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Abstract
Soft set theory, initially introduced through the seminal article ‘‘Soft set theory—First results’’ in 1999, has gained

considerable attention in the field of mathematical modeling and decision-making. Despite its growing prominence, a

comprehensive survey of soft set theory, encompassing its foundational concepts, developments, and applications, is

notably absent in the existing literature. We aim to bridge this gap. This survey delves into the basic elements of the theory,

including the notion of a soft set, the operations on soft sets, and their semantic interpretations. It describes various

generalizations and modifications of soft set theory, such as N-soft sets, fuzzy soft sets, and bipolar soft sets, highlighting

their specific characteristics. Furthermore, this work outlines the fundamentals of various extensions of mathematical

structures from the perspective of soft set theory. Particularly, we present basic results of soft topology and other algebraic

structures such as soft algebras and r-algebras. This article examines a selection of notable applications of soft set theory in

different fields, including medicine and economics, underscoring its versatile nature. The survey concludes with a dis-

cussion on the challenges and future directions in soft set theory, emphasizing the need for further research to enhance its

theoretical foundations and broaden its practical applications. Overall, this survey of soft set theory serves as a valuable

resource for practitioners, researchers, and students interested in understanding and utilizing this flexible mathematical

framework for tackling uncertainty in decision-making processes.
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1 Introduction

Despite the growing prominence of soft set theory, the

existing literature is conspicuously lacking in a compre-

hensive overview of its development. In this paper, we fill

this gap with an up-to-date and organized review of the

bibliography on soft set theory. There is no doubt that its

genesis can be traced back to an article by Molodtsov

[179]. It is only appropriate to begin with some biograph-

ical notes. Then, in this section, we will show how this

theory became popular, charting its evolution and uptake

within the mathematical community and beyond. After-

ward we will present a catalog of the key areas of devel-

opment that we will overview and their main proponents.

This Introduction concludes with an outline of our litera-

ture review.

1.1 Biographical notes

The founder of soft set theory, Professor Dmitri Ana-

tol’evich Molodtsov passed away on December 4, 2020.
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We confirmed the death in an email exchange with Prof.

Vladimir Tsurkov, the head of the department where Prof.

Molodtsov worked.

Professor Molodtsov was a mathematician, born on June

2, 1949, in Moscow. His entry at the world biographical

encyclopedia Prabook 1 explains that Professor Molodtsov

was the son of Anatoliy and Julia (Sedova) Molodtsova. He

earned an Honors Degree from Moscow University in

1971, and went on to obtain a Candidate of Science degree

in 1974, and a Doctor of Science degree in 1990, both from

Moscow University. He worked as a researcher at the

Computer Center of the Russian Academy of Sciences in

Moscow, from 1974 until his passing.

According to the second 2022 update of the zbMATH

Open (formerly known as Zentralblatt MATH) interface,

Professor Molodtsov produced 46 publications since 1972,

including 2 books, with 6 coauthors: D. V. Kovkov (4

publications), V. V. Fedorov (2 publications), Santanu

Acharjee (1 publication), V. M. Kolbanov (1 publication),

V. Yu. Leonov (1 publication), and A. A. Sokolov (1

publication). Specifically, the All-Russian portal Math-

Net.Ru lists 30 articles written by him.

We shall not describe his specific contributions to the

field of mathematics here. Suffice to say that emerging

from [179], soft set theory has become a thriving field of

research. According to Google Scholar (consulted

December 4, 2023), his article, titled ‘‘Soft set theory—

First results,’’ has been cited by more than 6650 scholarly

works. The Science Direct site counts more than 3500

citations to [179] on December 4, 2023. From this vast

literature, we can only hope to make an adequate selection

of works in this survey.

Section 4.5 acknowledges Professor Molodtsov’s

attempt to launch soft probability too.

1.2 The development of a new theory

It took some time for the new theory to gain traction. Its

first steps were slow, and we can safely conclude that it

received little attention in its origins. To this end, let us

examine the chronological development of its early years.

We shall conclude that the use of this subject has steadily

increased over the past two decades.

Both fuzzy soft sets and intuitionistic fuzzy soft sets

were defined in 2001 by [169] and [170], respectively. The

next year, [171] showed that soft sets may be applied to

solve decision-making problems, and also, these authors

proposed the idea of reducing soft sets (we should be aware

of the fact that it was later reformulated by [81]). These

new contributions went largely unnoticed at the time.

However, they are now highly cited and gave rise to many

different branches of the literature.

The year 2007 witnessed the introduction of a basic

formulation of soft group theory [29, 30] and decision-

making with fuzzy soft sets [199]. This year appears to be a

watershed in the development of soft set theory. Until then,

the number of Scopus citations to the seminal [179] did not

exceed 3 per year. In 2008, the number of Scopus citations

rose to 12, and it was 22 in 2009, the year when [131]

defined soft p-ideals of soft BCI-algebras. Since 2012, the

annual number of Scopus citations has not fallen below

100. At that time, some important guidelines had already

been established. For evidence, note that many interesting

problems such as data filling of incomplete soft sets

[191, 256], utilization of soft set theory in association rules

mining [121], hybridization with rough sets [63, 108],

algebraic structures associated with soft sets [65], and soft

topology [79, 210] were studied before 2012. It is safe to

say that all these works contributed greatly to the success

of soft set theory. In support of this assertion, it is worth

noting that Google Scholar counts more than 1500 citations

to [210] on December 4, 2023. It is for this reason that we

dedicate a full section to an overview of soft topological

spaces. Also [256] has over 600 citations in Google

Scholar, a remarkable achievement that speaks to the

interest in the topic of incomplete soft sets.

1.3 Basic elements of soft set theory: a brief
description

What is the core content of soft set theory? There exists no

updated, organized study establishing the standards of this

theory. In fact, there is no systematic literature review for

soft set theory, not even an outdated one. For newcomers to

the subject, there are no organized presentations of its

fundamental facts and achievements, the current state of

the art, and promising lines for future research. These gaps

are addressed in this paper.

The takeaway message of soft set theory is that concepts

that hinge on the idea of ‘‘belongingness’’ can be extended

by making them dependent on a set of parameters. In its

inception, soft sets over a set were described not by one

indicator function (as in the case of standard subsets), but

by a multiplicity of indicators (one for each ‘‘attribute’’

pertaining to another reference set). The interpretation was

that each attribute produced an ‘‘aproximate description’’

of the subset of elements that the soft set jointly describes

[179], although explicit discussions of their semantic

interpretation came much later [52, 235]. The basic oper-

ations with soft sets and their properties were described in

[172] and later clarified in [66].

We should include [169] and [170] among the propo-

nents of this field of research. Their merit was to prove that

1 See https://prabook.com/web/dmitri.molodtsov/447824 (consulted

February 22, 2024).
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Molodtsov’s idea could be combined with other successful

concepts (fuzzy sets, intuitionistic fuzzy sets). Relation-

ships among these models continued to come to light

[46, 160]. Many other extensions and hybrid models have

been developed ever since, inclusive of generalized intu-

itionistic fuzzy soft sets [106], bipolar soft sets [211] and

fuzzy bipolar soft sets [183], probabilistic and dual prob-

abilistic soft sets [102, 253], N-soft sets [100], hesitant

fuzzy soft sets [73, 224] and intertemporal hesitant fuzzy

soft sets [159], Dempster-Shafer fuzzy soft sets [94], m-

polar fuzzy soft sets [244], ranked soft sets [208], soft

rough sets and rough soft sets [108, 110], et cetera.

An important branch of the literature has to do with

decision-making. The prioneer approach must be credited

to [171] and [81], and also [199] launched decision-making

in the hybrid fuzzy soft set framework, which was

improved with [107] and [237]. [102] pioneered decision-

making in (dual) probabilistic soft sets, and [106] did the

same in generalized intuitionistic fuzzy soft sets. [138] and

[92] overview these topics from a recent perspective. A

distinctly different approach related to Weierstrass extreme

value theorem is [50]. Soft topological knowledge is a

prerequisite for this technique.

As a matter of fact, topology has certainly become the

most successful extension of a mathematical structure with

the quality of soft set theory. It was launched by [79] and

[210], and further developed in a long series of papers

including [39–41, 47–49, 60, 96, 125, 174, 175,

177, 184, 185, 202, 223], and [254]. Fuzzy soft topologies

[86, 201, 214], soft metric spaces [1, 2, 90], and further

generalizations have been defined and studied too. Other

structures have been enriched with the idea of parametric

belongingness, which gave raise to: (1) algebraic structures

such as soft groups [29, 30], soft semirings [101], soft rings

[5], etcetera; (2) set-theoretic structures such as soft ideals

and filters in [206], or soft algebras and soft r-algebras,

respectively, defined in [198] and [136]; (3) extensions of

convexity in finite environments [51], or (4) graph-theo-

retic models [11, 12, 139, 212].

Two other topics that are worth mentioning are data

filling and parameter reduction. The first problem arose

from the occurrence of missing data in the framework of

soft set information. The model known as incomplete soft

sets emerged from this situation. It is in this context that

[256] and [191] started the problem of filling the missing

data in order to put incomplete soft sets into practice.

Different techniques have continued to appear both for this

basic model [153–155, 205] and many of its extensions

inclusive of fuzzy soft sets [91, 93], interval-valued fuzzy

soft sets [109, 163] or interval-valued intuitionistic fuzzy

soft sets [165, 190]. Although data filling has become a

crucial topic in soft set theory, it has been argued that for

the purpose of decision-making under incomplete soft

information, this problem can be bypassed [54]. Concern-

ing parameter reduction, it is appropriate to explain that the

problem has been imported from the theory of rough sets.

In both fields, the purpose is the simplification of the space

of parameters, in such way that the ultimate goal (typically,

decision-making) remains unaffected. The problem was

stated very soon after the emergence of soft set theory, as

explained above. [171] and then [81] established the main

concept. We underline the role of [149] with a normal

parameter reduction algorithm, and [151], with a concern

for computational efficiency in the presence of large

datasets. Reviews of this literature include [88] and [246].

In addition to this case, the problem has been approached

from the perspective of fuzzy soft sets [75, 116, 137, 148],

interval-valued fuzzy soft sets [163, 193], bipolar fuzzy

soft sets [64], and N-soft sets [21].

This shortlist of general topics is far from being

exhaustive. Rule mining from the perspective of soft set

theory has been approached by [105, 157] among others.

