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High-order harmonic propagation in gases within the discrete dipole approximation
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We present an efficient approach for computing high-order harmonic propagation based on the discrete dipole
approximation. In contrast with other approaches, our strategy is based on computing the total field as the
superposition of the driving field with the field radiated by the elemental emitters of the sample. In this way we
avoid the numerical integration of the wave equation, as Maxwell’s equations have an analytical solution for an
elementary (pointlike) emitter. The present strategy is valid for low-pressure gases interacting with strong fields
near the saturation threshold (i.e., partially ionized), which is a common situation in the experiments of high-order
harmonic generation. We use this tool to study the dependence of phase matching of high-order harmonics with
the relative position between the beam focus and the gas jet.
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The dynamics of matter subjected to strong laser radiation
departs substantially from the perturbative expectations. As
a result several nonlinear phenomena appear in this regime
of extreme interactions. Among them, high-order harmonic
generation is possibly the most relevant, due to its potential
applications. Although the detailed response of a single
atom or molecule to an intense electromagnetic field is
quite complex, the fundamental underlying physics can be
unexpectedly simple. For the case of harmonic generation,
the most relevant mechanism can be described in terms of
a three-step process in which a bound electron is ionized,
accelerated by the field, and finally driven back to the parent
ion [1,2]. The harmonics are emitted by the rapid oscillations
of the dipole induced by the continuum and the bound
state. This process is responsible of the characteristic plateau
structure of the harmonic spectrum, where high harmonics
are radiated at similar intensities until a cutoff frequency
is reached. This feature is useful for developing sources of
high-frequency (xuv) coherent radiation (which may extend
to the water window [3,4]). In addition, the natural phase
locking of the highest frequency harmonics permits the Fourier
synthesis of x-ray pulses with durations below 100 as [5].
High-order harmonics by themselves contain information
of the subfemtosecond dynamics of the atomic electrons,
reflecting quantum path interferences [6], or molecule disso-
ciation dynamics and structure [7,8]. The proper theoretical
description of experiments involving high-order harmonic
generation has to include a faithful reproduction of not only
the single radiator (atom or molecule) spectrum but also the
propagation of the harmonics in the medium and its far field
distribution at the detectors. The fundamental aspects for the
computations of the high-order harmonic propagation were
discussed by L’Huillier et al. in two seminal articles [9,10]. The
phase matching of high-order harmonics is shown to depend
on the different parameters of the experiment (including
atomic species, beam shape, etc.); therefore it offers new
degrees of freedom for the optimization of the harmonic
yield. However, the exact computation of the propagation
equations is a formidable task due to the disparity of the
scales involved (few tens of nanometers for the wavelengths

of the highest harmonics and propagation distances of few
millimeters). In this article we propose a technique for the
computation of the high-order harmonic propagation. Our
method relies on the fundamental description of electric-
field propagation as a superposition of the individual fields
generated at different points of the target. This viewpoint
is the natural starting point if one considers the integral
solution of the wave equation, instead of its differential
form. Maxwell equations can be integrated analytically for
a pointlike source in vacuum. We shall, therefore, use this
solution with the assumption that the high-order harmonics
are weakly perturbed as they propagate through the medium.
As we shall see in this article, this is a reasonable assumption
in partially ionized low-pressure gases. By construction,
our method does not resort to the usual approximations, in
particular, paraxial or field envelope approximations, although
these are correct assumptions in a typical experiment of
high-order harmonic generation in low-pressure gases. To
circumvent the problem of computing the vast quantity of
elementary emitters in the target, we use the discrete dipole
approximation (DDA) [11,12]. In this context, the target
is assumed to be composed of a set of finite-size spheres
involving a large number of elementary radiators each. The
computation of harmonic propagation inside each sphere is
straightforward if the incident field is assumed to be locally a
plane wave.

The paper is organized in two sections. The first one
describes the theoretical approach used in this article. It is
divided into three subsections: First, we analyze the main
approximations involving the field generation and the field
propagation; second, we consider the extension of the strong-
field approximation (SFA+) model approach for the evaluation
of the source term [13]; and, finally, we describe the basis of our
propagation model based on the DDA. In the second section
we analyze the convergence of our method, showing different
results at different stages of the calculation. Finally, in the third
section we consider a particular case and compare our results
with previous works [14,15]. The article ends with a discussion
of the results in terms of the spatial phase distributions of
harmonic generation.
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I. THEORETICAL APPROACH

The general problem of propagation amounts to solving the
wave equation for the electric field E

∇2E − 1

c2

∂

∂t2
E = 4π

c2

∂

∂t
J, (1)

where J is the current density. Instead of solving this equation
numerically, we consider its integral solution [16]: E(r,t) =
E0(r,t) + Ei(r,t), where E0(r,t) is the external field, as it
propagates in vacuum, and Ei(r,t) is the field radiated by
the accelerated charges in the target,

Ei(r,t) = − 1

c2

∫
dr′ 1

|r − r′|
[

∂

∂t ′
J(r′,t ′)

]
t ′=t−|r−r′ |/c

. (2)

