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� A new model is presented to study
asphalt mixtures composed of
aggregate particles attached with an
asphalt binder.

� Viscoelastic equations for an asphalt
mixture are developed using
derivatives of fractional order.

� The creep, recovery, and relaxation
phenomena in an asphalt mixture are
analyzed using the new model.

� The new model better represents
practical cases of asphalt mixtures
used in the construction of pavement
layers.

� The model can be used to modify the
properties of the binder for designing
optimized and more resistant asphalt
mixtures.
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This study focuses on the mechanical behavior of asphalt mixtures composed of aggregate particles attached
with an asphalt binder. Asphalt mixtures are viscoelastic composite materials widely used in the construc-
tion of pavement layers. The modelling of such materials is currently done using the Burgers model.
However, this model is limited when explaining some of the viscoelastic phenomena of an asphalt mixture,
mainly because the Burgers model was developed for a single material with a dual nature. This work pre-
sents a new approach that provides a more appropriate framework for studying asphalt mixtures. The model
assumes an aggregate particle enclosed by an asphalt material. Viscoelastic equations were developed using
derivatives of fractional order. Then, the creep, recovery, and relaxation phenomena in an asphalt mixture
were analyzed using the new model. Unlike the Burgers model, the new model can predict the elastic jump
observed at the beginning of the creep modulus. Thus, the new model seems to describe better those
practical cases of asphalt mixtures used in the construction of pavement layers. The new model can be used
to modify the properties of the binder for designing optimized and more resistant asphalt mixtures.
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1. Introduction

Asphalt mixtures are currently one of the most used composite
materials worldwide. Their primary application is constructing
pavement layers for roads, airport runways, bike lanes, railway
beds, and sidewalks [1,2].

An asphalt mixture is typically composed of aggregate mineral
particles attached with an asphalt binder, although additives may
be used to provide special properties to the mix [3]. The mechan-
ical properties of the asphalt mixture are highly dependent on tem-
perature and time of loading [4]. In addition, an asphalt mixture
behaves as a viscoelastic material; i.e., it exhibits both viscous-
like and elastic characteristics and the relationship between stress
and strain depends on time [5,6].

Because most materials exhibit both fluid (viscous) and solid
(elastic) behavior, multivariable non-linear mathematical and
mechanical models are based on Hooke’s law of elasticity and
Newton’s law of fluid viscosity [7]. As a consequence of these laws
and to better describe the behavior of complex viscoelastic materi-
als, a number of rheological models have been proposed in the
past, such as Maxwell, Kelvin-Voigt, standard linear solids, Burgers,
and generalized Maxwell or Kelvin-Voigt, among others [8–10].

According to Chang et al. [11] the Burgers model describes the
mechanical properties of asphalt mixtures better than the Maxwell
and Kelvin-Voigt models. Saltan et al. [12] noted that the Burgers
model is appropriate for determining the viscous component of
stiffness. In contrast, Ma et al. [13] reported that it is difficult to
control the variability of experimental tests, due to the compli-
cated interference of environmental variables. Jaczewski et al. [9]
stated that no model commonly used in the literature is ideal for
predicting the deformations of asphalt mixtures, since each model
has advantages and disadvantages. In addition, Celauro et al. [14]
mentioned that the loading-unloading cycle cannot be described
with the same set of model’s parameters, since the prediction
results are inaccurate in the complete cycle.

One of the most important phenomena produced in asphalt
deformation is the creep and recovery of the loading-unloading
cycle [7]. According to Alrashydah et al. [15] the creep process is
a significant mechanical property for pavement design. Conse-
quently, creep allows one to predict the mechanical response by
means of linear regression models. Li et al. [10] showed that the
variation of loads and temperatures has also significant effects on
the viscoelasticity of the mixtures. Ma et al. [16] indicate that
the creep deformation is proportional to the increase in the content
of air voids in the mixture. Xie et al. [17] determined that in the
attenuation creep stage of an asphaltic mastic the deformation rate
decreases gradually while in the steady creep stage the creep rate
is relatively stable. In addition, the greater the load, the greater the
deformation rate and the creep deformation are in every stage. On
the other hand, Yao et al. [18] applied a repeated creep-recovery
method to modified binders, demonstrating that these properties
are relevant for evaluating delayed elasticity. From the same
method, Liu et al. [19] have classified the deformation capacity of
modified binders for different traffic levels. Han et al. [20] studied
the elasticity of different binders by means of an extended recov-
ery during 10 cycles of loading and unloading. They concluded that
creep deformation and subsequent recovery are important for the
design of an asphalt mixture.