[161] have shown that soft set theory can be related to

machine learning methods. These and many other articles

have produced original approaches to other topics, that

have gained generality with the inclusion of parametric

membership.

1.4 Outline of the paper

By shedding light on the underexplored aspects of soft set

theory, this first-ever survey consists of six sections. Sec-

tion 2 summarizes three elements: the definition and fun-

damental operations of soft sets, a (non-exhaustive) list of

extensions and variations, and the semantic interpretations

of soft sets. Section 3 is dedicated to the fundamentals of

soft topology, its foundational literature, and its relation-

ship with topology. Other topics in soft set theory are

overviewed in Sect. 4. These subjects include: other

mathematical structures with a soft-set-based approach,

data filling of incomplete soft sets, parameter reduction of

soft sets and fuzzy soft sets, aggregation, plus an outline of

soft probability. Section 5 is dedicated to decision-making.

Section 6 concludes our survey and identifies potential

areas for future research.

2 Preliminary concepts

Henceforward, X will denote a nonempty set (that is usu-

ally called the ‘‘universe of discourse’’). A set E will be

usually interpreted as a list of characteristics, properties, or

attributes (although Sect. 2.3 explains that other interpre-

tations are possible). When U is a set, PðUÞ will denote the

set of parts of U.

123

Neural Computing and Applications



This section has three parts. In the next Sect. 2.1, we

review basic elements of soft set theory. Then, Sect. 2.2

summarizes a number of extensions of soft sets. We neither

intend to give an exhaustive list nor formally describe all of

them, because the current number of extensions is too high.

The semantic interpretation of soft sets is the subject of

Sect. 2.3.

2.1 Elements of soft set theory

We begin by explaining that two standard modelings of a

soft set exist in the literature. Both are trivially equivalent.

1. Under the first presentation, soft sets on X are defined

by a pair (F, E), the set E being formed by all the

properties that characterize the members of the

universe of discourse, and F is a function F : E �!
PðXÞ: As presented by [179], a soft set on X can be

described as a parameterized collection of subsets of X,

the set of parameters being E.

2. A second presentation uses the fact that PðXÞ can be

identified with f0; 1gX , which is the set of all functions

from X to f0; 1g. Indeed, every subset A of X is

uniquely determined by vA : X �! f0; 1g, which is its

indicator or characteristic function. With this identifi-

cation the soft set (F, E) can be interpreted as a

mapping F : E �! f0; 1gX . Under this presentation, if

we observe FðaÞðxÞ ¼ 1 then we interpret that x

satisfies property a 2 E, and FðaÞðxÞ ¼ 0 means the

opposite.

Whatever the presentation that we choose, a soft set on the

universe of discourse X is simply a multi-function F from

E —a set of properties that identify the alternatives– to

X [177]. This apparently casual comment is in fact very

important: for example, it is the key to transform concepts

from the language of soft topology to the language of

topology. This correspondence will be discussed in Sect.

3.3. Multi-functions or multifunctions are referred to as

correspondences, point-to-set mappings, or multi-valued

mappings in the specialized literature.

For this reason, a soft set (F, E) can also be regarded as

a subset of the Cartesian product E � X, namely, the graph

of F. Recall that when F : E �! PðXÞ is a multi-function,

its graph is GrðFÞ ¼ fðe; yÞjy 2 FðeÞg. So, there is an exact

correspondence between (F, E) and Gr(F).

In the literature, it is common to use the representation

fðe;FðeÞÞ : e 2 Eg for the aforementioned (F, E). Note

that this presentation is reminiscent of the graph repre-

sentation explained above. When e 2 E, F(e) is a subset of

X that is sometimes expressed with the more accurate

notation (F, E)(e). It is referred to as the set of e-approx-

imate elements of the universe of discourse, or

alternatively, as the subset of the universe of discourse

approximated by e.

Henceforth SSEðXÞ will represent the set of all soft sets

on X. If E, the set of relevant characteristics of the elements

of X, is common knowledge, we can drop the subindex and

just use the notation SS(X).

Two basic examples of soft sets are the full or absolute,

and the null soft sets on X. The full soft set ~X is such that
~XðeÞ ¼ X for each e 2 E. In the interpretation by graphs,

one has ~X ¼ E � X. The null soft set U is such that UðeÞ ¼
£ for all e 2 E. So, in the interpretation by graphs,

U ¼ £ � E � X. Soft points are special types of soft sets

that we discuss in Sect. 3.

Operations from set theory were soon transferred to the

theory of soft sets. Predictably, union, intersection, and

inclusion within SSEðXÞ were defined in the following way

[66, 172]: for any ðF1;EÞ; ðF2;EÞ 2 SSEðXÞ,

(1) ðF1;EÞ t ðF2;EÞ is ðF3;EÞ 2 SSEðXÞ, the soft set

such that F3ðeÞ ¼ F1ðeÞ [ F2ðeÞ for each e 2 E. We

can write this concept as ððF1;EÞ t ðF2;EÞÞðeÞ ¼
F1ðeÞ [ F2ðeÞ when e 2 E.

(2) ðF1;EÞ u ðF2;EÞ is the soft set ðF4;EÞ 2 SSEðXÞ
such that F4ðeÞ ¼ F1ðeÞ \ F2ðeÞ for each e 2 E. We

can write this concept as ððF1;EÞ u ðF2;EÞÞðeÞ ¼
F1ðeÞ \ F2ðeÞ when e 2 E.

(3) ðF1;EÞYðF2;EÞ means F1ðeÞ � F2ðeÞ whenever

e 2 E.

ðF;EÞc holds for complement of ðF;EÞ 2 SSEðXÞ, and it is

ðFc;EÞ 2 SSEðXÞ for which every e 2 E defines

FcðeÞ ¼ X n FðeÞ.

Remark 1 It is trivial to extend the union and intersection

operations on soft sets to either finite or infinite lists of soft

sets.

Relatedly, soft inclusion produces a natural idea of soft

equality whereby ðF1;EÞ ¼ ðF2;EÞ is equivalent to both

ðF1;EÞYðF2;EÞ and ðF2;EÞYðF1;EÞ. Put shortly, soft

equality of ðF1;EÞ and ðF2;EÞ boils down to F1ðeÞ ¼ F2ðeÞ
for all e 2 E.

The soft sets ðF;EÞ; ðF0;EÞ 2 SSEðXÞ are disjoint if their

intersection is the null soft set, i.e., if ðF;EÞ u ðF0;EÞ ¼ U.

And in this case, the two soft sets must be forcefully dif-

ferent, in the sense that they cannot be soft equal.

It is important to bear in mind that [66] corrected some

wrong assertions given in [172]. This analysis produced

new concepts (such as restricted intersection, union, and

difference, plus extended intersection, of a pair of soft

sets). Also, the reader should be aware that in addition to

the definitions given above, other concepts of intersection,

union, and inclusions have been defined. For more details,

see [33] and [34].
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2.2 Extensions of soft sets

Let us now outline the ideas that have produced extensions

of the model presented in Sect. 2.1.

The addition of other feasible items to f0; 1g in the

second modelization presented in Sect. 2.1 produces

extended soft set models in three different directions,

namely, incomplete soft sets, N-soft sets, and fuzzy soft

sets.

1. Incomplete soft sets were introduced by Zou and

Xiao [256] and later studied by authors such as Qin

et al. [191] and Alcantud and Santos-Garcı́a [54]. They

are defined by replacing f0; 1g with f0; 1; �g as follows:

Definition 1 ([191]) The pair (F, E) is an incomplete soft

set over X when F : E �! f0; 1; �gX ; Recall that f0; 1; �gX
represents the mappings from X to the set f0; 1; �g.

So, if we observe FðaÞðxÞ ¼�, then we interpret that we

do not know whether x satisfies property a 2 E or not.

2. Fatimah et al. [100] defined N-soft sets and provided the

first examples with real data. This model uses

f0; 1; . . .;N � 1gX for the codomain, although the num-

bers are a convenient default and can be replaced with

N distinctive items, and the triple (F, E, N) becomes an N-

soft set. The formal concept has the following structure:

Definition 2 ([100]) Let G ¼ f0; 1; 2; � � � ;N � 1g denote a

set of grades, for some N 2 f2; 3; . . .g: The triple (F, E, N)

is an N-soft set on X when F : E ! 2X�G meets the prop-

erty that for every a 2 E and x 2 X, there is a unique

ðx; gaÞ 2 X � G such that ðx; gaÞ 2 FðaÞ; ga 2 G:

What N-soft sets add to the original model is the ability

to differentiate among options that satisfy the properties in

a variety of manners, which are captured by the grades in

G. In addition to the real examples provided by the

founding [100], other articles have shown the adequacy of

N-soft sets to capture real situations, e.g., [52, 59, 61, 62].

From direct inspection, soft sets can be identified with

2-soft sets, and incomplete soft sets can be identified with

3-soft sets. Table 1 presents the tabular representation of

these models.

Although [100] defined incomplete N-soft sets, there is

virtually no research about this model.

Alcantud et al. [62], Sect. 1.1, presented four arguments

that prove the superiority of N-soft sets over the original

soft set model. Put briefly, these arguments are:

(a) Hesitation in N-soft sets is natural, but in soft sets, it

is equivalent to allowing for incompleteness. There-

fore new problems can be set up in the field of

hesitant N-soft set.

(b) Aggregation of N-soft sets is natural (and we shall

dedice Sect. 4.4 to this problem), but in soft sets, this

topic has been disregarded due to its simplicity.

(c) Soft sets are confined to Aristotelian binary logic but

N-soft sets have been linked to many-valued logic (v.

Sect. 2.3 for more details on this issue).

(d) An ordinal improvement of soft sets is the ranked

soft set structure defined in [208]. Then a cardinal

improvement of this model produces N-soft sets. It

can be said that ranked soft sets give us for each

property in E, an ordered list of the alternatives, in

such way that we can know for each pair of options

which one performs better in terms of that property.

The improvement brought by N-soft sets is that we

can make comparisons that disclose how much better

the alternatives are.

