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Abstract
This article deals with two different numerical approaches for solving singularly per-
turbed parabolic problems with time delay and interior layers. In both approaches, 
the implicit Euler scheme is used for the time scale. In the first approach, the upwind 
scheme is used to deal with the spatial derivatives whereas in the second approach 
a hybrid scheme is used, comprising the midpoint upwind scheme and the central 
difference scheme at appropriate domains. Both schemes are applied on two dif-
ferent layer resolving meshes, namely a Shishkin mesh and a Bakhvalov–Shishkin 
mesh. Stability and error analysis are provided for both schemes. The comparison is 
made in terms of the maximum absolute errors, rates of convergence, and the com-
putational time required. Numerical outputs are presented in the form of tables and 
graphs to illustrate the theoretical findings.
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1 Introduction

The time delay/lag is not just a mathematical invention, since it is deeply rooted 
in many natural and man-made systems such as biology, process industries, and 
mechatronic motions. The lag can capture a wide variety of possible gestures of a 
simple system [1, 2]. Any system certainly can contain a time lag if it has a feedback 
control or if it requires prior information about itself to act further.

Time-delayed singularly perturbed parabolic differential equations (SPPDEs) 
are delayed parabolic differential equations (DPDEs) in which a small perturba-
tion parameter ( 0 < 𝜀 ≪ 1 ) is associated along with the time delay parameter. The 
parameter ( � ) is multiplied to the highest-order spatial derivative term, affecting the 
solution in a larger scale, when � → 0 . Some of the main differences between the 
instantaneous SPPDEs and the time-delayed SPPDEs are mentioned below [3]: 

1. SPPDEs with time-delay can capture/predict the after-effect of a system that can 
not be done by conventional instantaneous SPPDEs.

2. The delay in time ( � ) is large enough and hence the nature of the approximated 
solution can behave quite differently from the original solution, if approximated 
by the first few terms of Taylor series expansion.

3. SPPDEs without delay have an initial condition as a function of the space vari-
able (x) only i.e., along time (t) at 0, whereas in case of time-delayed SPPDEs, 
the initial condition is always a function of both x and t.

4. Even if the initial condition given in the delayed domain is sufficiently differenti-
able, in general, the solution may have various discontinuities along the integra-
tion interval in the time direction. This is due to the fact that the initial function 
does not satisfy the DPDE. However, these discontinuities smooth out more and 
more as time progresses.

It is evident that the introduction of a time delay in a differential model significantly 
increases the complexity of the model. Undoubtedly, some of the recent developments 
in theory and applications have enhanced our conception, regarding the mathematical 
and qualitative behavior of time-delayed SPPDEs. To mention a few, one can refer to 
Das and Natesan [4] who used the hybrid scheme on a spatial Shishkin mesh (S-mesh) 
and the implicit Euler scheme on a time uniform mesh. Govindarao and Mohapatra [5] 
proposed a fourth-order scheme to solve the problems appearing in population dynam-
ics and in [6], Kaushik and Sharma studied the use of an adaptive grid. Again, for time 
delayed SPPs containing two small parameters in [7], the authors used the implicit 
Euler scheme in time on a uniform mesh with an upwind scheme in space using both 
the S-mesh and the Bakhvalov Shishkin mesh (B–S-mesh). Keeping meshes the same, 
both in time and space for the same class of problems, the authors in [8] used a hybrid 
scheme in space. Recently, the authors in [9] used the Richardson extrapolation tech-
nique in both space and time with three different layer resolving meshes in the spa-
tial direction, to have a global second-order accuracy. For semilinear time-delayed 
SPPDEs, Priyadarshana et al., in [10] and [11] proposed second-order time accurate 
schemes with upwind and weighted variable based monotone hybrid scheme in space, 
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respectively. For some recent developments in this regard, one can also go through 
[12–14] and the references therein.

In all the literature discussed above the coefficients associated with the time-delayed 
SPPDEs are considered to be sufficiently smooth. There is no significant discussion 
(neither asymptotic analytical nor numerical) for SPPDEs with discontinuous coeffi-
cients. Our work comes to fill this gap in the literature. It is worthy enough to mention 
that the discontinuity in the convection coefficient (especially with alternate sign pat-
tern) can create a solid abrupt change in the solution to any SPPDE, causing layers in 
the interior to the domain of consideration, as � → 0 [15]. These layers are called the 
interior layers and the part of this domain is called the interior layer region. Apart from 
their widespread applications, these problems are of major concern as one has to han-
dle the discontinuity, the sharp change because of � , and the larger delay in time, all at 
once. The time-delayed SPPDEs with interior layers need more mathematical maturity 
than their without-delay counterparts, as the error in each segment of the time domain 
has to be efficiently handled so that it will be less contributory to the error in subse-
quent sub-domains. The prime objective of this work is to design some parameter-uni-
form numerical approximations for these problems, where some minute changes in the 
parameters highly impact the solutions. Before discussing the model problem, a brief 
literature survey for numerical approximations of singularly perturbed problems (SPPs) 
with interior layers is discussed below.

In the literature, several researchers have done some remarkable contributions to the 
numerical approximations of SPPs with interior layers. Mainly, for the stationary case, 
Farrell et  al. [16, 17], Shanthi et  al. [18] and for the parabolic case, O’Riordan and 
Shishkin [19] and Shishkin [20] are referred to. Mukherjee and Natesan studied prob-
lems of the form (1) without any delay by using the Fitted Mesh Methods (FMMs). 
Initially, in [21] experiments with applying the first-order upwind-based FMM on two 
different layer resolving meshes namely the S-mesh and the B–S-mesh was considered. 
Furthermore, in [15] a second-order accurate (up to a logarithmic term) hybrid scheme 
in the spatial direction on the S-mesh is discussed. Recently, for the same class of 
problems, Yadav and Mukherjee in [22] used a second-order accurate modified hybrid 
scheme on an S-mesh in the spatial direction, and also extended their study to the semi-
linear form of the same model problem.

In this work, a SPPDE with interior layers and a large time lag is discussed. Before 
that, some basic notations are introduced as follows,

The following time delayed SPPDE is described on F− ∪ F
+

⎧⎪⎨⎪⎩

F = F ∪ 𝜕F, F = Fx × Ft, 𝜕F = Υd ∪ Υl ∪ Υr,

F
− = F

−
x
× Ft, F

+ = F
+
x
× Ft,

Fx = (0, 1), Ft = (0, T], F
−
x
= (0, 𝜂), F

+
x
= (𝜂, 1), 0 < 𝜂 < 1,

Υd = Fx × [−𝜌, 0], Υl = 0 × (0,T], Υr = 1 × (0,T].

(1)
{

L�z(x, t) ≡ (
− zt + �zxx + a(x)zx − b(x)z

)
(x, t) = −z(x, t − �) + f (x, t),

z||Υd
= �d(x, t), z||Υl

= �l(t), z||Υr
= �r(t).
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0 < 𝜀 ≪ 1 is the perturbation parameter and 𝜌 > 0 is the temporal lag. We assume 
that T is given by T = k� for some k ∈ ℕ . All the analysis for (1) in [0, 1] × [0, �] 
is analogous to SPPDE without time lag having discontinuous convection and 
source term, as the solution in this domain depends upon the known solution 
in [0, 1] × [−�, 0] . So in the present manuscript, all the discussions are done up 
to [0, 1] × [�, 2�] . The proofs can be followed in an analogous way for k > 2 . We 
assume that the convection coefficient a(x) is sufficiently smooth on F−

x
∪ F

+
x
 , the 

source term f(x, t) is sufficiently smooth on F− ∪ F
+ and the coefficient b(x) is suf-

ficiently smooth on Fx . Furthermore, consider that

The solution satisfies the following interface condition 
[z] = 0, [zx] = 0, at x = �, where [z] represents the jump of z across x = � 
(point of discontinuity) and is defined by [z](�, t) = z(�+, t) − z(�−, t) , where 
z(�±, t) = lim

x→�±0
z(x, t) . Because of the discontinuity of a(x) at � , the solution has an 

interior layer of width O(�) in the neighbourhood of � [15, 21, 22]. Practically, the 
nature of the interior layer depends on the sign of a(x) on each side of the line of 
discontinuity. Therefore, the following assumptions will be considered to ensure the 
presence of strong interior layers:

The present work comprises a comparative study of two different finite difference 
schemes for solving (1). At first, (1) is solved using a combination of the implicit 
Euler scheme in the time direction and the upwind scheme in the spatial direction 
(IE-UP scheme). Again, keeping the implicit Euler scheme in time fixed, the sec-
ond scheme is formed considering a hybrid scheme in the spatial direction (IE-HYB 
scheme). Both schemes are applied on S-mesh as well as B–S-mesh. The study is 
extended by solving the semilinear form of (1) using both schemes.

The manuscript is organized as follows. Some analytical aspects of the model 
problem are given in Sect.  2. The construction of meshes for both space and 
time direction is described in Sect.  3.1. Fully discrete schemes are discussed 
separately in Sects. 3.2 and 3.4. In Sects. 3.3 and 3.5, the stability analysis of 
each scheme is discussed, separately. Section  4 provides the error bounds of 
both schemes. Section 5 discusses the semilinear form of (1) along with New-
ton’s linearization technique. To verify the main conclusion in Sect. 7, Sect. 6 
provides numerical tests on three different types of examples.

Throughout the manuscript, C > 0 is considered to be a generic constant, inde-
pendent of � , and the number of mesh points. For a real function f(x, t) defined 
on F  , the standard supremum norm is defined as ‖f‖∞ = sup(x,t)∈F ∣ f (x, t) ∣ .

{
b(x) ≥ � ≥ 0, on Fx,|[a]| ≤ C, |[f ]| ≤ C, at x = �.

