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Abstract

In the past decades, many applications related to applied physics, physiology and astrophysics have been modelled using a
lass of two-point singular boundary value problems (SBVPs). In this article, a novel approach based on the shooting projection
ethod and the Legendre wavelet operational matrix formulation for approximating a class of two-point SBVPs with Dirichlet

nd Neumann–Robin boundary conditions is proposed. For the new approach, an initial guess is postulated in contrast to the
oundary conditions in the first step. The second step deals with the usage of the Legendre wavelet operational matrix method
o solve the initial value problem (IVP). Further, the resulting solution of the IVP is utilized at the second endpoint of the
omain of a differential equation in a shooting projection method to improve the initial condition. These two steps are repeated
ntil the desired accuracy of the solution is achieved. To support the mathematical formulation, a detailed convergence analysis
f the new approach is conducted. The new approach is tested against some existing methods such as various types of the
ariational iteration method, considering several numerical examples to which it provides high-quality solutions.
2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

eserved.

eywords: Two-point singular boundary value problem; Shooting-projection method; Legendre wavelets; Operational matrix of integration;
onvergence analysis

1. Introduction

Boundary value problems have been the subject of many studies in the areas of elastic beams [1], astrophysics
2–6] and chemistry [7] in the last few decades. Other relevant applications of these equations can be found in the
hermal behavior of spherical gas clouds, the theory of thermionic current, Thomas–Fermi type equations, the flow
n a circular cylindrical conduit, a nonlinear heat conduction model in a human head, and the mathematical model
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of spherical biocatalyst equation (see [8] and references therein). In this paper, the following class of two-point
singular boundary value problems (SBVPs) is considered

−(xα y′)′ = xα f (x, y), x ∈ (0, 1), (1)

ubject to the boundary conditions

y(0) = c1, y(1) = c2, (2)

r to

y′(0) = c3, y(1) = c4, (3)

here α > 0, c1, c2, c3 and c4 are real constants, and f (x, y) ∈ C([0, 1] × [0,∞), [0,∞)). The singular behavior
of the differential equation (1) at x = 0, poses difficulties for obtaining the solution of problems (1)–(2) or (1)–(3).
Eq. (1) is known as the Emden–Fowler equation in the literature. Although the exact solutions are known in few
cases, finding the exact solution of this problem is very difficult due to its complex nature. This leads researchers
to develop numerical approaches for computing the solution.

There are several numerical techniques available to deal with SBVPs such as block methods [9–11], a spline
method [12], a B-spline method [13], the variational iteration method [14], the homotopy analysis method
(HAM) [15–17], the homotopy perturbation method (HPM) [16,18,19], collocation methods [20,21], a spectral
method [22], the localized collocation method [23], singular boundary methods [24,25] or the Adomian decom-
position method [26,27]. Chawla and Subramanian [12] have developed a new spline method to find a numerical
solution of the differential equation (DE) (1) with the boundary conditions y′(0) = 0, y(1) = A. Çağlar et al. [13]
have developed a method based on B-splines to deal with the differential equation (1) with the boundary conditions
y′(0) = 0, αy(1) + βy′(1) = γ . Singh et al. [28] have depicted a Quasi-Newton Method (in fact a variational
iteration method) to solve problem (1) with α ≥ 1 and boundary conditions y′(0) = A, a1 y(1) + b1 y′(1) = c1 or
y′(0) = 0, y(1) = δy(η), 0 < η < 1. Roul and Biswal [17] used a recursive scheme based on a combination of an
integral equation formalism and the homotopy analysis method for the numerical solution of (1) with the boundary
conditions y′(0) = 0, µy(1) + δy′(1) = B.

All the merits and demerits of the aforementioned numerical methods are discussed below. The Adomian
decomposition method is a demonstrable, sustainable and rapidly convergent method, but the major issue with
this method is to construct the complicated Adomian polynomials. Turkyilmazoglu [29] proposed an analytical
approach to determine the convergence of the homotopy series and found that for particular initial guesses the
convergence-control parameter does not satisfy the HPM. The HAM does not guarantee the convergence of the
approximate solution to the desired solution [30]. The spline and B-spline methods provide the approximate
solution accurately, but at a high computational expense. In recent decades, wavelets have become a powerful
tool for the numerical solution of BVPs. Wavelets are useful numerical techniques due to their compact support
and orthogonality. Wavelets are called numerical microscopes due to their ability to represent functions at different
levels of resolution. Wavelets based numerical techniques are available for (1) with the Dirichlet boundary conditions
in (2), or the Neumann–Robin conditions in (3) [8,31,32].

Analytical results are also discussed in numerous research articles on two-point SBVPs (see [33–35] and the
references therein). Chawla and Shivakumar [33] have stated that the SBVP (1) with y′(0+) = 0, y(1) = A, has
a unique solution if u∗ < k1 where u∗

= sup ∂ f
∂y and k1 is the first positive zero of J(α−1)/2(

√
k), with Jν(z) the

Bessel’s function of first kind and order ν. Pandey [34] has discussed an existence theorem about the uniqueness
of the SBVPs −(p(x)y′)′ = p(x) f (x, y), 0 < x ≤ b, limx→0+ y′(0) = 0, y(b) = B.

This article aims at introducing an advanced numerical approach based on a combination of a shooting projection
ethod and the Legendre wavelet operational matrix method for approximating two-point SBVPs. The basic idea

f any shooting method for solving SBVPs is to replace a boundary condition (BC) with an initial condition (IC),
ence transforming it into an initial value problem (IVP). In the literature, several numerical techniques are available
o find numerical solutions of IVPs (see [20,36–38] and references therein).

