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Abstract
This paper deals with the construction of a functionally fitted method for solving first-order
differential systems whose solutions present an oscillatory behaviour. The method incor-
porates the second derivative to obtain better accuracies and is developed on the basis that
it provides no errors when the true solution is a linear combination of some trigonometric
and exponential functions containing a parameter. The main properties of the method are
presented, showing a fourth-order convergence. Some numerical experiments are included
to show the good performance of the proposed method.

Keywords Collocation · Exponential function · Functionally fitted · Maximal order ·
Second derivative · Trigonometric function

Mathematics Subject Classification 65L05 · 65L06

1 Introduction

In this article, a second derivative functionally fitted method (SDFFM) is constructed and
applied for solving a first-order initial-value problem (IVP) of the form
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v′(x) = f (x, v(x)) , v (x0) = v0, x ∈ [a, b], (1)

whose solutions exhibit oscillatory behaviour, where v ∈ R
d , f :R × R

d → R
d is a smooth

function that satisfies a Lipschitz condition to guarantee the existence of a unique solution
(see Lambert 1991), and d is the dimension of the system.
These kinds of IVPs are often encountered in science and engineering, a number of which are
listed by Ehigie et al. (2017). There are many numerical methods available in the mathemat-
ical literature to solve the problem in (1) when the solution is oscillatory, which according to
Yakubu et al. (2018) can be classified into two, viz: methods with constant coefficients and
methods whose coefficients depend on the frequency of the problem. Methods with constant
coefficients are basically based on the use of polynomial basis functions (see Lambert 1973;
Brugnano and Triginate 1988; Jator and Oladejo 2017; Sunday et al. 2013; Enright 1974;
Lambert and Watson 1976; Jator 2010). Most of these methods do not perform well in case
of oscillatory solutions due to the nature of the solutions (Ehigie et al. 2017). It is against this
drawback that many numerical methods, otherwise known as functionally fitted methods,
have tried to take advantage of this special property of the solution that may be known in
advance.
Functionally fitted methods, according to Nguyen et al. (2006), are generalizations of col-
location techniques to integrate an IVP exactly if its solution is a linear combination of a
chosen set of basis functions. When these basis functions are chosen as the power functions,
we recover classical algebraic collocation methods. Functionally fitted numerical algorithms
whose coefficients depend on the frequency started with the elegant work by Gautschi (1961)
who proposed theAdams and Störmer adapted-typemethods considering trigonometric poly-
nomials. In this light, Neta and Ford (1984), Neta (1986) and Sanugi and Evans (1989)
proposed adapted methods of Nyström and Milne–Simpson type, backward differentiation
formula, and leap-frog and Runge–Kutta, respectively. All of these methods are implemented
in a step by step approach. Many extensions of such methods have been proposed, which
include Mixed interpolation methods (Duxbury 1999; Coleman and Duxbury 2000), expo-
nential fitting methods (Franco 2002, 2003, 2006; Ixaru et al. 2002; Vanden Berhe and
Van Daele 2007; Vanden Berghe et al. 2001; Martin-Vaquero and Vigo-Aguiar 2008; Vigo-
Aguiar and Simos 2001; You and Chen 2013; Konguetsof and Simos 2003; Fang and Wu
2008; Fang et al. 2009; Conte et al. 2020), trigonometrically fitted methods (Jator and col-
laborators, Jator et al. 2013; Ngwane and Jator 2013, 2014, 2015; Ndukum et al. 2016;
Ramos and Vigo-Aguiar 2010, 2014; Vigo-Aguiar and Ramos 2015; Monovasilis et al.
2017; Abdulganiy and collaborators, Abdulganiy et al. 2017a, b, 2018). In all these exten-
sions, the basis functions considered is either the set

{
1, x, x2, . . . , xn, cos (ω x) , sin (ω x)

}

or
{
1, x, x2, . . . , xn, eω x , e−ω x

}
. Other basis functions are possible, as listed in Nguyen

et al. (2007).
In this paper, a second derivative functionally fitted method is introduced using the multistep
collocation technique for which the approximate interpolating function is a linear combina-
tion of monomials, trigonometric terms and exponential terms. Specifically, we propose a
method which integrates exactly the kind of IVPs in (1) when the solutions are expressed
as linear combinations of the set

