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Abstract

In this work a novel model to simulate advanced malware spreading is introduced

and analyzed. It is an individual-based model such that the dynamics of the

malware outbreak is governed by means of a cellular automaton. The network

topologies considered are complex random networks and each device is endowed

at every step of time with one of the following possible states: susceptible,

infected, attacked and recovered. A study analyzing the influence of topology

variability and the structural characteristics of initially infected devices is done.

Keywords: Malware propagation, random complex networks, individual-based

model, cellular automata, advanced persistent threats (APTs).

1. Introduction

Advanced persistent threats (APTs for short) can be defined as highly spe-

cialized long-term cyber-attacks which are perpetrated by well-trained, well-

funded organized teams with great technological and computational resources

and abilities [1, 2]. These special cyber-attacks are usually sponsored by gov-5

ernment agencies or criminal organizations with large amount of resources of
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all kinds [3]. Several advanced logical tools are involved in this type of cyber-

threats and, probably, the most important is the use of advanced malware that

exploits zero-day vulnerabilities. Advanced malware is characterized by imple-

menting evasive or stealthy techniques with the aim to attack predetermined10

and specific targets.

Consequently, it is very important to study the processes that rule the prop-

agation of this malware specimen. These analysis allows us not only make

predictions about the behavior of advanced malware spread but it is also possi-

ble to test the e↵ectiveness of control procedures or security countermeasures.15

This conceptual framework is specified in the theoretical design and computa-

tional development of mathematical models for malware propagation (see, for

example, [4, 5, 6]).

Since 1989, when the first mathematical model to simulate computer virus

spread appeared [7], several di↵erent models have been proposed (see, for exam-20

ple, [8, 9, 10, 11] and references therein). The great majority are global or net-

worked models with compartments defined by devices with the same topological

characteristic –the number of contact neighbors– and endowed with the same

state –susceptible, infected, recovered, etc.– (see, for example [12, 13, 14, 15]).

All these models are devoted to the study of “classical” malware specimens25

(computer viruses, computer worms, etc.) and very few are related to the study

of the propagation of advanced malware (see [16, 17, 18]). These models have

limited practical applications since they do not take into account neither lo-

cal interactions between devices nor individual characteristics of each device.

To overcome these drawbacks the individual-based paradigm (IB-models) has30

been adopted in the last years considering both Agent-based models (ABM for

short) and cellular automata models [19, 20], such that in this new approach

each device/individual is represented as a set of characteristics that change

dynamically over time. Taking into account this paradigm, some (not many)

models have been proposed in the scientific literature. For example, in [21] an35

analytical model and its ABM version are proposed to simulate malware propa-

gation over scale-free networks; in [22] the authors introduce an open-source and
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flexible ABM considering local network structure, user mobility and application-

level interactions, and malware network coordination; in [23] an epidemiological

model based on a two-dimensional cellular automata is described considering40

a multi-player evolutionary game to predict the spread of a malware specimen

in a wireless sensor network; in [24] a new model for malware propagation in

complex networks using cellular automata is proposed where the nodes/devices

are endowed with di↵erent anti-attack abilities; also the use of one-dimensional

cellular automata has been considered for malware simulation purposes as is45

shown in [25]. In [26] the authors propose an individual-based model where

each device –that stands for a node of a complex network– can be susceptible or

infected at each step of time. Then it is a SIS compartmental model; moreover

it is a stochastic model considering two purely epidemiological coe�cients: the

infection and curing rate. In [27] a general work defining an ABM framework50

to represent mission and task assignment, unit movement, communication, mal-

ware spread, and defensive strategies in mobile tactical networks is described.

All these IB-models deal with the study of standard malware specimens

(computer virures, computer worms, trojans, etc.) and none has appeared ad-

dressing the propagation of advanced malware until last year when in [28] a first55

attempt was done using a cellular automata on graphs to define the dynamics

of the model.

Cellular automata are a particular type of finite state machines consisting of

n cells: C = {ci, 1  i  n}, whose connection topology is defined by means of

a complex network G = (C, E), where E ✓ C⇥C is the set of links between nodes60

(edges). The set of adjacent cells to a given one ci 2 C is called its neighborhood

and it is denoted by Ni = {c↵1 , . . . , c↵i}; moreover, in this work we will suppose

that ci /2 Ni. At time t the cell ci is endowed with a state sti from a finite

state set S, and these states change at discrete steps of time accordingly to a

local transition rule fi which depends on the states of the neighborhood at the65

previous step of time: st+1
i = fi

�
st↵1

, . . . , st↵i

�
2 S [29].