Note that this expression assumes the generated radiation to
propagate in vacuum. We see in the next subsection that this
is a reasonable assumption for the high-order harmonics. For
the fundamental field, we use a quasianalytical expression that
takes into account the major contributions to the refractive
index. Turning to a microscopic viewpoint, we decompose
the target into a discrete sum of elementary contributions,
associated with each charge in the sample. The transversal far
field radiated by the j th charge, placed at point rj in the target
reads as

Ej

i (rd ,t) = 1

c2

qj

|rd − rj (0)| sd × {sd × aj [t − |rd − rj (0)|/c]}
(3)

where aj is the charge’s acceleration, evaluated at the retarded
time, and sd is the unitary vector pointing to a virtual detector
located at rd . Note that we are using the dipole approximation,
as the charge displacement during the interaction is assumed
small in comparison to the wavelength of the radiation
field (including its harmonics); therefore rj (t) � rj (0). This
condition is easily attained in neutral gases as harmonics are
generated by charges in the vicinity of the parent ion.

A. Main approximations

The exact evaluation of the charge displacement is a
complex task, as their motion has to be computed self-
consistently with the total field E(r,t). Therefore, some set
of reasonable assumptions have to be used. In order to handle
the problem properly, we split it into two basic processes:
the generation of the field by the target radiators and the
propagation of the complete field through the target.

1. Field generation

The field generation at the target is given by the charge
accelerations at any instant of time. The accurate computation
of this quantity requires a precise knowledge of the total
field at the charge’s location, including the incident laser field
and the field generated at other locations of the sample. The
influence of the harmonic field on the charge’s dynamics
is minimal, as the intensity of the harmonics is typically
orders of magnitude below that of the fundamental field.
Therefore, we may consider the charges driven solely by the
influence of the fundamental field [10]. The generation of high-
order harmonics requires a high-intensity external field that

submits the matter charges to a nonperturbative interaction.
The exact dynamics of the charge can only be computed
by the numerical integration of the Schrödinger equation,
which requires a substantial computing effort and becomes
prohibitory for the evaluation of the general target response.
A drastic simplification comes from the use of the strong-field
approximation combined with S-matrix techniques. In our
case, we use a recently developed method [13], here referred to
as SFA+, to compute the single-charge response to the intense
field. In comparison with other SFA methods, our approach
retains the full quantum description of the dynamics and, yet,
provides an integration procedure efficient enough to tackle
the general problem of propagation (an outline of this method
is presented in Sec. I B).

2. Field propagation

From the propagation viewpoint, the influence of the target
on the field propagation can be categorized either by the
changes in the field phase or by the field absorption. We derive
now some quantitative estimations on the target influence for
the fundamental field and high-order harmonics.

The target effect on the field phase can be described
considering the contributions to the refractive index, associated
with bound-bound, bound-free, or free-free transitions. For
low-density media we may approximate

n � 1 + 2π (χbb + χbf + χff), (4)

with χij being the susceptibilities associated with each of the
above contributions. Considering a characteristic propagation
length L at the target, the phase effects induced during the
propagation can be estimated by considering the change in the
optical path associated with each process, �Lij = L2πχij . To
establish some limit, we shall consider that a particular process
is relevant if the associated change of the optical path is less
than or equal to 1/10 of the wavelength λ of the considered
field (fundamental or harmonic). Therefore,

niL <
λ

20π

ni

χij

, (5)

where ni is the density of charges in the initial state of the
transition.

Let us first consider the propagation of the field at the funda-
mental wavelength. In a typical experiment, it corresponds to
the near infrared and, therefore, to photon energies well below
the ionization threshold of, for instance, rare gases. The target
response to the fundamental field is, therefore, dominated by
the bound-bound transitions and by the potential contribution
of the ionized electrons (free-free transitions). In the absence of
resonances, we can estimate χbb according to the perturbative
formula [17]

χbb � nbe
2

m

f12

ω2
12 − ω2

, (6)

where nb is the density of atoms in the ground state, 1 labels the
ground state, 2 the final level of the lowest energy transition,
and f12 the oscillator strength. If we consider the 1s-2p

transition of the hydrogen atom, f12 = 0.1388 [18], and the
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wavelength of the Ti:sapphire laser (λ = 800 nm), Eq. (5)
leads to the limiting condition

nbL < 8.5 × 1018cm−2. (7)

In particular, for a typical density in low-pressure gases of
1018 cm−3, the effect of the bound-bound transitions in the
propagation of the fundamental field is small for propagation
lengths below approximately 8 cm.

On the other hand, χff = −ω2
p/ω2, with ω2

p = nf e2/m and
nf being the density of free electrons. Therefore, the limiting
condition for the fundamental field reads as

nf L < 2.8 × 1016cm−2. (8)

For instance, assuming a 10% ionization during the pulse
propagation, the effect of free charges in the propagation of
the fundamental field for the previous example begins to be
relevant at propagation lengths above approximately 2 mm.
Therefore, free charges are the main cause of the phase effects
in the propagation of the fundamental field.

