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1Max Planck Institute for the Science of Light, Günther-Scharowsky Strasse 1, 91058 Erlangen, Germany
2Departamento de Fı́sica Aplicada. Universidade de Vigo, As Lagoas s/n, 32004 Ourense, Spain

(Received 2 July 2014; revised manuscript received 11 December 2014; published 6 January 2015)

We introduce a complete analytical and numerical study of the modulational instability process in a system
governed by a canonical nonlinear Schrödinger equation involving local, arbitrary nonlinear responses to the
applied field. In particular, our theory accounts for the recently proposed higher-order Kerr nonlinearities,
providing very simple analytical criteria for the identification of multiple regimes of stability and instability of
plane-wave solutions in such systems. Moreover, we discuss a new parametric regime in the higher-order Kerr
response, which allows for the observation of several, alternating stability-instability windows defining a yet
unexplored instability landscape.
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I. INTRODUCTION

Modulational instability (MI) is a nonlinear phenomenon
causing a plane wave (PW) or long pulse to break up into
smaller, finite substructures. It can happen in a plethora of
different physical systems, ranging from deep-water waves
[1] to optical beams [2]. In particular, the mechanism of MI
in optics, which may happen in both temporal [3] and spatial
domains [2,4], either independently or simultaneously, has
been extensively studied due to its paramount implications
on the dynamics of intense light beams or pulses traveling
throughout nonlinear media. In brief, perturbations in the
incoming optical field can be amplified upon propagation due
to the nonlinear response of the optical medium [2], leading to
the reorganization of the energy and subsequent generation of
finite optical beams or filaments, randomly distributed along
the space-time profile of the parent wave.

Regarding their effects, temporal MI of either continuous
waves or very long pulses is responsible for the generation
of ultrashort pulses [3] with temporal durations down to, or
even below, the single-cycle limit [5]. Such MI-driven short
pulses are linked to the appearance of spectral sidebands,
which in combination with other nonlinear processes, can
boost the generation of extremely broadband radiation. In
contrast, spatial MI has been demonstrated to be, in general,
an unwanted effect in the propagation of intense ultrashort
pulses throughout bulk optical media. In fact, the MI-triggered
redistribution of the energy along the transverse profile of the
beams gives rise to the appearance of intense hot spots that
could potentially damage the optical material itself (see, e.g.,
Ref. [6], and references therein). Each intense spot contains
an amount of power comparable to the critical power Pcr for
self-focusing [7]. While such structures are doomed to undergo
collapse due to self-focusing whenever their power P � Pcr

in a Kerr medium, they have been shown to form stable
multidimensional solitary waves when traveling across optical
media with competing cubic and quintic (CQ) nonlinearities
[8], yielding in some cases to the formation of liquid light
states [9], i.e., intense flat-top beams featuring intriguing
surface tension properties [10]. Remarkably, this new type of
self-trapped beams has recently been observed experimentally
in coherently engineered atomic media [11].

On the other hand, the recent measurement of higher-order
Kerr (HOKE) responses in air and its constituents [12] gave
rise to an extensive, ongoing discussion on the physical origin
and validity of such peculiar contribution to the nonlinear
polarization [13–20]. Among other reasons, such a debate
has been specially motivated by the deep implications of the
HOKE response in the description of laser filamentation [21]
and novel light distributions [22]. In particular, theoretical
media displaying such kind of competing HOKE terms have
been shown to allow for a new branch of highly concentrated
nonlinear solitary waves, called ultrasolitons [23], which
might coexist with the usual solitons appearing in CQ-like
nonlinear models [24].

In this paper, we introduce a complete analytical and
numerical study of the MI process in a system governed by a
canonical nonlinear Schrödinger equation (NLSE) involving
a local, arbitrary nonlinear response F to the applied field.
In particular, in Sec. II we will revisit the theory introduced
in Ref. [2] to account for the recently proposed HOKE
nonlinearities, deriving very simple analytical criteria for the
identification of multiple regimes of stability and instability
of PW solutions in such systems. To illustrate our results,
in Sec. III we will show that the new model explains the
phenomenology reported in the literature for different kinds of
nonlinear responses. In addition, we will discuss the parametric
regime of HOKE responses proposed in Ref. [23], which
allows for the existence of ultrasolitons. In this case, we
will show that the theory predicts several alternating stability-
instability windows whose existence is also demonstrated by
means of numerical simulations in Sec. IV. Thus, our results
define a completely new MI landscape as compared to the
scenario that has recently been described [25] in the presence
of HOKE nonlinearities out of the multistability regime.

