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Abstract
This paper describes the difficulties faced by a group of middle school students (13- to 
15-year-olds) attempting to translate algebraic statements written in verbal language into 
symbolic language and vice versa. The data used were drawn from their replies to a written 
quiz and semi-structured interviews. In the former, students were confronted with a series 
of algebraic statements and asked to choose the sole translation, of four proposed for each, 
that was semantically congruent with the original. The results show that most of the errors 
detected were due to arithmetic issues, especially around the distinction between product 
and exponent or sum and product in connection with the notions of perimeter and area. As 
a rule, the error distribution by type varied depending on the type of task involved.

Keywords  Algebraic statements · Verbal representation · Representation · Algebraic 
symbolism · Translation

The capacity to reason about concepts represented in different systems and “switch” 
adeptly from one to another (“representational fluency,” to use a term coined by Nathan 
et  al. (2010)) is a key mathematical skill. Representation and inter-system relationships, 
particularly as concerns arithmetic and algebra, are concepts that should be mastered by 
students, according to the standards defined by the US Common Core State Standards 
Initiative (Council of Chief State School Officers and the National Governors Associa-
tion Center for Best Practices, 2016). The Program for International Student Assessment 
(PISA), in turn, stipulates that representation is an imperative skill (OECD, 2005), asso-
ciated with others, such as understanding and using different types of representations for 
mathematical objects, phenomena, and situations (coding, de-coding, interpreting, distin-
guishing among types); understanding and using the relationships between different rep-
resentations of the same concept, including their relative soundness and limitations; and 
choosing representation systems and translating from one to another (Niss & Højgaard, 
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2011; Rico, 2006). Both the US and PISA standards stress the importance of the ability to 
reason with and translate to and from the various representations of a given mathematical 
idea.

Representation systems are likewise acknowledged to be mediators in the conveyance 
of thoughts and mathematical communication (Kilpatrick et al., 2001), as well as powerful 
intellectual tools:

…algebraic reasoning in its many forms, and the use of algebraic representations 
such as graphs, tables, spreadsheets and traditional formulas, are among the most 
powerful intellectual tools that our civilization has developed. Without some form of 
symbolic algebra, there could be no higher mathematics and no quantitative science, 
hence no technology and modern life as we know them. (Kaput, 1998, pp. 3–4)

Given the importance of representational fluency in algebra and specifically in trans-
lation between verbal and symbolic representation, this skill is explored in depth in the 
present study. Duval (2006) contended that understanding the nature of students’ skills and 
their translation difficulties calls for engaging them in different tasks requiring translation 
along with mechanisms for observing the procedures they use to perform such tasks. Fur-
ther to those principles, a research project was designed in which middle school students 
were asked to perform three tasks: (a) to build non-contextualized algebraic statements, (b) 
to build algebraic statements in a given context, and (c) to identify semantically congru-
ent translations of contextualized algebraic statements. This article reports on the findings 
gleaned from the third. The focus is on the difficulties students encountered when translat-
ing from verbal to algebraic symbolism, and vice versa. More specifically, the description 
of the errors committed in the process provides insight into students’ difficulties in identi-
fying semantically congruent translations of algebraic statements. The discussion of those 
findings is preceded by a description, under the headings Representation and Translation, 
of the underlying conceptual premises and the results of earlier studies.

1 � Representation

Representation is requisite to knowledge management and communication, in mathemati-
cal contexts in particular. As the image of a thing absent but evoked (Duval, 1999), repre-
sentation is not equivalent to what it represents. To quote Rico (2006), “to represent is to 
substitute, to make visible something absent and, hence, this fact confirms its absence” (p. 
6). Similarly, Duval (2006) notes that “the mathematical objects must never be confused 
with the semiotic representations that are used” (p. 107).

A distinction is generally drawn between internal representation, as in the abstraction or 
internalization of mathematical ideas or cognitive schemes (the way a person conceives of 
unknowns) and external representation, including the signs, digits, or similar things used to 
symbolize, describe, codify, or represent an idea for the intents and purposes of communi-
cation (Goldin & Shteingold, 2001; Rico, 2009).

The text below refers to the latter type of representation. In mathematics, representa-
tion must be systemic. Researchers have differentiated sign (Kieran & Filloy, 1989), nota-
tion (Kaput, 1992) and semiotic systems (Duval, 1993). Although arising from different 
theories, all three systems use symbols, graphics, and notations governed by rules and con-
vention. Any given mathematical notion can normally be expressed with more than one 
type of representation. Each type refers to some part of the notion, and all complement 
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one another. “This need of various registers of representation gives rise to several ques-
tions that are important in order to understand the real conditions of learning mathematics” 
(Duval, 1999, p. 7).

