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A B S T R A C T

Since the 1980s an intense scientific debate has revolved around the hunting capacities of early hominin po-
pulations and the behavioral patterns of carnivores sharing the same ecosystem, and thus competing for the same
resources. This debate, commonly known as the hunter-scavenger debate, fostered the emergence of a new
research line into the Bone Surface Modifications (BSMs) produced by both taphonomic agents. Throughout the
following 20 years, multiple studies concerning the action of carnivores have been developed, with a particular
focus on the oldest archaeological sites in East Africa. Recent technological advances applied to taphonomy have
provided new insight into carnivore BSMs. A newly developed part of this work relies on Geometric
Morphometrics (GMM) studies aimed at discerning carnivore agency through the morphologic characterization
of tooth scores and pits. GMM studies have produced promising results, however methodological limitations are
still present. This paper presents the first combined application of Machine Learning (ML) algorithms and GMM
to the analysis of carnivore tooth marks, generating classification rates of 100% between carnivore species in
some cases.

1. Introduction

A fundamental line of research in human evolution consists in un-
derstanding early hominin subsistence patterns and the interactions
with other paleo-communities in the paleoecosystem. Studying such a
complex ecological niche ca. 3 to 1Ma has fueled a wide range of de-
bates regarding early human behavior, mostly focused on both East and
South African sites. The famous osteodontokeratic culture was associated
with Australopiths remains from the Makapansgat (South Africa)
Member 3 deposit in the mid-20th century (Dart, 1957). Subsequently,
Brain's (1967, 1969) neotaphonomic research showed that bone as-
semblages produced after human butchery and carnivore ravaging was
very similar to that found in the Makapansgat assemblage. More im-
portantly, the presence of carnivore activity was identified at the Cradle
of Humankind sites in South Africa (Kromdraai, Swartkrans and

Sterkfontein) on hominin remains suggesting that Australopiths car-
casses were accumulated by carnivores (Brain, 1981). From this per-
spective Australopiths were consequently depicted as prey rather than
predators (Brain, 1981).

Similarly, questions regarding the subsistence patterns of early ho-
minins became a heated source of discussion towards the end of the
20th century based on the study of East African archaeological sites
such as Koobi Fora or Olduvai Gorge (Binford, 1981; Bunn, 1981).
Throughout the 1980s and 1990s, the hunter-scavenger debate con-
fronted the distinction of different taphonomic agents involved in bone
modification, so that discerning between anthropogenic and carnivore
activity became a key practice in archaeological research. Part of this
development focused greatly on the ecology of different carnivore
species and ethnoarchaeological studies, in which taphonomy played a
pivotal role (Bunn, 1981; Blumenschine, 1988; Blumenschine and
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Marean, 1993; Selvaggio, 1994; Blumenschine, 1995; Capaldo, 1997;
Stanford and Bunn, 2001; Domínguez-Rodrigo, 2002; Pickering and
Bunn, 2007; Domínguez-Rodrigo et al., 2007), expanding on previous
studies addressing this matter (Dawkins, 1863; Schaller and Lowther,
1969; Sutcliffe, 1970; Houtson, 1979).

An important amount of taphonomic studies have tried to char-
acterize the different types of osteological accumulations produced by
carnivores, mainly based on the Bone Surface Modifications (BSMs)
produced. Through this, the action of hyenas (Sutcliffe, 1970; Brain,
1981; Cruz-Uribe, 1991; Domínguez-Rodrigo, 2001; Pickering, 2002;
Egeland et al., 2008; Domínguez-Rodrigo and Pickering, 2010;
Domínguez-Rodrigo et al., 2015), lions (Domínguez-Rodrigo, 1999;
Domínguez-Rodrigo et al., 2012; Gidna et al., 2013, 2014; Arriaza et al.,
2016), wolves (Haynes, 1983a, b; Willey and Snyder, 1989; Stiner,
2004; Yravedra et al., 2011, 2012) and leopards (Brain, 1981; Kerbis-
Peterhans, 1990; Ruiter and Berger, 2000; Pickering et al., 2011) have
been widely studied. Additionally, studies of jaguars have also received
attention, yet to a lesser degree (Martín, 2008; Domínguez-Rodrigo
et al., 2015).

