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1. Introduction

Fredholm integro-differential equations (FIDEs) are widely used in scientific modeling, including economics, mechanics,
fluid dynamics (see, e.g., [11,12]). Furthermore, due to the fact that many scientific applications include large gradients,
singularly perturbed Fredholm integro-differential equations (SPFIDEs) are very common. It is common in these problems
the presence of thin boundary layers. This is because the solution fluctuates quickly in some parts of the domain, while
the regularity is maintained in the rest of the domain, where its variability has slowed down. For further information on
these issues, one can see [1,10] and the works referenced therein. Because of these boundary layers, singularly perturbed
problems are difficult to solve using standard numerical techniques.

When dealing with these issues, two types of methods are typically employed; namely, fitted operator techniques, which
reproduce the boundary layers’ solution [13], and layer-adaptive techniques [9]. A reliable numerical method is required
since SPFIDEs cannot be solved analytically due to their complexity. Given this, many scientists have focused their efforts
on developing numerical methods for solving SPFIDEs. An overview of the many different methods that can be used for
solving SPFIDEs can be found in [4,6]. For singularly perturbed ordinary differential problems with discontinuous data, one
can refer to [5,8,14]. In [16] the authors worked on a delay differential equation with exponentially fitted methods. In [15]
the author proved second order convergence for singularly perturbed delay differential equations using fitted mesh method.
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Amiraliyev et al. [2] showed that first-order convergence on a uniform mesh was obtained globally for a first-order
equation considering an exponential fitting approach. A linearly accurate approach for singularly perturbed Volterra delay-
integro-differential equations (SPVDIDEs) was presented in [3].

Motivated by the works by Amiraliyev [7] and Farrell et al. [8], we consider the following problem in which a single
jump discontinuity in the source term is assumed to occur at a point d € Q = (0, [):

1
LyEL1y+A/K(t,s)y(s)ds:F(t), Vte QT UQT, (1.1)
0
with Liy=—ey"+b(t)y, y(0)=A, y()=B, (12)
Fd+)#Fd-), bit)y=p>0,
Q™ =(0,d), QT =@, D, Q=[0,1],

where € (0 < € << 1) is a perturbation parameter that multiplies the higher order derivative, and X is a real parameter. We
assume that K(t, s) for (t,s) € @ x Q and b(t) for t € Q are sufficiently smooth functions. To denote the jump discontinuity
at d for any function with [y](d) = y(d+) — y(d—), [y'1(d) <O0.

Furthermore, we assume that the source term F(t) has a jump discontinuity, being

R, teq,
F(t)_{Fz(t), teQt.

To provide an approximate solution for (1.1)—(1.2) we consider a finite difference method on a Shishkin mesh. The
present difference scheme uses exponential basis functions and interpolating quadrature rules with integral forms for the
weighted and remainder terms. The novelty of the article is applying Shishkin mesh, especially at the point t = M/2, to
obtain the error as D* = D~. Only the exponentially fitted mesh method is not sufficient to find the error at t = M/2.
If we want to use exponentially fitted mesh only, we can use Boundary Value Technique hybrid methods. The composite
trapezoidal rule, including a residual term, will be used to approximate the integral in (1.1). Throughout the paper, C is used
to denote a generic constant, C¥(D) denotes the set of k times differentiable functions on the domain D and we use the
supremum norm that is ||g||p = sup|g(t)| (on any domain D), ||g|| =max|g;| (on a discrete domain ), with points

teD

ti).

The rest of the article is as follows. Section 2 presents some analytical results of our problem. Section 3 explains how
to create the mesh and the discretization of the problem that will be used to get an approximate solution. The theorems
and lemmas in Section 4 demonstrate that the approach is accurate to roughly a (M~!In.M) order where M is an even
number being M + 1 the number of mesh points. The final findings are summarized in Section 5, together with some
examples to confirm the order of convergence and the pointwise errors. Finally, we compose a conclusion for the proposed
approach.