1.1 � Representation in classroom algebra

This study addresses symbolic and verbal representation of algebraic statements in writ-
ing and translation from one to another. In mathematics, verbal communication is based 
on everyday oral or written language (Cañadas & Figueiras, 2011). The former, with its 
deployment of pauses, gestures, and tones of voice as support for meaning, is more com-
plex (Freudenthal, 1983). In written language, some of those clues are conveyed by punc-
tuation. “Two times five, plus eight” is not equivalent to “two, times five plus eight,” for 
instance.

Symbolic representation or algebraic symbolism is characteristic of algebra, where 
inter-quantity relationships are represented with conventional symbols (Kieran, 1996). 
With its use of numerals, letters, and signs typical of arithmetic and algebra symbolic nota-
tion, that type of representation can potentially represent algebraic ideas separately from 
their initial context (Arcavi, 1994).

Algebraic notation is characterized by high compaction power. This aspect of the lan-
guage makes it possible to move fluently through layers of abstraction and compress com-
plex mathematical thoughts into efficient symbol strings. At the same time, however, these 
characteristics make symbolic writing very opaque for learners. The substantial ambiguity 
inherent in symbols, while advantageous for experts, is difficult for novices (Drouhard & 
Teppo, 2004, p. 240).

2 � Translation

Translating from one representation system to another consists in transforming informa-
tion coded in one type of mathematical representation (the source) to another (the target) 
(Bossé et al., 2011; Janvier, 1987). A translation, or conversion to use Duval’s term (1999, 
2006), entails changing the representation system without changing the mathematical 
object. In that process, the constructs or ideas that are expressed in the source are success-
fully reformulated in the target system (Bossé, et al., 2014). Any such translation must be 
semantically congruent; i.e., the mathematical meaning in the former must be accurately 
expressed in the latter (Lesh et al., 1987). Consequently, translation converts not the repre-
sentation per se, but rather the ideas or constructs represented (Adu-Gyamfi et al., 2012).

2.1 � Difficulties posed by translation

Earlier research has addressed the difficulties encountered in translating between represen-
tation systems. Jupri and Drijvers (2016) identified one of the five major categories of dif-
ficulties in algebra to be translating verbally worded problems into mathematical symbols.

Research has shown that to successfully translate from verbal language to algebraic 
symbols and vice versa, students must understand the variables, their mutually depend-
ent relationships described in words, and the syntax embodied in symbolic representa-
tion (Kaput et al., 1985). Other obstacles that may spawn errors in symbolic representa-
tion include weak or non-existent language skills (Kar, 2016) or the ensuing difficulties 
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in explaining the relationship between symbolism and verbal representation (Capraro & 
Joffrion, 2006).

Adu-Gyamfi et  al. (2012) designed a “translation-verification model” to explain 
the procedures applied by students to translate from one mathematical representation 
to another. Their model envisages three types of verification: (a) implementation, (b) 
attribute, and (c) equivalence. For implementation verification, “in any given transla-
tion, a student/translator must map elements of the source representations onto elements 
of the target representations. Such an activity can be performed procedurally with lit-
tle or no attention given to the embodiments characterized in either representation” (p. 
161). “Attribute verification provides confirmation that an authentication activity per-
formed on the source and target representations for the purpose of establishing that the 
defining ideas or attributes of the source representation are encoded in the target repre-
sentation has been properly performed” (p. 162). Through equivalence verification, “the 
student/translator has to actively check that all defining attributes or properties of both 
source and target representations have been faithfully translated in terms of the preser-
vation of mathematical meaning” (p. 163).

Those three verification categories can be associated with three types of student errors 
when translating: (a) implementation, (b) interpretation, and (c) preservation. The first 
error type “usually happens when a step in an algorithm is incorrectly executed” (p. 163). 
Interpretation error is incurred when “the student incorrectly ascribes, characterizes, or 
exemplifies attributes or properties of either the source or target representation” (p. 163). 
In preservation error, the student “correctly maintains semantic congruence between the 
source and target representations for self-identified attributes or properties but fails to con-
firm that other relevant attributes or properties are also correctly translated” (p. 164).

The error classification proposed by Molina et  al. (2017), deemed to be a precedent 
instrumental to this study, groups errors in symbolic ⇔ verbal translation under the follow-
ing three main headings:

–	 Statement sufficiency–related errors consist in the absence of necessary or presence of 
unnecessary symbols or words in the translation. Its sub-categories are incomplete and 
superfluous.

–	 Arithmetic-related errors are associated with the misinterpretation of signs or opera-
tions. It includes the sub-categories absence of necessary and presence of unnecessary 
parentheses as well as mistaking the following pairs of operations: division-multipli-
cation, exponentiation-multiplication, addition-multiplication, and division-exponentia-
tion.