{
−𝛼∗

1
< a(x) < −𝛼1 < 0, s < 𝜂,

𝛼∗
2
> a(x) > 𝛼2 > 0, s > 𝜂.
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2  Analytical solution of the continuous problem

In this section, the existence of a unique solution and some stability bounds are 
discussed. The coefficients used in L� are time-independent and the discontinuity 
is only considered in the spatial variable. The sufficient smoothness of �d , �l and 
�r along with the compatibility conditions at the corner points and delay terms are 
stated as: �d(0, 0) = �l(0) , �d(1, 0) = �r(0) and

The compatibility conditions at x = � follow analogously. The existence of a unique 
solution z ∈ C

1+�(F) ∩ C
2+�(F− ∪ F

+) for (1) can be assumed from the results in 
[19, 23]. The differential operator L� satisfies the following maximum principle.

Lemma 1 If a function � ∈ C
0(F) ∪ C

2(F− ∪ F
+) satisfies �(x, t) ≤ 0 , (x, t) ∈ �F  

and 
[
��

�x

]
(�, t) ≥ 0 , t > 0 together with L��(x, t) ≥ 0 , ∀(x, t) ∈ F

− ∪ F
+ , then 

�(x, t) ≤ 0 ∀(x, t) ∈ F .

Proof Consider g(x, t) such that

where � = min{�1, �2} . Assume that (x∗, t∗) is a point where g(x, t) attains its maxi-
mum value, i.e.,

Clearly, (x∗, t∗) ∉ �F  . So, either (x∗, t∗) ∈ F
− ∪ F

+ or (x∗, t∗) = (�, t∗) . If 
(x∗, t∗) ∈ F

− , then

Similarly, for (x∗, t∗) ∈ F
+ , it is

Furthermore, if (x∗, t∗) = (�, t∗) , then

⎧

⎪

⎨

⎪

⎩

−
d�l(0)
dt

+ �
�2�d(0, 0)

�x2
+ a(0)

��d(0, 0)
�x

− b(0)�d(0, 0) = −�d(0,−�) + f (0, 0),

−
d�r(0)

dt
+ �

�2�d(1, 0)
�x2

+ a(1)
��d(1, 0)

�x
− b(1)�d(1, 0) = −�d(1,−�) + f (1, 0).

�(x, t) = exp(−�|x − �|∕2�)g(x, t),

g(x∗, t∗) = max
(x,t)∈F

g(x, t) > 0.

L𝜀𝜓(x∗, t∗) = exp(−𝛼1|𝜂 − x∗|∕2𝜀)
(
𝜀
𝜕2g

𝜕x2
+ (a(x∗) + 𝛼1)

𝜕g

𝜕x

+

(
𝛼1
2𝜀

(
𝛼1
2

+ a(x∗)

)
− b(x∗)

)
g −

𝜕g

𝜕t

)
(x∗, t∗) < 0.

L𝜀𝜓(x∗, t∗) = exp(−𝛼2|x∗ − 𝜂|∕2𝜀)
(
𝜀
𝜕2g

𝜕x2
+ (a(x∗) − 𝛼2)

𝜕g

𝜕x

+

(
𝛼2
2𝜀

(
𝛼2
2

− a(x∗)

)
− b(x∗)

)
g −

𝜕g

𝜕t

)
(x∗, t∗) < 0.
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Since a contradiction is obtained in every possible situation, the statement is proved.  
 ◻

Lemma 2 The following bound holds true for the solution of (1)

Proof The proof is similar to the one in [19].   ◻

2.1  Decomposition of the analytical solution

The solution of (1) is decomposed into its regular (u) and boundary layer (v) com-
ponents as z(x, t) = u(x, t) + v(x, t) , where the regular component u is the solution 
of the following parabolic problem

The suitable choices for �1 and �2 will be obtained later. Now, the boundary layer 
component satisfies

Since, v(�−, t) = z(�−, t) − u(�−, t) and v(�+, t) = z(�+, t) − u(�+, t) , without loss of 
generality, assuming z(x, t)|Υd

= 0 , the following statement is proved.

Theorem 3 For l,m ≥ 0 satisfying 0 ≤ l ≤ 3 and 0 ≤ l + 2m ≤ 4 , there exist smooth 
functions �1(t) , �2(t) such that u(x, t) and v(x, t) defined in (2) and (3), respectively, 
satisfy the following bounds

and

[
��

�x

]
(x∗, t∗) =

[
��

�x

]
(�, t∗) =

[
��

�x

]
(�+, t∗) −

[
��

�x

]
(�−, t∗)

=

[
�g

�x

]
(�, t) −

�1 + �2
2�

g(�, t).

‖z(x, t)‖
F
≤ ‖z(x, t)‖

�F
+

1

�
‖f‖

F
, where � = min{�1∕�, �2∕(1 − �)}.

(2)

⎧⎪⎨⎪⎩

L�u(x, t) = −u(x, t − �) + f (x, t) for (x, t) ∈ F
− ∪ F

+,

u��Υd
= z��Υd

(x, t), u��Υl
= z��Υl

(t), u��Υr
= z��Υr

(t), t ∈ Ft,

u(�−, t) = �1(t), u(�+, t) = �2(t), t ∈ Ft.

(3)

⎧⎪⎨⎪⎩

L�v(x, t) = −v(x, t − �) for (x, t) ∈ F
− ∪ F

+,

v��Υd
= 0, v��Υl

= 0, v��Υr
= 0,

[v](�, t) = −[u](�, t),

�
�v

�x

�
(�, t) = −

�
�u

�x

�
(�, t).

‖‖‖‖
�l+mu(x, t)

�xl�tm

‖‖‖‖F−∪F+

≤ C,
‖‖‖‖
�4u(x, t)

�x4

‖‖‖‖F−∪F+

≤ C�−1,
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Here, C is the bound for [a] and [f] as mentioned in the Sect. 1.

Proof The proof will be carried out separately for separate sub-regions i.e., F− and 
F

+ . To start with F+ , an extended domain F∗ is chosen, such that F+ ⊂ F
∗ , whereas 

F
∗ = F

∗
x
× Ft , F

∗
x
= (−1, 1) . Let, u∗ be the smooth component on F∗

x
 defined as

where the components satisfy the following time delayed parabolic problems

and

The coefficients a∗ , b∗ are smooth extensions of the functions a and b from F+
x
 to F∗

x
 . 

Similarly, f ∗ , �∗
d
 are smooth extensions of f, �d , from F+ to F∗ , and are chosen in 

such a way that f ∗ = 0 , �∗
d
= 0 for x = −1 and t ∈ [−�,T] . This helps to maintain 

the compatibility conditions at the corner with x = −1 . Now, following the approach 
of (Theorem  3.4, [15]) along with the fact that the solutions of (4)–(5) are inde-
pendent of � and u∗

3
 in (6) preserves the nature of z(x, t) in (1), a restriction u can be 

obtained from F∗ to F+ with �2(t) = u∗(�, t) . So, u(x, t) ∈ C
4+�(F+) is the solution of 

the following problem

Thus, the smooth component for 0 ≤ l + 2m ≤ 4 satisfies,

||||
�l+mv(x, t)

�xl�tm

|||| =
{

C
(
�−l exp(−(� − x)�1∕�)

)
, (x, t) ∈ F

−,

C
(
�−l exp(−(x − �)�2∕�)

)
, (x, t) ∈ F

+,

||||
�4v(x, t)

�x4

|||| =
{

C
(
�−4 exp(−(� − x)�1∕�)

)
, (x, t) ∈ F

−,

C
(
�−4 exp(−(x − �)�2∕�)

)
, (x, t) ∈ F

+.

u∗(x, t) =

3∑
j=0

�ju∗
j
(x, t),

(4)
{

a∗(u∗
0
)x − b∗(u∗

0
) − (u∗

0
)t = −u∗

0
(x, t − �) + f ∗(x, t) in F

∗,

u∗
0
||Υd

= �∗
d
(x, t), u∗

0
||Υr

= �r(t),

(5)
{

a∗(u∗
j
)x − b∗(u∗

j
) − (u∗

j
)t = −u∗

j
(x, t − �) − (u∗

j−1
)xx in F

∗,

u∗
j
||Υd

= 0, u∗
j
||Υr

= 0, j = 1, 2,

(6)
{

�(u∗
3
)xx + a∗(u∗

3
)x − b∗(u∗

3
) − (u∗

3
)t = −u∗

3
(x, t − �) − (u∗

2
)xx in F

∗,

u∗
3
||Υd

= 0, u∗
3
||Υr

= 0, u∗
3
(−1, t) = 0, t ∈ Ft.

(7)
{

L�u(x, t) = −u(x, t − �) + f (x, t) for (x, t) ∈ F
+,

u||Υd
= z||Υd

(x, t), u||Υr
= z||Υr

(t), u(�, t) = u∗(�, t), t ∈ Ft.

‖‖‖‖
�l+mu(x, t)

�xl�tm

‖‖‖‖F−∪F+

≤ C(1 + �3−l).
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Applying the above arguments to F− , one can obtain �1(t) , and furthermore, the 
bounds on the regular component can be easily derived. For the proof of the bound-
ary layer component, see [15].   ◻

3  Numerical approximation

The construction of meshes for both spatial and temporal directions along with the fully 
discrete schemes are discussed in this section. The time direction for both schemes is 
handled using the implicit Euler method. For space, in the IE-UP scheme, an upwind 
scheme is used and in the IE-HYB scheme, a hybrid scheme is proposed. The stability 
analysis of the Implicit Euler scheme (used in the temporal direction of any SPP) is 
well studied in the literature and can be followed from [12]. Furthermore, the matrix 
criterion for stability analysis is used to show the fully discrete schemes are uniformly 
stable in the supremum norm. Our main objective is to show that the matrix associ-
ated with each difference operator will be M-matrix and hence will satisfy the discrete 
maximum principle [24].

3.1  Discretization of the domain

Due to the presence of time lag, [−�,T = 2�] is split into various subdomains. The pro-
posed numerical procedure approximates the time variable employing a uniform mesh 
with step length Δt . The discretized domain on Ft

M
= [−�, 2� = T] is

The total number of mesh intervals in time domain [−�, 2� = T] is M = (M1 +M2) , 
with M1 and M2 denoting the number of mesh intervals in [−�, 0] and [0,  T], 
respectively.

