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Abstract
In this paper, we address a two-parameter singularly perturbed convection-reaction-diffu-
sion 2-D problem. We also consider that the convection and source terms are discontinuous 
in space. Due to these discontinuities and the presence of perturbation parameters, solu-
tions to such problems show boundary and interior layers. In this study, we have carried 
out a numerical approach using a finite-difference technique with an appropriate layer-
adapted piecewise uniform Shishkin mesh. Some examples are presented which show the 
best performance of the proposed method and its agreement with the theoretical analysis.

Keywords Discontinuous convection and source terms · Finite difference scheme · 
Shishkin mesh · Elliptic equation · Two-parameter singularly perturbed problem · Two-
dimensional space
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Introduction

     Several partial differential equations found in practice are parameter-dependent, with a 
singularly perturbed nature for small values of this parameters. The solutions to these prob-
lems have boundary layers (and/or interior layers due to the discontinuities in the convec-
tion and source terms), which are near the boundary of the domain where the solution has 
an extremely high gradient. The layers might be either regular (exponential) or of parabolic 
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type (characteristic). The problem considered is of the convection-reaction-diffusion type, 
which is one of the most common singular perturbation problems in the literature.

Singularly perturbed elliptic problems are widespread in mathematical modeling, ranging 
from simulation of oil and gas reservoirs, as well as magnetohydrodynamic flow, to chemical 
flow reactor theory [1], to boundary layers influenced by suction (or blowing) of some fluid 
and semiconductor model [2]. In most cases the equations are too complicated to be solved 
exactly, so the use of numerical techniques is required. On the other hand, classical techniques 
can utterly fail in the presence of layers (see, e.g. [3, 4]), thus this is a highly active and inter-
esting topic of research for numerical analysts.

There is a lot of literature on parameter-uniform numerical methods (see, for example, [3, 5]).
Butuzov [6] studied the asymptotic structure of a solution to a problem similar to the one 

under consideration here, and stablished a substantial relationship between the ordering of 
small parameters. When � = O(�1∕2), we are approaching the reaction-diffusion type with 
layer structure. The solutions to 2-D reaction-diffusion problems contain characteristic (para-
bolic) boundary layers along all edges of the unit square. Clavero considered a class of 2-D 
reaction-diffusion singularly perturbed problems in [7] and used a finite difference method 
with a piecewise uniform Shishkin mesh to find a more accurate estimate. When � = 1 , we are 
approaching the convection-diffusion type with a regular (exponential) layer near the outflow 
of the boundary, and a corner layer near the boundary layers junction. In a 2-D singularly 
perturbed convection-diffusion problem, the solution has boundary and interior layers in the 
domain. Therefore, the derivative’s norms of z in [8] show that the solution z contains regular 
(exponential) boundary layers along all of the unit square’s edges, while certain bounds in [9] 
demonstrate both exponential and parabolic boundary layers in z. In [10], they introduced the 
asymptotic character of singularly perturbed convection-diffusion problems to better under-
stand their solution and related challenges with numerical techniques. Lin et al. [11] analyzed 
the weak form of 2-D singularly perturbed convection-diffusion problems using an effective 
approach based on local discontinuous Galerkin (LDG) discretization. Nhan and Vulanovic 
[12] explain a class of 2-D convection-diffusion singularly perturbed problems using a com-
plete finite-difference scheme with a Bakhvalov mesh to find more accurate estimates. When 
� moves away from �1∕2 and remains small when compared to � = 1 , we have an entirely dif-
ferent layer structure.

In a 2-D singularly perturbed convection-diffusion problem with two parameters, Zhang 
and Lv [13] consider an efficient approach based on the finite-element method using a Bakh-
valov mesh. In O’Riordan et al. [14, 15], they consider the finite-difference method with a 
piecewise uniform Shishkin mesh for a two-parameter convection-diffusion singularly per-
turbed 2-D problems. Teofanov and Roos [16, 17] handle an efficient approach based on the 
finite-element method using linear or bilinear elements in a piecewise uniform Shishkin mesh 
for a 2-D singularly perturbed convection-diffusion problem with two parameters. In that 
paper, they discuss the decomposition of the solution and derivative’s bounds on the compo-
nents. In this study, we develop a finite-difference method (FDM) for solving two-parameter 
singularly perturbed convection-diffusion 2-D problems, where a, b and f are discontinuous 
along two lines, namely x = d and y = d.

Let us consider a two-parameter singularly perturbed 2-D steady-state convection-reaction-
diffusion equation 

where the differential operator is represented by

(1.1a)L�,�z(x, y) = f (x, y), ∀(x, y) ∈ Ω, z(x, y) = g(x, y), ∀(x, y) ∈ �Ω,
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The two small perturbation parameters satisfy 0 < 𝜖,𝜇 << 1 . The problem’s domain is 

Ω =
4⋃

k=1

Ωk
 , being Ω1 = (0, d) × (0, d), Ω2 = (d, 1) × (0, d), Ω3 = (0, d) × (d, 1) and Ω4 = (d, 1)

×(d, 1). Let Ω̄ = [0, 1] × [0, 1] and Γ1 = {(d, y) ∶ 0 ≤ y ≤ 1},Γ2 = {(x, d) ∶ 0 ≤ x ≤ 1}, with d any 
point in (0, 1).

We assume that the convection terms are bounded as follows with

for some constants �1, �2 and � , while the reaction coefficient verifies c(x, y) > 0 . We will 
also assume that a|Ωk

, b|Ωk
, f |Ωk

∈ C3,� (Ωk) , c ∈ C3,𝛾 (Ω̄) , and g ∈ C4,� (Ω) , for some 
� ∈ (0, 1], k = 1, 2, 3, 4 . Further, we assume that the exact solution is such that z ∈ C4,� (Ωk).

In our problem (1.1), the source term f(x, y) has a jump discontinuity at both lines 
x = d and y = d , and the convection terms a(x, y), b(x, y),   have jump discontinuities 
at the line x = d or y = d , respectively. So, it is congruent to denote the jump disconti-
nuity in any function � at a point (x, y) ∈ Ω along the lines parallel to the x- and y-axe 
as [�](d, y) = �(d+, y) − �(d−, y) and [�](x, d) = �(x, d+) − �(x, d−) , respectively. The fol-
lowing symbols are used to specify the boundaries:

and Λ = Λ1 ∪ Λ2 ∪ Λ3 ∪ Λ4. Recalling from (1.1) that z = g on the boundary, we denote by 
gi the restriction of g onto Λi , i = 1, 2, 3, 4.

We further denote the continuous subsets of the boundaries, and the interior line seg-
ments on both sides of the discontinuities as Λk,j, ck,j where j = 1, 2, 3, 4 (which indicate 
the edges and corners of Ωk respectively) (see Fig. 1).

The article is structured as follows. In Section 2, we derived the minimum principle, a 
stability result and bounds of the exact solution and its derivatives exhibiting their depend-
ence on the singular perturbation parameters. Section 3 explores the numerical approach 
of the standard 5-point finite difference scheme built on a Shishkin mesh. In Section 4, we 
derived the error estimation, which results in an almost first-order convergence. At the end 
of Section 5, some test problems are provided to verify the theoretical results.

A Priori Bounds of the Solution and its Derivatives

The present section contains the minimum principle, a stability result, and some useful 
bounds for the derivatives of the true solution. In addition, we obtain some bounds of 
the regular, singular, and corner components of the solution.

(1.1b)L�,�z(x, y) ≡ �2
(
�2z

�x2
+

�2z

�y2

)
+ �2

(
a(x, y)

�z

�x
+ b(x, y)

�z

�y

)
− c(x, y)z.

𝛼∗
1
> a(x, y) ≥ 𝛼1 > 0, for x < d, −𝛼∗

2
< a(x, y) ≤ −𝛼2 < 0, for x > d,

𝛽∗
1
> b(x, y) ≥ 𝛽1 > 0, for y < d, −𝛽∗

2
< b(x, y) ≤ −𝛽2 < 0, for y > d,

𝛼 = min(𝛼1, 𝛼2), 𝛼
∗ = max(𝛼∗

1
, 𝛼∗

2
), 𝜆 = min

Ω̄

{
c

2a
,
c

2b

}
,

𝛽 = min(𝛽1, 𝛽2), 𝛽
∗ = max(𝛽∗

1
, 𝛽∗

2
),

Λ1 =
{
(0, y) | (0 ≤ y < d) ∪ (d < y ≤ 1

}
, Λ2 =

{
(x, 0) | (0 ≤ x < d) ∪ (d < x ≤ 1)

}
,

Λ3 =
{
(1, y) | (0 ≤ y < d) ∪ (d < y ≤ 1)

}
, Λ4 =

{
(x, 1) | (0 ≤ x < d) ∪ (d < x ≤ 1)

}
,
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Lemma 2.1 (Minimum principle) Let L�,� be the differential operator given in (1.1). If 
�(x, y) ≥ 0 on �Ω,  L�,��(x, y) ≤ 0 for all (x, y) ∈ Ω , 

[
��

�x

]
(d, y) ≤ 0 on Γ1 and 

[
��

�y

]
(x, d) ≤ 0 

on Γ2 then it is �(x, y) ≥ 0 for all (x, y) ∈ Ω̄.

