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Abstract

The great majority of mathematical models proposed to simulate malware spread-

ing are based on systems of ordinary differential equations. These are compart-

mental models where the devices are classified according to some types: suscep-

tible, exposed, infectious, recovered, etc. As far as we know, there is not any

model considering the special class of carrier devices. This type is constituted

by the devices whose operative systems is not targeted by the malware (for

example, iOS devices for Android malware).

In this work a novel mathematical model considering this new compartment

is considered. Its qualitative study is presented and a detailed analysis of the

efficient control measures is shown by studying the basic reproductive number.

Keywords: Malware propagation, Carrier devices, Basic reproductive number,

Stability

1. Introduction

Malware is one of the most important tools used in cybersecurity attacks,

and this fact has been reaffirmed in the last years with the appearance of zero-

days attacks and advanced persistent threats ([1, 2]). The risks associated to

these cyberattacks in the new paradigms as the Internet of Things ([3, 4]) and5
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Industry 4.0 ([5, 6]) are enormous and, consequently, this threat must be prop-

erly managed.

Although the scientific approach to combat malware is mainly focused on the

design of efficient methods to detect all types of malware ([7]), the design and

computational implementation of mathematical models to simulate its spreading10

is also a very important task. These models allow us not only to predict the

behavior of the evolution of malware, but also to study the efficacy of different

possible countermeasures. As a consequence, these analytical tools could play

a very important role in the forensic computing and cybercrime investigation.

The great majority of the mathematical models for malware spreading that15

have been proposed in the scientific literature are compartmental, global, com-

plete and deterministic ([8, 9]).

They are compartmental models since the devices are divided into some

types (or compartments) according to their status: susceptible (S), exposed (E),

infectious (I), recovered (R), vaccinated (V ), immunized (P ), damaged (D) etc.20

As a consequence, and considering the dynamics between these compartments,

we obtain different types of models: SI ([10]), SIR ([11]), SEIR ([12]), SEIRS

([13, 14, 15]), SVEIR ([16, 17]), SIRP ([18]), SED ([19]), etc.

They are global models since each compartment is considered as an unique

entity with their own characteristics. Moreover, the dynamics of resources used25

by these compartments are explicitly represented in the equations of the model.

In contrast, individual-based models consider each device as an entity taking

into account their particular characteristics and local interactions ([20]).

They can be considered as complete models since it is supposed that the

contact topology is defined by means of a complete graph; that is, all devices30

are in contact with each other all time. On the other hand, network models

(based on, for example, scale-free networks) have also recently been proposed

([21, 22]).

Finally, they are deterministic models based on a system of ordinary differ-

ential equations. In fact, the temporal evolution of each compartment is ruled35

by one of these differential equations. The relevance of these models lies on
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the fact that the qualitative theory of ordinary differential equations can be

used to study the behavior and dynamics of their solutions. On the other hand,

stochastic models have also been proposed ([23]).

A detailed analysis of these models based on ordinary differential equations40

reveals that:

(1) As far as we know, no proposed model considers in its dynamics the devices

that can be infected by the malware but cannot be damaged, although

they can act as transmission vectors (i.e. they can transmit the infection

to susceptible devices). This new type is constituted by the devices whose45

operative systems is not targeted by the malware (for example, iOS devices

for Android malware), and they can be denoted as carrier devices (C).

(2) The analytical study of the basic reproductive number, R0, (the main

threshold parameter which indicates whether a malware outbreak can be-

come epidemic) is basic in order to design efficient control strategies. As50

far as we know, there is not any profound effort to analyze R0 based on the

epidemiological parameters on which depends. Actually, its study usually

depends on an only parameter at most.

Consequently, it is of interest to design new mathematical models that over-

come the last mentioned drawbacks. In this sense, the main goal of this work55

is to proposed a novel mathematical model to simulate malware spreading con-

sidering the new class of carrier devices. Moreover, a detailed analysis of the

basic reproductive number will be performed in order to obtain efficient control

measures that involve several parameters.