Concerning the space variable, the total number of mesh intervals in Fx is taken to 
be N with non-negative constants ( �1 and �2 ) as the transition parameters, defined as:

where �0 = 2∕� and � is a positive constant. The domain Fx is split into four sub-
domains as follows

The intervals are taken in such a way that x0 = 0 , xN∕4 = (� − �1 ), x3N∕4 = (� + �2) 
and xN = 1 . The meshes in [0, � − �1] and [� + �2, 1] are uniform with N/4 mesh 
intervals in each, whereas [� − �1, �] and [�, � + �2] are partitioned using two contin-
uous, piecewise differentiable, monotonically increasing mesh generating functions 

F
M1

t ={tm−M1
= −� + mΔt, m = 0, 1,… ,M1, t−M1

= −�, Δt = �∕M1},

F
M2

t ={tm = mΔt, m = 0, 1,… ,M2, tM2
= T , Δt = T∕M2}.

�1 = min

{
�

2
, �0� lnN

}
,�2 = min

{
� − 1

2
, �0� lnN

}
,

Fx = [0, � − �1] ∪ [� − �1, �] ∪ [�, � + �2] ∪ [� + �2, 1].
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Φ1(�) , � ∈ [1∕4, 1∕2] and Φ2(�) , � ∈ [1∕2, 3∕4] , respectively. The functions are 
chosen to satisfy,

Clearly, xN∕2 = � . Let xn = nhn with hn = xn − xn−1 and ℏn = hn + hn+1 for 
n = 1,… ,N − 1 . The mesh points are given by:

According to the above, one can observe that

and

Define two functions Ψ1 and Ψ2 closely related to Φ1 and Φ2 by Φ1 = lnΨ1 and 
Φ2 = − lnΨ2, respectively, where the function Ψ1 is monotonically increasing with 
Ψ1(1∕4) = N−1 , Ψ1(1∕2) = 1 and Ψ2 is monotonically decreasing with Ψ2(1∕2) = 1 , 
Ψ2(3∕4) = N−1 . The mesh generating functions for S-mesh and B–S-mesh are

• S-mesh: Ψ1(�) = exp(−4(1∕2 − �) lnN), Ψ2(�) = exp(−4(� − 1∕2) lnN).
• B–S-mesh: Ψ1(�) = 1 − 4(1 − N−1)(1∕2 − �), Ψ2(�) = 1 − 4(1 − N−1)(� − 1∕2).

In the analysis section, we shall assume that �1 = �2 = �0� lnN . If this condition is 
discarded then N−1 will be exponentially small in comparison to � , which is quite 
not so likely in practice. In the numerical section the following notations are used:

3.2  IE‑UP scheme

With N and M as the number of mesh points in Fx and Ft , respectively, FN,M is 
used to denote the discretized form of F  . The fully-discrete form of (1) using the 

Φ1(1∕4) = − lnN, Φ1(1∕2) = 0, Φ2(1∕2) = 0 and Φ2(3∕4) = lnN.

xn =

⎧
⎪⎪⎨⎪⎪⎩

n
4(𝜂 − 𝜗1)

N
if 0 ≤ n ≤ N

4
,

𝜂 + 𝜗0𝜀Φ1(𝜒n) for 𝜒n = n∕N, if
N

4
< n ≤ N

2
,

𝜂 + 𝜗0𝜀Φ2(𝜒n) for 𝜒n = n∕N, if
N

2
< n <

3N

4
,

(𝜂 + 𝜗2) +
4(1−𝜂−𝜗2)

N
(n − (3N∕4)) if

3N

4
≤ n ≤ N.

(8)hn =

⎧
⎪⎨⎪⎩

H(l) =
4(� − �1)

N
for n = 1,… ,

N

4
,

H(r) =
4(1 − � − �2)

N
for n =

3N

4
+ 1,… ,N,

(9)hn =

{
h(l), where hn ≥ hn+1 for n =

N

4
+ 1,… ,

N

2
,

h(r), where hn ≤ hn+1 for n =
N

2
+ 1,… ,

3N

4
.

Fl = (0, � − �1) × Ft, Fm = (� − �1, � + �2) × Ft, Fr = (� + �2, 1) × Ft.
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implicit Euler scheme in time and an upwind scheme for the space variable, on FN,M 
at (xn, tm+1) is

where

and

where Zm+1
n

= Z(xn, tm+1) and Zm+1−M1

n = Z(xn, tm+1−M1
) . The same approach is taken 

for an, bn and f m+1
n

 . The differential operators are defined as

After using (11), we have the following system of linear difference equations for 
m = M1,M1 + 1,… ,M,

where the coefficients are given by

(10)

⎧
⎪⎨⎪⎩

LN,M
up

Zm+1
n

≅ F̃up for m = M1,M1 + 1,… ,M and n = 1,… ,N − 1,

Z−m
n

= �d(xn,−tm) for m = 0, 1,… ,M1 and n = 1,… ,N − 1,

Zm+1
0

= �l(tm+1), Zm+1
N

= �r(tm+1), m = M1,M1 + 1,… ,M,

LN,M
up

Zm+1
n

≅

⎧
⎪⎪⎨⎪⎪⎩

𝜀D+
x
D−

x
Zm+1
n

+ anD
−
x
Zm+1
n

− bnZ
m+1
n

− D−
t
Zm+1
n

,

if 1 < n <
N

2

𝜀D+
x
D−

x
Zm+1
n

+ anD
+
x
Zm+1
n

− bnZ
m+1
n

− D−
t
Zm+1
n

,

if
N

2
+ 1 < n ≤ N,

D+
x
Zm+1
n

− D−
x
Zm+1
n

, if n =
N

2
,

�Fup =

{
f m+1
n

− Z
m+1−M1

n , if 1 < n <
N

2
and

N

2
+ 1 ≤ n ≤ N + 1,

0, if n =
N

2
,

(11)
D−

t
Zm
n
=

Zm
n
− Zm−1

n

Δt
D+

x
Zm
n
=

Zm
n+1

− Zm
n

hn+1
, D−

x
Zm
n
=

Zm
n
− Zm

n−1

hn
,

D+
x
D−

x
Zm
n
=

2

ℏn

(
D+

x
Zm
n
− D−

x
Zm
n

)
, D0

x
Zm
n
=

Zm
n+1

− Zm
n−1

ℏn

.

(12)

⎧⎪⎨⎪⎩

A−
up,n

Zm+1
n−1

+ Ac
up,n

Zm+1
n

+ A+
up,n

Zm+1
n+1

= F̃up for n = 1,… ,N − 1,

Z−m
n

= �d(xn,−tm) for m = 0,… ,M1 and n = 1,… ,N − 1,

Zm+1
0

= �l(tm+1), Zm+1
N

= �r(tm+1), for m = M1,M1 + 1,… ,M,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

A+
up,n =

2�
ℏnhn+1

, Ac
up,n = − 2�

hn+1hn
−

an
hn

− bn −
1
Δt

, A−
up,n =

2�
ℏnhn

−
an
hn

,

for 1 < n < N
2 ,

A+
up,n =

2�
ℏnhn+1

, Ac
up,n = − 2�

hn+1hn
+

an
hn

− bn −
1
Δt

, A−
up,n =

2�
ℏnhn

−
an
hn

,

for N
2 + 1 ≤ n ≤ N,

A+
up,n =

1
hn+1

, Ac
up,n = − 1

hn+1
− 1

hn
, A−

up,n =
1
hn

, for n = N
2 .
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3.3  Stability of the IE‑UP scheme

Aup can be easily proved to be an M-matrix and hence, the operator LN,M
up

 can be 
proved to satisfy the following discrete maximum principle.

Lemma 4 Suppose that a mesh function Θ satisfies Θ ≤ 0 on ΥN,M

d
 , LN,M

up
Θ ≥ 0 in 

Θ ∈ F
N,M ∩ (F− ∪ F

+) and D+
x
Θm+1

N∕2
− D−

x
Θm+1

N∕2
≥ 0 for m = M1,M1 + 1,… ,M, 

then Θ ≤ 0 at each point in F
N,M

.

Proof One can refer to [21] for the complete proof, which leads to the �-uniform sta-
bility of LN,M

up
 .   ◻

3.4  IE‑HYB scheme

The fully-discrete form of (1) using an appropriate combination of the mid-point 
upwind and the central difference scheme for the space variable, on FN,M at (xn, tm+1) 
is

where

and

(13)

⎧⎪⎨⎪⎩

LN,M
�

Zm+1
n

≅ F̃�, m = M1,M1 + 1,… ,M and n = 1,… ,N − 1,

Z−m
n

= �d(xn,−tm) for m = 0,… ,M1 and n = 1,… ,N − 1,

Zm+1
0

= �l(tm+1), Zm+1
N

= �r(tm+1), m = M1,M1 + 1,… ,M,

LN,M
𝜀

Zm+1
n

≅

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L
N,M,(−)

mid
Zm+1
n

= 𝜀D+
x
D−

x
Zm+1
n

+ an−1∕2D
−
x
Zm+1
n

−bn−1∕2Z
m+1
n−1∕2

− D−
t
Zm+1
n−1∕2

, if 1 < n ≤ N

4
,

LN,M
cen

Zm+1
n

= 𝜀D+
x
D−

x
Zm+1
n

+ anD
0
x
Zm+1
n

−bnZ
m+1
n

− D−
t
Zm+1
n

,

if
N

4
+ 1 < n <

N

2
and

N

2
+ 1 ≤ n ≤ 3N

4
,

L
N,M,(+)

mid
Zm+1
n

= 𝜀D+
x
D−

x
Zm+1
n

+ an+1∕2D
+
x
Zm+1
n

−bn+1∕2Z
m+1
n+1∕2

− D−
t
Zm+1
n+1∕2

, if
3N

4
< n ≤ N,

DF
x
Zm+1
n

− DB
x
Zm+1
n

, if n =
N

2
,

�F𝜀 =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

f m+1
n−1∕2

− Z
m+1−M1

n−1∕2
, if 1 < n ≤ N

4
,

f m+1
n

− Z
m+1−M1

n ,

if
N

4
+ 1 < n <

N

2
and

N

2
+ 1 ≤ n ≤ 3N

4
,

f m+1
n+1∕2

− Z
m+1−M1

n+1∕2
, if

3N

4
< n ≤ N,

0, if n =
N

2
.