Now let us consider the propagation of the qth-order
harmonic. We assume that its frequency qω is greater than
the ionization potential; therefore the dominant processes
are the bound-free and the free-free transitions. For the first
type, the susceptibility can be derived from the perturbation
theory as

χ1f � π

4h̄
Nb|µ1,ε |2D(ε), (9)

where ε is the energy of the final state in the continuum,
ε = ε0 + h̄ω0 (ε0 being the ground state energy and ω0

the fundamental field frequency), µ1,ε is the electric dipole
moment of the transition, and D(ε) is the density of states. For
the case of hydrogen atoms, µ1,ε can be computed analytically
if the continuum states are assimilated to plane waves. In this
case, the angle-averaged squared dipole matrix element results
in

|µ1f |2 = 8

3π2
me2 (2/a0)5[

(1/a0)2 + 2mε
]6 ε. (10)

Under the assumption of a plane-wave continuum, the density
of states D(ε) in Eq. (9) is given by the standard expression
(2m)3/2ε1/2/2π2h̄3. A typical harmonic order near the spec-
trum cutoff for our laser parameters is 27th; so taking this as a
reference the limit value (5) gives

nbL < 2.6 × 1020cm−2. (11)

For the case of the free-free transitions, the susceptibility now
reads as χff = −ω2

p/q2ω2
0. For the 27th harmonic, we have

nf L < 7.5 × 1017cm−2. (12)

Again the most relevant influence in the phase of the propa-
gating harmonics comes from the free charges. For the typical
case considered previously, the target length above which this
process has to be taken into account is 7.5 cm. To describe the
harmonics conforming the plateau structure in the spectrum,
one should reduce this length to approximately 3 cm.

Second, let us evaluate the absorption loss during the prop-
agation of a high-order harmonic. The absorption coefficient
for the qth harmonic, αq , can be evaluated from the ionization

rate of the atoms 	, as the fraction of photons absorbed per
unit length,

α = nb	

(I/h̄ω)
. (13)

The ionization rate can be computed from the perturbation
theory by Fermi’s Golden Rule as 	 = (4π2/h̄2c)I |µbf|2g(ε),
with the same definitions as in Eq. (9). We define the limit
for neglecting this process when the target length is 10 times
smaller than the absorption depth, L < 1/10α. For instance,
for the 27th harmonic this gives the condition

nbL < 5.3 × 1018cm−2. (14)

Again for the case of 1018 atoms/cm3 gas, the limit length
is approximately 5 cm and for the lower order harmonics
of the plateau it is about 1.5 cm (assuming the matrix
element as constant). Note that for high-order harmonics, the
most relevant process influencing the propagation is photon
absorption. Therefore, if condition (14) is fulfilled we can
neglect the medium response and our starting formulation,
Eq. (2), is well justified.

From the aforementioned considerations it becomes clear
that the most relevant process is the presence of free charges
in the medium, which affects especially the fundamental field.
Even though for lengths smaller than the millimeter the change
in optical path is small enough to be neglected, it still can have
an important contribution for the phase matching of high-
order harmonics. The wave number of the generated qth-order
harmonic is, approximately, qk1, while as we have seen the
wave vector of the propagating harmonic field is approximately
the vacuum kq = qω0/c. Therefore a small variation of the
optical path of the fundamental field can be relevant for the
emitted high-order harmonic. As before, we may consider this
dephase not relevant if the change in optical path is smaller
than 1/10 of the harmonic wavelength λ0/q. Therefore the
limit in the propagation distance is given by Eq. (8) divided by
the harmonic order. For the 27th harmonic we have

nf L < 1 × 1015cm−2, (15)

and, therefore, for the gas density considered above and 10%
of free charges, this length is limited to 100 µm. This is a very
restrictive condition, as interacting distances below hundreds
of microns are not realistic at the laboratory.

Equations (8) and (15) point out the necessity of including
plasma effects in the propagation of the fundamental field, if
one wants to consider propagation lengths of the order of 1 cm.
With the presence of free charges due to ionization, the wave
number of the fundamental field is shifted from its vacuum
value to k2

1 = k2
0(1 − ω2

p/ω2
0), ωp being the plasma frequency

[16]. Taking into account that the gas jet is inhomogeneous,
the spatial phase of the fundamental field at point r can be
approximated by the integral over the propagation direction∫ z

−∞
k1(x,y,ξ )dξ � k0z − 2πe2

ω0
2m

Pf (r,t)
∫ z

−∞
n(x,y,ξ ) dξ,

(16)

with n(x,y,z) being the atomic density distribution and Pf (r,t)
the ratio for ionized electrons, which we calculate as follows

Pf (r,t) = 1 − e− ∫ t

−∞ wADK(r,τ ) dτ , (17)
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where wADK(r,t) is the ionization rate, calculated from the
Amosov-Delone-Krainov (ADK) equation [19]. For hydrogen
this reads

wADK(r,t) = 2e2

π

[
3

π |E(r,t)|
]1/2

e
− 2

3|E(r,t)| . (18)