The rest of the paper is organized as follows: In section 2 a detailed descrip-60

tion of the new mathematical model is presented; the stability analysis of the

equilibrium points is introduced in section 3; in section 4 the analysis of the

control measures is given, and finally, the conclusions are presented in section

5.
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2. New Mathematical Model to Simulate Malware Propagation65

2.1. Description of the model

The model proposed in this work is a compartmental model where the

population is divided into four classes: susceptible S (t), carrier C (t), infec-

tious I (t), and recovered R (t). Specifically, it is a SCIRS model (i.e., reinfec-

tion is considered) with vaccination process and without population dynamics:70

S (t) + I (t) + C (t) + R (t) = N > 0. The dynamics of the model is ruled by

means of the following assumptions (see Figure 1):

• Both, carriers and infectious devices, can infect susceptible devices at the

same transmission rate a. In this sense, let δ be the fraction of susceptible

devices endowed with the targeted operative system. As a consequence75

δaS (t) (C (t) + I (t)) stands for the new infectious devices at every step of

time. Similarly, (1− δ) aS (t) (C (t) + I (t)) represents the number of new

carrier devices at t.

• Susceptible devices can acquire temporal immunity to malware attack ac-

cording to the vaccination rate v. As a consequence, vS (t) is the number80

of susceptible devices moved to recovered class at time t.

• If security software successfully detects and removes the malware, car-

riers and infectious devices acquire temporal immunity at rates bC and

bI , respectively. Thus, bCC (t) and bII (t) stand for the number of new

recovered devices from carrier and infectious compartments respectively.85

• Finally, recover devices lose their temporal immunity and turn back to be

susceptible compartment at recovery rate ε. Consequently, εR (t) repre-

sents the new susceptible devices at time t.

Considering these assumptions, the dynamics of the model is governed by

means of the following system of ordinary differential equations:90
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Figure 1: Flow diagram representing the dynamics of the SCIRS model.

dS (t)

dt
= εR (t)− aS (t) (I (t) + C (t))− vS (t) , (1)

dC (t)

dt
= a(1− δ)S (t) (I (t) + C (t))− bCC (t) , (2)

dI (t)

dt
= aδS (t) (I (t) + C (t))− bII (t) , (3)

dR (t)

dt
= bCC (t) + bII (t) + vS (t)− εR (t) . (4)

2.2. Existence and uniqueness of the solutions of the model

As S (t) + C (t) + I (t) + R (t) = N the system (1)-(4) can be written as

follows:

dS (t)

dt
= −aS (t) (I (t) + C (t))− vS (t) + ε (N − S (t)− C (t)− I (t)) ,(5)

dC (t)

dt
= a(1− δ)S (t) (I (t) + C (t))− bCC (t) , (6)

dI (t)

dt
= aδS (t) (I (t) + C (t))− bII (t) . (7)

The feasible region for this system is Ω = {(S,C, I) ∈ R+
3 : 0 ≤ S+C+I ≤ N},

where its boundary ∂Ω is delimited by four faces:95

F1 = {(S,C, I) ∈ R+
3 : S + C + I = N with 0 ≤ S,C, I ≤ N}, (8)

F2 = {(S,C, I) ∈ R+
3 : S = 0 with C + I ≤ N}, (9)

F3 = {(S,C, I) ∈ R+
3 : C = 0 with S + I ≤ N}, (10)

F4 = {(S,C, I) ∈ R+
3 : I = 0 with S + C ≤ N}, (11)
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such that their outer normal vectors are, respectively, ~n1 = (1, 1, 1), ~n2 =

(−1, 0, 0), ~n3 = (0,−1, 0), and ~n4 = (0, 0,−1). A simple computation shows

that: (
dS

dt
,
dC

dt
,
dI

dt

)
F1

• ~n1 = −bCC − bII − vS ≤ 0, (12)(
dS

dt
,
dC

dt
,
dI

dt

)
F2

• ~n2 = (C + I −N) ε ≤ 0, (13)(
dS

dt
,
dC

dt
,
dI

dt

)
F3

• ~n3 = aIS(δ − 1) ≤ 0, (14)(
dS

dt
,
dC

dt
,
dI

dt

)
F4

• ~n4 = −aCSδ ≤ 0. (15)

Now, Ω is compact and invariant since Ω is closed -which implies Ω̄ = Ω-

([10, 24]). As a consequence, the solutions of the system (5)-(7) initiating in the100

feasible region Ω, exist and are unique for all t ≥ 0 [25].

