based on GEP data analyzed with combination 
of low-rank matrix decompositions, as CUR  decomposition21, followed by  NMF19 and canonical  biplot22. A 
panel of 27 discriminatory genes were finally identified that efficiently differentiate among the three subtypes 
of diffuse astrocytic tumors.

Results
Pairwise comparisons of gene expression data from the discovery cohort showed > 800 differentially expressed 
gene probes among the three subtypes of diffuse astrocytic tumors analyzed (Fig. 1) with significant adjusted 
P-values. Despite this, no gene probe showed significant differences in gene expression (discriminatory) levels 
between DA and AA tumors. In contrast, 445 gene probes were differentially expressed (P < 0.05) between DA and 
GBM (222 were underexpressed in GBM and 223 overexpressed) and 448 gene probes where distinctly expressed 
(P < 0.05) in AA vs GBM (235 underexpressed in GBM and 213 overexpressed probes); 339 probes correspond-
ing to 283 genes were differentially expressed in common in the two above comparisons (Fig. 1). Comparison 
between DA vs GBM revealed 33/445 differentially expressed gene probes, corresponding to 27 distinct genes, 
with fold-change (FC) value differences (vs mean probe intensity) of FC ≥ 4 (Table 1). These included 9/27 genes 
with increased expression values in DA vs GBM (ETNPPL, FSTL5, SFRP2, SH3GL2, CNTN3, SPX, GABRG2, 
GABRB2, DPP10) and 18/27 genes with higher expression in GBM vs DA (CHI3L1, COL1A1, COL3A1, POSTN, 
COL1A2, IGF2BP3, NNMT, SHOX2, XIST, HS3ST3B1, PTX3, VEGFA, IBSP, TOP2A, LOX, IGFBP3, ANXA1, 
PDPN) (Fig. 1; Table 2). Similarly, the comparison between AA and GBM revealed 13/448 differentially expressed 
gene probes corresponding to 9 genes to display FC ≥ 4 (vs mean probe intensity). Once compared to GBM, AA 
showed overexpression of two gene probes (CNTN3 and ETNPPL genes) and underexpression of another 11 gene 
probes corresponding to 7 genes: CHI3L1, COL1A1, COL3A1, POSTN, NNMT, PTX3, COL1A2 (Fig. 1; Table 1).

Based on the list of gene probes identified with both approaches, a total of 27 differentially expressed genes 
were selected for subsequent multivariate analyses (Table 2 and Supplementary Table S1). More detailed analysis 
of those 27 genes found that XIST was the only gene with the most clearly different expression profile between DA 
and AA tumors (Table 2). Among the other 26 genes, ETNPPL, SFRP2, SH3GL2, FSTL5, DPP10, SPX, GABRB2, 
CNTN3 and GABRG2 displayed greater expression levels in DA + AA vs GBM. Of these latter 9 genes, 3 are coded 
in chromosome 4 (ETNPPL, SFRP2 and FSTL5), 2 in chromosome 5 (GABRB2, GABRG2), 1 in chromosome 2 
(DPP10), 1 in chromosome 3 (CNTN3), 1 in chromosome 9 (SH3GL2) and the SPX gene is coded in chromosome 
12. Likewise, another 17 genes, including the CHI3L1, COL1A1, IGFBP3 genes, were overexpressed in GBM vs 
both DA + AA. More than half of these later genes (10/17 genes) are coded in a total of only 4 chromosomes, 
including chromosomes 7 (COL1A2, IGF2BP3, IGFBP3), 17 (COL1A1, HS3ST3B1, TOP2A), 1 (CHI3L1, PDPN) 
and 3 (PTX3, SHOX2). The remaining 7 genes are coded each in a distinct chromosome, e.g. chromosomes 2 
(COL3A1), 4 (IBSP), 5 (LOX), 6 (VEGFA), 9 (ANXA1), 11 (NNMT) and 13 (POSTN). Interestingly, genes coded 
in the long arm of chromosome 2q, 4q and 5q appeared to be relevant in all group comparisons (Table 2).

