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Abstract

Most of stability analysis for stochastic epidemiological models involve Lyapunov functions. This work

shows how sufficient conditions for the local stochastic asymptotic stability of a nonlinear system can be

derived from the stability analysis of an ordinary linear system. In the particular stochastic SIR/SIRS

models proposed here to illustrate the technique, the stability study of the obtained ordinary systems

reduces to calculate the spectrum of the governing matrix.
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1. Introduction

Mathematical models for simulating the spread of biological agents are a topical issue due to the

pandemic situation that we are experiencing worldwide. Modern Mathematical Epidemiology is based on

the work of Kermack and McKendrick [16] and, consequently, the great majority of models appeared in

the scientific literature are compartmental and deterministic. Moreover, the dynamics is usually based on5

ordinary differential equations whose variables stand for the total population amount or density belonging

to each of the compartments [12]. Although this deterministic approach allows obtaining good simulations

when population is large, it is not entirely suitable when the dynamics of real biological agents is studied;

note that if it were possible to restart a real epidemic process, it is not reasonable to expect that under

the same initial conditions the same individuals would be infected at exactly the same instant of time).10

Consequently, stochasticity is an inherent characteristic of these processes that plays a determining role
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when any of the following situations occurs: when the number of infectious individuals is small, when

control measures are successfully implemented, at the initial stage or the trough phase of the epidemic

outbreak. In this cases, and for the sake of reality, it is critical to consider randomness and to introduce

it into the mathematical model.15

Obviously, this scenario cannot be modelled by means of “traditional” ordinary differential equations.

To overcome such drawback, stochastic differential equations (SDE for short) can be employed in the case

of global models. In addition, other stochastic techniques such as discrete Markov chains or Bayesian

networks have been used for computational models following the individual-based paradigm [19].

Stochastic differential equations have been considered to model and simulate different types of phe-20

nomena in Physics, Biology, Finance, Epidemiology, etc., see [18] and the references therein. More recent

examples can be seen in [34], where the uncertainties in electrical power systems are modeled by means

of SDEs; in [8], where a new modeling approach based on Ito stochastic differential equations for the

neutron count distribution in a subcritical core is proposed; in [22], where the price dynamics of financial

markets is studied using SDEs; or in [27], where the dynamics of a breast tumor is modeled by means of25

Ito SDEs. Models to simulate pathogen propagation based on SDEs have been proposed and analyzed,

see, e.g., [21, 28, 35]. As in the case of deterministic models based on ordinary differential equations

(ODEs), a qualitative study of the stochastic system must accompany the description of the model.

Most of stability analysis for SDEs models are based on the derivation of sufficient conditions for

stability obtained from the construction of Lyapunov functions [7, 14, 20, 23, 32] and, with the thresholds30

involved, the consequent definition of the stochastic version of the basic reproductive number. In some

cases it can be difficult to find suitable Lyapunov functions; in general, there are no systematic methods

for constructing them. Our main goal is to overcome this drawback presenting a systematic way to

obtain sufficient conditions for the stochastic stability of the equilibrium solution based on the mean-

square stability of its linearized problem. For this linear problem, necessary and sufficient conditions can35

be obtained from the stability analysis of an ordinary differential system.

The rest of the paper is organized as follows: In Section 2 the background of the stability of stochastic

differential equations is presented; the mathematical description of both, SIR and SIRS models, is intro-

duced in Section 3; in Section 4 the stability of the stochastic SIR model is tackled. Some illustrative

numerical simulations are presented in Section 5. Finally the conclusions are presented in Section 6.40
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2. Fundamentals of SDEs stability