–	 Algebraic system–related errors, sub-divided into generalization, particularization, let-
ter, and structural complexity errors.

2.2 � Translation from verbal language to algebraic symbolism (V ⇒ S)

The reasons for the translation errors made by students in this type of translations include the 
use of merely syntactic procedures when translating, a limited understanding of the notion 
of variable and the syntactic characteristics of symbolic statements, along with the failure 
to understand problem wording due to syntactical complexity (Cerdán, 2010; Molina, 2014; 
Rodríguez-Domingo, & Molina, 2013; Ruano et  al., 2008). In connection with the third 
reason, Bossé, et al. (2011) contend that the presence of irrelevant, confusing, or inexplicit 
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information in word problems exacerbates translation difficulties. MacGregor and Stacey 
(1993) reported that students use more than one cognitive procedure, translating either syntac-
tically or semantically. In syntactic translations, students translate word for word from left to 
right with little regard for meaning. In semantic translation, they perceive the overall meaning 
of the word problem and express it symbolically. These authors observed that students found it 
difficult to reorganize verbal statements when transforming them into symbolic language and 
to recognize the precision of algebraic symbols which, as Socas (1997) noted, are much more 
powerful than verbal language.

2.3 � Translation from algebraic symbolism to verbal language (S ⇒ V)

Fairly few studies have addressed the translation from symbolic representation into 
verbal language, and those that have were conducted, as a rule, in a problem-posing 
context (e.g., Cañadas et al., 2018; Fernández-Millán & Molina, 2016; Jupri & Dri-
jvers, 2016; Koedinger & Nathan, 2004). One of the conclusions reached in studies 
on translation to and from different representation systems in algebra is that students 
find semantic consistency elusive even when they understand the source and target 
statements (Brenner et al., 1997).

The present study explores students’ ability to distinguish semantically congruent 
translations for a number of algebraic statements by identifying the difficulties encoun-
tered. This approach, unprecedented in the literature, is based on five assumptions. (a) 
A difficulty is an obstacle that may breed translation errors (Jupri & Drijvers, 2016). (b) 
Verbal representation is governed by the use of everyday language with the occasional 
inclusion of mathematical terminology. (c) In algebraic symbolism arithmetic numer-
als, letters and specific arithmetic and algebraic signs are used for written representation. 
(d) An algebraic statement is a sentence that can be expressed with algebraic symbols, 
such as “the sum of two consecutive numbers is equal to a third number minus two,” 
which in algebraic symbolism would be x + (x + 1) = y − 2. (e) A closed statement such as 
x(x + 1) = 7x differs from its open counterparts such as x + (x + 1) − 4 in that it expresses 
an equality.

3 � Research objective

The study described in this article was designed to determine the difficulties faced by a group 
of middle school (13- to 15-year-old) students when translating between the two representa-
tion systems taught in classroom algebra, written verbal (V) and symbolic (S) language in 
both directions (V ⇔ S). The students were asked to choose the right translation of a given 
statement from one of the two representation systems into the other.

4 � Method

The type of research conducted, the subjects comprising the sample, the data collection design 
and implementation, and the data analysis procedures deployed are described in the sub-sec-
tions that follow.
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4.1 � Type of research

The choice of an ex post facto, exploratory, descriptive study (Hernández et  al., 2003) 
was justified by the paucity of earlier research on the issue addressed, which has nonethe-
less been identified as relevant in the literature. Data analysis was essentially qualitative 
(based on subjects’ justifications and explanations provided during interviews), supple-
mented with a quantitative element, the frequencies of students’ replies in their written 
tasks.

4.2 � Subjects

The sample comprised 16 s-year middle school students enrolled in a public school. Their 
ages ranged from 13 to 15. The sample was intentional, based on school, student, and class-
room teacher (a research team member) availability. The teacher-researcher gave the stu-
dents no specific instructions about the study, delivering standard lessons as set out in the 
students’ textbook (Colera et al., 2008). Prior to data collection, the students had worked 
on arithmetic (whole number division, decimal and sexagesimal numbering systems, frac-
tions, proportionality, and percentage) and algebraic (algebraic statements, equations, and 
systems of equations) concepts.

4.3 � Data design and collection

Data were collected from a written task and during one subsequent semi-structured inter-
view with each student. The written task consisted of a multiple-choice quiz designed 
to be performed individually. It was divided into two parts or situations, with four alge-
braic statements or items each. In situation 1, the source statements were given in verbal 
representation to be translated into symbolic language, and in situation 2, the converse. 
Students were given four possible translations for each statement, only one of which 
was semantically congruent with the source. They were asked to choose the option they 
deemed appropriate and to justify their choice.