B. Evaluation of the source term

With the aforementioned approximations, the solution of
Eq. (3) can be found by superposition of each target radiator,
excited by the fundamental field E1(r,t). For the case of intense
fields the computation of the dynamics of the radiators is not
trivial, as the interaction is nonperturbative. To this end, the
exact numerical integration of the Schrödinger equation would
be desirable. However, unless the field is approximated to a
simple form (for instance a plane wave) or some additional
assumptions are made [20], the necessity of such integration
for each of the target radiators makes the whole problem
unattainable. Therefore, the use of simplified models is almost
mandatory. For the case of intense fields, S-matrix approaches
combined with the strong-field approximation (SFA) offer a
temporal approximated description of the problem. However,
even within this framework, the resulting integral equations
are traditionally considered to require long computations.
As a further step, the saddle-point method is used to avoid
multidimensional integrals in momentum space and time. The
resulting model, which describes the process of harmonic
generation in terms of semiclassical trajectories, offers a
very transparent picture of the recollision process leading
to high-order harmonic generation. During the last 15 years,
this model has been employed extensively for the theoretical
description of this process, as well as for the dynamical
description of the source term in propagation. Despite its
success, some recent results have pointed out the limitations of
this model to reproduce quantitatively the harmonic spectra,
failing, for instance, to describe the correct scaling of the
highest-order harmonics with the wavelength [21]. The use
of the saddle-point method, on the other hand, restricts
the harmonic generation to the most relevant events (those
described by the trajectories), while neglecting other processes
leading to harmonic radiation (as the way out and close
up contributions) which require a full quantum mechanical
treatment [22]. In this context, we have recently developed
a new method, alternative to the saddle point, which permits
one to compute the harmonic spectrum including the complete
momentum space and, yet, that can be computed with enough
efficiency to be implemented in a propagation calculation.
This new method also includes the influence of the field in the
ground state during the recollision event that leads to harmonic
generation. In this latter sense it represents an extension of
the standard SFA, hence we refer it as SFA+. Although the
detailed derivation of the SFA+ model can be found elsewhere
[13], we sketch here the practical implementation of the model.

For simplicity, we assume that the target is composed of
identical systems (atoms or molecules) initially in their ground
state. In SFA+, the dipole acceleration at any instant of time
is composed of two contributions:

a(t) = ab(t) + ad (t) + c.c. (19)

The first term, ab(t), stands for the dipole acceleration
computed with the standard S-matrix SFA, but without
resorting to the saddle-point method. The second term, ad (t),
describes the correction introduced by the SFA+ model by
including the relevant dynamics of the ground state during
the recollision event leading to harmonic radiation. Within
this approximation, the acceleration ab(t) is computed adding
the contributions of each Volkov wave of the continuum,
ab(t) = ∫

dkab(k,t), with

ab(k,t) = − i

h̄
CF

∫ t

t0

dt1e
iε0(t−t1)/h̄e

−i 1
h̄

∫ t

t1
ε(k,τ )dτ

×〈φ0|â|k〉Vi(k,t1)〈k|r−1|φ0〉, (20)

where Vi(k,t1) = −(q/mc)A(t1)kz + q2/(2mc2)A2(t1),
ε(k,τ ) = h̄2k2/2m + Vi(k,τ ), and A(t1) is the potential vector
of the linearly polarized driving field and |φ0〉 is the bound
state with energy ε0, initially occupied by the electron.
We have introduced the Coulomb factor [23] for hydrogen
CF /r = 2E0/r , with E0 being the peak field amplitude. The
acceleration operator is described as â = −(q/m)∂Vc/∂z (Vc

being the atomic Coulomb potential, −q2/r). For hydrogen,
the matrix elements can be computed readily as

〈k|r−1|φ0〉 =
√

2

π

(
1

a0

)3/2 1

(1/a0)2 + k2
, (21)

〈φ0|â|k〉 = −
√

2i
1q2

πm

(
1

a0

)3/2
kz

k2

[
1 − arctan(ka0)

ka0

]
.

(22)

The numerical evaluation of ab(t) is usually considered
demanding, since it implies an integral over the momentum
space, and Eq. (20) requires also the evaluation of nested time
integrals. In view of this, many authors resort to a saddle-point
approximation. In our computations, however, we prefer to
consider the differential version of Eq. (20),

d

dt
ab(k,t) = i

h̄
[ε0 − ε(k,t)] ab(k,t)

− i

h̄
CF 〈φ0|â|k〉Vi(k,t)〈k|r−1|φ0〉. (23)

This forms a set of uncoupled one-dimensional (1D) dif-
ferential equations that can be solved numerically quite
efficiently using a standard Runge-Kutta method. As the
derivation of Eq. (23) from Eq. (20) does not involve any
approximation, the evaluation of this latter equation gives the
full information contained in the SFA S-matrix formulation
(i.e., it includes complete information of the momentum
space). By contrast, the use of the saddle-point approximation
leads to a semiclassical description of harmonic generation.