For our purposes we consider a filtered probability space (Ω,F ,Ft, P ), an m-dimensional Wiener

process {Wt = (W 1
t , . . . ,W

m
t )}t≥0 and an autonomous d-dimensional stochastic differential equation

(SDE)

dXt = f(Xt)dt+

m∑
k=1

gk(Xt)dW
k
t , t0 ≤ t, (1)

where the functions f ,g1, . . . , gm are assumed to be defined and measurable in Rd and to satisfy a Lipschitz

condition of the form

|f(x)− f(y)|+
m∑
k1

|gk(x)− gk(y)| ≤ K|x− y| (2)

for all x, y ∈ Rd. This assumption ensures the existence of a unique solution of the (1) with the initial

condition Xt0 = c if c is Ft0 -measurable, see, e.g. Arnold [3]). From now on, we suppose that c ∈ Rd and

the unique solution, starting at time t0 at c will be denoted Xt(c).

Suppose now that

f(0) = 0, gk(0) = 0, k = 1, . . . ,m; (3)

in this case the equilibrium position Xt ≡ 0 is the unique solution of (1) with initial condition c = 0.45

2.1. Stochastic stability

Definition 1. The equilibrium position of (1) is said to be stochastically stable (or stable in probability)

if, for every ε > 0,

lim
c→0

P

{
sup
t≥t0
|Xt(c)| ≥ ε

}
= 0.

Definition 2. The equilibrium position is said to be stochastically asymptotically stable (or asymptotically

stable in probability) if it is stochastically stable and

lim
c→0

P
{

lim
t→∞

Xt(c) = 0
}

= 1.

Under suitable conditions, stochastic stability behaviour of a stochastic differential equation can be

derived, see e.g. theorems 7.1 and 7.2 in Khasminskii [17], from the study of its linearized equation

dXt = AXtdt+

m∑
k=1

BkXt dW
k
t (4)

3



with coefficients given by the constant matrices

A =
∂f

∂x
(0), Bk =

∂gk
∂x

(0), K = 1, . . . ,m. (5)

In particular, we state:

Theorem 1. Consider the SDE (1) whose coefficients f = f(x) and gk = gk(x) are Rd-valued functions

that satisfy the Lipschitz condition (2) together with (3). If, in addition, they are differentiable functions

with continuous partial derivatives at x = 0, then the stochastic asymptotic stability of the equilibrium50

position of the linear SDE (4)-(5) implies the stochastic asymptotic stability of the equilibrium position

of the original equation (1).

2.2. Mean square stability

For any vector or matrix Z, let us denote by Z> its transpose. Under the Lipschitz assumption for

the coeffcients of the SDE (1) together with the initial constant condition, existence of the moments of55

the solution is assured, see [3]; in particular, the mean mt = E[Xt], the second moment P (t) = E[XtX
>
t ],

or E|Xt|p for any p > 0 exist.

Definition 3. The equilibrium position is said to have a stable second moment if for every ε > 0 there

exists a δ > 0 such that for all |c| ≤ δ

sup
t0≤t≤∞

|E[Xt(c)X
>
t (c)]| ≤ ε.

If in addition

lim
t→∞

|E[Xt(c)X
>
t (c)]| = 0

for all c in a neighborhood of x = 0, the equilibrium position is said to have an asymptotical stable second

moment.

Definition 4. The equilibrium position is said to be mean-square stable if for every ε > 0 there exists a

δ > 0 such that for all |c| ≤ δ

sup
t0≤t≤∞

E|Xt(c)|2 = 0.

If in addition for all c in a neighborhood of x = 0

lim
t→∞

E|Xt(c)|2 = 0,

the equilibrium position is said to be mean-square asymptotically stable.60
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It is easy to prove, see [3], that (asymptotical) stability in mean square is equivalent to (asymptotical)

stability of the second moment. Although in general the second moment of the solution of a general SDE

does not satisfy a simple equation, for the linear case it is known, see Theorem 8.5.5 in [3], the form of

the (ordinary) matrix differential equation that it fulfills. In particular, for the linear SDE (4) where

A, Bk are d × d matrices with constant entries, the second moment P (t) = E[XtX
>
t ] = (pij(t)) of the

solution satisfies the equation

dP (t)

dt
= AP (t) + P (t)A> +

m∑
k=1

BkP (t)B>k . (6)