Proof Consider the function � on Ω̄ defined through �(x, y) = �(x, y)�(x, y) , with the 
function

The functions �1(x), �2(y) on [0, 1] are defined as

where 𝛼 ≥ 𝜆11 > 𝜆12 > 0, and 𝛽 ≥ 𝜆21 > 𝜆22 > 0 are some constants. Let be 
𝜔(x∗, y∗) = min

(x,y)∈Ω̄
{𝜔(x, y)} . If �(x∗, y∗) ≥ 0 , there is nothing to prove. Suppose 

𝜔(x∗, y∗) < 0. Then, by the assumption on the boundary values, either the point (x∗, y∗) ∈ Ω 
or (x∗, y∗) ∈ Γ1 ∪ Γ2 . Let us consider both cases.

𝜓(x, y) = exp

(
𝜇2(d − x)𝜆1(x)

2𝜖2
+

𝜇2(d − y)𝜆2(y)

2𝜖2

)
, (x, y) ∈ Ω̄.

𝜆1(x) =

{
𝜆11, if x ≤ d,

−𝜆12, if x > d,
𝜆2(y) =

{
𝜆21, if y ≤ d,

−𝜆22, if y > d,

Fig. 1  Notation for Subregions and Domain Boundaries
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Case(i): Firstly, assume that (x∗, y∗) ∈ Ω.
Then, at the point (x∗, y∗) it is ��

�x
(x∗, y∗) =

��

�y
(x∗, y∗) = 0 and 

�2�

�x2
(x∗, y∗) ≥ 0,

�2�

�y2
(x∗, y∗) ≥ 0 , we have

which contradicts the hypothesis.
Case(ii): Now suppose that (x∗, y∗) ∈ Γ1 ∪ Γ2.

Here, either (x∗, y∗) = (d, y∗), or (x∗, y∗) = (x∗, d) . Let us assume (x∗, y∗) = (d, y∗) . Since 

� takes its minimum value at (x∗, y∗) , this implies that ��
�x
(d+, y∗) ≥ 0 and ��

�x
(d−, y∗) ≤ 0. 

Then, it is evident that [ ��
�x
](d, y∗) ≥ 0 . Then, since 𝜔(d, y∗) < 0, it follows that

which contradicts the hypothesis [
��

�x
](x, y) ≤ 0, ∀(x, y) ∈ Γ1. The case when 

(x∗, y∗) = (x∗, d) can be proved similarly. This completes the proof.   ◻

A consequence of this minimum principle is the parameter uniform boundedness of 
the solution of (1.1) given below.

Lemma 2.2 (Stability result) Let z(x, y) be the solution of (1.1). Then, it holds

where ||.|| represents the pointwise maximum norm and � = min{�, �}.

Proof We define the barrier functions

where M = max{||z||Λ1
, ||z||Λ2

, ||z||Λ3
, ||z||Λ4

}.
Then, clearly �±(x, 0) ≥ 0, �±(0, y) ≥ 0, �±(x, 1) ≥ 0, �±(1, y) ≥ 0 . For each (x, y) ∈ Ω, 

we have

L𝜖,𝜇𝜙(x
∗, y∗) = 𝜓(x∗, y∗)

(
𝜖2Δ𝜔 +

(
𝜇4𝜆1(x

∗)

2𝜖2

(𝜆1(x∗)
2

− a(x∗, y∗)
)

+
𝜇4𝜆2(y

∗)

2𝜖2

(𝜆2(y∗)
2

− b(x∗, y∗)
))

𝜔(x∗, y∗)

− c𝜔(x∗, y∗)

)
> 0,

[
𝜕𝜙

𝜕x

]
(d, y∗) = exp

(
𝜇2𝜆2(d − y∗)

2𝜖2

)([
𝜕𝜔

𝜕x

]
(d, y∗) + 𝜇2

𝜆12 − 𝜆11

2𝜖2
𝜔(d, y∗)

)
> 0,

||z(x, y)||Ω̄ ≤
1

𝜈
||L𝜖,𝜇z||Ω̄ +max

{
||z||Λ1

, ||z||Λ2
, ||z||Λ3

, ||z||Λ4

}
,

𝜙±(x, y) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M +
��L𝜖,𝜇z��Ω̄

𝜈

�
1

2
+

x

8
+

y

8
−

d

4

�
± z(x, y), (x, y) ∈ [0, d] × [0, d],

M +
��L𝜖,𝜇z��Ω̄

𝜈

�
1

2
−

x

4
+

y

8
+

d

8

�
± z(x, y), (x, y) ∈ (d, 1] × [0, d],

M +
��L𝜖,𝜇z��Ω̄

𝜈

�
1

2
+

x

8
−

y

4
+

d

8

�
± z(x, y), (x, y) ∈ [0, d] × (d, 1],

M +
��L𝜖,𝜇z��Ω̄

𝜈

�
1

2
−

x

4
−

y

4
+

d

2

�
± z(x, y), (x, y) ∈ (d, 1] × (d, 1],
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Since z(x, y) ∈ C0 ̄(Ω) ∩ C2(Ω), we have

It follows from Lemma 2.1 that �±(x, y) ≥ 0,   ∀(x, y) ∈ Ω̄, which allows to get the bound 
on ||z(x, y)||Ω̄ .   ◻

The derivatives of the solution satisfy the parameter-explicit bounds shown as follows.

Lemma 2.3 Let z be the solution of (1.1). Then, for 1 ≤ i + j ≤ 4 , it holds

where C is independent of � and �.

Proof It can be easily obtained using standard procedures, as in [18, 19].   ◻

Now, we decompose the solution z(x, y) into the regular and singular components. The 
regular components rk(x, y), k = 1, 2, 3, 4, are obtained, respectively, as the solution of the 
following problems

Lemma 2.4 The regular components rk(x, y) at (2.3) and their derivatives satisfy the 
bounds:

Proof Let us consider the two cases.
Case(i): Firstly, assume that ��2 ≤ ��.
Suppose the regular component rk(x, y), k = 1, 2, 3, 4 can be decomposed as

L�,��
±(x, y) ≤ 0.

[
𝜕𝜙±

𝜕x

]
(d, y) =

−3||L𝜖,𝜇z||Ω̄
8𝜈

±

[
𝜕z±

𝜕x

]
(d, y) ≤ 0,

[
𝜕𝜙±

𝜕y

]
(x, d) =

−3||L𝜖,𝜇z||Ω̄
8𝜈

±

[
𝜕z±

𝜕y

]
(x, d) ≤ 0.

(2.1)
||||
||||
�i+jz

�xi�yj

||||
||||Ωk

≤ C�−(i+j), if ��2 ≤ ��,

(2.2)
||||
||||
𝜕i+jz

𝜕xi𝜕yj

||||
||||Ωk

≤ C

(
𝜖

𝜇

)−(2i+2j)

, if 𝛼𝜇2 > 𝜆𝜖,

(2.3)

⎧⎪⎪⎨⎪⎪⎩

L�,�rk(x, y) = f (x, y), ∀(x, y) ∈ Ωk, k = 1, 2, 3, 4

rk(x, y) = g1(y), ∀(x, y) ∈ Λk,1, k = 1, 3, rk(x, y) = g2(x), ∀(x, y) ∈ Λk,2, k = 1, 2,

rk(x, y) = g3(y), ∀(x, y) ∈ Λk,3, k = 2, 4, rk(x, y) = g4(x), ∀(x, y) ∈ Λk,4, k = 3, 4,

[rk](x, y) = 0, ∀(x, y) ∈ Γ1 ∪ Γ2, k = 1, 2, 3, 4,

[(rk)x](x, y) = 0, ∀(x, y) ∈ Γ1, [(rk)y](x, y) = 0, ∀(x, y) ∈ Γ2, k = 1, 2, 3, 4.

||||
||||
𝜕i+jrk

𝜕xi𝜕yj

||||
||||Ω ≤ C

(
1 + 𝜖2−(i+j)

)
, for 1 ≤ i + j ≤ 4, if 𝛼𝜇2 ≤ 𝜆𝜖,

||||
||||
𝜕i+jrk

𝜕xi𝜕yj

||||
||||Ω ≤ C

(
1 +

(
𝜖

𝜇

)4−(2i+2j))
, for 1 ≤ i + j ≤ 4, if 𝛼𝜇2 > 𝜆𝜖.
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where rk,0 , rk,1 and rk,2 are the solutions to the following problems without any compatibil-
ity inequalities:

 Since, rk,0 ∈ C4,𝛾 (Ω̄k), k = 1, 2, 3, 4 , we get 
(

𝜕2

𝜕x2
+

𝜕2

𝜕y2

)
rk,0 ∈ C2,𝛾 (Ω̄k), k = 1, 2, 3, 4.

Applying Lemma 2.2 and Lemma 2.3 to the problem (2.3), it results that rk ∈ C4,� (Ωk) 
and

Case(ii): 𝛼𝜇2 > 𝜆𝜖.
Suppose the regular component rk(x, y;�,�), k = 1, 2, 3, 4 can be decomposed as

where

Applying Lemma 2.6 and Lemma 2.3 to the problem (2.3) we get

  ◻

Now, let us consider the first order IBVP: 

 Note that L� satisfies the following comparison principle:

(2.4)rk(x, y) = rk,0(x, y, �,�) + �rk,1(x, y, �,�) + �2rk,2(x, y, �,�),

−rk,0 = f , rk,1 = �

(
�2

�x2
+

�2

�y2

)
rk,0 +

�2

�

(
a
�

�x
+ b

�

�y

)
rk,0,

L�,�rk,2 = −�

(
�2

�x2
+

�2

�y2

)
rk,1 −

�2

�

(
a
�

�x
+ b

�

�y

)
rk,1,

rk,2 = 0, ∀(x, y) ∈ Λk,j, k, j = 1, 2, 3, 4.

