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An Improved Oscillation Result for a Class
of Higher Order Non-canonical Delay
Differential Equations

Osama Moaaz and Higinio Ramos

Abstract. In this work, by obtaining a new condition that excludes a
class of positive solutions of a type of higher order delay differential
equations, we were able to construct an oscillation criterion that sim-
plifies, improves and complements the previous results in the literature.
The adopted approach extends those commonly used in the study of
second-order equations. The simplification lies in obtaining an oscilla-
tion criterion with two conditions, unlike the previous results, which
required at least three conditions. In addition, we illustrate the im-
provement with the new criterion, applying it to some examples and
comparing the results obtained with previous results in the literature.
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1. Introduction

The objective of this work is to study the asymptotic behavior of solutions
of a class of higher order delay differential equations (DDEs) of the form

(
a · υ(n−1)

)′
(t) + (h · (F ◦ υ ◦ g)) (t) = 0, (1.1)

where t ≥ t0, n ∈ Z
+ is even, and n ≥ 4. We also assume the following:

(H1) a, h ∈ C ([t0,∞) , [0,∞)) , a (t) > 0 and An−2 (t0) < ∞, where

A0 (t) :=
∫ ∞

t

a−1 (�) d�, and Ak (t) :=
∫ ∞

t

Ak−1 (�) d�,

for k = 1, 2, . . . , n − 2.
(H2) g ∈ C ([t0,∞) ,R+) , g (t) ≤ t, g′ (t) > 0 and limt→∞ g (t) = ∞.
(H3) F ∈ C (R,R) , F ′ (u) ≥ 0, uF (u) > 0 for u �= 0, and F (uυ) ≥

F (u)F (υ) for uυ > 0.
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By a solution of (1.1), we mean a function υ ∈ Cn−1 ([tυ,∞) ,R), for
tυ ≥ t0, with aυ(n−1) ∈ C1 ([tυ,∞) ,R), that satisfies (1.1) for all t ≥ tυ.
We consider only those solutions of (1.1) that do not eventually vanish. A
solution υ of (1.1) is said to be oscillatory if it is neither eventually positive
nor eventually negative; otherwise, it is said to be non-oscillatory [1].

The many applications of DDEs in different sciences were and continue
to be the motivation behind the growing interest in studying the qualitative
behavior of the solutions of these equations.

In the non-canonical case, it is easy to see how much research has pro-
gressed on the oscillatory behavior of the solutions of second-order DDEs.
This progress can be traced through the recent results of Bacuĺı ková [2,3]
and Džurina and Jadlovská [4,5]. They provided improved techniques and
sharper criteria for the oscillation of second-order DDE solutions.

In the study of oscillatory behavior, there are two common techniques:
Riccati substitution and comparison with first-order equations. In the non-
canonical case, Bacuĺıková et al. [6] used the comparison technique to estab-
lish the oscillation conditions for the solutions of the DDE

(
a ·

(
υ(n−1

)α)′
(t) + (h · (F ◦ υ ◦ g)) (t) = 0. (1.2)

On the other hand, Zhang et al. [7] used the Riccati substitution to establish
criteria for deciding that all the solutions of the DDE

(
a ·

(
υ(n−1

)α)′
(t) +

(
h · (

υβ ◦ g
))

(t) = 0 (1.3)

are oscillatory, where α and β are ratios of odd positive integers. Below, we
present two results obtained from the literature, to which we will refer to
later.

Theorem 1.1. [6, Theorem 4 with F (υ) = υα] All solutions of (1.3) are
oscillatory if the first-order DDEs

w′ (t) +

(
h ·

(
ε1g

n−1

(n − 1)!
(
a1/α ◦ g

)
)α

· (w ◦ g)

)
(t) = 0, (1.4)

w′ (t) +
1

a1/α (t)
·
(∫ t

t0

h (�)
(

ε2g
n−2 (�)

(n − 2)!