The term ad (t) in Eq. (19) represents the correction of the
SFA+ approach to the standard SFA, including the effect of
the field on the bound state during the rescattering event. The
rescattering takes place when a previously released electron is
driven back to the parent ion by the intense field. The temporal
lapse of the rescattering event, δts , is defined by the time during
which the ground state wave packet and the free-electron wave
packet overlap:

δts � (3π/2ω0)
√|ε0|/3.17Up. (24)
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Assuming this is a small quantity in comparison with the
laser field period, the time-dependent operators involved in
the evaluation of ad (t) are approximated by their time averages
over δts . After some steps, one can find the expression of the
contribution of each momentum to ad in terms of those for ab,

ad (k,t) = −
[

1 + k2/2m − ε0

�s

]
ab(k,t) (25)

and ad (t) = ∫
dkad (k,t). In this expression we define �s as

the average level shift during the rescattering, δts ,

�s � Up + 2h̄

ω0δts

√
Up

m
kz sin(ω0δts) + Up

2ω0δts
sin(2ω0δts),

(26)

with

kz =−2

h̄

√
mUp

sin ω0δts

ω0δts

×
[
1 −

√
1 − 1

6

(
1 + ε0

Up

+ sin(2ω0δts)

2ω0δts

)(
sin(ω0δts)

ω0δts

)−2
]
,

(27)

the averaged momentum in the direction of the field polariza-
tion, estimated from energy equipartition. The final form for
the total acceleration is, therefore,

a(t) = −
∫

dk
h̄2k2/2m − ε0

�s

ab(k,t) + c.c., (28)

with ab(k,t) computed numerically from Eq. (23). The target-
induced field, in Eq. (3), is computed evaluating Eq. (28) for
every target radiator.

The quantitative accuracy in the evaluation of the source
term is a fundamental requirement for a faithful computation
of the harmonic propagation. In Fig. 1 we show a comparison
between the spectra of the dipole acceleration resulting
from the exact numerical solution of the two-dimensional
Schrödinger equation (TDSE) and our SFA+ model. The laser
field corresponds to the focal point of the Gaussian beam
considered in the next section (intensity �1.58 × 1014 W/cm2

FIG. 1. (Color online) Comparison of the single-atom harmonic
spectra computed from the exact numerical integration of the
TDSE [green (light gray) line] and the SFA+ model [red (dark
gray) line] for an eight-cycle pulse of sin2 shape, with intensity
�1.57 × 1014 W/cm2 and a wavelength of 800 nm. The calculations
are carried out for hydrogen.

and 800-nm wavelength) and the atomic species is hydrogen.
The plots in the figure correspond to the direct outcome from
the Fourier transform of the dipole acceleration in the different
approaches; that is, no relative shift or scalings have been used.
The result of the exact computation of the three-dimensional
(3D) TDSE is plotted with the green line, while the result of the
SFA+ computation is plotted with the red line. We can see that
the agreement between both calculations is quantitatively good
for the high-order harmonics (above the 21st). For the lower
frequencies, the progressive departure of the model’s results
in comparison with the exact TDSE reflects the limitation of
the SFA, as it neglects the contributions of the atomic excited
states. The accuracy of the phase description of the radiated
spectrum is found to be very similar with SFA+ as well as
with the standard SFA, and reasonably good in comparison
with the exact TDSE [24].

Note that, although the atomic species considered in this
article is hydrogen, the aforementioned formalism is equally
applicable to other cases replacing the corresponding matrix
elements and Coulomb factor, as long as the single active
approximation is valid. The determination of these parameters
in other rare gases, and the corresponding test of our model
with the exact TDSE solutions, is currently under way.

C. Discrete dipole approximation

For low-pressure densities of 1018 atoms/cm3, the number
of target radiators in a typical interaction region is of the order
of 1012. This means that, despite the use of efficient models
for the computation of the source term, the computation of
the dynamics of each dipole required by Eq. (2) becomes a
formidable task. To overcome this limitation we use the DDA
[11,12], where the interaction volume is split into discrete
cells, each containing a macroscopic number of radiators. The
computation of the source term is therefore simplified if the
following conditions are met:

(i) The number of dipoles enclosed in each cell is large
enough to approximate their density by a continuous dis-
tribution. We shall then define a lower limit for the cell’s
size to enclose about 10 dipoles in each dimension, that is,
d > 10[1/n(rj )]1/3, d being the cell’s diameter, n(rj ) the atom
density, and rj the coordinate of the cell’s center. For the
aforementioned gas density, this lower limit is about 100 nm.
To avoid parasitic diffraction we skip the definition of sharp
edges at the cell limits, replacing the geometrical shape of the
cell by a localized Gaussian distribution of the same width
n(rj )Vcellg(r′) (Vcell being the cell’s volume), with

g(r ′) = Ce−r ′2/σ 2
, (29)

where C is the normalization factor, σ is related to the diameter
of the sphere d as d = 2σ

√
ln 2, and r′ is a coordinate on the

local reference frame with origin O ′ at the cell’s center rj (see
Fig. 2).

(ii) The size of the cells is small enough to approximate
the external field as a local plane wave with a uniform
intensity distribution within the cell’s volume. Denoting W0

as a characteristic length for the variation of the intensity
distribution of the external field, we shall define the upper
limit of the cell’s diameter as d < 2W0/10. For the numerical
results presented in this article, we consider a Gaussian beam
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FIG. 2. (Color online) Scheme of the finite-size cell considered to
apply the DDA. The direction of the detector is defined by the vector
sd . The local reference frame has its origin O ′ at the cell’s center, rj ,
and it is oriented so that the z′ axis coincides with the propagation
direction of the local plane-wave field, and sd has no y ′ component.

(see Sec. II) whose beam waist is W0 = 30 and, therefore, the
cell’s diameter d should not exceed 6 µm.