Since P (t) is symmetric, (6) reduces to a linear system of d(d+ 1)/2 differential equations of the form

dY

dt
=MY , (7)

where the components of the vector Y are pij = E[Xi
t X

j
t ], i, j = 1, . . . , d, i ≤ j. Then the asymptotic

mean-square stability of the equilibrium position of (4), identical to the asymptotic stability of the second

moment P (t)), is equivalent to the asymptotical stability of the equilibrium position Y ≡ 0 of the linear

system (7). Since this condition reduces to the requirement that all the eigenvalues of M lie in the left

half-plane, we conclude that the linear test system (4) is asymptotically MS-stable if and only if the

spectral abscissa of the auxiliary matrix M is negative, i.e.

ν(M) = max{<(λ) : λ ∈ σ(M)} < 0,

where σ(M) denotes the spectrum of the matrix M.

2.3. MS-stability vs stochastic stability

For linear SDEs with constant coefficients, Gikhman [9] proved, see also [3, 17], that MS-stability

implies stochastic asymptotical stability:

Theorem 2. The solution Xt = 0 of the stochastic linear system with constant coefficients (4), having65

asymptotic stability of its second-order moments, is stochastically asymptotically stable.

Combining this fact with the above results of this section, we summarize how to study stochastic

asymptotical stability of the (general) SDE (1) by means of the stability analysis of an ordinary linear

system: For a SDE (1) fulfilling the conditions of Theorem 1, consider its linearized SDE system (4) with

coefficients (5) and the auxiliary ordinary system (7) fulfilled by the second moment of this linear SDE70
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system: Asymptotical stability of this ordinary system implies asymptotical mean square stability (and

then asymptotical stochastic) of the linear SDE, which in turn implies asymptotical stochastic stability

of the original SDE.

3. The SIR/SIRS compartmental model

3.1. The (classic) deterministic approach75

As it was mentioned, the mathematical model proposed by Kermack and McKendrick can be con-

sidered as the cornerstone of the modern Mathematical Epidemiology. In this compartmental model the

population is divided into three classes: susceptible (S), infected (I), and recovered (R) individuals. In

the simplest case the system of ordinary differential equations that governs the dynamics of the SIR/SIRS

model is given by:
dS(t)

dt
= −δ I(t)S(t) + γ R(t)

dI(t)

dt
= δ I(t)S(t)− λ I(t)

dR(t)

dt
= λ I(t)− γ R(t)

(8)

where 0 < δ ≤ 1 represents the probability that a relationship with an infectious leads to contagion,

0 ≤ γ ≤ 1 is the loss-of-immunity rate (that is, the rate at which recovered individuals return to

susceptible compartment), and 0 < λ ≤ 1 stands for the recovery rate (the rate at which infected

individuals recover from the disease). If γ = 0 there is no flow from the recovered compartment to the

susceptible compartment and the classic SIR model is obtained: This model captures the dynamics of80

diseases that confers permanent immunity, such as measles or rubella, see e.g. [11], as well as a variety

of epidemics, see [26]. Recent applications of this model to COVID-19 can be found in [4], [6], [29] or

[30]. The basic SIRS model (γ > 0) is derived when immunity is temporary and after a certain period of

time the recovered individual becomes susceptible again. This model might be appropriate for diseases

as tetanus, influenza or cholera, see e.g. [10].85

Notice that in the previous models the total population N(t) = S(t) + I(t) + R(t) remains constant

through time. This tenet can be relaxed and system (8) can be extended taking into account demography

(births, natural deaths, and migrations) and mortality caused by the disease, obtaining the general system
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dS(t)

dt
= b− δI(t)S(t) + γR(t)− µS(t)

dI(t)

dt
= δI(t)S(t)− λI(t)− µI(t)− αI(t)

dR(t)

dt
= λI(t)− γR(t)− µR(t)

(9)

where 0 < µ ≤ 1 is the natural death rate, 0 < α ≤ 1 is the disease-caused death rate, and the constant

rate b is the influx into susceptible compartment, for example, due to migration. This model was proposed

in [1] to study transmitted diseases of mice, see also [25]; for a survey of recent applications, see [30].