)α

d�

)1/α

· (w ◦ g) (t) = 0

are oscillatory, and there is a η ∈ C1 ([t0,∞)) with η (t) > t, η′ (t) ≥ 0 and
(ηn−2 ◦ g) (t) < t, such that

w′ (t) +
1

a1/α (t)
·
(∫ t

t0

h (�) d�

)1/α

· (Jn−2 ◦ g) (t) · (w ◦ ηn−2 ◦ g) (t) = 0

is oscillatory for some ε1, ε2 ∈ (0, 1), where

η1 = η, ηi+1 = ηi ◦ η, J1 (t) = η − t and Ji+1 (t) =
∫ η

t

Ji (�) d�,

for i = 1, 2, . . . , n − 3.
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Theorem 1.2. [7, Theorem 2.1] All solutions of (1.3) are oscillatory if the
first-order DDE (1.4) is oscillatory and the following conditions hold:

lim sup
t→∞

∫ t

t0

((
ε0g

n−2 (�)
(n − 2)!

)α

h (�) Aα
0 (�) − α∗

a1/α (�) A0 (�)

)
d� = ∞,

and

lim sup
t→∞

∫ t

t0

(
h (�) Bα (�) − α∗ (B′ (�))α+1

B (�) Bα
1 (�)

)
d� = ∞,

where ε0 ∈ (0, 1) , α∗ = (α/ (α + 1))α+1, A0 (t) =
∫ ∞

t
a−1/α (�) d�,

B (t) =
1

(n − 3)!

∫ ∞

t

(� − t)n−3
A0 (�) d�

and

B1 (t) =
1

(n − 4)!

∫ ∞

t

(� − t)n−4
A0 (�) d�.

We note here that the linear delay equation

υ(n) (t) + (h · (υ ◦ g)) (t) = 0

has been studied by Koplatadze et al. [8]. They took into account the odd-
and even-order cases of this equation.

Very recently, Moaaz et al. [9] extended the results about the second-
order equations to even-order equations in the non-canonical case. They
adopted a strategy that involved new monotonic properties for positive de-
creasing solutions and used those properties to iteratively develop new oscil-
lation criteria.

This study aims to establish a new criterion to determine the oscillation
of all solutions of Eq. (1.1) in the non-canonical case. The approach followed
is an extension of the approach used by Koplatadze et al. [8] and later by
Bacuĺıková [2] to obtain an effective oscillation criterion for second-order
equations. The new criterion ensures that Eq. (1.1) is oscillatory without the
need to check the additional condition (1.4), which has traditionally been
imposed on all previous related results. In addition, the new criterion also
introduces a measure of oscillation that is sharper than previous results in
the literature.

2. Main Results

Using Lemma 2.2.1 in [10], we can classify the positive solutions of (1.1) as
follows:

Lemma 2.1. [11, Lemma 3] Suppose that υ is an eventually positive solution
of (1.1). Then,

(
a · υ(n−1)

)′
(t) ≤ 0, and there are eventually the following

three cases:

(C1) υ′ and υ(n−1) are positive, and υ(n) is negative;
(C2) υ′ and υ(n−2) are positive, and υ(n−1) is negative;
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(C3) (−1)m
υ(m) are positive, for m = 1, . . . , n − 1.

Lemma 2.2. Suppose that υ is an eventually positive solution of (1.1) and
satisfies (C3). Then, there is a t1 ≥ t0 such that

υ (g (t))
F (υ (g (t)))

≥ An−2 (g (t))
∫ g(t)

t1

h (�) d� +
∫ t

g(t)

An−2 (�) h (�) d�

+F
(
A−1

n−2 (g (t))
) ∫ ∞

t

An−2 (�) h (�) F (An−2 (g (�))) d�.

(2.1)

Proof. Since υ is an eventually positive solution of (1.1) and satisfies (C3),
there is a t1 ≥ t0 such that υ (t) > 0 and υ (g (t)) > 0 for all t ≥ t1. We also
have ∫ ∞

t

υ(n−1) (�) d� = lim
s→∞ υ(n−2) (s) − υ(n−2) (t) ≥ −υ(n−2) (t) .

