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a b s t r a c t

In the present manuscript, higher-order methods are derived to solve a SEIR model for
malware propagation. They are obtained using extrapolation techniques combined with
nonstandard finite difference (NSFD) schemes used in Jansen and Twizell (2002). Thus, the
new algorithms are more efficient computationally, and are dynamically consistent with
the continuousmodel. Later, different procedures are considered to control the error in the
discrete schemes. Numerical experiments are provided to illustrate the theory, and for the
comparison of the different strategies in the adaptation of the variable step length.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Malware spreading is widely studied as it is a great threat to the information sharing. Furthermore, it represents one of
the most serious security challenges we must face.

The spread of a malicious software, as occurs with a biological disease, involves not only the infectious agent (mode of
transmission, latent period, susceptibility and resistance) [1], but in the case of malware, also the spatial structure [2], the
device itself, and the environment where it could be disseminated, among others.

Most of the mathematical models proposed to study the dynamic transmission of malicious software are based on sys-
tems of ordinary differential equations (ODEs) from the epidemic theory [3]. The standard basic epidemic models are com-
partmental and consider separate sets for: susceptible (S) devices that could become infected; infected (I), who are able to
transmit the malware; exposed (E), those in contact with malware but not yet infected; and recovered (R) that have gained
immunity.

The acronyms for spreading models are based on the flow patterns between the compartments [4]. The SI model is the
simplest one, as all the susceptible individuals or devices move to the infected compartment when they become infected,
and remain in this compartment indefinitely. If these infected devices are recovered and come back to susceptible it is called
SIS model, and if they die or acquire immunity to the malware then it is a SIR model [5].

Nevertheless, when the propagation of malware is studied, we have to take into account some specific characteristics
that must be reflected in the equations that govern the dynamics of the model:

(1) The communication networks are not static, they evolve over time considering the new devices that appear and the
devices that disappear. As a consequence, some type of population dynamics has to be taken into account in the model.
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(2) The new specimens of malware do not perform its malicious payload immediately after infection, but remain dormant
during a certain period of time (this is one the characteristics of advanced persistent threats). Consequently it is
necessary to include the exposed compartment in the model [6].

(3) When the malware is successfully detected and removed (by using special security software), the device acquires
permanent immunity due to the security patches installed. As a consequence, it is not usual to consider re-infection
processes.

Thus, considering the above mentioned ideas, the more suitable model for its use in the study of malware propagation is
the SEIR model:

dS
dt

= µ(N − S) − βSI, S(0) = S0,

dE
dt

= βSI − (µ + σ)E, E(0) = E0,

dI
dt

= σE − (µ + γ )I, I(0) = I0,

(1)

where µ, β, σ , γ are positive parameters, and the total population size, N = S + E + I + R, is constant over the time (thus
dR
dt can be written as combination of dS

dt ,
dE
dt and dI

dt ).
The SEIR epidemic model was approached from different perspectives. In [7,8] the global stability was analyzed when

the term βSI of Eq. (1), known as incidence rate (the rate of new infections), is described by a nonlinear term. The global
stability is also studied in [9,10], and [11], but in these cases for a non-varying population with different characteristics.

Some other methods were used for different SEIR models with specific considerations. For instance, the SEIR model with
periodical repetitions of vaccinations against defined-age groups from a population was considered in [12], and the local
asymptotic stability and the global asymptotic stability have been studied. The theory of the asymptotical autonomous dif-
ferential systems, and the ideas of Li andMuldowney [8], have been used in [13] to reduce the four-dimensional SEIR model
to a three-dimensional asymptotical autonomous differential system. In this case, authors considered an epidemic model
in which the exposed and recovered individuals were infective. In [14], a system of differential equations with distributed
infinite delay is considered, as the infectivity of the infected individuals varies according to a function of the age of infection.

In [15], authors applied the direct Lyapunov method, under the constant population size assumption, to prove that SEIR
models, between others, display asymptotically stable steady states.

In this article, new schemes are derived to solve a SEIR model of malware dynamics. They will be obtained using
extrapolation techniques combinedwith the first-order unconditionally stable nonstandard finite difference (NSFD) scheme
proposed in [16]:

Sn+1
=

Sn + hnµN
1 + hn(µ + βIn)

, En+1
=

En
+ hnβInSn+1

1 + hn(µ + σ)
, In+1

=
In + hnσEn+1

1 + hn(µ + γ )
. (2)

The fixed points of the proposed methods will be the same as the critical points of the SEIR model equations and they will
have the same stability properties.

