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Abstract: Celtis australis remains are usually present in Palaeolithic sites of the Mediterranean Basin.
However, their uncharred state of preservation and the absence of wood charcoal remains of this
species raise some doubts regarding the contemporaneity of the remains and the deposit wherein
they were found. The mineral composition of their endocarps and their possible use as food lead
us to discuss the available data of Celtis australis during Prehistory. In this paper, the history of this
species from the Lower Pleistocene to the Middle Holocene is reconstructed, considering the impact
of the Quaternary climatic changes on its geographical distribution. The nutritional composition
of Celtis australis fruits is analysed to assess their current value and potential as food, especially
in Palaeolithic contexts. Based on these issues, the doubts about its presence in these contexts are
dispelled and possibly explained by intentional human gathering in some sites, considering the high
content in carbohydrates, proteins and minerals of their fruits. The chronological and geographical
distribution of the Celtis spp. remains shows a coherence, which only the variations in the distribution
of this taxon according to the regional climatic conditions can explain, especially disturbed by
cold fluctuations, such as MIS 10 or 2. The radiocarbon dating presented here demonstrates the
unquestionable presence of Celtis sp. in the Iberian Mediterranean Basin during MIS 3.

Keywords: Celtis australis; archaeobotany; nutritional analysis; climatic dynamics; vegetation dynamics;
Pleistocene; Holocene

1. Introduction

In the Mediterranean region, tropical, Eurosiberian and genuinely Mediterranean taxa
form the vegetation as a result of their adaptation to human impact and geological and
climatic changes over the last million years [1–3]. Some of these taxa settled here during
the Pliocene when subtropical climate conditions—warm and humid—fostered diverse
and dense woody formations. Three plant groups are documented in the Pliocene and
Lower Pleistocene European palaeobotanical sequences: laurisilva, temperate species and
Mediterranean taxa [4].

During the Lower Pleistocene, the colder conditions and changing rainfall caused
the reduction in the laurisilva in the Mediterranean Basin from which some taxa are
present nowadays, such as Laurus nobilis, Nerium oleander, Viburnum tinus and Arbutus. The
characteristic Mediterranean summer drought enabled the consolidation and expansion of
xerophilic Mediterranean flora, such as evergreen Quercus, Olea, Phillyrea, Pistacia, Artemisia
or Ephedra fragilis. Mesophilous trees growing in the region during the Lower Pleistocene
can be classified into two groups: (A) genera that gradually disappeared from the Western
Mediterranean Basin, such as Carya, Pterocarya, Parrotia, Zelkova or Liquidambar [5,6], and
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(B) genera that currently grow in the basin, such as Quercus, Fraxinus, Acer, Alnus, Carpinus,
Tilia, Populus or Celtis.

The Quaternary history of species is marked out by adaptations, extinctions and
changes in their spatial distribution [5,7,8]. In this work, we focus on the history of Celtis
australis, the interest in which lies in (1) its adaptation to glacial–interglacial cycles, (2) its
resistance to summer droughts, (3) its ecological relevance in Mediterranean ecosystems
and (4) the economic interest in its edible fruits to Pleistocene and Holocene human groups
in the Mediterranean Basin. Moreover, knowing its history could help predict the future of
this species under the climatic pressure of the Anthropocene [9]. To achieve these goals,
all the available palaeobotanical information, including different types of remains (wood,
charcoal, seeds, pollen and leaves), as well as evidence from other related taxa, such as
C. tournefortii, is gathered. We add new data from Pleistocene Iberian sites and two new
radiocarbon dates of Celtis endocarps. Second, through their chemical analysis, we assess
the potential of its fruits as food, especially in hunter-gatherer contexts.

Celtis australis: Species Description, Ecology and Traditional Uses

Celtis is placed in the Cannabaceae family and comprises 66 different accepted species,
growing in America, Africa, Asia and Europe [10,11]. In the Mediterranean Basin, nowa-
days, we can find C. australis, C. occidentalis (introduced), C. glabrata and C. tournefortii, the
first being the only species growing in the Iberian Peninsula [12].