00,2

2. Analytical results

The maximum principle and a stability result are presented in this section for the exact solution of problem (1.1)—(1.2).
Additionally, some derivative bounds are also provided.

Lemma 2.1.([7,8,10]): Let y e CO(Q) N C1(Q) N C2(Q~ U Q') and
B

o JLIK(E, 5)lds
max ,S)|ds
o<t<l 0

with y(0) >0, y(I) > 0, Ly(t) > 0, Vt € Q= UQt, [yl(d) =0, [y'1(d) < 0. Then, it holds that y(t) > 0, Vt € Q.

Proof. Let q be a point at which y attains its minimum value in Q. If y(q) > 0, then there is nothing to prove. If, y(q) <0
to complete the proof consider

G1(D), teQm,
—€y"+b)y=G() =
yiHboy=6o=11 o Do)
where G1(t) = F,(t) — kfé K(t,s)y(s)ds, Ga(t) = F,(t) — Afé K(t,s)y(s)ds. We distinguish two cases.

Casel: If e Q= U QT then y(q) <0, y'(q) =0, y”(q) > 0. This implies that Ly <0, which is a contradiction.

Case2: If g =d then y’(d+) > 0 and y’(d—) < 0. Hence, we have [y’(d)] = y’(d+) — ¥'(d—) > 0, which is again a contra-
diction.

Therefore, it is y(q) > 0 always, and the proof is complete. O
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Using the above Lemma 2.1 and the procedure adopted in [14] we can get the following result.

Lemma 2.2. Let (’;% e C(Q x Q), (k=0,1,2) and y(t) the solution of the problem (1.1)—(1.2). It holds that

max |y(t)| <C, D
o<t<l
v [ =B _@-0VB
1+67<eﬁ +e Ve >, teQ™,
(k)
Hy (3] H <C e —(t—d)J/B _(a-0JB 22)
14+e€2 <e Ve e Ve ) teQt, k=1,2.

3. Discretization of the problem

Consider a non-uniform mesh (0 =ty <t; <--- <tpg =1) with M a natural number multiple of eight (the reason

will become clear later in the construction of the Shishkin mesh) and h; =t; — tj_1, on QM = {QM— U QM+}, where,

QM- =(1<i<¥ 1), oM =(: M r1<i<M-1),
QM =QMU{tg=0,t =1} U{t pm =d}.
2

With respect to any mesh function g(t) that is specified on 2™ we denote

= ht - hit+hi - h
8i=8(t). ho=—. hi=—— hpm=—-. l18llo =1I8lloc.2,, = max |8il,
Dtg = gi+1 — gi’ D g = &i — 8i-1 )

hit1 h;

To discretize the problem (1.1)-(1.2), we proceed similarly as in [7]. Firstly, we multiply the equation in (1.1) by v;(t) and
integrate it on [t;_1, t;+1]. Then, multiplying by Xih,-_l we obtain

Lit1 Lit1 I
<x,-Fz;1 f Liyyi(tydt + xihy ' x / i () f K(t,s)y(s)ds dr)
ti—q ti—1 0
Lit1
=(xifz;1 / F(r)wodt), (31)
ti—1
where x; = j[’“ w,< ™ , and the basis functions for i # = M are given by
inh(Yj(t—t;_
vho =G5, e i),
inh (Y (tip1—
i) = 100 = Tgahet SR, te @ tiv), (32)
0, otherwise,

being ;L (t) and ;R (t), respectively, the solutions of the following problems

Y(ti-1) =0, v(t)=1,

—ey"" () +biy () =0, te (i tiv1),
Yt =1, ¥(iy1)=0

b(ty)

—

{—ew”(t) by () =0, te(ti1.t),

and Yj=
For i = % we consider the following basis function for (1.1)—(1.2)
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L Sinh(Ti(t—tM_l))
Vi O = ot e L€ oty
2 2

‘Z’M (t) — R sinh(Ti(t%Hft))
’ VO = smreray, ta LA tay),
2 2

0, otherwise,
where ¥k, (t) and ¥%, (t) are, respectively, the solutions to the following problems
T T
—€Y (O +bay (=0, tetm_p.tm),
Ylea =0, Ylta)=1,

€Y O +bay© =0, tem,trm ),
w(t%)zl, w(t%ﬂ):o.