Several experimental investigations have been presented with
the use of models based on differential equations including frac-
tional derivatives. Fractional calculus is a fast developing branch
of mathematical physics that deals with integrals and derivatives
of traditional functions of any arbitrary real or complex order. This
mathematical approach is able to reveal important physical mean-
ings for the viscoelasticity of asphalt mixtures and other materials
[21]. Within this framework, Gao et al. [22] verified that modified
models that provide fractional functions, such as Kelvin and Max-
well, possess fewer rheological parameters and they agree well
with experimental measurements. The fractional Burgers model
proposed by Oeser et al. [23] requires four parameters to describe
creep strain in an asphalt mixture. It was reported that this model
exhibits better agreement with experimental tests than previous
classical models. Although the fractional calculation improves the
physical representation of the deformations, it does not completely
characterize an asphalt mixture. The main practical limitation of
the aforementioned models is that they do not consider a detailed
characterization for each element that makes up a mixture and
thereby they do not examine the asphalt binder and the aggregate
separately.

In the following sections of this paper, a new approach related
to the Burgers model [24] is presented to describe the time-
dependent behavior of the mixture. The proposed rheological
model of asphalt viscoelasticity is introduced in Section 2, where
the asphalt binder and the aggregate contributions are considered
separately. Equations are obtained using derivatives of fractional
order and they were implemented into computer codes using
MATLAB�. Creep, recovery, and relaxation phenomena in an
asphalt mixture are analyzed using the new model and compared
with the Burgers model. Results of the experimental validation of
the model are presented in Section 3. Finally, the main conclusions
are summarized in Section 4.
2. A rheological model of asphalt viscoelasticity

Currently, the viscoelasticity of asphalt mixtures and binder is
characterized using the Burgers model, also called the ‘‘four ele-
ments model,” that describes a viscoelastic material [25]. This
model was not specifically developed to explain the deformation
produced in an asphalt mixture, since the model does not detail
differences between constituent elements. Therefore, this study
proposes a mechanical model of asphalt viscoelasticity that
assumes an aggregate particle enclosed by an asphalt material,
i.e., an elastic element surrounded by an elastic-viscous set.

Note that an asphalt mixture has a centralized mechanical
model in itself that reveals the behavior of its deformations and
details the independent character of the rheological properties of
both the aggregate and asphalt binder, producing compression
when subjected to mechanical tests [26,27].

Fig. 1 shows this relationship from the aggregate characteriza-
tion, which is represented by the elasticity constant n2 and the
elasticity and viscosity constants representative of the asphalt bin-
der, n1 and g, respectively.

The fractional differential equation that governs the previous
model was obtained by analyzing two strains in series [28], where
the first strain was developed with the classic Maxwell model [29]:

Da
t �1aþ1b tð Þ ¼ 1

n1
Dc

tr tð Þ þ 1
g
r tð Þ; ð1Þ

where e(t) is the strain, r(t) is the stress, and Dt
a and Dt

c are defined
as the fractional derivatives with respect to time t and fractional
exponents a and c, respectively. The subscript of e is the index of
the corresponding elements in the model shown in Fig. 1.

The second strain differs from the Kelvin-Voigt model [30],
since it has two purely elastic springs and a viscous damper con-
nected in parallel to consider in more detail the elasticities of an
asphalt mixture:

Db
t �2 tð Þ ¼ 1

g
r tð Þ � n1 þ n2ð Þ

g
�2 tð Þ; ð2Þ

where b is also a fractional exponent.