The tasks and the kind of questions posed were similar to those proposed in the stu-
dents’ textbook and designed to encompass the following parameters: (a) type of struc-
ture (addition, multiplication, exponentiation), (b) type of sentence (open, closed), and 
(c) number of letters involved (one or two). The verbal statements proposed addressed 
geometric (length, area, volume) and numerical (age, numbers, and quantities of 
objects) contexts routinely found in the textbook (Colera et  al., 2008). The incorrect 
options were drawn from answers given by the same group of students in a session con-
ducted the week before, when they were asked to build non-contextualized algebraic 
statements (Molina et  al., 2017; Rodríguez-Domingo et  al., 2015). Exposing them to 
their own errors on the questionnaire used for data collection was a tactic aimed to 
make the mistaken sentences look more reasonable and induce students to analyze and 
compare the statements in greater depth, for they were told that only one of the choices 
was correct.
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The written data were collected during students’ mathematics class. In that classroom 
session, the teacher-researcher acted as observer, confining her participation to solving 
practical problems or clarifying instructions. She later adopted the role of interviewer, as 
discussed in a later section. The tool used to collect the written data and the subsequent 
semi-structured interviews is described below.

4.4 � Tool for collecting written data

Table 1 lists the four symbolic statements and the four multiple-choice answers given 
for each. The erroneous answers were designed to match the classification described 
earlier.

Table 2 lists the four verbal statements and the four multiple-choice answers for each.

Table 1   Symbolic statements, multiple choices, and associated errors

 ✓ correct answer, SR sufficiency-related, AR arithmetic-related, AS algebraic symbolism–related.

Symbolic 
statement

Choices Associated error

E1.1 5 + x + y (a) Five plus my sister’s age (in years) plus my age 
(in years) plus my sister’s age (in years)

SR Superfluous

(b) Five times my age and my sister’s age AR Addition mistaken 
for multiplication

(c) Five plus the sum of my sister’s and my ages 
(in years)

 ✓

(d) An odd number plus one person’s age (in years) 
plus another person’s age (in years)

AS Generalization

E2.1 x + 60 = 5x (a) The sum of a number plus sixty equals five SR Incomplete
(b) A number plus sixty equals five times that 

number times five
SR Superfluous

(c) When sixty is added to a number the result is 
the same as if it were multiplied times five

 ✓

(d) A number plus sixty equals five times another 
number

AS letters

E3.1 x
2 − y

2 = 9 (a) The area of the floor of my square room minus 
the area of the floor of your square room

SR Incomplete

(b) The difference between the areas of the floors 
of two square rooms is an odd number

AS Generalization

(c) The perimeter of the floor of my square room 
minus the perimeter of the floor of your 
square room equals nine

AR Perimeter mistaken 
for area

(d) The difference between the areas of two square 
rooms is nine

 ✓

E4.1 x
3 (a) The area of a cube AR Volume mistaken 

for area
(b) Triple the side of a cube AR Exponent mistaken 

for product
(c) The volume of a cube  ✓
(d) Three raised to three AS letter
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4.5 � Interviews

The week after the written task session, the teacher/researcher conducted individual semi-struc-
tured interviews with all the students to enquire about their wrong answers and their unintelligi-
ble or non-existent explanations. As the interviewer gave them no explanations or instructions 
whatsoever during the interview, merely asking for explanations for their answers, the interviews 
involved no direct instruction. The students did not work with the statements during the week 
lapsing between the written task and the interview, nor did they know which was the correct 
choice for each item. Although some students changed their initial answer to some items during 
the interview, those second answers were excluded from the analysis, for the interviews sought 
merely to determine the difficulties detected through the errors observed in the written tasks.

4.6 � Data analysis

The data were classified under the error categories proposed by Molina et al. (2017) and ana-
lyzed in terms of the Adu-Gyamfi et al. (2012) translation verification model, which is valid for 
exploring contexts where algebraic or geometric notions can be represented in more than one 
way. Implementation verification was assumed to be equivalent to decision-making in the present 
study.

The number of correct and incorrect choices under each item in each situation was tallied. 
The number of times each choice was selected was also recorded. Some of the explanations for 
the choices are also given below in the form of fragments drawn from the interviews.

Table 2   Variable statements, multiple choices, and associated error

 ✓ correct answer, SR sufficiency-related, AR arithmetic-related.