(iii) The total number of cells is determined by the ratio
between the interaction region and the cell’s volume: Nc �
Vint/Vcell. In the practical case, however, the choice of the
cell’s location is determined by a Monte Carlo method from
the target density distribution. Therefore, the computation can
finish according to a convergence criteria, before scanning the
total number of cells.

If the previous conditions are met, the radiators within a
cell interact approximately with the same form of the external
field. Consequently, denoting E1(rj ,t) the fundamental field
as seen at the center of cell j , the interacting field at any
neighbor point r′ can be approximated by E1(rj ,tr′), with tr′

being the temporal lag associated with the distance of this
point to O ′. The z′ axis being the propagation direction of the
local plane-wave field, tr′ = t − z′/c. Therefore, according to
Eq. (3), the total field at the detector position rd emitted by a
single cell is given by

Ei,j (rd ,t) � N (rj )

c2|rd |
∫

dr′g(r′)sd

×
[

sd × a
(

rj ,t − z′

c
− |rd − r′ − rj |

c

)]
, (30)

where a(rj ,t) is the dipole acceleration computed with
Eq. (28), induced by the response to the fundamental field.
For the case of isotropic radiators, the direction of the
vector a(rj ,t) is the driving field’s polarization. rd is the
detector’s coordinate, which is assumed to be at an arbitrarily
large distance from the interaction region, |rd | >> |rj | (see
Fig. 3).

Equation (30) can be integrated in the time-frequency
domain,

Ei,j (rd ,ω) � N (rj )

c2|rd |
∫

dr′g(r′)sd

×
[

sd × a(rj ,ω)eiω

(
z′
c
+ |rd −r′−rj |

c

)]
, (31)

dropping constant terms, we have

Ei,j (rd ,t) ∝ N (rj )sd ×
[
sd × a(rj ,ω)e−iω

|rd −rj |
c F (θd,j ,ω)

]
,

(32)

FIG. 3. (Color online) Scheme of the high-order harmonic ex-
periment considered in this article: An eight-cycle Gaussian pulse is
focused near the center of a gas jet. The peak intensity at the focus
is 1.57 × 1014 W/cm2, the wavelength is 800 nm, and the waist is
30 µm. The gas jet has a constant profile in the x direction and a
Gaussian profile in the y and z directions, with widths of 500 µm
and a peak density of 1018 atoms/cm3. The coordinate origin, O, is
located at the laser focus and the jet position is translated along the z

axis.

where F (θd,j ,ω) is a form factor defined as

F (θd,j ,ω) = lim
|rd|→∞

∫
dr′g(r′)eiω

(
z′
c
− |rd −r′−rj |

c
+ |rd −rj |

c

)

=
∫

dr′g(r′)ei ω
c

(z′−sd ·r′), (33)

where sd is the unitary vector pointing to the detector direction
and sd = cosθd,j ez′ , according to the chosen orientation of the
local reference frame (Fig. 2). Using Eq. (29), the integral can
be evaluated analytically as

F (θd,j ,ω) ∝ e
1
2

ω2

c2 σ 2(1−cos θd,j )
, (34)

with θd,j being the angle between the detector position and the
local-field propagation vector at the cell j . Note that Eq. (32)
corresponds to the field of a single radiator located at the cell’s
center rj , modulated by a form factor F (θd,j ,ω) that takes into
account the interfering contributions of the rest of the radiators
in the macroscopic cell. Figure 4 shows the angular distribution
of the high-order harmonic radiated spectra in linear scale
(a) for a single radiator and for cells of diameters (b) 10 nm,
(c) 50 nm, and (d) 500 nm. Note that, as a result of the
macroscopic size of the cell, the global matching of the field
emitted by the different points in the cell leads to a constructive
interference restricted near the propagation direction of the
fundamental field.

II. RESULTS

Let us now present some results of our calculation for
the model experiment depicted in Fig. 3. We first introduce
the mathematical definitions of the field and the gas jet
distributions and then characterize the convergence of the
model. We then study the different phase contributions to
the macroscopic harmonic spectrum and analyze the phase-
matching conditions at different target positions.

For the results presented in this article, we have
considered a low-pressure hydrogen jet interacting with an
800-nm laser pulse of eight cycles with a peak intensity of
1.57 × 1014 W/cm2. For the description of the laser pulse, we
have considered a Gaussian beam, so the fundamental field
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FIG. 4. (Color online) Angular distribution of the radiation
spectra, in linear scale, (a) for a single radiator and cells (b) 10 nm,
(c) 50 nm, and (d) 500 nm in diameter. The radial axis corresponds
to the harmonic order (starting at the 21st), angles are represented in
degrees and the z axis is parallel to the propagation direction of the
local plane wave.

has the form

E1(r,t) = E0η(z − ct)U (r)e−i(
∫ z

−∞ k1(x,y,ξ )dξ−ω0t), (35)

where E0 is the peak field amplitude, η(z − ct) is a sin2

temporal envelope, eight cycles long, and U (r) is a Gaussian
profile, whose expression is