(2.5)
||||
||||
�i+jrk

�xi�yj

||||
|||| ≤ C(1 + �2−(i+j)), 1 ≤ i + j ≤ 4, k = 1, 2, 3, 4.

rk(x, y;�,�) = rk,0(x, y;�) + �2rk,1(x, y;�) + �4rk,2(x, y;�,�),

L�rk,0 = f , rk,0(x, y) = z(x, y), ∀(x, y) ∈ Λ3 ∪ Λ4,

L�rk,1 = −

(
�2

�x2
+

�2

�y2

)
rk,0, rk,1(x, y) = 0, ∀(x, y) ∈ Λ3 ∪ Λ4,

L�,�rk,2 = −

(
�2

�x2
+

�2

�y2

)
rk,1, rk,2(x, y) = 0, ∀(x, y) ∈ Λk,j, k, j = 1, 2, 3, 4.

(2.6)
||||
||||
�i+jrk

�xi�yj

||||
|||| ≤ C

(
1 +

(
�

�

)4−(2i+2j))
, 1 ≤ i + j ≤ 4, k = 1, 2, 3, 4.

(2.7a)L�z(x, y) = �2

(
a(x, y)

�z

�x
+ b(x, y)

�z

�y

)
− c(x, y)z = f (x, y), ∀(x, y) ∈ Ω,

(2.7b)z(x, y) = gi, (x, y) ∈ Λi, i = 3, 4.
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Lemma 2.5 Let L� be the differential operator given in (2.7). If �(x, y) ≥ 0 on Λi, i = 3, 4,  
L��(x, y) ≤ 0 for all (x, y) ∈ Ω , 

[
��

�x

]
(d, y) ≤ 0 on Γ1 , and 

[
��

�y

]
(x, d) ≤ 0 on Γ2 then it is 

�(x, y) ≥ 0 for all (x, y) ∈ Ω̄.

Proof The proof is similar to the one of Lemma 2.1.   ◻

Lemma 2.6 Let z(x, y) be the solution of problem (2.7). Then, it holds the stability estimate

Proof This lemma can be proved similarly to Lemma 2.2.   ◻

Corresponding to the edge x = 0 in Ω1 (see, Fig. 2), a layer function s1 exists that is deter-
mined by: 

||z(x, y)||Ω̄ ≤
1

𝜈
||L𝜇z||Ω +max

{
||z||Λ3

, ||z||Λ4

}
.

(2.8a)L�,�s1(x, y) = 0, ∀(x, y) ∈ Ω,

(2.8b)s1(x, y) = (z − r1)(x, y), ∀(x, y) ∈ Λ1,1,

Fig. 2  Situation of the layer functions in the domain Ω , when ��2 ≤ �� and 𝛼𝜇2 > 𝜆𝜖
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 The following lemmas give some bounds on the derivatives of the layer components, 
which are necessary for the convergence analysis.

Lemma 2.7 Let s1 be the boundary layer component satisfying the equations in (2.8). If 
��2 ≤ ��, then it holds

If 𝛼𝜇2 > 𝜆𝜖, then it holds

Proof It can be referred from the works by O’Riordan et al. [14, 15].   ◻

Similarly, as has been done for s1, for the different edges of Ωk, k = 1, 2, 3, 4, (see 
Fig. 1) we can consider the corresponding boundary layer components si, i = 2, 3,… , 16, 
(see Fig. 2) for which we can obtain similar bounds as in Lemma 2.7.

Related to the corner at c1,1 = (0, 0) in Ω1 , we consider the corner layer component 
p1 , which is determined by 

Lemma 2.8 Let p1 be the corner layer component satisfying the equations in (2.9). If 
��2 ≤ ��, then it holds

(2.8c)s1(x, y) = 0, ∀(x, y) ∈ Λ3,1 ∪ Λ2 ∪ Λ3 ∪ Λ4,

(2.8d)s1(x, y) = 0, ∀(x, y) ∈ Γ1 ∪ Γ2,

(2.8e)
[
(s1)x

]
(x, y) = 0, ∀(x, y) ∈ Γ1, [(s1)y](x, y) = 0, ∀(x, y) ∈ Γ2.

|s1(x, y)| ≤C exp

(
−

��

�
x

)
,

||||
||||
� j
s1

� yj

||||
|||| ≤C(1 + �1−j), j = 1, 2, 3, 4.

|s1(x, y)| ≤C exp

(
−

��2

�2
x

)
,

||||
||||
� j
s1

�yj

||||
|||| ≤C

(
1 +

(
�

�

)−2j)
, j = 1, 2, 3, 4.

(2.9a)L�,�p1(x, y) = 0, ∀(x, y) ∈ Ω,

(2.9b)p1(x, y) = −s1(x, y), ∀(x, y) ∈ Λ1,1, p1(x, y) = −s2(x, y), ∀(x, y) ∈ Λ1,2,

(2.9c)p1(x, y) = 0, ∀(x, y) ∈ Λ2,2 ∪ Λ3,1 ∪ Λ3 ∪ Λ4,

(2.9d)p1(x, y) = 0, ∀(x, y) ∈ Γ1 ∪ Γ2,

(2.9e)
[
(p1)x

]
(x, y) = 0, ∀(x, y) ∈ Γ1, [(p1)y](x, y) = 0, ∀(x, y) ∈ Γ2.
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If 𝛼𝜇2 > 𝜆𝜖, then it holds

Proof It can be referred from the works by O’Riordan et al. [14, 15].   ◻

Similarly, we can describe other corner layer components pk, k = 2, 3,… , 16, corre-
sponding to the different corners of Ωk, k = 1, 2, 3, 4 , which verify similar bounds as the 
ones in Lemma 2.8.

Finally, from the above lemmas we can establish the following theorem.

Theorem 2.9 The solution z of (1.1) may be written as

where

Furthermore, the regular and singular components and their derivatives satisfy the follow-
ing bounds

⎧⎪⎨⎪⎩

����
����
𝜕i+jrk

𝜕xi𝜕yj

����
���� ≤ C(1 + 𝜖2−(i+j)), 1 ≤ i + j ≤ 4, k = 1, 2, 3, 4, if 𝛼𝜇2 ≤ 𝜆𝜖,

����
����
𝜕i+jrk

𝜕xi𝜕yj

����
���� ≤ C(1 +

�
𝜖

𝜇

�4−(2i+2j)
), 1 ≤ i + j ≤ 4, k = 1, 2, 3, 4, if 𝛼𝜇2 > 𝜆𝜖,

|p1(x, y)| ≤ C exp

(
−

��

�
x

)
exp

(
−

��

�
y

)
,

||||
||||
�i+jp1

�xi�yj

||||
|||| ≤ C(1 + �−(i+j)), 1 ≤ i + j ≤ 4.

|p1(x, y)| ≤ C exp

(
−

��2

�2
x

)
exp

(
−

��2

�2
y

)
,

||||
||||
�i+jp1

�xi�yj

||||
|||| ≤ C

(
�

�

)−(2i+2j)

, 1 ≤ i + j ≤ 4.

z =

4∑
k=1

rk +

16∑
j=1

sj +

16∑
j=1

pj,

L�,�rk = f , L�,�sj = 0, L�,�pj = 0, k = 1, 2, 3, 4, j = 1, 2, 3,… , 16.

⎧
⎪⎨⎪⎩

�s1(x, y)� ≤ Ce−��1x;

�s2(x, y)� ≤ Ce−��1y;

�s3(x, y)� ≤ Ce−��2(d−x);

�s4(x, y)� ≤ Ce−��2(d−y);

⎧⎪⎨⎪⎩

�s5(x, y)� ≤ Ce−��2(x−d);

�s6(x, y)� ≤ Ce−��1y;

�s7(x, y)� ≤ Ce−��1(1−x);

�s8(x, y)� ≤ Ce−��2(d−y);

⎧⎪⎨⎪⎩

�s9(x, y)� ≤ Ce−��1x;

�s10(x, y)� ≤ Ce−��2(y−d);

�s11(x, y)� ≤ Ce−��2(d−x);

�s12(x, y)� ≤ Ce−��1(1−y);

⎧⎪⎨⎪⎩

�s13(x, y)� ≤ Ce−��2(x−d);

�s14(x, y)� ≤ Ce−��2(y−d);

�s15(x, y)� ≤ Ce−��1(1−x);

�s16(x, y)� ≤ Ce−��1(1−y);
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⎧
⎪⎨⎪⎩