Multiple criteria have been analyzed to determine the agents in-
volved in bone modification at archaeological sites. These include the
type of prey (Brain, 1981; Haynes, 1982), skeletal part profiles (Marean
and Frey, 1997; Bartram and Marean, 1999; Pickering et al., 2003;
Faith et al., 2007), prey mortality profiles (Stiner, 1994; Bunn and
Pickering, 2010), and tooth marks (Selvaggio and Wilder, 2001;
Domínguez-Rodrigo and Piqueras, 2003; Delaney-Rivera et al., 2009;
Andrés et al., 2012; Domínguez-Rodrigo et al., 2012). Tooth marks can
further be divided into different categories, produced through different
masticatory actions during carcass consumption. Among these, the two
most frequent types are pits and scores. While pits present a circular
morphology created by the direct imprint of the carnivore's tooth, a
score is a shallow elongated groove across the surface of the bone with
an equally rounded base (Binford, 1981; Blumenschine, 1995).

Initial studies into these two BSMs focused primarily on biometric
dimensional properties (Selvaggio and Wilder, 2001; Domínguez-
Rodrigo and Piqueras, 2003). While using 95% confidence intervals
have been able to reduce a great percentage of equifinality present
through studies of this type (Andrés et al., 2012), overlapping of sam-
ples is still large and, in many cases, little information serves to accu-
rately build hypotheses. On the other hand, other authors have studied
the properties of bone fracture patterns, differentiating carnivore
agency from anthropogenic activities via fracture plane angles (Capaldo
and Blumenschine, 1994; Pickering et al., 2005; Pickering and Egeland,
2006; Alcántara et al., 2006; Galán et al., 2009; Moclán and
Domínguez-Rodrigo, 2018). Development of new variables such as the
taphotypes have successfully differentiated between spotted hyenas and
lions, alongside different types of felids (Domínguez-Rodrigo et al.,
2015), nevertheless, the identification of different carnivore taxa in-
volved in bone modification remains controversial.

The application of Geometric Morphometrics (GMM) to taphonomy
has transformed the analysis of both anthropogenic (Maté-González
et al., 2015, 2016, 2017a; Courtenay et al., 2017), and carnivore BSMs,
including tooth scores (Yravedra et al., 2017), and tooth pits (Aramendi
et al., 2017a, Arriaza et al., 2018). Despite the apparent success of these
studies, certain aspects still need to be improved. Aramendi et al.
(2017a), Arriaza et al. (2017, 2018) and Yravedra et al. (2017) were
able to determine the action of some carnivore species based on the
morphology of their traces up to certain degree, not reaching 100% of
certainty. Additionally, while the tooth marks of hyenas and lions were
distinguishable, wolves and jaguars are much harder to define. The
limitations imposed by sample size and the number of carnivore species
included in the analysis might have also affected the resolution ob-
tained with these methods.

The pioneering introduction of Machine Learning (ML) algorithms
into archaeological research, however, offers an excellent opportunity
to analyse BSMs with a higher precision. The first introduction of ML

methods to the study of carnivore activity, based on the skeletal part
representation observed in modern carnivore bone accumulations,
provided 100% classification rates in some cases (Arriaza and
Domínguez-Rodrigo, 2016). Equally remarkable results have been
presented for the analysis of anthropogenic BSMs by means of ML
techniques (Domínguez-Rodrigo, 2018; Domínguez-Rodrigo and
Baquedano, 2018), as well as fracture patterns (Moclán and
Domínguez-Rodrigo, Under Revision).

2. Materials and methods

In this paper we present the first combined effort to join GMM
analysis and ML techniques to discern carnivore agency based on tooth
mark morphology, inspired by implementations of advanced statistical
techniques in taphonomy. For the purpose of this study we have re-
assessed the GMM models proposed by Aramendi et al. (2017a) and
Yravedra et al. (2017), implementing ML algorithms for the processing
of morphometric data.

2.1. Tooth mark samples

A total of 89 carnivore tooth pits and 127 scores on adult horse long
bones were compared. All bones contained flesh when presented to the
individuals. These included tooth marks generated by spotted hyenas
(pits= 21, scores= 33), jaguars (pits= 20, scores= 34) and lions
(pits= 24, scores= 30) in a controlled setting, in the Cabárceno
Nature Park in Cantabria (Spain), were studied. All the marks were
produced by multiple (minimum 2) adult individuals for each species.
Tooth marks produced by wolves (pits= 24) were obtained from
Cabárceno Park, as well as the natural wolf sites in mount Campelo,
near Sobrado Dos Montxes, Galicia (scores= 30). In the case of wolves,
the number of wolves ranged between 10 and 15 wild individuals.