Fig. 1. Schematic diagram of the proposed model of asphalt mixture.
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It is important to emphasize that the fractional exponents must
have the same ranges, between 0 and 1, to satisfy the classical
equations. The complete system is connected in series, so that
the total strain is the sum of the strains in each component [31]:

� ¼ �1a þ �2 þ �1b: ð3Þ
After substituting the equations and transforming the deriva-

tives in an algebraic form, the differential equation of the proposed
asphalt mixture viscoelastic model is (see Appendix A):

Daþb
t �þ n1 þ n2ð Þ

g
Da

t � ¼ 1
n1

D
bþc

t
rþ 1

g
Db

tr

þ1
g
D
a

t
rþ n1 þ n2ð Þ

n1g
D
c

t
rþ n1 þ n2ð Þ

g2 r: ð4Þ

Applying the Laplace transform to Eq. (4) and assuming zero
initial conditions yields the following stress-strain constitutive
equation:

b� sð Þ saþb þM
g
sa

� �
¼ br sð Þ 1

n1
scþb þ 1

g
sb þ 1

g
sa þ M

n1g
sc þ M

g2

� �
; ð5Þ

where M ¼ n1 þ n2.

2.1. Creep phenomenon

The creep phenomenon appears when the material is subjected
to a constant stress at a certain time, given by a single step loading
function r = r0H(t), where H(t) is the Heaviside unit step function
[32]. Doing this, and returning to the previous differential Eq. (5),
gives [33]:

b� sð Þ ¼ sc�a

n1
þ s�a

g
þ 1

g sb þ M
g

� �
24 35r0

s
: ð6Þ

As the parameters a and cmust be equivalent for the first defor-
mations, these are cancelled when starting the first elastic defor-
mation. Furthermore, the creep modulus F(t) can be obtained by
inverse transforming Eq. (6) [34–36]:

F tð Þ ¼ 1
n1

þ 1
g

ta

C aþ 1ð Þ þ
1
g
tb
X1
k¼0

�M
g t

b
� �k

C bþ 1þ bkð Þ ; ð7Þ
where C(.) is the Gamma function. In Eq. (7), the third term of the
creep modulus equation is called the infinite Mittag-Leffler series,
which depends on parameter b, and describes the transformation
process of the binder. This can reach a value of 1, since it acts at
the same time as elasticity [37].

The change of curvature, or the inflection value, is known as the
relaxation time and corresponds to the complete system
(aggregate-binder). Parameter a appears in the second term of
Eq. (7), which is interesting since it represents the last state of
the creep phenomenon, indicating that if this parameter reaches
a value of 1, it would represent a completely viscous material.
However, this assumption is far from reality, due to the depen-
dence of the aggregate on the asphalt mixture (note that this
parameter depends exclusively on the capacity of the binder, and
not on the complete mixture) [38]. Therefore, it is possible to avoid
setting boundary conditions, assuming a, b = 1 as values of the
fractional exponents and, consequently, obtaining the classical
equation from the proposed model:

F tð Þ ¼ 1
n1

þ t
g
þ 1
M

1� e�
M
g t

h i
: ð8Þ

We can compare Eq. (8) with the Burgers model, where the clas-
sic creep equation is given by the following mathematical expres-
sion [39]:

Fburgers tð Þ ¼ 1
n
þ t
g
þ 1

n
1� e�

n
gt

h i
: ð9Þ

In Eq. (9), the first term of the equation corresponding to the
creep of the material (from the point of view of the Burgers
model) represents the elasticity of a single material, which is
correct if the aim is to study the creep phenomenon of a binder
or of any viscoelastic material separately. However, if an asphalt
mixture is tested, the Burgers model states that the first strain is
caused by the aggregate-binder. This could be incorrect, because
when a mixture is subjected to a load the first deformation is
always suffered exclusively by the binder, since this a softer
material.

Based on the above, the proposed viscoelastic model in asphalt
mixtures adequately describes the first strain of the asphaltic
material, which corresponds exclusively to the binder strain. Thus,
to continue analyzing the other terms of the proposed model,
numerical examples are given in the following subsections to com-
pare the effect caused by the fractional parameters a and b.
2.1.1. Fractional parameter b
Parameter b represents a change in the mixture state, physically

describing the transformation from an elastic to a viscous state
[40]. Its mathematical domain is limited in its lower part by the
value 0 until it reaches a maximum value of 1. The above indicates
that mechanically, the model presents two springs and a damper
connected in parallel in its curvature. This demonstrate a certain
incompatibility between the proposed model and the Burgers
model, deduced from classical mechanical reasoning based on
two hypotheses: (1) The proposed model is characterized by a
change in the viscoelastic curvature, considering the second elastic
jump of the entire asphalt mixture; (2) The space and time depen-
dent model requires fractional calculus.