II. GENERAL THEORY

A. The canonical scalar NLSE and its plane-wave solutions

We consider a system described by the wave function
�(r,η) evolving along the η direction. Such a system can be
either a nonlinear optical medium in which �(r,η = z) would
represent the scalar electric field envelope of an optical wave
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propagating along the z direction [4], or an ultracold atomic
gas in which �(r,η = t) describes the order parameter of the
corresponding macroscopic collective quantum state evolving
in time t [26]. In such a system, the evolution of �(r,η) in a
(n + 1)-dimensional space of points (r,η) is governed by the
canonical nonlinear Schrödinger equation

i
∂�

∂η
+ 1

2
∇2� + F (|�|)� = 0, (1)

where ∇2 = ∂2/∂r2 accounts for diffraction (dispersion) in the
spatial (temporal) domain and F is an arbitrary, real-valued,
and continuous function of |�|. For the sake of simplicity, we
will restrict our discussion to Eq. (1), although our approach
can be easily generalized in the presence of terms involving
higher-order derivatives, such as those that should be intro-
duced to describe the propagation of ultrashort pulses [25].

We assume that all the quantities in Eq. (1), including the
coordinates r, have been suitably rescaled in such a way that
they are dimensionless. All the relevant parameters will then
appear in the explicit form of the function F .

It is well-known that Eq. (1) admits PW solutions of the
form

� = A exp(−iμη + iϕ0), (2)

where A > 0, μ, and ϕ0 are real constants describing the
amplitude, propagation constant (chemical potential in case
of matter-waves), and global phase, respectively. Equation (1)
implies the relation

μ = −F (A), (3)

which reflects the nonlinear behavior of the system since the
phase of the wave is self-modulated by its intensity [4]. In
addition, due to the U(1) symmetry of Eq. (1), its different
solutions are invariant under global phase transformations
and so the arbitrary phase factor ϕ0 will play no role in the
following discussion.

In the next sections, we will analyze the dynamics of PWs
propagating through optical media governed by Eq. (1) in
the presence of noise. In particular, we will derive a fairly
simple analytical rule for the prediction of the onset of MI.
Such a rule is completely general, and can be applied to a
plethora of nonlinear systems described by different nonlinear
responses F .

B. Modulational instability and perturbation growth rate

Let us now study the stability of the PW solutions of Eq. (1)
under the influence of small perturbations by generalizing the
perturbative method of Ref. [2]. Similar analyses have also
been carried out in Refs. [27–31]. We will then look for a so-
lution of the form �(r,η) = [A + f (r,η)] exp(−iμη + iϕ0),
where f (r,η) is an arbitrary, complex-valued perturbation. An
additional interesting possibility, which lies beyond the scope
of the present paper, would correspond to the consideration of
localized perturbations on finite backgrounds [32,33].

The requirement that the pure PW solution is stable under
the action of small perturbations corresponds to the condition
that |f (r,η)| can be kept |f (r,η)| � A for all values of r and
η. In this case, at the first order in f ,

|�|2 = |A + f |2 = A2 + 2Aα + α2 + β2 � A2(1 + 2α/A),

where α and β are real functions describing the real and imag-
inary parts of f , such that f (r,η) = α(r,η) + iβ(r,η), and
|α|,|β| � A. Therefore, |�| � A + α, and Eq. (1) becomes

i
∂f

∂η
+ 1

2
∇2f + αAF ′(A) = 0, (4)

where F ′(A) = ∂F
∂|�| (A) and we have taken into account Eq. (3).

By separating the real and imaginary parts, we get a set of two
coupled equations,

∂α

∂η
+ 1

2
∇2β = 0,

(5)
−∂β

∂η
+ 1

2
∇2α + AF ′(A)α = 0.