Only tooth marks on long bone shafts (namely tibiae and radii) were
selected for two main reasons. Firstly, diaphyses are denser than epi-
physes, therefore teeth tend to penetrate cortical layers less. Secondly,
diaphyses present a higher survival rate, thus the use of a sample based
on shafts would be a more useful framework for future archaeo-pa-
leontological analogies. Bone epiphyses are usually more susceptible to
being destroyed during carnivorous feeding (e.g. furrowing) or tapho-
nomically affected through fluvial agents (Lyman, 1994).

Pits and scores were selected on the basis of their preservation and
general conditions. Inconspicuous or superficial tooth marks and those
that present a bad cortical preservation or some type of post-deposi-
tional alteration were excluded from the analysis.

For more details about the lion sample see Gidna et al. (2013), for
the hyena and jaguar samples see Domínguez-Rodrigo et al. (2015), and
for wolf pit and score samples see Yravedra et al. (2011, 2012, 2017).

2.2. Virtual reconstruction of marks

Micro-Photogrammetry and computer vision techniques were used
to create high-resolution 3D models of the pits and scores (Fig. 1).
Precise metrical models were generated using images taken with ob-
lique photography using a CANON EOS 700D with a 60-mm macro lens
(Table S1) and following the specified protocol explained in Maté-
González et al. (2015). The camera was self-calibrated to simulta-
neously compute the interior and exterior camera parameters. For data
collection, a total of 9–10 photos were taken for each mark. The number
of photos varies depending on the geometry of the bone and the shape
of the mark (Aramendi et al., 2017a; Yravedra et al., 2017). Once the
photographs had been taken, they were processed so as to generate a 3D
model for each mark with the open-source photogrammetric re-
construction software GRAPHOS (inteGRAted PHOtogrammetric Suite)
(González-Aguilera et al., 2016).
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2.3. Geometric morphometrics

Geometric morphometric analyses of the tooth marks were based on
two different models. A 7 2D homologous landmarks, as described by
Yravedra et al. (2017), was used on tooth scores while tooth pits were
studied using 17 3D homologous landmarks, as described by Aramendi
et al. (2017a). Both models can be consulted in Table 1. All statistical

analyses were carried out in the free software R (www.rproject.org,
Core-Team, 2015). All R packages and libraries with their respected
bibliography can be consulted in Supplemental Appendix 1.

Tooth score cross sections were obtained through importing the 3D
digital reconstruction of each tooth mark into a Global Mapper software
(Fig. 2), where marks could be treated, extracting sections at mid length
(between 30% and 70% of the marks' length) (Maté-González et al.,

Fig. 1. Protocol for Image Capture and 3D reconstruction for each tooth mark prior to processing (Maté-González et al., 2015; Yravedra et al., 2017).

Table 1
Geometric morphometric landmark models used for comparisons between taxa. Including Yravedra et al.'s (2017) 2D 7-lanmdark model and Aramendi et al. (2017a)
3D 17-landmark model.

Model N° Landmark Description

2D 1 Left shoulder Upper limit of the left side of the mark
2 Midpoint left wall Halfway between the bottom of the mark and the left shoulder
3 Base left wall Point where the left wall and bottom of the mark meet
4 Depth Deepest point of the mark
5 Base right wall Point where the right wall and bottom of the mark meet
6 Midpoint right wall Halfway between the bottom of the mark and the right shoulder
7 Right shoulder Upper limit of the right side of the mark

3D 1 Length A Upper limit of the longitudinal axis
2 Length B Lower limit of the longitudinal axis
3 Width A Left limit of the breadth axis
4 Width B Right limit of the breath axis
5 Depth Most centered lowest point of the pit
6 Left upper half A Point at the first third between the upper limit of the long axis and the left limit of the breadth axis
7 Left upper half B Point at the second third between the upper limit of the long axis and the left limit of the breadth axis
8 Left lower half A Point at the first third between the left limit of the breadth axis and the lower limit of the long axis
9 Left lower half B Point at the second third between the left limit of the breadth axis and the lower limit of the long axis
10 Right upper half A Point at the first third between the upper limit of the long axis and the right limit of the breadth axis
11 Right upper half B Point at the second third between the upper limit of the long axis and the right limit of the breadth axis
12 Right lower half A Point at the first third between the right limit of the breadth axis and the lower limit of the long axis
13 Right lower half B Point at the second third between the right limit of the breadth axis and the lower limit of the long axis
14 Interior length A Upper inflection point on the longitudinal axis
15 Interior length B Lower inflection point on the longitudinal axis
16 Interior width A Left inflection point on the breadth axis
17 Interior width B Right inflection point on the breadth axis
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2015; Arriaza et al., 2017; Yravedra et al., 2017). These profiles were
then extracted and imported into the free software tpsDig2 (v.2.1.7)
where landmark data was collected.