In this work, the Legendre wavelet operational matrix approach is adapted and implemented to solve the IVP due
o its orthogonality and mutual spectral accuracy. The value provided by this approach is used at the right end of the
omain in (1) through an iterative formula, namely the shooting projection method in [39], to get improved initial
onditions. To find the numerical solution of these IVPs, the Legendre wavelet operational matrix of integration
31
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method is implemented (details can be found in [32,40]). The product operation of the Legendre wavelets, the
operational matrix of integration, and the integer power of a function are computed on the interval

[
n−1
2k−1 ,

n
2k−1

)
which decreases the computational complexity, hence increasing the efficiency of the method. The Legendre wavelet
operational matrix method converts the IVP into an equivalent system of a nonlinear algebraic equations that speeds
up the process of obtaining an approximate solution of the IVP.

The rest of the work is organized as follows. A description of the formulations of the shooting projection method
and that of the Legendre wavelet operational matrix method are provided in Sections 2.1 and 2.2, respectively.
Section 3 is devoted to provide a new methodology to tackle SBVPs (1)–(3) and the convergence analysis is
discussed in Section 4. In Section 5, a number of examples are performed to assess the applicability and efficiency
of the proposed technique. Finally, Section 6 is used to present the conclusions of the current work.

2. Numerical approaches

The Legendre wavelet operational matrix method yields very accurate approximations for IVPs. So, to handle
a two-point singular BVP, we propose to combine two methods: (a) the shooting projection method, and (b) the
Legendre wavelet operational matrix method. In the following lines it is outlined how to apply those techniques to
the considered problem.

2.1. The shooting-projection method

Consider the two-point SBVP (1)–(2) or (1)–(3). The rationale behind the shooting method is to transform a
SBVP into an IVP. So after changing the boundary conditions (2) and (3) by the initial conditions

y(0) = c1, y′(0) = µ0, (4)

r

y(0) = η0, y′(0) = c3, (5)

espectively, we assume that the transformed problems have the same solution as the SBVP (1)–(2) or (1)–(3). Here,
0 and η0 are two unknowns.

Thus, the main objective is to find the values of the unknowns µ0 and η0, such that the transformed IVP has
he same solution as the corresponding SBVP. So, to find the values of µ0 and η0, we have developed two iterative
ormulas in the next two sub-subsections, corresponding to the boundary conditions (2) and (3), respectively.

.1.1. Iterative formula (I)
Let γ0 be the initial guess of y′(0) corresponding to the SBVP (1)–(2), and y(x, γ0) be the obtained solution of

he IVP, satisfying y(0, γ0) = c1 and y′(0, γ0) = γ0. Usually, the solution y(x, γ0) does not satisfy the second BC,
hat is, there is a deviation e(γ0) given by

e(γ0) = y(1, γ0) − c2.

t is clear that the solution of the IVP will also be the solution of the SBVP (1)–(2) if e(γ0) = 0, that is, γ0 = µ0.
his means that µ0 should be a root of e(γ0). So, we require a root finding procedure to solve e(γ0) = 0.

Let us consider an auxiliary function y∗, a non-classical H 1-projection of the solution y(x, γ0) of the IVP, which
atisfies (2), and minimizes the H 1 semi-norm of the difference between y(x) and y∗(x), that is, it minimizes the
unctional

F(y∗) =

∫ 1

0
(y∗′

− y′)2dx . (6)

herefore, it holds the following Euler–Lagrange equation

d
dx

(
∂(y∗′

− y′)2

∂ y∗′

)
−
∂(y∗′

− y′)2

∂y∗
= 0, x ∈ (0, 1). (7)

Differentiating (7), we get
∗′′ ′′
y = y . (8)
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Integrating (8), from 0 to x leads to

y∗′(x) − y′(x) = γ ∗

0 − γ0. (9)

Here y′(0) = γ0 and y∗′(0) = γ ∗

0 . Multiplying (9) by xα , we get

xα(y∗′(x) − y′(x)) = xα(γ ∗

0 − γ0). (10)

γ ∗

0 − γ0 → 0 as γ ∗

0 and γ0 approach µ0. Thus, from Eq. (10), the following expression is obtained:

xα y∗′(x) = xα y′(x), (11)

hich implies that

(xα y∗′(x))′ = (xα y′(x))′. (12)

ince the solution y of the IVP must satisfy the differential equation (1), then (xα y′(x))′ can be replaced with
xα f (x, y) in Eq. (12). Further, the application of the Taylor series expansion to the function f (x, y) around ‘y∗’

rovides

− (xα y∗′)′ = xα
(

f (x, y∗) + fy(x, y)|y=y∗ (y − y∗) +
1
2

fyy(x, y)|y=y∗ (y − y∗)2
+ · · ·

)
. (13)

Since y∗ is close to y as γ0 approaches µ0, y∗ satisfies the differential equation (1) approximately and, therefore
y∗ is an approximate solution of the SBVP (1)–(2).

To get an improved initial condition corresponding to the SBVP (1)–(2), integrating (9) from 0 to 1, we have

γ ∗

0 = γ0 − e(γ0). (14)

This is a shooting-projection iterative formula to improve the remaining initial guess of the IVP corresponding to
the SBVP (1)–(2).