This system of equations can be solved in the reciprocal
space by expanding α(r,η) = ∫ ∞

−∞ α̃(k,η) exp(ik · r)dnk and
β(r,η) = ∫ ∞

−∞ β̃(k,η) exp(ik · r)dnk, where (α̃, β̃) stand for
the Fourier transforms of (α, β) and n is the dimension of
the space of the vectors r. We then obtain β̃ = 2

k2
∂α̃
∂η

, being
k ≡ |k|, together with the following equation:

∂2α̃

∂η2
+ ω2(k)α̃ = 0, (6)

which is formally similar to the equation governing the
dynamics of a classical harmonic oscillator whose angular
frequency ω(k) satisfies the following dispersion relation:

ω2(k) ≡ k2

2

[
k2

2
− AF ′(A)

]
. (7)

Whenever ω(k) becomes pure imaginary for a certain value
of k, the perturbations described by (α,β) experience an
exponential amplification. In this case, the corresponding PW
will be unstable and the perturbative approximation will be
no longer fulfilled. On the other hand, if ω(k) is real for all
wavevectors k, the values of α and β will be constrained by the
initial conditions. In other words, the perturbations f (r,η) can
be kept small at all points of the space (r,η) if and only if ω(k) is
a real number for all values of k. As a consequence, the stability
condition can be expressed in the following very simple form:

F ′(A) < 0. (8)

Accordingly, whenever F ′(A) > 0 the corresponding PW
solution will not be stable and will eventually break up
into small localized substructures or filaments [2]. In the
latter situation, it is very useful to compute the wavevector
kmax related with the fastest growing Fourier component
by maximizing the value of the exponential growth factor
	(k) ≡ iω(k) = k√

2
[AF ′(A) − k2

2 ]1/2. We obtain

kmax = [AF ′(A)]1/2. (9)

This will be our theoretical prediction for the location of the
peaks of the MI sidebands, as they are called in optics. The
corresponding prediction for the maximum exponential growth
rate, called maximum MI gain in the context of nonlinear
optics, will then be

	max ≡ 	(kmax) = k2
max

2
= AF ′(A)

2
. (10)

012904-2



MODULATIONAL INSTABILITY WINDOWS IN THE . . . PHYSICAL REVIEW E 91, 012904 (2015)

For F ′(A) > 0, and in the presence of noise, the perturbed
PW will break into filaments having a characteristic size given
by 
 = π/kmax = π/

√
2	max [2]. Notice that the expression

for 
 is only valid at the very first stages of the wave
destabilization.

III. EXAMPLES OF APPLICATION: HOKE
NONLINEARITIES

In this section, we will apply the general formalism derived
above to some canonical nonlinear systems like the Kerr and
Cubic-Quintic (CQ) nonlinear media [8]. In particular, we
will show that the general expression of Eq. (8) reproduces
the known results on the MI dynamics for such media. In
addition, we will discuss the case of a generalized HOKE
nonlinearity, and we will find the appearance of different
instability windows, depending on the relative strengths of
the higher-order nonlinear terms.

A. Cubic nonlinearity

The cubic nonlinearity (called Kerr nonlinearity in optics)
naturally appears both in the mean-field description of Bose-
Einstein condensates and in the modeling of a large class of
optical systems. In this case,

F (|�|) = f2|�|2, (11)

and the constant f2 can be chosen to be ±1 by suitably
rescaling �. The stability condition Eq. (8) can then be written
as f2 < 0, corresponding to the self-defocusing Kerr nonlin-
earity. In the opposite case, f2 > 0, the PWs will undergo
MI for any value of the amplitude A. The fastest-growing
perturbations leading to the break-up of the plane wavefront
in multiple filaments will correspond to a wavevector,

kmax =
√

2A, (12)

and the corresponding value of the maximum perturbation
growth rate will accordingly be

	max = A2. (13)

As expected, these results agree with those obtained in the
original paper by Bespalov and Talanov [2].

B. Cubic-quintic nonlinearity

CQ materials have been thoroughly studied in the literature
from the theoretical point of view [24], due to the interesting
properties they display as a result of their nonlinear response
[9,10]. Remarkably, the first realization of a canonical CQ
nonlinearity has recently been accomplished in coherent
atomic optical media [11].

By suitably rescaling � and the space-time coordinates,
light propagating throughout CQ systems can be described by
Eq. (1) involving a nonlinear term,

F (|�|) = f2(|�|2 − |�|4), (14)

where f2 = ±1.
Taking into account that we have chosen A > 0, the stability

condition Eq. (8) can then be written as f2(1 − 2A2) < 0, i.e.,
A > 1/

√
2 for f2 = +1 > 0, or A < 1/

√
2 for f2 = −1 < 0.