3D digital reconstructions of each tooth pit were exported into the
Avizo software (Visualization Sciences Group, USA) for landmarking
(Fig. 3). Files containing landmark coordinates were then edited and
imported into R where a full Procrustes fit and an orthogonal tangent
projection (Dryden and Mardia, 1998) were used to normalise the data
for further multivariate statistical analyses. This technique, commonly
referred to as Generalized Procrustes Analysis (GPA), is used to stan-
dardize the form information through the application of super-
imposition procedures including translation, rotation and scaling. Any
remaining differences are exposed through patterns of variation and
covariation that can be assessed through several statistical tests (Slice,
2001; Rohlf, 1999). Principal component analyses (PCA) in shape and
form space on the Procrustes superimposed landmarks were performed
to reduce the large sets of variables to fewer dimensions that represent
most of overall variance (Bookstein, 1991; Mitteroecker and Gunz,
2009). The PC scores calculated by the PCAs were then extracted and
used for ML training.

2.4. Machine learning algorithms

Recent applications of ML algorithms in archaeology have been
described as powerful classifiers (Domínguez-Rodrigo, 2018). ML pro-
vides a treatment of raw data using structured techniques that assign
meaning to the data (Lantz, 2013). Much like in humans, the learning
process consists in data retrieval (input), translation (abstraction) and a
final output where the abstract data is used to form the basis behind the
action (generalization) (Lantz, 2013). In this case, ML is particularly
useful in handling large amounts of data and efficiently providing a

means of handing this information; through classification.
To ensure the accuracy of training models, the samples were boot-

strapped 1000 times. To train each algorithm and generate our classi-
fication models, 70% of the sample was separated. Validation was then
carried out on the remaining 30% of the sample. This is a standard
process in testing predictive model efficiency. Model evaluation is
performed through resampling techniques that can be used to estimate
performance. This can be carried out using multiple methods; in this
case we preferred the method based on subsampling and submodeling
through k fold cross validation (k=10). One main advantage of ML
algorithms is the possibility of tuning the parameters in order to im-
prove performance. This can either be done manually via altering va-
lues such as gamma and cost, in the case of SVM models, or they can be
tuned using additional lines of R coding (Supplemental Appendix). The
parameters achieved through tuning are then applied in the models,
thus improving performance.

A random selection of 9 common ML algorithms was selected. Much
like in the case of GMM statistical analysis of variance, PC scores pro-
duced through PCA were used for ML analysis. Comparison of ML al-
gorithm performance was then carried out considering Kappa, sensi-
tivity, specificity and balanced accuracy values through confusion
matrix tables. The Kappa statistic adjusts accuracy through considering
the possibility of a correct prediction by change alone (Lantz, 2013).
These values are presented as a value between −1 and 1, with any
value above 0.8 considered as a powerful predictive model. Sensitivity
and Specificity tests combine different evaluations of Type I and Type II
statistical errors in proportion with the rest of the calculated confusion
matrix. Calculation of these ratios is a common practice in medical
statistics, whereby sensitivity defines the likelihood of correctly diag-
nosing an illness while specificity is defined by the likelihood of cor-
rectly identifying the healthiness of an individual (Fawcett, 2006).

Fig. 2. Location of the seven landmarks in the 2D Geometric Morphometric model for tooth score cross-sections (Yravedra et al., 2017).
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These can also be referred to as the true positive and true negative rates,
thus defining the likeliness of misclassification (low number= high
misclassification). A combination of these results can provide an addi-
tional balanced accuracy value that defines the power of the model
(Lantz, 2013).

The 9 ML algorithms selected are the following:

Neural Network (NNET). NNET is inspired by human brain activ-
ities, using a computational model that mimics brain patterns. This
method uses an interconnected group of nodes, involving input,
connected weights, processing elements and a resulting output
(Lantz, 2013; Wei and Chiu, 2015). Nodes are built through multiple
regression methods. Training of the neural networks consists in the
adjustment of weights through successive layers of nodes (Günther
and Fritsch, 2010). The input data fed to the neural layers (per-
ceptrons) is transformed via specific nonlinear sigmoidal functions.
The parameters of these functions are usually optimised to minimize
SQR (Sum of Square Residuals). These parameters exhibit a ten-
dency to overfit the training data set. To avoid this, weight decay is
used to reduce the model error for a given value of lambda
(Domínguez-Rodrigo, 2018). This λ parameter must be specified