 S. Priyadarshana et al.

1 3

    1  Page 12 of 33

In the above equations, at the time level tm+1 , an−1∕2 =
an + an−1

2
 and an+1∕2 =

an + an+1
2

 . 

The same approach is taken for bn±1∕2 , fn±1∕2 , Zn±1∕2 . Along with (11), using 
D

F

x
Z
m+1
n

= (−Zm+1
n+2

+ 4Z
m+1
n+1

− 3Z
m+1
n

)∕2h(r) and DB

x
Z
m+1
n

= (Zm+1
n−2

− 4Z
m+1
n−1

+ 3Z
m+1
n

)∕

2h(l) , we have

where the coefficients for 1 < n ≤ (N∕4) are

for (3N∕4) ≤ n ≤ N,

for (N∕4) + 1 ≤ n ≤ (N∕2) − 1 and (N∕2) + 1 ≤ n ≤ (3N∕4) − 1,

For n = (N∕2) , we have

3.5  Stability of the IE‑HYB scheme

It is an easy calculation to show that LN,M
�

 defined in (13) does not satisfy the dis-
crete maximum principle and accordingly, the uniform stability criteria can not 
be established. So, the scheme needs to be transformed at n = N∕2 . Using LN,M

�
 at 

n = (N∕2) − 1 and n = (N∕2) + 1 , we get

(14)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

A−
�,n
Zm+1
n−1

+ Ac
�,n
Zm+1
n

+ A+
�,n
Zm+1
n+1

= F̃� for m = M1,M1 + 1,… ,M,

and n = 1,… , (N∕2) − 1, n = (N∕2) + 1,… ,N − 1,

A−2
�,N∕2

Zm+1
n−2

+ A−1
�,N∕2

Zm+1
n−1

+ Ac
�,N∕2

Zm+1
n

+A+1
�,N∕2

Zm+1
n+1

+ A+2
�,N∕2

Zm+1
n+2

= 0 for m = M1,M1 + 1,… ,M,

Z−m
n

= �d(xn,−tm) for m = 0,… ,M1 and n = 1,… ,N − 1,

Zm+1
0

= �l(tm+1), Zm+1
N

= �r(tm+1), m = M1,M1 + 1,… ,M,

A+
�,n

=
2�

ℏnhn+1
, Ac

�,n
= −

2�

hn+1hn
+

an−1∕2

hn
−

bn−1∕2

2
−

1

2Δt
,

A−
�,n

=
2�

ℏnhn
−

an−1∕2

hn
−

bn−1∕2

2
−

1

2Δt
,

A+
�,n

=
2�

hn+1ℏn

+
an+1∕2

hn+1
−

bn+1∕2

2
−

1

2Δt
,

Ac
�,n

= −
2�

hn+1hn
−

an+1∕2

hn+1
−

bn+1∕2

2
−

1

2Δt
, A−

�,n
=

2�

ℏnhn
,

A+
�,n

=
2�

ℏnhn+1
+

an

ℏn

, Ac
�,n

= −
2�

hn+1hn
− bn −

1

Δt
, A−

�,n
=

2�

ℏnhn
−

an

ℏn

.

A−2
�,N∕2

= −1∕2h(l), A−1
�,N∕2

= 2∕h(l),

Ac
�,N∕2

= −3∕2(1∕h(l) + 1∕h(r)), A+1
�,N∕2

= 2∕h(r), A+2
�,N∕2

= −1∕2h(r).
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where h = h(l) = h(r) (as �1 = �2 is assumed) for n = (N∕4),… , (3N∕4) . Now, sub-
stituting (15) in (14), the following fully discrete scheme satisfying the discrete 
maximum principle can be obtained as

On further rearrangement, the scheme becomes

where for n ≠ (N∕2) , Ahy = A� and F̃hy = F̃� . For n = (N∕2) , we have

and

(15)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Zm+1
N∕2−2

=
2h2

2� − haN∕2−1

�
f m+1
N∕2−1

− Z
m+1−M1

N∕2−1
− Ac

�,N∕2−1
Zm+1
N∕2−1

− A+
�,N∕2−1

Zm+1
N∕2

−
1

Δt
Zm
N∕2−1

�
,

Zm+1
N∕2+2

=
2h2

2� + haN∕2+1

�
f m+1
N∕2+1

− Z
m+1−M1

N∕2+1
− Ac

�,N∕2+1
Zm+1
N∕2+1

− A−
�,N∕2+1

Zm+1
N∕2

−
1

Δt
Zm
N∕2+1

�
,

(16)

⎧
⎪⎨⎪⎩

L
N,M

hy
Zm+1
n

≅ F̃hy, m = M1,M1 + 1,… ,M and n = 1,… ,N − 1,

Z−m
n

= �d(xn,−tm) for m = 0,… ,M1 and n = 1,… ,N − 1,

Zm+1
0

= �l(tm+1), Zm+1
N

= �r(tm+1), m = M1,M1 + 1,… ,M.

(17)

⎧⎪⎨⎪⎩

A−
hy,n

Zm+1
n−1

+ Ac
hy,n

Zm+1
n

+ A+
hy,n

Zm+1
n+1

= F̃hy, m = M1,M1 + 1,… ,M,

Z−m
n

= �d(xn,−tm) for m = 0,… ,M1 and n = 1,… ,N − 1,

Zm+1
0

= �l(tm+1), Zm+1
N

= �r(tm+1), m = M1,M1 + 1,… ,M,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A+
hy,N∕2

=
1

2h

�
4 −

2

�
2� + h2bn+1 +

h2

Δt

�

2� + han+1

�
,

Ac
hy,N∕2

=
1

2h

�
− 6 +

2� + han−1

2� − han−1
+

2� − han+1

2� + han+1

�
,

A−
hy,N∕2

=
1

2h

�
4 −

2

�
2� + h2bn−1 +

h2

Δt

�

2� − han−1

�
,

F̃hy =
h

(2� − han−1)

[
−

Zm
n−1

Δt
+ f m+1

n−1
− Z

m+1−M
1

n−1

]

+
h

(2� + han+1)

[
−

Zm
n+1

Δt
+ f m+1

n+1
− Z

m+1−M
1

n+1

]
.
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Lemma 5 Assume N ≥ N0 , 
N0

lnN0

≥ 2�0�
∗ and (‖b‖∞ + Δt−1) ≤ �N0∕2 , where 

� = min{�1, �2} and �∗ = min{�∗
1
, �∗

2
} . Given a mesh function Θ satisfying Θ ≤ 0 on 

ΥN,M

d
 , LN,M

hy
Θ ≥ 0 in FN,M ∩ (F− ∪ F

+) then Θ ≤ 0 at each point in F
N,M

.

Proof One can refer to [15] for the complete proof.   ◻

The Thomas algorithm is used to solve the system of equations formed in any of the 
schemes above, which in terms of the computational time required, is preferable to the 
matrix inversion method.

4  Error analysis

From the previous section, it can be concluded that both schemes are stable. Now, this 
section addresses the error analysis for each scheme, separately. In order to make the 
paper more readable, the technical and complete proofs of the following theorems have 
been included in an appendix.

4.1  Error bounds for the IE‑UP scheme

Theorem 6 If z and Zm+1
n

 are the solutions of (1) and (10), respectively then the fol-
lowing error bounds can be obtained for the IE-UP scheme on F

N,M

with m = M1,M1 + 1,… ,M and 1 ≤ n ≤ (N − 1).

Proof See appendix.   ◻

4.2  Error bounds for the IE‑HYB scheme

Theorem 7 If z and Zm+1
n

 are the solutions of (1) and (16) on F
N,M

 , respectively, then 
the error bounds using the IE-HYB scheme are

with m = M1,M1 + 1,… ,M.

||z(xn, tm+1) − Zm+1
n

|| ≤
{

C(N−1 lnN + Δt) for S-mesh,

C(N−1 + Δt) for B−S-mesh,

��z(xn, tm+1) − Zm+1
n

�� ≤
⎧
⎪⎨⎪⎩

C(N−2 + Δt) for 1 ≤ n ≤ (N∕4),

C(N−2 ln2 N + Δt) for (N∕4) + 1 ≤ n ≤ (3N∕4) − 1,

C(N−2 + Δt) for (3N∕4) ≤ n ≤ N − 1 on S-mesh,

��z(xn, tm+1) − Zm+1
n

�� ≤ C(N−2 + Δt) for 1 ≤ n ≤ (N − 1) on B–S-mesh,
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Proof See appendix.   ◻

5  Extension to time delayed semilinear parabolic SPPs

In this section, the following semi-linear form of our prescribed model problem is con-
sidered for (x, t) ∈ F

Following the concept of the upper and lower solutions (see Definition 3.1 in [25]) 
and using the weaker assumption f̃z ≥ 0 in F  , problem (1) has a unique solution 
(see Lemma 3.4–3.6, Chapter  2 in [25]). The technique of Newton’s linearization 
can be used to solve (18). z(0)(x, t) is taken as a reasonable initial guess for z(x, t) in 
the source term f̃ (x, t, z) . For all i > 0 , expansion of (f̃ (x, t, z(i+1)) around z(i) gives,

Substituting (19) in (18), we get

After further arrangements we have,

where b(x, t) = 𝜕f̃

𝜕z
||(x,t,z(i)) and F(x, t) = f̃ (x, t, z(i)) − z(i)

𝜕f̃

𝜕z
||(x,t,z(i)) . Afterward, each iter-

ation is solved numerically with a stopping criterion given by

where TOL is chosen to be 10−6 for computations. The numerical approximation and 
the convergence analysis of (20) can be done in a similar way as discussed for (1).

6  Numerical experiments

Three exemplifying problems are presented in this section to validate the theoretical 
findings. The model problems mentioned in [15, 21, 22] are modified to prove the effi-
cacy of our algorithm. For the problems, where the exact solutions are not known, the 
double mesh principle is applied to calculate the errors (EN,Δt

�
) and rates of convergence 

(RN,Δt) . EN,Δt
�

 and RN,Δt are computed by,

(18)
{

L𝜀z(x, t) ≡ (
− zt + 𝜀zxx + a(x)zx

)
(x, t) = −z(x, t − 𝜌) + f̃ (x, t, z),

z||Υd
= 𝛷d(x, t), z||Υl

= 𝛷l(t), z||Υr
= 𝛷r(t), t ∈ Ft.

