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ABSTRACT In the new and sophisticated cyber attacks (mainly, advanced persistent threats) the advanced
specimens of malware such that zero-day malware play a crucial role. Due to its stealthy behavior it is
very important to study and analyze its propagation process by designing mathematical models that could
predict in an efficient way its spread on a network. With no doubt the computational implementation of these
theoretical models leads to the develop of solutions to be used in the Security Operation Centers (SOC)
with forensic purposes. The main goal of this work is to introduce a novel mathematical model to
simulate advanced malware. Specifically, it is a compartmental and global SCIRAS (Susceptible-Carrier-
Infectious-Recovered-Attacked-Susceptible) model where susceptible, carrier, infectious, recovered and
attacked devices are considered. The local and global stability of its equilibrium points are studied and
the basic reproductive number is computed. From the analysis of this epidemiological threshold, the most
efficient security countermeasures are derived.

INDEX TERMS Basic reproductive number, malware spread, mathematical model, advanced persistent
threats, zero-day malware.

I. INTRODUCTION
Advanced persistent threats (APTs for short) are sophisti-
cated and complex cyber-attacks combining not only dif-
ferent and advanced technologies and methodologies, but
also detailed information and data of the targeted network
obtained from (usually) intelligence resources [1], [2]. These
cyber-attacks exhibit the following main characteristics [3]:
(1) they are targeted attacks, that is, the principal goal of an
APT is to achieve a specifically targeted and highly valuable
objective; (2) they are persistent attacks in the sense that
they are constituted by several phases to perform a long-time
campaign with repeated attempts; (3) They exhibit an stealthy
and evasive behavior with a high level of adaptation to
defenders’ efforts; and, finally, (4) they are well-resourced
and highly organized attacks. These types of attacks are
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organized and/or sponsored by large organizations or govern-
ment agencies [4].

The attack methods used in APTs are diverse and sophis-
ticated, and its choice depends on the characteristics of the
targeted environment [5]. These tools include, among oth-
ers, social engineering, custom encryption technology, binary
command-and-control code, rootkits, and advanced malware
that exploits (zero-day vulnerabilities): zero-day malware.

Zero-day malware can be defined as a specimen of mali-
cious code that exploits an unknown (and, consequently, non-
patched) vulnerability. As a consequence this type ofmalware
exhibits an evasive and stealthy behavior to propagate as
undetected as possible [6].

Most of efforts of scientific and technological community
are devoted to the design of defense mechanisms against
APTs ([7], [8]) and to implement efficient methods to detect
this type of cyberattacks (see, for example, [9]–[11]). Apart
from this approach it is also of interest to propose and
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analyze models that simulate the temporal evolution of these
cyber-attacks, specially the spread of zero-day malware.
In this sense, although several models for (standard) mal-
ware propagation have been proposed in the scientific liter-
ature (see [12]–[14] and references therein), very few have
appeared dealing with zero-day malware spreading. In fact,
as far as we know there is only four works dealing with the
use of Mathematical Epidemiology to [15]–[18].

In [15] a computer engineering approach to this phe-
nomenon is done. In this work the authors designed a novel
simulator, based on the finite state machine paradigm, to sim-
ulate the spreading of zero-day worms on a full IPv4-sized
network. On the other hand, an epidemiological model to
combat a phishing attack containing zero-day malware was
introduced in [16]. Specifically it is a deterministic and
global model where susceptible, infectious, quarantined and
recovered devices are considered and, in addition, a cyber
resilience recovery model was proposed. In [17] a global and
deterministic model was introduced and its stability analy-
sis was studied; in this case the compartments involved in
the dynamics were weak-defensive nodes, attacked nodes,
strong-defensive nodes and compromised nodes. Finally,
in [18] a theoretical model to simulate an advanced persistent
distributed denial-of-service attack was presented. It is a
compartmental and stochastic model where the population of
devices is divided into four classes: susceptible, infected, tol-
erant and missed nodes. The equilibrium points are computed
and its main qualitative characteristics are studied.