{
1, sin (ω x) , cos (ω x) , eω x , e−ω x

}
. This basis function is

considered for its ease to be analysed and the provision of an improved extension for solving
initial value problems with oscillatory solutions.
This paper is arranged as follows: the construction of SDFFM is discussed in Sect. 2. The
basic properties of the method are presented in Sect. 3, while the implementation and some
numerical experiments are presented in Sect. 4. Finally, Sect. 5 concludes the paper.
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2 Construction of SDFFM

To solve the IVP in Eq. (1), we proceed by considering that we have a scalar equation
and assuming that the true solution v (x) can be approximated by a fitted function I (x, u)

which incorporates a parameter u. It will be seen that the coefficients of this function may
be expressed in terms of v (the dependent variable), f (the first derivative) and g (the sec-
ond derivative) evaluated at different grid points. It is worth noting that the coefficients of
SDFFM are selected so that it integrates the IVP (1) exactly when the solutions are mem-
bers of the linear space spanned by P = {

1, sin (ω x) , cos (ω x) , eω x , e−ω x
}
. Customarily,

the notations v j , f j = f
(
x j , v j

)
and g j = g

(
x j , v j

)
are approximations of the exact

values v
(
x j

)
, v′ (x j

) = f
(
x j , v

(
x j

))
and v′′ (x j

) = g
(
x j , v

(
x j

))
, respectively, where

g(x, v(x)) = f ′(x, v(x)), x j = x0 + jh, j = 1, 2, . . . , N , with x0 = a, xN = b, and
h = (xN − x0)/N the step length.
We consider that the exact solution v (x) can be approximated by a fitted function I (x, u)

defined by

v (x) ∼= I (x, u) = a0 + a1 sin (ω x) + a2 cos (ω x) + a3e
ω x + a4e

−ω x , (2)

where the parameter u is given by u = ω h. Considering this approximation, we explicitly
demand that the following system of five equations must be satisfied

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I (xn, u) = vn,

I ′(x, u)
∣∣
x=xn+ j

= fn+ j , j = 0, 1,

I ′′(x, u)
∣∣
x=xn+ j

= gn+ j , j = 0, 1.

(3)

We now state the proposition that aids the construction of the continuous method as
follows:

Proposition 1 Let assume that I (x, u) satisfies the systemof equations given in (3). Define the
following vectors, K = (vn, fn, fn+1, gn, gn+1)

T , P = {
1, sin (ω x) , cos (ω x) , eω x , e−ω x

}
,

and the matrix

W =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 sin (ω xn) cos (ω xn) eω xn e−ω xn

0 ω cos (ω xn) −ω sin (ω xn) ω eω xn −ω e−ω xn

0 ω cos (ω xn+1) −ω sin (ω xn+1) ω eω xn+1 −ω e−ω xn+1

0 −ω2 sin (ω xn) −ω2 cos (ω xn) ω2eω xn ω2e−ω xn

0 −ω2 sin (ω xn+1) −ω2 cos (ω xn+1) ω2eω xn+1 ω2e−ω xn+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

Then, the continuousapproximation thatwill be used to generate the SDFFMcanbe expressed
as

I (x, u) =
4∑

j=0

det
(
Wj

)

det (W )
Pj (x) (4)

where Wj is obtained after replacing the j − th column of W by K .

Proof The proof can be readily obtained, similarly to the one given in Abdulganiy et al.
(2018). �
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Remark 1 We emphasize that the equation in (4) provides a continuous approximation of the
true solution, and has the form

I (x, u) = vn + h (β0 (x, u) fn + β1 (x, u) fn+1) + h2 (δ0 (x, u) gn + δ1 (x, u) gn+1) . (5)

Our method is obtained from the continuous form (5) by evaluating it at x = xn+1, which
results in

vn+1 = vn + h (β0 fn + β1 fn+1) + h2 (δ0gn + δ1gn+1) , (6)

where

β0 = (cos (u) + sin (u) − 1) e2 u − cos (u) + 1 + (−2 eu + 1) sin (u)

u
(
e2 u cos (u) + cos (u) − 2 eu

)