�p1(x, y)� ≤ Ce−��1xe−��1y,

�p2(x, y)� ≤ Ce−��2(d−x)e−��1y,

�p3(x, y)� ≤ Ce−��2(d−x)e−��2(d−y),

�p4(x, y)� ≤ Ce−��1xe−��2(d−y),

⎧
⎪⎨⎪⎩

�p5(x, y)� ≤ Ce−��2(x−d)e−��1y,

�p6(x, y)� ≤ Ce−��1(1−x)e−��1y,

�p7(x, y)� ≤ Ce−��1(1−x)e−��2(d−y),

�p8(x, y)� ≤ Ce−��2(x−d)e−��2(d−y),

⎧⎪⎨⎪⎩

�p9(x, y)� ≤ Ce−��1xe−��2(y−d),

�p10(x, y)� ≤ Ce−��2(d−x)e−��2(y−d),

�p11(x, y)� ≤ Ce−��2(d−x)e−��1(1−y),

�p12(x, y)� ≤ Ce−��1xe−��1(1−y),

⎧⎪⎨⎪⎩

�p13(x, y)� ≤ Ce−��2(x−d)e−��2(y−d),

�p14(x, y)� ≤ Ce−��1(1−x)e−��2(y−d),

�p15(x, y)� ≤ Ce−��1(1−x)e−��1(1−y),

�p16(x, y)� ≤ Ce−��2(x−d)e−��1(1−y),

(2.10)where 𝜃1 =

{
𝜆

𝜖
, 𝛼𝜇2 ≤ 𝜆𝜖,

𝜇2

𝜖2
, 𝜇2 > 𝜆𝜖,

𝜃2 =

{ 𝜆

2𝜖
, 𝛼𝜇2 ≤ 𝜆𝜖,

𝜆

2𝜇2
, 𝛼𝜇2 > 𝜆𝜖,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

����
����
𝜕isk

𝜕xi

����
���� ≤ C(1 + 𝜖(1−i)), where k = 2, 4, 6, 8, 10, 12, 14, 16 and 1 ≤ i ≤ 4, if 𝛼𝜇2 ≤ 𝜆𝜖,

����
����
𝜕isk

𝜕xi

����
���� ≤ C

�
1 +

�
𝜖

𝜇

�2−2i�
, where k = 2, 6, 12, 16 and 1 ≤ i ≤ 4, if 𝛼𝜇2 > 𝜆𝜖,

����
����
𝜕isk

𝜕xi

����
���� ≤ C

�
1 +

�
1

𝜇

�2i−2�
, where k = 4, 8, 10, 14 and 1 ≤ i ≤ 4, if 𝛼𝜇2 > 𝜆𝜖,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

����
����
𝜕jsk

𝜕yj

����
���� ≤ C(1 + 𝜖(1−j)), where k = 1, 3, 5, 7, 9, 11, 13, 15 and 1 ≤ j ≤ 4, if 𝛼𝜇2 ≤ 𝜆𝜖,

����
����
𝜕jsk

𝜕yj

����
���� ≤ C

�
1 +

�
𝜖

𝜇

�2−2j�
, where k = 1, 7, 9, 15 and 1 ≤ j ≤ 4, if 𝛼𝜇2 > 𝜆𝜖,

����
����
𝜕jsk

𝜕yj

����
���� ≤ C

�
1 +

�
1

𝜇

�2j−2�
, where k = 3, 5, 11, 13 and 1 ≤ j ≤ 4, if 𝛼𝜇2 > 𝜆𝜖,
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max
{

|

|

|

|

|

|

|

|

�i+jsk
�xi�yj

|

|

|

|

|

|

|

|

,
|

|

|

|

|

|

|

|

�i+jpk
�xi�yj

|

|

|

|

|

|

|

|

}

≤ C�−(i+j), 1 ≤ i + j ≤ 4, if ��2 ≤ ��,

|

|

|

|

|

|

|

|

�i+jpk
�xi�yj

|

|

|

|

|

|

|

|

≤ C
(

�
�

)−(2i+2j)

, 1 ≤ i + j ≤ 4, if ��2 > ��, k = 1, 6, 12, 15,

|

|

|

|

|

|

|

|

�i+jpk
�xi�yj

|

|

|

|

|

|

|

|

≤ C
(

1
�

)2i( �
�

)−2j

, 1 ≤ i + j ≤ 4, if ��2 > ��, k = 2, 5, 11, 16,

|

|

|

|

|

|

|

|

�i+jpk
�xi�yj

|

|

|

|

|

|

|

|

≤ C
(

�
�

)−2i( 1
�

)2j

, 1 ≤ i + j ≤ 4, if ��2 > ��, k = 4, 7, 9, 14,

|

|

|

|

|

|

|

|

�i+jpk
�xi�yj

|

|

|

|

|

|

|

|

≤ C
(

1
�

)2i+2j

, 1 ≤ i ≤ 4, if ��2 > ��, k = 3, 8, 10, 13. □

The solution z(x, y) of (1.1) can be determined as follows

where, r =
4∑
i=1

ri,  s =
16∑
k=1

sk,  p =
16∑
k=1

pk.

z(x, y) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

(r1 + s1 + s2 + s3 + s4 + p1 + p2 + p3 + p4)(x, y), ∀(x, y) ∈ Ω1,

(r2 + s5 + s6 + s7 + s8 + p5 + p6 + p7 + p8)(x, y), ∀(x, y) ∈ Ω2,

(r3 + s9 + s10 + s11 + s12 + p9 + p10 + p11 + p12)(x, y), ∀(x, y) ∈ Ω3,

(r4 + s13 + s14 + s15 + s16 + p13 + p14 + p15 + p16)(x, y), ∀(x, y) ∈ Ω4,

[(r + s + p)](x, y) = 0, [(r + s + p)x](x, y) = 0, ∀(x, y) ∈ Γ1,

[(r + s + p)](x, y) = 0, [(r + s + p)y](x, y) = 0, ∀(x, y) ∈ Γ2.

Fig. 3  Description of the Shishkin Mesh
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Discretization of the Problem

In this section, we introduce a piecewise uniform Shishkin mesh for problem (1.1) and use the 
finite-difference technique on this mesh to get the numerical solution. To construct a suitable 
fitted piecewise uniform mesh, we first subdivided the unit interval in both x and y directions 
into six subintervals as

On the subintervals [�1, d − �2] and [d + �2, 1 − �1] we take N/4 subdivisions, while in 
the remaining subintervals we take N/8 subdivisions on each (see, Fig. 3). The transition 
points, �1 and �2, are defined as

where �1 and �2 are defined in (2.10).
In view of the above, the corresponding step sizes on each direction are given by

The interior points of the mesh are denoted by ΩN,N =
4⋃

k=1

ΩN,N

k
, where

The boundaries of these subdomains are denoted as

(3.1)
[0, 1] = [0, �1] ∪ [�1, d − �2] ∪ [d − �2, d] ∪ [d, d + �2] ∪ [d + �2, 1 − �1] ∪ [1 − �1, 1].

(3.2)�1 = min

{
d

4
,
2

�1
lnN

}
, �2 = min

{
d

4
,
2

�2
lnN

}
,

h1 =k1 =
8�1

N
, H1 = K1 =

4(d − �1 − �2)

N
,

h2 =k2 =
8�2

N
, H2 = K2 =

4(1 − �1 − �2 − d)

N
.

Ω1
N,N =

{
(xi, yj) ∶ 1 ≤ i ≤

N

2
− 1, 1 ≤ j ≤

N

2
− 1

}
;

Ω2
N,N =

{
(xi, yj) ∶

N

2
+ 1 ≤ i ≤ N − 1, 1 ≤ j ≤

N

2
− 1

}
;

ΩN,N

3
=

{
(xi, yj) ∶ 1 ≤ i ≤

N

2
− 1,

N

2
+ 1 ≤ j ≤ N − 1

}
;

ΩN,N

4
=

{
(xi, yj) ∶

N

2
+ 1 ≤ i ≤ N − 1,

N

2
+ 1 ≤ j ≤ N − 1

}
;

ΓN,N

1
=

{
(xN∕2, yj) ∶ 1 ≤ j ≤ N

}
; ΓN,N

2
=

{
(xi, yN∕2) ∶ 1 ≤ i ≤ N

}
.
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and ΛN,N = ΛN,N

1
∪ ΛN,N

2
∪ ΛN,N

3
∪ ΛN,N

4
. Note that 

Ω̄N,N =

{
(xi, yj) ∶ 0 ≤ i ≤ N, 0 ≤ j ≤ N

}
.

On an arbitrary mesh, Ω̄N,N , in order to discretized the problem (1.1) we define the 
standard upwind finite difference operator

Further, the discrete differential operators D∗
x
, D∗

y
, �2

xx
 , and �2

yy
 are considered as follows:

Lemma 3.1 (Discrete minimum principle): Let LN,N
�,�

 be the dis-
crete operator given in (3.3), If �(xi, yj) ≥ 0 on ΛN,N , LN,N

�,�
�(xi, yj) ≤ 0 , 

∀(xi, yj) ∈ ΩN,N , (D+
x
�(xi, yj) − D−

x
�(xi, yj)) ≤ 0, ∀(xi, yj) ∈ ΓN,N

1
 and 

(D+
y
�(xi, yj) − D−

y
�(xi, yj)) ≤ 0, ∀(xi, yj) ∈ ΓN,N

2
 then �(xi, yj) ≥ 0 ,   ∀(xi, yj) ∈ Ω̄N,N .