NMF was subsequently applied to the discovery cohort of 155 diffuse astrocytic glioma GEP data about of 
the 27 genes previously selected, in order to further establish the relevance of the selected genes to classify the 3 
subtypes of diffuse astrocytic gliomas. Two different clusters (corresponding to DA + AA and GBM) were detected 
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with NMF, DA and AA tumors being graphically visualized as a single cluster (Fig. 2A). Once we investigated 
the relevance of each gene to the formation of both clusters (Fig. 2A) we confirmed that the ETNPPL, SH3GL2, 
GABRB2, CNTN3, SPX, GABRG2, DPP10, SFRP2, FSTL5 genes where those most contributing to the DA + AA 
cluster, followed by a few genes displaying a lower contribution (XIST, IGFBP3, ANXA1, TOP2A, PDPN and 
VEGFA) (Fig. 2B). In turn, the most relevant genes to explain the GBM cluster were the CHI3L1, ANXA1, 
IGFBP3, COL1A2, COL1A1, NNMT, COL3A1, PDPN, POSTN, VEGFA, PTX3, TOP2A, HS3ST3B1, IGF2BP3, 
LOX, SHOX2, XIST and IBSP genes. Of note, the ETNPPL gene among DA + AA tumors and the CHI3L1 gene in 
GBM were those genes ranking the highest for each cluster. Interestingly, several of these differentially expressed 
genes identified in our study have also emerged as genes relevant for discriminating distinct subtypes of diffuse 
astrocytomas in other  studies12,15,23, including the GBM-associated CHI3L1, COL1A1, VEGFA and ANXA genes 
(Supplementary Table S2). In turn, new gene associated here for the first time with DA + AA included the DPP10 
gene. The variability encountered among the 155 samples of the discovery cohort was then visualized in a low-
dimensional space using canonical biplot representation.

Canonical biplot based on the 27 selected genes showed differential GEP for the samples visualized in a two-
dimensional space (Fig. 2B). In this biplot representation most genes contributed substantially to the formation of 
the factorial horizontal axis 1, which provides a clear distinct structure between GBM and both DA + AA samples, 
the most discriminatory genes being the ETNPPL, SH3GL2, GABRG2, SPX, DPP10, TOP2A, SHOX2, IGF2BP3, 
ANXA1, VEGFA and CHI3L1 genes. Some of these axis 1 genes showed higher expression values among DA + AA 
tumors (ETNPPL, DPP10, SH3GL2, GABRG2, SPX) while others were found to be overexpressed in GBM vs 
both DA + AA (e.g. IGFBP3, IGF2BP3, SHOX2, VEGFA). In turn, vertical axis 2 was relevant to differentiate DA 
from AA gliomas. This later axis was mostly explained by differences in the expression levels of XIST together 
with differential expression levels of genes contributing both to axis 1 and 2, such as SFRP2, FSTL5, TOP2A and 
SHOX2, principally. Of note, XIST showed lower expression levels in DA tumors (versus some AA and GBM), 
while FSTL5 and SFRP2 expression was greater in DA vs AA gliomas. Similarly to NMF, canonical biplot con-
firmed the low contribution of TOP2A and XIST to the DA + AA cluster (and SFRP2 to the GBM cluster), which 
was due to the fact that some AA samples had similar expression levels for both genes to those observed among 
GBM (or to the DA + AA cluster, in case of SFRP2) (Fig. 2B).

