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In this article, a singularly perturbed second-order Fredholm integro-differential equation 
with a discontinuous source term is examined. An exponentially-fitted numerical method 
on a Shishkin mesh is applied to solve the problem. The method is shown to be uniformly 
convergent with respect to the singular perturbation parameter. Some numerical results 
are given, which validate the theoretical results.
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1. Introduction

Fredholm integro-differential equations (FIDEs) are widely used in scientific modeling, including economics, mechanics, 
fluid dynamics (see, e.g., [11,12]). Furthermore, due to the fact that many scientific applications include large gradients, 
singularly perturbed Fredholm integro-differential equations (SPFIDEs) are very common. It is common in these problems 
the presence of thin boundary layers. This is because the solution fluctuates quickly in some parts of the domain, while 
the regularity is maintained in the rest of the domain, where its variability has slowed down. For further information on 
these issues, one can see [1,10] and the works referenced therein. Because of these boundary layers, singularly perturbed 
problems are difficult to solve using standard numerical techniques.

When dealing with these issues, two types of methods are typically employed; namely, fitted operator techniques, which 
reproduce the boundary layers’ solution [13], and layer-adaptive techniques [9]. A reliable numerical method is required 
since SPFIDEs cannot be solved analytically due to their complexity. Given this, many scientists have focused their efforts 
on developing numerical methods for solving SPFIDEs. An overview of the many different methods that can be used for 
solving SPFIDEs can be found in [4,6]. For singularly perturbed ordinary differential problems with discontinuous data, one 
can refer to [5,8,14]. In [16] the authors worked on a delay differential equation with exponentially fitted methods. In [15]
the author proved second order convergence for singularly perturbed delay differential equations using fitted mesh method.
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Amiraliyev et al. [2] showed that first-order convergence on a uniform mesh was obtained globally for a first-order 
equation considering an exponential fitting approach. A linearly accurate approach for singularly perturbed Volterra delay-
integro–differential equations (SPVDIDEs) was presented in [3].

Motivated by the works by Amiraliyev [7] and Farrell et al. [8], we consider the following problem in which a single 
jump discontinuity in the source term is assumed to occur at a point d ∈ � = (0, l):

Ly ≡ L1 y + λ

l∫
0

K (t, s)y(s)ds = F (t), ∀t ∈ �− ∪ �+, (1.1)

with L1 y = −ε y′′ + b(t)y, y(0) = A, y(l) = B, (1.2)

F (d+) �= F (d−), b(t) ≥ β > 0,

�− = (0,d), �+ = (d, l), �̄ = [0, l],
where ε (0 < ε << 1) is a perturbation parameter that multiplies the higher order derivative, and λ is a real parameter. We 
assume that K (t, s) for (t, s) ∈ �̄ × �̄ and b(t) for t ∈ �̄ are sufficiently smooth functions. To denote the jump discontinuity 
at d for any function with [y](d) = y(d+) − y(d−), [y′](d) ≤ 0.

Furthermore, we assume that the source term F (t) has a jump discontinuity, being

F (t) =
{

F1(t), t ∈ �−,

F2(t), t ∈ �+.

To provide an approximate solution for (1.1)−(1.2) we consider a finite difference method on a Shishkin mesh. The 
present difference scheme uses exponential basis functions and interpolating quadrature rules with integral forms for the 
weighted and remainder terms. The novelty of the article is applying Shishkin mesh, especially at the point t = M/2, to 
obtain the error as D+ = D− . Only the exponentially fitted mesh method is not sufficient to find the error at t = M/2. 
If we want to use exponentially fitted mesh only, we can use Boundary Value Technique hybrid methods. The composite 
trapezoidal rule, including a residual term, will be used to approximate the integral in (1.1). Throughout the paper, C is used 
to denote a generic constant, Ck(D) denotes the set of k times differentiable functions on the domain D and we use the 
supremum norm that is ||g||D = sup

t∈D
|g(t)| (on any domain D), ||g||∞,�̄M

= max |gi | (on a discrete domain �̄M with points 

ti ).
The rest of the article is as follows. Section 2 presents some analytical results of our problem. Section 3 explains how 

to create the mesh and the discretization of the problem that will be used to get an approximate solution. The theorems 
and lemmas in Section 4 demonstrate that the approach is accurate to roughly a (M−1 lnM) order where M is an even 
number being M + 1 the number of mesh points. The final findings are summarized in Section 5, together with some 
examples to confirm the order of convergence and the pointwise errors. Finally, we compose a conclusion for the proposed 
approach.