β1 = (cos (u) + sin (u) − 1) e2 u − cos (u) + 1 + (−2 eu + 1) sin (u)

u
(
e2 u cos (u) + cos (u) − 2 eu

)

δ0 = (sin (u) − 1) e2 u + 2 eu cos (u) − sin (u) − 1

u2
(
e2 u cos (u) + cos (u) − 2 eu

)

δ1 = (− sin (u) + 1) e2 u − 2 eu cos (u) + sin (u) + 1

u2
(
e2 u cos (u) + cos (u) − 2 eu

) . (7)

The formula in (6) can be written in the form

vn+1 − vn = hφ f ,g(vn, vn+1; u, h),

where the subscript indicates that the dependence of φ on vn, vn+1 is through the functions
f and g. Thus, the numerical solution of the problem in (1) is the one given by

{
vn+1 − vn = hφ f ,g(vn, vn+1; u, h),

v0 = v(x0), n = 1, 2, . . . , N − 1.
(8)

(Note that the two coefficients β0 and β1 are the same, and δ0 = −δ1. This symmetry of the
coefficients greatly simplifies the formulas of the method and its implementation).
For small values of u, the coefficients of the method may be subject to heavy cancellations
and in that case the Taylor series expansion of the coefficients must be used (Lambert 1973).
The series expansion of each of the coefficients up to O

(
u16

)
are as follows

β0 = β1�1

2
+ 1

1440
u4 + 1

725760
u8 + 2879

1046139494400
u12 + 3911

711374856192000
u16,

δ0=−δ1� 1

12
+ 1

6720
u4+ 71

239500800
u8 + 59

99632332800
u12 + 863449

729870602452992000
u16.

(9)

It is interesting to note that as u → 0 in the power series expansion of the coefficients,
methods based on polynomial basis are recovered (Lambert 1973). In this case, we recover
the fourth-order symmetric Obrechkoff method given by

vn+1 = vn + h

2
( fn + fn+1) + h2

12
(gn − gn+1) .
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3 Characteristics of SDFFM

The basic properties of SDFFM are analysed in this section. We study the local truncation
error, order, error constant, zero stability, convergence and linear stability.

3.1 Local truncation error and order

Proposition 2 The SDFFM has a local truncation error of the form LT E = C5h5
(
ω4v′(xn)

−v

(
5
)
(xn)

) + O
(
h6

)
.

Proof Assuming that v (x) is a sufficiently differentiable function, we consider the Taylor
series expansions at x = xn of v (xn + jh) , v′ (xn + jh) and v′′ (xn + jh) , j = 0, 1. We
replace into the formula (6) the approximate values for the exact ones, that is, vn+1 →
v (xn+1), fn+ j → v′ (xn+ j

)
, gn+ j → v′′ (xn+ j

)
, together with the coefficients given in (7).

After simplifying, we obtain

LTE = v (xn + h) −
⎛

⎝v(xn) + h
1∑

j=0

β j (u)v′ (xn + jh) + h2
1∑

j=0

δ j (u)v′′ (xn + jh)

⎞

⎠

= C5h
5
(
ω4v′(xn) − v(5)(xn)

)
+ O

(
h6

)
.

Consequently, the principal term of the local truncation Error (LTE) of SDFFM is obtained
as

LTE(ppal. term) = − 1

720
h5

(
ω4v′ (xn) − v(5) (xn)

)
,

which indicates that the order (p) of SDFFM is at least p = 4. �
Remark 2 According to Butcher (2008), a linear k−step method of order p is said to be of
maximal order if p = 2k + 2. Since the SDFFM is of order p = 4 with error constant
C5 = − 1

720 , we, therefore, remark that SDFFM is a maximal order method.

Proposition 3 The local truncation error of SDFFM preserves its basis functions.

Proof Solving the differential equation v(5) (x) − ω4v′ (x) = 0 results in the fundamental
set of solutions

{
1, sin (ω x) , cos (ω x) , eω x , e−ω x

}
which are the basis functions of the

SDFFM. �

3.2 Zero stability

The concept of stability is very important in numerical analysis. Generally speaking, amethod
is stable if small perturbations in the data cause small variations in the solution provided by
it. Zero-stability is a type of stability that is concerned with the behaviour of a numerical
scheme when h → 0. Any numerical method for solving (1) will produce errors that can be
interpreted as if we were solving a perturbed problem of the form

{
zn+1 − zn = h

(
φ f ,g(zn, zn+1; u, h) + δn

)
,

z0 = v(x0) + δ0, n = 0, 1, 2, . . . , N − 1.

