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This manuscript presents a variable stepsize formulation of a pair of block methods
to efficiently solve third-order IVP models of Lane–Emden–Fowler type equations. The
main method is obtained considering two intermediate points. This method combines an
appropriate set of formulas for dealing with the singularity at the left endpoint t = 0. The
proposed method is implemented in variable stepsize mode to ensure that the truncation
error is kept within a specified tolerance. The results of the numerical experiments
confirm the good performance of the variable stepsize implementation presented in this
paper.
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1. Description of the problem

We are interested in solving Lane–Emden–Fowler type equations of the general form

u′′′(t) = k(t, u(t), u′(t)) − g(t) ◦ u′(t) −
λ

t
◦ u′′(t), (1)

u(0) = u0, u′(0) = u′

0, u′′(0) = u′′

0, t ∈ [0, tN ] ⊂ R, u : [0, tN ] → Rd,

where u0, u′

0, u
′′

0 and λ = (λ1, . . . , λd) ∈ Rd with λi ≥ 1 are known, g : [0, tN ] → Rd, k : [0, tN ] × R2d
→ Rd are

continuous functions, and ◦ denotes the Hadamard product. The theorems that guarantee the existence and uniqueness
of solutions for this type of equations have been stated and proved in [1,2].

Singular models of this type have been used for modeling numerous real-world application problems in applied
mathematics, astrophysics, dusty fluid systems, atomic nuclear reactions, chemical sciences, the theory of electromagnetic,
quantum and classical mechanics, and mechanical and electrical engineering [3–5].

Due to the various practical applications of the problem under consideration, studying how to solve this problem
analytically or numerically has been of great interest to numerous applied mathematicians, physicists, and engineering
researchers.

Furthermore, due to the presence of the singularity at t = 0 and its nonlinear features, this is a complicated problem
to solve exactly. Therefore, numerical approaches are often used to provide approximate and reasonable solutions.
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Numerous scholars have broadly examined the problem in (1) and given different approaches to provide a solution.
o describe a few of the existing strategies in the accessible literature for integrating (1) and related singular problems,
e can specify the variational iteration method in [6], the homotopy-perturbation method introduced by Chowdhury and
ashim [7], the neuro-swarming heuristics approach in [8], the analytical method in [9], the Adomian decomposition
ethod and its modifications in [10–12], the differential transform approach described in [13], the Taylor series approach

n [14], the quasilinearization technique in [15], the neural network algorithm based on integrated intelligent computing
n [16], the Haar wavelet resolution technique in [17], the improved differential transform method reported in [18], the
umerical methods in [19–24] or several approximation methods by spline functions in [25–30], and the references in
hose papers.

We clarify that most of the above strategies were implemented considering a fixed step size (FSS) mode. If the
ynamics of the problem incorporate rapid changes in the solution, it is known that any numerical method with an FSS
mplementation is inefficient. For this reason, the authors of those papers presented results considering only very small
tepsizes.
To address this shortcoming, we have considered a variable stepsize implementation using a pair of two-step hybrid

lock methods (PTSHBM) for solving (1) efficiently.

. Mathematical formulation of the PTSHBM method

In this section we present the development of the PTSHBM.

.1. Main formulas

To derive the PTSHBM, we assume that d = 1 and tj = t0 + jh, j = 0, 1, . . . ,N with fixed stepsize h = tj+1 − tj, and
se a polynomial to approximate the true solution of problem (1), given by

u(t) ≃ q(t) =

7∑
j=0

cj t j. (2)

rom Eq. (2), we obtain

u′(t) ≃ q′(t) =

7∑
j=1

cjjt j−1, (3)

u′′(t) ≃ q′′(t) =

7∑
j=2

cjj(j − 1)t j−2, (4)

u′′′(t) ≃ q′′′(t) =

7∑
j=3

cjj(j − 1)(j − 2)t j−3, (5)

where the cj ∈ R are unknown parameters that should be determined.
We define two distinctive middle points: tn+r = tn + (1/4)h and tn+s = tn + (7/4)h on [tn, tn+2], and use the

approximations in (2), (3) and (4) evaluated at the point tn, and the third derivative approximation in (5) evaluated at the
points tn, tn+r , tn+1, tn+s, tn+2. In this way, the following system is obtained, with unknowns cn, n = 0(1)7