2.3. Equilibrium Points

The equilibrium points of the system (1)-(4) can be obtained by solving the

following system of non-linear equations:

0 = −aS (t) (I (t) + C (t))− vS (t) + ε (N − S (t)− C (t)− I (t)) , (16)

0 = a(1− δ)S (t) (I (t) + C (t))− bCC (t) , (17)

0 = aδS (t) (I (t) + C (t))− bII (t) . (18)

It is easy to check that there are two solutions: the disease-free equilibrium

point

E0 = (S0, C0, I0) =

(
εN

v + ε
, 0, 0

)
, (19)

and the endemic equilibrium point

E∗ = (S∗, C∗, I∗) =

(
bCbI
J

,
bI(1− δ)L

JK
,
bCδL

JK

)
, (20)

where105

J = abI + abCδ − abIδ, (21)

K = bI(1− δ)ε+ bC(bI + δε), (22)

L = abIN(1− δ)ε+ bC(aNδε− bI(v + ε)). (23)
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Note that the endemic solution only exists if

aN(bI + bCδ − bIδ)ε
bCbI(v + ε)

> 1. (24)

2.4. Basic reproductive number

As is well-known, the basic reproductive number, R0, is an important epi-

demiological threshold parameter whose numeric value characterizes the behav-

ior of the solutions of the system. The next-generation matrix method [26] is

used to calculate it. Through certain computations we obtain that the next-

generation matrix at the disease-free equilibrium point is G = F · V −1, where:

F =

 aN(1−δ)ε
v+ε

aN(1−δ)ε
v+ε

aNδε
v+ε

aNδε
v+ε

 , V =

 bC 0

0 bI

 . (25)

Consequently, the spectral radius of G is the basic reproductive number:

R0 =
aN (bI + bCδ − bIδ) ε

bCbI (v + ε)
. (26)

Note that the condition for the existence of the endemic equilibrium point is,

precisely, that R0 > 1.

3. Study of the stability

3.1. Local stability of the equilibrium points110

The following results hold dealing with the local stability of the equilibrium

points:

Theorem 1. The disease-free equilibrium point E0 =
(
εN
v+ε , 0, 0

)
is locally

asymptotically stable if R0 < 1.

Proof. The disease-free equilibrium point is locally asymptotically stable if the

eigenvalues of the matrix F − V and ∂
∂S (−vS + ε (N − S)) have all negative

real parts (see [27]). Note that the eigenvalues of

F − V =

 aN(1−δ)ε
v+ε − bC aN(1−δ)ε

v+ε

aNδε
v+ε

aNδε
v+ε − bI

 (27)
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are
b2I (1− δ) + b2Cδ + bIbC (1−R0)±

√
U

2bI (−1 + δ)− 2bCδ
, (28)

where115

U = (bi − bC)
2

(bI (−1 + δ)− bCδ)2 (29)

+2bI (bI − bC) bC (−1 + 2δ) (bI (−1 + δ)− bCδ)R0 + b2Ib
2
CR

2
0.

A simple computation shows that these eigenvalues have negative real part if

1 − R0 > 0, that is, if R0 < 1. On the other hand ∂
∂S (−vS + ε (N − S)) =

−v − ε < 0, thus finished.

Theorem 2. The endemic equilibrium point E∗ is locally asymptotically stable

if R0 > 1.120

Proof. The Routh-Hurwitz criterion [28] will be applied to show that the en-

demic equilibrium E∗ is locally asymptotically stable for R0 > 1. Let P (λ) =

p0λ
3 + p1λ

2 + p2λ+ p3 be the characteristic polynomial of the Jacobian matrix

of system (5)-(7) at endemic-free equilibrium point, then:

p0 = 1, (30)

p1 =
a (−bCbIK + bIL+ bCLδ − bILδ) + JK (bC + bI + v + ε)

JK
, (31)

p2 = bI (v + ε) + bC (bI + v + ε) (32)

+
a(b2C(L−KbI)δ − bIL(δ − 1)(bI + ε))

JK

+
a(bC(b2IK(δ − 1) + Lδε+ bI(L−K(v + ε))))

JK
,

p3 = L. (33)

Therefore, by certain calculations we get p0 > 0, p1 > 0, p3 > 0, and p1p2−p3 >125

0, for R0 > 1. Consequently, the claimed result follows from Routh-Hurwitz

criterion.