Proof We can prove the present Lemma using [15, 20].   ◻

Lemma 3.2 (Discrete stability result) Let Z(xi, yj) be the solution of (3.3). Then it holds

ΛN,N

1
=

{
(0, yj)

|| (0 ≤ j < N∕2) ∪ (N∕2 < j ≤ N)

}
,

ΛN,N

2
=

{
(xi, 0)

|| (0 ≤ i < N∕2) ∪ (N∕2 < i ≤ N)

}
,

ΛN,N

3
=

{
(1, yj)

|| (0 ≤ j < N∕2) ∪ (N∕2 < j ≤ N)

}
,

ΛN,N

4
=

{
(xi, 1)

|| (0 ≤ i < N∕2) ∪ (N∕2 < i ≤ N)

}
,

(3.3)

⎧⎪⎪⎨⎪⎪⎩

LN,N
�,�

Z(xi, yj) ≡ �2(�2
xx
+ �2

yy
)Z(xi, yj) + �2(aijD

∗
x
+ bijD

∗
y
)Z(xi, yj) − cijZ(xi, yj) = fij, ∀(xi, yj) ∈ ΩN,N ,

Z(xi, yj) = g1(yj), (xi, yj) ∈ ΛN,N

1
, Z(xi, yj) = g2(xi), (xi, yj) ∈ ΛN,N

2
,

Z(xi, yj) = g3(yj), (xi, yj) ∈ ΛN,N

3
, Z(xi, yj) = g4(xi), (xi, yj) ∈ ΛN,N

4
,

D−
x
Z(xi, yj) = D+

x
Z(xi, yj), (xi, yj) ∈ ΓN,N

1
,

D−
y
Z(xi, yj) = D+

y
Z(xi, yj), (xi, yj) ∈ ΓN,N

2
.

D∗
x
Z(xi, yj) =

{
D+

x
Z(xi, yj), i < N∕2,

D−
x
Z(xi, yj), i > N∕2,

D∗
y
Z(xi, yj) =

{
D+

y
Z(xi, yj), j < N∕2,

D−
y
Z(xi, yj), j > N∕2,

𝛿2
xx
Z(xi, yj) =

1

h̄i
(D+

x
Z(xi, yj) − D−

x
Z(xi, yj)), 𝛿2

yy
Z(xi, yj) =

1

k̄j
(D+

y
Z(xi, yj) − D−

y
Z(xi, yj)), with

D+
x
Z(xi, yj) =

Z(xi+1, yj) − Z(xi, yj)

hi+1
,

D−
x
Z(xi, yj) =

Z(xi, yj) − Z(xi−1, yj)

hi
.
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where ||.|| denotes the pointwise maximum norm.

Proof It can be proved using Lemma 3.1.   ◻

Error Analysis

     Lemma (3.2), will be used to proof the uniform convergence. Using standard tech-
niques, the local truncation error may be readily bounded as

To get suitable bounds of this error, we decompose the discrete solution as

where Rk are the discrete regular components, Sl the discrete singular components, and Pm 
the discrete corner components. The three components are, respectively, solutions of the 
following problems 

||Z(xi, yj)||Ω̄N,N ≤
1

𝜈
||L𝜖,𝜇Z||ΩN,N +max

{
||Z||ΛN,N

1

, ||Z||ΛN,N

2

, ||Z||ΛN,N

3

, ||Z||ΛN,N

4

}
,

(4.1)

�LN,N
𝜖,𝜇

(Z − z)(xi, yj)� ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C𝜖2
�
h̄i
����
����
𝜕3z

𝜕x3

����
���� + k̄j

����
����
𝜕3z

𝜕y3

����
����
�
+ C𝜇2

�
hi+1

����
����
𝜕2z

𝜕x2

����
���� + kj+1

����
����
𝜕2z

𝜕y2

����
����
�
,

if xi = 𝜎1, d − 𝜎2, d + 𝜎2, 1 − 𝜎1,

or yj = 𝜎1, d − 𝜎2, d + 𝜎2, 1 − 𝜎1,

C𝜖2
�
hi

2
����
����
𝜕4z

𝜕x4

����
���� + kj

2
����
����
𝜕4z

𝜕y4

����
����
�
+ C𝜇2

�
hi
����
����
𝜕2z

𝜕x2

����
���� + kj

����
����
𝜕2z

𝜕y2

����
����
�
,

otherwise.

Z =

4∑
k=1

Rk +

16∑
l=1

Sl +

16∑
m=1

Pm,

(4.2a)LN,N
�,�

Rk(xi, yj) = f (xi, yj), ∀(xi, yj) ∈ ΩN,N , k = 1, 2, 3, 4,

(4.2b)Rk(xi, yj) = rk(xi, yj), ∀(xi, yj) ∈ ΛN,N ,

(4.2c)
[
Rk

]
(xi, yj) = 0, ∀(xi, yj) ∈ ΓN,N

1
∪ ΓN,N

2
,

(4.2d)
[
(Rk)x

]
(xi, yj) = 0, ∀(xi, yj) ∈ ΓN,N

1
, [(Rk)y](xi, yj) = 0, ∀(xi, yj) ∈ ΓN,N

2
.

(4.3a)LN,N
�,�

Sl(xi, yj) = 0, ∀(xi, yj) ∈ ΩN,N , l = 1, ..., 16,

(4.3b)Sl(xi, yj) = sl(xi, yj), ∀(xi, yj) ∈ ΛN,N ,

(4.3c)
[
Sl
]
(xi, yj) = 0, ∀(xi, yj) ∈ ΓN,N

1
∪ ΓN,N

2
,
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Using the result (2.5), and those from (2.3) and (4.2) we get the following straightfor-
ward estimate

|LN,N
�,�

(Rk − rk)(xi, yj)| ≤ {
CN−1, if xi = �1, d − �2, d + �2, 1 − �1, or yj = �1, d − �2, d + �2, 1 − �1,

C(N−2 + �N−1), otherwise.

Following [7, 19], we consider the barrier function
Ψ(xi, yj) = CN−2(Φ(xi) + Φ(yj)) + CN−1,
where Φ(�i) is the piecewise-linear polynomial

Noting that 1∕�2 ≥ 4, we have that

Combining this with Lemma 3.2 we get

which shows a suitable bound for the error of the regular components.

(4.3d)
[
(Sl)x

]
(xi, yj) = 0, ∀(xi, yj) ∈ ΓN,N

1
, [(Sl)y](xi, yj) = 0, ∀(xi, yj) ∈ ΓN,N

2
.

(4.4a)LN,N
�,�

Pm(xi, yj) = 0, ∀(xi, yj) ∈ ΩN,N , m = 1, ..., 16,

(4.4b)Pm(xi, yj) = pm(xi, yj), ∀(xi, yj) ∈ ΛN,N ,

(4.4c)
[
Pm

]
(xi, yj) = 0, ∀(xi, yj) ∈ ΓN,N

1
∪ ΓN,N

2
,

(4.4d)
[
(Pm)x

]
(xi, yj) = 0, ∀(xi, yj) ∈ ΓN,N

1
, [(Pm)y](xi, yj) = 0, ∀(xi, yj) ∈ ΓN,N

2
.

Φ(�i) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, 0 ≤ �i ≤ �1,

1 −
�i−�1

2(d−�1−�2)
, �1 ≤ �i ≤ d − �2,

d−�i

2�2
, d − �2 ≤ �i ≤ d,

�i−d

2�2
, d ≤ �i ≤ d + �2,

1 −
�i−d−�2

2(1−d−�1−�2)
, d + �2 ≤ �i ≤ 1 − �1,

1−�i

2�1
, 1 − �1 ≤ �i ≤ 1.

�2�2
x
Ψ(xi, yj) =

{
O(−N−1�2), xi = �1, d − �2, d + �2, 1 − �1,

0, otherwise,

�2�2
y
Ψ(xi, yj) =

{
O(−N−1�2), yj = �1, d − �2, d + �2, 1 − �1,

0, otherwise.

D+
x
Ψ(xi, yj) ≤ 0, D+

y
Ψ(xi, yj) ≤ 0,

D−
x
Ψ(xi, yj) ≥ 0, D−

y
Ψ(xi, yj) ≥ 0.

(4.5)||Rk − rk|| ≤ CN−1, k = 1, 2, 3, 4,
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We utilize evidence-based on suitable barrier functions to show �-uniform bounds of the 
errors related to the corner and edge components. We consider the barrier functions as 