q(tn) = un , q′(tn) = u′

n , q′′(tn) = u′′

n , q′′′(tn) = wn,

q′′′(tn+r ) = wn+r , q′′′(tn+1) = wn+1 , q′′′(tn+s) = wn+s , q′′′(tn+2) = wn+2,

where un+j, u′

n+j, u
′′

n+j and wn+j give approximate values of u(tn+j), u′(tn+j), u′′(tn+j) and u′′′(tn+j), respectively, with w the

right hand side in (1), that is, w(t, u(t), u′(t), u′′(t)) = k(t, u(t), u′(t)) − g(t)u′(t) −
λ

t
u′′(t). Once we have obtained the

alues of cn, n = 0(1)7, after using the substitution t = tn + xh, the function q(t) in (2) may be expressed as

q(tn + xh) = α0(x)un + hα1(x)u′

n + h2α2(x)u′′

n (6)
+ h3 (β0(x)wn + βr (x)wn+r + β1(x)wn+1 + βs(x)wn+s + β2(x)wn+2) ,

where the coefficients are given by

α0(x) = 1,
α1(x) = x,
α2(x) = x2,

β0(x) =
4x7

−
x6

+
9x5

−
85x4

+
x3

,

735 21 56 336 6

2
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βr (x) = −
64x7

6615
+

76x6

945
−

232x5

945
+

8x4

27
,

β1(x) =
8x7

945
−

8x6

135
+

71x5

540
−

7x4

108
,

βs(x) = −
64x7

6615
+

52x6

945
−

88x5

945
+

8x4

189
,

β2(x) =
4x7

735
−

x6

35
+

13x5

280
−

x4

48
.

Evaluating Eq. (6) together with its first and second derivatives at x = 2, we get

un+2 = un + 2hu′

n + 2h2u′′

n +
h3

6615
(513wn + 5248wn+r + 3052wn+1)

+
h3

6615
(−128wn+s + 135wn+2) ,

u′

n+2 = u′

n + 2hu′′

n +
2h2

945
(27wn + 64 (7wn+r + wn+s) + 406wn+1) ,

u′′

n+2 = u′′

n +
h

945
(27wn + 512 (wn+r + wn+s) + 812wn+1 + 27wn+2) , (7)

where r =
1
4 , s =

7
4 . We also evaluate q(t), q′(t) and q′′(t) at tn+r , tn+1, tn+s, to get another nine formulas which will be

combined with the ones in (7) to give the proposed two-step hybrid block method.

2.2. Strategy to circumvent the singularity

Because of the singularity at t0 = 0, the main and additional formulas cannot be utilized to give approximate solutions
to (1), since it is not possible to get w0 = w(t0, u0, u′

0, u
′′

0). In order to overcome the issue at t0 = 0, we proceed to derive
another hybrid block method for the subinterval [t0, t2] using a similar procedure as the one presented above, but without
considering the value of w0. Now, the approximating polynomial is given by

u(t) ≃ q̄(t) =

6∑
j=0

c̄j t j. (8)

Doing this, we get the formulas

u2 = u0 + 2hu′

0 + 2h2u′′

0 −
2h3

45
(−46wr̄ + 39w1 − 30ws̄ + 7w2) , (9)

u′

2 = u′

0 + 2hu′′

0 −
2h2

45
(−52wr̄ + 36w1 − 36ws̄ + 7w2) ,

u′′

2 = u′′

0 −
2h
3

(−2wr̄ + w1 − 2ws̄) ,

where r̄ =
1
2 , s̄ =

3
2 . We also obtain the remaining nine formulas by evaluating q̄(t), q̄′(t) and q̄′′(t) at tn+r̄ , tn+1, tn+s̄.

. Theoretical analysis of the PTSHBM

The theoretical analysis of the introduced technique PTSHBM is addressed in this section.

.1. Order of accuracy and consistency of the PTSHBM

The formulas in (7) and additional nine formulas may be written as

Ā1 Vn = h Ā2 V ′

n + h2 Ā3 V ′′

n + h3 Ā4 Wn, (10)

here Ā1, Ā2, Ā3, Ā4 are coefficient matrices obtained from the formulas in (7) and the additional ones, with

Vn = (un, un+r , un+1, un+s, un+2)
⊤ ,

V ′

n =
(
u′

n, u
′

n+r , u
′

n+1, u
′

n+s, u
′

n+2

)⊤
,

V ′′

n =
(
u′′

n, u
′′

n+r , u
′′

n+1, u
′′

n+s, u
′′

n+2

)⊤
,

W = w , w , w , w , w ⊤ .
n ( n n+r n+1 n+s n+2)