Verbal statement Choices Error

E1.2 The perimeter of a rectangular 
garden, that is six meters longer 
than wide, is ninety-two meters

(a) x + x + (x + 6) + (x + 6) = 92  ✓
(b) x + (x + 6) = 92 SR Incomplete
(c) 2x ⋅ 2(x + 6) = 92 AR Product and 

addition
(d) x + x + y + y = 92 SR Incomplete

E2.2 Double Jesús’s age (in years) 
plus one fourth of Ines’s age 
(in years)

(a) 4 +
x

4
SR Incomplete

(b) 2x +
x

4
AS letters

(c) 2x +
y

4
 ✓

(d) 2x +
4

y

AR
Fraction terms

E3.2 Between them, two cars have 
eight wheels

(a) x
2 = 8 AR Product and 

exponent
(b) 2x = 8y SR Superfluous
(c) x = 8 SR Incomplete
(d) 2x = 8  ✓

E4.2 The area of the bottom of a 
square swimming pool times 
the depth of the pool

(a) x
2 SR Incomplete

(b) x
2
⋅ y  ✓

(c) 2x ⋅ y AR Product and 
exponent

(d) 2x2 ⋅ y SR Superfluous
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5 � Results

The number of correct and incorrect choices for the items in the two situations is given 
in Table 3.

All students answered all the items in the two situations. The prevalence of correct 
and incorrect answers in  situations 1 and 2 was reversed. In the S ⇒ V direction, the 
number of correct answers ranged from 3 to 9 and incorrect answers from 7 to 13. In the 
V ⇒ S direction, the number of correct answers ranged from 7 to 12 and that of incor-
rect answers from 4 to 9.

The best result in situation 1 (S ⇒ V) was observed for statement E2.1 (x + 60 = 5x), 
where the number of correct choices was highest and incorrect choices lowest. The 
statement in that item involved addition and multiplication in a closed, numerical con-
text. In contrast, item E4.1 (x3) elicited the smallest number of correct and largest num-
ber of incorrect answers. The context of that exponential statement was open and geo-
metric. Both statements contained a single letter.

In situation 2 (V ⇒ S), E1.2, involving addition in a closed geometric context and 
a single letter (“the perimeter of a rectangular garden, which is six meters longer than 
wide, is ninety-two meters”), exhibited the smallest number of correct and the largest of 
incorrect answers. In the other three statements, the numbers of correct and incorrect 
choices were more evenly distributed.

A comparison of the findings for the two situations revealed that when students were 
given a symbolic statement for which they had to choose a verbal translation (situa-
tion 1), the number of correct answers was slightly over half the number of incorrect 
answers. The opposite was observed when they were given a verbal statement for which 
a symbolic translation had to be chosen. Moreover, the distribution of correct and incor-
rect answers was more uniform in  situation 2 than in  situation 1, where it was more 
scattered.

The inference is that in this multiple-choice task, the students found it more difficult 
to identify the right translation of a symbolic to a verbal representation than of a verbal 
to a symbolic representation.

Situation 1 (S ⇒ V) comprised two open (E1.1 ( 5 + x + y + x ) and E4.1 (x2)] and two 
closed (E2.1 ( x + 60 = 5 ) and E3.1 (x2 − y2 = 9)) statements. There were fewer correct 
than incorrect student answers to the open statements, as well as to one of the closed 
statements. In contrast, in  situation 2, more correct than incorrect answers were pro-
vided in the two open (E2.2 and E4.2) and one of the two closed (E2.1 and E2.3) state-
ments, with the contrary observed for only one of the closed statements. Furthermore, 
from a joint analysis of data from the two situations, more incorrect responses were 
given to open statements in  situation 1, whereas in  situation 2, such statements were 
interpreted correctly more often than incorrectly.

Table 3   Number of correct/incorrect choices in the two situations

Situation 1 (S ⇒ V) Situation 2 (V ⇒ S)

E1.1 E2.1 E3.1 E4.1 Total E1.2 E2.2 E3.2 E4.2 Total

Correct 6 9 4 3 22 7 11 12 12 42
Incorrect 10 7 12 13 42 9 5 4 4 22
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The number of correct answers recorded for each situation separately and to both 
jointly is given in Table 4.

Table 4 shows that only one student answered the four questions in situation 1 correctly 
and four answered all four items incorrectly. Just one student correctly answered the eight 
questions in situations 1 and 2 combined, whereas 13 answered more of the situation 2 than 
the situation 1 items correctly. The number of errors by situation and type of error is listed 
in Table 5.

In situation 1 (S ⇒ V), most of the implementation errors were arithmetic-related (AR), 
with very few sufficiency-related (SR) and only one associated with algebraic symbolism 
(AS). In situation 2 (V ⇒ S), the same number of errors was attributable to sufficiency as to 
arithmetic and fewer to algebraic symbolism. Overall, errors were most frequently related 
to arithmetic, in particular the mistaken choice of type of operation, more than likely due 
to the failure to distinguish between concepts such as perimeter and area of a plane figure, 
which constitute interpretation errors. The next frequent type of errors was attributable to 
sufficiency, while those associated with algebraic symbolism were of scant significance.