Fig. 2 parametrically shows how the fractional exponent
acquires different curves by varying the range of b, both in the
Burgers model and the model proposed in this study. In this exam-
ple, elasticity n1 ¼ 50 for the binder, n2 ¼ 100 for the aggregate,
and viscosity g ¼ 50 for the binder were used. These values have
merely been chosen in this example to illustrate more clearly the
differences between the Burgers model and the proposed
approach.



Fig. 2. Results of strain as a function of both time and b: a) Burgers model; b) proposed model.
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Fig. 3. Results of strain as a function of both time and a for the proposed model
with b = 1.
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Fig. 2 reveals differences between the results obtained for both
models. When parameter b reaches values close to 0, the binder
resists certain loads and its transition to the viscous state is zero.
From the mechanical point of view, this behavior corresponds to
a spring, instead of a damper, resulting in a model comprised of
three springs connected in parallel. In contrast, as parameter b
reaches values close to 1, the binder begins behave like a viscoelas-
tic material with exponential growth, resulting in a model with
two springs and a damper connected in parallel.

Fig. 2a (the Burgers model) shows that the strain reaches defor-
mations of 0.02 mm, while with the proposed model (Fig. 2b) the
maximum deformation value does not exceed 0.007 mm. This is
because the model considers the aggregate and the binder sepa-
rately. The Burgers model shows a point of inflection when its
deformation is 0.01 mm, which corresponds to the elastic jump if
parameter b is 0. In contrast, the new model reaches a value of
0.005 mm, since it adds the elasticity of the aggregate. However,
it is important to note that each value of b differs for the various
binders, temperatures, and load frequencies.

Therefore, the largest difference between both models is based
on the relaxation time (g/M), since it has a sum of elasticities that
affect a strain (with slope values close to the proposed viscosity).
The model proposed in this study presents a curve with a parallel
trend, typical of an elastic material, thus representing the partici-
pation of the aggregate in the asphalt mixture.

2.1.2. Fractional parameter a
From the mechanical point of view, parameter a corresponds to

the last damper of the model (see Fig. 1), both in the Burgers model
and the proposed model [41]. This damper represents the last
phase of the creep phenomenon in which the binder reaches full
viscosity, meaning that its final state will never be viscous due to
its dependence on the aggregate.

Therefore, its relationship depends exclusively on the viscous
constant of the binder, which does not mean that at this point
the aggregate does not contribute to the total strain. Each binder
will present specific slopes and a values depending on the
temperature and load frequency. Thus, it is interesting to know
the dependence on time and temperature of these parameters to
appropriately characterize the model.

To show the dependence of the creep modulus with parameter
a, a fixed value of b = 1 was set and the creep of the material was
plotted, as shown in Fig. 3. This value of b was set to simulate the
binder undergoing a viscoelastic transformation following the
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spontaneous elastic jump, which is typical of spring-damper
mechanical work.

The results obtained confirm that parameter a acts when the
material begins to deform with a constant slope. The elastic
jump of the binder, with a deformation value of 0.02 mm for
an a = 1, gives rise to a final strain of 0.2247 mm (at 10 s). Addi-
tionally, if a = 0, its instantaneous strain become constant due to
the transformation of the fractional exponent (see Fig. 3). The
above is due to the fact that if a = 0, this represents a spring,
giving the sum of two instantaneous jumps with initial values
of 0.04 mm, followed by growth until reaching the maximum
value of 0.0467 mm.

The application of the load is directly proportional to exponent
a. Thus, parameters a and b can be determined by comparing the
model with the results obtained from experimental tests. Once
these values are obtained, other physical phenomena may be pre-
dicted and analyzed (such as the dynamic module and/or relax-
ation test). The importance of this model lays in that we may
design an asphalt mixture with a modified binder, so we can build
an optimized and more resistant pavement layer.

2.2. Recovery phenomenon

The recovery phenomenon begins when the initial stress
applied to the material in the creep test is released [41]. This
time-dependent recovery is a characteristic of each material and
depends on both the type of load that is applied and the tempera-
ture variation to which the material sample is subjected [42].