According to Lambert (1991) the zero-stability may be defined as follows:
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Definition 1 Let δ = {δi }N−1
i=0 , δ∗ = {

δ∗
i

}N−1
i=0 be any two perturbations of (8) and let

{zi }Ni=0 ,
{
z∗i

}N
i=0 be the corresponding solutions, respectively. Then if there exist constants

K and h0 such that for all 0 < h < h0 it is

‖zi − z∗i ‖ ≤ K ε, i = 0, 1, . . . , N ,

whenever

‖δi − δ∗
i ‖ ≤ ε, i = 0, 1, . . . , N ,

we say that the method (8) is zero-stable.

From a practical point of view, zero-stability is concerned with the roots of the characteristic
polynomial of the difference equation in (8) when h → 0 (see Lambert 1991), which is
addressed in the following result.

Proposition 4 The SDFFM is zero-stable.

Proof As h → 0 in (6), we found out that

vn+1 − vn = 0,

which is normalized to obtain the first characteristic equation given by

ρ (z) = z − 1 = 0.

According to Lambert (1973), a numerical method is zero-stable if the roots of the first
characteristic polynomial have modulus less than or equal to one and those of modulus one
are simple. Since the root of ρ (z) = 0 satisfies |z| ≤ 1, then, the SDFFM is zero stable. �

3.3 Consistency and convergence

According to Lambert (1973), a sufficient condition for a numerical method to be consistent
is that p ≥ 1. We, therefore, remark that the SDFFM is consistent. The convergence of the
SDFFM is established since zero-stability + consistence ⇒ convergence (Fatunla 1991).

3.4 Linear stability

Proposition 5 Applying theSDFFMin (6) to the test equationv′ = λv yields vn+1=M (τ, u) vn,
where

M (τ, u) =(
1−τβ1−τ 2δ1

)−1 (
1+τβ0+τ 2δ0

)
.

Proof We substitute v′ = λv and v′′ = λ2v in (6) to obtain
(
1−τβ1−τ 2δ1

)
vn+1−

(
1+τβ0+τ 2δ0

)
vn= 0 (10)

where the stability parameter is denoted as τ=hλ. It follows from (10) that

vn+1=M (τ, u) vn .

�
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Fig. 1 τ − u Stability region for
SDFFM

Corollary 1 The rational function M (τ, u) is specified by

M(τ, u) = P(τ, u)

Q(τ, u)
, (11)

where

P(τ, u) = − (u cos (u) + τ (sin (u) − 1)) (τ + u) e2 u − (
2 τ 2eu + u (u − τ)

)
cos (u)

+ τ
(
2ueu − u + τ

)
sin (u) + 2 u2eu − τ (u − τ) ,

Q(τ, u) = ((u cos (u) + τ (1 − sin (u))) (τ − u)) e2 u − (
2 τ 2eu − u (τ + u)

)
cos (u)

− τ
(
2ueu − u − τ

)
sin (u) + 2 u2eu + τ (τ + u) .

This stability function determines the stability region of the SDFFM according to the
following definition.

Definition 2 (Coleman and Ixaru 1996) The region of stability of a numerical method for
solving (1) is the region in the (τ, u)−plane throughout which |M (τ, u)| ≤ 1.

Since the stability function depends on two parameters τ and u, we plot the stability region
of the SDFFM in the (τ, u) −plane as shown in Fig. 1, the blue coloured region being the
stability region.