The idea of using Richardson’s extrapolation to obtain higher-order methods is well-known and it has been widely
considered in the scientific literature (see [17,18], for example). First of all, we choose a numerical method of order p
and compute the numerical results of the initial value problem (1) by performing ni steps with step size hi to obtain
yhi(x0 + h) := Ti,1. Afterwards we do these calculations for various values h1 > h2 > h3 > · · · (taking hi = h/ni, with
ni being a positive integer).

Then, the global error of any of these approximations has an asymptotic expansion of the form

y(x) − yh(x) = ephp
+ ep+1hp+1

+ · · · + eNhN
+ · · · .

The aim is to eliminate as many terms as possible from the asymptotic expansion above, by solving k linear equations for
the unknowns y, ep, . . . , ep+k−2.

The outline of the paper is as follows. In Section 2, the numerical schemes are derived and it is demonstrated that they
are dynamically consistent with the continuous model. Later, in Section 3, different procedures are considered to control
the error in the discrete schemes. This is an important issue, since solutions can be considered stiff in some regions. Finally,
in Section 4, some numerical tests are provided to compare different strategies in the adaptation of the variable step length.

2. Numerical schemes

2.1. Construction of the extrapolated nonstandard methods

Many sequences of integers ni have been considered in Richardson’s extrapolation. In this manuscript, we are employing
the so-called ‘‘harmonic sequence’’ (1, 2, 3, 4, 5, . . .), which is considered a good election for polynomial extrapolation.
However, it might be interesting to study (in the next future) some rational extrapolation as the ‘‘Bulirsch–Stoer’’
algorithm [19], for example.
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Table 1
Stability properties of the continuous SEIR model (1).

β Critical point
Trivial Non-trivial

< β∗ Stable Unstable
= β∗ Neutrally stable –
> β∗ Unstable Stable

Table 2
Convergence properties of the fixed points for the extrapolated nonstandard methods, considering
that hn > 0, ∀n.

Convergence Critical point
Trivial Non-trivial

Attracting If β ≤ β∗ If β > β∗

Repellant If β > β∗ If β ≤ β∗

In the case of the harmonic sequence, it is known that an easy way to calculate the (k + 1)th method, Tj,k+1, is the
Aitken–Neville algorithm:

Tj,k+1 = Tj,k +
(j − k)(Tj,k − Tj−1,k)

k
. (3)

Now, we are able to obtain directly the second-order methods:

y(x0 + h) = T2,2 = 2T2,1 − T1,1 = 2yh/2(x0 + h) − yh(x0 + h), (4)

the third-order methods:

y(x0 + h) = T3,3 =
9yh/3(x0 + h) − 8yh/2(x0 + h) + yh(x0 + h)

2
, (5)

also fourth-order methods:

y(x0 + h) = T4,4 =
−T1,1 + 24T2,1 − 81T3,1 + 64T4,1

6

=
64yh/4(x0 + h) − 81yh/3(x0 + h) + 24yh/2(x0 + h) − yh(x0 + h)

6
(6)

and so on.

2.2. Properties of the extrapolated NSFD schemes

The extrapolated schemes can be derived as y(x0 + h) =
k

i=1 ciyh/i(x0 + h), and in all the cases with
k

i=1 ci = 1,
because y(x0 + h) is always an approximation to y(x0 + h), hence

n
i=1 ci = 1 is always the first equation we need to solve

before eliminating the first terms from the asymptotic expansion. Now, we obtain the following theorem:

Theorem 1. The new extrapolated nonstandard methods possess the stability properties that appear in Table 2, which are
analogous to the stability properties of the continuous SEIR model. These stability properties of the continuous model are
summarized in Table 1.

The steady states of (1) with constant β are the standard ones [16] S = N, E = 0, I = 0, and the non-trivial critical points

S∗
=

(µ + σ)(µ + γ )

σβ
, E∗

=
µN

µ + σ
−

µ(µ + γ )

σβ
, I∗ =

µσN
(µ + σ)(µ + γ )

−
µ

β
,

while the bifurcation point of the continuous model (1) is

β∗
=

(µ + σ)(µ + γ )

σN
.