Based on [7], we have that

Xi= : = il and
l hi! tfifll Yi(dt  tanh(Yi) 4 tanh( Tl
Lit1 tisn
XiE;] / L]YWI(t)dt: —E(Szyi +biYi +X1H:1 /(b(t) —b(tl))y(t)w,(t)dt,
fi-1 ti—q
where
52 191.(2)D+yi _ 9i(1)D7Yi
Yi= _
h;
with
bih;h;
1 inin;
¥ = . ,
€ Sil‘lh(Tihi)[tanh (TlThl) +tanh (T,— 2i+1 )i|
bihi1h;
(2) iNi+1h;
%7 =

€ sinh(Yjhj11) [tanh <T’Th') + tanh (%)}

In the case of constant step size, that is, h; =h, it is
1 2 . Py, _ 1
19,.( ) = 19!.( ) = 9 = bp*{4sinh? (\/a_ii)} Lo (p=h(VO ).
Using Newton'’s interpolation method for the mesh points t;, t;;1 we get
1
b(t) =b(t) + (¢ = t) D bi + S (t = t) (¢ = ti4 D" G (©)).

Therefore, we get

tit1 ti1
xihi! / (b(t) — b(t:)y(O)¥i(t)dt = xih; ' DTb; f (t — t)yO¥i(D)dt
ti—q ti—q
ti1
1 _
+ EXihi_ 'DTb; / (t —t)(t —tiy) YO Y (Ob" (i ())dt.
ti—q
That is,
Lit1
xih! / (b(t) — b(t)y(O)yi()dt = (DF b)) xipeiyi + R,
ti—q
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where
Lit1
wi= [ (&—t)yi(DHdt,
ti—1
1 Lit1
Ri" = 2 xih;’! / (t — ) (t — ti Db (G (0)dt
ti—q
Lit1 t
+mw%0%0/a—mwa(/}vm0m
ti—1 ti

A simple calculation gives

- h h;
pi=h (e - )
sinh(Yjh;)  sinh(Yihitq)
and for a constant stepsize mesh, u; = 0. Now, the first term in (3.1) can be written as
Lit1
1 ) — 20 4 by [¢V)
Xih; /L1yw1(t)dt——66 Yi+biyi+R; ",
tiq
where
bi =b; + (D by) xipki
and u; is given in (3.8). The residual calculation of the right hand side of (3.1) gives
tit1
1 ) —_F )
Xif; me%®m—ﬂ+&.

ti—q

(3.7)

(3.9)

(3.10)

(3.11)

Since F is discontinuous, we require the following extension of the source term to maintain the differentiability conditions

as in [14]
R i
where

Clearly, F*(t) € C2[0,1]. It follows the same integrability conditions [7] for any subdomain [a, b] within the domain [0, []

where

Fi =F;i + (DY Fi) xi i,
1 Lit1
R? = S xih;! < f (t—tp)(t — t,-+1)F*”(;i(t)>wi(t)dt>.
-1

ti

The second term on the left-hand side of (3.1) is approximated using the Taylor series expansion

(¢t —ti)* 9°
3 B?K(;i’ s),

0
K(t,s)=K(ti,s)+ (t— ti)EIC(t,-, )+
and thus, we have
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tit1 I I
xih 'a f Vi(t) / K(t,s)y(s)dsdt | dt = x / K(ti,s)y(s)ds
ti—q 0 0

I l
G D e 3 _ , 3
+ Wit o K(ti, s)yS)ds+R;”7 = | K(t;,9)y(s)ds +R;™,

0 0
where
9

IC(ti,S)=K(ti,S)+m51<(ti,s)y(s),

fit1 l
3) -1 2 9

R = xih; /(t—ti) vi(t) /WK(G(t),s)y(S)ds dt.
ti—1 0

Applying the composite trapezoidal rule with the integrand K(t;, s)u(s), we get
I