From the functional point of view, genes found to discriminate among the different subtypes of diffuse astro-
cytic gliomas corresponded to: (i) genes involved in development (HOXD10, CNTN3, LOX, SFRP2, XIST); (ii) 
cell adhesion (IBSP, PDPN, POSTN); (iii) cell metabolism (ETNPPL, HS3ST3B1, NNMT, DPP10, SHOX2, SPX); 
(iv) proliferation (COL1A1, COL1A2, COL3A1, FSTL5, IGFBP3, IGF2BP3, TOP2A); (v) angiogenesis (VEGFA); 
(vi) neurotransmission (GABRB2, GABRG2, SH3GL2); and (vii) the inflammatory response (ANXA1, CHI3L1, 

Figure 1.  Number of differentially expressed gene probes in samples corresponding to distinct tumor subtypes 
from the discovery cohort. Differentially expressed probes were identified by pairwise comparisons based 
on p-values < 0.05. The number of overexpressed and underexpressed probes in DA and AA versus GBM are 
shown. DEGP, differentially expressed gene probes; DA, diffuse astrocytoma; AA, anaplastic astrocytoma; GBM, 
glioblastoma; FC, fold-change in gene expression levels.
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PTX3). Of note, DA was associated with greater expression of genes related to development and cell adhesion, 
AA to genes involved in metabolism and neurotrasmission and GBM to genes associated with angiogenesis and 
inflammatory responses (Fig. 2C).

In order to confirm the discriminatory power of the combination of the 27 genes identified to discriminate 
among distinct tumor subtypes, validation in an independent cohort of 113 gliomas was performed (Fig. 3). In 
this validation series, NMF and canonical biplot clearly identified the same two clusters. The DA + AA cluster 
was mostly explained by the SH3GL2, DPP10, GABRG2 and GABRB2 genes, while the GBM cluster (including 
a few AA tumors) was characterized by the VEGFA, POSTN, CHI3L1 and SHOX2, among other genes (Fig. 3A, 
B). SFRP2, FSTL5 and ETNPPL were the genes mostly contributing to the separation between DA and AA. These 
series distinct GEP of different subtypes of diffuse astrocytic glioma that were also confirmed using unsupervised 
nonhierarchical cluster in discovery, validation and total cohorts (Fig. 3C). These results showed the same overall 
behavior with two clearly different clusters, where some AA samples showed the same genetic patterns as DAs, 
and others showed clear genetic similarities with GBM.

Finally, to quantify how well this same combination of 27 genes separates DA, AA and GBM samples, LDA 
analysis was performed for the validation cohort. Overall, LDA showed an accuracy of 87% (98/113 tumors were 
properly classified; 12/14 DA, 17/24 AA, 69/75 GBM) to predict for the tumor histopathological diagnosis based 
on GEP was observed (Fig. 3C). The remaining 15/113 (15%) tumors (2/14 DA, 7/24 AA and 6/75 GBM) were 
not accurately classified and they corresponded to: (i) 2 DA classified as AA; (ii) 1 AA classified as DA; (iii) 6 
AA identified as GBM; (iv) 1 GBM classified as DA; and (v) 5 GBM classified as AA.

Table 1.  Gene probes that showed significant discriminatory power -fold-change (FC) > 4- among distinct 
histopathological subtypes of gliomas as identified in pairwise comparisons (n = 34 probes corresponding 
to 27 different genes). Results expressed as fold-change (FC) values for pairwise comparisons. DA diffuse 
astrocytoma, AA anaplastic astrocytoma, GBM glioblastoma multiforme.