together with the number of hidden units.
Support Vector Machines (SVM). SVM maps input data into high
dimensional feature space defined by the kernel function (Lantz,
2013). This is based on finding the optimum hyperplane that se-
parates the training data by the maximum margin (Wei and Chiu,
2015). SVM algorithms are powerful classifiers in cases where dis-
tribution is non-linear (Cortes and Vapnik, 1995). SVM models are
tuned through thresholds in order to define residuals that conse-
quently contribute to a more robust fit. Tuning parameters consist in
cost, which is used to penalize models with large residuals, and a loss
function that determines the degree of overfitting training models.
Partial Least Squares Discriminant Analysis (PLSDA). This al-
gorithm classifies class through predictor combinations that opti-
mally separate classes (Mevik and Wehrens, 2007). The tuning
components of PLSDA are found through latent variables (compo-
nents) that maximise classification accuracy. Once these compo-
nents are identified, the PLSDA model is retrained to ensure accu-
racy in the final model. PLSDA in many cases has been identified as
more powerful than standard Linear Discriminant Analysis (LDA)
methods.
K-Nearest Neighbour (KNN). This unsupervised learning algorithm

Fig. 3. Location of the seventeen landmarks in the 3D Geometric Morphometric model for tooth pits Aramendi et al. (2017a).
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classifies unlabelled data by assigning them the class of the most
similar labelled examples. This algorithm works well in samples
with many variables and performs well when there are well-defined
labelled sets. The main advantage of this algorithm is that it is easy
to train. KNN identifies k cases in the sample as the nearest in si-
milarity. Unlabelled cases are subsequently assigned by similarity.
To predict the location of testing data in the predictor space, dif-
ferent k models are tested and compared to an error/accuracy
parameter. To overcome the bias-variance trade-off an intermediate
k value is usually selected. Larger k values tend to reduce the bias of
variance but small patterns may go unnoticed (Domínguez-Rodrigo,
2018).
Mixture Discriminant Analysis (MDA). Initially conceived as an
extension of LDA, MDA is built upon class-specific distributions
combined into a single multivariate distribution. This is done by
creating a per-class mixture (Kuhn and Johnson, 2013), consisting in
the separation of class-specific means from class-specific covariance
structures. MDA can be tuned using parameters in the number of
distributions per class or sub-classes.
Naive Bayes (NB). NB algorithms apply Bayes' theorem through
estimation of class probabilities and likelihoods on observed pre-
dictions. This results in dynamic estimates of posterior probabilities
of classes. The conditional probability is then used for model clas-
sification. NB assumes that all predictors are independent and uses a
nonparametric density modelling process.
Decision tress using the C5.0 algorithm (C5.0). This algorithm
implements decision trees, employing ML techniques to ensure
model accuracy. Unlike standard decision tress, the C5.0 algorithm
tuning methods can reach comparable complexities to NN or SVM
models. This model works through recursive partitioning of data.
The C5.0 algorithm employs k-fold cross validation, dividing the sets
into k subsets during the training and testing phases. Variance es-
timation decreases as k increases.
Conditional Inference Tress (CTREE). CTREEs are similar to
standard decision tress in as much as they recursively partition data
through univariate splits on dependent variables. The main differ-
ence presented in this algorithm is that CTREEs adapt significance
test procedures in order to select the variables that maximise pre-
diction accuracy (Wei and Chiu, 2015).
Random Forest (RF). RF is a more robust version of CTREE. Much
like CTREE, the RF algorithm uses a small random number of the
data set variables, instead of all the variables. Each selection pro-
duces an independent tree. The random variable selection is per-
formed through bootstrap aggregation, known as bagging, splitting
the data into multiple data sets for testing. These observations are
referred to as out-of-bag (OOB) observations. RF produces estimates
of how many iterations are needed to minimize the OOB error. After
selecting a number of trees, the algorithm averages the results and
produces a robust classification method. This avoids overfitting of
results to data, as is more common in standard decision and

regression trees.

More information on ML models used in taphonomy can be con-
sulted in Domínguez-Rodrigo (2018).

2.5. Fine tuning GMM models

Common malpractice in GMM studies is the assumption that the
first PC and CV scores are the most important for sample differentiation.
Theoretically, the first few PC scores represent the highest percentage
of sample variance and covariance, however, in some cases analytical
scores with lower percentiles are useful to identify deviations from the
majority (Albrecht, 1992). In the case of tooth scores, the first 10 PC
scores were successful in most statistical applications, however the PC
scores of Aramendi et al.'s (2017a) 3D 17-landmark model proved to be
problematic due to the high number of PC scores generated through
PCA (51 in total), and their small percentage of represented variance.