In an experiment, when the applied load exceeded the elastic
limit of the material, the sample became plastic, modifying the
physical properties. To describe this process, it is necessary to con-
sider the fractional differential Eq. (4), eliminating the concept of
initial stress r0 ¼ 0. However, this is where a controversy arises,
since it is not easy to understand how fractional equations work
when the initial conditions are not zero. In addition, applying the
Laplace transform is complicated, since there is currently no phys-
ical meaning for these initial conditions. Therefore, the right-hand
side of Eq. (4) is zero. After applying the Laplace transform, Eq. (4)
becomes:

b� sð Þ saþb �
Xm�1

k¼0

sbþa�k�1�k 0ð Þ þM
g
sa �

Xm�1

k¼0

sb�k�1�k 0ð Þ
" #

¼ 0; ð10Þ

where a and b adopt values between m � 1 and m, where m is the
nearest integer to the value of a or b. Analyzing Eq. (10) using first
the Maxwell model and then the modified Kelvin-Voigt model gives
the following equations, respectively [43]:

b� sð Þsa �
Xm�1

k¼0

sa�k�1�k 0ð Þ ¼ 0; ð11Þ

b� sð Þsb �
Xm�1

k¼0

sb�k�1�k 0ð Þ þM
g
b� sð Þ ¼ 0:

Note that the fractional parameters can reach maximum values
of 1, so m � 1 = 0. Therefore, the summations in Eq. (11) are can-
celed and only the initial strain conditions remain. This initial
strain is defined as �0M 0ð Þ for the system connected in parallel.
Now, we can express the recovery phase of the asphalt viscoelastic
model by adding the elastic jump from the Maxwell model,
denoted as �01 0ð Þ, which gives:

e tð Þ ¼ �0M 0ð Þ
X1
k¼0

�M
g t

b
� �k

C 1þ bkð Þ þ �01 0ð Þ: ð12Þ
Eq. (12) explains how the material recovers from deformation
when removing the load. The infinite series in Eq. (12) is recog-
nized as the classic Mittag-Leffler function [44]. If parameter
b = 1, Eq. (12) results in a decreasing exponential, which is typical
of a viscoelastic material. Note that this function starts at a time
t = 0, but when studying the complete phenomena of creep-
recovery, an arbitrary initial time must be defined.

Fig. 4 shows the Mittag-Leffler function for the recovery of
asphalt mixtures (the summation in Eq. (12)). When the value
of b tends to 0, the model becomes a pure spring that indicates
a constant recovery time, which is not typical of the asphaltic
material.
2.3. Relaxation phenomenon

The relaxation phenomenon originates when the material is
subjected to constant strain [45]. To do this, a test was carried
out in which the samples were deformed during a finite interval
of time to analyze when the effort began to vary over the course
of time. To describe this phenomenon, a constant strain
� ¼ �0H tð Þ was used. At any time t, deformation began with a finite
jump, so that the differential equation given in Eq. (4) can be
Laplace transformed [46].

To describe the relaxation, the deformation process was car-
ried out by adding the relaxations of the model in series, i.e.,
when the material began to be governed by the Maxwell model
and the modified Kelvin-Voigt model [47]. Then, in the Laplace
domain we get:

r̂ sð Þ
�0

¼ M
s
þ g
s1—b

þ n1
sa

s sa þ n1
g

� � : ð13Þ

Finally, Eq. (13) can be inverse transformed term by term to
obtain the time-dependent relaxation modulus R(t) [36,41] for
the asphalt mixture viscoelastic model:

R tð Þ ¼ M þ g
t—b

C 1—bð Þ þ n1
X1
k¼0

— n1
g t

a
� �k

C 1þ akð Þ : ð14Þ

The model given by Eq. (14) differs from the typical function of
the rheological relaxation of viscoelastic models due to the contri-
bution of the fractional derivatives. This is the case of the second
term of Eq. (14), which comes from the modified Kelvin-Voigt
model, whose fractional parameter is b and validates the following
relationships:

– If b reaches a value of 1, it is an undefined case, since the
Gamma function is indeterminate at zero. Its solution is based
on the application of a limit when the parameter tends to that
number, resulting in the classical relaxation equation whose
first parameter is the sum of elasticities of the aggregate-
binder system connected in parallel, plus the Mittag–Leffler
function:

� �k
R tð Þ ¼ M þ n1
X1
k¼0

— n1
g t

a

C 1þ akð Þ : ð15Þ

– If b reaches much lower values (close to 0), b contributes con-

siderably to the result of the final relaxation function, explain-
ing the viscosity capacity of the binder to dissipate energy.
Additionally, note that each value within the established range
contributes to the final relaxation modulus.
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The proposed model is exclusively linked to the capacity of the
binder to release stress. Fig. 5 shows the stress given by the second
term in Eq. (14) as a function of both time and b.