Differentially expressed probes Pairwise  comparisona

Probe set Gene symbol DA vs GBM AA vs GBM

201012_at ANXA1 4.07

209396_s_at CHI3L1 9.14 5.82

209395_at 9.35 5.9

229831_at CNTN3 4.79 4.45

1556499_s_at COL1A1 6.57 4.47

202310_s_at 5.76

202404_s_at COL1A2 5.78 4.5

201852_x_at COL3A1 5.73 5.04

215076_s_at 6.34 5.5

211161_s_at 6.56 5.72

228598_at DPP10 4.07

221008_s_at ETNPPL 8.73 6.3

232010_at FSTL5 6.69

242344_at GABRB2 4.17

1568612_at GABRG2 4.3

227361_at HS3ST3B1 4.97

236028_at IBSP 4.49

203819_s_at IGF2BP3 5.2

203820_s_at 5.4

210095_s_at IGFBP3 4.25

215446_s_at LOX 4.34

202237_at NNMT 5.3 5.06

221898_at PDPN 4.06

210809_s_at POSTN 6.24 5.63

206157_at PTX3 4.87 4.98

223122_s_at SFRP2 6.58

205751_at SH3GL2 4.88

210135_s_at SHOX2 5.29

229778_at SPX 4.67

201291_s_at TOP2A 4.43

211527_x_at VEGFA 4.58

224590_at XIST 4.04

221728_x_at 4.07

224588_at 5.19
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Discussion
At present it is well established that multiple signaling pathways and cell functions are altered in astrocytic 
gliomas in association with a great number of recurrent genetic and microenvironmental  changes17. In order 
to dissect the link between these genetic alterations and their functional consequences, GEP of DA, AA and 
GBM have been investigated in the last  decade12,14,16,24–27. However, in only a few of these studies attempts have 
been made to identify genes differentially expressed between distinct histopathological glioma  grades14,24, other 
studies focusing on the value of distinct GEP to help predicting tumor progression and patient  survival12,25 or for 
identifying new targets for more effective  therapy27. In turn, these studies have frequently been based on small 
patient  cohorts16,25 with admixtures of tumors of all glioma  subtypes12,14,28, they have used different microarray 
 platforms12,29,30 and data analysis  algorithms12,31, which have (frequently) led to controversial or even contradic-
tory results.

Microarray GEP technologies provide massive data on the expression levels of thousand genes simultane-
ously but require the use of mathematical algorithms to capture the multidimensional nature of RNA expression 
data, in order to extract the critical information they might  contain31. So far, these analyses have been based on 
distinct (frequently suboptimal) mathematical models which might introduce disturbing levels of variability on 
the study conclusions. Thus, some  studies16,31 have used traditional multivariate statistical techniques, particularly 
PCA, which are not appropriate for data sets with few patients analyzed for thousands of variables, because of the 
variability overlooked in a high-dimensional  space32. Because of these limitations of PCA and other traditional 
multivariate analysis algorithms, several new techniques have emerged for selection of the most informative 
variables under these  circumstances31. Here we used CUR decomposition and univariate analysis (pairwise com-
parisons) to select for the most relevant genes to define diffuse astrocytic glioma subtypes in our discovery cohort. 
In order to further overcome analysis of samples that have a priori structured groups we used NMF, a method 
previously applied in glioma samples, which proved to provide useful conclusions to identify dynamic immune 
profiles during tumor  evolution17. Based on this approach we identified unique GEP associated within the differ-
ent histopathological subtypes of diffuse astrocytic gliomas. As expected, the largest GEP differences were found 
between DA and AA on one side, and GBM on the other side. In contrast, no differentially expressed genes were 
found to clear discriminate between DA and AA gliomas in the gene selection step (univariate analysis). Overall, 

Table 2.  Gene expression levels for the 27 genes differentially expressed among the three histopathological 
subtypes of diffuse astrocytic gliomas analyzed. Results expressed as mean (SD) values. DA diffuse 
astrocytoma, AA anaplastic astrocytoma, GBM glioblastoma multiforme.

Gene Chromosomal location

Gene expression values in glioma subtypes

DA (n = 19) AA (n = 28) GBM (n = 108)