Celtis australis, commonly known as Mediterranean hackberry or nettle tree, is a
deciduous tree that can grow 30 m in height, with a broad and dense crown and thin and
erect branches. The bark of its trunk is smooth and grey. Their leaves are alternate, petioled,
lance-shaped to oval-lanceolate, acuminated and serrated, and they have an asymmetric
base. The small hackberry flowers are axillary and solitary, although they occasionally form
small clusters of two or three flowers. They have a pentamerous perianth, five stamina and
a unilocular ovary. This species is andromonoecious, and its pollination occurs through
anemophily. Celtis australis fructifies in sub-spherical drupes, 8.5–12 mm in diameter, green
unripe, blackish when ripe, with a long stem. Inside its sandy flesh, a woody endocarp
contains the seed [13].

The Mediterranean hackberry grows in the south of Europe, west of Asia and north
of Africa, in woods, ravines, riverbanks and rock fissures, on fresh or humid, light or
rocky soils, although it is indifferent to the substratum (Figure 1). It is a heliophilous
species, which avoids cold and frosts [13,14]. It is usually documented in mixed woods,
growing with Quercus pubescens, Fraxinus ornus, Corylus avellana and Acer spp., as well as
with evergreen Quercus and Pinus halepensis. Celtis australis also forms gallery forests with
Salix spp., Populus spp. and Ulmus spp. [15]. Since it is cultivated as an ornamental tree,
it is usually found feral. In gardens and parks, we can find other species of this genus
from America or Asia [16]. Primary shoot growth spans from March to May, and diameter
growth is higher from spring to early summer, as a response to water availability [9,17].
The hackberry flowers over one month in spring, from April to May, and fructifies at the
end of summer. The fruits ripe in autumn, but they can remain on the tree until winter.
Frugivorous vertebrates disperse the seeds, favouring the propagation of the plant by
sowing the seeds as soon as they ripe, although vegetative reproduction is also possible via
root suckers [15,18]. Leaf shedding starts in November.

Regarding its traditional uses, its wood is highly valued due to its flexibility, hardness
and resistance, being an excellent raw material for the manufacture of boats and paddles,
farm equipment, such as pitchforks, sticks and handles, bowls and mortars, musical
instruments, as well as door and window lintels [19–21], even from the 4th century BC,
when Theophrastus characterised it as “incorruptible” in De historia plantarum (V, 4, 2
and V, 5, 6). This traditional use was widely spread in many regions of the Kingdom of
Valencia during the 18th century, as pointed out by Cavanilles in his Observaciones sobre la
Historia Natural. This tradition hardly continues to date. The use of hackberry wood for
construction was archaeologically documented in the Castle of Turís [22]. Its wood has
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also been employed in cabinetmaking and to create sculptures in Florence. Hackberries are
planted in Toscane and Sicily as vine-growing guides [23]. Its wood and its wood charcoal
are considered good fuel. The bark from the stems and roots contains a yellow pigment
used, as already indicated by Dioscorides, for dying silk [14,16]. Hackberry leaves and bark
have been used as fodder. For instance, in the Central Himalayan region, Celtis australis
is cultivated around the fields in order to use its leaves in April and May as green fodder
for cattle, since they are nutritious, palatable and free from tannins [24]. In the Iberian
Peninsula, the dry leaves of the hackberry are eaten by sheep in autumn [14,25].
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Hackberry fruits are edible when ripe but are considered toxic when unripe. Although
their flavour is rough and they are dry and astringent, they have high sugar content;
therefore, the Greeks call them “honey fruits”. Due to their sweetness, they are especially
attractive for kids, and they have been used to produce liquors, as well as a source of sugar
during shortage periods [14,16,26,27]. Their seeds are also edible, and they can be used to
extract oil [28].

Some medical properties were attributed to the hackberry by Dioscorides as early as
the 1st century. For example, fruits and leaves are used to reduce blood pressure, prevent
diarrhoea, reduce cholesterol and regulate menstrual flow or for diuretic purposes [14].