One of the advantages of ML techniques is the ability to evaluate
model performance through examining the importance of each vari-
able. In this case we used each model evaluation of variable importance
to observe the classification power for each PC score. As expected, some
PC scores are more important for classification than others. Reduction
of the number of PC scores used can prune statistical noise while
avoiding overfitting. Once the ML algorithms had identified the top
performing PC scores for agent classification, the models were retuned
using only these PC scores.

3. Results

3.1. ML differentiation of tooth scores

ML algorithms based on the information extracted from PC scores
successfully construct powerful classification models (Tables S2 and
S3). ML models in both shape and form space are relatively effective,
though results tend to be more accurate after removing wolves from the
analysis (Table 2). Additionally, score classification model rates are
higher and more precise when using pure shape information, rather
than when including centroid size in form space. At least 3 ML algo-
rithms are able to reach 100% classification rates, with C5.0, RF and
SVM being the best performing models for discerning carnivore agency
via score cross-section morphology (Table 2). Nevertheless, sensitivity,
specificity and accuracy values are high in most cases (Fig. 4), and ML
performance is much more powerful than traditional GMM LDA models
(Tables 3, 4, S4 and S5).

3.2. ML differentiation of tooth pits

Much like the case of tooth scores, 3D tooth pit models repeatedly
produce up to 100% classification rates (Fig. 5), with SVM, RF, C5.0,
KNN, MDA and PLSDA providing the highest degree of precision

Table 2
Comparison of different ML algorithm performance used for discerning carnivore agency (excluding wolves) through Yravedra et al.'s (2017) 2D 7-landmark model in
Shape space.

Model Model performance 95% confidence interval Hyena Jaguar Lion

Kappa Accuracy Lower Upper Spec. Sens. Spec. Sens. Spec. Sens.

NNET 0.54 0.69 0.63 0.74 1 0.50 0.90 1 0.95 1
PLSDA 0.79 0.86 0.82 0.90 0.90 0.83 1 0.80 0.99 0.97
NB 0.82 0.88 0.84 0.91 0.98 0.77 0.88 0.90 0.97 0.96
CTREE 0.9 0.93 0.90 0.96 0.94 0.95 0.99 0.87 0.95 1
MDA 0.92 0.95 0.91 0.97 0.98 0.87 0.94 0.96 1 1
KNN 0.99 0.99 0.98 1 0.99 1 1 0.98 1 1
RF 1 1 0.99 1 1 1 1 1 1 1
C5.0 1 1 0.99 1 1 1 1 1 1 1
SVM 1 1 0.99 1 1 1 1 1 1 1
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(Table 5). But contrary to 2D cross-section profiles, higher classification
models are generated when combining shape and centroid size in form
space (Tables S6 and S7).

The analysis including all 4 carnivore species (spotted hyenas, lions,
jaguars and wolves) based on Aramendi et al.'s (2017a) model provides
relatively low classification results (Tables S6 and S7). For this study, 4
consequent tuning tests were carried out on PC scores using ML algo-
rithms. The first test includes all PC scores; the second model tuning
includes the top 10 PC scores identified through test 1; the third tuning
takes in the top 15 PC scores; and the final tuning procedure includes
the top 20 PC scores. All tables can be consulted in Table S8. Model
performance was then re-evaluated for each testing cycle (Fig. 6). Ac-
cording to the results, the inclusion of at least the 15 first PC scores
obtains the best performance accuracy for discerning carnivore agency
through tooth pit morphology.

Nevertheless, here again, the exclusion of wolf tooth pits from the
analysis generates a much more powerful model without the need for
PC tuning (Table 5, Fig. 6).

4. Discussion

Initial GMM studies of both scores and pits originally produced
significant differences between most carnivore species (Arriaza et al.,
2017; Yravedra et al., 2017; Aramendi et al., 2017a). Such differences
are reflected in significant p values (p < 0.05) obtained via MANOVA

Fig. 4. Model performance data for machine learning algorithms when processing and classifying tooth score morphology.

Table 3
LDA performance comparing Lion, Hyena, Jaguar and Wolf tooth marks in both
shape and form space for both GMM models. Specificity and sensitivity values
are averaged, for full details consult Table S1.

Performance 95% confidence interval

Kappa Accuracy Lower Upper Spec. Sens.