The number of times each option was chosen by the students is given in Table 6, where 
the correct answer bears an asterisk.

According to the data in Table 6, in situation 1 (S ⇒ V), the correct answer was the one 
most frequently chosen only in additive-multiplicative, closed statement E2.1 (x + 60 = 5x), 
which involved one letter and an arithmetic context. In E1.1 (5 + x + y: additive, open, two 
letters, and numerical context), option (d), which entailed a generalization error, was the 
one most frequently chosen. One student’s reasoning for choosing that answer was indica-
tive of preservation error: “Because the symbolic statement gives us 5 which would be the 
odd number, plus x which would be an age that we don’t know, plus y that would be the 
other age that we don’t know.”

In the interviews, when students were prompted to reflect on the suitability of choice (c) 
by asking them why they chose (d) as the translation for E1.1, most argued that although (c) 
correctly translated the source statement, generalizing the symbolic statement should also 

Table 4   Number of correct 
responses in situations 1 and 2

No. of items 
answered correctly

No. of students

Situation 1 (S 
⇒ V)

Situation 2 (V 
⇒ S)

Both (S ⇔ V)

4 1 5 1
3 2 2 0
2 2 7 0
1 7 2 1
0 4 0 0

Table 5   Number of errors by situation, item, and type

Error type Situation 1 (S ⇒ V) Situation 2 (V ⇒ S)

E1.1 E2.1 E3.1 E4.1 Total E1.2 E2.2 E3.2 E4.2 Total

Sufficiency-related 1 7 - - 8 6 - 1 2 9
Arithmetic-related 9 - 11 13 33 3 1 3 2 9
Algebraic symbolism–related - - 1 - 1 - 4 - - 4
Total 10 7 12 13 42 9 5 4 4 22
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be deemed to be correct. Their justification adopted the form of “they’re both right” (S16), 
“well it’s the same, I could use five or any odd number” (S12), “they’re the same to me, 
because an odd number would be five…” (S15), likewise constituting preservation error.

In contrast, in additive, exponential, closed statement E3.1, (x2 − y2 = 9), with two let-
ters and a geometric context, only one student chose the incorrect option involving gener-
alization (b). In that statement the most frequently chosen of the three wrong answers was 
option (c), where perimeter was mistaken for area.

Although the students failed to clearly justify their choices in writing, in the interviews, 
most, knowing that they were dealing with a square figure, mistook one geometric concept 
for the other (interpretation error), as shown in the following fragment from an interview 
with S06:

I: When we have a square, to calculate the perimeter you have to add all four sides; to 
calculate the area, you multiply two sides. Here, then, what am I talking about?
S06: The area, then it’s not right.
I: Could you tell me which one is?
S06: Of these, which is right? d.
I: Why?
S06: Because the area, like you said, is multiplying the sides. And here it’s squared 
because we multiply two sides. ‘X’ squared is ‘x’ times ‘x’, ‘y’ squared or ‘y’ times ‘y’. 
Well, you subtract and the answer is nine.

For statement E4.1 (exponentiation, open, one letter, geometric context), five students 
chose option (a), in which volume was mistaken for area. The most frequently chosen 
incorrect answer was (b), in which exponent was mistaken for product. A fragment of the 
interview with S07, who made that mistake, follows:

I: For statement four in situation one, you chose b, which says ‘triple the side of a cube’ 
as the right option. And you explained that was ‘because the side would be “x” and the 
triple is “x cubed”’. What is the triple of a number?
S07: Multiplying it times three.
I: And multiplying times three is the same as raising it to the third power?
S07: No because it would be… it would be times three and the other would be multiply-
ing the same number times itself three times.
I: Is the explanation right or wrong then?
S07: It’s wrong. Because it’s not the triple of ‘x’.

In contrast to situation 1, in  situation 2 (V ⇒ S) (Table  6), the correct answers out-
numbered the incorrect choices. In additive, closed statement E1.2 (“the perimeter of a 

Table 6   Number of times each 
multiple-choice option was 
chosen

*Correct choice.

Choice Situation 1 (S ⇒ V) Situation 2 (V ⇒ S)

E1.1 E2.1 E3.1 E4.1 E2.1 E2.2 E3.2 E4.2

(a) 0 1 0 5 7* 0 3 1
(b) 1 2 1 8 4 4 0 12*
(c) 6* 9* 11 3* 3 11* 1 2
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rectangular garden, which is six meters longer than wide, is ninety-two meters”) with one 
letter and a geometric context, students incorrectly chose translations that were missing 
information (b), mistook addition for multiplication (c), or misinterpreted the relationship 
described in the item (d). The written explanations did not help clarify students’ choices 
(e.g., S05: “because it doesn’t say what it is”; S08: “because the perimeter is a perimeter 
the sum of all its sides and it begins with x”).