(19)f̃ (x, t, z(i+1)(x, t)) ≈ f̃ (x, t, z(i)) +
[
z(i+1) − z(i)

] 𝜕f̃

𝜕z(x, t)

||||(x,t,z(i)) +⋯

L𝜀z ≅
[
− z

(i+1)
t + 𝜀z(i+1)

xx
+ a(x)z(i+1)

x
−

𝜕f̃

𝜕z
||(x,t,z(i))z(i+1)

]
(x, t)

= −z(i+1)(x, t − 𝜌) + f̃ (x, t, z(i)) − z(i)
𝜕f̃

𝜕z
||(x,t,z(i)).

(20)L�z ≅
[
− z

(i+1)
t + �z(i+1)

xx
+ a(x)z(i+1)

x
− b(x, t)z(i+1)

]
(x, t)

= −z(i+1)(x, t − �) + F(x, t),

max
(xn, tm) ∈ F

N,M

||Zi+1(xn, tm) − Zi(xn, tm)
|| ≤ TOL,
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where Z = z(xn, tm) if the exact solution is known or else Z = Z2N,2M(xn, tm) . The 
value of � is taken to be 1 for all the problems.

Example 1 Consider the following parabolic IBVP having a large time lag

where

and f(x, t) and �d are made to satisfy the exact solution z(x, t) as

Example 2 Consider the following parabolic IBVP having a large time lag with an 
unknown solution

where

and

EN,Δt
�

= max
(xn, tm) ∈ F

N,M

||ZN,M(xn, tm) − Z(xn, tm)
||, RN,Δt = log2

(
EN,Δt
�

E
2N,Δt∕2
�

)
,

⎧
⎪⎨⎪⎩

−zt + �zxx + a(x)zx − x(1 − x)z = −z(x, t − �) + f (x, t) for (x, t) ∈ F,

z��Υd
= �d(x, t),

z(0, t) = z(1, t) = 0 for t ∈ Ft,

a(x) =

{
−(1 + x(0.5 − x)), 0 ≤ x ≤ 0.5,

(1 + x(x − 0.5)), 0.5 < x ≤ 1,

z(x, t) =

⎧
⎪⎨⎪⎩

exp(−t)

�
1 − exp(−(0.5 − x)∕𝜀)

1 − exp(−0.5∕𝜀)
− cos(𝜋x)

�
, 0 ≤ x < 0.5,

exp(−t)

�
−1 − exp(−(x − 0.5)∕𝜀)

1 − exp(−0.5∕𝜀)
− cos(𝜋x)

�
, 0.5 ≤ x ≤ 1.

⎧⎪⎨⎪⎩

−zt + �zxx + a(x)zx = −z(x, t − �) + f (x, t) for (x, t) ∈ F,

z��Υd
= 0,

z(0, t) = z(1, t) = 0, for t ∈ Ft,

a(x) =

{
−2(1 + x), 0 ≤ x ≤ 0.5,

(3 − 2x), 0.5 < x ≤ 1,

f (x, t) =

{
2xt, 0 ≤ x ≤ 0.5,

2(1 − x)t, 0.5 < x ≤ 1.
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Example 3 Consider the following semilinear parabolic IBVP

where f̃ (x, t, z) = f (x, t) − exp(z) . The exact solution and convection coefficient for 
Example 3 are the same as defined in Example 1. The numerical results and com-
parisons are structured in the form of graphs and tables. It is noteworthy that all the 
examples have discontinuity in the convection coefficients which create the abrupt 
change in the neighbourhood of x = 0.5 . To show how the gradient of the solu-
tion steepens at the point of discontinuity when � decreases, the solution profiles in 
the form of surface-contour plots are given in Figs. 1 and 2 for Examples 1 and 2, 
respectively. To verify the theoretical estimates, the numerical results for Example 
1 are provided in Tables 1 and 2. Table 1 shows a comparison of errors and rates of 
convergence using the IE-UP scheme on both the S-mesh and the B–S-mesh. Simi-
lar kinds of results using the IE-HYB scheme are tabulated in Table 2. From both 
the tables, it is quite evident that the B–S-mesh provides better accuracy than the 
S-mesh, irrespective of the schemes used.

The plots in Fig. 4a, b for Example 2 prove the fact that the error inside the layer 
region is quite high in comparison to the errors outside the layer regions while using 
both the schemes. This fact is again shown by giving the numerical data in Tables 3, 
4, 5 and 6. Table  3 compares the errors and rates of convergence distinctively in 
all the regions using the IE-UP scheme on S-mesh and the similar outputs on B–S-
mesh are provided in Table 4. Though the order of convergence is one, in all the 
distinct regions, it can be seen that the outputs inside the layer region are less accu-
rate. Again, as the IE-HYB scheme gives second-order accuracy in spatial direc-
tion but first order in time, so to match up the accuracy in space, the step-length in 
time is chosen as Δt = 1∕N2 , this procedure ensures that the accuracy inside the 

⎧⎪⎨⎪⎩

−zt + 𝜀zxx + a(x)zx = −z(x, t − 𝜌) + f̃ (x, t, z) for (x, t) ∈ F,

z��Υd
= 𝛷d(x, t),

z(0, t) = z(1, t) = 0 for t ∈ Ft,

Fig. 1  Solution profiles for Example 1
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layer region does not reduces to one [15]. Clearly, outside the layer region, the order 
of accuracy is two but inside the layer region, the results are less accurate. All the 
tables and graphs discussed till now prove the efficacy of the IE-HYB scheme over 
the IE-UP scheme. Again, Table 7 gives a comparison of computational time taken 
by both the schemes for solving Example 2. It is visible that the IE-HYB scheme 
requires an almost equal amount of computational time as IE-UP scheme.

Example 3 is an instance of the semilinear form of (1). To visualize the nature of 
the solution of Example 3 at different time levels, Fig. 3 is plotted. This indicates the 
presence of an interior layer at the point of discontinuity with smaller values of � , at 
each distinct time level. Figure 5a shows the solution profiles while using different 
values of N, which clearly shows that larger N can provide better approximations 
with fewer oscillations. Figure 5b shows the log-log plot for the solution of Example 
3, from which it is quite evident that the IE-HYB scheme is much more efficient 
than the IE-UP scheme and the B–S-mesh is more accurate in both the schemes than 

the S-mesh, even in the semilinear case. The aforesaid results for Example 3 are 
again shown computationally through Tables  8 and 9 that compare the numerical 
outputs.

7  Conclusion

The singularly perturbed parabolic problem with time delay and an interior lay-
ers is solved using two different parameter uniform finite difference schemes. In 
both schemes, the time direction is treated with the implicit Euler scheme on a 
uniform mesh. To resolve the abrupt change that happens due to the presence of 
the perturbation parameter and the discontinuity in the convection-coefficient, at 
first, the upwind scheme and then a hybrid scheme on two different layer resolv-
ing meshes are applied in space. The efficiency of the schemes is tested over the 
semilinear form of the same model problem. Both analytically and numerically, 

Fig. 2  Solution profiles for Example 2
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the hybrid scheme is shown to be more efficient than the upwind scheme. Again, 
the B–S-mesh is shown to provide better accuracy than the S-mesh.

Appendix

Proof of Theorem 6

At the time subinterval [0, �] , the right-hand side of our approach (10) is inde-
pendent of � as the initial conditions in the region �F  are known. So, the analysis 
in this region can be done similarly as it can be done for any SPPDEs without 
having a time lag. Following the approach in [19] for the region [0, �] , the error 
bounds can be obtained as

Fig. 3  Solution profiles at different time levels with N = 64 for Example 3

Fig. 4  Error plots using S-mesh with � = 10
−2 and N = 64 for Example 2
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with m = M1,M1 + 1,… ,M1 + (M2∕2) and n = 0 ≤ n ≤ N . For the domain [�, 2�] , 
the following delayed parabolic problem is considered

(21)||z(xn, tm+1) − Zm+1
n

|| ≤
{

C(N−1 lnN + Δt) for S-mesh,

C(N−1 + Δt) for B−S-mesh,

(22)

⎧⎪⎨⎪⎩

L�z(x, t) ≡ �
− z

t
+ �z

xx
+ a(x)z

x
− b(x)z

�
(x, t)

= −z(x, t − �) + f (x, t) for (x, t) ∈ (F−
x
∪ F

+
x
) × [�, 2�],

z��Υ
d

= z�(x, t), z��Υ
l

= �
l
(t), z��Υ

r

= �
r
(t), � ≤ t ≤ 2�,

Fig. 5  Comparison graphs for Example 3

Table 1  Numerical results using the IE-UP scheme with Δt = 1∕N for Example 1

� Mesh Number of mesh intervals in space (N)

32 64 128 256 512

10
−2 S-mesh 1.1069e−1 7.6481e−2 4.8741e−2 2.9434e−2 1.7171e−2

0.5333 0.6499 0.7276 0.7775
B–S-mesh 7.9262e−2 4.5218e−2 2.4057e−2 1.2243e−2 6.1065e−3

0.8097 0.9104 0.9744 1.0035
10

−4 S-mesh 1.2430e−1 8.4948e−2 5.3528e−2 3.2219e−2 1.8782e−2
0.5491 0.6663 0.7323 0.7785

B–S-mesh 9.7777e−2 5.5911e−2 2.9496e−2 1.5047e−2 7.5704e−3
0.8063 0.9226 0.9710 0.9910

10
−6 S-mesh 1.2489e−1 8.5809e−2 5.3981e−2 3.2395e−2 1.8857e−2

0.5414 0.6686 0.7366 0.7806
B–S-mesh 9.8249e−2 5.6061e−2 2.9614e−2 1.5102e−2 7.6008e−3

0.8094 0.9207 0.9715 0.9905
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where z� is the solution obtained in [0, �] . All the conditions for the coefficients are 
similar as in (1). After decomposing the solution of (22), the regular and the bound-
ary layer components satisfy the following differential equations,

(23)

⎧⎪⎨⎪⎩

L�u(x, t) = −u(x, t − �) + f (x, t) for (x, t) ∈ (F−
x
∪ F

+
x
) × [�, 2�],

u��Υd
= z�(x, t), u��Υl

= z��Υl
(t), u��Υr

= z��Υr
(t),

u(�−, t) = �1(t), u(�+, t) = �2(t), � ≤ t ≤ 2�.