shown below: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gs1;i
=

⎧
⎪⎨⎪⎩

i∏
a=1

(1 + ha𝛼𝜃1)
−1 , i ≠ 0, 1 ≤ i < N∕2,

1 , i = 0,

Gs2;j
=

⎧
⎪⎨⎪⎩

j∏
a=1

(1 + ka𝛽𝜃1)
−1 , j ≠ 0, 1 ≤ j < N∕2,

1 , j = 0,

Gs3;i
=

⎧⎪⎨⎪⎩

N∕2∏
a=i+1

(1 + ha𝛼𝜃2)
−1 , i ≠ N∕2, 0 ≤ i < N∕2,

1 , i = N∕2,

Gs4;j
=

⎧⎪⎨⎪⎩

N∕2∏
a=j+1

(1 + ka𝛽𝜃2)
−1 , j ≠ N∕2, 0 ≤ j < N∕2,

1 , j = N∕2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gs5;i
=

⎧
⎪⎨⎪⎩

i∏
a=N∕2+1

(1 + ha𝛼𝜃2)
−1 , i ≠ N, N∕2 + 1 ≤ i < N,

1 , i = N,

Gs6;j
=

⎧
⎪⎨⎪⎩

j∏
a=1

(1 + ka𝛽𝜃1)
−1 , j ≠ N∕2, 1 ≤ j < N∕2,

1 , j = N∕2,

Gs7;i
=

⎧
⎪⎨⎪⎩

N∏
a=i+1

(1 + ha𝛼𝜃1)
−1 , i ≠ N, N∕2 + 1 ≤ i < N,

1 , i = N,

Gs8;j
=

⎧
⎪⎨⎪⎩

N∕2∏
a=j+1

(1 + ka𝛽𝜃2)
−1 , j ≠ N∕2, 0 ≤ j < N∕2,

1 , j = N∕2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gs9;i
=

⎧
⎪⎨⎪⎩

i∏
a=1

(1 + ha𝛼𝜃1)
−1 , i ≠ 0, 1 ≤ i < N∕2,

1 , i = 0,

Gs10;j
=

⎧
⎪⎨⎪⎩

j∏
a=N∕2+1

(1 + ka𝛽𝜃2)
−1 , j ≠ N, N∕2 + 1 ≤ j < N,

1 , j = N,

Gs11;i
=

⎧⎪⎨⎪⎩

N∕2∏
a=i+1

(1 + ha𝛼𝜃2)
−1 , i ≠ N∕2, 1 ≤ i < N∕2,

1 , i = N∕2,

Gs12;j
=

⎧⎪⎨⎪⎩

j∏
a=N∕2+1

(1 + ka𝛽𝜃1)
−1 , j ≠ N, N∕2 + 1 ≤ j < N,

1 , j = N,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gs13;i
=

⎧
⎪⎨⎪⎩

i∏
a=N∕2+1

(1 + ha𝛼𝜃2)
−1, i ≠ N, N∕2 + 1 ≤ i < N,

1 , i = N,

Gs14;j
=

⎧
⎪⎨⎪⎩

j∏
a=N∕2+1

(1 + ka𝛽𝜃2)
−1, j ≠ N, N∕2 + 1 ≤ j < N,

1 , j = N,

Gs15;i
=

⎧⎪⎨⎪⎩

N∏
a=i+1

(1 + ha𝛼𝜃1)
−1 , i ≠ N, N∕2 + 1 ≤ i < N,

1 , i = N,

Gs16;j
=

⎧⎪⎨⎪⎩

j∏
a=N∕2+1

(1 + ka𝛽𝜃1)
−1 , j ≠ N, N∕2 + 1 ≤ j < N,

1 , j = N.

The above functions depict first-order Taylor estimates of the exponential functions 
associated with the singular components of problem (1.1). For all 1 ≤ i < N∕2 , we have

exp(−��1xi) =
i∏

a=1

exp(−��1ha) ≤ Gs1,i
,

and for 𝜎1 <
d

8
 and N∕8 ≤ i ≤ N∕2 we have

Similar bounds can be obtained for the remaining edge functions.

Lemma 4.1 If sl and Sl are the solutions of (2.8) and (4.3), respectively, then, for 
l = 1, 2, ...., 16,

Proof If �1 = d∕4 the proof can be obtained using standard techniques by taking into 
account that �−2 ≤ C(lnN)2 . Thus, we will asume that 𝜎1 < d∕4 . Here we merely provide 
the specifications pertaining to the edge layer function s1 . Similar results are valid for the 
remaining boundary layer functions.   ◻

From (4.3) and Theorem 2.9, it follows that

Further, for all internal grid points (xi, yj) ∈ ΩN,N

1
 , from (4.3), (4.7), and the discrete mini-

mum principle, we have

(4.6)Gs1,i
≤ Gs1,N∕8

=

(
1 +

16 lnN

N

)−N∕8

≤ CN−1,

(4.7)LN
�,�
Gs1,i

≤ (�2�2�2
1
− �2a(xi, yj)��1 − c(xi, yj))Gs1,i

.

|sl(xi, yj) − Sl(xi, yj)| ≤ C(N−1 lnN), if ��2 ≤ ��.

(4.8)|S1(xi, yj)| = |s1(xi, yj)| ≤ Ce−��1xi ≤ CGs1,i
, (xi, yj) ∈ ΛN,N .

(4.9)|S1(xi, yj)| ≤ Gs1,i
.
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After applying Theorem 2.9 and (4.9), we conclude that

Finally, from (4.6), we have

To get similar bounds of the error in the region ΩN,N

1,1
=
{
(xi, yj) | 0 < i < N∕8, 0 < j < N∕2

}
 , 

we proceed as follows. Applying Taylor expansions, we get

If ��2 ≤ �� , from Theorem 2.9, we have

and using the discrete minimum principle and a suitable barrier function on Ω̄N,N

1,1
, we 

obtain

The result follows easily from (4.10) and (4.12).
Similar results can be obtained for the remaining boundary and interior layer functions 

sl, l = 2, 3, ..., 16.

Lemma 4.2 If sl and Sl are the solutions of (2.8) and (4.3), respectively, then, for 𝛼𝜇2 > 𝜆𝜖 
it holds

Proof If �2 = d∕4 the proof can be obtained using standard techniques by taking into 
account that ( 1

�
)2 ≤ C lnN and 

(
�

�

)2
≤ C lnN . Thus, we will asume that 𝜎2 < d∕4 . Here we 

merely provide the specifications pertaining to the edge layer function s1 . Similar results 
can be obtained for the remaining boundary layer functions.   ◻

From (4.3) and Theorem 2.9, we have

Further, for all internal grid points (xi, yj) ∈ ΩN,N

1
 , from (4.3), (4.7), and the discrete mini-

mum principle, we have

Therefore, applying Theorem 2.9 and (4.14), we conclude that

|s1(xi, yj) − S1(xi, yj)| ≤ |s1(xi, yj)| + |S1(xi, yj)| ≤ CGs1,i
.

(4.10)|s1(xi, yj) − S1(xi, yj)| ≤ CN−1, N∕8 ≤ i ≤ N∕2, 0 ≤ j ≤ N∕2.

(4.11)

�LN,N
𝜖,𝜇

[S1 − s1](xi , yj)� ≤
⎧
⎪⎨⎪⎩

C𝜖2
�
hi

2
����
����
𝜕4s1

𝜕x4

����
���� + k̄j

����
����
𝜕3s1

𝜕y3

����
����
�
+ C𝜇2

�
hi
����
����
𝜕2s1

𝜕x2

����
���� + kj

����
����
𝜕2s1

𝜕y2

����
����
�
, if j = N∕8, 3N∕8,

C𝜖2
�
hi

2
����
����
𝜕4s1

𝜕x4

����
���� + kj

2
����
����
𝜕4s1

𝜕y4

����
����
�
+ C𝜇2

�
hi
����
����
𝜕2s1

𝜕x2

����
���� + kj

����
����
𝜕2s1

𝜕y2

����
����
�
, otherwise.

|LN,N
�,�

[S1(xi, yj) − s1(xi, yj)]| ≤
{

CN−1 lnN + CN−1, if j = N∕8, 3N∕8,

CN−1 lnN, otherwise,

(4.12)|s1(xi, yj) − S1(xi, yj)| ≤ CN−1 lnN, (xi, yj) ∈ Ω̄N,N

1,1
.

|sl(xi, yj) − Sl(xi, yj)| ≤
{

CN−1 ln2 N, if k = 1, 2, 6, 7, 9, 12, 15, 16,

CN−1 lnN, if l = 3, 4, 5, 8, 10, 11, 13, 14.

(4.13)|s1(xi, yj)| = |s1(xi, yj)| ≤ Ce−�1xi ≤ CGs1,i
, (xi, yj) ∈ ΛN,N .

(4.14)|S1(xi, yj)| ≤ Gs1,i
.
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Therefore, from the corresponding result as in (4.6), we have

To get appropriate bounds for the error in the region ΩN
1,1

 , we proceed as follows. Applying 
Taylor series, we get

If 𝛼𝜇2 > 𝜆𝜖 , from Theorem 2.9, it follows that

After using the barrier function �2�−2(�1 − xi) to get a feasible bound on the error in the 
layer region ΩN,N

1,1
, the application of the discrete minimum principle on ΩN,N

1,1
, gives

The result follows easily from (4.15) and (4.16).
Similarly, we can derive the corresponding bounds for the remaining boundary and inte-

rior layer functions sl, l = 2, 6, 7, 9, 12, 15, 16.

If 𝛼𝜇2 > 𝜆𝜖 , we examine the boundary layer function s3. From (4.6-4.11) and Theo-
rem 2.9, it follows that

Therefore, the discrete minimum priciple, only on 
Ω̄N,N

2,1
= {(xi, yj) | 3N∕8 ≤ i ≤ N∕2, 0 ≤ j ≤ N∕2}, leads to

We can proceed similarly to get appropriate bounds for the remaining boundary and inte-
rior layer functions sl, l = 4, 5, 8, 10, 11, 13, 14.

Lemma 4.3 If pm and Pm are the solutions of (2.9) and (4.4), respectively, then for 
m = 1, 2, 3, ..., 16, it holds

Proof Again, we merely provide the proof of (4.18) for the corner layer component p1 and 
in case of 𝜎1 <

d

4
 . Proceeding similarly as in Lemma 4.1, we get

|s1(xi, yj) − S1(xi, yj)| ≤ |s1(x,yj)| + |S1(x,yj)| ≤ CGs1,i
.

(4.15)|s1(xi, yj) − S1(xi, yj)| ≤ CN−1, N∕8 ≤ i ≤ N∕2, 0 ≤ j ≤ N∕2.