The model proposed in this work is also a compartmental,
global and deterministic. The novelty of this model, that
makes it different from those mentioned above, is that there
are two main characteristics of the APTs involved in the
dynamics: the stealthy and the use of intelligence resources to
decide whether a compromised device should be successfully
attacked or not. Consequently, in our proposal we will con-
sider two ‘‘infected’’ compartments: infectious devices (those
susceptible ones reached by malware) and attacked devices
(the reached devices that are classified by advanced malware
as targeted devices). Moreover, also carrier devices play an
important role in our model since they can be considered
as efficient transmission vectors although they cannot be
effectively damaged.

The rest of the paper is structured as follows: In section II
the general description of the new theoretical model is
presented; its mathematical formulation is developed in
section III, and its qualitative analysis is introduced in
section IV. In sectionV some illustrative simulations showing
the steady states are presented; the analysis of the basic
reproductive number to obtain efficient security countermea-
sures is detailed in section VI. Finally, the conclusions are
presented in section VII.

II. GENERAL DESCRIPTION OF THE SCIRAS MODEL
The main purpose of the model proposed in this work is to
simulate the propagation of advanced malware on a computer
network. In this work we will suppose that malware presents

the following main characteristics:
(i) Using previously collected information, the specimen

of malware is able to determine if a device could be
considered as a potential target or not.

(ii) Advanced malware has the ability to decide if the
reached device must be effectively attacked or not.

(iii) It exhibits a stealthy and evasive behavior.
Taking into account these considerations, it is assumed that a
susceptible device that has been reached by the advancedmal-
ware becomes infectious or carrier depending on the decision
taken bymalware after the analysis of such device. If malware
considers that the device lacks the basic specifications of a
potential target, then the host becomes carrier; otherwise it
happens to be infectious. Note that both carrier and infectious
devices are considered as transmission vectors for malware
but the malicious activity could be carried out only on infec-
tious devices.

Moreover, an infectious device becomes attacked when the
malware catalogs it as an objective. This decision process
is based on the gathering information on the host. On the
other hand, if malware does not consider the infected device
as a target then it removes itself and the device becomes
recovered.

Due to the stealthy behavior of the specimen of malware,
it removes itself from the host once its activity is finished.
In this sense, infectious, carrier and attacked devices become
recovered at a certain rate. As this type of malware can
be adapted to certain security countermeasures, permanent
immunity is not guaranteed; consequently, a reinfection pro-
cess must be considered in the model.

Finally, a vaccination process through security counter-
measures (upgrade and security patches, etc.) is considered.
Note that it is reasonable to suppose that the effectiveness of
these measures is very limited due to the nature of the cyber-
attack.

III. MATHEMATICAL FORMULATION OF THE SCIRAS
MODEL
As is previously mentioned, the epidemiological model pro-
posed in this work is a compartmental and global model
where each device can belong to different five classes at each
step of time t: susceptible S (t), carrier C (t), infectious I (t),
attacked A (t), or recovered R (t). Specifically, it is a SCIRAS
model where both reinfection and vaccination processes are
considered. Moreover, it assumed that there is not population
dynamics, hence

S (t)+ I (t)+ C (t)+ A (t)+ R (t) = N > 0, (1)

for every t . The main specifications of advanced malware
stated in the previous section are reflected in the model as
follows (see Fig. 1):
• The infection can be caused by both carriers and infec-
tious devices, and this process depends on the transmis-
sion rate 0 ≤ a ≤ 1, which is the same for these two
compartments. As a consequence, the incidence (that is,
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FIGURE 1. Flow diagram representing the dynamics of the model.

the new infected -carrier and infectious- devices) at step
of time t is given by aS (t) (C (t)+ I (t)). Furthermore,
if δ stands for the fraction of susceptible devices which
are potential targets for the cyber attack then the total
incidence can be rewritten as follows:

incidence = δaS (t) (C (t)+ I (t))

+ (1− δ) aS (t) (C (t)+ I (t)) , (2)

where δaS (t) (C (t)+ I (t)) represents the new infec-
tious devices at t , and (1− δ) aS (t) (C (t)+ I (t)) is the
number of new carrier devices at step of time t .