3. Fuzzy soft sets were presented by [169] in order to

extend soft sets with the ability to capture partial

membership. So with respect to the second modeliza-

tion presented in Sect. 2.1, this model replaces f0; 1g
with [0, 1]. And we can extend the tabular represen-

tation in Table 1 correspondingly. In formal terms:

Definition 3 ([169]) The pair (F, E) is a fuzzy soft set

over X when F : E �! ½0; 1�X: Recall that the notation

½0; 1�X represents the set of all mappings from X to the

interval ½0; 1�.

Under this extended presentation, the number FðaÞðxÞ 2
½0; 1� is interpreted as the degree of membership of x to the

set of alternatives that satisfy property a 2 E.

In this category we can also insert the probabilistic soft

sets defined by [253]. Fatimah et al. [102] investigated

Table 1 Tabular representation

of a general N-soft set
ðF;E;NÞ t1 t2 . . . tq

o1 r11 r12 . . . r1q

..

. ..
. ..

. ..
.

op rp1 rp2 . . . rpq

Each rjk is in f0; 1; . . .;N � 1g.

When N ¼ 2, every element in

the table is either 0 or 1, hence

producing a soft set. When

N ¼ 3, we can (by convention)

interpret that 0 holds for ‘false’,

1 holds for ‘true’, and 2 holds

for ‘indeterminate’. This is a

simple reformulation of an

incomplete soft set that replaces

the * symbol with 2
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them, introduced dual probabilistic soft sets, and—espe-

cially important—gave the first decision-making method-

ologies in both frameworks. In formal terms:

Definition 4 ([253]) Denote by D(X) the set of all proba-

bility distributions over X. The pair (F, E) is a probabilistic

soft set over X when F : E ! DðXÞ.

Fatimah et al. [102] defined one-probabilistic soft sets:

these are the particular cases of Definition 4 such that for

every a 2 E, a unique x 2 X exists with FðaÞðxÞ ¼ 1

(therefore FðaÞðx0Þ ¼ 0 when x 2 Xnfxg). With this new

tool, their Proposition 1 drew a bridge among probability

distributions, probabilistic soft sets, and soft sets. As said

above, their work proposed the next concept:

Definition 5 ([102]) In the conditions of Definition 4, the

pair (F, E) is a dual probabilistic soft set over E when

F : X ! DðEÞ, i.e., for each x 2 X, FðxÞ 2 DðEÞ.

The authors explained that this dual model is motivated

by examples such as behavioral phenotypes or in general,

by cases where the characteristics classify the alternatives

In addition, m-polar fuzzy soft sets [139, 244] were

investigated for the first time to deal with multi-polar data.

Other authors used alternative strategies for extending the

reach of soft sets. For example, hesitant fuzzy soft sets

[73, 224] added the ability to show hesitation in the case of

fuzzy soft sets. Ashraf et al. [70] have recently defined

complex probabilistic hesitant fuzzy soft sets which extend

the probabilistic hesitant fuzzy soft set model introduced by

[158]. A different type of extensions came from bipolar soft

sets. They were defined by [211] and then [36] improved the

knowledge about their role in the expression of dual thinking.

Bipolar soft sets are built with the help of two soft sets that

provide positive and negative information. For each attribute,

this information cannot overlap. In formal terms:

Definition 6 ([211]) The triplet ðF;F0;EÞ is a bipolar soft

set over X when F : E ! PðXÞ, F0 : :E ! PðXÞ, and the

condition FðaÞ \ F0ð:aÞ ¼ £ is met for each a 2 E. Here

:E denotes the NOT set of E, defined by the negation of

the properties in E: :E ¼ f:a j a 2 Eg.

Their fuzzy version (fuzzy bipolar soft sets) was given

in [183]. This model has been generalized until [168]

proposed bipolar complex fuzzy soft sets. In a related line

of inspection, intuitionistic fuzzy soft sets [170] and gen-

eralized intuitionistic fuzzy soft sets [106, 170] split

membership and non-membership in the evaluation of the

satisfaction of the characteristics. By extending the bipolar

scale into a multi-polar scale (i.e., to the space of m dif-

ferent categories or states) a new concept of m-polar fuzzy

soft set, investigated by [244], was introduced. [188]

defined Pythagorean fuzzy soft sets with the aim of

expanding the set of admissible evaluations in intuitionistic

fuzzy soft sets. This idea has been further developed until

[42] defined (a, b)-fuzzy soft sets. An alternative expansion

came from [239], who designed picture fuzzy soft sets with

the help of a third ‘‘neutral’’ evaluation. Also, this model

witnessed a generalized version by [145], and a further

improvement came from [127] who designed multi-valued

picture fuzzy soft sets. Vague sets [114] are the germ of

vague soft sets [82, 84, 232]. Alkhazaleh and Salleh [67]

introduced soft expert sets and fuzzy soft expert sets [68].

Their novelty is arguably limited: they incorporate the

opinions by a group of experts in one unique structure.

Nevertheless the later model was eventually extended by

e.g., m-polar fuzzy soft expert sets [22], picture fuzzy soft

expert sets [222], Fermatean fuzzy soft expert sets [24], or

hesitant fuzzy soft expert sets [17].

Extensions of N-soft sets abound nowadays too. The

hybridization of fuzzy soft sets and N-soft sets led [18] to

define fuzzy N-soft sets. [99] contributed with the multi-

fuzzy N-soft set model that extends the multi-fuzzy soft set

notion defined by [237]. In addition, N-soft sets were

amplified with the help of hesitancy too. This was a

remarkable improvement, because hesitancy in the strict

framework of soft sets reduced to producing incomplete

soft sets. The extension that emerged was called hesitant N-

soft set in [19]. Informally, if we start with Table 1 as a

joint representation of soft sets, incomplete soft sets, and

N-soft sets, then the hesitant extension uses a multiplicity

of values from f0; 1; . . .;N � 1g at each cell. Relatedly, the

combination of both fuzzy and hesitant generalization

produces hesitant fuzzy N-soft sets [20]. Zhang et al. [249]

defined Pythagorean fuzzy N-soft sets and designed multi-

attribute group decision-making methods in this context

(see also [28]), whereas [194] defined picture fuzzy N-soft

sets. Wang et al. [231] defined probabilistic hesitant N-soft

sets which have the ability to express the occurrence

probability of hesitant grades. They consider group deci-

sion-making methodologies (such as TOPSIS and VIKOR)

in this framework. Akram et al. [26] have designed the

complex Fermatean fuzzy N-soft set model, [13] have

established the complex m-polar fuzzy N-soft model, and

[71] have defined complex probabilistic hesitant fuzzy N-

soft sets. [134] defined bipolar N-soft set theory, whereas

[23] extended their idea with the introduction of bipolar

fuzzy N-soft sets. The amalgamation with soft expert

knowledge has been formulated too, and it has given rise to

spherical and Pythagorean fuzzy N-soft expert sets [25, 27].

2.3 Semantic interpretations

Yang and Yao [235] have been the first authors to discuss

the semantics of soft sets explicitly. Their contribution was

supplemented with a pioneering analysis of three-way

decision in the framework of soft sets. Both ideas were
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extended to the N-soft set arena in the recent Alcantud

[52]. Let us summarize the contributions to this debate

given in both articles:

• The ‘multi-context’ semantics is surely the original

semantic interpretation of both soft sets and N-soft sets.

Soft sets offer taxonomies since they describe the

options in terms of their attributes. Other authors [105]

had explored this idea in more depth than the original

[179]. There is no real difference with the more modern

idea of N-soft set.

• The ‘possible worlds’ semantics (of both soft sets and

N-soft sets) is applied when the set of characteristics is

made of possible worlds for explication of a partially-

known notion. This meaning is reminiscent of Savage’s

‘states of nature’ [209], as reported in [52]. So, in the

first version provided by Yang and Yao, precisely one

of the possible worlds is the world that defines the set of

occurrences of the notion. In Savage’s adapted version,

states of nature capture future events whose probabil-

ities are unknown, and the decision-maker cannot affect

them.

Still there is a third semantic interpretation in the gener-

alized model of N-soft sets. This is the ‘values of truth’

semantics described in Sect. 3.3 of [52]. In cases where we

cannot decide whether an option has a property or not (such

as movies that cannot be called ‘funny’, but we cannot say

that they ‘are not funny’ either), binary logic should be

replaced with multi-valued logic. And the rates in an N-soft

set can be interpreted as the possible values of truth in an

N-valued logic. Under this description, N-soft sets extend

incomplete soft sets, which only admit one level of inde-

terminacy. Or as mentioned above, incomplete soft sets can

be identified with 3-soft sets.

3 Soft topology: first results

Topology has become a renowned mathematical discipline

whose origins are in the early 1900 s, when it was simply a

part of set theory. In fact, Felix Hausdorff introduced the

name ‘‘topological space’’ in 1914. As an evidence that

decision-making can benefit from topological ideas, the

Weierstrass Extreme Value Theorem comes to mind easily.

We shall return to this line of inspection in Sect. 5.

We have argued above that sets are ‘‘extended’’ to soft

sets via parameterized belongingness. It is therefore only

natural to expect that the insights provided by topology

would be extended to produce a recognizable part of soft

set theory. Indeed, with the help of the extended set-theo-

retic operations described in Sect. 2.1, one can define soft

topology on X as follows:

Definition 7 ([79, 210]) A soft topology s on X is a col-

lection s � SSEðXÞ of soft sets on X (with a set of attributes

formed by E), called soft open sets, such that:

(1) Both U and ~X are soft open sets.

(2) Arbitrary unions of soft open sets are soft open sets

too.

(3) Finite intersections of soft open sets are soft open

sets too.

The triple ðX; s;EÞ is called soft topological space, and

STEðXÞ defines the set of all soft topological spaces on

X (whose set of attributes is formed by E).

As explained in the Introduction, the expansion of soft

topology has been considerable. Hence we can only

attempt to summarize a small proportion of the many

articles that it has produced. Instead, our main purpose in

this part of our survey is to emphasize the correspondence

between critopological and soft topological concepts.

One apparent difference between crisp (or ordinary) and

soft topologies that one can perceive easily is the basic notion

of ‘‘point’’. In set theory and topology, there is no argument

about what a point can mean. However, things are different in

soft set theory. References [90, 185], and [254] defined a

concept of soft point that was very useful to analyze soft

neighborhood systems and soft interior points. However both

soft point [72] and element [184] were defined differently,

and the names change with the authors. Alcantud [48] dis-

cusses this issue at length. Here is a short summary:

1. The special soft set ðfyge;EÞ such that fygeðeÞ ¼ fyg
and fygeðe0Þ ¼ £ when e0 2 Enfeg was used by [90]

under the term ‘soft point’, and [184], Definition 3.1,

referred to it as a ‘soft element’.