3.2. Global stability of the equilibrium points

3.2.1. Global stability of the disease-free equilibrium point

In this section we will demonstrate the global stability of the disease-free130

equilibrium point E0 in Ω. The following result holds:
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Theorem 3. The disease-free equilibrium E0 is globally asymptotically stable if

R0 ≤ 1.

Proof. We will apply the LaSalle invariance principle ([29]) to proof the global

stability. According to (5) we have135

Ṡ ≤ εN − S(v + ε), (34)

Ẋ = εN −X(v + ε), (35)

where X is an auxiliary variable. Using the Comparison Theorem [30] we have

that X(t) is an upper solution of S(t), that is, X(t) > S(t) for all t > 0. Since

limt→∞X(t) = (εN)/(v + ε), then

S ≤ εN

v + ε
, (36)

as t→∞.

Now, if we consider the Lyapunov function V = bIC + bCI, from inequality

(36), we obtain

dV

dt
= bI ((1− δ)S (I + C)− bCC) + bC (δS (I + C)− bII) (37)

= (bI (1− δ)S + bCδS − bIbC)C + (bI (1− δ)S + bCδS − bIbC) I

≤ bIbC (R0 − 1)C + bIbC (R0 − 1) I.

Note that dV
dt ≤ 0 holds for R0 ≤ 1 and (S,C, I) ∈ Ω. Furthermore, dVdt = 0 if

and only if (C, I) = (0, 0) or S = (εN)/ (v + ε) and R0 = 1. Here, (S, I, C)→ E0140

as t→∞. Then, the maximum invariant set in {(S,C, I) ∈ Ω : dVdt = 0} is the

singleton E0. Finally, the claimed result follows from LaSalle invariance prin-

ciple [29, Chapter 2, Theorem 6.4] and the explicit expression of the Lyapunov

function defined.

3.2.2. Global Stability of Epidemic Equilibrium145

Now we will demonstrate the global stability of the endemic equilibrium

point E∗ in int(Ω) under certain assumptions. Applying the geometrical ap-

proach we obtain the following results:
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Theorem 4. The system (5)-(7) is uniformly persistent for R0 > 1.

Proof. It is easy to check that the system (5)-(7) satisfies the following state-150

ments:

• As the vector field of the system is subtangential to Ω for all point of ∂Ω,

then Ω is closed and invariant ([24]).

• If x(t, x0) is a solution of the system initiating in x0 = (S (0) , C (0) , I (0)),

and M is the set of all points belonging to ∂Ω such that the vector field155

of the system is tangential to Ω, then M = {x0 ∈ ∂Ω : x(t, x0) ∈
∂Ω for all t > 0} is (C, I) = (0, 0). Here, (S, I, C) → E∗ as t → ∞.

Furthermore, E0 is isolated as R0 > 1 (see Theorem 2) and acyclic. Then,

Nα is the singleton E∗.

Applying [31, Theorem 4.3] we obtain the claimed result.160

Note that the uniformly persistence of the model implies the existence of an

absorbent compact in int(Ω) [32]. Moreover, int(Ω) is a simply connected set

and E∗ is the only equilibrium point in int(Ω).

Theorem 5. Under the assumptions

−v − a (1− δ) c
2

N
− 2ac+

aδN

v + ε
(δ + 2) + ε < 0, (38)

−bI − a (1− δ) c
2

N
+
aδNε

v + ε
+ a (2N − 4c) max{(1− δ) , δ} < 0, (39)

where c is the persistence constant, the endemic equilibrium point E∗ is globally165

asymptotically stable if R0 > 1 with respect to solutions of (5)-(7) initiating in

int(Ω).

Proof. The explicit expression of the second additive compound matrix of Ja-

cobian matrix is

J [2] =


−bC − v − a (I + C − S (1− δ))− ε aS (1− δ) aS + ε

aSδ −bI − a (C + I)− v + aSδ − ε −aS − ε

−a (I + C) δ a (C + I) (1− δ) −bC − bI + aS

 .