Finally, the system (9) can be generalized replacing δ by β k(N)
N where k(N) represents the contact

rate (total number of adequate contacts that an individual has with the entire population per unit of

time), and β is the probability that an adequate contact leads to an infection, see [5] or [15]. So, the

proposed model is given by

dS(t)

dt
= b− β k(N)

N
S(t)I(t)− µS(t) + γR(t)

dI(t)

dt
= β

k(N)

N
S(t)I(t)− (λ+ µ+ α)I(t)

dR(t)

dt
= λI(t)− (µ+ γ)R(t) .

(10)

The term β k(N)
N S(t)I(t) is called incidence (new infections per unit of time) and strongly depends on the

contact rate k(N). The dynamics of this general model is graphically illustrated by means of the flow90

diagram shown in Figure 1.

Figure 1: Flow diagram representing the dynamics of SIR and SIRS models.
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The population N(t) is variable, and for the function k = k(N) the following assumptions are made

[15] in order to consider saturation incidences:

k(N) > 0, k′(N) ≥ 0,

(
k(N)

N

)′
≤ 0,

where the prime denotes the derivative with respect to N . Notice that the class of functions k(N) = sNr,

with 0 ≤ r ≤ 1, s ∈ Z+, fulfills the above conditions. And the particular cases r = 1, i.e. k(N) = sN , and

r = 0, i.e. k(N) = s, correspond to the bilinear and standard incidence SIRS models with immigration,

respectively, see e.g. [25, 33]. For other applications of this model, see [5].95

A simple calculus shows that the basic reproductive number associated to this model is

R0 :=
βk
(
b
µ

)
α+ λ+ µ

. (11)

As is well known, this is the most important threshold epidemiological coefficient; its value -greater or

less than 1- determines the behavior of the epidemic process, that is, the stability of the equilibrium

points.

The system (10) has a unique disease free equilibrium p0 = (b/µ, 0, 0). The linearized system centered

at p0 is given by

dX(t) =


−µ −β k

(
b
µ

)
γ

0 β k
(
b
µ

)
− λ− α− µ 0

0 λ −γ − µ

X(t) dt

with X(t) = (S(t)− b/µ, I(t), R(t)). Since the eigenvalues of the matrix are −µ,−µ− γ, β k
(
b
µ

)
− (α+

λ + µ), the local asymptotical stability condition can be written β k
(
b
µ

)
< α + λ + µ or, in terms of

the reproductive number, as R0 < 1. Notice that this condition does not depend on γ. Moreover, in

[15] it is shown that the disease-free equilibrium p0 is globally asymptotically stable for R0 ≤ 1 and

unstable for R0 > 1. It is also shown that if R0 > 1 the system (10) has a unique endemic equilibrium

p1 = (S∗, I∗, R∗) with

S∗ =
N∗

k(N∗)

α+ λ+ µ

β
, I∗ =

γ + µ

α(γ + µ) + µ(γ + λ+ µ)
(b− µS∗), R∗ =

λ

γ + µ
I∗, (12)

and N∗ is the unique positive solution of the equation

k(N)

α+ λ+ µ

(
1−

(
1 +

λ

µ+ γ

)
b− µN
αN

)
− 1 = 0.