2. In [254], a soft point is a soft set (F, E) with the

property that e 2 E exits for which FðeÞ 6¼ £, and if

a 2 E, a 6¼ e, then FðaÞ ¼ £. The previous notion is a

particular case of this concept.

3. In [223] and in [210], a soft point is a soft set (F, E)

with the property that there exists y 2 X such that

FðeÞ ¼ fyg for each e 2 E. This soft set is expressed as

(y, E).

4. The previous definition is generalized by [72], Defini-

tion 2.11, who nevertheless use the same name (soft

point). In [72], soft points are (G, E) for which y 2 X

and E0 � E exist, such that GðeÞ ¼ fyg when e 2 E0.
The soft sets ðfyge;EÞ given above satisfy this

definition too.

3.1 Construction of soft topologies

In this overview, it is worth noting that there are at least

two general procedures for the generation of soft
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topological spaces from topologies on the universe of

discourse, in the standard sense.

Procedure 1 is quite direct:

Definition 8 ([47, 223]) Fix R ¼ fRege2E, a set of

topologies on X whose set of indices is E. We say that

sðRÞ ¼
n
fðe;GðeÞÞ : e 2 Eg 2 SSEðXÞ

with the property GðeÞ 2 Re for all e 2 E
o ð1Þ

is the soft topology on X defined from R.

In the case where Re is independent from e, i.e., when

there is R with R ¼ Re for all e 2 E, the above notation is

simplified to sðRÞ ¼ sðRÞ.

Example 1 When R is the cofinite crisp topology on X,

Definition 8 produces the cofinite soft topology [47].

Interestingly, [39] studied sðRÞ but called it extended

soft topology. In addition, a soft topology s is enriched

when s includes every (F, E) with the property FðeÞ 2
fX;£g whenever e 2 E. Theorem 2 of [39] proved an

equivalence between extended and enriched soft

topologies.

Procedure 2 constructs soft topological spaces using

crisp topologies with the help of soft open bases. These are

sets whose elements are soft sets, that produce soft

topologies which are formed with all their soft unions.

More explicitly, the soft topology s has an soft base B � s
when every ðF;EÞ 2 s is a union of soft sets in B [79].

From a soft open base, we can gemerate a soft topology, for

which the soft open base is in fact a soft base: v.,

[202], Theorem 16.

With each base for a topology on the universe of dis-

course, it is now possible to generate a soft topology in a

two-step process. The base gives rise to a soft open base

(for the definition, see Proposition 1 in [47]). And Theo-

rem 13 in [202] explains how to generate a soft topology

with this soft open base.

Additionally to the production of soft topologies from

standard topologies, soft topologies can be combined to

generate new soft topological spaces. This goal can be

achieved for example, through the sum of soft topological

spaces [41].

3.2 First results and more concepts in soft
topological spaces

The two constructions of soft topologies that we have

recalled above can be related to each other. If we select a

base for a topology, then we can define both a soft open

base and a crisp topology from it. Definition 8 can be

applied to the new topology. We can define a soft topology

from the soft open base too. The respective soft topologies

obtained from these procedures coincide [47, Theorem 3].

We can draw theoretical consequences from these two

designs. For example, let us define that a soft topological

space is soft second-countable when the soft topology has a

base that contains a countable number of elements [90,

Definition 4.32]. Then Definition 8 generates a soft second-

countable soft topological space when E is either finite or

countable, and all Re’s are second-countable [47, Sect. 4].

And the reverse of this result is also true [47, Corollary 2].

Other concepts in soft topology are motivated by sepa-

ration axioms, which are defining properties that attempt to

‘‘separate’’ either sets or points (or sets and points), in a

‘‘topological’’ sense. Not surprisingly, separation axioms

have been reformulated in the soft topological framework

in different ways by many authors (e.g.,

[38, 96, 125, 210, 223]). For example, the soft points

defined by [210] and [223] are the key to define the next

axioms:

Definition 9 ([210, 223]) The soft topology s on the uni-

verse of discourse X is:

1. T0 when for each distinct x; y 2 X, either there is

ðG;EÞ 2 s such that ðx;EÞYðG;EÞ but it is not true

that ðy;EÞYðG;EÞ, or there is ðF;EÞ 2 s such that

ðy;EÞYðF;EÞ but it is not true that ðx;EÞYðF;EÞ.
2. T1 when for each distinct x; y 2 X, there are

ðF;EÞ; ðF0;EÞ 2 s such that x 2 ðF0;EÞ, y 62 ðF0;EÞ,
and also, y 2 ðF;EÞ, x 62 ðF;EÞ.

3. T2 when for all distinct x; y 2 X, disjoint soft open sets

ðF;EÞ; ðF0;EÞ exist with the properties x 2 ðF0;EÞ,
y 2 ðF;EÞ.

Many other related axioms were defined and studied, for

example, [175] discussed soft regularity. We shall not

produce a comprehensive presentation here.

Soft compactness was first studied in [72] and [254].

Other remarkable references are Al-shami [37] and Al-

shami et al. [40]. It is worth noting that 7 generalized types

of soft semi-compact spaces were defined by these authors.

Another classical topic in topology is the analysis of

separability axioms. They have motivated Alcantud [47] to

construct soft topological spaces that are well-behaved in

relation to these ideas. In addition, two classes of axioms

generalizing suitable soft separability ideas were intro-

duced by [60]. Their inspiration was the countable chain

condition and the topological concept of caliber. In their

article, the role of cardinality in both the countable chain

condition and the finite chain condition is deeply investi-

gated. Also, Alcantud et al. [60] prove that both calibers

(their cardinality being fixed), the countable chain condi-

tion, and the finite chain condition, are topological
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properties (i.e., they are preserved by bijective soft con-

tinuous functions).

We also mention that [147] have defined soft Menger

spaces in their pioneering analysis of selection principles in

the soft framework. Soft compact spaces are soft Menger

spaces, which in turn are soft Lindelöf spaces.

Finally, [74] have recently associated a fundamental

group with each soft topological space.

3.3 The fundamental theorem of soft topology

Matejdes [174] soon realized that a bijective correspon-

dence exists between the set of soft topological spaces

(with characteristics E) defined on a set X, and the set of

topological spaces either on E � X or on X � E (see also

[176]). Put shortly, if we start with a soft topology, then by

identifying a multifunction with its graph, we find our-

selves in a classical topology on a Cartesian product.2 In

this section we recall the explicit bijection that has been

used in [48] to prove this remarkable result, that can be

rightfully called the fundamental theorem of soft topology.

To make this section self-contained, the next elements

are needed.

Definition 10 With any S � X � E we associate ð� S;EÞ 2
SSEðXÞ defined by: for all e 2 E, � SðeÞ ¼ fy 2 X j
ðy; eÞ 2 Sg. And with any ðF;EÞ 2 SSEðXÞ we associate

AðF;EÞ ¼ fðy; eÞ 2 X � E j y 2 FðeÞg, a subset of X � E.

These simple notions allow us to associate a soft

topology to any crisp topology, and a crisp topology to any

soft topology too. The next results formalize both

constructions:

Proposition 1 When R is a standard topology on X � E,

sR ¼
n
ð� A;EÞ jA 2 R

o
is a soft topology on X.

If s0 is a soft topology on X, then Rðs0Þ ¼
n
AðG;EÞ j ðG;EÞ 2 s0

o
is a standard topology on X � E.

We are ready to state the fundamental theorem of soft

topology:

Theorem 1 ([48, 174, 176])

T : f Topological spaces on X � Eg �!STEðXÞ
ðX � E;RÞ sR

defines a bijective function with inverse function

T�1 : STEðXÞ �!f Topological spaces on X � Eg
s ðX � E;RðsÞÞ

Since [174] it is known that with this theorem one can

transform results from general topology to soft topology (see

also [48, 60, 175] for more arguments supporting this claim).

Nevertheless, one can also argue that this process does not

exhaust all possible developments in soft set theory because

the soft topological framework is semantically richer (as

shown by our discussion about soft points given above). We

do not intend to settle this controversy here. However, we feel

obliged to draw the attention of researchers to this funda-

mental transformation so that forthcoming studies can give

more explicit arguments about what sets them apart from

concepts known from classical topology.

3.4 Extensions of soft topologies

Many combinations of topological models with generalized

soft set theory have produced further generality. For

example, the incorporation of soft sets to fuzzy topological

spaces [80] led [218] to design fuzzy soft topologies.

Khameneh et al. [140] studied the concepts of fuzzy soft

interior, closure, and boundary in fuzzy soft topological

spaces. Later, fuzzy soft product topologies and fuzzy soft

Hausdorff spaces were investigated by [141]. These

authors discussed the notion of fuzzy soft point and rede-

fined it as an extension of the fuzzy point. Based on

[141], Definition 6.1, a fuzzy soft set ~xE, given by the map

~x : E ! IX where I ¼ ½0; 1�, is a fuzzy soft point if for all

z 2 X, any e 2 E,

~xeðzÞ ¼
ke if z ¼ x

0 otherwise

�

that ke 2 ð0; 1� for each e 2 E. In other words, for each

parameter e, yke is a typical fuzzy point whose support is y

and whose degree of membership is ke.
Alcantud [49] has produced the first investigation of

relationships between soft topologies and fuzzy soft

topologies.

More generally, [196] benefitted from the generalized

approach by N-soft sets in order to design N-soft topolo-

gies. In addition, [98] defined bipolar soft topological

spaces and [195] defined bipolar fuzzy soft topological

spaces. Besides, [197] introduced hesitant fuzzy soft

topological spaces.

A different type of generalizations has been motivated

by the success of topological ordered spaces. With this

spirit, [35] have designed their soft topological counterpart.

Sect. 4.1.3 discusses other extensions of soft topologies

that are born from the structure of sets called ‘‘primal’’.
2 We owe this crucial remark to a personal communication with the

author.
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It is worth underlining that the aforementioned [143]

and [196, 197] state applications to decision-making.