M
/IC(ti, sus)ds =Y hiKijy;+ R,

0 j=0
where
M b 2
R§4>=%Z/(rj—c>(rm —c)f?(/cm,c)y(:))d:.
=1

Now, we get a discretization for problem (1.1) as

LM L _652yi +b_,-yi +A2fioﬁjlcijyj = I_:,' —Ri, 1# %,

Yi= EMy% 7

with LMy 2 =D yry2 — D™y my2.

and the remainder term is
4
(m) (5)
Ri= Y R™+RY
m=1

where Rgm)(l <m <4) are defined in (3.7), (3.13), (3.16) and (3.18), respectively, and Rsa/z is as follows

401
Rtz =1¥'(tx0)] < / y'(©dt.
t%—l

Based on (3.19), after removing the remainder term we propose the following discrete scheme for (1.1)-(1.2)

—€82vi+bivi + A MohiCvi=Fi,  i# M4,
LMvi:{ngl ViR Lo hRVI= R TR v = y(0), vad =y 0.
M’
2

Lemma 3.1. (Discrete Maximum Principle) Let Y be the solution of (3.22). If

Y0)>0, Y()=>0, LMY >o0vteQM uMt
with

B

M
max > o~ o hm|Ki j
o<t<l

Al <

and LMYM <0,
2

where b; > B then it is
Y(t) >0, Vt; € QM.
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Proof. Using a similar argument as the one given in [8], and a suitable barrier function, the proof can be readily ob-
tained. O

4. Construction of the Shishkin mesh and convergence analysis

This section presents a non-uniform mesh to address the approximate solution of the problem in (3.22). We construct a
piecewise uniform Shishkin mesh, taking into account the point of discontinuity t ¢/ = d. To do that we divide the domain
Q =[0,[] into 6 subintervals as

[0,01], [o1,d—o01], [d—o1,d], [d,d+o02], [d+o03,1—02], [l—o02,1],

where

o :min{%,Z(/ﬁ)lﬁlnM], o2 :min[%,Z(\/ﬁ)lﬁlnM].

Later, each of the intervals [07,d — 01] and [d + 02,1 — 03] are divided into % subintervals while the others are divided

into 4! subintervals. The corresponding step sizes are h» = 3% = h® K@ = 4@200 () — 8% _ p©®) p() = AA2202)

respectively. Note that if d = Lthen oy =0y =0 = min{ %, Z(ﬂ)lﬁlnM}.

Lemma 4.1. [7] The remainder term R; satisfies the bound

NRill o, M <CM TInM. (a1)

Proof. We estimate each of the terms R;m), (1 £m < 4) separately, for the domain QM- UM+ and R(ja at the point of
discontinuity d.

Firstly, in the domain QM~, we start with o1 = 2(y/B) '€ InM (note that if 01 = 05 = o =1/8 we could use standard
arguments). We begin by estimating the remainder Rl@ as given in (3.13). Since |t — t;| < max{h;, hiy1}, |t —tiy1] < 2h;
and h® <c M1, (k=1,...,6), we have

tit1
IRP| < Cih! / |(t — ) (t — tip) Wi (Ddt < C{max(hy, hit1)}* < CM ™2 (4.2)

ti—q

Then, using similar arguments, it can be concluded that Ri(3) is bounded as follows

tit1 I
1 - 92 _
R < |5 Xihi ! / (t— mz( / Sz K@, s)y(s)ds) yi(Ddt| < C{max(h;, hiy1)}* < CM™2. (43)
ti—1 0
For R\", since b e C2(2) and ||y (t)|| < C, we have
tit1 Lit1

t
1 - _
RO) =15 i / (£ — ) (¢ — tip)B" (GO Y Ovia)de] + xR~ (D by) f (t—rox,-( / y’(t)dt>dt|.
ti