2. Analytical results

The maximum principle and a stability result are presented in this section for the exact solution of problem (1.1)−(1.2). 
Additionally, some derivative bounds are also provided.

Lemma 2.1. ([7,8,10]): Let y ∈C0(�̄) ∩C1(�) ∩C2(�− ∪ �+) and

|λ| < β

max
0≤t≤l

∫ l
0 |K (t, s)|ds

,

with y(0) ≥ 0, y(l) ≥ 0, Ly(t) ≥ 0, ∀ t ∈ �− ∪ �+ , [y](d) = 0, [y′](d) ≤ 0. Then, it holds that y(t) ≥ 0, ∀ t ∈ �̄.

Proof. Let q be a point at which y attains its minimum value in �̄. If y(q) ≥ 0, then there is nothing to prove. If, y(q) < 0
to complete the proof consider

−ε y′′ + b(t)y = G(t) =
{

G1(t), t ∈ �−,

G2(t), t ∈ �+,

where G1(t) = F1(t) − λ 
∫ l

0 K (t, s)y(s)ds, G2(t) = F2(t) − λ 
∫ l

0 K (t, s)y(s)ds. We distinguish two cases.
Case1: If q ∈ �− ∪ �+ then y(q) < 0, y′(q) = 0, y′′(q) > 0. This implies that L1 y ≤ 0, which is a contradiction.
Case2: If q = d then y′(d+) > 0 and y′(d−) < 0. Hence, we have [y′(d)] = y′(d+) − y′(d−) > 0, which is again a contra-

diction.
Therefore, it is y(q) > 0 always, and the proof is complete. �
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Using the above Lemma 2.1 and the procedure adopted in [14] we can get the following result.

Lemma 2.2. Let ∂
k K
∂tk ∈C(�̄ × �̄), (k = 0, 1, 2) and y(t) the solution of the problem (1.1)−(1.2). It holds that

max
0≤t≤l

|y(t)| ≤ C, (2.1)

∥∥∥y(k)(t)
∥∥∥ ≤ C

⎧⎪⎪⎨
⎪⎪⎩

1 + ε
−k
2

(
e

−t
√

β√
ε + e

− (d−t)
√

β√
ε

)
, t ∈ �−,

1 + ε
−k
2

(
e

−(t−d)
√

β√
ε + e

− (1−t)
√

β√
ε

)
, t ∈ �+, k = 1,2.

(2.2)

3. Discretization of the problem

Consider a non-uniform mesh (0 = t0 < t1 < · · · < tM = l) with M a natural number multiple of eight (the reason 

will become clear later in the construction of the Shishkin mesh) and hi = ti − ti−1, on �M =
{
�M− ∪ �M+

}
, where, 

�M− = (
ti : 1 ≤ i ≤ M

2 − 1
)
, �M+ = (

ti : M
2 + 1 ≤ i ≤M − 1

)
,

�̄M = �M ∪ {t0 = 0, tM = l} ∪ {t M
2

= d}.

With respect to any mesh function g(t) that is specified on �̄M we denote

gi = g(ti), h̄0 = h1

2
, h̄i = hi + hi+1

2
, h̄M = hM

2
, ||g||∞ ≡ ||g||∞,�̄M = max

0≤i≤M
|gi |,

D+gi = gi+1 − gi

hi+1
, D−gi = gi − gi−1

hi
.

To discretize the problem (1.1)-(1.2), we proceed similarly as in [7]. Firstly, we multiply the equation in (1.1) by ψi(t) and 
integrate it on [ti−1, ti+1]. Then, multiplying by χi h̄

−1
i we obtain

(
χi h̄

−1
i

ti+1∫
ti−1

L1 yψi(t)dt + χi h̄
−1
i λ

ti+1∫
ti−1

ψi(t)

⎛
⎝ l∫

0

K (t, s)y(s)ds

⎞
⎠dt

)

=
(
χi h̄

−1
i

ti+1∫
ti−1

F (t)ψi(t)dt

)
, (3.1)

where χi = h̄i∫ ti+1
ti−1

ψi(t)dt
, and the basis functions for i �= M

2 are given by

ψi(t) =

⎧⎪⎨
⎪⎩

ψ L
i (t) = sinh(ϒi(t−ti−1))

sinh(ϒihi)
, t ∈ (ti−1, ti),

ψ R
i (t) = sinh(ϒi(ti+1−t))

sinh(ϒihi+1)
, t ∈ (ti, ti+1),

0, otherwise,

(3.2)

being ψi
L(t) and ψi

R(t), respectively, the solutions of the following problems{
−εψ ′′(t) + biψ(t) = 0, t ∈ (ti−1, ti),

ψ(ti−1) = 0, ψ(ti) = 1,{
−εψ ′′(t) + biψ(t) = 0, t ∈ (ti, ti+1),

ψ(ti) = 1, ψ(ti+1) = 0,

and ϒi =
√

b(ti)

ε
.