GABRG2 5q34 7.72 7.3 5.62

CNTN3 3p12.3 7.75 7.64 5.49

GABRB2 5q34 7.9 7.79 5.84

SPX 12p12.1 8.07 7.77 5.84

DPP10 2q14.1 8.09 7.86 6.07

FSTL5 4q32.3 8.27 7.06 5.53

SH3GL2 9p22 9.75 9.16 7.47

SFRP2 4q31.3 9.87 8.5 7.15

ETNPPL 4q25 10.31 9.84 7.19

SHOX2 3q25.32 4.83 5.82 7.23

IBSP 4q21.1 5.04 5.22 7.2

IGF2BP3 7p11 5.25 6.06 7.66

LOX 5q23.2 5.37 5.65 7.48

HS3ST3B1 17p12 5.49 5.98 7.81

XIST Xq13.2 5.5 8.33 7.64

PTX3 3q25 6.29 6.26 8.57

POSTN 13q13.3 6.46 6.61 9.1

TOP2A 17q21.2 6.49 7.44 8.64

VEGFA 6p12 6.94 7.26 9.13

COL3A1 2q31 7 7.2 9.64

NNMT 11q23.1 7.25 7.31 9.65

COL1A2 7q22.1 7.44 7.8 9.97

COL1A1 17q21.33 7.47 7.45 9.8

PDPN 1p36.21 7.89 7.98 9.91

CHI3L1 1q32.1 8.65 9.31 11.86

IGFBP3 7p12.3 8.73 9.43 10.81

ANXA1 9q21.13 9.09 9.65 11.12
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Figure 2.  Multidimensional relationship between the 27 genes selected and the histological subtypes of diffuse 
astrocytic tumors. NMF analysis revealed two gene clusters based on the coordinates of distinct sets of genes to 
each cluster shown in the bar charts and heatmap (Upper graphics in panel A, left graphic in panel B). Scores 
obtained by NMF (corresponding to the grade of membership of each sample to the defined clusters) detected 
two major subsets of gliomas among DA (dipicted green), AA (blue) and GBM (red) (panel A): one group 
consisting mainly of GBM and a few samples of AA cases and the other group included both DA and AA. 
The canonical biplot representation is shown in the right of Panel B, where the mean values of each subgroup 
of astrocytic tumors is plotted with a star colored (individual DA, AA and GBM tumors are labeled as green, 
blue and red points) and the discriminatory genes are plotted as vectors. The discriminatory genes found to 
distinguish among the three WHO subtypes of diffuse astrocytic tumors are listed in panel C in a color code 
defined by their known functions. R software for statistical computing and graphics (v3.5.2) was used. DA, 
diffuse astrocytoma; AA, anaplastic astrocytoma; GBM, glioblastoma.
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Figure 3.  Multivariate analysis of the association between the 27 genes found to discriminate among different 
histopathological subtypes of diffuse gliomas in the validation set of 113 diffuse astrocytic gliomas. Nonnegative 
matrix factorization plots of contribution scores of each sample to the formation of each cluster (A) and the 
importance of each gene to the two clusters formed (B, left) are shown together with canonical biplot (B, 
right), that confirmed classification of diffuse astrocytic gliomas around two leading molecular groups: a group 
including mostly GBM tumors and another group mostly composed of both DA and AA tumors. Dendrograms 
obtained via non-hierarchical NMF clustering for each (discovery, validation and total cohort) sample are 
shown in panel C. For the distinction of sample scores in panel A see legend to Fig. 2. R software for statistical 
computing and graphics (v3.5.2) was used. DA, diffuse astrocytoma; AA, anaplastic astrocytoma; GBM, 
glioblastoma.
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these results are consistent with previous observations highlighting the remarkable difficulty to distinguish DA 
and AA based on mRNA GEP  data33. Similarly, multivariate analysis based on NMF also revealed (only) two 
clearly different groups of diffuse astrocytic tumors, one including lower-grade astrocytomas (DA + AA) and the 
other GBM together with a few AA. Of note, these later AA might represent those AA tumors that might evolve 
to grade-IV glioma, further studies being required to confirm this hypothesis.

Lack of discrimination between DA and AA gliomas is not surprising and confirms that both tumor types 
display similar GEP and that they might potentially represent a single molecular subtype of astrocytomas. 
Even though, DA tumors showed lower expression of the XIST gene which together with overexpression of the 
FSTL5 and SFRP2 genes, once compared to AA tumors. Interestingly, XIST is a gene whose expression varies 
substantially with sex, that has been claimed to be a key gene in the oncogenesis of  gliomas34. Since similar male/
female distribution was observed in DA and AA tumors (data not shown) our results suggest that differences in 
XIST expression among DA and AA tumors might probably be due to its potential role on cell proliferation and 
invasion and requires further investigation. At the same time FREM3 has been previously found to be overex-
pressed in both DA and AA vs oligodendroglioma  tumors35, and SFRP2 has been recently reported to contribute 
to the discrimination between DA and  GBM30, in line with our findings. While XIST and SFRP2 were the best 
discriminatory genes between DA and AA gliomas, additional differences between these tumor subtypes and 
GBM were found, including overexpression of the DPP10, ETNPPL and SH3GL2 genes and underexpression of 
CHI3L1, VEGFA and IGF genes in the former two tumor types, in close association with unique chromosomal 
location profiles.