Table 2  Numerical results using the IE-HYB scheme with Δt = 0.8∕N for Example 1

� Mesh Number of mesh intervals in space (N)

32 64 128 256 512

10
−3 S-mesh 1.8432e−2 6.6666e−3 2.2587e−3 7.5037e−4 2.4890e−4

1.4672 1.5615 1.5898 1.5920
B–S-mesh 1.7447e−2 4.9658e−3 1.3202e−3 3.2094e−4 7.2791e−5

1.8129 1.9113 2.0403 2.1405
10

−5 S-mesh 1.9131e−2 6.8167e−3 2.2881e−3 7.4939e−4 2.5013e−4
1.4887 1.5749 1.6104 1.5830

B–S-mesh 1.8531e−2 5.6395e−3 1.6861e−3 4.9748e−4 1.4512e−4
1.7163 1.7419 1.7610 1.7774

10
−7 S-mesh 1.9139e−2 6.8235e−3 2.2930e−3 7.5250e−4 2.5014e−4

1.4880 1.5732 1.6075 1.5890
B–S-mesh 1.8543e−2 5.6473e−3 1.6910e−3 5.0021e−4 1.4670e−4

1.7152 1.7397 1.7573 1.7697

Table 3  Numerical results using the IE-UP scheme on S-mesh for Example 2

N  � = 10
−4  � = 10

−6

In F
l

In F
m

In F
r

In F
l

In F
m

In F
r

32 9.8443e−3 1.5674e−2 1.2921e−2 9.8706e−3 1.5717e−2 1.2955e−2
0.9768 0.6255 0.9071 0.9761 0.6253 0.9064

64 5.0018e−3 1.0159e−2 6.8900e−3 5.0178e−3 1.0189e−2 6.9117e−3
0.9888 0.6536 0.9562 0.9880 0.6535 0.9556

128 2.5204e−3 6.4581e−3 3.5510e−3 2.5297e−3 6.4769e−3 3.5639e−3
0.9948 0.7339 0.9790 0.9940 0.7338 0.9783

256 1.2647e−3 3.8831e−3 1.8015e−3 1.2701e−3 3.8947e−3 1.8089e−3
0.9977 0.7329 0.9899 0.9971 0.7334 0.9887

512 6.3334e−4 2.3364e−3 9.0707e−4 6.3633e−4 2.3425e−3 9.1115e−4
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Table 4  Numerical results using the IE-UP scheme on B–S-mesh for Example 2

N  � = 10
−4  � = 10

−6

In F
l

In F
m

In F
r

In F
l

In F
m

In F
r

32 9.8639e−3 1.4796e−2 1.2921e−2 9.8903e−3 1.4834e−2 1.2955e−2
0.9795 0.9068 0.9071 0.9787 0.9066 0.9064

64 5.0024e−3 7.8916e−3 6.8899e−3 5.0185e−3 7.9129e−3 6.9117e−3
0.9889 0.9408 0.9562 0.9882 0.9404 0.9556

128 2.5204e−3 4.1108e−3 3.5510e−3 2.5297e−3 4.1232e−3 3.5639e−3
0.9948 0.9654 0.9790 0.9940 0.9651 0.9783

256 1.2647e−3 2.1052e−3 1.8015e−3 1.2701e−3 2.1120e−3 1.8089e−3
0.9977 0.9818 0.9899 0.9971 0.9615 0.9893

512 6.3335e−4 1.0659e−3 9.0707e−4 6.3633e−4 1.0696e−3 9.1115e−4

Table 5  Numerical results using the IE-HYB scheme with M
1
= N

2 on S-mesh for Example 2

� ↓ N = 32 N = 64

In F
l

In F
m

In F
r

In F
l

In F
m

In F
r

10
−4 1.1785e−4 7.9954e−3 2.7176e−4 2.9289e−5 2.7732e−3 6.7761e−5

2.0086 1.5276 2.0038 2.0066 1.5457 2.0027
10

−6 1.1892e−4 7.9994e−3 2.7586e−4 2.9760e−5 2.7736e−3 6.9745e−5
1.9985 1.5282 1.9838 1.9977 1.5440 1.9830

10
−8 1.1893e−4 7.9995e−3 2.7590e−4 2.9764e−5 2.7736e−3 6.9765e−5

1.9984 1.5282 1.9836 1.9978 1.5440 1.9830

Table 6  Numerical results using the IE-HYB scheme with M
1
= N

2 on B–S-mesh for Example 2

� ↓ N = 32 N = 64

In F
l

In F
m

In F
r

In F
l

In F
m

In F
r

10
−4 1.1809e−4 1.3716e−3 2.7177e−4 2.9297e−5 4.6093e−4 6.7762e−5

2.0111 1.5732 2.0039 2.0107 1.6453 2.0027
10

−6 1.1915e−4 1.3631e−3 2.7586e−4 2.9764e−5 4.4978e−4 6.9745e−5
2.0012 1.5996 1.9838 2.0007 1.7330 1.9832

10
−8 1.1916e−4 1.3630e−3 2.7590e−4 2.9768e−5 4.4967e−4 6.9765e−5

2.0011 1.5999 1.9836 2.0003 1.7328 1.9829
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Table 7  Time comparison with Δt = 1∕N , � = 10
−4 for Example 2

Mesh↓   N → IE-UP scheme IE-HYB scheme

64 128 256 64 128 256

S-mesh 1.5643 49.4077 850.6895 1.5863 54.1807 852.6128
B–S-mesh 1.6346 53.2643 857.9753 1.6432 55.6461 859.0703

Table 8  Comparison of numerical results on S-mesh with Δt = 0.8∕N for Example 3

N ↓ � = 10
−3 � = 10

−5 � = 10
−7

IE-UP scheme IE-HYB 
scheme

IE-UP scheme IE-HYB 
scheme

IE-UP scheme IE-HYB 
scheme

32 1.0133e−1 1.8762e−2 1.0325e−1 1.9337e−2 1.0331e−1 1.9347e−2
0.5178 1.4855 0.5168 1.4991 0.5161 1.4984

64 7.0770e−2 6.7005e−3 7.2160e−2 6.8409e−3 7.2240e−2 6.8479e−3
0.6584 1.5649 0.6653 1.5783 0.6634 1.5766

128 4.4838e−2 2.2648e−3 4.5499e−2 2.2909e−3 4.5609e−2 2.2959e−3
0.7431 1.5915 0.7464 1.6114 0.7460 1.6085

256 2.6787e−2 7.5155e−4 2.7121e−2 7.4976e−4 2.7193e−2 7.5289e−4
0.7880 1.5781 0.7883 1.5627 0.7901 1.5686

512 1.5514e−2 2.5171e−4 1.5704e−2 2.5381e−4 1.5726e−2 2.5382e−4

Table 9  Comparison of numerical results on B–S-mesh with Δt = 0.8∕N for Example 3

N ↓ � = 10
−3 � = 10

−5 � = 10
−7

IE-UP scheme IE-HYB 
scheme

IE-UP scheme IE-HYB 
scheme

IE-UP scheme IE-HYB 
scheme

32 9.8595e−2 2.1285e−2 1.0054e−1 2.2399e−2 1.0056e−1 2.2411e−2
0.7629 1.9110 0.7567 1.8354 0.7566 1.8344

64 5.8100e−2 5.6599e−3 5.9501e−2 6.2768e−3 5.9516e−2 6.2841e−3
0.9022 1.9817 0.8945 1.8199 0.8943 1.8179

128 3.1087e−2 1.4331e−3 3.2007e−2 1.7778e−3 3.2018e−2 1.7823e−3
0.9656 2.0764 0.9615 1.8014 0.9614 1.7975

256 1.5919e−2 3.3979e−4 1.6436e−2 5.1006e−4 1.6443e−2 5.1274e−4
0.9889 2.0929 0.9899 1.7967 0.9898 1.7889

512 8.0209e−3 7.9648e−5 8.2758e−3 1.4681e−4 8.2798e−3 1.4838e−4
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The boundary layer component satisfies

The fully discrete scheme of (22) is given by

where

and

To approximate the nodal error throughout the domain, the discrete solution of 
(25) needs to be decomposed into regular and boundary layer components as 
Zm+1
n

= Um+1
n

+ Vm+1
n

 . Let Ul and Ur be two functions that approximate u to the left 
and right ends of the discontinuity x = � as

and

(24)

⎧
⎪⎨⎪⎩

L�v(x, t) = −v(x, t − �), for (x, t) ∈ (F−
x
∪ F

+
x
) × [�, 2�],

v��Υd
= 0, v��Υl

= 0, v��Υr
= 0,

[v](�, t) = −[u](�, t)

�
�v

�x

�
(�, t) = −

�
�u

�x

�
(�, t), � ≤ t ≤ 2�.

(25)

⎧
⎪⎪⎨⎪⎪⎩

LN,M
up

Zm+1
n

≅ F̃up,

m = M1 + (M2∕2),… ,M and n = 1,… , (N − 1),

Z
m+1−M1

n = Z�(xn, tm+1−M1
),

for m = M1 + (M2∕2),… ,M and n = 1,… , (N − 1),

Zm+1
0

= �l(tm+1), Zm+1
N

= �r(tm+1) for m = M1 + (M2∕2),… ,M,

LN,M
up

Zm+1
n

≅

⎧⎪⎪⎨⎪⎪⎩

𝜀D+
x
D−

x
Zm+1
n

+ anD
−
x
Zm+1
n

− bnZ
m+1
n

− D−
t
Zm+1
n

,

if 1 < n <
N

2
,

𝜀D+
x
D−

x
Zm+1
n

+ anD
+
x
Zm+1
n

− bnZ
m+1
n

− D−
t
Zm+1
n

,

if
N

2
+ 1 < n ≤ N,

D+
x
Zm+1
n

− D−
x
Zm+1
n

, if n =
N

2
,

�Fup =

{
f m+1
n

− Z
m+1−M1

n , if 1 <
N

2
and

N

2
+ 1 ≤ n ≤ N + 1,

0, if n =
N

2
.