2D shape 0.32 0.50 0.41 0.59 0.73 0.60
2D form 0.35 0.51 0.42 0.60 0.84 0.51
3D shape 0.13 0.35 0.25 0.46 0.78 0.34
3D form 0.16 0.37 0.27 0.48 0.79 0.37

Table 4
LDA performance comparing only Lion, Hyena and Jaguar tooth marks. Scores
are studied in shape space while pits are studied in form space. Specificity and
sensitivity values are averaged, for full details consult Table S2.

Model performance 95% confidence interval

Kappa Accuracy Lower Upper Spec. Sens.

Scores 0.46 0.64 0.54 0.73 0.81 0.48
Pits 0.14 0.43 0.31 0.56 0.70 0.52

Fig. 5. Model performance data for machine learning algorithms when processing and classifying tooth pit morphology.
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tests and a relatively clear separation of groups in the graphs and the
distances computed after Canonical Variance Analysis (CVA). Regard-
less, in these original studies, PCAs still presented significant over-
lapping in the majority of cases. LDA results were usually able to
achieve relatively high classification rates (Aramendi et al., 2017a;
Arriaza et al., 2017; Yravedra et al., 2017), however the efficiency and
performance of LDA as classification method is not as powerful as de-
sirable (Tables 3 and 4). Nevertheless, the exclusion of wolves from the
analysis appears to clear up some confusion (Table 2), as previously

observed in other studies (Yravedra et al., 2018). In sum, GMM results
alone show that the 2D analysis of tooth scores produce better results
when performed in shape space, while the 3D analysis of tooth pits is
more accurate when using form data (Fig. 7).

In this study a combined use of ML algorithms and taphonomic
GMM models has been able to provide up to 100% classification when
discerning between carnivore agencies. NNET and NB are generally the
worst performing models, while SVM, C5.0 and RF consistently perform
much better reaching exceptional results (Kappa= 1, Accuracy=1).

Table 5
Comparison of different ML algorithm performance used for discerning carnivore agency (excluding wolves) through Aramendi et al. (2017a) 3D 17-landmark model
in Form space.

Model Model performance 95% confidence interval Hyena Jaguar Lion

Kappa Accuracy Lower Upper Spec. Sens. Spec. Sens. Spec. Sens.

NNET 0.73 0.82 0.77 0.86 1 0.75 0.78 1 0.82 1
NB 0.90 0.93 0.90 0.96 0.95 0.90 1 0.92 0.95 0.97
CTREE 0.97 0.98 0.95 0.99 1 1 0.98 0.96 0.98 0.97
PLSDA 1 1 0.99 1 1 1 1 1 1 1
MDA 1 1 0.99 1 1 1 1 1 1 1
KNN 1 1 0.99 1 1 1 1 1 1 1
RF 1 1 0.99 1 1 1 1 1 1 1
C5.0 1 1 0.99 1 1 1 1 1 1 1
SVM 1 1 0.99 1 1 1 1 1 1 1

Fig. 6. Kappa value curves for each machine learning algorithm after each stage of the PC score tuning of Aramendi et al. (2017a) 3D seventeen landmark model.
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CTREE, PLSDA, MDA and KNN are inconsistent, only providing high
classification rates in some cases. As seen in the tuning of the 3D 17-
landmark model, however, future use of ML and GMM based methods
in classifying unknown taphonomic traces should take into account the
possible effect that PC score selection could have on the quality of ML
based classifications. Some algorithms, for example, were unable to
provide 100% classification prior to tuning. The process of tuning,
however, was able to highlight the potential of ML based methods on
multiple accounts.

The poor performance of some models can be argued by the com-
plexity of their internal architecture. In the case of NNET, if a more
developed model is constructed using optimised hyperparameters, such
as those typical of Deep Learning (Chollet and Alaire, 2017), these re-
fined Deep Neural Networks are more likely to produce higher classi-
fication results. The optimisation of a Deep Learning model that con-
fronts GMM data, therefore, would be a useful development for the
future.

In general, ML based differentiation of carnivore agency through

Aramendi et al.'s (2017a) 3D 17-landmark model provides the best
results (Fig. 8). Nevertheless, Yravedra et al.'s (2017) 2D 7 landmark
model is still capable of producing powerful classification models. Most
models achieve Kappa values above the margin of 0.8, thus, they can be
considered powerful predictive models (Lantz, 2013). According to our
results, tooth scores should be preferably analyzed on shape data by
means of at least RF, C5.0 and SVM algorithms. In the case of tooth pits,
the analysis should be rather performed in form space, however, care
should be taken when dealing with a large number of PC scores. Tuning
of models is highly recommended when dealing with great overlapping
samples in PCAs.