As far as we know , and as we said above, only one individual-based model

considering advanced malware has been proposed [28]. This is based on a cellu-
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lar automata where each memory unit stands for a device and the possible states

of these devices can be susceptible, infected and attacked. The transition rules70

are very simple and they are defined by means of probabilistic coe�cients. The

main goal of this work is to improve the last mentioned model by considering

more realistic assumptions. For example, an additional compartment is added,

the recovered devices, since the stealthy behavior of the malware can make it

possible to completely ignore some devices once the malicious code has per-75

formed its activity on them. Moreover, an evaluation period is now considered;

during it malware evaluates the infected host in order to decide its destiny: to

be attacked or not, for example.

This work is organized as follows: the detailed description of the novel model

for malware propagation is shown in section 2; in section 3 an analysis of the80

main characteristics and properties of the proposed model is introduced and

finally, the conclusions are presented in section 4.

2. Description of the model for advanced malware propagation

Considering the main properties of advanced malware introduced in the last

section we will define a model with the following characteristics: (1) this is85

a compartmental model such that the population of devices remains constant

over time and it is divided into four classes: susceptibles (S) -devices which

are free of malware-, infected (I) -devices reached by malware-, attacked (A)

-devices that have been e↵ectively attacked by malware-, and recovered (R) -

devices recovered from advanced malware-; (2) It is an individual-based model90

since particular characteristics of devices will be taken into account; (3) This is

a stochastic model since the transition between some states depend on proba-

bilistic parameters; and (4) as the variables involved in the model (time, states,

etc.) are discrete, so is the model.

The dynamics of the proposed model is illustrated in Figure 1. Susceptible95

devices become infectious when the malware specimen reaches them. To achieve

this goal two conditions are necessary: (i) the device should be of interest for
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Figure 1: Flow diagram representing the dynamics of the model.

malware either because it can serve as a transmission vector to get the attacked

device or because it is one of the targets, and (ii) malware is able to circumvent

the security measures implemented in the device. Consequently the susceptible100

device ci becomes infectious with probability hi which is called infection rate.

Once malware has infected a device, it has to analyze this device and decide

whether to attack it or not. This is performed over a period of time called

evaluation period ti and, as a consequence of this malware analysis, the infected

host device ci becomes attacked at rate ai, becomes susceptible at rate bi, or105

becomes recovered at rate di (ai + bi + di = 1). Note that if the device is not

attacked then it could be considered of interest in the future (the host becomes

susceptible) or not (in this case it becomes recovered).

Finally, an attacked device ci remains in this state during a certain period of

time ⌧i (attack period). Once the advanced malware has executed its malicious110

payload it removes itself and the attacked device becomes susceptible at rate rSi

if ci could be of interest for malware in the future, or it becomes recovered at

rate rRi = 1� rSi if acquires permanent immunity. In Table 1 a brief description

of the epidemiological coe�cients involved in the model is introduced.

The dynamics of the model will be governed by means of a probabilistic cel-115

lular automaton where the cells stand for the devices and the local interactions

5



Table 1: Coe�cients of the model.

Symbol Description Range Example value

hi infection rate [0, 1] 0.25

ai attacked coe�cient [0, 1] 0.1

bi recovery rate (from infected) [0, 1] 0.5

di immunity coe�cient (from infected) [0, 1] 0.4

rSi recovery rate (from attacked) [0, 1] 0.4

rRi immunity coe�cient (from attacked) [0, 1] 0.6

ti evaluation period (hours) [1, 24] 4

⌧i attack period (hours) [12, 72] 12

defining the neighborhoods will be given by means of random complex networks.

Furthermore, the state set will be S = {S, I, R,A}. If sti stands for the state

of the device ci at step of time t and ⌦t
i represents the number of infectious

neighbor devices of ci at t, then the local transition functions are the following:120

• Transition rule from susceptible to infectious: if sti = S then st+1
i = I

with probability hi · ⌦t
i.

• Transition rule from infected to attacked: if sti = I and t̃i (t) = ti+1 then

st+1
i = A with probability ai, where t̃i (t) stands for the time passed in

the infected state at t. Otherwise (that is, if sti = I and t̃i (t)  ti) the125

host ci remains infected at step of time t+ 1.

• Transition rule from infected to susceptible: if sti = I and t̃i (t) = ti + 1

then st+1
i = S with probability bi. Otherwise, ci remains infected until

t̃i (t) > ti.

• Transition rule from infected to recovered: if sti = I and t̃i (t) = ti+1 then130

st+1
i = R with probability di = 1 � ai � bi. Otherwise, the host remains

infected.
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• Transition rule from attacked to susceptible (resp. recovered): if sti = A

and ⌧̃i (t) = ⌧i + 1 then st+1
i = S with probability rSi (resp. rRi = 1� rSi ).

Otherwise, when ⌧̃i (t)  ⌧i, then the host remains attacked.135

Finally note that recovered devices at a particular step of time remains recovered

at the next steps of time, that is, if sti = R then st+1
i = R.