3
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We assume that u(t) is sufficiently differentiable and consider the operator L related to the formulas in (7):

L(u(t); h) =

∑
j∈I

[
αju (t + jh) − hβju′ (t + jh) − h2γju′′ (t + jh)

−h3νju′′′ (t + jh)
]
, (11)

here αj, βj, γj and νj are respectively vector columns of Ā1, Ā2, Ā3, Ā4, and I is a set of indices given by I = {0, r, 1, s, 2}.
Using the Taylor series expansion we get

L(u(t); h) = C0u(t) + C1hu′(t) + C2h2u′′(t) + C3h3u′′′(t) + · · · + Cqhquq(t) + . . . , (12)

where

Cq =
1
q!

⎡⎣ k∑
j∈I

jqαj − q
k∑
j∈I

jq−1βj − q(q − 1)
k∑
j∈I

jq−2γj

−q(q − 1)(q − 2)
k∑
j∈I

jq−3γj

⎤⎦ , (13)

and q = 0, 1, 2, . . . .
The preceding operator associated to the formulas in (7) and additional ones is called to be of order p if C0 = C1 =

· · = Cp+1 = Cp+2 = 0, Cp+3 ̸= 0. The Cp+3 contains the principal terms of the local truncation errors (LTE). Using this
e get the order (p) of the main formulas and their LTEs, given by

p = 5, L(u(tn+2); h) = −
h8u(8) (tn)

3360
+ O(h9)

p = 5, L(u′(tn+2); h) = −
h7u(8) (tn)

3360
+ O(h8)

p = 6, L(u′′(tn+2); h) =
h7u(9) (tn)
20160

+ O(h8). (14)

e further get the order (p) of the specific formulas in (9) and their local truncation errors. We obtain

p = 4, L(u(t2); h) =
31

1680

(
h7u(7) (t0)

)
+ O(h8)

p = 4, L(u′(t2); h) =
7

360

(
h6u(7) (t0)

)
+ O(h7)

p = 4, L(u′′(t2); h) =
7

720

(
h5u(7) (t0)

)
+ O(h6). (15)

Since the formulas have an order greater than one, then they are consistent.

3.2. Zero-stability of the PTSHBM

Zero-stability of the PTSHBM is associated with the behavior of Eq. (10), when h → 0. As h → 0, (10) may be rewritten
as

K (0)
1 V̄µ − K (1)

1 V̄µ−1 = 0,

where

V̄µ = (un+2, un+s, un+1, un+r)
⊤ , Ūµ−1 = (un, un+s−2, un−1, un+r−2)

⊤ ,

K (0)
1 =

⎛⎜⎝ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠ , K (1)
1 =

⎛⎜⎝ 1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

⎞⎟⎠ .

The PTSHBM is zero-stable if the roots rj of its first characteristic polynomial P(r) expressed by P(r) = det
[
K (0)
1 r − K (1)

1

]
,

fulfill |rj| ≤ 1, and those roots with |rj| = 1 have multiplicities which are not greater than 2 (see [31]). Since P(r) =

(r − 1)r3, the PTSHBM is zero-stable.
4
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3.3. Convergence analysis

Although zero-stability and consistency of the proposed formulas determine the convergence of the block method, the
heoretical order of convergence will be analyzed here. To do this we consider the block method as a global one given by
he formulas obtained in Section 2.2 together with the formulas obtained in Section 2.1 for n = 2, 4 . . . ,N − 2.

heorem 3.1 (Convergence Theorem). [32] Let u(t) denote the true solution to problem (1) and {uj}
N
j=1 the discrete solution

rovided by the proposed method. Then the proposed method is convergent of order six.

Following [32,33], we denote the 6N-vector of approximate values as follows

Ū =
(
ur̄ , u1, . . . , uN , u′

r̄ , . . . , u
′

N , u′′

r̄ , . . . , u
′′

N

)T
,

and the 2N-vector of approximate values of the function w by

W̄ = (wr̄ , w1, ws̄, w2, w2+r , . . . , wN−2+s, wN)T .