Furthermore, according to Lemma 2.1 it is
(
a · υ(n−1)

)′
(t) ≤ 0, and thus we

have

− υ(n−2) (t) ≤
∫ ∞

t

1
a (�)

a (�) υ(n−1) (�) d� ≤ a (t) υ(n−1) (t)
∫ ∞

t

1
a (�)

d�

= a (t) υ(n−1) (t)A0 (t) . (2.2)

Integrating this inequality over [t,∞), we obtain

υ(n−3) (t) ≤
∫ ∞

t

a (�) υ(n−1) (�) A0 (�) d�

≤ a (t) υ(n−1) (t)
∫ ∞

t

A0 (�) d�

=
(
a · υ(n−1)

)
(t) · A1 (t) .

Integrating this inequality n − 3 times over [t,∞), and taking into account
the behavior of the derivatives of υ in (C3), we conclude that

υ′ (t) ≤
(
a · υ(n−1)

)
(t) · An−3 (t) (2.3)

and

υ (t) ≥ −
(
a · υ(n−1)

)
(t) · An−2 (t) . (2.4)

Next, we define

H (t) :=
(
a · υ(n−1)

)
(t) · An−2 (t) + υ (t) .

From (2.4), we have that H (t) ≥ 0 for t ≥ t1. Using (2.3) and (1.1), we have

H ′ (t) =
(
a · υ(n−1)

)′
(t) · An−2 (t) − a (t) υ(n−1) (t) An−3 (t) + υ′ (t)

≤
(
a · υ(n−1)

)′
(t) · An−2 (t)

= −An−2 (t) · h (t) · (F ◦ υ ◦ g) (t) ≤ 0.
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Integrating this inequality over [t,∞), we arrive at

H (t) ≥
∫ ∞

t

An−2 (�) h (�) F (υ (g (�))) d�. (2.5)

Integrating (1.1) from t1 to t, we find that

a (t) υ(n−1) (t) = a (t1) υ(n−1) (t1) −
∫ t

t1

h (�) F (υ (g (�))) d�

< −
∫ t

t1

h (�) F (υ (g (�))) d�. (2.6)

From (2.5) and (2.6), we obtain

υ (t) ≥ −a (t) υ(n−1) (t) An−2 (t) +
∫ ∞

t

An−2 (�) h (�) F (υ (g (�))) d�

> An−2 (t)
∫ t

t1

h (�) F (υ (g (�))) d�

+
∫ ∞

t

An−2 (�) h (�) F (υ (g (�))) d�.

Thus, we have

υ (g (t)) > An−2 (g (t))
∫ g(t)

t1

h (�) F (υ (g (�))) d�

+
∫ ∞

g(t)

An−2 (�) h (�) F (υ (g (�))) d�

= An−2 (g (t))
∫ g(t)

t1

h (�) F (υ (g (�))) d�

+
∫ t

g(t)

An−2 (�) h (�) F (υ (g (�))) d�

+
∫ ∞

t

An−2 (�) h (�) F (υ (g (�))) d�. (2.7)

On the other hand, from (2.2), we get
(

υ(n−2)

A0

)′
=

1
A2

0 (t)

((
A0 · υ(n−1)

)
(t) +

(
a−1 · υ(n−2)

)
(t)

)
≥ 0, (2.8)

which leads to

−υ(n−3) (t) ≥
∫ ∞

t

A0 (�)
υ(n−2) (�)

A0 (�)
d� ≥ υ(n−2) (t)

A0 (t)
A1 (t) .

This implies
(

υ(n−3)

A1

)′
(t) =

1
A2

1 (t)

((
A1 · υ(n−2)

)
(t) +

(
A0 · υ(n−3)

)
(t)

)
≤ 0.
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Repeating the same procedure n − 3 times, we obtain that
(

υ
An−2

)′
(t) ≥ 0.

Hence, υ (g (�)) ≥ An−2(g(�))
An−2(g(t))

υ (g (t)) , for t ≤ �. Then, from (H3), we have

F (υ (g (�))) ≥ F
(
A−1

n−2 (g (t))
)
F (An−2 (g (�)))F (υ (g (t))) , for t ≤ �.