For i = M we consider the following basis function for (1.1)−(1.2)
2
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ψM
2

(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψ L
M

2
(t) =

sinh(ϒi(t−t M
2 −1

))

sinh(ϒi(t M
2

−t M
2 −1

))
, t ∈ (t M

2 −1, t M
2

),

ψ R
M

2
(t) =

sinh(ϒi(t M
2 +1

−t))

sinh(ϒi(t M
2 +1

−t M
2

))
, t ∈ (t M

2
, t M

2 +1),

0, otherwise,

(3.3)

where ψ L
M

2
(t) and ψ R

M
2

(t) are, respectively, the solutions to the following problems

{−εψ ′′(t) + b M
2

ψ(t) = 0, t ∈ (t M
2 −1, t M

2
),

ψ(t M
2 −1) = 0, ψ(t M

2
) = 1,{−εψ ′′(t) + b M

2
ψ(t) = 0, t ∈ (t M

2
, t M

2 +1),

ψ(t M
2

) = 1, ψ(t M
2 +1) = 0.

Based on [7], we have that

χi = 1

h̄−1
i

∫ ti+1
ti−1

ψi(t)dt
= ϒih̄i

tanh(
ϒihi

2 ) + tanh(
ϒihi+1

2 )
and

χi h̄
−1
i

ti+1∫
ti−1

L1 yψi(t)dt = −εδ2 yi + bi yi + χi h̄
−1
i

ti+1∫
ti−1

(b(t) − b(ti))y(t)ψi(t)dt, (3.4)

where

δ2 yi = ϑi
(2)D+ yi − ϑi

(1)D− yi

h̄i
(3.5)

with

ϑ
(1)
i = bihih̄i

ε sinh(ϒihi)

[
tanh

(
ϒihi

2

)
+ tanh

(
ϒihi+1

2

)] ,

ϑ
(2)
i = bihi+1h̄i

ε sinh(ϒihi+1)

[
tanh

(
ϒihi

2

)
+ tanh

(
ϒihi+1

2

)] .

In the case of constant step size, that is, hi = h, it is

ϑ
(1)
i = ϑ

(2)
i = ϑi = bρ2{4 sinh2 (√

ai
ρ

2

)}−1,
(
ρ = h(

√
ε)

−1)
.

Using Newton’s interpolation method for the mesh points ti, ti+1 we get

b(t) = b(ti) + (t − ti)D+bi + 1

2
(t − ti)(t − ti+1)b

′′(ζi(t)).

Therefore, we get

χi h̄
−1
i

ti+1∫
ti−1

(b(t) − b(ti))y(t)ψi(t)dt = χih̄
−1
i D+bi

ti+1∫
ti−1

(t − ti)y(t)ψi(t)dt

+ 1

2
χi h̄

−1
i D+bi

ti+1∫
ti−1

(t − ti)(t − ti+1)y(t)ψi(t)b
′′(ζi(t))dt. (3.6)

That is,

χi h̄
−1
i

ti+1∫
t

(b(t) − b(ti))y(t)ψi(t)dt = (D+bi)χiμi yi +R(1)
i ,
i−1
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where

μi =
ti+1∫

ti−1

(t − ti)ψi(t)dt,

R(1)
i = 1

2
χi h̄

−1
i

ti+1∫
ti−1

(t − ti)(t − ti+1)b
′′(ζi(t))dt

+ χih
−1
i (D+bi)

ti+1∫
ti−1

(t − ti)ψi(t)

( t∫
ti

y′(t)dt

)
dt. (3.7)

A simple calculation gives

μi = h̄−1
i ϒi

(
hi

sinh(ϒihi)
− hi+1

sinh(ϒihi+1)

)
, (3.8)

and for a constant stepsize mesh, μi = 0. Now, the first term in (3.1) can be written as

χi h̄
−1
i

ti+1∫
ti−1

L1 yψi(t)dt = −εδ2 yi + b̄i yi +R(1)
i , (3.9)

where

b̄i = bi + (D+bi)χiμi (3.10)

and μi is given in (3.8). The residual calculation of the right hand side of (3.1) gives