In additive-multiplicative, open statement E2.2 (“double Jesús’s age in years plus one-
quarter of Inés’s age in years”) with two letters and a numerical context, one student incor-
rectly chose an answer that mistook the denominator for the numerator of a fraction (d) and 
four marked option (b), in which two unknowns, each involving a different person, were 
combined. That mistake was made because the students focused only on the word “years.” 
One student justified his choice by explaining: “Because it’s double Jesus’s age in years 
plus one-fourth Ines’s in years.”

During the interviews, some students acknowledged that since the situation referred to 
the ages of different people, they should be represented with different letters and that con-
sequently the symbolic statement in (c) best translated the verbal statement, which was in 
fact the only one that was semantically congruent with the source.

In multiplicative, closed statement E3.2 (“the number of wheels on two cars is eight”), 
one student chose option (c) and three (a), errors respectively associated with missing 
information (coefficient) and mistaking the exponent for the product. This last choice was 
justified by one student who contended that “the number of wheels on two cars is x squared 
and the answer is eight.”

In multiplicative-exponential statement E4.2 (“the area of the bottom of a square swim-
ming pool times the depth of the pool”) with two letters and a geometric context, one stu-
dent left out information given in the wording (a), one added information (c), and two (S06 
and S07) mistook the exponent for the product, explaining that “side times side is 2x.” The 
latter two, with the researcher’s help during the interviews, calculated the area of a square 
figure and acknowledged that it correctly translated the source wording.

Generally speaking, as shown in the fragments reproduced above, during the interviews 
the students changed the incorrect for the correct choice when prompted to reflect on their 
answer.

6 � Discussion

This paper reports on the difficulties experienced by students in identifying the semantic 
consistency of verbally and symbolically represented algebraic statements. The findings, 
based on their replies to a questionnaire consisting in multiple-choice questions and their 
own oral and written justifications for their answers, supplement the results of earlier stud-
ies analyzing student translations of algebraic statements to and from those two systems 
of representation. Here, the more extensive data called for by Duval (2006) are furnished 
in an attempt to define students’ skills and difficulties in connection with translating class-
room algebra statements.

In this study, the findings, which given the small number of subjects and sessions can 
be neither generalized nor viewed incautiously, corroborated an observation reported by 
Brenner et  al. (1997), Fernández-Millán and Molina (2016), and Cañadas et  al. (2018): 
students found it difficult to preserve semantic and syntactic consistency in inter-represen-
tational translations. Such difficulties induced incorrect choices in the context of what the 
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Adu-Gyamfi et al. (2012) model defines as interpretation verification. The students often 
chose translations that failed to express all the ideas and relationships in the source, lacked 
necessary or contained superfluous information, or changed the relationship between terms 
in the statement. The choice of incomplete translations is an indication that letters (Küche-
mann, 1981) or relevant information is being ignored.

Asking students to identify semantically congruent translations in multiple-choice 
items, the approach adopted here and not found elsewhere in the literature, revealed that 
they were less prone to choose the right verbal target when the source was a symbolic 
statement than the other way around, a finding recorded for both open and closed state-
ments. That differed from the results observed in earlier studies when the same students 
were asked to translate non-contextualized algebraic statements themselves (Molina et al., 
2017; Rodríguez-Domingo et  al., 2015). In those studies, subjects were less successful 
when translating from verbal to symbolic statements.

Such discrepancies between the two datasets provide support for the premise that the 
difficulty was due not to the instruction delivered but to other factors. In multiple-choice 
exercises where students were to identify the correct translation from symbolic to verbal 
language, the findings suggest that the precision of the former may have constituted an 
obstacle. In other words, students failed to realize that the algebraic relationships defined 
in symbolic statements must be converted to very precise verbal expressions. In one exam-
ple observed here, some students failed to distinguish between “5” and “an odd number,” 
which they found equally valid as translations of the original. That finding was interpreted 
to denote students’ scant perception of the precision of symbolic statements or awareness 
of the need for such precision in mathematical language. Students tended to read the verbal 
translations proposed for a given symbolic statement too summarily. Including their own 
erroneous interpretations among the choices offered and telling them only one option was 
correct did not seem to help students detect the differences in precision between expres-
sions or suffice to indicate where arithmetic operations were confounded. That obstacle is 
associated with characteristics of mathematical expression such as precision and phrasing 
brevity and density (Forman et al., 1998; Schleppegrell, 2007) that should be addressed in 
the classroom.