In addition, it is shown that p1 is locally asymptotically stable if R0 > 1.
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3.2. The stochastic version100

The deterministic approach to the problem of modeling epidemic propagation, shown in subsection

3.1 by means of the SIR/SIRS compartmental model, is the classic one. However, due to the inherent

randomness of epidemiological processes it seems more appropriate (or, at least, reasonable) to resort to

stochastic techniques. The incidence is the key term in (10) and, specifically, the nature of the infection

rate β is highly random. As a consequence it is of interest to propose compartmental models whose

dynamics is governed by stochastic differential equations where the parameter β is perturbed by the

addition of a white noise ξt with intensity σ resulting in β+σξt. Then the deterministic SIR/SIRS model

becomes to the stochastic (in the Itô sense) SIR/SIRS model:

dSt =

(
−β k(N)

N
StIt − µSt + γRt + b

)
dt− σk(N)

N
StIt dWt

dIt =

(
β
k(N)

N
StIt − (λ+ µ+ α)It

)
dt+ σ

k(N)

N
StIt dWt

dRt = (λIt − (µ+ γ)Rt) dt

(13)

The stochastic system (13) is a slight generalization of some models presented in the literature: in

[14] and [32] the SIR model (γ = 0) is considered, with particular value b = 0 in the second text; in [23]

the case b = µ, α = 0 is studied.

The SDE (13) has a unique equilibrium p0 = (b/µ, 0, 0). Using the notions of stochastic stability

and their relations introduced in Section 2 we shall analyze the stability behaviour of this stochastic105

disease-free equilibrium.

4. Stochastic Stability of the stochastic SIR model

Linearizing (10) around the equilibrium p0 and using the new variable Xt = (X1
t , X

2
t , X

3
t ) = (St −

b/µ, It, Rt), we obtain the linear SDE

dXt =


−µ −β k

(
b
µ

)
γ

0 β k
(
b
µ

)
− λ− α− µ 0

0 λ −γ − µ

Xt dt+


0 −σ k

(
b
µ

)
0

0 σ k
(
b
µ

)
0

0 0 0

Xt dWt. (14)
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From here, taking Y = (p11(t), p22(t), p33(t), p12(t), p13(t), p23(t))>, with pij(t) = E[Xi
tX

j
t ], the corre-

sponding linear system (6) reduces to the ordinary differential equation (7) with

M =


−2µ σ2k

2
0 −2β k 2γ 0

0 σ2k
2
+ 2β k − 2(α+ λ+ µ) 0 0 0 0

0 0 −2(γ + µ) 0 0 2λ

0 −σ2k
2 − β k 0 β k − (α+ λ+ 2µ) 0 γ

0 0 γ λ −γ − 2µ −β k

0 λ 0 0 0 β k − (α+ γ + λ+ 2µ)


where k stands for k

(
b
µ

)
.

Theorem 3. The trivial solution of the linear SDE (14) is asymptotically mean-square stable if and only

if

β k
(
b
µ

)
+ 1

2σ
2
(
k
(
b
µ

))2
α+ λ+ µ

< 1 (15)

holds.

Proof. The eigenvalues of M are (the real values) λ1 = −2µ, λ2 = −2(γ + µ), λ3 = −γ − 2µ,

λ4 = βk
(
b
µ

)
−(α+λ+2µ), λ5 = βk

(
b
µ

)
−(α+λ+2µ+γ) and λ6 = σ2

(
k
(
b
µ

))2
+2β k

(
b
µ

)
−2(α+λ+µ).

Since the parameters µ, λ, β, b are positive and γ, α ≥ 0, it is obvious that condition

σ2 (k(b/µ))
2

+ 2β k(b/µ)− 2(α+ λ+ µ) < 0 (16)

s equivalent to λi < 0, i = 1, . . . , 6.110

Equation (15) can be rewritten as RMSL
0 < 1, where

RMSL
0 :=

β k
(
b
µ

)
+ 1

2σ
2
(
k
(
b
µ

))2
α+ λ+ µ

. (17)

This leads to a epidemiological threshold coefficient, named MS basic reproductive number and conclude

that the linearized system is MS-stable if and only if

RMSL
0 = R0

(
1 +

σ2

2β
k

(
b

µ

))
< 1. (18)