(40)
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If

A = diag

(
S

C
,
S

C
,
S

C

)
(41)

is the diagonal matrix, and Af stands for the directional derivative of A along

(S,C, I), we obtain:

Af ·A−1 = diag

(
1

S

dS

dt
− 1

C

dC

dt
,

1

S

dS

dt
− 1

C

dC

dt
,

1

S

dS

dt
− 1

C

dC

dt

)
. (42)

Therefore, the matrix B = AfA
−1 +AJ [2]A−1 can be written as follows:

G+ bI − v − a (I + C − S (1− δ))− ε aS (1− δ) aS + ε

aSδ G+ bC − a (C + I)− v + aSδ − ε −aS − ε

−a (I + C) δ a (C + I) (1− δ) G+ aS

 ,

(43)

where

G =
1

S

dS

dt
− 1

C

dC

dt
− bC − bI . (44)

According to [33], its Lozinskii measure µ(B) associated with a norm ||.|| can

be evaluated as follows:

µ(B) = inf{c : D+||z|| ≤ c||z|| for all solutions of ż = Bz} , (45)

where D+ is the right-hand derivative [34, 35]. Moreover, if we define the norm170

of z = (z1, z2, z3) as ||z|| = max{||z1|| + ||z2||, ||z3||, it is possible to estimate

D+||z|| through two cases:

• If ||z|| = ||z1||+ ||z2||, then:

D+||z|| ≤
(

1

S

dS

dt
− a (1− δ)S I

C
− v − a (I + C) + aSδ + 2aS + ε

)
||z||.
(46)

• If ||z|| = ||z3||, then:

D+||z|| ≤
(

1

S

dS

dt
− bI − a (1− δ) SI

C
+ asδ + a (C + I) max{(1− δ) , δ}

)
||z||.

(47)

Taking into account the equations (45)-(47) and the assumptions (38) and

(39), we have

µ(B) ≤ 1

S

dS

dt
− θ, (48)
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with θ > 0. Then, there exists a constant T > 0 such that t > T implies

I(t) < e(θt/2) and, thus
1

t
logS(t) <

θ

2
(49)

along each solution of system (5)-(7) in int(Ω). For big enough t, we have

q2 = lim sup
t→∞

sup
(S(0),C(0),I(0))∈int(Ω)

1

t

∫ t

0

µ(B)dt < −1

2
θ < 0, (50)

thus finishing applying the geometrical approach [36].

3.3. Numerical simulations

Suppose that there are 1001 devices in the network such that initially all175

devices are susceptible with the exception of only one that is infectious: S (0) =

1000, I (0) = 1, C (0) = R (0) = 0. Moreover, set a = 0.0002, ε = 0.004,

bC = 0.004, bI = 0.03 and δ = 0.9. Moreover, the time is measured in hours

and the simulation period comprises the first two weeks (336 hours) after the

onset of the first infectious device.180

3.3.1. Disease-free steady state

If we suppose that v = 0.05 then R0 ≈ 0′81563 ≤ 1 and consequently the

number of infected computers does not increase. This behavior is shown in Fig.

2. Moreover, the system reaches the following disease-free steady state:

E0 = (S0, C0, I0, R0) ≈ (74′1481, 0, 0, 926′852) . (51)

3.3.2. Endemic steady state

On the other hand, if we set v = 0.01 then R0 ≈ 3′146 > 1 and conse-

quently the outbreak becomes epidemic as it is shown in Fig.3. Furthermore,

the endemic steady state is given by the following values:

E∗ = (S∗, C∗, I∗, R∗) ≈ (90′9091, 55′9687, 67′1624, 786′96) . (52)
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Figure 2: Evolution of the system to a disease-free steady state.

4. Design of efficient control measures

As is mentioned above, the basic reproductive number R0 plays a very im-

portant role in the design of efficient control measures. Specifically, if R0 < 1185

the malware outbreak dies out and, consequently, the reduction of the numeric

value of the R0 will be the main goal of all control measures. In what fol-

lows, we will analyze the basic reproductive number in order to provide explicit

expressions for the control of the malware epidemic.
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Figure 3: Evolution of the system to an endemic steady state.