(2.9)

Using the fact that υ′ (t) < 0 and (2.9), the inequality (2.7) becomes

υ (g (t))
F (υ (g (t)))

≥ An−2 (g (t))
∫ g(t)

t1

h (�) d� +
∫ t

g(t)

An−2 (�) h (�) d�

+F
(
A−1

n−2 (g (t))
) ∫ ∞

t

An−2 (�) h (�) F (An−2 (g (�))) d�,

and the proof is complete. �

Theorem 2.3. Suppose that limω→0
ω

F (ω) = L < ∞ and

lim sup
t→∞

[
An−2 (g (t))

∫ g(t)

t0

h (�) d� +
∫ t

g(t)

An−2 (�) h (�) d�

+F
(
A−1

n−2 (g (t))
) ∫ ∞

t

An−2 (�) h (�) F (An−2 (g (�))) d�

]
> L . (2.10)

If for some ε0 ∈ (0, 1), the DDE
(
a (t)A2

0 (t) w′ (t)
)′

+A0 (t) h (t) F

(
ε0

(n − 2)!
gn−2 (t)

)
F (A0 (g (t)) w (g (t))) = 0 (2.11)

is oscillatory, then all solutions of (1.1) are oscillatory.

Proof. We proceed by contradiction. Let us assume that υ is an eventually
positive solution of (1.1). Then, there is a t1 ≥ t0, such that υ (t) > 0 and
υ (g (t)) > 0 for all t ≥ t1. It follows from Lemma 2.1 that υ satisfies one of
the cases (C1) − (C3).

Assume that case (C1) holds. Proceeding similarly as in the proof of
Theorem 1 in [2], we can prove that (2.10) implies that∫ ∞

t1

h (�) A2 (�) d� = ∞. (2.12)

Integrating (1.1) from t1 to ∞ and using the fact that υ(n−1) is a decreasing
positive function, we find that

a (t1) υ(n−1) (t1) ≥
∫ ∞

t1

h (�) F (υ (g (�))) d�.

Since υ (t) > 0 and υ′ (t) > 0, there is a t2 ≥ t1, such that υ (g (t)) > l for
t ≥ t1. Then, from (H3), we arrive at

a (t1) υ(n−1) (t1) ≥ F (l)
∫ ∞

t1

h (�) d� ≥ F (l)
∫ ∞

t1

h (�) A2 (�) d�,

which contradicts (2.12).
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Assume that case (C2) holds. We have
(

a (t) · A2
0 (t) ·

(
υ(n−2)

A0

)′
(t)

)′

=

(
a (t) · A2

0 (t) ·
((

A0 · υ(n−1)
)
(t) +

(
a−1 · υ(n−2)

)
(t)

A2
0 (t)

))′

=
(
A0 (t) ·

(
a · υ(n−1)

)
(t) + υ(n−2) (t)

)′

= A0 (t) ·
(
a · υ(n−1)

)′
(t) , (2.13)

which, by virtue of (1.1), yields that
(

a (t) · A2
0 (t) ·

(
υ(n−2)

A0

)′
(t)

)′
+ A0 (t) · h (t) · (F ◦ υ ◦ g) (t) = 0.

(2.14)

From Lemma [10, Lemma 2.2.3], we get

(υ ◦ g) (t) ≥ ε0
(n − 2)!

gn−2 (t) ·
(
υ(n−2) ◦ g

)
(t) , (2.15)

for all ε0 ∈ (0, 1). Combining (2.15) and (2.14) and using the transformation
υ(n−2) (t) = A0 (t)w (t), we find that

(
a (t) A2

0 (t)w′ (t)
)′

+A0 (t)h (t) F

(
ε0

(n − 2)!
gn−2 (t)

)
F (A0 (g (t)) w (g (t))) ≤ 0.

It follows from Corollary 1 in [12] that the DDE (2.11) also has a positive
solution, which is a contradiction.