Consider the square matrix D of dimension 6N containing the coefficients that multiply the terms in Ū , and V the matrix
of dimension 6N×2N containing the coefficients that multiply the terms in W̄ , in the formulas of the method. This results
in the following system

DŪ + hVW̄ + C = 0 (16)

where C is a 6N-vector of the known values (related to the initial values). This system approximates the solution and its
first and second derivatives at each grid point and at the intermediate points. If we now take the vectors of exact values
corresponding to U and W , as follows

U =
(
u(tr̄ ), . . . , u(tN ), u′(tr̄ ), . . . , u′(tN ), u′′(tr̄ ), . . . , u′′(tN )

)T
,

W =
(
(w(tr̄ , u(tr̄ ), u′(tr̄ ), u′′(tr̄ )), w(t1, u(t1), u′(t1), u′′(t1)), . . . , w(tN , u(tN ), u′(tN ), u′′(tN )))

)T
,

we obtain the following system

DU + hVW + C = L, (17)

where L is the 6N-vector of the local truncation errors of the formulas in the proposed method, given by

L ≃

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L[u(tr̄ ), h]
L[u(t1), h]

. . .

L[u(tN ), h]
L[u′(tr̄ ), h]
L[u′(t1), h]

. . .

L[u′(tN ), h]
L[u′′(tr̄ ), h]
L[u′′(t1), h]

. . .

L[u′′(tN ), h]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By subtracting (16) from (17) we get

DEerror + hV (W − W̄ ) = L, (18)

where Eerror = U − Ū =
(
er̄ , . . . , eN , e′

r̄ , . . . , e
′

N , e′′

r̄ , . . . , e
′′

N

)T is the 6N-vector of errors at the grid and intermediate
points of the solution and its first and second derivatives. By utilizing the Mean Value Theorem [34], one can take into
consideration at each index the identities

w(ti, u(ti), u′(ti), u′′(ti)) − w(ti, ui, u′

i, u
′′

i ) = (u(ti) − ui)
∂w

∂u
(ξi)

+
(
u′(ti) − u′

i

) ∂w

∂u′
(ξi)

+
(
u′′(ti) − u′′

) ∂w
(ξi),
i ∂u′′

5
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where ξi denotes an intermediate point in the line between (ti, u(ti), u′(ti), u′′(ti)) and (ti, ui, u′

i, u
′′

i ). In view of the above
e can put

(W − W̄ ) =

⎛⎜⎜⎜⎜⎜⎝
∂w
∂u (ξr̄ ) . . . 0 ∂w

∂u′ (ξr̄ ) . . . 0 ∂w
∂u′′ (ξr̄ ) . . . 0

0 . . . 0 0 . . . 0 0 . . . 0
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 . . . ∂w
∂u (ξN ) 0 . . . ∂w

∂u′ (ξN ) 0 . . . ∂w
∂u′′ (ξN )

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

er̄
...

eN
e′

r̄
...

e′

N

e′′

r̄

...

e′′

N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= Jw Eerror .

The equation in (18) can be expressed as follows:

(D + hVJw) Eerror = L,

and thus

Eerror = (D + hVJw)−1 L.

Expanding each term of (D + hVJw)−1 in powers of h it can be shown after tedious manipulations (see [35]) that the
maximum norm verifies

∥ (D + hVJw)−1
∥ = |O(h)|.

Finally, having in mind the formulas of the local truncation errors, we get

∥Eerror∥ = |O(h)||O(h5)| < Kh6,

showing that the proposed method exhibits a sixth-order convergence.

3.4. Linear stability of the PTSHBM

We studied the generalized linear stability of the PTSHBM through the application of the method in (10) to the test
problem

u′′′(t) = −3µu′′(t) − 3µ2u′(t) − µ3u(t), ℜ(µ) > 0, (19)

where µ indicates a complex parameter and the above equation has bounded solutions that go to zero as t tends to
infinity. Employing the PTSHBM with the test Eq. (19) we have

R

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ur
u1
us
u2
u′
r

u′

1

u′
s

u′

2

u′′
r

u′′

1

u′′
s

u′′

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ur−2
u1−2
us−2
u0
u′

r−2

u′

1−2

u′

s−2

u′

0

u′′

r−2

u′

1−2

u′

s−2

u′′

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where R and S are the matrix coefficients of the formulas given in (10). By letting z = µh, we examine the stability of
the proposed PTSHBM through the eigenvalues of the amplification matrix (M(z) = R−1S). The obtained stability region
of the proposed PTSHBM using the above test equation is represented in Fig. 1.
6
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Fig. 1. Stability region in the complex z-plane using the test Eq. (19).