The data flow diagram of the algorithm describing the change of states of

a particular device ci is shown in Figure 2. Note that the following random

variables are considered:140

X =

8
<

:
1, with probability hi⌦t

i

0, with probability 1� hi⌦t
i

(1)

Y =

8
>>><

>>>:

0, with probability ai

1, with probability bi

2, with probability 1� ai � bi

(2)

Z =

8
<

:
1, with probability rSi

0, with probability 1� rSi
(3)

3. Study of the model

3.1. Random complex networks

In this section we will study the behavior of the model when the contact

topology is defined by means of a random complex network. The typical model145

for this type of complex networks is that one defined by Erdös and Rényi [30]

and called ER random network model. The algorithm proposed to construct

this type of networks is as follows: given a set of n isolated nodes, connect each

pair of nodes with an edge with a certain probability 0 < p  1. Note that as

larger the probability p is, the larger the density of the network will be; in this150

sense for p = 1 the complete network will be obtained.

ER random complex networks exhibit some interesting structural properties.

For example, there exists a certain threshold value for p, pc ⇠ log(n)
n , such
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Figure 2: Data flow diagram of the algorithm that defines the change of states of each device.
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that when p � pc the network obtained using the last mentioned algorithm is

connected. Furthermore, for this networks the node average degree is hki =155

p (n� 1), the average path length is L ⇠ log(n)
log(hki) , and the clustering coe�cient

is given by C ⇡ hki
n = p.

3.2. Illustrative numerical simulation

In what follows we will illustrate the model proposed in the last section

with a simple simulation. For the sake of simplicity it is supposed that the160

epidemiological coe�cients considered are the same for all devices and their

numeric values are shown in Table 1 (last column). Moreover, in this case the

number of devices is n = 50 and the first 24 hours after the outbreak will be

simulated. The random complex network will be defined by the Erdös-Rényi

algorithm with probability p = 0.1 and there will be only one infected device165

at step of time t = 0 given by the node with highest degree centrality (node

in orange in Figure 3 defined in this case by c16). The global evolution of the

system is introduced in Figure 4, whereas the individual evolution of each device

is shown in Figure 5 where each column stands for the temporal state evolution

of each device.170

This simulation and the others shown in the following sections have been

performed using the software Mathematica (version 11.2.0.0) on a 3 GHz Intel

Xenon W –64 GB 2666 MHz DDR4–.

3.3. Analysis of the model in the homogeneous case

In this subsection we will study the behavior of the model in the homo-175

geneous case, that is, when some initial structural conditions are varied but

considering the epidemiological coe�cients as constants (as stated in Table 1).

Specifically, di↵erent contact topologies will be considered and di↵erent choices

of the initially infected device (at step of time t = 0) will be made. For the

sake of simplicity only illustrative examples of the simulations are shown in this180

work (for each case the behaviors exhibited by the malware spread are similar).
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Figure 3: Random complex network defining the contact topology.
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Figure 4: Global evolution (susceptible in green, infected in orange, attacked in red, and

recovered in blue)

Figure 5: Individual evolution of the states of the devices
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Figure 6: Evolution of infected devices over di↵erent ER random complex networks.

In the first case we will examine the behavior of the dynamics of the model

when contact topology changes supposing that the epidemiological coe�cients

remain constant for every device. In addition, as in the previous example,

n = 50, 0  t  24 and the unique infected device at t = 0 will be the highest185

degree node. The 10 random complex networks defining the contact topology

will be given by the ER algorithm considering p = 0.1, 0.2, 0.3, . . . , 0.9, 1.

The simulations obtained are introduced in Figure 6. Specifically, the evo-

lution of infected devices are shown in Figure 6 whereas the dynamics of the

number of attacked devices is shown in Figure 7.190

Note that the structure of the network has a great influence in the evolution

of the number of infected and attacked devices. Basically the behaviour of both

compartments is the same and as higher the probability p is, the higher the

maximum number of infected/attacked will be and sooner it will be reached;

that is, the propagation speed directly depends on the probability p.195

On the other hand, suppose that the epidemiological coe�cients and the

contact topology is fixed. As in the previous cases, the coe�cients involved
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Figure 7: Evolution of attacked devices over di↵erent ER random complex networks.

in the model follows the statements introduced in Table 1 whereas the contact

topology is defined by an ER random model for p = 0.1. Suppose that the

infected device at step of time t = 0 is chosen taken into account its struc-200

tural characteristics. For example the nodes with highest centrality measures

(degree centrality, closeness centrality, betweenness centrality and eigenvector

centrality) will be selected (see Figure 8).