χi h̄
−1
i

ti+1∫
ti−1

F (t)ψi(t)dt = F̄ i +R(2)
i . (3.11)

Since F is discontinuous, we require the following extension of the source term to maintain the differentiability conditions 
as in [14]

(F ∗)(k)(t) =
{

(F ∗
1)(k), t ∈ [0,d],

(F ∗
2)(k), t ∈ [d, l],

where

(F ∗
1)(k)(t) =

{
(F1)

(k)(t), t ∈ [0,d),

(F1)
(k)(d−), t = d,

(F ∗
2)(k)(t) =

{
(F2)

(k)(t), t ∈ (d, l],
(F2)

(k)(d+), t = d.

Clearly, F ∗(t) ∈ C2[0, l]. It follows the same integrability conditions [7] for any subdomain [a, b] within the domain [0, l]
where

F̄ i = Fi + (D+ Fi)χiμi, (3.12)

R(2)
i = 1

2
χi h̄

−1
i

( ti+1∫
ti−1

(t − ti)(t − ti+1)F ∗′′(ζi(t))ψi(t)dt

)
. (3.13)

The second term on the left-hand side of (3.1) is approximated using the Taylor series expansion

K(t, s) = K(ti, s) + (t − ti)
∂

∂t
K(ti, s) + (t − ti)

2

2

∂2

∂t2
K(ζi, s),

and thus, we have
92
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χi h̄
−1
i λ

ti+1∫
ti−1

ψi(t)

⎛
⎝ l∫

0

K (t, s)y(s)dsdt

⎞
⎠dt = λ

l∫
0

K (ti, s)y(s)ds

+ μiλ

l∫
0

∂

∂t
K (ti, s)y(s)ds +R(3)

i ≡ λ

l∫
0

K (ti, s)y(s)ds +R(3)
i , (3.14)

where

K(ti, s) = K (ti, s) + μi
∂

∂t
K (ti, s)y(s), (3.15)

R(3)
i = χih

−1
i

ti+1∫
ti−1

(t − ti)
2ψi(t)

( l∫
0

∂2

∂t2
K (ζi(t), s)y(s)ds

)
dt. (3.16)

Applying the composite trapezoidal rule with the integrand K(ti, s)u(s), we get

l∫
0

K(ti, s)u(s)ds =
M∑
j=0

h̄ jKi j y j +R(4)
i , (3.17)

where

R(4)
i = 1

2

M∑
j=1

t j∫
t j−1

(t j − ζ )(t j−1 − ζ )
d2

dζ 2

(
K(ti, ζ )y(ζ )

)
dζ. (3.18)

Now, we get a discretization for problem (1.1) as

LM yi =
{−εδ2 yi + b̄i yi + λ

∑M
j=0 h̄ jKi j y j = F̄ i −Ri, i �= M

2 ,

LM y M
2

,
(3.19)

with LM yM/2 = D+ yM/2 − D− yM/2, (3.20)

and the remainder term is

Ri =
4∑

m=1

R(m)
i +R(5)

M/2, (3.21)

where R(m)
i (1 ≤ m ≤ 4) are defined in (3.7), (3.13), (3.16) and (3.18), respectively, and R(5)

M/2 is as follows

R(5)
M/2 = |y′(t M

2
)| ≤

t M
2 +1∫

t M
2 −1

y′′(t)dt.

Based on (3.19), after removing the remainder term we propose the following discrete scheme for (1.1)-(1.2)

LMvi =
{−εδ2 vi + b̄i vi + λ

∑M
j=0 h̄ jKi j v j = F̄ i, i �= M

2 ,

LMv M
2

,
with v0 = y(0), vM = y(l). (3.22)

Lemma 3.1. (Discrete Maximum Principle) Let Y be the solution of (3.22). If

Y (0) ≥ 0, Y (l) ≥ 0, LMY (ti) ≥ 0∀ ti ∈ �M− ∪ �M+

with

|λ| < β̄

max
0≤t≤l

∑M
m=0 h̄m|Ki, j|

and LMY M
2

≤ 0,

where b̄i ≥ β̄ then it is

Y (ti) ≥ 0, ∀ ti ∈ �̄M.
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Proof. Using a similar argument as the one given in [8], and a suitable barrier function, the proof can be readily ob-
tained. �
4. Construction of the Shishkin mesh and convergence analysis

This section presents a non-uniform mesh to address the approximate solution of the problem in (3.22). We construct a 
piecewise uniform Shishkin mesh, taking into account the point of discontinuity tM/2 = d. To do that we divide the domain 
�̄ = [0, l] into 6 subintervals as

[0,σ1], [σ1,d − σ1], [d − σ1,d], [d,d + σ2], [d + σ2, l − σ2], [l − σ2, l],
where

σ1 = min

{
d

4
,2(

√
β)−1√ε lnM

}
, σ2 = min

{
l − d

4
,2(

√
β)−1√ε lnM

}
.