. Error estimation of the PTSHBM

Here, we provide a variable step size formulation of the PTSHBM. This formulation is interesting since it allows the use
f large integration steps. At the same time, most of the existing numerical methods in the literature for solving this kind
f problem are not formulated in variable stepsize mode. Our goal is to guarantee that the truncation error is maintained
ithin a specified tolerance. In this paper, an embedding strategy is used to formulate the proposed method in variable
tepsize mode, which means that apart from the approximation for un+2, we will also need an additional lower order
ethod (LOM) approximation for u∗

n+2. A difference between the un+2 and u∗

n+2 approximations will provide a local error
stimation. The following formula:

u∗

n+2 = 7un +
14un+1

3
−

32un+r

3
+

1
864

h3 (−54wn + 322wn+1 + 217wn+r + 19wn+s) , (20)

ith local truncation error LTE =
227

737280 h7u(7) (tn)+O
(
h7

)
has been used to estimate the local error through the difference

ERREST = ∥un+2 − u∗

n+2∥ . (21)

iven a tolerance, TOL, if |ERREST | ≤ TOL, the obtained approximations are accepted, we take hvary = 2×hold, and proceed
ith the computations with hvary by assuming that hminimum ≤ hvary ≤ hmaximum. If |ERREST | > TOL, then obtained values
re rejected and we repeat the computations using the following strategy for changing the step size:

hvary = λ hold

(
TOL

∥ERREST∥

)1/(p+3)

, (22)

where p = 4 is the order of the LOM in (20) and λ = 0.9 is a suitable adjustment factor.

5. Notes on the implementation

The PTSHBM is executed using the strategy in the above section. The systems in (7) and additional formulas has been
expressed in the form W (u) = 0, with unknowns

Ũ =
{
ur̄ , u1, us̄, u′

r̄ , u
′

1, u
′

s̄, u
′′

r̄ , u
′′

1, u
′′

s̄

}⋃{
uj

}
j=2,4,...,N

⋃{
u′

j

}
j=2,4,...,N

⋃{
u′′

j

}
j=2,4,...,N⋃{

uj+r , uj+1, uj+s, u′

j+r , u
′

j+1, u
′

j+s, u
′′

j+r , u
′′

j+1, u
′′

j+s

}
j=2,4,...,N−2

.

Since the PTSHBM is an implicit method, we consider a Modified Newton’s method (MNM) to solve the obtained system
of non-linear equations. The MNM is given by

Ũi+1
= Ũi

− J −1 Wi,
( 0)

7
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p

w

a
a

where J0 represents the frozen jacobian matrix of W. The following formulas are used to initialize the MNM on each
iteration

un+i = un + (ih)u′

n +
(ih)2

2
u′′

n +
(ih)3

6
wn,

u′

n+i = u′

n + (ih)u′′

n +
(ih)2

2
wn,

u′′

n+i = u′′

n + (ih)wn,

for n = 0, i = r̄, 1, s̄, 2 and n = 2, 4 . . . ,N − 2, i = r, 1, s, 2.

5.1. Algorithm for solving (1)

Data: Initialize starting algorithm: h = h0 = hold, tm := t0, um := u0;
Total number of steps in the main method: N − 2;
End-point of the integration interval: tN

Result: Approximations of the problem in (1) at selected points.
1 Introduce w(t, u(t), u′(t), u′′(t)) and initial values u0, u′

0, u
′′

0;
33 Use the ad-hoc formulas in (9) with h = h0 to get the values u1, u2, u′

1, u
′

2, u
′′

1, u
′′

2 .
55 Set m=2.
77 If tm ≥ tN , then exit.
99 If tm + 2h > tN , then h = (tN − tm)/2.

1111 While tm < tN do use the main strategy taking h = hold to get the values um+1, um+2, u′

m+2, u
′′

m+2;
1313 Compute u∗

m+2 to get ERREST = ∥um+2 − u∗

m+2∥ .