�LN,N
𝜖,𝜇

[S1 − s1](xi, yj)� ≤
⎧⎪⎨⎪⎩

C𝜖2
�
hi

2
����
����
𝜕4s1

𝜕x4

����
���� + k̄j

����
����
𝜕3s1

𝜕y3

����
����
�
+ C𝜇2

�
hi
����
����
𝜕2s1

𝜕x2

����
���� + k̄j

����
����
𝜕2s1

𝜕y2

����
����
�
, if j = N∕8, 3N∕8,

C𝜖2
�
hi

2
����
����
𝜕4s1

𝜕x4

����
���� + kj

2
����
����
𝜕4s1

𝜕y4

����
����
�
+ C𝜇2

�
hi
����
����
𝜕2s1

𝜕x2

����
���� + kj

����
����
𝜕2s1

𝜕y2

����
����
�
, otherwise.

|LN,N
�,�

[S1(xi, yj) − s1(xi, yj)]| ≤
{

C�4�−2(N−1 lnN + N−1), if j = N∕8, 3N∕8,

C�4�−2(N−1 lnN), otherwise.

(4.16)|s1(xi, yj) − S1(xi, yj)| ≤ CN−1 ln2 N, (xi, yj) ∈ Ω̄N,N

1,1
.

|LN,N
�,�

[S3(xi, yj) − s3(xi, yj)]| ≤
{

C(N−1 lnN + N−1), if j = N∕8, 3N∕8,

C(N−1 lnN), otherwise.

(4.17)|s3(xi, yj) − S3(xi, yj)| ≤ CN−1 lnN, (xi, yj) ∈ Ω̄N,N

2,1
.

(4.18)|pm(xi, yj) − Pm(xi, yj)| ≤
{

C(N−1 lnN), if 𝛼𝜇2 ≤ 𝜆𝜖,

C(N−1 ln2 N), if 𝛼𝜇2 > 𝜆𝜖.
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Then, applying (4.6) we conclude that

where, ΩN,N

1,2
= {(xi, yj) | 0 < i, j < N∕8} . Ultimately, in ΩN,N

1,2
 the truncation error satisfies

If ��2 ≤ �� , from Theorem 2.9, it follows that

and using the discrete minimum principle on Ω̄N,N

1,2
, we get

The result follows from (4.19) and (4.20).
If 𝛼𝜇2 > 𝜆𝜖 , from Theorem 2.9, it follows that

Using the barrier function �2�−2(�1 − xi) to attain a feasible bound on the error in the layer 
region ΩN,N

1,2
,

and the discrete minimum principle on Ω̄N,N

1,2
 , we obtain

The result follows from (4.19) and (4.21).
The discrete solution Z(xi, yj) of (3.3) can be written as,

where, R =
4∑

k=1

Rk,  S =
16∑
l=1

Sl,  P =
16∑
m=1

Pm.

Lemma 4.4 Let z be the solution of problem (1.1) and Z the numerical solution of (3.3) 
on the constructed piecewise-uniform Shishkin mesh. Then the error at the mesh points 
(xi, yj) ∈ Ω̄N,N satisfies

|P1(xi, yj)| ≤ Cmin{Gs2,j
,Gs1,i

}, if (xi, yj) ∈ ΛN,N ,

|p1(xi, yj) − P1(xi, yj)| ≤ Cmin{Gs2,j
,Gs1,i

}, if (xi, yj) ∈ ΩN,N , 0 < i, j < N∕2.

(4.19)|p1(xi, yj) − P1(xi, yj)| ≤ CN−1, (xi, yj) ∈ ΩN,N�ΩN,N

1,2
,

|LN,N
�,�

[P1(xi, yj) − p1(xi, yj)]| ≤ C�2
(
hi

2
||||
||||
�4p1

�x4

||||
|||| + kj

2
||||
||||
�4p1

�y4

||||
||||
)

+ C�2

(
hi
||||
||||
�2p1

�x2

||||
|||| + kj

||||
||||
�2p1

�y2

||||
||||
)
.

|LN,N
�,�

[P1(xi, yj) − p1(xi, yj)]| ≤ C(N−1 lnN),

(4.20)|p1(xi, yj) − P1(xi, yj)| ≤ CN−1 lnN, (xi, yj) ∈ Ω̄N,N

1,2
.

|LN,N
�,�

[P1(xi, yj) − p1(xi, yj)]| ≤ C�4�−2(N−1 lnN),

(4.21)|p1(xi, yj) − P1(xi, yj)| ≤ CN−1 ln2 N, (xi, yj) ∈ Ω̄N,N

1,2
.

Z(x, y) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

(R1 + S1 + S2 + S3 + S4 + P1 + P2 + P3 + P4)(x, y), ∀(x, y) ∈ Ω1
N,N ,

(R2 + S5 + S6 + S7 + S8 + P5 + P6 + P7 + P8)(x, y), ∀(x, y) ∈ Ω2
N,N ,

(R3 + S9 + S10 + S11 + S12 + P9 + P10 + P11 + P12)(x, y), ∀(x, y) ∈ Ω3
N,N ,

(R4 + S13 + S14 + S15 + S16 + P13 + P14 + P15 + P16)(x, y), ∀(x, y) ∈ ΩN,N

4
,

[(R + S + P)](x, y) = 0, (x, y) ∈ ΓN,N

1
,

[(R + S + P)](x, y) = 0, (x, y) ∈ ΓN,N

2
.
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Proof Combining Lemmas 4.1, 4.2 and 4.3, we obtain the following error bound for ΩN,N

At the point (xi, yj) = (d, yj) , we have (D+
x
− D−

x
)Z(d, yj). Therefore,

Now, note that h2 =
8�2

N
 on either side of (d, yj). Therefore,

At the point (xi, yj) = (xi, d) , we have (D+
y
− D−

y
)Z(xi, d). Therefore,

Now, note that k2 =
8�2

N
 on either side of (xi, d). Therefore,

  ◻

|Z(xi, yj) − z(xi, yj)| ≤
{

CN−1 lnN, if 𝛼𝜇2 ≤ 𝜆𝜖,

CN−1 ln2 N, if 𝛼𝜇2 > 𝜆𝜖.

|Z(xi, yj) − z(xi, yj)| ≤
{

CN−1 lnN, if 𝛼𝜇2 ≤ 𝜆𝜖,

CN−1 ln2 N, if 𝛼𝜇2 > 𝜆𝜖.

|(D+
x
− D−

x
)(Z − z)(d, yj)| =|(D+

x
− D−

x
)Z(d, yj) − (D+

x
− D−

x
)z(d, yj)|

≤|(D+
x
− D−

x
)z(d, yj)|.

|(D+
x
− D−

x
)(Z − z)(d, yj)| ≤|(D+

x
− D−

x
)z(d, yj)|

≤
||||(D

+
x
−

d

dx
)z(d+, yj) + (D−

x
−

d

dx
)z(d−, yj)

||||
≤C

h2

2

||||
𝜕2z

𝜕x2

||||ΩN,N

|(D+
x
− D−

x
)(Z − z)(d, yj)| ≤C

{
h2

2
(
1

𝜖
)2, if 𝛼𝜇2 ≤ 𝜆𝜖,

h2

2
(
1

𝜇
)2, if 𝛼𝜇2 > 𝜆𝜖.

|(D+
y
− D−

y
)(Z − z)(xi, d)| =|(D+

y
− D−

y
)Z(xi, d) − (D+

y
− D−

y
)z(xi, d)|

≤|(D+
y
− D−

y
)z(xi, d)|.

|(D+
y
− D−

y
)(Z − z)(xi, d)| ≤|(D+

y
− D−

y
)z(xi, d)|

≤
||||(D

+
y
−

d

dy
)z(xi, d

+) + (D−
y
−

d

dy
)z(xi, d

−)
||||

≤C
k2

2

||||
𝜕2z

𝜕y2

||||ΩN,N

,

|(D+
y
− D−

y
)(Z − z)(xi, d)| ≤C

{
k2

2
(
1

𝜖
)2, if 𝛼𝜇2 ≤ 𝜆𝜖,

k2

2
(
1

𝜇
)2, if 𝛼𝜇2 > 𝜆𝜖.
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Using the techniques given in [21, 22], we can also obtain the error for 
(xi, yj) = (d, yj) ∪ (xi, d) . First, we obtain the result for the case ��2 ≤ ��. Consider the fol-
lowing discrete barrier function:

where h2 =
8�2

N
= k2 . Then it is easy to verify that

for a suitable large C1. We also have

and

for a suitable large C2 . Thus, from the discrete comparison principle, we get

Therefore, for a suitable large N, we obtain the following estimate 

In the second case, 𝛼𝜇2 > 𝜆𝜖, using a suitable barrier function and a similar procedure 
from the above techniques based on the discrete comparison principle, we also obtain the 
error estimate

Hence, we have the required result.

Numerical Experiments

To illustrate the performance of the method developed in the preceding sections, we 
focused on two examples of the type in (1.1).