• If security patches are installed, a fraction of
non-infected devices, vS (t), can acquire temporal
immunity to cyber-attack. Due to the characteristics
of advanced malware (it can exploit zero-days) it is
possible assume that 0 ≤ v << 1.

• If the security software installed in the devices and/or
network successfully detects and removes the malware,
also carrier and infectious devices acquire temporal
immunity at rates bC and bI , respectively. As in the
previous case, 0 ≤ bC , bI << 1. As a consequence,
bCC (t) and bI I (t) represent the new recovered devices
from carrier and infectious compartments respectively.

• A fraction of infectious devices, γ I (t), are classified as
targets by malware and, consequently, they are effec-
tively attacked. Once malware finishes it malicious
activity, the host becomes recovered at rate 0 ≤ β ≤ 1.
That is, βA (t) represents the number of new recovered
devices from attacked compartment at step of time t .

• Finally, recovered devices lose their temporal immu-
nity and turn back to be susceptible at recovery rate
0 ≤ ε ≤ 1.

Taking into account all these assumptions, the following
SODE determines the dynamics of the system:

S ′ (t) = εR (t)− aS (t) [I (t)+ C (t)]− vS (t) , (3)

C ′ (t) = a(1− δ)S (t) [I (t)+ C (t)]− bCC (t) , (4)

I ′ (t) = aδS (t) [I (t)+ C (t)]− bI I (t)− γ I (t) , (5)

A′ (t) = γ I (t)− βA (t) , (6)

R′ (t) = bCC (t)+ bI I (t)+ βA (t)+ vS (t)

−εR (t) . (7)

Note that from (1), this SODE can be rewritten as follows:

S ′ (t) = −aS (t) [I (t)+ C (t)]− vS (t)

+ε (N − S (t)− C (t)− I (t)− A (t)) , (8)

C ′ (t) = a(1− δ)S (t) [I (t)+ C (t)]− bCC (t) , (9)

I ′ (t) = aδS (t) [I (t)+ C (t)]− bI I (t)

−γ I (t) , (10)

A′ (t) = γ I (t)− βA (t) . (11)

IV. QUALITATIVE ANALYSIS
A. STEADY STATES
As is well known, the steady states of the SODE (8)-(11) are
the solutions of the following system of non-linear equations:

0 = −aS (t) [I (t)+ C (t)]− vS (t) (12)

+ε[(N − S (t)− C (t)− I (t)− Q (t)],

0 = a(1− δ)S (t) [I (t)+ C (t)]− bCC (t) , (13)

0 = aδS (t) [I (t)+ C (t)]− bI I (t)− γ I (t) , (14)

0 = γ I (t)− βQ (t) . (15)

A simple computation shows that this system has two solu-
tions: the disease-free equilibrium point given by

E0 = (S0,C0, I0,Q0) =

(
εN
v+ ε

, 0, 0, 0
)
, (16)

and the endemic equilibrium point:

E∗ =
(
S∗,C∗, I∗,Q∗

)
, (17)

where

S∗ =
Nε(v+ ε)

B
, (18)

C∗ = −
β(δ − 1)N (B− 1)ε(bI + γ )

AB
(19)

I∗ =
βbCδN (B− 1)ε

AB
, (20)

Q∗ =
bCγ δN (B− 1)ε

AB
. (21)

with

A = bcβ(bI + γ )− β(bI + γ )(−1+ δ)ε

+bC (β + γ )δε > 0, (22)

B =
aNε[bI + γ + bCδ − (bI + γ )δ]

bC (bI + γ ) (v+ ε)
. (23)

Note that the endemic solution only exists if B > 1 (more-
over, AB 6= 0).