Finally, from the above results we can conclude:

Theorem 4. If condition (15) holds, then the disease free equilibrium p0 =
(
b
µ , 0, 0

)
of the SIR/SIRS115

model (10) is stochastically asymptotically stable.
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Proof. If condition (15) holds, the linear system (14) is asymptotically MS-stable and then, by

Theorem 2, stochastically asymptotically stable. From here, Theorem 1 gives that the trivial solution of

(10) is stochastically asymptotically stable

Remarks. Notice that120

1. Condition (15) does not depend on γ.

2. For SIR/SIRS models with bilinear incidence and s = 1, i.e. k(N) = N , condition (15) becomes

β b
µ + 1

2σ
2
(
b
µ

)2
α+ λ+ µ

< 1.

(a) This condition coincides with the sufficient condition given for the SIR model in [14]. If, in

addition, µ = b, this condition improves the one stated in [32].

(b) When µ = b and α = 0, the condition reduces to

β + 1
2σ

2

λ+ µ
< 1,

which coincides with the sufficient condition for stochastic asymptotical stability of the trivial

solution given for the SIRS model in [23].125

3. For SIR/SIRS models with standard incidence, i.e. k(N) = s ∈ Z+, condition (15) becomes

βs+ 1
2σ

2s2

α+ λ+ µ
< 1.

5. Numerical simulations

We carry out two groups of numerical experiments to confirm the theoretical results presented above.

The first one (experiments 1-4) refers to stochastic stability of the equilibrium of equation (13), whereas

the second one (experiments 5-6) is concerned with the mean-square stability of system (14). Some

parameters were fixed for all experiments:

k(N) = N, b = 0.5, µ = 0.5, γ = 0.4, λ = 0.3, α = 0.2. (19)

Notice that since α+ λ+ µ = 1 and b = µ, then R0 = β and RMSL
0 = β + σ2/2.
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For each experiment of the first group, a pair of values of β, σ is selected and equation (13) with initial

value (S0, I0, R0) = (0.9, 0.5, 0.3), is solved numerically in the interval [0, 50] using the Euler-Maruyama130

method with step-size ∆ = 1/10. We repeat the integration to obtain 10 trajectories of the exact solution.

On the other hand for each experiment we solve the deterministic system (10) with the same parameters

and initial value (S(0), I(0), R(0)) = (0.8, 0.7, 0.2). Then the components S, I,R of the 10 trajectories

of the solution of the stochastic problem and the solution of the deterministic problem are represented

together for the sake of comparison (Figures 2-5). The deterministic solution acts as a reference of the135

stochastic solution with initial value (S0, I0, R0) = (0.8, 0.7, 0.2) that can be compared visually with the

10 trajectories of stochastic solution with initial value (S0, I0, R0) = (0.9, 0.5, 0.3).

The second group (experiments 5-6) is devoted to illustrate the necessary an sufficient condition for

MS-stability of the linear system (14). To approximate the second moment of the solution of the linear

SDE a batch of 1000 simulations are carried out. Each realization is obtained integrating (14) with

the stochastic trapezoidal method along the interval [0, 50] with step-size ∆ = 1/4 and initial value

(S0, I0, R0) = (0.8, 0.7, 0.6). The stochastic trapezoidal method is the particular member of the family

of stochastic θ-methods [13] obtained with θ = 1/2. The numerical solutions obtained integrating with

this semi-implicit method has shown special behavior in the replication of MS-stability properties of the

exact solution, see e.g. [13, 31]. Then for each component U (X,Y , or Z) the values

E
[
U2
n

]
=

1

1000

1000∑
j=1

(ujn)2

were calculated as an approximation of E[U2
t ].

Experiment 1. We take β = 0.8 and σ = 0.2. Then RMSL
0 = 0.84 < 1 and from Theorem 4 the equilibrium

is stochastically stable (Figure 2). In agreement with Theorem 4 the figure shows that (15) is a sufficient140

condition for the stochastic asymptotic stability of the disease free equilibrium point of equation (13).