Example 5.1 �2(zxx(x, y) + zyy(x, y)) + �2(a(x, y)zx(x, y) + b(x, y)zy(x, y)) − c(x, y)z(x, y) = f (x, y),

∀(x, y) ∈ Ω,

f1(x, y) = −(0.5 + xy∕2); f2(x, y) = (0.6 + x + y); f3(x, y)
= (0.6 + x + y); f4(x, y) = −(0.5 + xy∕2); d = 0.5,

where each fk is defined over Ωk, k = 1, 2, 3, 4, with boundary conditions as well as con-
vection and reaction coefficients

�±
1
(xi, yj) =

⎧
⎪⎪⎨⎪⎪⎩

C1(N
−1 lnN) + C2

h2

�
�2
2
(xi − (d − �2)) ± e(xi, yj), for xi ∈ (d − �2, d),

C3(N
−1 lnN) + C4

h2

�
�2
2
((d + �2) − xi) ± e(xi, yj), for xi ∈ (d, d + �2),

C5(N
−1 lnN) + C6

k2

�
�2
2
(yj − (d − �2)) ± e(xi, yj), for yj ∈ (d − �2, d),

C7(N
−1 lnN) + C8

k2

�
�2
2
((d + �2) − yj) ± e(xi, yj), for yj ∈ (d, d + �2),

𝜉±
1
(xi, yj) ≥ 0, ∀(xi, yj) ∈ Ω̄N,N ∩ ΛN,N ,

LN,N
�,�

�±
1
(xi, yj) ≤ 0, ∀(xi, yj) ∈ ΩN,N

(D+
x
− D−

x
)�±

1
(d, yj) ≤ 0, (D+

y
− D−

y
)�±

1
(xi, d) ≤ 0,

𝜉±
1
(xi, yj) ≥ 0, ∀(xi, yj) ∈ Ω̄N,N .

|Z(xi, yj) − z(xi, yj)| ≤ C(N−1 lnN), if ��2 ≤ ��.

|Z(xi, yj) − z(xi, yj)| ≤ C(N−1 ln2 N), if 𝛼𝜇2 > 𝜆𝜖.
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Example 5.2 �2(zxx(x, y) + zyy(x, y)) + �2(a(x, y)zx(x, y) + b(x, y)zy(x, y)) − c(x, y)z(x, y) = f (x, y),

∀(x, y) ∈ Ω

f1(x, y) = −(1 + 2x + 2y) = f4(x, y); f2(x, y) = −(4 + 3x + 3y) = f3(x, y); d = 0.5,

where each fk is defined over Ωk, k = 1, 2, 3, 4, with boundary conditions as well as con-
vection and reaction coefficients

The exact solutions of these problems are not known. Therefore, we use the double 
mesh principle explained in [23] to estimate the maximum point-wise error. It is given 
by

z(x, 0) = z(x, 1) = z(0, y) = z(1, y) = 0,

a(x, y) =

{
1 + exp(xy), x < d,

−1 − exp(xy), x > d,
b(x, y) =

{
1 + exp(xy), y < d,

−1 − exp(xy), y > d,
c(x, y) = 1 + x2 + y2.

z(x, 0) = z(x, 1) = z(0, y) = z(1, y) = 0,

a(x, y) =

{
2 + x + y, x < d,

−(3 + 2x − 2y), x > d,
b(x, y) =

{
2 + x + y, y < d,

−(3 + 2x − 2y), y > d,
c(x, y) = 1 + exp(xy).

(a) Whenε = 2−12, µ = 2−8, N = 128; (b) Whenε = 2−12, µ = 2−4, N = 128;

Fig. 4  Surface graph of the numerical solution Z for Example 5.1

(a) Whenε = 2−8, µ = 2−5, N = 128; (b) Whenε = 2−8, µ = 2−3, N = 128;

Fig. 5  Surface graph of the numerical solution Z for Example 5.2
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where Z2N,2N(x2i, y2j) represents the numerical solution on a mesh with 2N subintervals on 
each direction. The parameter uniform maximum point-wise errors are determined apply-
ing the formula

The numerical order of convergence is given by

In Tables  1 and 2 we have choosen � = 2−12 and � = 2−(2k+1), k = 0, 1, 2, 3...12 . These 
tables show the maximum point-wise errors and orders of convergence corresponding to 
Examples 5.1 and 5.2. Further, from this tables it is clear that our numerical scheme is 
almost first-order convergent as � → 0 , which is the rate required (see, e.g., [24]) when 
dealing with reaction-diffusion problems. Figure  4 shows the numerical solution for 
� = 2−12, � = 2−8 , N = 128 and � = 2−12, � = 2−4 , N = 128 respectively corresponding to 
the test Example 5.1. Figure 5 shows the numerical solution for � = 2−8, � = 2−5 , N = 128 

EN,N
𝜖,𝜇

= max
(xi ,yj)∈Ω̄

N,N

|Z2N,2N(x2i, y2j) − ZN,N(xi, yj)|

EN,N = max
�,�

EN,N
�,�

.

QN,N = log2

(
EN,N

E2N,2N

)
.

(a)When ε = 2−12, µ = 2−4; (b)When ε = 2−12, µ = 2−8;

Fig. 6  Loglog plot of the numerical solution Z for Example 5.1

(a) Whenε = 2−12, µ = 2−4; (b) Whenε = 2−12, µ = 2−8;

Fig. 7  Loglog plot of the numerical solution Z for Example 5.2
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and � = 2−8, � = 2−3 , N = 128 , respectively, corresponding to the test Example 5.2. Fig-
ures 6 and 7 show the Loglog plot for Examples 5.1 and 5.2, respectively, in which the sec-
ond line from the below is represented the theoretical �-uniform error estimations, whereas 
the �-uniform error estimations EN,N are represented by the first almost linear curve.

Table 1  Maximum point-wise errors EN,N and orders of convergence QN,N for Example 5.1

� = 2−12

� N 64 128 256 512 1024

2.00e−01 EN,N 9.918e−02 7.407e−02 5.194e−02 3.408e−02 2.093e−02
QN,N 0.42116 0.51204 0.60792 0.70335 –

2.00e−03 EN,N 9.902e−02 7.378e−02 5.090e−02 3.353e−02 2.065e−02
QN,N 0.42449 0.53556 0.60221 0.69931 –

2.00e−05 EN,N 9.341e−02 7.352e−02 4.965e−02 3.394e−02 2.120e−02
QN,N 0.34544 0.56634 0.54881 0.67892 –

2.00e−07 EN,N 4.643e−02 2.753e−02 1.479e−02 7.901e−03 4.236e−03
QN,N 0.75405 0.89638 0.90451 0.89933 –

2.00e−09 EN,N 3.079e−02 1.390e−02 5.365e−03 1.938e−03 7.075e−04
QN,N 1.1474 1.3734 1.4690 1.4538 –

2.00e−11 EN,N 2.936e−02 1.298e−02 4.734e−03 1.587e−03 5.040e−04
QN,N 1.1776 1.4552 1.5768 1.6548 –

2.00e−13 EN,N 2.926e−02 1.292e−02 4.695e−03 1.565e−03 4.920e−04
QN,N 1.1793 1.4604 1.5850 1.6694 –

2.00e−15 EN,N 2.926e−02 1.291e−02 4.692e−03 1.564e−03 4.913e−04
QN,N 1.1804 1.4602 1.5850 1.6706 –

2.00e−17 EN,N 2.926e−02 1.291e−02 4.692e−03 1.564e−03 4.912e−04
QN,N 1.1804 1.4602 1.5850 1.6709 –

. . . . . . .

. . . . . . .

. . . . . . .
2.00e−25 EN,N 2.926e−02 1.291e−02 4.692e−03 1.564e−03 4.912e−04

QN,N 1.1804 1.4602 1.5850 1.6709 –
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Conclusion

This study is concerned with two-parameter singularly perturbed steady-state 2-D 
convection-reaction-diffusion problems with interior layers. A finite-difference 
approach that yields almost first-order convergence is used to generate a parameter-
uniform discrete solution. The analytical and discrete solutions are split into a sum 
of regular, singular, and corner components to address the convergence analysis and 
to obtain appropriate bounds. The numerical experiments show that the theoretical 
analysis agrees with the obtained results.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The 
first author wishes to thank Ministry of Education (MoE), Govt. of India for their financial support during 
his PhD program.

Data availability Not applicable.

Table 2  Maximum point-wise errors EN,N and orders of convergence QN,N for Example 5.2

� = 2−12

� N 64 128 256 512 1024

2.00e−01 EN,N 3.133e−01 2.677e−01 2.079e−01 1.451e−01 9.514e−02
QN,N 0.22693 0.36473 0.51884 0.60892 –

2.00e−03 EN,N 5.057e−01 4.353e−01 3.383e−01 2.361e−01 1.548e−01
QN,N 0.21627 0.36371 0.51891 0.60899 –

2.00e−05 EN,N 4.986e−01 4.359e−01 3.399e−01 2.371e−01 1.555e−01
QN,N 0.19389 0.35889 0.51961 0.60858 –

2.00e−07 EN,N 2.288e−01 1.519e−01 9.275e−02 5.526e−02 3.231e−02
QN,N 0.59097 0.71170 0.74711 7.7425 –

2.00e−09 EN,N 1.259e−01 5.931e−02 2.363e−02 9.035e−03 3.509e−03
QN,N 1.0859 1.3277 1.3870 1.3645 –

2.00e−11 EN,N 1.190e−01 5.320e−02 1.947e−02 6.645e−03 2.136e−03
QN,N 1.1615 1.4502 1.5509 1.6374 –

2.00e−13 EN,N 1.185e−01 5.282e−02 1.920e−02 6.497e−03 2.054e−03
QN,N 1.1657 1.4600 1.5633 1.6613 –

2.00e−15 EN,N 1.185e−01 5.279e−02 1.919e−02 6.487e−03 2.049e−03
QN,N 1.1666 1.4599 1.5647 1.6626 –

2.00e−17 EN,N 1.185e−01 5.279e−02 1.919e−02 6.487e−03 2.049e−03
QN,N 1.1666 1.4599 1.5647 1.6626 –

. . . . . . .

. . . . . . .

. . . . . . .
2.00e−25 EN,N 1.185e−01 5.279e−02 1.919e−02 6.487e−03 2.049e−03

QN,N 1.1666 1.4599 1.5647 1.6626 –
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