Again, the opposite case, f2(1 − 2A2) > 0, i.e., A < 1/
√

2
for f2 = +1, or A > 1/

√
2 for f2 = −1, will yield to MI of

the incoming PWs, and the fastest-growing perturbations will
then feature a wavevector

kmax =
√

2A
√

|1 − 2A2|, (15)

being the maximum perturbation growth rate

	max = |A2 − 2A4|. (16)

These results agree with those obtained in Ref. [8].

C. Higher-order Kerr nonlinearity

HOKE nonlinearities have recently been introduced to
describe the experimental observation of a saturation (and
subsequent sign inversion) of the nonlinear correction to the
refractive index at high optical intensities in gases [12]. Among
other implications, they have been theoretically argued to pro-
vide a new mechanism for the stabilization of optical filaments
[31,34] without the need for plasma-related effects [21]. Such
a nonlinear response can also give rise to the existence of
new localized light structures, called fermionic light states
[22,23], liquid light states [9,10,22,23], or ultrasolitons [23].
By suitably rescaling � and the space-time coordinates, we
will model a general nonlinear HOKE response as

F (|�|) =
n∑

q=1

(−1)q+1f2q |�|2q, (17)

where, to be concrete, we will consider f2q > 0 for all q

and f4 = f2 = 1 like in the aforementioned CQ case. In the
following discussion, motivated by the measurements in air
and oxygen [12,22], we will also assume that n = 4, so that
f2q = 0 for q � 5.

The dimensionless parameters entering the NLSE
are related to the refractive index n = n0 + �n = n0 +∑4

q=1 n2qI
q , where n0 is the linear refractive index, by

the relations �n = (n2
2/|n4|)F , n6 = (n2

4/n2)f6, and n8 =
(n3

4/n
2
2)f8, as shown in Ref. [23]. The only free parameters

included in Eq. (1) are then f6 and f8, which will be assumed
to be positive taking into account the results of Ref. [12] for
the optical response of common gases.

As we have chosen A > 0, the stability condition Eq. (8) can
be written as 1 − 2V + 3f6V

2 − 4f8V
3 < 0, where V = A2.

We can then have two different scenarios, depending on the
roots of the algebraic equation

1 − 2V + 3f6V
2 − 4f8V

3 = 0, (18)

namely: (i) if Eq. (18) has only one positive real root V1, the
stability condition reads A >

√
V1, while for A <

√
V1 the

PWs will undergo MI; (ii) if Eq. (18) has three positive real
roots V1 < V2 < V3, we find two different stability windows:√

V1 < A <
√

V2 and A >
√

V3, whereas for A <
√

V1 and
for

√
V2 < A <

√
V3 the corresponding PW will be modula-

tionally unstable. We can obtain an analytical condition on
the parameters f6 and f8 for Eq. (18) to have three real roots,
which will delimitate the four stability and instability regions
discussed above. This can be accomplished by calculating
the (f6,f8) pairs for which the discriminant associated with
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FIG. 1. (Color online) Multistability regions for HOKE models
in the (f6,f8) parameter space. The inner (pink) area is described by
Eq. (20) and corresponds to the existence of solitonic multistability
(see Ref. [23]). The wider (purple) area corresponds to the existence
of two branches of stable PWs, as described by Eq. (19).

the polynomial expression Eq. (18) turns out to be negative,
giving

27f 3
6 − 9f 2

6 − 108f6f8 + 32f8 + 108f 2
8 < 0. (19)

As shown in Fig. 1, this condition (purple area), allowing
for the existence of two different parametric regions for stable
PWs, is less stringent than the condition for the existence of
multistable flat-topped soliton solutions reported in Ref. [23]
(pink area), namely

18 225f 3
6 − 5 400f 2

6 − 77 760f6f8 + 204 802f8

+ 93 312f 2
8 < 0. (20)

Hence, whenever two different soliton branches exist, thus
implying soliton multistability as discussed in Ref. [23],
there will also be two different regions of stability for the
PWs. However, the existence of two stability regions for the
PWs does not necessarily imply the emergence of a second,
ultrasolitonic branch for the localized solutions.