4 Other topics in soft set theory

This section presents some other ideas that have amplified

the soft set narrative from different perspectives. First, we

shall underline that many other mathematical structures

have been extended with a soft set approach. We have

made a short introduction to a sample of recent trends,

which may be especially beneficial for the reader due to

their novelty. Afterward, we present brief summaries of

several branches of the literature with varying level of

importance. Data filling in the case of incomplete soft sets,

as well as parameter reduction, have produced a number of

impactful scholarly works. Meanwhile, topics such as

aggregation or the theory of soft probability are less

developed at present. Soft graphs [11] and their extensions

to fuzzy soft graphs [12] and intuitionistic fuzzy soft

graphs [212] are beyond the scope of this summary of

literature.

4.1 Other soft algebraic structures

In addition to topology, algebraic structures such as groups

or (semi)rings have been exported to the soft setting. These

extensions produced soft groups [29, 30], soft semirings

[101], and soft rings [5]. Feng et al. [104] demonstrated the

applicability of soft binary relations to the theory of

semigroups and [248] defined soft rough hemirings, which

they utilized for multi-attribute multi-person decision-

making. Afterward, the algebraic structures called soft

topological soft groups/rings [216] and soft topological

rings [217] were proposed. Still the reader can explore

other topics like fuzzy soft Lie algebras [16], (intuitionis-

tic) fuzzy soft K-algebras [14, 15], the soft ideals and filters

that extend the corresponding crisp notions [206], charac-

terization of hemirings in terms of fuzzy soft h-ideals

[240], soft BL-algebras defined from fuzzy sets [247], or

the introduction to N-soft algebraic structures (e.g., N-soft

groups or N-soft rings and ideals) given by [133].

Recent contributions to extended mathematical struc-

tures include soft generalizations of algebras and r-alge-

bras, and convex geometries. Soft grills, soft primals, and

many others have been considered too. We proceed to

recall the respective rudiments of these new concepts.

4.1.1 Soft algebras and soft r-algebras

Measures assign numerical values to sets. In Lebesgue

integration, measures are fundamental for defining inte-

grals, enabling the computation of quantities such as areas

or volumes. In probability theory, they help define proba-

bility spaces, providing a foundation for analyzing random

events and calculating probabilities for different outcomes.

The right structured framework for defining measurable

sets within a given space is a r-algebra. Therefore this idea

is pivotal in both mathematical analysis and probability

theory. Let us recall this notion and the weaker structure of

a set algebra:

Definition 11 An algebra A on X, a non-empty set, is a

collection A � PðXÞ that satisfies:

(1) £ 2 A.

(2) A is closed under complement: XnA 2 A whenever

A 2 A.

(3) A is closed under finite unions: for each k 2 N and

A1; . . .;Ak 2 A,
Sk

i¼1 Ai 2 A.

A r-algebra on X is an algebra on X that is closed under

countable unions, i.e., (3) above is replaced with

(3’) when Ai 2 A (i ¼ 1; 2; 3. . .), it must be the case thatSþ1
i¼1 Ai 2 A.

A routine application of De Morgan’s laws proves that

algebras must be closed under finite intersections. And r-

algebras must be closed under countable intersections too.

These two concepts have been extended in a natural way

to the soft framework, hence producing soft algebras and

soft r-algebras.

Definition 12 ([198]) A soft algebra A on X is a collection

A � SSEðXÞ with the properties:

(A:1) U 2 A.

(A:2) When ðG;EÞ 2 A, ðG;EÞc 2 A.

(A:3) When k 2 N and ðF1;EÞ; . . .; ðFk;EÞ 2 A, it must

be the case that tk
i¼1ðFi;EÞ 2 A.

Soft r-algebras are defined in [136] by replacing (A.3)

above with the stronger requirement

(A.3’) when ðFi;EÞ 2 A for al i ¼ 1; 2; . . .,then

tþ1
i¼1 ðFi;EÞ 2 A.

Relationships between soft and ordinary algebras have

been recently studied by [69]. Also recently, relationships

between soft and ordinary r-algebras have come to light in

[44].

Extensions include picture fuzzy soft r-algebras [182]

and q-rung orthopair fuzzy soft r-algebras [118].

4.1.2 Convex soft geometries

Convex soft geometries were defined in Alcantud [51] by

inspiration of convex geometries. This interesting structure

bridges the gap between convexity and finiteness, hence for

this model, X is required to be finite. Then a convex
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geometry is a combinatorial abstraction of the idea of

convexity, for which not only the standard techniques from

convexity apply, but also one can resort to the theory of

ordered sets and graph theory. Although there are several

equivalent definitions, we only present the next one here:

Definition 13 ([95]) C � PðXÞ is a convex geometry on

X, a non-empty finite set, if:

(1) £ 2 C.

(2) G1 \ G2 2 C whenever G1;G2 2 C.

(3) If G1 2 C, G1 6¼ X, then there exists y 2 XnG1 with

G1 [ fyg 2 C.

Then the convex sets of X are the subsets of X that are in C.

Section 2 of [95] proves various characterizations of this

model.

A mandatory construction is the convex hull of a set in

this framework. It is defined as follows: for any convex

geometry C on X, the convex hull of X0 � X in C is

conv ðX0Þ ¼
T
fG 2 C such that X0 � Gg.

An important result in the basic theory of convex

geometries is that there are extreme elements in all none-

mpty subsets of X. They are defined as follows:

Definition 14 ([95]) In the conditions of Definition 13, if

£ 6¼ Y � X, then x 2 Y is extreme element of Y when

x 62 convðY n fxgÞ.

In our framework one has the following extension of

Definition 13:

Definition 15 (Alcantud [51]) C � SSEðXÞ is a convex soft

geometry on X if:

(C:1) U 2 C.

(C:2) When ðG1;EÞ; ðG2;EÞ 2 C then

ðG1;EÞ u ðG2;EÞ 2 C.

(C:3) When ðG;EÞ 2 C n ~X, there is y 2 X for which

ðy;EÞYðG;EÞ is not true, and ðy;EÞ t ðG;EÞ 2 C.

The soft C-convex sets, or simply soft convex sets for

simplicity, are the members of C.

Sections 3.2 and 3.3 in [51] discuss the construction of

convex geometries from convex soft geometries, and the

reverse process. To prove that the theory of convex soft

geometries is meaningful and promising, we recall that

with respect to any convex soft geometry, extreme ele-

ments exist for all soft sets (except for U) by Theorem 2 of

[51]. In this short summary we omit the soft variations of

the concepts involved in this statement. Suffice to say that

this result is a non-trivial extension of the corresponding

theorem in the theory of convex geometries mentioned

above. Its proof relies on a non-trivial generalization to the

soft setting of the anti-exchange property of convex

geometries [51, Theorem 1].

Section 5 in [51] gives a long research program for this

topic.

Finally in this section, we note that [55] have used

convex geometries to design the first valid combination of

convexity and rough set theory in a finite setting.

4.1.3 Soft extensions of filters, ideals, primals and grills

Filters and ideals are useful mathematical structures that

found applications across the field of soft set theory too.

Filters originate with topology, providing a unified concept

of limit accross topological spaces. But they are important

in order theory, set theory, model theory, mathematical

analysis, or lattice theory too. Intuitively, they are com-

monly used to describe the subsets that are ‘‘large enough’’

to contain points that might be difficult to write down. The

dual notion of a filter is an ideal. Therefore ideals describe

‘‘negligible’’ or ‘‘sufficiently small’’ subsets in set theory.

The formal definitions are as follows:

Definition 16 A collection £ 6¼ F � PðXÞ is a filter on

X if:

(1) £ 62 F.

(2) F1 \ F2 2 F whenever F1;F2 2 F.

(3) If F 2 F, G � X, and F � G then G 2 F.

Thus a filter is a collection of non-empty sets, that is

closed under finite intersections (2) and the superset

operation (3). If in addition, it is closed under count-

able intersections, then it is a r-filter, or countably com-

plete filter.

As an example, in a topological space, the neighborhood

system of any point (i.e., the collection of all subsets such

that the point is in their topological interior) is a filter.

Definition 17 A collection £ 6¼ I � PðXÞ is an ideal on

X if:

(1) X 62 I.

(2) I1 [ I2 2 I whenever I1; I2 2 I.

(3) If I 2 I, G � X, and G � I then G 2 I.

Thus an ideal is a collection of subsets of X that is closed

under finite unions (2) and the subset operation (3). If in

addition, it is closed under countable unions, then it is a r-

ideal.

As an example, the set of l-negligible sets (or sets with

null l-measure) is a r-ideal when l is a measure on ðX;RÞ
and R is a r-algebra on X.

Soft ideals were defined by [242], whereas soft filters

appeared in [206]. Their formal definitions follow:

Definition 18 A collection of soft sets F � SSEðXÞ is a

soft filter on X if:

(1) U 62 F .

123

Neural Computing and Applications



(2) The collection F is closed under finite intersections:

ðF1;EÞ u ðF2;EÞ 2 F whenever

ðF1;EÞ; ðF2;EÞ 2 F .

(3) The collection F is closed under the superset

operation: when ðF1;EÞ 2 F and ðF1;EÞYðF2;EÞ
then ðF2;EÞ 2 F .

Definition 19 A collection of soft sets I � SSEðXÞ is a

soft ideal on X if:

(1) ~X 62 I .

(2) The collection I is closed under finite unions:

ðF1;EÞ t ðF2;EÞ 2 I when ðF1;EÞ; ðF2;EÞ 2 I .

(3) The collection I is closed under the subset operation:

when ðF1;EÞ 2 I and ðF2;EÞYðF1;EÞ then

ðF2;EÞ 2 I .

Al-shami et al. [43] have inaugurated the study of the

next concept in the vein of soft ideals:

Definition 20 ([43]) F � SSEðXÞ is a soft primal on

X when:

(Pr:1) ~X 62 F .

(Pr:2) When ðF1;EÞ 2 F and ðF1;EÞYðF2;EÞ then

ðF2;EÞ 2 F .

(Pr:3) If ðF1;EÞ u ðF2;EÞ 2 F , then either ðF1;EÞ 2 F

or ðF2;EÞ 2 F .

This concept is the counterpart of set-theoretic primals,

defined as follows:

Definition 21 A collection £ 6¼ F � PðXÞ is a primal on

X if:

(1) X 62 F.

(2) If F 2 F, G � X, and G � F then G 2 F.

(3) If F1 \ F2 2 F with F1;F2 � X, then either F1 2 F

or F2 2 F.