The simulations obtained in this case show that the cyber-attack is most

e↵ective (that is, the number of infected/attacked devices rapidly grows and205

reaches high values) when the initially infected host is chosen considering the

highest eigenvector centrality. Furthermore, against what you might think, de-

vices with highest degree values are not the best option as e�cient transmission

vectors. As is shown in Figure 9 (and in the rest of several simulations computed

during the work) the e↵ectiveness of initially infected nodes with the highest210

closeness centrality or betweenness centrality is greater than this infected node

at t = 0 with highest degree centrality. Same results are obtained when the

evolution of attacked nodes is analyzed (see Figure 10).
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Figure 8: Nodes infected (in orange) at step of time t = 0 defined by di↵erent centrality

measures.
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Figure 9: Evolution of infected devices considering di↵erent initial infected nodes.

Figure 10: Evolution of attacked devices considering di↵erent initial infected nodes.
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Table 2: General parameters of the heterogeneous case.

Symbol Description Example value

n number of devices 50

tend simulation time period (hours) 24

p Erdös-Rényi probability algorithm 0.5

czero zero patient highest degree centrality

3.4. Analysis of the model in the heterogeneous case

In this subsection more realistic simulations will be performed considering215

di↵erent epidemiological coe�cients for each device. Specifically, we will sup-

pose that these coe�cients depend on some structural network characteristics

associated to the nodes (centrality measures); then we state the following:

(1) The infection rate hi depends on the clustering coe�cient of node ci,

0  CCL (ci)  1, and the virulence of the advanced malware specimen,220

0  ⌘  1, so that hi = ⌘ · CCL (ci).

(2) The attacked coe�cient associated to device ci depends on the global

importance of the node; as a consequence it can be given by the eigenvector

centrality 0  CE (ci)  1: ai = CE (ci).

(3) It is assumed that the rest of coe�cients are the same for all devices (see225

Table 1).

As a consequence, taking into account all these assumptions and considering a

environment defined by the parameters given in Table 2 the simulations obtained

are shown in Figure 11 and Figure 12. Note that in this case, the system evolves

to a disease-free steady state (that is, the number of infected -and attacked-230

devices disappear).

3.5. Some ideas about security countermeasures

From both qualitative and quantitative point of views, security countermea-

sures are related to the definition of the recovery rate bi, due to the characteris-

16



Figure 11: Global evolution of the model.
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Figure 12: Individual evolution of network devices.
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tics of advanced malware. The numeric value of recovery rate could depend on

normalized betweenness centrality, CB , of the associated node (and, possibly,

another suitable structural indices). In this case, they can define as follows:

bi = ✏ · 2 · CB (ci)

(n� 1) (n� 2)
, (4)

where ✏ stands for a coe�cient measures the awareness for security of the user

of device ci.

A simple simulation of this new definition of the recovery rate is given in235

Figure 13. In this case a complete contact topology is considered (that is,

the probability of the ER random model is p = 1) and the structural and

epidemiological coe�cients are the same than in the previous examples). In

Figure 13-(a) the global evolution of the system is illustrated when bi = 0.5 1 

i  n, whereas in Figure 13-(b) the global evolution of the systems is shown240

when the recovery coe�cient is defined as given in equation (4). Note that in

the second case, no attacked devices appear.

4. Conclusions

In this work a novel epidemiological individual-based model to predict the

behavior of advanced malware has been described and studied. Specifically, it is245

a compartmental model where the devices are classified into four compartments:

susceptible, infected, attacked and recovered. The dynamics of the model is

governed by means of a probabilistic cellular automata and the contact topology

is defined by an ER random complex network. Moreover, this model captures

the stealthy and evasive behavior of advanced malware.250

Although several simulations have been performed during the study, for the

sake of simplicity only few illustrative examples are shown in the paper. The

following conclusions are derived from the analysis of these simulations:

(1) The probability that defines the ER random model has a direct influence

on the propagation process, that is, the malware outbreak can be acceler-255

ated or decelerated depending on the value of this probability;
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Figure 13: (a) Global evolution with a constant recovery rate. (b) Global evolution of con-

sidering a recovery rate depending on the betweenness centrality.
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(2) The choice of the first infected device greatly determines the evolution of

the number of infected and attacked devices; specifically, the most e�cient

malware outbreaks are obtained when nodes with the highest eigenvector

centrality are firstly attacked.260

(3) The implementation of e�cient control measures could depend on the com-

putation of some structural network characteristics associated to nodes.

For example, the recovery coe�cient from infected devices, bi 1  i  n,

could depend on the normalized betweenness centrality.

Future work aimed at validating this theoretical model considering a real265

environment with real data of both, devices and malware characteristics. More-

over, also the model must be improved using the ABM paradigm. Obviously,

an agent-based model is more powerful than a cellular automata model since

one can exploit in a more e�cient way the AI characteristics of each device

(node of the complex network). In this sense, the possibilities of communica-270

tion and interaction between nodes and the digital environment will provide a

more realistic simulation.
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