2.1.2. Iterative formula (II)
In a similar fashion, let λ0 be the initial guess of y(0), corresponding to the SBVP (1)–(3), and y(x, λ0) be the

obtained solution of the IVP, satisfying y(0, λ0) = λ0, y′(0) = c3. In most cases, the solution y(x, λ0) does not
satisfy the second boundary condition, that is, there is a deviation given by

ē(λ0) = y(1, λ0) − c4.

learly, the solution of the IVP will also be the solution of the SBVP (1)–(3), if ē(λ0) = 0, that is, λ0 = η0. This
eans that η0 should be a root of ē(λ0) = 0. So, we require a root finding procedure to solve ē(λ0) = 0.
Let us consider an auxiliary function y∗, a non-classical H 1-projection of the solution y(x, λ0) of the IVP, which

atisfies the first BC in (3), and minimizes the H 1 semi-norm of the difference between y(x) and y∗(x), that is, it
inimizes the functional

F(y∗) =

∫ 1

0
(y∗′

− y′)2dx . (15)

herefore, it holds the following Euler–Lagrange equation

d
dx

(
∂(y∗′

− y′)2

∂ y∗′

)
−
∂(y∗′

− y′)2

∂y∗
= 0, x ∈ (0, 1). (16)

ifferentiating (16), we get

y∗′′
= y′′. (17)

ntegrating (17) from 0 to x leads to

y∗′(x) − c3 = y′(x) − c3, (18)

hich implies
∗′ ′
y (x) = y (x). (19)
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Multiplying (19) by xα , we get

xα y∗′(x) = xα y′(x), (20)

nd differentiating this we arrive at

(xα y∗′(x))′ = (xα y′(x))′. (21)

ince the solution y of the IVP must satisfy the differential equation (1), then (xα y′(x))′ can be replaced with
xα f (x, y) in Eq. (21). Further, the application of the Taylor series expansion to the function f (x, y) around ‘y∗’

rovides

− (xα y∗′)′ = xα
(

f (x, y∗) + fy(x, y)|y=y∗ (y − y∗) +
1
2

fyy(x, y)|y=y∗ (y − y∗)2
+ · · ·

)
. (22)

Since y∗ is close to y as λ0 approaches η0, then y∗ satisfies the differential equation (1) approximately and y∗ is an
pproximate solution of the SBVP (1)–(3). To get an improved initial condition corresponding to the SBVP (1)–(3),
ntegrating (19) from 0 to 1, we have

λ∗

0 = λ0 − ē(λ0). (23)

his is a shooting-projection iterative formula to improve the remaining initial guess of the IVP corresponding to
he SBVP (1)–(3).

.2. Legendre wavelet operational matrix method (LWOMM)

The Legendre wavelet approach and its comprehensive properties are given in [32,40]. Here we briefly introduce
he Legendre wavelet method and its operational matrix of integration. Yousefi [32] has defined a family of Legendre
avelets in terms of Legendre polynomials (Pm) for any positive integers M and k, as

ψnm(x) =

{ √
2k(m +

1
2 )Pm(2k x − n̂),

n − 1
2k−1 ≤ x ≤

n
2k−1

0, otherwise.
(24)

ere, n̂ = 2n − 1, n = 1, 2, 3, . . . , 2(k−1) and m = 0, 1, 2, 3, . . . ,M − 1, M is the maximum possible order of
he Legendre polynomial. Particularly, for M = 3 and k = 2, we obtain six wavelet basis functions on the interval
0, 1], defined by

ψ10(x) =
√

2,

ψ11(x) =
√

6(4x − 1), 0 ≤ x ≤
1
2

(25)

ψ12(x) =

√
10
2

(
3(4x − 1)2

− 1
)
,

ψ20(x) =
√

2,

ψ21(x) =
√

6(4x − 3),
1
2

≤ x ≤ 1 (26)

ψ22(x) =

√
10
2

(
3(4x − 3)2

− 1
)
.

very function f ∈ L2[0, 1] can be written in the form of an infinite series of Legendre wavelets using the theory
of multi-resolution [40] as follows

f (x) =

∞∑
n=1

∞∑
m=0

cnmψnm(x), (27)

here

c =
⟨
f (x), ψ (x)

⟩
. (28)
nm nm
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Here, ⟨., .⟩ represents the inner product on L2[0, 1]. A suitable truncation of (27) yields

f (x) ≈

2k−1∑
n=1

M−1∑
m=0

cnmψnm(x) = CTψ(x), (29)

here C and ψ(x) are vectors given by

C = [c10, c11, . . . , c1M−1, c20, . . . , c2M−1, . . . , c2k−10, . . . , c2k−1 M−1]T ,

ψ(x) = [ψ10(x), ψ11(x), . . . , ψ1M−1(x), ψ20(x), . . . , ψ2M−1(x), . . . , ψ2k−10(x), . . . , ψ2k−1 M−1(x)]T .

For our convenience, we rewrite the right hand side in (29) as

CTψ(x) =

2k−1∑
n=1

CT
n ψn(x), (30)

here

Cn = [cn0, cn1, . . . , cnM−1]T ,

ψn(x) = [ψn0(x), ψn1(x), . . . , ψnM−1(x)]T ,

n order to facilitate the computations with the Lagrange operational matrix on the sub-intervals
[

n−1
2k−1 ,

n
2k−1

)
.