Later, each of the intervals [σ1, d − σ1] and [d + σ2, l − σ2] are divided into M4 subintervals while the others are divided 
into M8 subintervals. The corresponding step sizes are h(1) = 8σ1

M = h(3) , h(2) = 4(d−2σ1)
M , h(4) = 8σ2

M = h(6) , h(5) = 4(l−d−2σ2)
M , 

respectively. Note that if d = l
2 then σ1 = σ2 = σ = min

{
d
4 , 2(

√
β)−1√ε lnM

}
.

Lemma 4.1. [7] The remainder term Ri satisfies the bound

||Ri ||∞,�̄M ≤ CM−1 lnM. (4.1)

Proof. We estimate each of the terms R(m)
i , (1 ≤ m ≤ 4) separately, for the domain �M− ∪ �M+ and R(5)

M at the point of 
discontinuity d.

Firstly, in the domain �M− , we start with σ1 = 2(
√

β)−1√ε lnM (note that if σ1 = σ2 = σ = l/8 we could use standard 
arguments). We begin by estimating the remainder R(2)

i as given in (3.13). Since |t − ti | ≤ max{hi, hi+1}, |t − ti+1| ≤ 2h̄i

and h(k) ≤ CM−1, (k = 1, . . . , 6), we have

|R(2)
i | ≤ Cχi h̄

−1
i

ti+1∫
ti−1

|(t − ti)(t − ti+1)|ψi(t)dt ≤ C{max(hi,hi+1)}2 ≤ CM−2. (4.2)

Then, using similar arguments, it can be concluded that R(3)
i is bounded as follows

|R(3)
i | ≤ |1

2
χih̄

−1
i

ti+1∫
ti−1

(t − ti)
2
( l∫

0

∂2

∂t2
K (ζi(t), s)y(s)ds

)
ψi(t)dt| ≤ C{max(hi,hi+1)}2 ≤ CM−2. (4.3)

For R(1)
i , since b ∈ C2(�̄) and ‖y(t)‖ ≤ C , we have

|R(1)
i | ≤ |1

2
χih̄

−1
i

ti+1∫
ti−1

(t − ti)(t − ti+1)b
′′(ζi(t)y(t)ψid)dt| + |χi h̄

−1
i (D+bi)

ti+1∫
ti−1

(t − ti)χi

( t∫
ti

y′(t)dt

)
dt|.

In the domain �̄M− we have

|R(1)
i | ≤ CM−1

{
M−1 +

ti+1∫
ti−1

1√
ε

(
e
−

√
βt√
ε + e

−
√

β(d−t)√
ε

)
dt

}
, (4.4)

and for the domain �̄M+ we get,

|R(1)
i | ≤ CM−1

{
M−1 +

ti+1∫
ti−1

1√
ε

(
e
−

√
β(d−t)√

ε + e
−

√
β(l−t)√

ε

)
dt

}
. (4.5)

The estimation R(1) in the layer region [0, σ1] becomes
i
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|R(1)
i | ≤ CM−1

(
M−1 + h(1)

√
ε

)
= CM−1(M−1 + 16(

√
β)−1M−1 lnM

)
,

|R(1)
i | ≤ CM−2 lnM, 1 ≤ i ≤ M

8
− 1. (4.6)

Similar bounds can be obtained for the other layer regions [d − σ1, d], [d, d + σ1] and [l − σ1, l].
Now, let us consider the subinterval [σ1, d − σ1]

|R(1)
i | ≤ CM−1

{
M−1 + 1√

β

(
e
−

√
βti−1√

ε − e
−

√
βti+1√

ε

)}
+ CM−1

{
M−1 + 1√

β

(
e
−

√
β(d−ti−1)√

ε − e
−

√
β(d−ti+1)√

ε

)}

≤ CM−1
{
M−1 + 1√

β
e
−

√
βti−1√

ε

(
1 − e

− 2
√

βh(2)√
ε

)}
+ CM−1

{
M−1 + 1√

β
e
−

√
β(d−ti+1)√

ε

(
1 − e

− 2
√

βh(2)√
ε

)}

≤ CM−1
{
M−1 + 1√

β
e
−

√
βt M

8√
ε + 1√

β
e
−

√
β
(

d−t 3M
8

)
√

ε

}

|R(1)
i | ≤ CM−2,

M
8

+ 1 ≤ i ≤ 3M
8

− 1. (4.7)