4 Implementation

The SDFFM with angular frequency ω is implemented for solving the IVP in (1) on the
interval [x0, xN ]. This interval is partitioned with N ∈ Z, N > 0 for a fixed step length
such that h = b−a

N . The first numerical result v1 for n = 0 in (6), is produced over the
subinterval [x0, x1] = [x0, x0 + h], since v0 is known from the IVP under consideration. For
the second solution, for n = 1 in (6), the value of v2 is obtained over the subinterval [x1, x2] =
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Table 1 Comparison of results for Example 1

h SDFFM TBNM TIRKN3 RADAU5

NFE Err NFE Err NFE Err NFE Err

1
30 602 4.0 × 10−5 602 2.1 × 10−4 907 2.5 × 10−4 853 2.2 × 10−4

1
60 1202 2.5 × 10−6 1202 1.3 × 10−5 1288 6.6 × 10−6 1208 4.4 × 10−4

1
80 1602 7.7 × 10−7 1602 4.1 × 10−6 1682 7.0 × 10−6 1639 6.0 × 10−6

[x0 + h, x0 + 2h] as v1 is known from the previous step. This procedure is continued for
n = 2, . . . , N − 1 iteratively to obtain the numerical solution to equation (1) on the entire
interval of integration over non-overlapping subintervals [x0, x1] , [x1, x2] , . . . ,

[
xN−1, xN

]
.

Note that on each step the equation in (6) must be solved, for which we used the Newton’s
method, taking as starting value the approximate value vn . If we write the equation in (6) as
F(vn+1) = 0, the stopping criteria used for the Newton’s method are |vi+1

n+1 −vin+1| < 10−10

and |F(vi+1
n+1)| < 10−10, taking the maximum number of iterations equal to 50.

4.1 Numerical examples

To study the numerical efficiency of the SDFFM, we integrate a number of problems with
oscillatory solutions. The maximum global error of the approximate solution is calculated on
the grid points {xn}Nn=0 as Err = ‖v (xn) − vn‖∞, and the computational efficiency is shown
by plotting the logarithm of the maximum global error (log(Err) ) against the logarithm of
the number of function evaluations (log(NFE) ). We note that the fitting frequencies used
in the numerical experiments have been obtained from the problems referenced from the
literature. However, the strategies for the frequency choice considered in Ramos and Vigo-
Aguiar (2010), Vigo-Aguiar and Ramos (2014) and Vanden Berghe et al. (2001) can be
explored.

4.2 Example 1: non linear Strehmel–Weiner problem

Consider the non-linear second-order IVP in Nguyen et al. (2007) and Jator et al. (2013) in
the interval 0 ≤ x ≤ 10 given by

v′′
1 (x) = (v1 (x) − v2(x))

3 + 6368v1 (x) − 6384v2 (x) + 42cos (10x) , v1 (0) = 0.5, v′
1 (0) = 0,

v′′
2 (x) = −(v1 (x) − v2(x))

3 + 12768v1 (x) − 12784v2 (x) + 42cos(10x) , v2 (0) = 0.5, v′
2 (0) = 0,

with solution in closed form given by v1 (x) = v2 (x) = cos(4x) − cos(10x)
2 . This problem

is solved to establish the performance of SDFFM on a non linear problem. Numerical results
of the maximum global errors of SDFFM with ω = 4 are compared with the fourth-order
trigonometrically fitted Numerov method (TBNM) of Jator et al. (2013) and the TIRKN3
and RADAU5 listed in Nguyen et al. (2007) which are presented in Table 1. Figure 2 displays
the efficiency curves of the methods considered for comparisons and that of the SDFFM.
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Fig. 2 Efficiency curves for Example 1

4.3 Example 2: orbital problem

We consider the famous almost periodic problem introduced by Stiefel and Bettis in 1969,
given by

z′′(x) + z(x) = 0.001eix , i = √−1,
z (0) = 1, z′ (0) = 0.995i, z ∈ C.

Setting z(x) = v1(x)+ iv2(x), the above differential problem can be written equivalently
as

v′′
1 (x) + v1(x) = 0.001cos(x) , v1 (0) = 1, v′

1 (0) = 0

v′′
2 (x) + v2(x) = 0.001sin(x) , v2 (0) = 0, v′

2 (0) = 0.995

with exact solution given by

v1 (x) = cos(x) + 0.0005xsin(x)

v2 (x) = sin(x) − 0.0005xcos(x) .

According to Lambert and Watson (1976), the analytical solution represents the perturbed
motion of a circular orbit in the complex plane. The point z(x) spirals slowly outwards such
that its distance from the origin at any time x is given by

γ (x) =
√

(v1(x))2 + (v2(x))2 =
√
1 + (0.0005x)2.