The figure shows that as b goes from 0 to 1, there is a release of
stress over time that starts at a value of g = 50 and corresponds to
the viscous constant value. When b reaches 1, stress release is zero,
which is represented by a straight line with the value of 0 over
time, thus confirming the classical model. For values of b < 1, there
is residual stress release. This means that knowing the value of b
associated with each binder is important for real applications.

In the third term of Eq. (14), another important point is the
presence of the Mittag-Leffler function that becomes the classical
exponential of the Maxwell model when a = 1. This is clearly
observed in Fig. 6, which shows the variation of the third term of
Eq. (14) as a function of both a and time.

The classic Maxwell model explains just a part of the relaxation
phenomenon. In the third term of Eq. (14), as the value of a tends
to 0, the stress release becomes smaller and when a reaches 0, the
binder becomes theoretically purely elastic although, in practice,
this does not occur. In addition, when a reaches values close to
0.2, it undergoes a sudden change in relaxation, reaching the linear
limit with a value corresponding to half the elastic capacity of the
binder.
3. Experimental verification

In order to verify the proposed model, several creep-recovery
laboratory tests were carried out at various temperatures on two
different bituminous binders. 12 Marshall samples measuring
101.6 mm in diameter and 65 mm in height were manufactured
and compacted to 75 blows per side. Semi-dense AC16S gradation
was used, with the variation of a conventional asphalt binder with
penetration grade B50/70 and a binder modified with crumb rub-
ber PMB45/80-65 that were used for manufacturing the samples.
The softening points of the conventional and modified binder were
51.6 �C and 72.3 �C, respectively. Ophitic nature coarse aggregate
and limestone nature filler were also employed.

Uniaxial static creep and recovery tests were carried out on all
the samples. A constant Heaviside load of 5 kN was applied in a set
period to determine the rheological properties of the materials
[13,16]. Tests were conducted for a temperature range between
�10 �C and 35 �C (with a scale of 15 �C).

Creep-recovery tests on both binders measured at different
temperatures are shown in Fig. 7. Experimental results (solid line)
are compared with those obtained by using the proposed model
with fitted parameters (dashed line). The theoretical model agrees
well with the experimental data at all temperatures for both bin-
ders, both during the creep phase and during recovery. In addition,
the model accurately represents the increasing stiffness with
decreasing temperature and the lower accumulated deformations
in the modified binder compared to the conventional one. The
model can show that as the testing temperature increases, a
greater viscoelastic deformation occur, each time generating a
higher elastic jump and transforming the nonlinear creep.

The results of the fractional simulation at different tempera-
tures are shown in Table 1. The creep phenomenon develops the
instantaneous elastic jump represented by the first spring of the
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model (n1). Unlike the present approach, classical models cannot
represent this elastic jump with real values since it is not associ-
ated with the binder (represented by the first spring). The mixture
with the conventional binder increases the elastic jump with the
temperature, which causes the decreasing of the elastic modulus,
transforming its behaviour to the viscoelastic range. The mixture
with the PMB 45/80-65 binder keeps the elastic jump relatively
constant generating a more stable value of elasticity with the vari-
ation of temperature in the linear viscoelasticity.

After the elastic jump of the binder, nonlinear viscoelastic cur-
vature is developed with a second elastic jump, which considers
the elasticity of the complete mixture given by the sum of the elas-
ticities of binder and aggregate, M = n1 + n2 [see Eq. (5)]. The result
predicted by the model makes it possible to derive the Young’s
modulus for the aggregate, whose value is 635.0 MPa. This result
explains why the aggregate is not deformable in a mixture, deliv-
ering volumetric and load dissipation properties capable of
increasing the second elastic jump and delaying the viscosity.
Unlike the Burgers model, the proposed one maintains the proper-
ties of elasticity (n1) and dynamic viscosity (g) of the asphalt binder
constant for the parallel and series deformations, originating a
physical meaning to evaluate the deformations in the whole test
cycle. In addition to the elastic jump, a time-dependent deforma-
tion related to parameter b of the model is produced, which repre-
sents the fluctuation between the elastic and viscous state. The
value of b in the mixture with modified binder increases more than
that in the mixture with conventional binder, generating more
open viscoelastic curves and allowing a recoverable creep.
Finally, the parameter a corresponds to the last fractional dam-
per and it decreases with the temperature due to the viscoelastic
transformation previously arisen with b. When the recoverable
deformation is rapid (close to zero) the slope is greater. However,
if the transition is slow or with greater development of recoverable
viscoelasticity (higher b values) the result is a flatter final slope.
The value of a is characteristic of the non-recoverable creep and
does not present large differences between mixtures either with
conventional or modified binders.