Now, the Legendre wavelet operational matrix of integration [40] on [0, 1) is described. In order to get the
matrix of integration, the interval [0, 1) is divided into subintervals

[
n−1
2k−1 ,

n
2k−1

)
of equal length. The matrix of

integration is the same on each subinterval. This property of the Legendre wavelet operational matrix of integration
makes the method highly efficient. For M = 3 and k = 2, the operational matrix by integrating the wavelet vector
ψ1(x) = [ψ10(x), ψ11(x), ψ12(x)]T from 0 to x with x ∈

[
0, 1

2

)
is given by∫ x

0
ψ1(x)dx ≈ Bψ1(x), (31)

nd on integrating the wavelet vector ψ2(x) = [ψ20(x), ψ21(x), ψ22(x)]T from 1
2 to x with x ∈

[ 1
2 , 1

)
, we have∫ x

1/2
ψ2(x)dx ≈ Bψ2(x), (32)

where

B =
1
4

⎡⎢⎢⎢⎢⎢⎣
1

√
3

3
0

−

√
3

3
0

√
3

√
5

3 5

0 −

√
3

√
5

3 5
0

⎤⎥⎥⎥⎥⎥⎦ . (33)

azzaghi and Yousefi [41] have constructed the Legendre wavelet operational matrix of integration on the interval
0, 1]. Hence for x ∈ [0, 1), we have∫ x

0
ψ(x)dx ≈ Pψ(x), (34)

here

T
ψ(x) = [ψ10(x), ψ11(x), ψ12(x), ψ20(x), ψ21(x), ψ22(x)] , (35)
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and

P =
1
22

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

√
3

3
0 2 0 0

−

√
3

3
0

√
3

√
5

3 5
0 0 0

0 −

√
3

√
5

3 5
0 0 0 0

0 0 0 1

√
3

3
0

0 0 0 −

√
3

3
0

√
3

√
5

3 5

0 0 0 0 −

√
3

√
5

3 5
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

ote that P can be written as

P =

[
B F
O B

]
,

here B is defined in (33), O is a null matrix of order three, and

F =

⎡⎣ 2 0 0
0 0 0
0 0 0

⎤⎦ .
he general form of the matrix P adopts a 2k−1

× 2k−1 diagonal block structure given by

P =
1
2k

⎡⎢⎢⎢⎢⎢⎢⎣

B F F · · · F
O B F · · · F
... O

. . .
. . .

...
...

...
...

... F
O O · · · O B

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where B is a M × M tridiagonal matrix given by

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

√
3

0 0 . . . 0 0

−
1

√
3

0
1

√
3

√
5

0 . . . 0 0

0 −
1

√
3

√
5

0
1

√
5

√
7

. . . 0 0

0 0 −
1

√
5

√
7

0
. . . 0 0

...
...

...
...

. . .
. . .

...

0 0 0 0 . . . 0
1

√
(2M − 3)

√
(2M − 1)

0 0 0 0 . . . −
1

√
(2M − 3)

√
(2M − 1)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F =

⎡⎢⎢⎢⎣
2 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤⎥⎥⎥⎦ and O =

⎡⎢⎢⎢⎣
0 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤⎥⎥⎥⎦ .
Here F and O are square matrices of order M . The matrices B and P are operational matrices of integration on
the intervals

[
n−1 , n

)
and [0, 1), respectively.
2k−1 2k−1

36
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3. Methodology

To get the solution of the SBVPs (1)–(3), we first guess the corresponding initial condition instead of the
oundary conditions (2) or (3), respectively. Consequently, a series of IVPs corresponding to each SBVP is
btained. Further, the Legendre wavelet operational matrix method is used for finding the solution of these IVPs.
o implement this method, first divide the interval [0, 1) into subintervals

[
n−1
2k−1 ,

n
2k−1

)
for any positive integer k,

here n = 1, . . . , 2k−1. Let us assume that y1(x) is the solution of the IVP on [0, 1
2k−1 ), such that

y′′

1 (x) ≈ CT
1 ψ1(x). (37)

n integrating Eq. (37) twice from 0 to x , we have

y′

1(x) ≈ y′

1(0) + CT
1 Bψ1(x) = DTψ1(x)

nd

y1(x) ≈ y1(0) + y′

1(0)x + CT
1 B2ψ1(x). (38)

he differential equation (1) can be written as

xy′′
+ αy′

+ x f (x, y) = 0. (39)

he functions x, α and f (x, y) can be approximated in terms of the Legendre wavelet vector ψ1(x) on the
ub-interval [0, 1

2k−1 ), as

x ≈ gTψ1(x),

α ≈ r Tψ1(x),

f (x, y) ≈ F Tψ1(x),

here g, r and F are (M × 1)-matrices. Thus, the product of functions can be approximated using the product
peration of Legendre wavelet vector functions [40], as follows

xy′′
≈ gTψ1(x)ψ1(x)T C1 = ψ1(x)T GC1,

αy′
≈ r Tψ1(x)ψ1(x)T D = ψ1(x)T RD, (40)

x f (x, y) ≈ gTψ1(x)ψ1(x)T F = ψ1(x)T G F,

here G and R are (M × M)-matrices. Consequently, the matrix form of Eq. (39) using (40) is given by

GC1 + RD + G F = 0. (41)

Here, Eq. (41) is a system of algebraic equations in the variables C1 = [c10, c11, . . . , c1M−1]T . The solution of the
lgebraic Eq. (41) for C1 provides the approximate solution y1(x) of the IVP (1)–(3) on the subinterval

[
0, 1

2k−1

)
.

hus, we have the approximate solution on
[
0, 1

2k−1

)
y1(x) = y1(0) + y′

1(0)x + ĈT
1 Bψ0(x), (42)

here Ĉ1 is the approximate value of C1 after solving (41).
Similarly, the solution yn(x) on the sub-interval

[
n−1
2k−1 ,

n
2k−1

)
using the initial conditions yn

(
n−1
2k−1

)
= yn−1

(
n−1
2k−1 −

∆x), y′
n

(
n−1
2k−1

)
=

(
yn−1

(
n−1

2k−1 −∆x
)
−yn−1

(
n−1

2k−1 −2∆x
)

∆x

)
, n = 2, 3, . . . , 2k−1, is obtained. Here ∆x is arbitrary, mostly

we have used ∆x = 1.0×10−6. Consequently, combining the solutions y1(x), y2(x), . . . , y2k−1 (x), yields a piecewise
pproximate solution y(M, k)(x) of the corresponding IVP on [0, 1].