Similarly, in [d − σ1, l − σ1] we get the same result.
Now, at the transition points i = M

8 , 3M8 , 5M8 and 7M
8 we evaluate the approximate value of R(1)

i . For i = M
8 , inequality 

(4.4) becomes

|R(1)
M

8
| ≤ CM−1

{
M−1 +

t M
8 +1∫

t M
8 −1

1√
ε

(
e
− t

√
β√
ε + e

−(d−t)
√

β√
ε

)
dt

}

= CM−1
{
M−1 + 1√

β

(
e
−

√
βt M

8 −1√
ε − e

−
√

βt M
8 +1√
ε

)}

+ CM−1
{
M−1 + 1√

β

(
e
−

√
β
(

d−t M
8 +1

)
√

ε − e
−

√
β
(

d−t M
8 −1

)
√

ε

)}

= CM−1
{
M−1 + 1√

β
e
−

√
βt M

8 −1√
ε

(
1 − e

−
2
√

β
(

t M
8 −1

−h
(1)
i −h

(2)
i

)
√

ε

)}

+ CM−1
{
M−1 + 1√

β
e
−

√
β
(

d−t M
8 +1

)
√

ε

(
1 − e

−
2
√

β
(

d−t M
8 −1

−h(1)
i −h(2)

i

)
√

ε

)}

≤ CM−1
{
M−1 + 1√

β
e
−

√
βt M

8√
ε e

8 ln(M)
M + 1√

β
e
−

√
β
(

d−t 3M
8

)
√

ε e
−

√
β(σ )√

ε

}
,

|R(1)
M

8
| ≤ CM−2. (4.8)

The remaining estimation on the transition points is the same or can be done in a similar way.
So, the following inequality deduced from (4.4)-(4.7) holds,

|R(1)
i | ≤ CM−2 ln(M).

For R(4)
i , in the domain [0, σ1]

|R(4)
i | ≤ 1

2

M∑
m=1

tm∫
tm−1

(tm − ζ )(ζ − tm−1)
d2

dζ 2 (K(tm, ζ )u(ζ ))dζ

≤ C
M∑

m=1

tm∫
tm−1

(tm − ζ )(ζ − tm−1)(1 + |u′(ζ )| + |u′′(ζ )|)dζ,

from which we have
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|R(4)
i | ≤ C

{ M∑
m=1

h3
m +

M∑
m=1

tm∫
tm−1

(tm − ζ )(ζ − tm−1)(ε)−1
(

e
− ζ

√
β√
ε + e

−(d−ζ )
√

β√
ε

)
dζ

}
. (4.9)

Hence,

M∑
m=1

h3
m = M

4
|h(1)|3 + M

4
|h(2)|3 ≤ CM−2. (4.10)

The remaining term in (4.9) can be expanded as

M∑
m=1

tm∫
tm−1

(tm − ζ )(ζ − tm−1)(ε)−1
(

e
− ζ

√
β√
ε + e

−(d−ζ )
√

β√
ε

)
dζ

=
M

8∑
m=1

tm∫
tm−1

(tm − ζ )(ζ − tm−1)(ε)−1
(

e
− ζ

√
β√
ε + e

−(d−ζ )
√

β√
ε

)
dζ

+
3M

8∑
m=M

8 +1

tm∫
tm−1

(tm − ζ )(ζ − tm−1)(ε)−1
(

e
− ζ

√
β√
ε + e

−(d−ζ )
√

β√
ε

)
dζ

+
d∑

m= 3M
8 +1

tm∫
tm−1

(tm − ζ )(ζ − tm−1)(ε)−1
(

e
− ζ

√
β√
ε + e

−(d−ζ )
√

β√
ε

)
dζ. (4.11)

For the first term of the above inequality we have

M
8∑

m=1

tm∫
tm−1

(tm − ζ )(ζ − tm−1)(ε)−1
(

e
− ζ

√
β√
ε + e

−(d−ζ )
√

β√
ε

)
dζ

≤ |h(1)|2
σ∫

0

(ε)−1
(

e
− ζ

√
β√
ε + e

−(d−ζ )
√

β√
ε

)
dζ

≤ |h(1)|24(
√

βε)−1 ≤ CM−2 lnM. (4.12)