Assume that case (C3) holds. From Lemma 2.2, we have that (2.1) holds,
which contradicts the hypothesis (2.10). The proof is complete. �

Corollary 2.4. Suppose that F (u) = u. Then, conditions

lim sup
t→∞

[
An−2 (g (t))

∫ g(t)

t0

h (�) d� +
∫ t

g(t)

An−2 (�) h (�) d�

+A−1
n−2 (g (t))

∫ ∞

t

An−2 (�) h (�) An−2 (g (�)) d�

]
> 1 , (2.16)

and for some ε0 ∈ (0, 1)

lim inf
t→∞

∫ t

g(t)

gn−2 (s) h (s) A0 (s) A0 (g (s))

(∫ g(s)

t0

d�

a (�) A2
0 (�)

)
ds

>
(n − 2)!

ε0e
, (2.17)

guarantee that all solutions of (1.1) are oscillatory.
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Proof. The proof is the same as the proof of Theorem 2.3. It is enough just to
know from Theorem 4 in [13] that the criterion (2.17) guarantees that (2.11)
is oscillatory. �

3. Examples

We present two examples taken from the literature to compare different os-
cillation criteria, showing that Theorem 2.1 provides the sharpest results.

Example 3.1. Consider the DDE
(
etυ′′′ (t)

)′ + h0etυ (t − λ) = 0, (3.1)

where λ > 0 and h0 > 0. It is easy to check that Ai (t) = e−t, for i = 0, 1, 2.
Furthermore, conditions (2.17 ) and (2.16) reduce to

lim inf
t→∞

∫ t

t−λ

h0 (s − λ)2
(
1 − et0e−s+λ

)
ds = ∞

and

h0 >
1

2 + λ
, (3.2)

respectively. Then, according to Corollary 2.4, every solution of (3.1) is os-
cillatory if (3.2) holds.

Remark 3.1. From Example 3 in [6], Eq. (3.1), when λ = 1, is oscillatory if
h0 > 25/e. However, from Example 3.1, the finer bound h0 > 1/3 guarantees
that for λ = 1, Eq. (3.1) is oscillatory. Moreover, for all λ < 2, the results in
[7] give the most efficient condition as h0 < 0.25, while our results support
the most efficient condition for all λ > 2. On the other hand, the results in
[6,7] do not take into account the impact of λ.

Example 3.2. Consider the DDE of the Euler type
(
t4υ′′′ (t)

)′
+ h0υ (λt) = 0, (3.3)

where λ ∈ (0, 1) and h0 > 0. It is easy to check that A0 (t) = 1
3 t−3, A1 (t) =

1
6 t−2, A2 (t) = 1

6 t−1. Conditions (2.16 ) and (2.17) reduce to 1
6h0

(
2 + ln 1

λ

)
>

1, and h0λ
2 ln 1

λ > 6
e , respectively. Then, from Corollary 2.4, every solution

of (3.3) is oscillatory if

h0 >
6

eλ2 ln 1
λ

. (3.4)

Remark 3.2. By choosing η (t) = ct, where c =
(
1 + λ−1/2

)
/2, we can apply

Theorem 1.1 to Example 3.2. Then, Eq. (3.3) is oscillatory if

h0 > max
{

6λ

e ln 1
λ

,
6

eλ2 ln 1
λ

,
2

eλ2 (c − 1) (c2 − 1) ln 1
c2λ

}
. (3.5)
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We note the difficulty of obtaining an unknown function η that satisfies the
conditions of Theorem 1.1. On the other hand, from Theorem 1.2, Eq. (3.3)
is oscillatory if

h0 > max
{

6λ

e ln 1
λ

,
9

2λ2
,
3
2

}
. (3.6)

If we set λ = 1/2, then conditions (3.5) and (3.6) reduce to h0 > 98.162 and
h0 > 18, respectively, while condition (3.4) gives h0 > 12.738.

4. Conclusion

The study of the oscillatory behavior of solutions of higher order differential
equations depends on finding conditions that exclude positive solutions. By
extending the results in [8] to higher order equations, we have established a
new condition that excludes positive decreasing solutions. Our results involve
two conditions to ensure that all solutions of (1.1) are oscillatory, while all
previous results need three assumptions. Through some examples, we show
that our results improve other results in the literature. As future work, it
would be interesting to extend the obtained result to Eq. (1.3), as well as to
the neutral case. In addition, as an open problem, it is proposed to extend
our results to equations of odd order in the non-canonical or non-linear cases.
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