The value of the obtained solution at x = 1 is used in the iterative formula of the shooting projection method
14) or (23) to get the improved initial condition. At each iteration of the shooting projection method, there is an
mproved IVP. We solve this series of IVPs using the Legendre wavelet operational matrix method. The schematic
epresentation of the newly proposed algorithm is depicted in Fig. 1.
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Fig. 1. Schematic representation of the new approach.

4. Convergence analysis

In this section, the convergence analysis of the proposed approach is conducted in order to support the theoretical
formulation.

Theorem 4.1. Suppose that y(x) ∈ L2[0, 1] has a bounded second order derivative, that is, ∃ K ∈ R such that
y′′(x)| ≤ K . Then, the following bound for the error norm holds

∥e(M, k)(x)∥ = sup
x∈[0,1]

|y(x) − y(M, k)(x)|

≤

√
10K

k−1 2 3 3 .

(2 + 1) (M − 2 ) 2

38



N. Sriwastav, A.K. Barnwal, H. Ramos et al. Mathematics and Computers in Simulation 216 (2024) 30–48

w

H

w

M

i

Proof. The error is defined as

|e(M, k)(x)| = |y(x) − y(M, k)(x)|

=

⏐⏐⏐⏐⏐⏐
∞∑

n=2k−1+1

∞∑
m=M

cnmΨnm(x)

⏐⏐⏐⏐⏐⏐ ,
here

y(M, k)(x) =

2k−1∑
n=1

M−1∑
m=0

cnmΨnm(x).

ence, it is

∥e(M, k)∥2
=

∫ 1

0

⟨
∞∑

n=2k−1+1

∞∑
m=M

cnmΨnm(x),
∞∑

p=2k−1+1

∞∑
q=M

cpqΨpq (x)

⟩
dx

=

∞∑
n=2k−1+1

∞∑
m=M

∞∑
p=2k−1+1

∞∑
q=M

cnmcpq

∫ 1

0
Ψnm(x)Ψpq (x)dx (43)

≤

∞∑
n=2k−1+1

∞∑
m=M

|cnm |
2, (44)

here

cnm =

∫ 1

0
y(x)Ψnm(x)dx

=

∫ n/2k−1

(n−1)/2k−1
y(x)

√
m +

1
2

2
k
2 Lm(2k x − n̂)dx

=

√
m +

1
2

2
k
2

∫ n/2k−1

(n−1)/2k−1
y(x)Lm(2k x − n̂)dx .

aking the substitution 2k x − n̂ = t in the above integral, we get

cnm =

√
m +

1
2

2
k
2

∫ 1

−1
y
(

t + n̂
2k

)
Lm(t)

dt
2k

=

√
m +

1
2

2
k
2

∫ 1

−1
y
(

t + n̂
2k

)
Lm(t)dt.

Since

(2 m + 1)Lm(t) =
(
L ′

m+1(t) − L ′

m−1(t)
)
, (45)

t provides

cnm =
1

2
k
2 +1
√

m +
1
2

∫ 1

−1
y
(

t + n̂
2k

)
d(Lm+1(t) − Lm−1(t))

=
1

2
k
2 +1
√

m +
1
2

(
y
(

t + n̂
2k

)
(Lm+1(t) − Lm−1(t))

⏐⏐⏐⏐1
−1

)

−
1

2
k
2 +1
√

m +
1
2

(∫ 1

−1
y′

(
t + n̂

2k

)
1
2k

(Lm+1(t) − Lm−1(t))dt
)

= −
1

2
3k
2 +1

√
m +

1

(∫ 1

−1
y′

(
t + n̂

2k

)
(Lm+1(t) − Lm−1(t))dt

)
.

2
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Using Eq. (45), we have

cnm = −
1

2
3k
2 +1

√
m +

1
2

(∫ 1

−1
y′

(
t + n̂

2k

)
d
(

Lm+2(t) − Lm(t)
2 m + 3

−
Lm(t) − Lm−2(t)

2 m − 1

))
.

roceeding similarly as before, we have

cnm =
1

2
5k
2 +1

√
m +

1
2

(∫ 1

−1
y′′

(
t + n̂

2k

)(
Lm+2(t) − Lm(t)

2 m + 3
−

Lm(t) − Lm−2(t)
2 m − 1

)
dt
)

=
1

2
5k
2 +1(2 m + 3)(2m − 1)

√
m +

1
2

(∫ 1

−1
y′′

(
t + n̂

2k

)
Tm(t)dt

)
,

here Tm(t) = (2 m − 1)Lm+2(t) − 2(2 m + 1)Lm(t) + (2 m + 3)Lm−2(t) and hence,

|cnm | ≤
1

2
5k
2 +1(2 m + 3)(2 m − 1)

√
m +

1
2

∫ 1

−1

⏐⏐⏐⏐y′′

(
t + n̂

2k

)⏐⏐⏐⏐ |Tm(t)|dt

≤
4
√

6K

2
5k
2 (2 m − 3)2

, (46)

here we have used the inequality shown in [42], namely

|Tm(t)| ≤
√

24
(2 m + 3)