B. BASIC REPRODUCTIVE NUMBER
Applying the next-generation method [20], we obtain that the
basic reproductive number associated to the proposed model
is the spectral radius of the following matrix (next-generation
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matrix):

G =


aN (1−δ) εbC

v+ε
aN (1− δ) ε (bI + γ )

v+ ε
0

aNδεbC
v+ ε

aNδε (bI+γ )
v+ε

0

0 0 0

 , (24)

that is:

R0 =
aN (bI + γ + bCδ − (bI + γ )δ) ε

bC (bI + γ ) (v+ ε)
. (25)

Note that the condition for the existence of the endemic
equilibrium point is, precisely, that R0 = B > 1.

C. STABILITY OF THE EQUILIBRIUM POINTS
Considering the qualitative theory of ordinary differential
equations, a rather long calculus leads to the the following
results related to the local stability of the equilibrium points:
Theorem 1: The disease-free equilibrium point E0 is

locally and globally asymptotically stable if R0 < 1.
Theorem 2: The endemic equilibrium point E∗ is locally

asymptotically stable if R0 > 1.
Theorem 3: the endemic equilibrium point E∗ is glob-

ally asymptotically stable if R0 > 1 under the following
assumptions:

−(1− δ)a
c2

N
+ aNδ − v− 2ac− ε < 0, (26)

−a(1− δ)
c2

N
+ δaN − bI − 2γ + 2aN δ̃ < 0, (27)

where δ̃ = max{δ, (1− δ)} and c is the persistence constant.

V. ILLUSTRATIVE SIMULATIONS OF THE SCIRAS MODEL
In what follows two simulations to illustrate the different
behaviors of the system are shown. It is assumed that N =
100 with S (0) = 95 and I (0) = 5 and the evolution of
each compartment is computed during the first week after
the start of the outbreak (168 hours). In the first one (see
Fig. 2) the disease-free equilibrium point is reached. In this
case, the numerical values of the epidemiological coefficients
are the following:

a = 5× 10−4, δ = 0.9,

v = 0.05, γ = 5× 10−3,

bC = 4× 10−3, bI = 0.03,

β = 5× 10−6, ε = 5.5× 10−3. (28)

As a consequence R0 ≈ 0.2513 < 1, and the disease-free
equilibrium point is

E0 ≈ (10.01, 0, 0, 0, 90.99) . (29)

On the other hand, if the value of the transmission coeffi-
cient is changed and a = 2 × 10−3 is considered, then the
system tends to the endemic equilibrium point (see Fig. 3):

E∗ ≈ (9.86, 0.00049, 0.00051, 0.51, 89.63) , (30)

where R0 ≈ 1.005 > 1.

FIGURE 2. Disease-free behavior of the model.

FIGURE 3. Endemic behavior of the model.

VI. DESIGN OF EFFICIENT CONTROL MEASURES
There are mainly three threshold parameters related to math-
ematical models to simulate malware spreading: the basic
reproductive number R0, the replacement number R, and the
contact number σ (see [19]). Roughly speaking, the basic
reproductive number R0 can be defined as the average num-
ber of secondary infections caused by an only one infec-
tious device in an entire susceptible population during its
entire infectious period. The replacement number R stands
for the average number of secondary infections caused by an
infectious device during its entire infectious period. Finally,
the contact number σ has been defined as the average number
of adequate contacts of an infectious device during its entire
infectious period.

The most important is the basic reproductive number (also
known as the basic reproduction ratio or the basic repro-
ductive rate) since it plays a central role in the study of
the behavior of the solutions of the system [20], [21] (as is
illustrated in Sect. IV).

Consequently the basic reproductive number plays a very
important role in the design of efficient control measures.
Specifically, if R0 < 1 the malware outbreak dies out and,
consequently, the reduction of the numeric value of the R0
will be the main goal of all security countermeasures.