The behaviour of the asphalt mixture would be represented as a
Newtonian fluid (value of a = 1) when working with classical calcu-
lation, which is not the real rheological situation since an asphalt
mixture never behaves that way. In the Burgers model, this is
solved by adding an extra parameter of dynamic viscosity despite
of losing the actual physical representation of the set of elements.
Therefore, the fractional calculation helps understand the vis-
coelastic deformations and clarify the real physics when designing
a pavement.

The dynamic viscosity g depends on the temperature and is
related only to asphalt binders. The proposed model fits the strain
curves with the same value of g for the whole test cycle. For low
temperatures, this value is high due to the solid consistency with
high stiffness that the material attains. For higher temperatures
(35 �C) its physical state is more viscous, and the values of g are
lower. The proposed model satisfactorily represents the lower
dynamic viscosity of the conventional binder compared with the
modified binder, which produces a lower elastic deformation in
the asphalt mixture.
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The second part of the test shows the recovery of the asphalt
mixture, which fits the experimental data with the rheological val-
ues obtained in the creep process. The parameter �01 represents the
elastic jump of the recovery phenomenon. An increase in the tem-
perature results in an increase of �01, which is reflected in the final
values of the accumulated plastic deformation. At high tempera-
tures, the jump of elastic recovery in the mixtures is higher. It is
important to notice that at a fixed temperature, the rheological val-
ues of the binder (n1 and g), the aggregate (n2) and the parameter b
obtained in the creep process were the same as those in the recov-
ery phase. This fact reveals that, unlike the existing models, the
loading-unloading cycle can be described with the same set of
model’s parameters. The value of b increases with temperature
causing more open curves that decay faster to the starting point.
The mixture with PMB 45/80-65 binder has lower accumulated
plastic deformations compared to the mixture with conventional
binder, which is related to the increase of b by the modified binder.
This behaviour allows one to predict the phenomenon of recover-
able creep of mixtures.

4. Conclusions

From the results of this study, the following conclusions can be
made:

– The new model of asphalt mixture viscoelasticity proposed here
represents in a more precise way the characteristics of the
materials that form the mixture. In this study, we proposed a
model of asphalt viscoelasticity that involves a mechanical
arrangement that characterizes an asphalt mixture in a more
clear and detailed way than classic viscoelastic models, which
do not explicitly consider the materials that make up the mix-
ture. Unlike the classical models, the new model is character-
ized by two springs and a damper connected in parallel that
represents an aggregate particle enclosed by an elastic-viscous
binder element. The new model better represents practical
cases of asphalt mixtures used in the construction of pavement
layers.

– An elastic jump at the beginning of the creep modulus is
represented by the new model that is not shown by the
Burgers model. This elastic jump depends on the characteris-
tics of the binder. After this elastic jump, the binder
transforms its state from elastic to viscoelastic and the com-
plete mixture acts.

– The recovery phenomenon depends on the parameter b of the
new model. Subjecting the material to small loads causes a
gradual loss in recovery for several reasons, such as the
loading-unloading cycle of a test sample and high loads that
may affect final conditions.

– The use of fractional derivatives in the new model results in
new terms in the equation for the relaxation modulus. These
new terms are useful to explain better the total energy release
caused by the binder (associated with the value of b) and the
whole mixture (associated with the value of a).

- Rheological parameters in the model n1, n2, and g allow repre-
senting the properties of each one of the materials in the
asphalt mixture, correlating the proposed model with the defor-
mation behavior that occurred in the laboratory. In addition,
fractional parameters a and b determine the nonlinear vis-
coelasticity of asphalt mixtures, detailing the ranges of recover-
able and non-recoverable creep for different binders and
working temperatures.