This problem has been considered in the literature within different intervals of integration and
different forms of errors have been computed for different values of the step size. Lambert
and Watson (1976) and Jator (2010) solved the problem numerically to obtain the values of
v1 (x) and v2 (x) using a sixth-order symmetricmultistepmethod (SMM) and a seventh-order
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Table 2 Computed values of γ, x = 40π, γ (x) = 1.001972

Methods h
π
4

π
5

π
6

π
9

π
12

SDFFM 1.001964 1.001969 1.001954 1.001972 1.001972

HLMM 1.001983 1.001974 1.001972 1.001983 1.001972

SMM 1.003067 1.002217 1.002047 1.001987 1.001973

Table 3 Comparison of results for Example 2, γ (x) = 1.001972, x = 40π

Methods h = π
4 h = π

5 h = π
6 h = π

9 h = π
12

Err(γ ) Err(γ ) Err(γ ) Err(γ ) Err(γ )

Err(z) Err(z) Err(z) Err(z) Err(z)

SDFFM 8.02 × 10−6 3.33 × 10−6 1.80 × 10−5 3.23 × 10−8 1.02 × 10−9

1.30 × 10−4 5.30 × 10−5 2.60 × 10−5 5.1 × 10−7 1.60 × 10−8

HLMM 1.10 × 10−5 1.58 × 10−6 2.97 × 10−7 1.21 × 10−8 1.24 × 10−9

2.17 × 10−4 3.95 × 10−5 9.51 × 10−6 3.89 × 10−7 3.96 × 10−8

SMM 1.10 × 10−3 2.45 × 10−4 7.50 × 10−5 6.00 × 10−6 1.00 × 10−6

3.13 × 10−2 7.30 × 10−3 2.30 × 10−3 1.88 × 10−4 3.30 × 10−5

hybrid linear multistep method (HLMM), respectively. The results for γ at x = 40π , which
corresponds to 20 orbits of the point z(x), are compared for the SDFFM and the related
results of Lambert and Watson (1976) and Jator (2010) taking ω = 1 as presented in Table
2. The errors in the computed values of z and γ are defined as follows

Err (xi ) = |z (xi )−zi | =
√

(v1 (xi ) −v1i)
2+(v2 (xi )−v2i)

2

Err (γ ) = |γ (x)−γ | =
√

(v1(x))2+(v2(x))2−
√

v12+v22

and are displayed in Table 3.
Obviously, all the solutions obtained for SDFFM spiral outward for all step lengths. This is
in agreement with the theoretical solution as well as with the results provided by the schemes
by Lambert and Watson (1976) and Jator (2010).
From the results in Table 3, it is clear that SDFFM is more accurate than SMM of sixth order,
and competes favourably with HLMM of order seven. Similarly, for the same problem, we
confirm in Table 4 and Fig. 3 that SDFFM ismore accurate and efficient compared to the sixth
order methods in Cash (1984), Thomas (1988) or Xiang and Thomas (2002), and competes
favourably with the seventh order method in Jator (2010).
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Fig. 3 Efficiency curves for Example 2

4.4 Example 3: Kepler problem

As our third example, we consider the classical Kepler problem which was solved in Jator
et al. (2013) and Ndukum et al. (2016)

v
′′
1 (x) = −v1(x)

r3
, v1 (0) = 1 − ε, v

′
1 (0) = 0

v
′′
2 (x) = −v2(x)

r3
, v2 (0) = 0, v

′
2 (0) =

√
1 + ε

1 − ε

where r =√
v1(x)2 + v2(x)2 and ε (0 ≤ ε ≤ 1) is the eccentricity of the orbit. The solution

of this problem in closed form is

v1 (x) = cos (λ) − ε, v2 (x) =
√
1 − ε2 sin (λ) ,

where λ is the solution of the Kepler’s equation λ = x + ε sin(λ). We integrate the Kepler
problem on the interval [0,5π ] with the fitting parameter ω = 1 with eccentricity ε = 0.05.
The results presented in Table 5 and Fig. 4 show the competitiveness of the SDFFM with
the fourth-order methods TBNM and BTFEBDM3 in Jator et al. (2013) and Ndukum et al.
(2016), respectively.