In what follows, we will analyze the basic reproductive
number in order to provide explicit expressions for the control
of the malware epidemic. Specifically, in the next two subsec-
tions we will describe the most important control measures
that consider the modification of one or two epidemiological
coefficients.
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A. ONE-PARAMETER ANALYSIS
For the sake of simplicity assume that α = bI + γ . Then,
from the expression of the basic reproductive number (25)
we obtain:

R0 =
aNε[(1− δ) α + δbC ]

bCα (v+ ε)
. (31)

As a consequence the basic reproductive number depends
on 7 coefficients: a (the transmission rate), N (the total
number of devices), ε (the recovery rate), δ (the fraction of
targeted devices), α = bI + γ , bC (the recovery rate from
carrier), and v (the rate at which susceptible devices acquire
temporal immunity).

If it is supposed that six of these seven coefficients remains
constant over time, then R0 can be considered as a function of
only one variable x (the remaining non-constant coefficient).
As a consequence, the study of ∂R0

∂x will give us information
about the monotony of the function R0 (x) and we can draw
conclusions about the behavior of the basic reproductive
number when only one coefficient varies.

Consequently, and supposing 0 < a, ε, α, bC , v,N , δ ≤ 1,
the following holds:
(1) If the transmission rate a varies, R0 = R0 (a), then:

∂R0
∂a
=
Nε[(1− δ) α + δbC ]

bCα (v+ ε)
> 0. (32)

As a consequence R0 decreases as a decreases.
(2) If the total number of devices N is non-constant, then:

∂R0
∂N
=
aε[(1− δ) α + δbC ]

bCα (v+ ε)
> 0, (33)

and, as the previous case, R0 decreases when N
decreases.

(3) Suppose that R0 = R0 (δ), then:

∂R0
∂δ
=
aNε (bC − α)
bCα (v+ ε)

. (34)

If we assume that bC < bI (which is a realistic assump-
tion) then bC−α < 0 and, consequently, ∂R0

∂δ
< 0. Thus

R0 decreases when δ increases and bC < bI .
(4) If the coefficient v is variable, then R0 = R0 (v) and

simple calculus shows that:

∂R0
∂v
= −

aNε[(1− δ) α + δbC ]

bCα (v+ ε)2
< 0. (35)

As a consequence if v increases then R0 decreases.
(5) Now, suppose that the non-constant coefficient is α,

then
∂R0
∂α
= −

aNεδ
α2 (v+ ε)

< 0. (36)

Then R0 decreases when α = bI + γ increases.
(6) If R0 = R0 (bC ) then:

∂R0
∂bC
= −

aNε (1− δ)

b2C (v+ ε)
< 0. (37)

Consequently R0 decreases when bC increases.

(7) Finally, set R0 = R0 (ε). Then:

∂R0
∂ε
=
aNαbCv[(1− δ) α + bCδ]

b2Cα
2 (v+ ε)2

> 0, (38)

and R0 decreases when ε decreases.
Taking into account all these results, we can derive that

when only one coefficient varies the basic reproductive num-
ber decreases when:
• The parameters a,N , δ (if bC > bI ) , ε decrease.
• The parameters δ (if bC < bI ) , v, α = bI + γ increase.

Consequently the following security measures reduce the
impact of the malware epidemic:
• Decreasing the transmission rate, total number of
devices (particularly, the number of devices endowed
with the targeted operative system when the recovery
rate of carriers is greater than the recovery rate of infec-
tious), or the rate of lose of immunity.

• Increasing the infectious recovery rate and/or the vacci-
nation rate.

B. TWO-PARAMETER ANALYSIS
Now, we will define efficient security strategies that imply
the jointly use of two coefficients. In this case the basic
reproductive number can be considered as a function of two
variables x and y, R0 (x, y), which stand for the epidemio-
logical coefficients that can vary; the other five parameters
remain constant.