Fig. 7. Creep-recovery tests on binder B 50/70 (a) and PMB 45/80-65 (b). Comparison between experimental data (solid line) and predictions (dashed line) at different
temperatures are shown.

Table 1
Creep-recovery of asphalt mixtures for a load of 5 kN.

Type of binder Temperature (�C) n1 (MPa) n2 (MPa) g (MPa * s) a b �01 0ð Þ (mm) �0M 0ð Þ (mm) R2

B 50/70 �10 8.6850 638.1 30.5400 0.2207 0.0211 0.0080 2.4110 0.99
5 3.7080 635.0 12.2900 0.1711 0.0743 0.2185 3.4340 0.98
20 3.8710 635.0 4.6300 0.1639 0.1276 0.3790 13.5900 0.99
35 3.8710 635.0 2.9740 0.1309 0.1706 0.4752 13.7400 0.99

PMB 45/80-65 �10 7.2380 630.0 53.2300 0.2454 0.0105 0.0010 1.3230 0.98
5 6.1770 635.0 15.3700 0.1565 0.2590 0.1464 1.3230 0.99
20 7.2380 635.0 4.4240 0.1565 0.3190 0.3270 14.4600 0.99
35 7.2380 635.0 3.1350 0.1145 0.3795 0.3514 14.0700 0.99
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– Further work is planned to compare the theory presented in this
paper with experimental tests that will include different asphalt
mixtures and loading frequencies.
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Appendix A

The total strain of the system shown in Fig. 1 is given by

� ¼ �1a þ �2 þ �1b: ðA:1Þ
The fractional differential equations are given by

Da
t �1aþ1b tð Þ ¼ 1

n1
Dc

tr tð Þ þ 1
g
r tð Þ ðA:2Þ

and

Db
t �2 tð Þ ¼ 1

g
r tð Þ � n1 þ n2ð Þ

g
�2 tð Þ: ðA:3Þ

Taking the fractional derivative of order a + b of Eq. (A.1) with
respect of time yields

Daþb
t � tð Þ ¼ Daþb

t �1aþ1b þ Daþb
t �2: ðA:4Þ

Now, by taking the fractional derivative of order b of Eq. (A.2)
and that of order a of Eq. (A.3), we get

Daþb
t �1aþ1b tð Þ ¼ 1

n1
Dcþb

t r tð Þ þ 1
g
Db

tr tð Þ ðA:5Þ

and

Daþb
t �2 tð Þ ¼ 1

g
Da

t r tð Þ � n1 þ n2ð Þ
g

Da
t �2: ðA:6Þ

Substituting Eqs. (A.5) and (A.6) into Eq. (A.4) gives

Daþb
t � tð Þ ¼ 1

n1
Dcþb

t r tð Þ þ 1
g
Db

tr tð Þ þ 1
g
Da

t r tð Þ

� n1 þ n2ð Þ
g

Da
t �2: ðA:7Þ

In order to express the fractional differential Eq. (A.7) as a func-
tion of the total strain e only, we take the fractional derivative of
order a of Eq. (A.1) with respect of time

Da
t � ¼ Da

t �1aþ1b þ Da
t �2: ðA:8Þ

Solving for Da
t �2 in Eq. (A.8) and using Eq. (A.2) one obtains the

following equation

Da
t �2 ¼ Da

t ��
1
n1

Dc
tr tð Þ � 1

g
r tð Þ: ðA:9Þ

Now, substituting Eq. (A.9) into Eq. (A.7) gives

Daþb
t � tð Þ ¼ 1

n1
Dcþb

t r tð Þ þ 1
g
Db

tr tð Þ þ 1
g
Da

t r tð Þ

� n1 þ n2ð Þ
g

Da
t ��

1
n1

Dc
tr tð Þ � 1

g
r tð Þ

� �
: ðA:10Þ
After arranging terms, Eq. (A.10) is expressed as

Daþb
t �þ n1þn2ð Þ

g
Da

t �¼
1
n1

D
bþc

t
rþ1

g
Db

trþ1
g
D
a

t
rþ n1þn2ð Þ

n1g
D
c

t
rþ n1þn2ð Þ

g2
r;

ðA:11Þ

where the time variable is not explicitly shown for notational
simplicity.
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