Overall, neither IDH1/2-mutations nor other chromosomal alterations showed the potential for being a 
discriminatory marker for distinct subtypes of diffuse astrocytomas in our own tumor cohort due to the low 
and variable IDH-mutational frequency and the heterogeneous cytogenetic profiles observed in  GBM36 and 
other subtypes of diffuse astrocytomas, in line also with previous findings by  others37. Thus, in the absence of 
other discriminatory markers, overexpression of DDP10, ETNPPL and SH3GL2 in DA + AA vs GBM might be 
considered in distinguishing these tumor subgroups, particularly for unclassifiable tumors or in case of small 
biopsy samples. In line with previous findings for the ETNPPL  gene30, this gene together with SH3GL2, and the 
DPP10 gene identified here for the first time as relevant discriminatory gene, might represent a comprehensive 
panel of genes, mainly coded in chromosomes 4 and 2, to differentiate DA and AA gliomas. DPP10 is a gene 
associated with cell development and inhibition of cell growth. Altogether, these findings further highlight the 
potential relevance of the loss of function of these genes during tumor progression to more advance diffuse 
astrocytic gliomas.

In this regard, GBM and some AA showed higher levels of expression of TOP2A compared to DA and to most 
AA, suggesting that this gene might be involved in determining a high proliferation rate among AA tumors, that 
might potentially progress to sGBM since gene is involved in promoting cell growth  signals38.

Similarly, IGF genes, a family of genes previously associated with malignant  astrocytomas26,39 and progres-
sion to  sGBM12,15, were found here to progressively increase its expression from DA to AA and GBM. Of note, 
IGFBP3 overexpression in GBM was associated in our study with overexpression of VEGFA, several collagen 
family genes (COL1A1, COL1A2 and COL3A1), and CHI3L1, among other genes. Since VEGFA interacts with 
IGFBP2 during  angiogenesis40, overexpression of VEGFA and IGFBP3 genes might play an important role in 
tumor growth and expansion through promoting the formation of new blood vessels, in line with the increased 
angiogenesis observed in  GBM41 vs other diffuse astrocytomas. In addition, the close association observed here 
between increased VEGFA and COL1A2, COL3A1 and COL1A1 expression in GBM, might also contribute to 
explain the effect of VEGFA on inducing collagenase expression and remodeling the tumor microenvironment 
in malignant astrocytomas (i.e. GBM). At the same time, these results support previous observations suggesting 
that COL3A1 is a reliable biomarker of  GBM42. Similarly, CHI3L1, a gene that encodes for a protein involved 
in the inflammatory response, found here to be associated with GBM, has been related to a poorer outcome of 
GBM, due to a greater invasion and shorter patient  survival23.

Of note, the 27 gene panel here identified also showed a high accuracy to distinguish between the distinct 
histopathological subtypes of diffuse astrocytic tumors in our validation cohort. These results support its potential 
utility in the subclassification of diffuse astrocytic tumors in routine clinical practice, particularly for cases with 
inconclusive histopathological diagnosis. In addition, they might provide further prognostic information among 
AA. Further prospective studies in large series of astrocytoma patients are necessary to confirm our results and 
extend these findings to other subtypes of glioma, prior to their translation into routine laboratory diagnostics.