U (r) = W0

W (z)
e
− ρ2

W2(z) e
i ω

c

ρ2

2R(z) +iζ (z)
, (36)

whereW (z) = W0

√
1 + (z/z0)2 is the expression for the beam

width, where W0 is the beam waist, related to the Rayleigh
range (z0) as W0 = √

λz0/π , R(z) is the wavefront radius
of curvature, given by R(z) = z[1 + (z0/z)2], and ζ (z) is the
Gouy phase, which is given by ζ (z) = tan−1(z/z0). In the
results presented in this article, the beam waist is W0 = 30 µm,
and hence the Rayleigh range is z0 = 3.5 mm. In the
following, we define z = 0 as the position of the focus along
the propagation axis z. The spatial integral in the exponent of
Eq. (35) is computed using Eq. (16). On the other hand, the gas
jet, directed along the x axis (perpendicular to the field propa-
gation), is modeled by a Gaussian distribution along the y and
z dimensions and by a constant profile along its axial dimen-
sion, x. Therefore, the atom-density distribution is given by

n(y,z) = n0e
− (y−yc )2

2σ2
y e

− (z−zc )2

2σ2
z , (37)

where n0 is the maximum gas density over the interacting vol-
ume, and yc and zc are the coordinates of the beam axis center
with respect to the laser-beam focal point (located at the ori-

FIG. 5. (Color online) Distribution of atoms in the gas jet,
corresponding to Eq. (37) with the following parameters: yc = 0,
zc = −2 mm, σy = 500 µm, and σz = 500 µm. In (a) we plot the
x-z distribution, while in (b) to (d) we plot the distributions
corresponding to each dimension. The beam waist is W0 = 30 µm
and the Rayleigh range, marked with the dashed line in (a), results in
z0 = 3.5 mm.

gin). The quantities σy and σz are the half width half maximum
of the Gaussian distribution in each direction, respectively.
Figure 5 shows the particular example where the gas jet is
placed 2 mm before the focus of the beam (i.e., zc = −2 mm),
with σz = 500 µm. In the transversal direction, the parameters
of the Gaussian distribution are yc = 0 µm and σy = 500 µm.

A. Convergence of the model

As we stated in Sec. I C, for the particular example
considered here, the diameter of the discrete cells must be
enclosed in the interval 100 nm < d < 6 µm. Although the
final result is independent on the actual choice within this
interval, the use of smaller diameters dilates the computing
time, as the same convergence goal is attained computing a
larger number of cells. This is illustrated in Fig. 6 where
we present results for three different diameters. For better
comparison, the first column shows the results of the bare
problem, that is, a collection of point dipoles, while columns
2 to 4 present the results of the DDA computations using
cells with diameters of 1, 2, and 3 µm, respectively. The
convergence of each case is illustrated through the different
rows, which correspond to a different number of cells. Note
that for 105 cells (6th row) all cases have converged, including
the bare case. On the other hand, it becomes evident that
using cells of larger diameter reduces the convergence time.
In particular, for the choice of 3 µm it is sufficient to consider
104 cells to obtain good results, which means a reduction of
computing time of 1 order of magnitude in comparison with
the bare dipole case.
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FIG. 6. (Color online) Angle-resolved high-order harmonic spectra for different number and size of spheres within the DDA. in the column
on the left, the simulation is done without the DDA approximation, that is, considering pure atoms. In the others columns, from left to right we
have 1-, 2-, and 3-µm-diameter spheres. However, in the first row we have 1 sphere, while 10, 102, 103, 104, and 105 spheres are considered in
the following ones. The gas jet is placed 1 mm before the focus of the laser beam. The laser pulse is eight cycles 800 nm with a peak intensity
of 1.57 × 1014 W/cm2.

B. Phase matching along the propagation axis

The phase of the high-order harmonics has three different
contributions: (i) one due to the Gouy phase associated with the

Gaussian laser beam, whose expression is qζ (z), q being the
order of the harmonic; (ii) the intrinsic phase, which depends
mainly on intensity and is a consequence of the rescattering
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mechanism for harmonic generation in the single atom; and
(iii) the dephase produced in the fundamental field by the
presence of free electrons, which is imprinted to the harmonics
as a result of the nonlinear process of harmonic generation. As
discussed before, this later contribution becomes especially
important for propagation lengths of the order of a few
millimeters or even below, and if the gas jet is placed close to
the focus of the beam where the intensity is maximum.

Our method allows one to naturally isolate the contributions
of the different target points to the harmonic spectrum and,
also, to separate the different physical contributions to the total
phase of the harmonics. In Fig. 7 we have plotted the phase
of harmonic 21 in two different situations. In Fig. 7(a) the gas
jet is placed 2 mm before focus, while in Fig. 7(b) it is placed
2 mm after the focus. In both figures we have represented
the different contributions to the phase: dashed red, the Gouy
phase; dotted pink, the intrinsic phase; dashed-dotted green
line, the sum of the Gouy and the intrinsic phase; and solid
blue line, the total phase, including also ionization. Figures 7(c)
and 7(d) correspond to the derivative of the total phase along
the propagation length, corresponding to Figs. 7(a) and 7(b),
respectively. In the background, the light grey line represents
the atom distribution along the propagation axis.