(26)

⎧⎪⎪⎨⎪⎪⎩

LN,M
up

Um+1
l,n

= −U
m+1−M1

l,n
+ f m+1

n
,

m = M1 + (M2∕2),… ,M, n = 0, 1,… ,
N

2
− 1,

Um+1
l,0

= u(x0, tm+1), Um+1
l,N∕2

= u(�−, tm+1), m = M1 + (M2∕2),… ,M,

U
m+1−M1

l,n
= Z�(xn, tm+1−M1

), m = M1 + (M2∕2),… ,M, n ≤ N

2
,

(27)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

LN,Mup Um+1
r,n = −Um+1−M1

r,n + f m+1n ,
m = M1 + (M2∕2),… ,M, n = N

2 ,… ,N,
Um+1
r,N = u(xN , tm+1), Um+1

r,N∕2 = u(�+, tm+1), m = M1 + (M2∕2),… ,M,
Um+1−M1
r,n = Z�(xn, tm+1−M1

), m = M1 + (M2∕2),… ,M, n ≥ N
2 .
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So, the discrete functions approximating the boundary layer component (V) at both 
sides of x = � , satisfy the following equations for m = M1 + (M2∕2),… ,M,

Thus, when m = M1 + (M2∕2),… ,M , Zm+1
n

 can be decomposed as

The error at the node (xn, tm+1) can be written as

Error in the outer region: In this section, the error for 1 ≤ n ≤ (N∕4) and 
(3N∕4) ≤ n ≤ (N − 1) is discussed for both the regular and boundary layer 
component. Corresponding to the smooth component for 1 ≤ n ≤ (N∕4) and 
m = M1 + (M2∕2),… ,M , we have

Now for 1 ≤ n ≤ (N∕4) and m = M1 + (M2∕2),… ,M , the following truncation error 
bound can be obtained using (23) and (26):

Using the bounds mentioned in Theorem 3, hn ≤ CN−1 , the assumption � ≤ N−1 and 
the barrier function

we get,

(28)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

LN,M
up

Vm+1
l,n

= −V
m+1−M1

l,n
for n = 0, 1,… ,

N

2
− 1,

LN,M
up

Vm+1
r,n

= −V
m+1−M1

r,n for n =
N

2
+ 1,… ,N − 1,

Vm+1
l,0

= 0, Vm+1
r,N

= 0,

Vm+1
l,N∕2

+ Um+1
l,N∕2

= Vm+1
r,N∕2

+ Um+1
r,N∕2

,

D+
x
Vm+1
l,N∕2

+ D+
x
Um+1

l,N∕2
= D−

x
Vm+1
r,N∕2

+ D−
x
Um+1

r,N∕2
,

V
m+1−M1

l,n
= 0, n ≤ N

2
, V

m+1−M1

r,n = 0, n ≥ N

2
.

(29)Zm+1
n

=

⎧
⎪⎨⎪⎩

Um+1
l,n

+ Vm+1
l,n

for n = 1, 2,… ,
N

2
− 1,

Um+1
l,n

+ Vm+1
l,n

= Um+1
r,n

+ Vm+1
r,n

for n =
N

2
,

Um+1
r,n

+ Vm+1
r,n

for n =
N

2
+ 1,… ,N − 1.

(z − Z)(xn, tm+1) = (u − U)(xn, tm+1) + (v − V)(xn, tm+1).

||||L
N,M
up

(Um+1
l,n

− um+1
n

)
|||| = (U

m+1−M1

l,n
− um+1−M1

n
) +

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

L�u
m+1
n

− LN,M
up

Um+1
l,n

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

= (Z� − z�)(xn, tm+1−M1
) +

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

L�u
m+1
n

− LN,M
up

Um+1
l,n

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

.

||||L
N,M
up

(Um+1
l,n

− um+1
n

)
||||

≤ C(N−1 + Δt) +
⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

(L� − LN,M
up

)um+1
n

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

≤ C(N−1 + Δt) + C

[
�

12
h2
n

‖‖‖‖
�4u

�x4

‖‖‖‖∞ +
hn

2
a(xn)

‖‖‖‖
�2u

�x2

‖‖‖‖∞ +
Δt

2

‖‖‖‖
�2u

�t2

‖‖‖‖∞
]
.

Ψl,n = −C(N−1 + Δt)xn, 1 ≤ n ≤ (N∕4),
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Since, LN,M
up

 satisfies Lemma 4 and the inverse of this operator is uniformly bounded, 
this inequality gives

Likewise, employing a new barrier function for the right-hand side of discontinuity 
as

the error bound with m = M1 + (M2∕2),… ,M , can be found to be

Now, since the boundary layer components satisfy the differential equations in (28), 
following arguments similar to those given in [21, Lemma 4.2], one can have

for m = M1 + (M2∕2),… ,M.
Error inside the layer region: From (32), for m = M1 + (M2∕2),… ,M , it is 

straightforward to write

Now, following the similar arguments used for the regular components out-
side the layer region, the following truncation error bound can be obtained for 
(N∕4) + 1 ≤ n ≤ (N∕2) − 1 and m = M1 + (M2∕2),… ,M,

Again, using the fact that hn ≤ CN−1 , the assumption � ≤ N−1 , the bounds mentioned 
in Theorem 3, and the barrier function Ψl,n along with the discrete maximum princi-
ple, we have

||||L
N,M
up

(Um+1
l,n

− um+1
n

)
|||| ≤ C(N−1 + Δt), m = M1 + (M2∕2),… ,M, 1 ≤ n ≤ N

4
− 1.

(30)
|(Um+1

l,n
− um+1

n
)| ≤ C(N−1 + Δt), m = M1 + (M2∕2),… ,M, 1 ≤ n ≤ N

4
− 1.

Ψr,n = −C(N−1 + Δt)(1 − xn), n ≥ (N∕2),

(31)|(Um+1
r,n

− um+1
n

)| ≤ C(N−1 + Δt), (3N∕4) + 1 ≤ n ≤ (N − 1).

(32)
{ |(Vm+1

l,n
− vm+1

n
)| ≤ C(N−1 + Δt), 1 ≤ n ≤ (N∕4),

|(Vm+1
r,n

− vm+1
n

)| ≤ C(N−1 + Δt), (3N∕4) ≤ n ≤ (N − 1),

(33)|Zm+1
n

− z(xn, tm+1)| ≤ C(N−1 + Δt) for n = (N∕4), (3N∕4).

||||L
N,M
up

(Um+1
l,n

− um+1
n

)
|||| ≤C(N

−1 lnN + Δt) +
⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

(L� − LN,M
up

)um+1
n

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

≤C(N−1 lnN + Δt) + C

[
�

3
(hn + hn+1)

‖‖‖‖
�3u

�x3

‖‖‖‖∞
+

hn

2
a(xn)

‖‖‖‖
�2u

�x2

‖‖‖‖∞ +
Δt

2

‖‖‖‖
�2u

�t2

‖‖‖‖∞
]
.

(34)|(Um+1
l,n

− um+1
n

)| ≤ C(N−1 lnN + Δt), (N∕4) + 1 ≤ n ≤ (N∕2) − 1,
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for m = M1 + (M2∕2),… ,M . Similarly, using Ψr,n and a similar approach, one can 
find

Using Taylor’s formula with the integral form of the remainder as in [26] and Theo-
rem 3, for n = (N∕4) + 1,… , (N∕2) − 1 and m = M1 + (M2∕2),… ,M , we have

Similarly, for n = (N∕2) + 1,… , (3N∕4) − 1 and m = M1 + (M2∕2),… ,M , we have

Now, for xN∕2 = � and m = M1 + (M2∕2),… ,M , it is

In order to obtain bounds for (36), (37) and (38), the approach in [21] can be fol-
lowed. Now, combining the obtained bounds along with (21) and (30)–(35), the 
proof is complete.

Proof of Theorem 7

At the time subinterval [0, �] , the right-hand side of our approach (16) is independent 
of � , so following the approach in [15] on S-mesh, the error bounds can be obtained as

(35)|(Um+1
r,n

− um+1
n

)| ≤ C(N−1 lnN + Δt), (N∕2) + 1 ≤ n ≤ (3N∕4) − 1.

(36)

||||L
N,M
up

(Zm+1
n

− zm+1
n

)
|||| ≤ C

[
��

xn+1

xn−1

||||
�3z

�x3

||||dx + �
xn+1

xn

||||
�2z

�x2

||||dx
]
+ CΔt

‖‖‖‖
�2z

�t2

‖‖‖‖∞
≤ C

[
hn + �−2 �

xn+1

xn−1

exp(−(� − x)�1∕�)dx

]
+ CΔt.

(37)
||||L

N,M
up

(Zm+1
n

− zm+1
n

)
|||| ≤ C

[
hn + �−2 �

xn+1

xn−1

exp(−(x − �)�2∕�)dx

]
+ CΔt.

(38)

||||(D
+
x
− D−

x
)(Zm+1

N∕2
− zm+1

N∕2
)
|||| =

||||(D
−
x
− D+

x
)zm+1

N∕2
−

[
�z

�x

]
(xN∕2, tm+1)

||||
≤ ||||(D

−
x
−

�z

�x
(xN∕2, tm+1)

|||| +
||||(D

+
x
−

�z

�x
(xN∕2, tm+1)

||||
≤ C(hN∕2 + hN∕2+1)

+ C�−2
(
�

xN∕2

xN∕2−1

exp(−(� − x)�1∕�)dx

+ �
xN∕2+1

xN∕2

exp(−(x − �)�2∕�)dx

)
.