4.1. One-parameter analysis190

From the explicit expression of the basic reproductive number (26) and tak-

ing into account that 0 < a, bI , bC , δ, v, ε ≤ 1, we obtain the following:

∂R0

∂a
=

Nε ((1− δ) bI + bCδ)

bIbC (v + ε)
> 0, (53)

∂R0

∂N
=

aε ((1− δ) bI + bCδ)

bIbC (v + ε)
> 0, (54)

∂R0

∂bI
= − aδNε

b2I (v + ε)
< 0, (55)

∂R0

∂bC
= −a (1− δ)Nε

b2C (v + ε)
< 0, (56)

∂R0

∂δ
=

aNε (bC − bI)
bIbC (v + ε)

 < 0, if bC < bI

> 0, if bC > bI
, (57)

∂R0

∂v
= −aNε ((1− δ) bI + bCδ)

bIbC (v + ε)
2 < 0, (58)

∂R0

∂ε
=

aNv ((1− δ) bI + bCδ)

bIbC (v + ε)
2 > 0. (59)

From these results we can obtain that R0 decreases as a,N or ε decreases

14



(supposing that the rest of parameters remain constant). On the other hand,

R0 decreases as bI , bC and v increases (supposing that the rest of parameters195

remain constant). Furthermore, R0 decreases if δ increases when bC < bI , or if

δ decreases when bC > bI . As a consequence, in absence of additional measures,

the following reduce the impact of the malware epidemic:

• Decreasing the transmission rate or the rate of lose of immunity by in-

creasing the security knowledge and awareness of devices’ users.200

• Increasing the recovery rates and the vaccination rate by using efficient

anti-virus software.

The rest of control measures obtained from the above implies the control of the

population (decreasing the total number of devices N and increasing/decreasing

the fraction of devices with a non-targeted operative system δ), and this is not205

realistic.

4.2. Two-parameter analysis

Now, we will study the basic reproductive number when all parameters re-

main constant with the exception of two. For the sake of simplicity we will

study the pairs (v, a) and (v, ε).210

If we suppose that all parameters remain constant with the exception of a

and v, the R0 can be understood as a function of two variables: R0 = R0 (a, v).

Set p = (v0, a0) the initial point in the va-plane such that it is placed in the

endemic region defined R0 > 1 (see Figure 4).

The optimal trajectory to the disease-free region is given by the line con-

necting the points p and p̄ (which is perpendicular to the line R0 = 1). A simple

computations shows that:

p̄ = (v̄, ā) =

(
a0α+ α2v0 − ε

α2 + 1
,
a0 + α (v0 + ε)

α2 + 1

)
=

(
v̄,
v̄ + ε

α

)
, (60)

where

α = εN
(1− δ) bI + δbC

bIbC
. (61)
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Figure 4: Graphic scheme for the optimization of control measures based on a and v.

As a consequence the best strategy to reduce R0 modifying only the parameters215

a and v is to increase v and decrease a such that a = v+ε
α , for each value of the

modified v.

Similarly, if R0 = R0 (v, ε) and p = (v0, ε0) belongs to the endemic region,

the nearest point to p of the straight line R0 = 1 is given by:

p̄ = (v̄, ε̄) =

(
(α− 1) (αv0 − v0 + ε0)

α2 − 2α+ 2
,
αv0 − v0 + ε0
α2 − 2α+ 2

)
=

(
v̄,

v̄

α− 1

)
, (62)

where

α = aN
(1− δ) bI + δbC

bIbC
. (63)

Consequently the better way to reduce R0 considering only the parameters v

and ε is to increase v and decrease ε such that ε = v
α−1 for each value of the

modified v.220
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5. Conclusions

In this work a novel mathematical model to simulate malware spreading has

been introduced. It is a compartmental model where the new class of carrier

devices is considered (apart from susceptible, infectious and recovered). This

new compartment is constituted by those devices that can be reached by the225

malware but they cannot be damaged although they can act as transmission

vectors. Consequently, the incidence of the model depends both on infectious

and carrier devices.

This additional type plays an important role since the temporal immunity

rate for carriers and the fraction of the total population that belongs to carrier230

compartment appear in the expression of the basic reproductive number R0.

The model presented is global and deterministic and its dynamics is governed

by means of a system of ordinary differential equations. As a consequence, the

qualitative theory can be used to study the stability of the disease-free and

the endemic equilibrium points. In this sense, it is shown that the disease-free235

steady state is locally and globally asymptotically stable if R0 < 1. On the

other hand, the local and global stability of the endemic equilibrium point not

only depends on the numeric value of the R0 (in fact, it is locally and globally

asymptotically stable when R0 > 1) but also on other two conditions involving

the parameters of the system.240

Finally, an analytical study of the basic reproductive number yields math-

ematical expressions for the efficient control measures depending on only one

epidemic parameter and two epidemic parameters.
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