Now, for the second term in inequality (4.11)

3M
8∑

m=M
8 +1

tm∫
tm−1

(tm − ζ )(ζ − tm−1)(ε)−1
(

e
− ζ

√
β√
ε + e

−(d−ζ )
√

β√
ε

)
dζ

= 4
1√
β

3M
8∑

m=M
8 +1

tm∫
tm−1

(tm − ζ − h(2)

2
)(

√
ε)

−1
(

e
− ζ

√
β√
ε + e

−(d−ζ )
√

β√
ε

)
dζ

≤ 4
1√
β

h(2)

d−σ∫
σ

(
√

ε)
−1

(
e
− ζ

√
β√
ε + e

−(d−ζ )
√

β√
ε

)
dζ

= 8
1

(
√

β)2
h(2)

(
e
− ζ

√
β√
ε + e

−(d−ζ )
√

β√
ε

)
dζ

≤ 8
1

(
√

β)2
h(2)M−1 ≤ CM−2. (4.13)

We can deduce from equations (4.11) to (4.13) that

|R(4)
i | ≤ CM−2 lnM, 1 ≤ i ≤ M− 1.

Finally, we would determine R(5) at t M = d using the scheme LM .
i 2
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Consider,

|[y′] −LM| = |[y′(t M
2

)] − (D− − D+)(t M
2

)|

= |y′(t M
2

)| ≤
t M

2 +1∫
t M

2 −1

y′′(t)dt

≤
t M

2∫
t M

2 −1

y′′(t)dt +
t M

2 +1∫
t M

2

y′′(t)dt.

From Lemma (2.2) and the result from [8] we have

|[y′] − LM | ≤
t M

2∫
t M

2 −1

1√
ε

(
e
− (d−t)

√
β√

ε
)
dt +

t M
2 +1∫

t M
2

1√
ε

(
e
− (t−d)

√
β√

ε
)
dt

≤ C√
ε

max(h(3),h(4))

≤ 8C(
√

β)−1 lnM
M

R(5)
i ≤ CM−1 lnM. (4.14)

If we denote the error as Zi = yi − vi from (3.19) and (3.22) we get

LMZi = Ri, 1 ≤ i ≤ M− 1, (4.15)

Z0 = 0, ZM = 0, (4.16)

where Ri are taken from (3.21) and (4.14). �
Theorem 4.2. Let vi be the solution of (3.22) and y be the solution of (1.1)-(1.2). Then for M sufficiently large it is

||vi − y||∞,�̄M ≤ CM−1 lnM.

Proof. By applying Lemma 3.1 to (4.15) and (4.16) and also using Lemma 4.1 we can get the required result. �
5. Numerical outcome

We present here two examples to validate the proposed algorithm.

Example 5.1.

−ε y′′ + (2 − e−t)y + 1

2

1∫
0

(e(t cos(π s)) − 1)y(s)ds = F (t),

where

F (t) =
{

− 1
(1+t) , 0 < t ≤ 0.5,
1

(1+t) , 0.5 < t < 1,

y(0) = 1, y(1) = 0.

Since the exact solution is unknown we use to measure the efficiency of the proposed method the same procedure as in 
the double mesh approach, taking:

EM
ε = ‖vM

i − v2M
i ‖∞ , EM = max EM

ε .

ε
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Table 1
Maximum point-wise errors EM and orders of convergence Q M for Example 5.1.

ε \ M 32 64 128 256 512 1024

10−1 2.612e-03 1.212e-03 5.839e-04 2.866e-04 1.419e-04 7.064e-05
10−2 1.265e-02 6.096e-03 2.994e-03 1.483e-03 7.382e-04 3.683e-04
10−3 2.162e-02 1.036e-02 5.072e-03 2.510e-03 1.248e-03 6.224e-04
10−4 3.380e-02 1.445e-02 6.356e-03 2.884e-03 1.616e-03 8.071e-04
10−5 4.965e-02 2.468e-02 1.193e-02 5.668e-03 2.720e-03 1.310e-03
10−6 5.551e-02 2.836e-02 1.426e-02 7.103e-03 3.478e-03 1.720e-03
10−7 5.747e-02 2.961e-02 1.500e-02 7.539e-03 3.773e-03 1.879e-03
10−8 5.810e-02 3.001e-02 1.525e-02 7.680e-03 3.852e-03 1.928e-03
10−9 5.831e-02 3.014e-02 1.532e-02 7.725e-03 3.878e-03 1.942e-03
10−10 5.837e-02 3.018e-02 1.535e-02 7.739e-03 3.886e-03 1.947e-03
10−11 5.839e-02 3.019e-02 1.536e-02 7.744e-03 3.888e-03 1.948e-03
10−12 5.840e-02 3.020e-02 1.536e-02 7.745e-03 3.889e-03 1.949e-03
10−13 5.840e-02 3.020e-02 1.536e-02 7.745e-03 3.889e-03 1.949e-03
10−14 5.840e-02 3.020e-02 1.536e-02 7.746e-03 3.889e-03 1.949e-03
10−15 5.840e-02 3.020e-02 1.536e-02 7.746e-03 3.889e-03 1.949e-03