Following the same procedure described above, for any
value of A belonging to one of the instability windows dis-
cussed above, we can compute the wavevector corresponding
to the fastest growing perturbations as

kmax =
√√√√ n∑

q=1

(−1)q+12qf2qA2q, (21)

being the corresponding value of the maximum perturbation
growth rate

	max =
n∑

q=1

(−1)q+1qf2qA
2q . (22)

Let us illustrate these results with two concrete examples:
(i) f6 = 2.8 and f8 = 3.9, corresponding to the cen-

tral values of the n2q obtained in the experiment of
Ref. [12] to describe the propagation of ultrashort laser pulses

0 0.2 0.4 0.6
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

A

Γ m
ax

A1

FIG. 2. (Color online) Representation of 	max vs. A for the
HOKE model with f6 = 2.8 and f8 = 3.9. Whenever positive, 	max

gives the exponential growth factor of the fastest growing filaments.

in oxygen, namely n2 = 1.6 × 10−19 cm2/W, n4 = −5.2 ×
10−33 cm4/W2, n6 = 4.8 × 10−46 cm6/W3, n8 = −2.1 ×
10−59 cm8/W4. In this case, Eq. (19) is not satisfied, so that
Eq. (18) has only a single real root, V1 = 0.526, corresponding
to the amplitude A1 = √

V1 = 0.725. The dependence of 	max

on the PW amplitude A, as given by Eq. (22), is plotted in
Fig. 2. Notice that above the threshold A > A1, 	max < 0
indicating that the corresponding PWs are linearly stable.

(ii) f6 = 0.3, f8 = 0.02, corresponding to the parameters
introduced in Ref. [23] to discuss a HOKE model predicting
soliton multistability [Eq. (20) is fulfilled in this case].
Moreover, with these parameters Eq. (19) is also satisfied, and
so we get three real roots of Eq. (18), namely V1 = 0.716, V2 =
2.060, and V3 = 8.474, whose square roots give the amplitudes
A1 = 0.846, A2 = 1.435, and A3 = 2.911, respectively. The
corresponding dependence on A of the values of 	max, as
computed through Eq. (22), is plotted in Fig. 3. As we can
clearly see in the figure, there are two stability windows, where
	max � 0, for A1 < A < A2 (see the inset of Fig. 3) and for
A > A3. Conversely, there are two instability regions spanning
the parametric ranges A < A1 and A2 < A < A3, respectively.

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

A

Γ m
ax

0 0.5 1
−0.4

−0.2

0

0.2

Γ m
ax

A

A2 A3A1

A1 A2

FIG. 3. (Color online) Representation of 	max vs. A for the
HOKE model with f6 = 0.3 and f8 = 0.02. Whenever positive, 	max

gives the exponential growth factor of the fastest growing filaments.
Inset: close-up of the low-amplitude region.
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Interestingly, it has been recently reported that the HOKE
response is usually noninstantaneous and it may also show a
further effective dependence on both the intensity and pulse
duration [19,20]. Thus, it is worth investigating different
ranges of the (f6,f8) parameters, besides the values reported
in Ref. [12]. Our Fig. 1 can be used to infer how the effective
parameters f6 and f8 vary without significantly modifying
the qualitative behavior of the propagation of light in the
media. Indeed, our analysis indicates that similar modulational
instability landscapes are expected for values of the parameters
f6 and f8 lying within the same region of Fig. 1. On the other
hand, this may also open the possibility of the existence of
multistability and “ultrasoliton” states even in common optical
media, provided that the effective (f6,f8) values enter in the
multistability region for certain suitable intensity levels. At
this respect, ab initio and perturbative calculations for the
hydrogen atom have revealed that an effective HOKE response
can only be tolerated when all the higher-order corrections
correspond to about 10% of the cubic response [35]. Under
those constraints, we have checked that a sensitive HOKE
response could be observed in a hypothetical medium featuring
f6 = 0.3, f8 = 0.02 for intensities above 18 TW/cm2.

In the next section we will illustrate the theoretical results
reported above by showing some numerical examples of the
evolution of PWs in different nonlinear systems.