√
(2 m − 3)

.

ince n ≤ 2k , from the inequality (46) we obtain that

|cnm | ≤
4
√

6K

n
5
2 (2 m − 3)2

. (47)

hus, we arrive at

∥e(M, k)∥2
≤

∞∑
n=2k−1+1

∞∑
m=M

96K 2

n5(2 m − 3)4

= 96K 2
∞∑

n=2k−1+1

1
n5

∞∑
m=M

1
(2 m − 3)4 (48)

≤
10K 2

(2k−1 + 1)4(M −
3
2 )3
, (49)

nd hence

∥e(M, k)∥ ≤

√
10K

(2k−1 + 1)2(M −
3
2 )

3
2
. □ (50)

emark. From Theorem 4.1 it is clear that the approximate solution converges to the exact solution of the IVP
hen M and k tend to ∞.
The iteration formulae represented by Eqs. (14) and (23) are also known as fixed point iteration formulae. The

teration formula in (14) will converge [39] to the desired value when |dγ ∗

0 /dγ0| < 1 in some neighborhood of the
root of ē(γ0) = 0, that is, when

|1 − m| < 1, (51)

hich implies

0 < m < 2, (52)

here m is the slope of ē(γ0) at the root µ0. For the fixed point iteration corresponding to (23) we obtain a similar
esult, now being m the slope of ē(λ ) at η .
0 0
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Table 1
Comparison of proposed approach (Num) with exact solution (Exact) of Example 5.1.

t Exact Num(4) δ Num(8) δ Method [28] δ [28] Method [43] δ [43]

0.0 0.3166 0.3296 0.0409 0.3166 1.2 × 10−4 0.3317 0.0474 0.3181 0.0044
0.1 0.3132 0.3261 0.0412 0.3132 1.1 × 10−4 0.3282 0.0478 0.3146 0.0044
0.2 0.3030 0.3158 0.0421 0.3029 9.7 × 10−5 0.3178 0.0488 0.3044 0.0045
0.3 0.2860 0.2986 0.0439 0.2860 7.5 × 10−5 0.3005 0.0505 0.2873 0.0046
0.4 0.2625 0.2748 0.0467 0.2625 6.2 × 10−5 0.2764 0.0529 0.2637 0.0048
0.5 0.2326 0.2445 0.0511 0.2326 8.0 × 10−5 0.2456 0.0558 0.2338 0.0049
0.6 0.1968 0.2082 0.0581 0.1968 8.9 × 10−5 0.2085 0.0593 0.1977 0.0048
0.7 0.1552 0.1662 0.0703 0.1552 4.8 × 10−5 0.1650 0.0632 0.1559 0.0046
0.8 0.1083 0.1187 0.0955 0.1083 3.6 × 10−5 0.1156 0.0675 0.1087 0.0041
0.9 0.0564 0.0662 0.1732 0.0564 2.3 × 10−4 0.0605 0.0722 0.0566 0.0032

As we have discussed in Section 2 if γ0 → µ0 then y(x, γ0) converges to y(x), and if λ0 → η0 then y(x, γ0)
onverges to y(x), corresponding the SBVPs (1)–(2) and (1)–(3), respectively, under the condition (52). Hence,
he use of the shooting projection method in combination with the Legendre wavelet operational matrix approach
nsures the convergence of the numerical approximation to the corresponding exact solutions of the SBVPs (1)–(2)
nd (1)–(3).

. Numerical testing and discussion

In order to show the accuracy and efficiency of the new approach for solving the considered SBVPs, five
umerical examples have been tested and compared against existing methods. The qualitative comparison of the
umerical solutions is done against the exact solution using 2D graphs. In order to show the deviation of the
umerical results from the exact solution quantitatively, the absolute error norm e = |Exact − Numerical|, the
elative error norm δ =

⏐⏐ Exact−Numerical
Exact

⏐⏐, and L∞ = maxx∈[0,1] |Exact − Numerical| have been calculated for all
ests.

xample 5.1. Consider a nonlinear second order SBVP arising in physiology [44]

− (xy′)′ = xey, (53)

ubject to the boundary conditions

y′(0) = 0, y(1) = 0. (54)

The exact solution of the SBVP (53)–(54) is y(x) = 2 ln
(

4−2
√

2
(3−2

√
2)x2+1

)
.

Here we have started the iteration with the initial guess λ0 = 5. The slope of ē(λ0) is found to be negative for
ome successive iterations i.e. this initial guess does not satisfy the condition (52). The slope m of ē(λ0) is positive
nd satisfies the condition (52) for λ0 = 2. Thus, the successive iterations will converge for λ0 = 2 but not for
0 = 5. Another initial guess for λ0 considered here is λ0 = 0, for which it is found that the slopes of ē(λ0) are

positive and satisfy condition (52). Thus successive iterations will also converge for λ0 = 0.
Now, we use the methodology developed in Section 3 with starting initial guess λ0 = 0. The solutions obtained

using the new approach after four iterations (Num(4)) and eight iterations (Num(8)) are compared to the exact
solution and the solutions obtained using some existing numerical techniques (Modified variational iteration method
(MVIM) [28], Improved modified variational iteration method (IMVIM) [43]) in Table 1. The numerical results
of IVPs for different numbers of iterations are provided for M = 6 and k = 2. Fig. 2 compares the solution of
the proposed numerical technique to IMVIM and MVIM. The numerical result of MVIM is given at first iteration
for parameter ω = 0.78, for which an improved result is given in [28]. The absolute errors are given in Fig. 2
and Table 1. The log of absolute errors is plotted in Fig. 2(c) to depict the errors precisely. One can observe from
Table 1 that as the number of iterations increases the quality of the obtained solution increases significantly and
matches well with the exact solution. A similar procedure has also been conducted for the starting initial guess
λ0 = 2, with M = 6 and k = 2 and found that L∞ = 0.047093 after five iterations, and L∞ = 7.0 × 10−5 after ten

iterations.
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Fig. 2. Comparison of results for Example 5.1.