The comparison of Figs. 7(a) and 7(b) shows that, while the
Gouy phase always decreases with the distance, the slope of
the intrinsic phase, which depends on the intensity gradient, is
antisymmetric with respect to the laser focal point. Therefore,
when the gas jet is located before the focus, the intrinsic phase

FIG. 7. (Color online) Spatial distribution of the phase of the
21st harmonic along the propagation axis z when the gas jet is placed
(a) before the focus position, zc = −2 mm, and (b) after the focus
position, zc = 2 mm. The different contributions to the phase are
plotted as follows: dashed red line, the Gouy phase; dotted pink line,
the intrinsic phase; dashed-dotted green line, the sum of the Gouy
and the intrinsic phase; and solid blue line, the total phase, including
also ionization. Panels (c) and (d) represent the phase derivative of
21st harmonic along the propagation axis z when the gas jet is placed
2 mm before and after the focus, respectively (solid purple line). In
the background of all the figures, the light grey line represents the gas
jet profile along the propagation axis.

decreases with z, while when located after the beam focus it
increases. This is a fundamental difference, as in this latter
case the opposite behavior of the intrinsic and Gouy phase
compensates and results in a nearly flat phase distribution
(Fig. 7(b), dashed-dotted green line) in the region z > 2.5 mm.
The addition of the dephase induced by free charges leads
to a total phase (solid blue line) of equal characteristics.
On the other hand, if the target is located before the focus,
both intrinsic and Guoy phases increase, adding up to a total
phase which varies rapidly with z [green line, Fig. 7(a)].
Moreover, the dephase induced by free charges now has a
stronger contribution, increasing further the spatial variation
of the total phase (blue line). Figures 7(c) and 7(d) show the
derivative of the total phase along the z axis, where we can see
that the minimal variation of the phase corresponds to the gas
jet positioned after the focus.

In high-order harmonic propagation, phase-matching con-
ditions strongly affect the signal arriving at the detectors.
This signal is optimal if the radiation emitted by an atom
interferes constructively with the others. Therefore, the most

FIG. 8. (Color online) Angle-resolved high-order harmonic spec-
tra when the gas jet was placed 2 mm (a) before and (c) after the focus
of the laser beam. In panels (b) and (d) we can see the position of
the gas jet and the laser beam in both situations, respectively. The
laser pulse was eight cycles @ 800 nm with a peak intensity of
1.57 × 1014 W/cm2 and a beam waist of 30 µm.
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FIG. 9. (Color online) Spatial profile of high-order harmonics:
(a) 17th, (b) 19th, (c) 21st, and (d) 23rd, when the gas jet is placed in
different positions relative to the focus position, along the propagation
axis.

relevant contribution to the macroscopic radiation comes from
the target regions where the phase variation of the emitted
harmonic in space is minimal [25]. Figure 8 shows the
angle-resolved high-order harmonic spectra when the gas
jet is placed 2 mm (a) before and (c) after the focus. In
correspondence with the preceding discussion, we can observe
an enhancement of high-order harmonics when the gas jet is
placed after the focus. In addition we can observe some rings
appearing in the harmonics profile when the laser is focused
after the gas jet. These structures reflect the rapid change of
the phase-matching conditions with the angle, as explained in
Ref. [26]. These profiles are in excellent agreement with the
results presented in Refs. [14,15,20].

Another issue that we can observe in Fig. 8 is the reduction
of the cutoff frequency due to propagation. The theoretical
value for the maximum emitted frequency in high-harmonic
generation corresponds to Ip + κUp with κ = 3.17 [27].
In hydrogen, with the parameters of our simulation, this

corresponds to the 28th harmonic (see Fig. 1). Nevertheless,
in Fig. 8 we can observe that the maximum harmonic is below
the 28th harmonic and near the 21st harmonic. This value will
correspond to κ � 2, which is in good agreement with those
observed in Ref. [28].

Finally, we show in Fig. 9 the variation of the angular
profile of a particular harmonic when the position of the
gas jet is varied continuously along the propagation axis.
The variation of the angular profile is represented for the
following harmonics: (a) 17th, (b) 19th, (c) 21st, and (d)
23rd. As discussed previously, the ring structures appear for
target positions before or at the focus, while after the focus the
angular structure becomes smoother. The figure also describes
the variations of the intensity of the radiated harmonics with
the location of the target. As we can observe, the higher the
harmonic is, the more contrast exists between the signal of
the harmonic before and after the focus. While in the 17th
harmonic this difference is not very important, as we increase
the order of the harmonic, it becomes critical, as for example
in the 23rd harmonic, where there is no signal before the focus.

III. CONCLUSION

We have developed an approach for computing high-
order harmonic propagation using the DDA. Our model is
based on the S-matrix SFA + theory for the computation
of the single-atom harmonic generation. The macroscopic
response is computed from the superposition of the single-
atom emission at the different points of the target and, thus,
avoids the numerical integration of the wave equations. We
have shown the feasibility of our approach by analyzing a
typical experiment of harmonic generation with low-pressure
gases, where we have studied the dependence of the harmonic
emission with the target’s position and compared our results
with the existing data in the literature.
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[22] J. A. Pérez-Hernández and L. Plaja, Phys. Rev. A 76, 023829
(2007).

[23] V. P. Krainov, J. Opt. Soc. Am. B 14, 425 (1997).
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