(39)��z(xn, tm+1) − Zm+1
n

�� ≤
⎧⎪⎨⎪⎩

C(N−2 + Δt) for 1 ≤ n ≤ N

4
,

C(N−2 ln2 N + Δt) for
N

4
+ 1 ≤ n ≤ 3N

4
− 1,

C(N−2 + Δt) for
3N

4
≤ n ≤ (N − 1),
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and on B–S-mesh is

with m = M1,M1 + 1,… ,M1 + (M2∕2) . For the domain [�, 2�] , the fully discrete 
scheme in (22) is given by,

where

and

The decomposition of the discrete solution of (16) is done in the same way as the 
IE-UP scheme. Now, with m = M1 + (M2∕2),… ,M , Ul and Ur are the solutions to 
the following equations,

and

(40)||z(xn, tm+1) − Zm+1
n

|| ≤ C(N−2 + Δt) for 1 ≤ n ≤ (N − 1),

(41)

⎧
⎪⎪⎨⎪⎪⎩

L
N,M

hy
Zm+1
n

≅ F̃hy,

m = M1 + (M2∕2),… ,M and n = 1,… , (N − 1),

Z
m+1−M1

n = Z�(xn, tm+1−M1
),

for m = M1 + (M2∕2),… ,M and n = 1,… , (N − 1),

Zm+1
0

= �l(tm+1), Zm+1
N

= �r(tm+1), m = M1 + (M2∕2),… ,M,

L
N,M

hy
Zm+1
n

≅

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

L
N,M,(−)

mid
Zm+1
n

= 𝜀D+
x
D−

x
Zm+1
n

+ an−1∕2D
−
x
Zm+1
n

−bn−1∕2Z
m+1
n−1∕2

− D−
t
Zm+1
n−1∕2

, if 1 < n ≤ N

4
,

LN,M
cen

Zm+1
n

= 𝜀D+
x
D−

x
Zm+1
n

+ anD
0
x
Zm+1
n

−bnZ
m+1
n

− D−
t
Zm+1
n

, if
N

4
+ 1 < n <

N

2

and
N

2
+ 1 ≤ n <

3N

4
,

L
N,M,(+)

mid
Zm+1
n

= 𝜀D+
x
D−

x
Zm+1
n

+ an+1∕2D
+
x
Zm+1
n

−bn+1∕2Z
m+1
n+1∕2

− D−
t
Zm+1
n+1∕2

, if
3N

4
≤ n ≤ N,

DF
x
Zm+1
n

− DB
x
Zm+1
n

, if n =
N

2
,

�Fhy =

⎧
⎪⎪⎨⎪⎪⎩

f m+1
n−1∕2

− Z
m+1−M1

𝜌,n−1∕2
, if 1 < n ≤ N

4
,

f m+1
n

− Z
m+1−M1

𝜌,n , if
N

4
+ 1 < n <

N

2
and

N

2
+ 1 ≤ n <

3N

4
,

f m+1
n+1∕2

− Z
m+1−M1

𝜌,n+1∕2
, if

3N

4
≤ n ≤ N,

0, if n =
N

2
.

(42)

⎧⎪⎨⎪⎩

L
N,M

hy
Um+1

l,n
= −U

m+1−M1

l,n
+ f m+1

n
for n = 0, 1,… ,

N

2
− 1,

Um+1
l,0

= u(x0, tm+1), Um+1
l,N∕2

= u(�−, tm+1),

U
m+1−M1

l,n
= Z�(xn, tm+1−M1

), n ≤ N

2
,
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The discrete functions approximating the boundary layer component (V) at both the 
sides of x = � , satisfy the following equations with m = M1 + (M2∕2),… ,M.

Error in the outer region:
In this section, the error for 1 ≤ n ≤ (N∕4) and (3N∕4) ≤ n ≤ N − 1 is discussed 

for both the regular and boundary layer component. Corresponding to the smooth 
component for 1 ≤ n ≤ (N∕4) and m = M1 + (M2∕2),… ,M , we have

Now, the following truncation error bound can be obtained using (23) and (42) for 
m = M1 + (M2∕2),… ,M and 1 ≤ n ≤ N

4
:

With a similar approach as the IE-UP scheme and using Ψl,n = −C(N−2 + Δt)xn , the 
following can be obtained for m = M1 + (M2∕2),… ,M

Using Lemma 5, one can have

(43)

⎧
⎪⎨⎪⎩

L
N,M

hy
Um+1

r,n
= −U

m+1−M1

r,n + f m+1
n

for n =
N

2
,… ,N,

Um+1
r,N

= u(xN , tm+1), Um+1
r,N∕2

= u(�+, tm+1),

U
m+1−M1

r,n = Z�(xn, tm+1−M1
), n ≥ N

2
.

(44)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

L
N,M

hy
Vm+1
l,n

= −V
m+1−M1

l,n
for n = 0, 1,… ,

N

2
− 1,

L
N,M

hy
Vm+1
r,n

= −V
m+1−M1

r,n for n =
N

2
+ 1,… ,N − 1,

Vm+1
l,0

= 0, Vm+1
r,N

= 0,

Vm+1
l,N∕2

+ Um+1
l,N∕2

= Vm+1
r,N∕2

+ Um+1
r,N∕2

,

DF
x
Vm+1
l,N∕2

+ DF
x
Um+1

l,N∕2
= DB

x
Vm+1
r,N∕2

+ DB
x
Um+1

r,N∕2
,

V
m+1−M1

l,n
= 0, n ≤ N

2
and V

m+1−M1

r,n = 0, n ≥ N

2
.

||||L
N,M

hy
(Um+1

l,n
− um+1

n
)
|||| = (U

m+1−M1

l,n
− um+1−M1

n
) +

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

L�u
m+1
n

− L
N,M

hy
Um+1

l,n

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

= (Z� − z�)(xn, tm+1−M1
) +

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

L�u
m+1
n

− L
N,M

hy
Um+1

l,n

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

.

||||L
N,M

hy
(Um+1

l,n
− um+1

n
)
|||| ≤C(N

−2 + Δt) +
⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

(L� − L
N,M

hy
)um+1

n

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

≤C(N−2 + Δt) + C

[
(� + hn)(hn + hn+1)

‖‖‖‖
�3u

�x3

‖‖‖‖∞
+ h2

n

(‖‖‖‖
�2u

�x2

‖‖‖‖∞ +
‖‖‖‖
�u

�x

‖‖‖‖∞
)
+ Δt

‖‖‖‖
�2u

�t2

‖‖‖‖∞
]
.

||||L
N,M

hy
(Um+1

l,n
− um+1

n
)
|||| ≤ C(N−2 + Δt), 1 ≤ n ≤ (N∕4) − 1.

(45)|(Um+1
l,n

− um+1
n

)| ≤ C(N−2 + Δt), 1 ≤ n ≤ (N∕4) − 1,
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for m = M1 + (M2∕2),… ,M . Likewise using Ψr,n = −C(N−2 + Δt)(1 − xn) , the 
error bound can be found to be

Following arguments given in [Lemma 5.8, [15]], we get

Error inside the layer region:
From (47), it is straightforward to write

The truncation error bound for (N∕4) + 1 ≤ n ≤ (N∕2) − 1 is given by,

Again, using the fact that hn ≤ CN−1 , the assumption � ≤ N−1 , the bounds mentioned 
in Theorem 3, and the baarier function Ψl,n along with the discrete maximum princi-
ple, we have

with m = M1 + (M2∕2),… ,M . Using Ψr,n with a similar approach, one can find

For n = (N∕4) + 1,… , (N∕2) − 1 and m = M1 + (M2∕2),… ,M , we have

Similarly, for n = (N∕2) + 1,… , (3N∕4) − 1 and m = M1 + (M2∕2),… ,M , we have

(46)|(Um+1
r,n

− um+1
n

)| ≤ C(N−2 + Δt), (3N∕4) + 1 ≤ n ≤ (N − 1).

(47)
{ |(Vm+1

l,n
− vm+1

n
)| ≤ C(N−2 + Δt), 1 ≤ n ≤ (N∕4),

|(Vm+1
r,n

− vm+1
n

)| ≤ C(N−2 + Δt), (3N∕4) ≤ n ≤ (N − 1).

(48)|Zm+1
n

− z(xn, tm+1)| ≤ C(N−2 + Δt) for n = N∕4, 3N∕4.

||||L
N,M

hy
(Um+1

l,n
− um+1

n
)
|||| ≤C(N

−2 ln2 N + Δt) +
⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

(L� − L
N,M

hy
)um+1

n

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

≤C(N−2 ln2 N + Δt)

+ C

[
h2
(
�
‖‖‖‖
�4u

�x4

‖‖‖‖∞ +
‖‖‖‖
�3u

�x3

‖‖‖‖∞
)
+ Δt

‖‖‖‖
�2u

�t2

‖‖‖‖∞
]
.

(49)|(Um+1
l,n

− um+1
n

)| ≤ C(N−2 ln2 N + Δt), (N∕4) + 1 ≤ n ≤ (N∕2) − 1,

(50)|(Um+1
r,n

− um+1
n

)| ≤ C(N−2 ln2 N + Δt), (N∕2) + 1 ≤ n ≤ (3N∕4) − 1.

(51)

||||L
N,M

hy
(Zm+1

n
− zm+1

n
)
||||

≤ h�
xn+1

xn−1

(
�
||||
�4z

�x4

||||dx +
||||
�3z

�x3

||||dx
)
+ CΔt

‖‖‖‖
�2z

�t2

‖‖‖‖∞
≤ Ch2 + Ch�−2

[
exp(−(� − xn+1)�1∕�) − exp(−(� − xn−1)�1∕�)

]
+ CΔt

≤ C

[
h2 + h�−2 exp(−(� − xn)�1∕�) sinh(�1h∕�)

]
+ CΔt.
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Using (17) for xN∕2 = � and m = M1 + (M2∕2),… ,M , one can have

Now, using (51)–(52), the following can be obtained

The bounds for (51), (52) and (53) can be obtained by following the approach in 
[15, Theorem 5.12]. The proof is completed by combining the obtained bounds for 
(51)–(53) along with (39)–(40) and (45)–(50).
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