Example 5.2. Consider a nonlinear second order SBVPs describing the isothermal gas sphere in astrophysics

− (x2 y′)′ = x2 y5, (55)

ubject to the boundary conditions

y′(0) = 0, y(1) =

√
3
4
. (56)

The exact solution is y(x) =

√
3

3+x2 . As in the previous example, the approximate solutions using the proposed
method after six iterations (Num(6)) and thirteen iterations (Num(13)) are compared with the exact solution,
MVIM [28] at ω = 2.3 and He’s VIM [14] in terms of absolute errors (refer to Table 2). The numerical results of
IVPs after different number of iterations are provided for M = 8 and k = 2. From Fig. 3 and Table 2, it can be
oncluded that the proposed method requires fewer iterations to match the exact solution, and provides better results
han MVIM and He’s VIM. The logplot of the absolute errors is shown in Fig. 3(c) to depict the errors precisely.

xample 5.3. Consider a nonlinear SBVP given by

− (x2 y′)′ = x2 ( 2 3 )

6 − 12x + cos (x − x ) − cos y , (57)

42



N. Sriwastav, A.K. Barnwal, H. Ramos et al. Mathematics and Computers in Simulation 216 (2024) 30–48

w

Fig. 3. Comparison of results for Example 5.2.

Table 2
Comparison of proposed approach (Num) with exact solution (Exact) of Example 5.2.

t Exact Num(6) e Num(13) e Method [28] e [28] Method [14] e [14]

0.0 1.0000 0.9965 0.0034 0.9980 0.0019 0.9964 0.0035 0.9936 0.0063
0.1 0.9983 0.9949 0.0033 0.9964 0.0019 0.9948 0.0035 0.9920 0.0062
0.2 0.9933 0.9902 0.0031 0.9916 0.0017 0.9899 0.0034 0.9872 0.0061
0.3 0.9853 0.9823 0.0029 0.9837 0.0015 0.9820 0.0032 0.9794 0.0058
0.4 0.9743 0.9716 0.0027 0.9729 0.0014 0.9712 0.0030 0.9688 0.0055
0.5 0.9607 0.9580 0.0027 0.9592 0.0015 0.9579 0.0028 0.9556 0.0050
0.6 0.9449 0.9424 0.0024 0.9435 0.0013 0.9423 0.0025 0.9403 0.0045
0.7 0.9271 0.9253 0.0018 0.9263 0.0008 0.9250 0.0021 0.9233 0.0038
0.8 0.9078 0.9066 0.0011 0.9075 0.0002 0.9062 0.0015 0.9049 0.0028
0.9 0.8873 0.8866 0.0007 0.8874 6.2 × 10−5 0.8864 0.0008 0.8857 0.0016

subject to the boundary conditions

y′(0) = 0, y(1) = 0. (58)

The exact solution of SBVP (57)–(58) is y(x) = x2
− x3. Now, we use the methodology developed in Section 3
ith initial guess λ0 = 0.5. We use the Legendre wavelet operational matrix of integration with M = 4 and k = 2 at
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Table 3
Comparison of proposed approach (Num) with exact solution (Exact) of Example 5.3.

t Exact Num(3) e Num(4) e

0.0 0.0000 0.00042 0.00042 −6.9 × 10−6 1.3 × 10−6

0.1 0.0090 0.00942 0.00042 0.008992750 7.2 × 10−6

0.2 0.0320 0.03242 0.00042 0.031992798 7.2 × 10−6

0.3 0.0630 0.06342 0.00042 0.062992983 7.0 × 10−6

0.4 0.0960 0.09642 0.00042 0.095993124 6.8 × 10−6

0.5 0.1250 0.12542 0.00042 0.124993029 6.9 × 10−6

0.6 0.1440 0.14442 0.00042 0.143993098 6.9 × 10−6

0.7 0.1470 0.14742 0.00042 0.146992937 7.0 × 10−6

0.8 0.1280 0.12842 0.00042 0.127992721 7.2 × 10−7

0.9 0.0810 0.08142 0.00042 0.080992624 7.3 × 10−7

1.0 0.0000 0.00042 0.00042 −7.1 × 10−6 7.1 × 10−6

Fig. 4. Comparison of results for Example 5.3.

each iteration to find the numerical solution of the IVP. Table 3 and Fig. 4 show the comparison of the approximate
solutions using the present method after three iterations (Num(3)) and four iterations (Num(4)) against the exact
solution (Exact). The absolute errors for different numbers of iterations have been presented in Table 3 and Fig. 4.
For small number of iterations brings the numerical solution approach extremely close to the exact solution for such
an extreme nonlinear SBVP.

Example 5.4. Consider the following Lane–Emden equation arising in astrophysics [8]

−
(
x1/2 y′

)′
= x1/2

(
e2y

−
1
2

ey
)
, (59)

ubject to the boundary conditions

y(0) = ln(2), y(1) = 0. (60)

The exact solution is y(x) = ln
(

2
x2+1

)
. In Table 4, we have presented the quantitative comparison of approximate

olutions after five iterations (Num(5)), ten iterations (Num(10)) and thirty two iterations (Num(32)) and the absolute
rrors. Fig. 5 is used to compare the numerical solution for different iterations with the exact solution, qualitatively.
he numerical results of IVPs at different iterations are provided for M = 4 and k = 2. In a recent study, Singh et al.