ti—q ti—1

In the domain Q™ ~ we have

£
M —1) -1 R R TR
IR; 7| <CM {M +/%(e Ve fe Ve )dt}, (4.4)
ti—q

and for the domain Q™M™ we get,

tit1
1) 1] g1 +L *‘/Bf/d{” *ﬁ};“
IR; 7| <CMT I M™" + NG e +e dt;. (4.5)
€
tiq

The estimation RE” in the layer region [0, o1] becomes
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h®
R(O| < cm! <M i f) — M7 (M +16(/B) 7 M Inm),
IRV <M 2InM, 151’5%—1. (4.6)

Similar bounds can be obtained for the other layer regions [d — 01,d], [d,d + 01] and [l — o071, 1].
Now, let us consider the subinterval [o7,d — 01]

VBt _ PBtipq _ VBU—ti_p) VBt
) 1 1, 1 1 1, 1
IR <CM™ I M™ +—ﬂ(e Ve —e Ve )}—i—CM’ {M* +—<e e —e e >}

VB
1 ’ 1 _ VBti_1 2@ 1 1 1 _ VBd—tit1) 2@
<CM ' IM T+ —e V€ (1—6 Ve )}+CM* {M* + —e Ve (1—6 Ve )}
VB VB
\/B[M ﬂ(d*fﬂ)
<CM*1 M71 + 1 e— ﬁs i 1 e_TS}
a VB VB
3
RV < M2, /;4 1 <1<TM—1 (4.7)

Similarly, in [d — o1,] — 01] we get the same result.

Now, at the transition points i = % 3{3\/‘ SM and 224 we evaluate the approximate value of R( ) Fori= —, inequality
(4.4) becomes

tm

g+l
(1) -1 -1 1 _ a2 —(d- t)f) }
R <CM {M  + / — e V¢ t+e dt
Ryl { ﬁ(

t%—l

1 VBEM ﬂt%ﬂ

=CM {M +—\e N N
7l )i

M, 2Bt pq . —h V@)
1 8 8
=CM {/\/l +—e Ve (1 —e Ve }
N
1 VPld-tu ) VA(d M nD @)
+CM™ {M T —e (1—e‘ Ve )}

VB

NG VB(d-
< CMA{MA n 1 - ;% o Bk . 1 - ( ;TM)e_ﬁjg)
- VB VB ’

IRW | <C M2, (48)
T

The remaining estimation on the transition points is the same or can be done in a similar way.
So, the following inequality deduced from (4.4)-(4.7) holds,

IRV < M2 In(M).

For le, in the domain [0, 01]

|R(4>|< / (tm — O)(C — tm— 1) (/C(rm,c)u@))d;

TTI ]tlﬂ 1

<Ccy /(tm = —tm_1) (1 + [ O]+ " (©)Ddg,

m=1tm_1

from which we have
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_ /B
|R(4)|<C{Zh3 +Z /(fm @ —tm1)(©)7! (e Ve 4o g)f)dg}
m=1 m= 1tml
Hence,
Zh3 = Ih(”l + = |h<2>|3ch*2.

The remaining term in (4.9) can be expanded as

_4/B i B
/(tm O —tm_1)(€)” (e g:/E +e (d {)ﬁ)d{

m= ]fm1

n P”1 “<

/P VB
/(tm O~ tm1)(€)” (e‘T+ OV >d§

3IM tm
- _t/B _ VB
+ Z /(tm_f)(é'—tm_ﬂ(e)_l(e Ve 1o WO >d§
m=2 +1tm_4
tm

_&/B _(d_~\ VB
+ ) /(tm—;)(;—tm_o«)—l(e 4o %)d;,

m=3%4 41ty

For the first term of the above inequality we have

_t/B JB
Z/(tm I —tm-1)(€)” (e N Df)d(

m= 1[m .
o
12 -1 — /B —d-0 ¥
<h)° [ (e (e ¥ +e Ve )de
0

< hM124(/pe) T <CM2In M.