Materials and methods
Diffuse astrocytic tumor datasets. Data from a total of 10 glioma patient cohorts was downloaded from 
the Gene Expression Omnibus (GEO, https ://www.ncbi.nlm.nih.gov/geo/) public functional genomic repository 
(Fig. 4). The data search strategy included the “astrocytoma”, “gene expression” and “humans” medical subject 
headings (MeSH). Based on these terms, a total of 1,330 studies were identified between the year 2000 and 2017. 
From these studies, only those referred to “expression profiling by array” were further selected, resulting in 10 
datasets that fulfilled the inclusion criteria: i) usage of the HG-U133Plus2 array platform for GEP analyses; 
and, ii) human tumor samples investigated. Cell line and animal model studies, as well as human tumor series 
containing secondary GBM and/or tumor samples of only one diffuse astrocytic histopathological grade were 
excluded from the analysis (Fig.  4). From the 10 series that fulfilled all inclusion criteria, 5 series (our own 
 series14 and 4 additional  cohorts28,43–45) consisting of a total of 155 diffuse gliomas were randomly selected to be 
used as discovery cohort with the following distribution according to the WHO-2016 diagnostic criteria: DA, 
19 cases (11%); AA, 28 cases (16%) and GBM, 108 cases (73%) (Fig. 4; Supplementary Table S3). The remaining 
5 patient series 16,25,26,46 were used for the validation cohort (Fig. 4; Supplementary Table S3), for a total of 113 

https://www.ncbi.nlm.nih.gov/geo/
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diffuse astrocytic gliomas consisting of 14 DA (12%), 24 AA (21%) and 75 GBM (67%). The two (discovery and 
validation) cohorts also showed a similar distribution per age (median of 60 vs 56 years, respectively; p = 0.591, 
by the Mann–Whitney U) and sex (male/female ratio of 1.94 and of 1.63, respectively; p = 0.705 by the Fisher 
exact test) for patients for whom data on these features were publicly available (108/155 and 64/113 had data on 
age and 47/155 and 79/113 patients had data on sex, respectively).

Normalization of gene expression data and data analysis tools. For data analysis summarized in 
Fig. 4, genomic tools from the Bioconductor and R environment for Statistical Computing and Graphics free 

Figure 4.  Flowchart summarizing sample data collection, selection criteria and steps, and the gene expression 
bioinformatics pipeline used in this study. Based on the filters and exclusion criteria, a total of 155 plus 113 
diffuse astrocytic tumors grouped into 3 diffuse astrocytic tumor subtypes were included in the discovery and 
validation cohorts, respectively. For data analysis, individual variability was first removed by applying RMA, 
followed by the ComBat method. Then, those probes showing the highest differences among the groups of 
tumors were selected via CUR decomposition and pairwise comparisons. Based on the selected gene probes and 
multivariate analysis via nonnegative matrix factorization and canonical biplot graphical representation, those 
genes providing the highest discrimination among the distinct subtypes of astrocytic gliomas were identified.



10

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:11270  | https://doi.org/10.1038/s41598-020-67743-7

www.nature.com/scientificreports/

 software47 (v3.5.2; www.cran.r-proje ct.org) were used. For data normalization, the robust multi-array average 
(RMA) expression measure was used. Subsequently, variability due to each GEO database was removed using 
the ComBat procedure included in the sva R-package, which shrinks the variance of independent  studies48 ini-
tially detected by data analysis techniques. PCA score plots were used to visualize the stabilized series patterns 
(Supplementary Fig. S1A). Gene symbols of the 54,675 probes were annotated and those without associated 
information, as well as those corresponding to Affymetrix control probes, were excluded from further analyses. 
Multiple probes of the same gene were kept in the analysis in order to minimize loss of differences between 
glioma subtypes. Finally, a total of 44,723 probe sets corresponding to RNA expression probes of 21,336 genes 
were included in the analysis (Supplementary Table S4). Bioinformatics analyses were implemented using the 
R-package rCUR  to perform CUR  decomposition49, limma to detect significant genes with differential gene 
expression levels between groups -providing models to compare many RNA targets  simultaneously50, NMF 
to conduct NMF  factorization19 and MultBiplotR to perform Canonical Biplot analysis and  representation51. 
The R-code to reproduce the analyses in this work is available in https ://githu b.com/anani eto/Scien tif-Repor 
ts-Gonza lez-Garci a_et_al.