4.5 Example 4: pertubed system

As our fourth experiment, we consider the following non-linear perturbed system on the
range [0, 10] with ε = 10−3

v
′′
1(x) = εϕ1 (x) − 25v1(x) − ε

(
v1(x)

2 + v2(x)
2) v1 (0) = 1 , v

′
1 (0) = 0,

v
′′
2(x) = εϕ2 (x) − 25v2(x) − ε

(
v1(x)

2 + v2(x)
2) v2 (0) = ε , v

′
2 (0) = 5,
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Table 5 Comparison of results for Example 3

SDFFM TBNM BTFEBDM3

N Err NFE N Err NFE N Err NFE

200 2.69 × 10−6 402 200 6.63 × 10−3 402 200 1.83 × 10−2 402

400 3.43 × 10−8 802 400 9.87 × 10−4 802 450 5.84 × 10−4 902

1200 1.22 × 10−9 2402 1200 1.97 × 10−7 2402 1200 1.17 × 10−5 2402

2000 3.17 × 10−10 4002 2000 3.62 × 10−9 4002 2100 1.23 × 10−6 4202

Fig. 4 Efficiency curves for Example 3

where

ϕ1 (x) = 1 + ε2 + 2ε sin
(
5x + x2

) + 2 cos
(
x2

) + (
25 − 4x2

)
sin

(
x2

)
,

ϕ2 (x) = 1 + ε2 + 2ε sin
(
5x + x2

) − 2 sin
(
x2

) + (
25 − 4x2

)
cos

(
x2

)
.

The solution in closed form is given by v1 (x) = cos (5x) + ε sin
(
x2

)
, v2 (x) = sin (5x) +

ε cos
(
x2

)
. The performance of SDFFM with the fitting parameter selected as ω = 5 in

comparison with a fifth-order TFARKN method by Fang et al. (2009), a fifth-order TRI5
method by Fang andWu (2008), sixth-order methods DIS6 and ZER6 both in Franco (2006),
are presented in Table 6 and Fig. 5, respectively.
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Fig. 5 Efficiency curves for Example 4

Table 7 Comparison of results for Example 5

h SDFFM EF IMP3 EFRK3 EFLMM3

0.1 1.00 × 10−23 1.24 × 10−09 6.03 × 10−06 2.41 × 10−04

0.05 6.90 × 10−26 6.95 × 10−11 6.66 × 10−07 2.36 × 10−05

0.025 2.82 × 10−28 9.62 × 10−12 8.00 × 10−08 2.52 × 10−06

4.6 Example 5: nearly sinusoidal problem

As our last experiment, we consider the system of two equations commonly referred to as
Lambert system (Lambert 1991), on the range [0, 10] with ω = 1

v′
1(x) + 2v1(x) − v2(x) = sin(ω x),

v′
2(x) + (β + 2)v1(x) − (β + 1)v2(x) = (β + 1)(sin(ω x) − cos(ω x)),

with initial conditions v1 (0) = 2 and v2 (0) = 3. The exact solutions of this system v1 (x) =
2 exp(−x) + sin(ω x) and v2 (x) = 2 exp(−x) + cos(ω x), which according to Lambert
(1991) is independent of β. This system is used in Lambert (1991) to illustrate the concept
of stiffness and its numerical consequences with β = −3 and β = −1000 for non stiff and
stiff cases, respectively.

We present the comparison between our obtained results and EF IMP3, EFRK3, and
EFLMM3 stated in Conte et al. (2020), Vanden Berghe et al. (2001) and Ixaru et al. (2002),
respectively, for β = −1000 in Table 7 and Fig. 6.We observe fromTable 7 that SDFFMpro-
duces smaller errors with respect to other methods it is compared to. Consequently, SDFFM
is a competitive numerical integrator.
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Fig. 6 Efficiency curves for Example 5

5 Conclusions

The presented functionally fitted method of order four has been designed to deal with first-
order differential systems whose solutions are oscillatory. Some numerical experiments have
been included, showing a better performance of the proposed method compared with other
methods in the literature, even of higher order. In our future work we will try to extend this
kind of approach for solving problems whose solutions contain two frequencies.
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