In relation with Sect. 3.4, we emphasize that [6] and

[31] defined and studied primal topological spaces. In a

similar manner, the notion in Definition 20 allowed [43] to

study primal soft topologies.

Primals have appeared as the dual concept of grills [6,

Theorem 3.1] whose definition follows:

Definition 22 ([85]) A collection £ 6¼ G � PðXÞ is a grill

on X if:

(1) £ 62 G.

(2) If F 2 G, G � X, and F � G then G 2 G.

(3) If G1 [ G2 2 G with G1;G2 � X, then either G1 2 G

or G2 2 G.

Therefore it is unsurprising that Definition 20 bears

comparison with the structure defined by soft grills in the

following way:

Definition 23 G � SSEðXÞ is a soft grill on X when:

(Gr:1) U 62 G.

(Gr:2) If ðG1;EÞ 2 G and ðG1;EÞYðG2;EÞ then

ðG2;EÞ 2 G.

(Gr:3) If ðG1;EÞ t ðG2;EÞ 2 G, then either ðG1;EÞ 2 G

or ðG2;EÞ 2 G.

One relationship is given by the next property [43,

Theorem 2, Corollary 1], that establishes that the family

formed by all complements of the soft sets belonging to a

fixed soft grill on X is itself a soft primal on X, and

conversely:

Proposition 2 When G � SSEðXÞ is a soft grill, then F ¼
fðF;EÞjðF;EÞc 2 Gg defines a soft primal on X.

Conversely: when F � SSEðXÞ is a soft primal, then

G ¼ fðF;EÞjðF;EÞc 2 Fg defines a soft grill on X.

Al-Saadi and Al-Malki [32] have defined generalized

primal topologies. This recent extension benefits from the

generalized topological spaces developed since [87]. Their

idea paves the way for the introduction of generalized

primal soft topologies in the future.

4.2 Data filling: incomplete soft sets

Motivated by the occurrence of missing information in the

soft set scenario, [256] and [191] initiated this area of

research for operational utilization of incomplete soft sets.

These authors and others [153–155, 205] developed vari-

ous techniques to predict the missing data from the infor-

mation available in the incomplete soft set. This problem

has later been expanded to take into account the occurrence

of missing information in extensions such as fuzzy soft sets

[91, 93], interval-valued fuzzy soft sets [109, 163] or

interval-valued intuitionistic fuzzy soft sets [165, 190].

As said above, a good proportion of authors are con-

cerned with data filling as a stage that justifies the subse-

quent decision-making. However [54] argued that this step

may not be necessary if one only needs to make decisions

with incomplete soft information. These authors focused

directly on decision, and they bypassed the data filling

problem.

Table 2 summarizes techniques available to the

practitioner.

Although [100] introduced incomplete N-soft sets, there

seems to be no literature about data filling or decision-

making in this case.

4.3 Parameter reduction in soft sets

Parameter reduction is a well-established branch within

rough set theory. As in that case, in the framework of soft
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set theory it has a practical importance: its goal is the

elimination of redundant parameters without affecting the

optimal decisions. Since [171] defined the idea of reducing

soft sets, a number of scholars have investigated this

problem. Chen et al. [81] argued that another concept was

better suited for this purpose. Kong et al. [149] contributed

to the problem with an algorithm of normal parameter

reduction. Xu et al. [233] designed a parameter reduction

technique aiming at the selection of financial ratios for the

prediction of business failure. Kong et al. [151] argued that

for large datasets, the previous algorithms were not com-

putationally tractable. Consequently, they proposed that the

particle swarm optimization algorithm could be more

useful for parameter reduction of soft sets in this case.

Other works that continue this trend include [204], who

resort to the hybrid binary particle swarm and biogeogra-

phy optimizer, and [189], whose metodology leans on the

chi square distribution. For further reading about this topic,

the reader can consult [88] and [246], who produced

respective surveys of parameter reduction in the case of

soft set theory. Other papers on this topic continued to

appear, e.g., [167] and [144]. Relatedly, [21] have launched

the problem of parameter reduction in N-soft sets.

Distinctive positions have been taken for the study of

this problem with fuzzy soft sets. Basu et al. [75] suggested

a parameter reduction algorithm which is inspired by

relational algebra. Also in this framework, [137] produced

an adjustable approach to parameter reduction of fuzzy soft

sets which is inspired by three-way decision. Kong

et al. [148] studied normal parameter reduction from a new

perspective. And [116] have defined a difference-based

parameter reduction algorithm in fuzzy soft set theory too.

In the field of interval-valued fuzzy soft sets, [163] gave

four heuristic algorithms for respective definitions of

reduction (inclusive of normal and approximate normal

parameter reduction). And [193] considered an approach

based on the Euclidean distance. Relatedly, in the frame-

work of bipolar fuzzy soft sets, [64] have investigated 4

types of parameter reductions.

4.4 Aggregation

Aggregation of soft sets is probably overly simplistic,

because it restricts the result to one of two values (either 0

or 1). We are not aware of any contribution dedicated to

this topic. Nevertheless, if we extend the scope to include

more general models such as N-soft sets or m-polar fuzzy

soft sets, then the literature about aggregation has already

produced flexible approachs, namely, Alcantud et al. [61]

and Zahedi Khameneh and Kiliçman [244]. The former

Table 2 A brief summary of contributions to incomplete soft sets and extensions. FSS holds for fuzzy soft set, IVFSS holds for interval-valued

fuzzy soft set and IVIFSS stands for interval-valued intuitionistic fuzzy soft set (v., Table 4)

Methodology Context Articles Comments

Weighted average of choice values Soft sets [256] Seminal article. High computational complexity

Data filled by association between attributes Soft sets [54] Adequate in the presence of related alternatives

Choice made by choice values of completion [191]

[256]

Incomplete soft sets produced from restricted Soft sets [119] Different approach to related problem

intersections: elicitation criteria

Soft sets [56] Sampling: Adequate under independence of objects

Dominated alternatives are removed and attributes. User controls sample dimension

Assumption: equiprobable completed tables

Choice values determine choice Soft sets [54] Brute force: Computational costs grow quickly

Application in computational biology

[207]

Probability analysis Soft sets [155] Data filling problem

Total values of association degrees Soft sets [153] Simplified approach to data filling problem

in [155]

Object-parameter approach FSS [93] Use of relative dominance degree between parameters

Algorithmic approach FSS/IVFSS [91] Improvement of entropy (lower degree of fuzziness)

with respect to [93]

Data analysis approach IVIFSS [190] Missing data can be either ignored or filled

K complete nearest neighbors by

attribute-based combining rule IVFSS [165] KNN data filling algorithm
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article pioneers the theory of aggregation of N-soft sets.

Aggregation operators are designed with the assistance of

OWA operators. And with this tool, the first mechanisms

for multi-agent decisions based on N-soft sets are provided.

In [244], the authors developed weighted aggregation

functions for the m-polar fuzzy soft case and discussed two

new operators, called M-pFSIOWG and M-pFSIOWA, as

generalizations of IOWG and IOWA operators. Then, the

authors designed with these new tools an algorithm to solve

decision-making problems.

We underline that this seminal approach relies on [162].

These authors generalized the construction of OWA oper-

ators [234] to apply on complete lattices with t-

norm/conorm.

It is to be expected that further contributions will be

made in this area of inspection in the near future.

4.5 Soft probability

The literature about this topic is rather reduced.

It was launched when [181] introduced a notion of soft

probability. In this framework, his paper presented an

analogue of Chebyshev’s inequality, and the computation

of soft large deviation probabilities for nonnegative ran-

dom variables under a mean hypothesis. Relatedly, [180]

proved an analogue of the central limit theorem in the

context of soft probability.

Recently, [255] has produced a hybrid approach that

combines Bayesian decision theory with soft probability.

Then the new methodology is applied in a numerical

exercise motivated by medical diagnosis.

We are not aware of any other notable contributions to

this branch of the literature.

5 Applications and utilization in decision-
making

This section focuses on reviewing the techniques and

models that connect soft set theory with decision-making.

There exist a few reviews of decision-making based on

soft set theory. Ma et al. [164] have surveyed decision-

making methods with soft sets, fuzzy soft sets, rough soft

sets and soft rough sets. They used them to generate new

algorithms that merge these hybrid models. Khameneh and

Kiliçman [138] produced a systematic review of multi-at-

tribute decision-making based on the soft set model and its

fuzzy extensions. Their review considers individual and

group decision-making approaches, each of them from two

angles: single approaches (use a unique method to yield

decision-making solutions) and hybrid approaches (use a

blend of methods). [92] also published a short survey of

decision-making with fuzzy soft sets.

In general, multi-attribute decision-making (abbreviated

MADM) is a process in which a list of alternatives is

evaluated in terms of several criteria to select the most

appropriate alternative. These basic evaluations can be

expressed in linguistic terms, fuzzy model, rough set

template, and soft set format; however, we focus here on

soft set-based decision-making approaches. Regardless of

the model utilized to express the input information, deci-

sion problems are divided into three general categories. A

decision problem may be handled by an individual (IDM)

or involves a few decision-makers, known as group deci-

sion-making (GDM). However, if the number of invited

decision-makers is no less than 20, the GDM problem is

renamed as large-scale group decision-making (abbreviated

LSGDM).

All decision-making situations comprise the alternative

set, attribute set and decision-maker set. Note that the DMs

and attributes may have different weights, which are pre-

sented by the weighting vectors, or all have the same

importance. In addition, attributes can be heterogeneous.

This means that we can have both cost (less is better) and

benefit (more is better) criteria in one problem. Formally,

in an IDM process one agent needs to choose from a set of

options X ¼ fx1; . . .; xng (with n[ 1). To do so, the agent

considers a finite number of characteristics P ¼
fp1; . . .; pmg (with m[ 1) of the alternatives. The degrees

of importance of these features may vary. GDM is different

because there is a finite list of agents D ¼ fd1; . . .; dkg
(with k[ 1). The weights of their opinions may be dif-

ferent. They also assess X in terms of P, whose interpre-

tations are the same as in an IDM problem. Note that the

weights or importance degree of different attributes in a

DM problem are usually determined by the experts.

However, there are several systematic methods, known as

Standard Deviation method, Entropy method [213], and

AHP (for Analytic Hierarchy Process) [203], to compute

the weights of the attributes.