IV. NUMERICAL SIMULATIONS

Henceforth we will discuss the results of our numerical
simulations for the evolution of the systems described in the
previous section when different initial PWs are perturbed
with low-amplitude white noise. We employed a standard
split-step beam propagation method to solve Eq. (1) [4],
being the step involving the linear part of the operator
(diffraction) treated using a finite-differences scheme, the
so-called Crank-Nicolson algorithm [36–38], together with
Neumann boundary conditions ∂�

∂r
= 0 at the borders. As this

method makes efficient use of the whole computational domain
for the physical results, we can mimic the evolution of PW-like
fields featuring finite energy with an affordable computational
effort. There are other approaches to simulate PW-like beams,
such as the consideration of large, but finite, flat-top beams
restricting the observation plane to the central part of the
domain, or the usage of periodic boundary conditions. These
techniques, however, often introduce nonphysical interactions
in the propagation, which may eventually alter the results.
Thus, in our case we can safely consider wide enough PWs
and study the evolution of central areas of width much larger
than the characteristic radii of the filaments born after the PWs
destabilization.

By monitoring the exponential growth of the maximum
amplitude of the unstable fields, we can numerically obtain a
direct estimation of the largest perturbation growth rates. To
do so, we will fit the evolution of the maximum amplitude
|�(η)| during the early stages of the PW destabilization to an
exponential of the form

|�| = aebη + c, (23)

where the theoretical values for b and a + c correspond to 	max

and A ≡ |�(0)|, respectively. An example of this exponential

50

Simulation (A=0.55)
Fit to Eq. (23)

403020100
0.55

0.60

0.65

0.70

η

|Ψ
| ma

x

FIG. 4. (Color online) Evolution of the peak amplitude of a
perturbed PW with A = 0.55 in a HOKE medium (f6 = 0.3, f8 =
0.02). The results of the numerical simulation are represented by the
black line, whereas the red line corresponds to a fit of the evolution to
Eq. (23). The coefficients of the analytical fit are displayed in Table II.

behavior of |�(η)| is shown in Fig. 4, where we represent
the early stages of evolution of a PW with initial amplitude
A = 0.55 in a HOKE nonlinear medium, together with a fit of
the simulation results to Eq. (23). As it can be inferred from
the graph, the agreement between simulation and theory is
remarkable.

As the MI processes for the Kerr and CQ nonlinear models
have already been extensively studied in the literature, we will
concentrate the following discussion to the HOKE model for
two different parametric regimes, namely (f6 = 2.8, f8 = 3.9)
and (f6 = 0.3, f8 = 0.02).

A. HOKE model with f6 = 2.8 and f8 = 3.9

Let us consider a system displaying a HOKE nonlinearity
of the form described in Eq. (17) with f6 = 2.8 and f8 = 3.9.
In this case, as we have discussed above and as shown in
Fig. 2, the theory predicts the occurrence of MI for initial
amplitudes A < A1 = 0.725, and stability for A > A1. The
physical mechanism behind the stabilization of the PWs with
amplitudes above the estimated threshold A1 is the following:
for small or moderate values of A < A1, the positive terms
entering the effective nonlinear refractive index correction F

(namely those proportional to f2 and f6) dominate, and hence
F increases with increasing A. This regime has been shown
to support the existence of localized solitary waves satisfying
an equation of state formally similar to that governing the
dynamics of a degenerate Fermi gas [22]. For values of
A > A1, however, the negative terms entering F (namely
those proportional to f4 and f8) dominate, and the function F

decreases with increasing A. Thus, in analogy with both Kerr
and CQ systems, small perturbations on a PW background
cannot be developed into hot filaments when the effective
nonlinearity is self-defocusing, since light will tend to flow
away from the regions of high intensity.

In this framework, the results of our simulations for
the evolution of two perturbed PWs with amplitudes A =
0.3 and A = 0.6, i.e., well within the instability window,
are summarized in Table I. We have corroborated that the
maximum amplitude evolves according to the exponential law
given by Eq. (23) in a very good approximation. In particular,
the numerical growth rates b calculated from the fits to Eq. (23)
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NOVOA, TOMMASINI, AND NÓVOA-LÓPEZ PHYSICAL REVIEW E 91, 012904 (2015)

TABLE I. Results of the numerical simulations for the evolution
of perturbed PWs with different amplitudes in the HOKE model
with f6 = 2.8, f8 = 3.9. The first column gives the value of the
initial amplitude A. The next columns give the values of a, b, and c

obtained from the fit of the evolution of the PW peak amplitude to an
exponential growth, as described in Fig. 4. R2 gives the correlation of
the fit. 
sim is the numerical estimate for the initial width of the fastest
emerging filaments. The last two columns reproduce the theoretical
predictions of 	max and 
 = π/

√
2	max for comparison. Notice that

the parameter b is the numerical counterpart of 	max.