Experiment 2. We take β = 0.8 and σ = 1. Then RMSL
0 = 1.31; therefore the sufficient condition of

Theorem 4 does not hold. Figure 3 shows stochastic stability around the equilibrium point (1, 0, 0); the

graphic then suggests that (15) is not a necessary condition for stochastic asymptotic stability. This

result is in agreement with the assertion made in [32], where it is said that β − σ2/2 < α+ λ+ µ is the145

sufficient condition guested from numerical experiments.
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Figure 2: Components of the solution of the deterministic system (10) with initial value (0.8, 0.7, 0.2) (colored thick line)

together with 10 trajectories of the solution of the stochastic system (13) with initial value (0.9, 0.5, 0.3) (black thin lines),

in both cases with the parameters (19) together with β = 0.8 and σ = 0.2

Experiment 3. We take β = 1.2 and σ = 1. As in the second experiment, the guested experimental

sufficient condition for stability β − σ2/2 < 1 = α + λ + µ holds; in agreement with it, Figure 4 shows

stochastic stability around the equilibrium point (1, 0, 0). But notice that the situation differs from

Experiment 2. In this case R0 > 1 and the general theory ensures for equation (10) that its endemic150

equilibrium p1 = ( 5
6 ,

5
42 ,

5
136 ) ≈ (0.82, 0.12, 0.04) is stable, whereas its disease-free equilibrium is unstable.

So, (1, 0, 0) is an unstable equilibrium point of the deterministic system (10) that becomes a stable

equilibrium of the corresponding stochastic system (13). This example illustrates the fact reported in

the literature, see e.g. [2, 24], of how the perturbation of a deterministic unstable system by a noise can

result in a stable SDE.155
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Figure 3: Components of the solution of the deterministic system (10) with initial value (0.8, 0.7, 0.2) (colored thick line)

together with 10 trajectories of the solution of the stochastic system (13) with initial value (0.9, 0.5, 0.3) (black thin lines),

in both cases with the parameters (19) together with β = 0.8 and σ = 1

Experiment 4. We take β = 2.3 and σ = 1. In this case R0 > 1, RMSL
0 > 1 and the experimental

sufficient condition β − σ2/2 > 1 holds. The endemic equilibrium p1 = (10
23 ,

15
46 ,

5
46 ) ≈ (0.43, 0.33, 0.11)

of the deterministic system (10) is stable. Figure 5 shows instability of the equilibrium (1, 0, 0) for both

deterministic (10) and stochastic (13) systems.

Experiment 5. As in Experiment 1, we set β = 0.8 and σ = 0.2. In this case RMSL
0 = 0.84 < 1. The160

results are shown in the left plot of Figure 6, where the approximate values of E[X2
t ], E[Y 2

t ] and E[Z2
t ]

are plotted versus t. In agreement with Theorem 3 the figure shows that the trivial solution of the linear

SDE (14) is mean-square stable.
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Figure 4: Components of the solution of the deterministic system (10) with initial value (0.8, 0.7, 0.2) (colored thick line)

together with 10 trajectories of the solution of the stochastic system (13) with initial value (0.9, 0.5, 0.3) (black thin lines),

in both cases with the parameters (19) together with β = 1.2 and σ = 1

Experiment 6. As in Experiment 2, we set β = 0.8 and σ = 1. In this case RMSL
0 = 1.3 > 1. The results

are shown in the right plot of Figure 6. In agreement with Theorem 3 the figure shows that the trivial165

solution of the linear SDE (14) is mean-square unstable.