Now, for the second term in inequality (4.11)

oo . .
_WB JB
Z /(tm—C)(c—tm_l)(e)-1<e Ve 4o @ Of)dg_
m=2 + 1t _4

Mty W@ . .
> f(tm—t—T)(ﬁ)”( e o V% )dC

m=%+1tm—l

d—o
1 e P R
<4—h(2)/ ( Ve e )d

N Y.
-3 2h<z>( 2L e :>ﬁ>d§
(«/—)
<8——=hPM <M
(\/_)2

We can deduce from equations (4.11) to (4.13) that
RPI<cMZInM, 1<i<M-1.
Finally, we would determine ngS) att M= d using the scheme £M.
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Consider,
Iy = £M = 1Y €401 = (D7 = D) ()
t%ﬂ
el [ v
t%71

tm tm
7 5

< / y"(t)dt + / y"(t)dt.

tM_l tm
2 2

From Lemma (2.2) and the result from [8] we have

1 _@-nvp 1 _t=dVB
N-IM < / — (e VF dt+/— Ve )dt
1=tMs [ o) — )
tM,] tm
2 2

@)

< — max(h®, h®
=7 ( )

_ 8C(v/B) 'InM
- M
R <cM M nm.
If we denote the error as Z; = y; — v; from (3.19) and (3.22) we get
IMZi=R;, 1<isM-1,
Z0=0, Zum=0,
where R; are taken from (3.21) and (4.14). O

Theorem 4.2. Let v; be the solution of (3.22) and y be the solution of (1.1)-(1.2). Then for M sufficiently large it is

Vi = Ylloo.gm < CM T InM.

Proof. By applying Lemma 3.1 to (4.15) and (4.16) and also using Lemma 4.1 we can get the required result.

5. Numerical outcome

We present here two examples to validate the proposed algorithm.

Example 5.1.

1
1
—ey'+@-eNy+3 / (@t —1yy(s)ds = F(0),
0

where

1

1
m, 05<t<‘17

y@)=1, y@)=0.

(4.14)

(4.15)
(4.16)

O

Since the exact solution is unknown we use to measure the efficiency of the proposed method the same procedure as in

the double mesh approach, taking:
EM = v = viMi EM:mgaxE?".
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Table 1

Maximum point-wise errors E* and orders of convergence Q™ for Example 5.1.
e\ M 32 64 128 256 512 1024
1071 2.612e-03 1.212e-03 5.839e-04 2.866€e-04 1.419e-04 7.064e-05
1072 1.265e-02 6.096e-03 2.994e-03 1.483e-03 7.382e-04 3.683e-04
103 2.162e-02 1.036e-02 5.072e-03 2.510e-03 1.248e-03 6.224e-04
1074 3.380e-02 1.445e-02 6.356e-03 2.884e-03 1.616e-03 8.071e-04
1075 4.965e-02 2.468e-02 1.193e-02 5.668e-03 2.720e-03 1.310e-03
1076 5.551e-02 2.836e-02 1.426e-02 7.103e-03 3.478e-03 1.720e-03
1077 5.747e-02 2.961e-02 1.500e-02 7.539e-03 3.773e-03 1.879e-03
1078 5.810e-02 3.001e-02 1.525e-02 7.680e-03 3.852e-03 1.928e-03
1079 5.831e-02 3.014e-02 1.532e-02 7.725e-03 3.878e-03 1.942e-03
10710 5.837e-02 3.018e-02 1.535e-02 7.739e-03 3.886e-03 1.947e-03
10~ 5.839e-02 3.019e-02 1.536e-02 7.744e-03 3.888e-03 1.948e-03
1012 5.840e-02 3.020e-02 1.536e-02 7.745e-03 3.889¢-03 1.949e-03
10713 5.840e-02 3.020e-02 1.536e-02 7.745e-03 3.889e-03 1.949e-03
10~ 5.840e-02 3.020e-02 1.536e-02 7.746e-03 3.889¢-03 1.949e-03
10715 5.840e-02 3.020e-02 1.536e-02 7.746e-03 3.889e-03 1.949e-03
EM 5.840e-02 3.020e-02 1.536e-02 7.746e-03 3.889e-03 1.949e-03
QM 0.9522 0.9754 0.9877 0.9941 0.9967 -