Any IDM problem follows the below steps to find the

final solution:

1. Providing the initial evaluations/preferences: DM pro-

vides his/her evaluation/opinion of the alternatives.

2. Selection phase:

(a) Comparing and ranking the options: DM com-

pares the alternatives’ preference levels to rank

them from best to worst.

(b) Solution recommendation: DM selects one or

several alternatives as the final solution.

Table 3 reports on the most well-known methods that solve

decision-making problems.

When the decision is made by a group of experts rather

than an individual, another stage called consensus, which
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refers to the judgment arrived at by ‘‘most of’’ those con-

cerned, is added to the resolution process. Typically the

consensus process (CP) is monitored by a moderator. This

person provides the DMs with feedback conerning the state

of the negotiation. To solve a GDM/LSGDM problem, the

following steps should be addressed.

1. Gathering the initial evaluations or preferences of the

DMs. They provide their respective evaluations of the

alternatives which are then collected by the moderator.

2. Consensus phase:

(a) Aggregation An aggregation function combines

the individual evaluations into one joint

evaluation.

(b) Consensus measuring a consensus index mea-

sures the current level of agreement within the

group.

(c) Consensus control The mentor checks whether

the present level of agreement is greater than or

equal to a predefined minimum consensus level.

If yes, the group meets the acceptable agreement

level, the CP is finished, and the selection

process is started; otherwise, the following stage

must be compiled.

(d) Feedback process The moderator recommends

which DMs should vary their opinions. Then the

consensus process goes back to the consensus

control stage.

3. Selection phase.

Now we proceed to consider 43 papers in the field of

decision-making with soft sets and its fuzzy extensions.

Afterward, we dwell on applicability in Sect. 5.3. It is

worth noting that the SAW-based selection methods in

decision-making with soft set theory usually proceed with

the help of a notion known as choice value of an alterna-

tive. Let us present this idea, both when the alternatives are

evaluated by a soft set and a fuzzy soft set.

Definition 24 ([171, 199]) Consider the set X (of objects

or alternatives). Then:

1. In soft set-based decision-making, the choice value of

an alternative equals the number of benefit attributes

that it possesses.

2. In fuzzy soft set-based decision-making, the fuzzy

choice value of an alternative is the sum of the

membership values associated to all attributes for that

alternative.

Table 3 Summary of DM approaches

Selection methods Abbreviation Definition

Simple additive weighting [112] SAW The alternatives are evaluated by a weighted score (weighted sum-based model: the

score sums up the evaluation by each attribute multiplied by their respective

weights)

Weighted product method [178] WPM The alternatives are evaluated by a product weighted score (geometric mean-based

model: the score multiplies the evaluation by each attribute powered by their

respective weights)

ELECTRE method [200] ELECTRE

family

A family of weighted-sum-techniques-based selection methods where the final

solution is selected regarding comparison tables which are formulated based on the

concordance (number of criteria that an object is preferred to another) set and its

complement, i.e., discordance sets for each pair of alternatives

Analytic hierarchy process [203] AHP Method based on pairwise comparisons: it utilizes a system of hierarchies of targets,

attributes and alternatives

Technique for order of preference by

similarity to ideal solution [126]

TOPSIS The selected alternative has the shortest distance from the ideal solution and the

farthest distance from the negative ideal solution

Gray relational analysis [130] GRA Compromise ranking method that owes to gray system theory. It may be utilized to

resolve complex inter-relationships among a multiplicity of performances

Compromise ranking method [241] VIKOR The compromise output is a feasible result whose distance to the ideal solution is the

shortest

Table 4 List of acronyms

Abbreviation Description

SS Soft set

FSS Fuzzy soft set

IFSS Intuitionistic fuzzy soft set

IVFSS Interval-valued fuzzy soft set

IVIFSS Interval-valued intuitionistic fuzzy soft set

m-PFSS m-Polar fuzzy soft set
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3. In these two situations, the weighted (fuzzy) choice

value of an alternative is the weighted sum of its

(fuzzy) choice values.

We classify the articles that we overview into either

IDM and GDM approaches. In this way, we can realize

how these techniques have evolved over the past decades,

and which ones have received more attention. To simplify

our surveys, we use the abbreviations defined in Table 4.

5.1 Individual decision-making (IDM)
approaches

The first touch on using the SS format for expressing the

IDM problems backs to the founding [179] through an

example. However, [171] was the first paper that dwelled

on applying soft sets for decision-making. This article

proved that the soft set format was potentially applicable

for expressing the information about the inputs in IDM

problems. In general, the early efforts in this line adapted

widely known DM methodologies, such as SAW and

TOPSIS, for the SS format and its fuzzy extensions, but

usually without any contribution on new solving methods.

Table 5 lists the most important papers that consider the

(fuzzy) soft set-based individual decision-making.

5.2 Group decision-making (GDM) approaches

Let us now consider studies that discussed group (multi-

observer) decision-making problems. To this purpose,

Table 6 contains short descriptions of such methods. It is

observed from this table that in years, most researchers

have paid attention to group decision-making problems

rather than to the individual case. Meanwhile, most authors

have tried to introduce new methods instead of considering

a simple adoption of existing approaches for (fuzzy) soft

sets.

5.3 Applicability

To conclude this section, we present a sample of areas

where soft set theory found applications.

Economic applications were published as soon as in

2009, when [227] considered a problem in international

trade (forecasting imports and exports) that was solved

with the help of fuzzy soft information. Using this model, a

methodology for the valuation of assets was proposed by

[57].

Financial applications have been covered in works such

as [132], where the authors collected data from one hun-

dred female employees working in Coimbatore, India.

Their technique was improved in [186]. Xu et al. [233]

were concerned with predicting business failure via the

selection of financial ratios. They use an explicitly

designed parameter reduction technique for this purpose.

Their methodology is applied to real datasets from listed

firms in China. Tas et al. [221] applied both soft set and

fuzzy soft set theory to the problem of stock management.

Applications in the medical sciences include [215] (who

classify microcalcifications on mammograms with the help

of soft set theory), [173] (that resort to bipolar soft infor-

mation), [75] (diagnosis using the mean potentiality

approach in fuzzy soft set theory), [117] (diagnosis of

mouth cancer with the help of fuzzy soft similarity indi-

ces), [7] (use of fuzzy N-soft sets to detect tumor cells and

estimate their severity), [146] (application of fuzzy soft set

decision-making to Cleveland heart disease dataset),

[89, 124] (use of intuitionistic fuzzy soft information for

diagnosis), and many others [56, 58, 226].

Other fields of application include logistics [128], sport

competitions [61], environmental policy [118], and awards

[62].

Table 7 gives a non-exhaustive summary of applications

of soft-set-based decision-making approaches to other

fields.

Table 5 Summary of existing (fuzzy) soft-set-based IDM approaches

Data format Selection

techniques

Type of

attributes

Description

SS: [171] and [81] SAW (choice

value)

Benefit Before finding the optimal choice, a reduction of

the parameter set is obtained

FSS: [107, 237], IFSS: [129, 252], IVIFSS: [251], Bipolar

Multi-Fuzzy Soft Set (BMFSS): [238]

SAW Benefit Converting to a SS by using the a-level (cut)

technique; Compared with [199]

Trapezoidal FSS (TFSS): [229], Interval-valued hesitant FSS:

(IVHFSS) [187, 250], Interval-valued intuitionistic FSS

(IVIFSS): [113]

TOPSIS Benefit

Softarisons: [50] Min-max

weighted

inverse score

Benefit The optimum choice has the minimum overall

importance of attributes in which is dominated by

other alternatives
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6 Concluding remarks

Much has been written about what defines the field of soft

computing. Zadeh [243] assured that its guiding tenet is to

take advantage of uncertainty, imprecision, or partial truth

to attain robustness with small solution burden

[83]. Magdalena [166], Sect. 2.1, argued that the most

recognizable feature of soft computing is its ability to

generate hybrid systems that integrate existing technolo-

gies. In relation with both positions, we believe that our

survey has given arguments proving that soft set theory can

become a recognizable part of this toolbox.

We have attempted to give an integrated view of the vast

literature inspired by the soft set approach, with a unified

notational and semantical description of both fundamental

concepts and problems. Practitioners, researchers, and

students will find here a selection of topics and works that

are likely to be of particular value to newcomers to the

field. This allows the non-specialist to bypass the difficul-

ties of a vast literature with remarkable differences in

notation and terminology.

A further benefit for the reader is that our survey has

identified some promising lines of future research. New

models, such as ranked soft sets [208], are still in their

early stages of development. Aggregation in the case of N-

soft sets and its generalizations seems to be particularly

attractive, since works on the topic are in short supply.

Data filling for N-soft sets appears to be an unexplored

field. For those wanting to explore soft algebraic concepts,

Sect. 4.1 has listed new areas including convex soft

structures [51], soft grills, and the soft primals that are at

the root of the novel primal soft topological spaces [43].

Others will probably be designed in the near future (e.g.,

generalized primal soft topologies, borrowing from the idea

in [87]).