Most of the errors observed in this study in both directions of translation were arith-
metic-related and would be classifiable as interpretation error (Adu-Gyamfi et al., 2012). 
Writing 2x rather than x2, for instance, attests to confusion between additive and multi-
plicative structures. The frequent mistaking of product for exponent and vice versa may 
be attributable to the much greater stress placed on multiplication than exponentiation 
in Spanish secondary school textbooks. Arithmetic operations were also associated with 
geometric concepts (perimeter, area, or volume). Arithmetic-related errors (mistaking one 
operation for another) revealed the failure to distinguish between geometric concepts such 
as perimeter and area of a plane, or area and volume of a three-dimensional, figure. Such 
errors stem from interference from new learning in mathematics (MacGregor & Stacey, 
1997) or perhaps from a tendency identified by Kaput (1998):

When we deal with formalisms, whether traditional algebraic ones or those more 
exotic, our attention is on the symbols and syntactical rules for manipulating those 
formalisms rather than on what they might stand for, with much of their power aris-
ing from internally consistent, referent-free operations. (p. 7)

When prompted to ponder those ideas during the interview, many students acknowl-
edged and corrected their error, remembering forgotten knowledge. That would constitute 
equivalence verification, with students maintaining the attributes perceived in the source 
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representation in the option chosen. The subjects who persevered in their error provide 
examples of preservation error as defined in the Adu-Gyamfi et al. (2012) model.

Translation is therefore impacted by elements unrelated to the task per se. The present 
findings suggest that the adverse effects of the presence of irrelevant, confusing or inex-
plicit information on translation (Bossé et al., 2011) may be compounded by elements not 
fully understood or partially forgotten, which constitute an added difficulty for students 
when undertaking that task.

The error distribution observed here varied substantially from earlier findings when stu-
dents were asked to translate the expressions themselves rather than choose one from a 
list of options (Molina et  al., 2017). In the data collected for this study, statement suffi-
ciency–related errors, i.e., misidentification of the mathematical concepts involved, were 
much more common than those associated with algebraic symbolism.

Statement openness was observed to have opposite effects in the two situations: in sit-
uation 1 more open statements fostered more incorrect responses whereas in  situation 2 
closed statements accounted for the larger number of wrong answers. Another feature of 
statements that had a bearing on difficulties to accurate translation was the order of the 
terms. Students experienced less difficulty in statements reading from left to right, the 
order preferred by persons whose algebraic thinking is procedural (Crowley et al., 1994).

7 � Conclusions

This study aimed to establish the difficulties encountered by 13- to 15-year-old students 
when translating between symbolic and verbal representation of algebraic statements. The 
data used were student errors on a multiple-choice questionnaire consisting in identify-
ing the single correct target language version of a statement in the source language from 
among four options. Students were observed to translate from verbal to symbolic language 
more successfully than vice versa. That was contrary to the findings of an earlier study 
when they were asked to translate statements themselves, where higher performance was 
recorded in the opposite direction (Molina et al., 2017; Rodríguez-Domingo et al., 2015). 
The errors in both directions primarily involved arithmetic, specifically the incorrect iden-
tification of the operation required, along with a tendency to ignore known or unknown 
quantities in the statements. Student perception of the algebraic symbolism in these state-
ments played only a minor role in these errors.

Translation, whether from verbal to symbolic statements or vice versa, is clearly not a 
mechanical process, as discussed in the introductory paragraphs of this paper. On the con-
trary, it calls for semantic understanding of the verbal language and knowledge of algebraic 
symbols, in addition to a sound command of the mathematical ideas contained in the state-
ments. Teachers should bear that in mind when working with the translation between repre-
sentation systems, for students have been shown to perform best in the type of translations 
which are routinely taught in the classroom (Bossé et  al., 2011). Inasmuch as algebraic 
symbolism describes numerical relationships more synoptically than verbal representation 
(Usiskin, 1999), the use of (opaque) formalisms is an area that should be addressed in the 
classroom. As Kaput (1998, p. 9) noted, “Most fruitful use of symbols involves alternating 
between action on symbols without reference to what they might stand for and then inter-
preting the results semantically.” More specifically, classroom work should explicitly stress 
the importance of precision in algebraic contexts, particularly as concerns algebraic sym-
bolism, given the highly synthetic nature of such representation and the lack of support for 
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its interpretation such as present in oral language in the form of intonation and descriptive 
context. If these recommendations go unheeded, students will be scantly able to flexibly 
use different representation systems to work with and communicate mathematical ideas, 
to the detriment of the mathematical competence known as “representation” (Rico, 2006). 
This paper shows that students find it difficult to perform the type of translation studied 
and that the difficulties observed may vary with the nature of the task at hand. The issues 
facing students when choosing a translation for a given representation as identified here are 
believed to hamper their fluent use of mathematical representation. Classroom work should 
therefore systematically include a variety of tasks involving translation to and from the 
various systems to enable them to improve their performance in that respect.
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