Table 2

Maximum point-wise errors E* and orders of convergence Q™ for Example 5.2.
e\ M 32 64 128 256 512 1024
1071 7.441e-03 4.276e-03 2.276e-03 1.173e-03 5.950e-04 2.996e-04
1072 1.072e-01 5.518e-02 2.799e-02 1.410e-02 7.074e-03 3.543e-03
1073 2.429e-01 1.407e-01 7.555e-02 3.910e-02 1.989e-02 1.003e-02
1074 1.844e-01 7.982e-02 3.562e-02 1.588e-02 8.293e-03 6.205e-03
1073 2.591e-01 1.283e-01 6.123e-02 2.946e-02 1.431e-02 6.938e-03
1076 2.837e-01 1.438e-01 7.208e-02 3.581e-02 1.760e-02 8.699e-03
1077 2.917e-01 1.488e-01 7.507e-02 3.765e-02 1.882e-02 9.344e-03
1078 2.943e-01 1.505e-01 7.603e-02 3.820e-02 1.914e-02 9.576e-03
1079 2.951e-01 1.510e-01 7.634e-02 3.838e-02 1.924e-02 9.631e-03
10710 2.953e-01 1.511e-01 7.644e-02 3.843e-02 1.927e-02 9.649e-03
10711 2.954e-01 1.512e-01 7.647e-02 3.845e-02 1.928e-02 9.654e-03
10712 2.955e-01 1.512e-01 7.648e-02 3.846e-02 1.928e-02 9.656e-03
10713 2.955e-01 1.512e-01 7.648e-02 3.846e-02 1.929e-02 9.657e-03
10~ 2.955e-01 1.512e-01 7.648e-02 3.846e-02 1.929e-02 9.657e-03
10715 2.955e-01 1.512e-01 7.648e-02 3.846e-02 1.929e-02 9.657e-03
EM 2.955e-01 1.512e-01 7.648e-02 3.910e-02 1.989e-02 1.003e-02
QM 0.9667 0.9833 0.9679 0.9751 0.9877 -

The approximate order of convergence is obtained using

M EM
Q™ =log; 31

Example 5.2.

1
[ (" y()ds =F(),
0

1

i : nt
—€y'+(1+ Sm(T))Y + >

where
-8, 0<t=<04,
8, 04<t<1,
1, y(M)=1.

F@) =
y(0)=
Tables 1 and 2 show € values ranging from 10~ to 10~'> and M from 2° to 2'° for Examples 5.1 and 5.2 respectively
for the maximum pointwise error and order of convergence. Furthermore, the table shows that our numerical method is
always first-order convergence. The numerical solution to Example 5.1 is shown in Fig. 1 when € =103, M =128 and

d = 0.5, whereas Fig. 2 shows the numerical solution to Example 5.2 when € = 1073, M =128 and d = 0.4.
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Fig. 1. The numerical solution for Example 5.1 when € = 1073, M =128 and d =0.5.
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Fig. 2. The numerical solution for Example 5.2 when € =103, M =128 and d = 0.4.

6. Conclusions

This paper considers singularly perturbed Fredholm integro-differential equations with discontinuous source terms. An
almost first order e-uniformly convergent numerical method for solving this problem is presented, which comprises an
exponentially fitted scheme on a Shishkin mesh. Using the integral representation, together with a quadrature rule, the
weights and remainder terms in the integral form are used to develop a difference scheme to solve the problem. A the-
oretical analysis is conducted to prove the first-order convergence of the proposed method. Some examples are given to
illustrate its performance.
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