1515 If |ERREST | ≤ TOL, then accept the results and put hvary = 2 × hold.
1717 Set tm = tm + 2h, m = m + 2 and go to step 11.
1919 If |ERREST | > TOL, then we repeat the computations using (22) and go to step 11.
20 end

6. Numerical Experiments

In this section, we evaluate the performance of the PTSHBM by considering some numerical experiments. In the
resented Tables and Figures, we have utilized the abbreviations:

• PTSHBM : The pair of two-step hybrid block methods in this paper.
• UHWRT: The uniform Haar wavelet resolution technique in [17].
• CBSAM: A cubic B-spline approximation method in [2].
• RKHSM: The reproducing kernel Hilbert space method in [36].
• IICPM: An Integrated intelligent computing paradigm method in [37].
• NS: Number of steps.
• NJ: Number of Jacobians.
• MNI: Number of Newton iterations.
• FE: Total number of function evaluations.
• MAXAE: Maximum absolute errors.
• h0 : Initial step.
• TOL: Predefined tolerance.
• CPU: The computational time in seconds.

6.1. Numerical Experiment 1

We firstly consider the following problem [2,36]

u′′′(t) =
2
t
u′′(t) +

9
(
t6 + 8

)
8u(t)5

,

u(0) = 1, u′(0) = 0, u′′(0) = 0, t ∈ [0, tN ], (23)

hose exact solution is u(t) =
√
1 + t3.

The numerical results for the proposed PTSHBM reported in Table 1 were obtained by taking TOL = 10−5, h0 = 10−2

nd TOL = 10−9, h0 = 10−2, respectively. Not only is the proposed technique the one that gives the best accuracy, but it
lso has the lowest number of steps, being the most efficient of the methods considered.
8
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T

w

w

T

Table 1
Comparison of the numerical results for
problem (23) on t ∈ [0, 1].
Method NS MAXAE

PTSHBM 9 3.6568 × 10−6

CBSAM 10 5.2500 × 10−5

RKHSM 20 7.7839 × 10−6

PTSHBM 21 1.6962 × 10−9

CBSAM 40 5.1900 × 10−7

RKHSM 35 4.3964 × 10−6

6.2. Numerical Experiment 2

We also consider the following problem that has appeared in [2,36]

u′′′(t) = 6
(
t6 + 2t3 + 10

)
e−3u(t)

−
6
t2

u′(t) −
6
t
u′′(t),

u(0) = 0, u′(0) = 0, u′′(0) = 0, t ∈ [0, tN ]. (24)

he exact solution of this problem is u(t) = log
(
1 + t3

)
.

The numerical results of the proposed PTSHBM for problem (24) reported in Table 3 were obtained by taking TOL =

10−6, h0 = 10−3 and TOL = 10−8, h0 = 10−3, respectively. Not only the introduced technique is the one that provides
the most reliable efficiencies, but it gives the lowest NS, being the most effective of the approaches considered.

6.3. Numerical Experiment 3

Consider the following problem [6,37]

u′′′(t) +
8
t
u′′(t) +

12
t2

u′(t) + u(t)m = 0, m = 0,

u(0) = 1, u′(0) = 0, u′′(0) = 0, t ∈ [0, tN ], (25)

hose exact solution is u(t) = 1 −
t3

90
.

The reported range of AE for IICPM is 10−09
− 10−07, while for the PTSHBM, the range of AE plotted in Fig. 4 is

10−16
− 10−17, showing the better performance of the proposed PTSHBM.

6.4. Numerical Experiment 4

Consider the following system

u′′′

1 +
u′′

1

t
−

u′

1

t2
− u2

2

(
2u1u2u′

1 + 3
(
u2
1 + 1

)
u′

2

)
= 0,

u′′′

1 +
3u′′

2

t
−

3u′

2

t2
+ u4

2

(
2u1u2u′

1 + 5
(
u2
1 + 3

)
u′

2

)
= 0,

u′′′

1 −
3
(
u′

3 − tu′′

3

)
t2

− 4t3u7
2 − 7t4u6

2u
′

2 + 5u4
2

(
u2
3 − 6

)
u′

2

+ 2u5
2

(
6u′

2 + u3u′

3

)
= 0, t ∈ [0, tN ], (26)

ith initial values

u1(0) = 1, u′

1(0) = 0, u′′

1(0) = 1,
u2(0) = 1, u′

2(0) = 0, u′′

2(0) = −1,
u3(0) = 0, u′

3(0) = 0, u′′

3(0) = 1.

he exact solution is:

u1(t) =

√
1 + t2, u2(t) =

1
√
1 + t2

, u3(t) = 1 −
1

√
1 + t2

.