These new statistical applications may be able to provide a deeper
understanding of hominin-carnivore interactions, as considered to be a
critical component in human evolutionary studies. The importance of
understanding hominin-carnivore reactions is two-fold. Firstly, because
carnivores may be responsible for bone accumulations and taphono-
mists must be able to differentiate between anthropogenic and carni-
vore-accumulated bone assemblages. Secondly, because some key

Fig. 7. Kappa value curves for machine learning algorithm performance when processing both pits and scores in shape space and form space.

Fig. 8. Final kappa value curves for machine learning algorithm performance when processing pits in form space and scores in shape space.
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paleoanthropological sites have been considered palimpsests in which
both humans and carnivores may have played an important role in bone
modification, such as those from Olduvai Gorge (Domínguez-Rodrigo
et al., 2007). The improvement of classical BSM variables is therefore of
great importance to help discerning the accumulating agents of bone
assemblages at archaeological sites.

From this perspective, the application of GMM and micro-photo-
grammetric techniques in studying BSMs have helped to avoid some
shortcomings of previous taphonomic variables, such as the equifinality
arisen from the study of tooth mark frequencies and dimensions
(Blumenschine, 1988; Selvaggio and Wilder, 2001; Domínguez-Rodrigo
and Piqueras, 2003; Andrés et al., 2012). While bidimensional studies
of tooth marks have been successful in distinguishing different sized
carnivores, within these groups of large and small animals, little dif-
ferentiation is possible (Andrés et al., 2012). This equifinality is hard to
overcome relying on these variables alone, and their sole use is not
recommended. Combined with tooth mark frequencies, skeletal pro-
files, fracture patterns and taphotypes, better results have been
achieved (Domínguez-Rodrigo et al., 2007; Pineda et al., 2015;
Aramendi et al., 2017b; Saladié et al., 2017). This highlights the need
for a combined use of multiple criteria when analysing an assemblage.

Recent applications of ML based techniques in the study of modern
carnivore sites have efficiently addressed some of these questions
(Arriaza and Domínguez-Rodrigo, 2016), considering multiple tradi-
tional variables. Alongside these approaches, very recently these algo-
rithms have been applied to multiple BSMs qualitative criteria
(Domínguez-Rodrigo, 2018; Domínguez-Rodrigo and Baquedano, 2018)

However, the introduction of ML in archaeology occurred much
later than in other sciences (Michalski et al., 1983). In other fields, the
development of ML algorithms as part of the field of artificial in-
telligence have provided a much more efficient means of handling large
amounts of raw data, using a more structured means of processing these
data sets (Lantz, 2013; Paterson and Gibson, 2017). An additional ad-
vantage presented by ML is its versatility, using tuning functions to
reach higher degrees of accuracy based on performance (Wolpert,
1996). With the inclusion of Computer Vision and Deep Learning
techniques (Chollet and Alaire, 2017; Paterson and Gibson, 2017), the
possibilities artificial intelligence may provide for future archaeological
studies are ever-growing.

A certain degree of caution is required when assuming ML is the
absolute solution to eliminating equifinality, however. A problematic
concept that requires further confrontation lies in data collection, and
the objectivity behind obtaining such information. The development of
GMM over the years has come to provide increasingly more objective
means of processing features of shape and form, however the most re-
liable and efficient means of obtaining the 3D models used is still under
investigation (Maté-González et al., 2017b, c; Courtenay et al., 2017,
Under review). Likewise, comparisons between different landmark
models are still pending further investigation. Nevertheless, as pre-
sented here, combining both GMM and ML approaches is still able to
provide interesting results. From this perspective the benefits of a hy-
brid ML and GMM approach to taphonomy could produce an important
development in BSM analysis.

5. Conclusions

This paper presents the first combination of advanced statistical
analysis using GMM and ML methods to discern carnivore agency
through different types of tooth marks. The future of ML and GMM
based methods is promising. Our results provide the first combined
inclusion of both statistical techniques, achieving 100% classification
rates in multiple models. So far, this technique has only been applied to
determine carnivore agency, but can be expanded to include other
GMM models.

The possibility provided by the combination of ML and GMM based
techniques could be of utmost relevance when applied to Lower

Pleistocene sites, where the interaction of several modifying agents is
still subject of discussion. Though the comparative sample still needs to
be increased, adding more carnivore species and tooth marks, the
methodological approach described throughout this paper opens up the
door to new work lines in taphonomy. Furthermore, the development of
this line of research could also shed light into certain debates regarding
early human behaviour.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.palaeo.2019.03.007.
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