Simulation Theory

A a b c R2 
sim 	max 


0.30 2.784 (×10−5) 0.090 0.304 0.9998 8.15 ± 0.63 0.079 7.91
0.60 29.704 (×10−5) 0.210 0.607 0.9993 4.93 ± 0.27 0.231 4.62

agree with the theoretical predictions 	max obtained from
Eq. (22). Furthermore, we have also compared the analytical
estimations of the characteristic size of the arising filaments

 with the numerical results. To do so, we have monitored
the size of the amplitude modulations 
sim by subtracting
the initial PW background at the very early stages of the PW
destabilization. The results of this analysis are also included in
Table I, where the numerical value of 
sim has been obtained
by averaging over an ensemble of several filaments.

(a) (b)

(c) (d)

0 0.2 0.4 0.6 0.8 1.0 1.2

x

y

FIG. 5. (Color online) Simulation of the evolution of a PW of
initial amplitude A = 0.3 (perturbed by white noise) in a system
displaying HOKE nonlinearity with f6 = 0.3 and f8 = 0.02. The
different panels show the two-dimensional amplitude distribution
|�(x,y)| of the incoming field at different stages of its evolution
(a) η = 80, (b) η = 115, (c) η = 125, and (d) η = 150. The spatial
region displayed in the figures corresponds to x,y ∈ [100,100].

B. HOKE model with f6 = 0.3 and f8 = 0.02

In this section we will analyze an example of HOKE model
involving two instability windows. We choose f6 = 0.3, f8 =
0.02, which lies within the multistability region as shown
in Fig. 1 above. In particular, we will study the dynamics
of two PWs with initial amplitudes A = 0.3 and A = 2.55,
belonging to the first and second instability regions introduced
above, respectively (see Sec. III C and Fig. 3). Figures 5 and 6
summarize the main results of the simulations for the evolution
of these two PWs. In Fig. 5, we observe that the initially
perturbed PW featuring A = 0.3 undergoes a redistribution of
its energy as it evolves [Figs. 5(a) and 5(b) ], giving rise to
the formation of soliton-like localized structures [Fig. 5(c)].
These solitary waves can then interact with each other in a
complex way, provided that their phases are not correlated.
Such dynamical behavior in nonlinear media has been first
demonstrated in Refs. [39,40].

After a certain evolution period in which all emerging
nonlinear beams exchange energy among them, some of the
structures stabilize and form perturbed 2D solitons [Fig. 5(d)].
Interestingly, all remnant solitons feature Gaussian-like shapes
resembling those of the solitary waves found in Ref. [22] for
moderate amplitudes, i.e., far from the strong self-defocusing
regime where flat-topped beams do exist [10]. In particular,
their amplitudes are slightly above the limiting value Ao

lim =

(a) (b)

(c) (d)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

FIG. 6. (Color online) Simulation of the evolution of a PW of
initial amplitude A = 2.55 (perturbed by white noise) in a system
displaying HOKE nonlinearity with f6 = 0.3 and f8 = 0.02. The
different panels show the two-dimensional amplitude distribution
|�(x,y)| of the incoming field at different stages of its evolution
(a) η = 0.3, (b) η = 0.5, (c) η = 1, and (d) η = 5. The spatial region
displayed in the figures corresponds to x,y ∈ [10,10], since the
characteristic size of the emerging filaments [see panel (a)] is much
smaller than that of the filaments displayed in Fig. 5.
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A=0.3
A=0.55
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FIG. 7. (Color online) Evolution of the maximum amplitude of
the PW fields with initial amplitudes A = 0.3, A = 0.55, belonging to
the first instability window of the multistable HOKE model involving
f6 = 0.3 and f8 = 0.02. Solid lines correspond to the numerical
simulations, while the dashed line represents the limiting PW solution
of the localized soliton branch of the system.