We have used the PTSHBM to solve problem (23) with t ∈ [0, 100], problem (24) with t ∈ [0, 100π ], problem (25)
with t ∈ [0, 2000], and problem (26) with t ∈ [0, 10π ]. Tables 1–7 and Figs. 2–7 show good numerical results obtained
with the PTSHBM scheme when solving problems (23)–(26).
9
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Fig. 2. Errors (left), and exact solution and PTSHBM approximation (right) for (23) (TOL = 10−10, h0 = 10−2, t ∈ [0, 100]).

Fig. 3. Errors (left), and exact solution and PTSHBM approximation (right) for (24) (TOL = 10−11, h0 = 10−3, t ∈ [0, 100π ]).

Fig. 4. Errors (left), and exact solution and PTSHBM approximation (right) for (25) (TOL = 10−12, h0 = 10−2, t ∈ [0, 1]).

Fig. 5. Absolute errors for data in Table 6.
10
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Table 2
Numerical results on (23) with h0 = 10−2, t ∈ [0, 100].
TOL Method NS NJ MNI FE CPU MAXAE

10−8 PTSHBM 83 47 102 209 0.1353 2.9190 × 10−6

10−10 PTSHBM 149 83 175 374 0.2371 6.7865 × 10−8

10−12 PTSHBM 291 194 392 729 0.5017 4.0714 × 10−9

Table 3
Comparison of the numerical results for
problem (24) on t ∈ [0, 1].
Method NS MAXAE

PTSHBM 15 1.7152 × 10−7

CBSAM 20 5.5500 × 10−6

RKHSM 30 2.8567 × 10−6

PTSHBM 23 1.5096 × 10−8

CBSAM 40 4.0800 × 10−7

RKHSM 45 1.2923 × 10−6

Table 4
Numerical results for problem (24) with h0 = 10−3, t ∈ [0, 100π ].
TOL Method NS NJ MNI FE CPU MAXAE

10−9 PTSHBM 141 79 179 354 0.3212 1.3918 × 10−8

10−11 PTSHBM 259 144 308 649 0.5566 4.4519 × 10−10

10−13 PTSHBM 483 293 606 1209 1.1598 1.1598 × 10−11

Table 5
Numerical results for problem (25) with TOL = 10−6, h0 = 10−2, t ∈ [0, 1].
t Exact OHBNTM AE

0 1.0000000000000000 1.0000000000000000 0.0000
0.02 1.0000000000000000 0.9999999111111111 0.0000
0.03 0.9999997000000000 0.9999996999999999 1.1102 × 10−16

0.04 0.9999992888888889 0.9999992888888889 0.0000
0.52 0.9984376888888888 0.9984376888888890 1.1102 × 10−16

1.00 0.9888888888888889 0.9888888888888888 1.1102 × 10−16

Table 6
Numerical results for problem (25) with h0 = 10−2, t ∈ [0, 2000].
TOL Method NS NJ MNI FE CPU MAXAE

10−4 PTSHBM 11 5 5 29 0.0230 1.4901 × 10−8

10−6 PTSHBM 13 6 6 34 0.0252 9.0949 × 10−13

Table 7
Numerical results on (26) with h0 = 10−2, t ∈ [0, 10π ].
TOL Method NS NJ MNI FE CPU MAXAE

10−9 PTSHBM 73 41 120 184 2.1019 16525 × 10−4

10−10 PTSHBM 97 53 155 244 2.8071 1.8048 × 10−5

10−11 PTSHBM 131 72 212 329 3.7258 5.9320 × 10−7

7. Concluding remarks

In this article, a variable stepsize formulation of a pair of two-step block methods (PTSHBM) is developed and
fficiently applied for getting more reliable approximations to the Lane–Emden–Fowler model equations presented in
1). The developed PTSHBM is implemented in a variable stepsize mode by adapting the number and position of the
odes utilized in the approximation to assure that the truncation errors are maintained within a specified bound. The
eliable and accurate performance is observed for PTSHBM based on an estimate of the error and the adaptive strategy
rovided in this manuscript. Numerical results in Tables 1–7 and Figs. 2–7 confirm that the proposed method is more
fficient for solving problem (1) than other existing numerical methods. For future research work, we note the study on
11
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h
L

D

R

Fig. 6. Absolute errors for (26) (TOL = 10−9, h0 = 10−2, t ∈ [0, 10π ]).

Fig. 7. PTSHBM approximations for (26) (TOL = 10−9, h0 = 10−2, t ∈ [0, 10π ]).

ow to apply the proposed method for solving time-dependent partial and fractional-order differential equations of the
ane–Emden–Fowler type.
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No data was used for the research described in the article.
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