Gene selection. Data analysis for selection of differentially expressed genes was performed in two sequen-
tial steps. First, the 1,000 probes showing the greatest variability were selected based on factors of influence 
(called leverages) of CUR  decomposition21 (Fig. Supplementary S1B). Subsequently, supervised analysis was 
performed to identify differentially expressed genes, based on FC values. For this purpose, univariate linear 
modelling was first performed to identify those gene probes that showed significant differences in expression 
levels between different astrocytic tumor subtypes in pairwise comparisons (i.e. DA vs AA, DA vs GBM, AA 
vs GBM). P-values obtained were adjusted by applying the Benjamin-Hochberg correction -also termed BH or 
False Discovery Rate (FDR) as the most widely used for genomics studies. FDR controls the expected value for 
the proportion of false positive cases among the null hypotheses rejected. Those genes with significant adjusted 
p-values which also differed in gene expression levels by FC ≥ 4 between the tumor grade groups, were selected.

CUR decomposition. CUR is defined as a low-range approximation of a matrix XIxJ , expressed in a small 
subset of rows and/or  columns21. In this work, we select the variables (i.e. probes) that mostly contributed to the 
model in terms of variability. Leverage is defined as the amount of variance contributed by each variable to the 
factorial model, similar to the explanatory power of a variable in regression analysis. Since our goal was to select 
the probes with greater variability, for each of them we defined their leverage ( lj ) as

where vj(j = 1, . . . , 44723) is the right singular vectors obtained in Singular Value Decomposition (SVD) of X , 
and R the number of latent variables in the dimension reduction process. In our analysis, R was equal to the 
number of PCs needed to absorb all the variability.

Multivariate analysis based on NMF and canonical biplot representation. All differentially 
expressed gene probes displaying FC > 4 in pairwise comparisons were subsequently included in multivariate 
analysis based on  NMF19. Briefly, NMF is an unsupervised clustering method defined as a matrix factorization 
technique that decomposes the original dataset ( X ∈ R

JxI
+  ) into two positive matrices whose product closely 

approximates X(X ≈ WH , where I and J refer to the number of samples and genes, respectively, W ∈ R
JxK
+  and 

H ∈ R
KxI
+  are nonnegative coefficients matrices and K is the number of clusters retained). The H matrix can be 

used to group the I samples into K clusters. Its columns represent the membership of each sample to the clusters. 
W rows define the physical meaning of clusters in terms of gene expression, where an wjk element symbolizes the 
expression level of gene j in cluster k ; i.e., W denotes the contribution of each gen to the cluster, in such a way 
that the higher the contribution, the more important that gene is in the formation of its cluster. Finally, canoni-
cal  biplot22 was used as a visualization tool of the multivariate data matrix. For this purpose, a priori structure 
of groups in a low dimensional space with maximum discriminatory power between classes was used, in which 
the discriminatory genes involved in separation of the three histological tumor subtypes are shown. To facilitate 
its interpretation, an example is provided in Supplementary Figure S2. In order to validate the power of the con-
tribution of the discriminatory genes selected above through NMF analysis, to classify individual samples into 
the distinct WHO 2016 tumor subtypes, unsupervised NMF was applied to the discovery cohort (n = 155), the 
validation set (n = 113) and the entire cohort (n = 268) of diffuse astrocytic gliomas.

Linear discriminant analysis (LDA). To validate the power of the contribution of the discriminatory 
genes selected above through NMF analysis and quantify how well the gene signature separates DA and AA 
gliomas, LDA was applied to the validation set of 113 diffuse astrocytic gliomas and the percentage of correct 
tumor classification recorded.

Data availability
The datasets analysed during the current study are available in the GEO repository, https ://www.ncbi.nlm.nih.
gov/geo/.

lj =
1

K

R∑

r=1

(vjk)
2
, jǫ{1, . . . , 44723}
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