6. Conclusions

Sufficient conditions for the local stochastic stability of a stochastic SIR/SIRS model are derived

using a direct analysis of the mean square stability of the corresponding linearized problem. Although

the obtained conditions coincide with other presented in the literature, the procedure to obtain them,170

avoiding the use of Lyapunov functions, has the advantage of being a systematic way to address the
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Figure 5: Components of the solution of the deterministic system (10) with initial value (0.8, 0.7, 0.2) (colored thick line)

together with 10 trajectories of the solution of the stochastic system (13) with initial value (0.9, 0.5, 0.3) (black thin lines),

in both cases with the parameters (19) together with β = 2.3 and σ = 0.2

problem: it reduces to the calculus of the spectrum of a matrix, as in the presented model, or, when it

is not possible, to the use of Routh-Hurwitz theorem or equivalent results.

While the theoretical sufficient condition β+σ2/2
α+λ+µ < 1 is confirmed by some numerical example, other

experiments suggest that it is not a necessary condition for stochastic asymptotic stability. In fact, the175

lower value β−σ2/2
α+λ+µ seems to be experimentally the threshold for stochastic asymptotic stability. This

point deserves a more detailed study in another work.

The stochastic compartmental SIRS model analyzed in this work can deal with the problem of virus

spread with certain particular characteristics. Specifically, (1) epidemiological periods are assumed to be

extremely short, and thus the influx rate b is supposed constant; and (2) the virulence of the biological180

agent results in a high mortality rate among infected individuals, and consequently the rate of deaths
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Figure 6: Numerical approximations of the second moments E(X1
t )

2, E(X2
t )

2, E(X3
t )

2 of the solution of the linear system

(14) with σ = 0.2 (left plot), σ = 1 (right plot) and shared parameters (19) and β = 0.8 in both cases

is proportional to the infected compartment: αI(t). Moreover, for the sake of simplicity, this is also

supposed for natural deaths. Note that this is the situation that occurs, for example, with biological

agents as Vibrio choleare O1) (cholera), Vibrio parahaemolyticus, Neisseria meningitidis, Ebolavirus

(ebola hemorrhagic fever), SARS-CoV-2 in certain age groups, etc.185

Finally, with the aim to control the epidemic process it is necessary to reduce the numeric value of

the MS basic reproductive number RMSL
0 as much as possible. In this sense some basic control measures

can be easily obtained if only one epidemiological coefficient is changed (and a trivial analysis of the

threshold monotonicity is done). For example, for the explicit expression of RMSL
0 it is shown that it

decreases as β or σ or b decrease, or it also decreases as α or λ or µ increase.190

Further work aimed at studying more efficient control strategies involving two or more epidemiological

parameters. Furthermore, it is also of great interest to compare and analyze the behavior of solutions of

both, deterministic and stochastic models, when they are running with real data.

Acknowledgements

This research has been partially supported by Ministerio de Ciencia, Innovación and Universidades195

(MCIU, Spain), Agencia Estatal de Investigación (AEI, Spain), and Fondo Europeo de Desarrollo Regional

17



(FEDER, UE) under project NOTREDAMME.

A. Tocino was supported by a grant of Vicerrectorado de Investigación y Transferencia of University

of Salamanca (Spain).

References200

[1] Anderson, R. M., May, R. M. Population biology of infectious diseases I. Nature 180 (1979) 361-367.

[2] Appleby, J., Mao, X., Rodkina, A. Stabilization and destabilization of nonlinear differential equations

by noise. IEEE Trans. Autom. Control 53 (2008) 683-691

[3] Arnold, L. Stochastic differential equations: theory and applications. John Wiley & Sons, New York,

1974.205

[4] Barlow, N.S., Weinstein, S.J. Accurate closed-form solution of the SIR epidemic model, Physica D

408 (2020) 132540.

[5] Brauer, F., Castillo-Chavez, C. Mathematical Models in Population Biology and Epidemiology,

Springer, New York, 2012.

[6] Cooper, I., Mondal A., Antonopoulos C. A SIR model assumption for the spread of COVID-19 in210

different communities. Chaos, Solitons and Fractals, 139 (2020) 110057
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