EM 5.840e-02 3.020e-02 1.536e-02 7.746e-03 3.889e-03 1.949e-03

Q M 0.9522 0.9754 0.9877 0.9941 0.9967 —

Table 2
Maximum point-wise errors EM and orders of convergence Q M for Example 5.2.

ε \ M 32 64 128 256 512 1024

10−1 7.441e-03 4.276e-03 2.276e-03 1.173e-03 5.950e-04 2.996e-04
10−2 1.072e-01 5.518e-02 2.799e-02 1.410e-02 7.074e-03 3.543e-03
10−3 2.429e-01 1.407e-01 7.555e-02 3.910e-02 1.989e-02 1.003e-02
10−4 1.844e-01 7.982e-02 3.562e-02 1.588e-02 8.293e-03 6.205e-03
10−5 2.591e-01 1.283e-01 6.123e-02 2.946e-02 1.431e-02 6.938e-03
10−6 2.837e-01 1.438e-01 7.208e-02 3.581e-02 1.760e-02 8.699e-03
10−7 2.917e-01 1.488e-01 7.507e-02 3.765e-02 1.882e-02 9.344e-03
10−8 2.943e-01 1.505e-01 7.603e-02 3.820e-02 1.914e-02 9.576e-03
10−9 2.951e-01 1.510e-01 7.634e-02 3.838e-02 1.924e-02 9.631e-03
10−10 2.953e-01 1.511e-01 7.644e-02 3.843e-02 1.927e-02 9.649e-03
10−11 2.954e-01 1.512e-01 7.647e-02 3.845e-02 1.928e-02 9.654e-03
10−12 2.955e-01 1.512e-01 7.648e-02 3.846e-02 1.928e-02 9.656e-03
10−13 2.955e-01 1.512e-01 7.648e-02 3.846e-02 1.929e-02 9.657e-03
10−14 2.955e-01 1.512e-01 7.648e-02 3.846e-02 1.929e-02 9.657e-03
10−15 2.955e-01 1.512e-01 7.648e-02 3.846e-02 1.929e-02 9.657e-03

EM 2.955e-01 1.512e-01 7.648e-02 3.910e-02 1.989e-02 1.003e-02

Q M 0.9667 0.9833 0.9679 0.9751 0.9877 —

The approximate order of convergence is obtained using

Q M = log2
EM

E2M

Example 5.2.

−ε y′′ + (1 + sin(
πt

2
))y + 1

2

1∫
0

(
e(1−ts) y(s)

)
ds = F (t),

where

F (t) =
{

−8, 0 < t ≤ 0.4,

8, 0.4 < t < 1,

y(0) = 1, y(1) = 1.

Tables 1 and 2 show ε values ranging from 10−1 to 10−15 and M from 25 to 210 for Examples 5.1 and 5.2 respectively
for the maximum pointwise error and order of convergence. Furthermore, the table shows that our numerical method is 
always first-order convergence. The numerical solution to Example 5.1 is shown in Fig. 1 when ε = 10−3, M = 128 and 
d = 0.5, whereas Fig. 2 shows the numerical solution to Example 5.2 when ε = 10−3, M = 128 and d = 0.4.
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Fig. 1. The numerical solution for Example 5.1 when ε = 10−3, M = 128 and d = 0.5.

Fig. 2. The numerical solution for Example 5.2 when ε = 10−3, M = 128 and d = 0.4.

6. Conclusions

This paper considers singularly perturbed Fredholm integro-differential equations with discontinuous source terms. An 
almost first order ε-uniformly convergent numerical method for solving this problem is presented, which comprises an 
exponentially fitted scheme on a Shishkin mesh. Using the integral representation, together with a quadrature rule, the 
weights and remainder terms in the integral form are used to develop a difference scheme to solve the problem. A the-
oretical analysis is conducted to prove the first-order convergence of the proposed method. Some examples are given to 
illustrate its performance.
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