Proof. It comes from the following two facts: (i) the original nonstandard finite differencemethodmeets these convergence
conditions (see [16]), and (ii) the extrapolated schemes were derived assuming that y(x0 + h) =

k
i=1 ciyh/i(x0 + h), withk

i=1 ci = 1.
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Now, let us suppose that limt→∞ limh→0 yh(x0 + h) = ỹ, hence limt→∞ limh→0 yh/i(x0 + h) = ỹ and

lim
t→∞

lim
h→0

y(x0 + h) = lim
t→∞

lim
h→0

k
i=1

ciyh/i(x0 + h)

=

k
i=1

ci lim
t→∞

lim
h→0

yh/i(x0 + h) =

k
i=1

ciỹ
(ii)
= ỹ,

and therefore the new schemes converge at the same points and with the same conditions than their original nonstandard
methods.

3. Variable-step algorithms

An adaptive step size selection is really important for an efficient integration of these models. Many procedures have
been considered to control the error of ODEs including some described in [17,20].

For the methods proposed above, different techniques were considered including the following one [21,17]:

hn+1 = hn min

facmax,max


facmin, fac · (1/err)1/k


, (7)

with fac = 0.5, facmax = 4, facmin = 10−1, and k is the order of the extrapolated method.
The value err describes how fast the length step increases or decreases. It is a quotient of the estimated error (calculated

with Tk,k − Tk,k−1), and the tolerance (calculated with sc). The values for err and sc i are calculated as usual:

err =

1
3

3
i=1


(Tk,k − Tk,k−1)i

sc i

2

, (8)

sc i = AToli + max

|y0,i|, |Tk,k,i|


· RToli, (9)

where y0,i is the ith component of the solution at the previous step, and Tk,k,i the ith component of the solution obtained
through extrapolation.

It was also compared with a step size strategy with memory that was previously used by H.A. Watts [22],
K. Gustafsson [23], and [24,25]:

hn+1 = hn min


facmax,max


facmin, fac ·

errα
n

err1/kn+1


, (10)

where α = 0.08 (when the previous step is accepted, if it is rejected α = 0) as it was suggested in [23,17].
Different sets of parameters sc i, AToli and RToli are considered and some comparisons will be provided in the numerical

section, since this issue is very important for an efficient computation as it will be shown.

4. Numerical experiment

As in [16], we have considered the following parameter values:

µ = 0.02, β = 10−5, γ = 73, σ = 45.6,

these parameters values correspond to a life expectancy of 50 years, an incubation period of 8 days (approximately) and an
infectious period of, approximately, 5 days, respectively. Also, we took as initial values:

N = 5 × 107, s0 = 125 × 105, e0 = 5 × 104, i0 = 3 × 104.

In our experiments, the numerical methods converged to the correct fixed point (for large tend values):

S∗
= 7.305203 × 106, E∗

= 1.871758 × 106, I∗ = 1.168887 × 104.

Standard methods do not always preserve the stated properties of these types of models. In general, this cannot be
guaranteed or at least cannot be guaranteed for all step sizes. Some examples for similar autonomous systems can be found
in [26–29] for example. Traditional Runge–Kutta methods do not guarantee the positivity of the solution and thus have
problems of stability, and may require very small step length.

First of all, we computed the solutions at tend = 50 with h = 0.08, 0.04, 0.02 and 0.1 for our schemes. But also for the
standard Heun’s method, the trapezoidal (modified Euler also called improved Euler) and the most common fourth-order
Runge–Kutta schemes (also called RK4). Heun’s method and the trapezoidal second-order Runge–Kutta schemes provided
overflow values for h = 0.08, 0.04, and errors were very large for 0.02 and 0.1. They converged rapidly for smaller values.
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Fig. 1. Numerical simulations for infective devices/people i, obtained with the third-order scheme, in the interval [0, 50] with h = 10−4 (left side); and
errors, in L2 norm, with the non-standard scheme derived in [16], and its extrapolated second- and third-order variants (right side).

RK4 obtained NaN values for some h values under 10−3. Our schemes were dynamically consistent with the continuous
model.