Suppose that a particular step of time t0, the values of
the variable coefficients are x0 and y0 respectively, such that
R0 (x0, y0) > 1 (that is, the system is in the endemic region
-the number of infectious devices is increasing-). Set p0 =
(x0, y0) the initial point in the xy-plane such that it is placed
in the endemic region defined by R0 (x, y) − 1 > 0. As a
consequence, the challenge is to find the fastest way to get
the threshold curve R0 (x, y) − 1 = 0 from the initial point
p0 = (x0, y0). Taking into account the expression of the basic
reproductive number (31), the threshold curve R0 (x, y) = 1
can be described by different rational expressions of the form

y = r0 (x) =
c1x + c2
c3x + c4

(39)

where 0 < c1, c2, c3, c4 ≤ 1 (see Table 1).
The most efficient strategy to get R0 (x, y)−1 = 0 is given

by the trajectory defined by the segment p0p1 where p1 =
(x1, y1) is the nearest point to p0 such thatR0 (x1, y1) = 1 (see
Fig. 4). Note that the parametric equations of this segment are
the following:

x = λx1 + (1− λ) x0, (40)

y = λr0 (x1)+ (1− λ) y0,

0 ≤ λ ≤ 1, (41)

where x = x1 is the minimum of the function:

d (x) =
√
(x − x0)2 + (r0 (x)− y0)2. (42)
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TABLE 1. Rational expression of R0
(
x, y

)
= 1.

FIGURE 4. Illustrative representation of the fastest way to get the
threshold curve.

Consequently the optimal strategy is to increase (resp.
decrease) x and y from x0 and y0 to x1 and y1 respectively, and
following Eqs. (40)-(41) (see Fig. 5). That is, the parameter
λ must be increased to 1 and the non-constant epidemio-
logical coefficients x and y must be computed according to
Eqs. (40)-(41).

As an illustrative example of this procedure assume that
the initial values of the system are the following:

a = 2× 10−2, δ = 0.9,

v = 0.05, γ = 0.5,

bC = 0.01, bI = 0.05,

ε = 5.5× 10−3, (43)

then R0 ≈ 2.30631 > 1. Suppose that the non-constant
coefficients are x = α and y = bC , then the explicit
expression of the threshold curve is:

y = r0 (x) =
0.0011x

0.055x − 0.0099
. (44)

FIGURE 5. Optimal variation of non-constant epidemiological coefficients
to control the malware outbreak.

FIGURE 6. Illustrative example when x = α and y = bC .

The initial point is p0 = (x0, y0) = (0.55, 0.01) and a sim-
ple calculus shows that p1 ≈ (0.55, 0.029). As a consequence
the optimal strategy to reduce the basic reproductive number
modifying x = α and y = bC is increasing the parameter λ
such that (see Fig. 6):

x = 0.00049λ+ 0.55, (45)

y = 0.019λ+ 0.01,

0 ≤ λ ≤ 1. (46)

VII. CONCLUSION
In this work a novel mathematical model for simulating
the behaviour of an advanced malware outbreak has been
introduced. This is a compartmental, deterministic and global
model whose dynamics is based on a system of ordinary dif-
ferential equations. As a consequence the qualitative theory
of differential equations can be applied to study the behaviour
of the solutions. In this sense, two types of steady states
can be reached: the disease-free steady state where malware
disappears from the network, and the endemic steady state
where there will be infectious devices at every step of time.

The basic reproductive number is computed and it is shown
that this threshold parameter determines the behaviour of the
system depending on whether its numerical value is greater
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than or less than 1. An analysis of this coefficient has been
done determining the most efficient control measures when
one or two epidemiological coefficients are varied.

Future work aimed at designing individual-based mod-
els to simulate advanced malware behavior considering the
individual characteristics of the devices. Moreover, different
network topologies must be analyzed over both stochastic and
deterministic local transition rules. In this case the paradigm
of multi agent systems or computational intelligence must be
used to design such models.
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