Table 6 Summary of existing (fuzzy) soft-set-based GDM approaches

Data format Consensus

techniques

Selection techniques Type of

discussed

attributes

Description

SS [76, 77],

FSS [78]

AND-Product

operator

Union-intersection or

min-max decision

matrix

Benefit A set of feasible solutions

FSS

[150, 199]

Minimum operator Scores from a

comparison matrix

(ELECTRE-I)

Benefit Comparison table is computed based on number of parameters

in which an object dominates or is dominated by other

objects

FSS [152] Weighted sum GRA Benefit Computing the grey relational degree of each object as a

weighted sum of its grey relative coefficient, generating

based on choice value [171] or score value [199]; Compared

with [77]

FSS [45, 53] Product operator Scores from a

comparison matrix

Benefit and

cost

Comparison table is computed based on relative differences of

the membership values of objects; Compared with [199]

FSS

[137, 142],

IFSS [143]

Fuzzy soft topology

(Min and Max

operators)

Scores from upper and

lower comparison

matrices

Benefit and

cost

Comparison tables are established based on upper and lower

preorder relations, induced by the fuzzy soft topology. The

overall score value of each alternative is computed based on

the number of objects which dominate the alternative and are

dominated by it; In [137] the problem of parameter reduction

is solved by deleting the attributeswithout significant effect

on alternatives ranking and partitioning induced by the upper

and lower preorder matrices; Compared with [45, 107, 199]

IVFSS [236] Minimum operator Scores from a

comparison matrix

Benefit Comparison table is computed based on SAW method (choice

value)

IVFSS [230] Aggregation

operators

SAW Benefit Using an optimization model to determine the unknown

attribute weights; Converting the IVFSS data into the FSS

2-Tuple

linguistic SS

[220]

Aggregation

operators

Scores from comparison

matrix

Using the linguistic quantifiers to computing the experts

weights and solving an optional problem to find the weight of

attributes

Probabilistic

Soft Set

(PSS) [102]

Aggregation

operators

Maximizing the

eigenvectors of the

comparison matrix

Benefit By combining soft sets and probability theory, the concept of

probabilistic soft set was defined as a parameterized family

of probability distributions subsets of the universe of

discourse
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Table 7 Summary of applications of (fuzzy) soft-set-based DM approaches

Data format Consensus techniques Selection techniques Application Dataset

SS [56, 58] AND-Product operator Deriving soft rules from the

inputs, then using the

probability function to estimate

the risk of disease

Medical

diagnosis:

Glaucoma

[56], Lung

Cancer [58]

In [56], 53 eyes were randomly

selected among the total of

106 eyes in order to

configure the soft expert

system and remaining eyes

were used for validation

purposes; in [58], 170

patients with known survival

status and a surgical

procedure other than

pneumonectomy are used

from an initial database of

403 patients to estimate and

the rest for validation process

SS and FSS

[156, 219, 225, 226]

Dempster’s rule of combination A ranking method obtained

through a mass function of

different independent

alternatives with different

criteria

Medical

diagnosis

Result in [226] was compared

with [156, 225]

FSS [120, 135] Minimum operator Deriving fuzzy soft rules from

the inputs then calculating the

scores obtained from the

comparison matrix (using the

discussed method in [150])

Medical

diagnosis:

Coronary

Artery

[120], Lung

Cancer

[135]

In [120] 200 patients from the

Cardiac Unit, Department of

Cardiology, Faculty of

Medicine, Assiut University,

Egypt; In [135] 190 patients

from Nanjing Chest Hospital

in China

FSS [228] Particle Swarm Optimization

(PSO) over fuzzy cognitive

map (FCM)

Scores from the collective

comparison matrix (using the

discussed method in [150])

Supplier

selection

–

Generalized IFSS

(GIFSS) [8]

Intuitionistic fuzzy weighted

averaging (IFWA)

A score value based on the

accuracy degrees of GIFSS

Supplier

selection;

Medical

diagnosis

National Crime Records

Bureau (NCRB) project under

Ministry of Home Affairs of

India

m-PFSSs [244] New aggregation operators m-

PFSIOWA and m-PFSIOWG

(the proposed m-polar fuzzy

soft weighted aggregation

operators act over the

binomial coefficient to cover

the partial agreement with

required consensus degree)

Scores from m-PFS preference

matrix

Hotel booking

problem

dataset collected from

www.booking.com

N-SS [7] – TOPSIS and ELECTRE-I Medical

diagnosis

(detection

and severity

of tumor

cells)

Synthetic data

Hesitant N-SS [19] Union operator SAW Medical

diagnosis

Synthetic data

Multi-agent N-SS

[61, 62]

Merge-then-decide strategy in

[61]. The aggregation process

is done by top/bottom and

OWA operators, among

others. Decide-then-merge
aggregation strategy in [62]:

aggregation of ordinal

information uses voting theory

A new SAW-based method

called WAOWA score

according to OWA operator

[61]; ranking with the help of

N-soft set prioritizations in [62]

Sports [61],

Valuation of

assets [57]

In [61]: data collected from

2019 USA Diving Senior

National Diving

Championships. In [62]: prize

awarded in the 20th European

Conference on Operational

Research
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Another applicable topic is the investigation of param-

eter reduction with large datasets initiated by [151] and

[204]. Their methodologies resort to particle swarm opti-

mization and its hybrid approach with the biogeography

optimizer, respectively. It is therefore reasonable to foresee

that new approaches to this problem can take advantage of

optimization algorithms that have emerged in recent liter-

ature, such as those presented by

[4, 10, 9, 97, 115, 122, 123], and [245]. Statistical argu-

ments can be added too, aligning with the recent [189].

Bibliometric studies are conspicuosly absent, and they

may shed light on the development of this area of research.

In addition to the topics that we have explored, other

techniques that have been integrated with soft set theory

include clustering [192] and classification [3], association

rules mining [103, 105, 121, 157], three-way decision

[3, 52, 111, 235], or neural networks [161]. It is important

that these issues continue to be discussed and debated in

the future too.
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6. Acharjee S, Özkoç M, Issaka FY (2022) Primal topological

spaces. arXiv preprint arXiv:2209.12676

7. Adeel A, Akram M, Yaqoob N et al (2020) Detection and

severity of tumor cells by graded decision-making methods

under fuzzy N-soft model. J Intell Fuzzy Syst 39(1):1303–1318.

https://doi.org/10.3233/JIFS-192203

8. Agarwal M, Biswas KK, Hanmandlu M (2013) Generalized

intuitionistic fuzzy soft sets with applications in decision-mak-

ing. Appl Soft Comput 13(8):3552–3566

9. Agushaka JO, Ezugwu AE, Abualigah L (2022) Dwarf mon-

goose optimization algorithm. Comput Methods Appl Mech Eng

391:114570

10. Agushaka JO, Ezugwu AE, Abualigah L (2023) Gazelle opti-

mization algorithm: a novel nature-inspired metaheuristic opti-

mizer. Neural Comput Appl 35(5):4099–4131

11. Akram M, Nawaz S (2015) Operations on soft graphs. Fuzzy Inf

Eng 7(4):423–449. https://doi.org/10.1016/j.fiae.2015.11.003

12. Akram M, Nawaz S (2016) Fuzzy soft graphs with applications.

J Intell Fuzzy Syst 30(6):3619–3632

13. Akram M, Sultan M (2022) Complex m-polar fuzzy N-soft

model. J Mult Val Log Soft Comput 39(2–4):277–290

14. Akram M, Alshehri NO, Alghamdi RS (2013) Fuzzy soft K-

algebras. Util Math 90:307–325

15. Akram M, Davvaz B, Feng F (2013) Intuitionistic fuzzy soft K-

algebras. Math Comput Sci 7:353–365

16. Akram M, Davvaz B, Feng F (2015) Fuzzy soft Lie algebras.

J Mult Val Log Soft Comput 24:501–520

17. Akram M, Ali G, Alcantud JCR (2023) A new method of multi-

attribute group decision making based on hesitant fuzzy soft

expert information. Expert Syst. https://doi.org/10.1111/exsy.

13357

18. Akram M, Adeel A, Alcantud JCR (2018) Fuzzy N-soft sets: a

novel model with applications. J Intell Fuzzy Syst

35(4):4757–4771. https://doi.org/10.3233/JIFS-18244

19. Akram M, Adeel A, Alcantud JCR (2019) Group decision-

making methods based on hesitant N-soft sets. Expert Syst Appl

115:95–105. https://doi.org/10.1016/j.eswa.2018.07.060

20. Akram M, Adeel A, Alcantud JCR (2019) Hesitant fuzzy N-soft

sets: a new model with applications in decision-making. J Intell

Fuzzy Syst 36:6113–6127. https://doi.org/10.3233/JIFS-181972

21. Akram M, Ali G, Alcantud JCR et al (2021) Parameter reduc-

tions in N-soft sets and their applications in decision-making.

Expert Syst 38(1):e12601. https://doi.org/10.1111/exsy.12601

22. Akram M, Ali G, Butt MA et al (2021) Novel MCGDM analysis

under m-polar fuzzy soft expert sets. Neural Comput Appl

33:12051–12071

23. Akram M, Amjad U, Davvaz B (2021) Decision-making anal-

ysis based on bipolar fuzzy N-soft information. Comput Appl

Math 40(6):182. https://doi.org/10.1007/s40314-021-01570-y

123

Neural Computing and Applications

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s13663-016-0502-y
https://doi.org/10.1109/FUZZ48607.2020.9177701
https://doi.org/10.32604/iasc.2023.040291
https://doi.org/10.1016/j.camwa.2010.03.034
https://doi.org/10.1016/j.camwa.2010.03.034
http://arxiv.org/abs/2209.12676
https://doi.org/10.3233/JIFS-192203
https://doi.org/10.1016/j.fiae.2015.11.003
https://doi.org/10.1111/exsy.13357
https://doi.org/10.1111/exsy.13357
https://doi.org/10.3233/JIFS-18244
https://doi.org/10.1016/j.eswa.2018.07.060
https://doi.org/10.3233/JIFS-181972
https://doi.org/10.1111/exsy.12601
https://doi.org/10.1007/s40314-021-01570-y


24. Akram M, Ali G, Alcantud JCR et al (2022) Group decision-

making with Fermatean fuzzy soft expert knowledge. Artif Intell

Rev. https://doi.org/10.1007/s10462-021-10119-8

25. Akram M, Ali G, Peng X et al (2022) Hybrid group decision-

making technique under spherical fuzzy N-soft expert sets. Artif

Intell Rev 55(5):4117–4163. https://doi.org/10.1007/s10462-

021-10103-2

26. Akram M, Amjad U, Alcantud JCR et al (2022) Complex fer-

matean fuzzy N-soft sets: a new hybrid model with applications.

J Ambient Intell Humaniz Comput. https://doi.org/10.1007/

s12652-021-03629-4

27. Akram M, Ali G, Alcantud JCR (2023) A novel group decision-

making framework under Pythagorean fuzzy N-soft expert

knowledge. Eng Appl Artif Intell 120:105879. https://doi.org/

10.1016/j.engappai.2023.105879

28. Akram M, Sultan M, Adeel A et al (2023) Pythagorean fuzzy N-

soft PROMETHEE approach: a new framework for group

decision making. AIMS Math 8(8):17354–17380. https://doi.

org/10.3934/math.2023887
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30. Aktaş H, Çağman N (2009) Soft sets and soft groups. Inf Sci

177(2007):2726–2735. https://doi.org/10.1016/j.ins.2008.09.011
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221. Taş N, Özgür NY, Demir P (2017) An application of soft set and

fuzzy soft set theories to stock management. Süleyman Demirel
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