Later, we also tested with some well-known variable step-length algorithms. We calculated the results in this problem
with ode45 and ode23s. The first one is explicit and ode23s is implicit and usually considered for stiff problems. We did all
the computations with the default parameters for both codes.

ode23s had many difficulties. It tried to utilize large length steps, but it got negative values for infectives at tend = 50.
This suggested us that ode23s might have more problems in a larger interval of integration. Hence, we tried to integrate
until tend = 100. However, Matlab gave an error: it was ‘‘Unable to meet integration tolerances without reducing the step
size below the smallest value allowed’’. It is clear that some values became negative and this totally changed the stability of
the numerical schemes.

Surprisingly ode45 had a better behavior. It utilizedmuch smaller length steps, specially near the origin.With the default
values (for tolerance, . . . ), some of the values become negative near tend = 5. These negative numbers look unrealistic.
However, they are only O(10−6), and ode45 is able to integrate until tend = 50 or tend = 100.

Now, wewill focus our results in how accurate are the new extrapolatedmethods. Thus, wewill study the errors again at
tend = 50. In Fig. 1 it is shown a numerical representation of the infectives produced by the extrapolated third-order scheme
in the interval [0, 50] with h = 10−4, the approximation is provided for ti = 20ih. Also, in the right hand figure, we show
a comparative of the errors (obtained at tend = 50) with the original first-order non-standard method [16], and the new
second- and third-order schemes (h = 0.008, 0.004, 0.002, 0.001, 0.0005, 0.00025). It is clear that the new algorithms
derived in this work are able to obtain more accurate approximations.

Although the third-order method is very efficient, and with h = 10−4 errors are very small in general, however it is
difficult to know ‘‘a priori’’ how small these errors are. For this purpose, we derived and analyzed the variable-step algo-
rithms. In Fig. 2 it is shown a comparison of the two strategies explained above, in (7) and (10), with two different sets of
the parameters, AToli and RToli. In total four different procedures were tested for both, the second-order algorithm (left side
of the figure) and also the third-order one (right side):
• Procedure 1: we used (7) with AToli = 0 and RToli = Tol/N , for Tol = 104, 103, 102, 101 with the second-order method,

and Tol = 103, 102, 101, 1 with the third-one.
• Procedure 2: we used (7) with RToli = 0 and AToli = Tol/N , for Tol = 106, 105, 104, 103 with the second-order method,

and Tol = 103, 102, 101, 1 with the third-one.
• Procedure 3: we used (10) with the same AToli and RToli values in Procedure 1.
• Procedure 4: we used (10) with the same AToli and RToli values in Procedure 2.

It is easy to check that near the points where the solution varies quickly (and the ODE can be considered stiff), errors can
become large if the relative tolerance is not considered (when RToli = 0). Thus, procedures 1 and 3 are clearly much more
computationally efficient and safer (errors are similar to the prescribed Tol values).

In Fig. 3 we compare the numerical results with the second- and third-order algorithms for procedures 1 and 3 (for
Tol = 103), with the exact solution obtained with a very small length step. As it can be checked they respect the dynamics
of the continuous system. Third-order schemes have a much smaller number of nodes (we did not print all of them in the
figures), than second-order algorithms.

5. Conclusions

Higher-ordermethods are constructed to solve a SEIRmodel formalware propagation. They are built from a nonstandard
finite difference scheme previously derived. Thus, the new algorithms are demonstrated to be dynamically consistent with
the continuous model.
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Fig. 2. Errors with four different procedures for second-order variable-step length algorithms (left side); and errors obtained with the third-order
algorithms (right side). Errors are computed at tend = 50 in L2 norm.

Fig. 3. Dynamics of susceptible and infective devices/people taken with the second- and third-order methods, with Procedures 1 and 3 and Tol = 103 .

Numerical results show that solutions are very smooth in some regions, but in others, themodel changes rapidly and some
variables vary rapidly, hence it is necessary to address an adaptive step size selection. As far as we know, this is the first time
that this issue has been studied in such type of models with a nonstandard finite difference scheme. Different procedures
are proposed to control the error in the discrete schemes. Finally, these adaptive step size selections are compared and some
numerical conclusions were provided.

The idea of combining extrapolated techniques together with other nonstandard finite difference schemes can be con-
sidered in the next future for other types of problems. They can provide higher-order methods with some desire properties
for many other autonomous differential systems for which standard schemes have some difficulties.
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