1.09, which corresponds to the asymptotic PW solution of
the ordinary, CQ-like soliton branch [23]. This asymptotic
behavior is reproduced in Fig. 7. As we can appreciate
in the figure, after a certain transient period the maximum
amplitude of the field stabilizes, which turns out to coincide
with the emergence of stable solitary waves in the system as a
consequence of the MI-driven break-up process.

On the other hand, Fig. 6 shows the dynamics of a perturbed
PW featuring A = 2.55, i.e., well within the second instability
window displayed in Fig. 3. Again, we observe a redistribution
of the energy in the PW front with the subsequent formation
of localized structures [Figs. 6(a) and 6(b)]. However, in
contrast to the behavior shown in Fig. 5, the perturbed
solitons emerging during the dynamics merge together to form
large-scale structures with a nearly homogeneous amplitude,
as it can be inferred from the fields displayed in Figs. 6(c)
and 6(d). This suggests that, for A = 2.55, we can reach the
threshold of existence of flat-topped states [9,10,24], so that
the system evolves asymptotically toward the formation of a
different PW-like structure, whose particular amplitude can
be estimated analytically to be Au

lim = 3.21 [23]. Again, the
stabilization of the system at values slightly above Au

lim is

60 2 41

4

3

2

A=1.6
A=2.55

|Ψ
| ma

x

η

Alimu

FIG. 8. (Color online) Same as described in the legend of Fig. 7
with initial amplitudes of the fields A = 1.6 and A = 2.55, belonging
to the second instability window of the multistable HOKE model
involving f6 = 0.3 and f8 = 0.02.

TABLE II. Results of the numerical simulations for the evolution
of perturbed PWs with different amplitudes in the HOKE model with
f6 = 0.3, f8 = 0.02. All parameters displayed are the same as those
included in Table I.

Simulation Theory

A a b c R2 
sim 	max 


0.30 5.388 (×10−5) 0.085 0.304 0.9998 8.22 ± 0.28 0.075 8.14
0.55 9.766 (×10−5) 0.149 0.557 0.9998 6.02 ± 0.23 0.144 5.86
0.75 12.517 (×10−5) 0.080 0.760 0.9974 8.20 ± 0.81 0.082 7.76
1.60 0.556 (×10−5) 1.230 1.602 0.9997 2.26 ± 0.24 1.116 2.10
2.55 9.713 (×10−5) 26.197 2.553 0.9999 0.53 ± 0.05 26.361 0.43

corroborated by monitoring the dynamical evolution of the
peak amplitude, as displayed in Fig. 8.

In addition, it is worth noticing that the overall dynamics
displayed in Fig. 6 turns out to be much faster than that
represented in Fig. 5. The reason is that 	max peaks close
to A = 2.55 according to the theory (see Fig. 3), and its
absolute value is more than two orders of magnitude higher
than that corresponding to A = 0.3, thus justifying the much
shorter destabilization scale observed in Fig. 8. In order to
reinforce this assertion, we have carried out the same numerical
simulations described above with PWs featuring amplitudes
A = 0.55 and A = 1.6, whose results are also depicted in
Figs. 7 and 8, respectively. We observe that, as expected,
the destabilization occurs earlier since, in this range, 	max

increases for larger amplitudes following Eq. (22). In light of
the same procedure described in Sec. IV A above, we have
also numerically computed 	max by fitting the exponential
growth of the PW amplitude at the early stages of MI to
Eq. (23). The estimations of 	max, as well as the characteristic
size of the fastest growing filaments 
sim, are summarized
in Table II for different initial values of the PW amplitude.
One can appreciate that the agreement between the analytical
and numerical results is reasonable, even though there are
small discrepancies inherent to the fact that the first-order
perturbation theory is only applicable when the amplitudes of
the perturbations are very small.

V. CONCLUSIONS

In this paper we have put forward a full analysis of
the nonlinear process of modulational instability in systems
described by nonlinear Schrödinger equations with arbitrary
instantaneous nonlinear responses. In particular, the proposed
theoretical approach allows for a complete description of
the multiple regimes of stability and instability of plane
waves in systems involving competing higher-order Kerr
nonlinearities. All our analytical predictions for the stabil-
ity domains, perturbation growth rates, and characteristic
filament sizes have been confirmed by direct numerical
simulations of the evolution of unstable plane waves. This
intriguing phenomenology could potentially be observed in a
coherent atomic medium with a properly tailored nonlinear
response.
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