[8] estimated the maximum error norm as L∞ = maxx∈[0,1]|Exact − Numerical| = 10−4 for (J = 2, 2M = 8)

and (J = 3, 2M = 16).
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Table 4
Comparison of proposed approach (Num) with exact solution (Exact) of Example 5.4.

t Exact Num(5) e Num(10) e Num(32) e

0.0 0.6931 0.6946 0.0014 0.6931 8.9 × 10−8 0.6929 1.7 × 10−4

0.1 0.6831 0.6934 0.0103 0.6845 1.3 × 10−3 0.6835 3.7 × 10−4

0.2 0.6539 0.6692 0.0152 0.6559 1.9 × 10−3 0.6543 4.5 × 10−4

0.3 0.6069 0.6266 0.0196 0.6096 2.6 × 10−3 0.6077 7.5 × 10−4

0.4 0.5447 0.5705 0.0258 0.5484 3.7 × 10−3 0.5455 8.2 × 10−4

0.5 0.4700 0.5060 0.0360 0.4750 5.0 × 10−3 0.4709 9.2 × 10−4

0.6 0.3856 0.4327 0.0471 0.3914 5.7 × 10−3 0.3866 8.6 × 10−4

0.7 0.2943 0.3502 0.0559 0.3008 6.5 × 10−3 0.2951 7.8 × 10−4

0.8 0.1984 0.2607 0.0623 0.2053 6.9 × 10−3 0.1989 4.9 × 10−4

0.9 0.0998 0.1665 0.0667 0.1069 7.1 × 10−3 0.0999 1.2 × 10−4

1.0 0.0000 0.0698 0.0698 0.0074 7.4 × 10−4 7.2 × 10−5 7.5 × 10−5

Example 5.5. Consider the following nonlinear SBVP

− (x1/2 y′)′ = x1/2
(

−3 +
45
7

x − x4
+

12
7

x5
−

36
49

x6
+ y2

)
, (61)

ubject to the boundary conditions

y(0) = 0, y(1) =
1
7
. (62)

The exact solution is y(x) = −
6
7 x3

+ x2. We have used the proposed method and compared it with the
exact solution in Table 5 and Fig. 6. It can be observed that the new method is highly accurate and efficient for
approximating the solution of this example.

6. Conclusions and future scope

This research work presents a highly efficient numerical strategy based on a combination of the shooting
projection method and the Legendre wavelet operational matrix of integration method to approximate a class of
two point singular boundary value problems. For initial value problems, the Legendre wavelet operational matrix
approach delivers very accurate and efficient results, but it is difficult to solve two point singular boundary value
problems with this method. A shooting projection approach for transforming boundary value problems into a
series of initial value problems has been adapted to overcome the limitations of the Legendre wavelet operational
matrix method for solving boundary value problems. The IVPs are then solved using the Legendre wavelet

operational matrix approach. The assessment of the new approach has been done by considering some existing
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Fig. 6. Comparison of results for Example 5.5.

Table 5
Comparison of proposed approach (Num) with exact solution (Exact) of Example 5.5.

t Exact Num(1) e Num(4) e Num(12) e

0.0 0.0000 0.0063 0.0063 0.0004 0.0004 0.0001 0.0001
0.1 0.0091 0.1004 0.0913 0.0154 0.0062 0.0070 0.0021
0.2 0.0331 0.1963 0.1632 0.0443 0.0111 0.0293 0.0038
0.3 0.0668 0.2923 0.2254 0.0823 0.0154 0.0616 0.0051
0.4 0.1051 0.3865 0.2813 0.1244 0.0193 0.0986 0.0065
0.5 0.1428 0.4772 0.3343 0.1659 0.0230 0.1351 0.0077
0.6 0.1748 0.5611 0.3862 0.2017 0.0268 0.1669 0.0078
0.7 0.1960 0.6301 0.4341 0.2269 0.0309 0.1890 0.0069
0.8 0.2011 0.6800 0.4788 0.2368 0.0356 0.1962 0.0049
0.9 0.1851 0.7039 0.5188 0.2263 0.0411 0.1828 0.0022
1.0 0.1428 0.6951 0.5522 0.1906 0.0477 0.1430 0.0002

approaches [8,28,43] to solve five standard highly nonlinear examples (most of the test examples having a non-
polynomial solution). We note that the proposed approach can be implemented for approximating the BVP (1)–(2)
or (1)–(3) for any positive α. Nevertheless, the application of the variational iteration method is different for each

. For each α there are different Lagrange multipliers or different relaxation parameters, and the process to find
hese parameters is very expensive computationally. The results show that the new approach produces high quality
olutions for a class of two point singular boundary value problems within few iterations. The convergence analysis
uarantees that the provided numerical solution converges to the exact solution.

Note that study made in this article can be generalized to a wide range of higher order singular boundary value
roblem of the form [45,46]

−
1
xk

(xk y′)′′ = f (x, y), or −
1
xk

(xk y′′)′ = f (x, y), x ∈ (0, 1) (63)

ubject to the boundary conditions

y′(0) = c1, y′′(0) = c2, and y(1) = c3, (64)

r

y(0) = c1, y′(0) = c2, and y(1) = c3. (65)
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