Celtis australis is currently an ornamental tree, as in Roman times, considering the
history of Lucius Crassus, in whose garden in the Palatine there were six Mediterranean
hackberries [29]. According to the agricultural treatises from Al-Andalus times, the Mediter-
ranean hackberry was used to construct irrigation canals and mills and protect some parts
of the gardens from the dew [30].

2. Materials and Methods

To achieve the raised objectives, we explored several methodological lines:

• We conducted literature searches to gather all the palaeobotanical finds of Celtis spp.,
from Lower Pleistocene to Middle Holocene. Regarding the geographical setting,
we focused on the Mediterranean Basin and northern Europe, although we consid-
ered the findings in other regions, which could enrich our discussion. We gathered
the documentation of macro—-wood, leaves, wood charcoal and seeds—and micro-
remains—pollen and phytoliths—recovered in archaeological and natural sites.
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• The palaeobotanical data are presented in Tables 1–5, chronologically arranged. The
chronology shown is that of the level or structure where the remains were recovered,
not a direct dating (with exceptions). Where possible, the abundance of the taxon in the
assemblage is noted, expressed as percentage or number of remains, as is published in
the checked works.

• To check the antiquity of Celtis remains, we carried out two radiocarbon datings on
uncharred endocarps from two Middle Palaeolithic Iberian sites: Abrigo de la Que-
brada (Chelva, Valencia) and Cueva del Arco (Cieza, Murcia). Hackberry endocarps
formed naturally with carbonate, which reflects the C14 atmospheric values of only one
growing season. Therefore, endocarps are suitable for obtaining reliable dating [31].
However, the integrity of the mineral composition of the fossil specimen must be eval-
uated previously. The carpological remains were first washed with deionised water to
remove organic sediments and debris. After crushing them, they were subjected to
HCl etches to eliminate secondary carbonate components [32].

• The presence or absence of Celtis wood charcoal in archaeological sites is analysed
to assess the specialised use of this taxon, considering the frequent presence of fruit
remains as opposed to the absence of wood in most sites.

• A chemical analysis of the current fruits of Celtis australis was carried out to assess
their nutritional value.

2.1. Celtis Endocarps Description

Celtis australis fruits contain a stony endocarp, which encloses the seed. This endocarp
presents four marked ridges growing from the apex. Two of them encircle the endocarp,
whereas the other opposite two are along its upper half. The space among the ridges is
covered by a pronounced reticulate. Although with some difficulties, the taxa within this
genus can be differentiated based on the density of this reticulate and the more or less
pronounced ridges [33]. However, frequently, an identification of archaeobotanical remains
within the species range is not possible due to the state of the surface or the absence of
reference material. In these cases, ecological criteria are usually applied.

The walls of the endocarps of Celtis spp. fruits are composed mainly of aragonite
(40–70 wt%), a form of calcium carbonate [31,34–36], one of the more frequent biogenic
minerals [37]. In addition, opal and organic matter are present [31,38].

2.2. Challenges in Wood Celtis Identification

A relevant issue regarding Celtis wood, which is barely identified in the Pleistocene, is
to assess whether it can be mistaken for other species due to the similarity of their wood
anatomy. Indeed, Celtis spp. can sometimes be challenging to differentiate from Ulmus spp.
based on their wood anatomy. According to wood anatomy atlases [39], both genera have
ring-porous, with pores in latewood grouped in long, tangential to oblique, bi- to four-
seriate bands together with vascular tracheids and parenchyma. In the earlywood, Celtis
spp. has a generally uniseriate pore ring, while Ulmus spp. has 1 to 3 rows of earlywood
pores. In the tangential section, they have spiral thickenings in small vessels. The rays are
generally homogeneous to heterogeneous with one row of square marginal cells in Ulmus
spp. and slightly heterogeneous with few rows of square and upright cells in Celtis spp.
Regarding multiseriate rays, they are generally 4- to 5-seriate (occasionally narrower or
wider) in Ulmus spp. and 4- to 8-seriate in Celtis spp.

To evaluate whether these genera can be discriminated in prehistoric charcoal, we
performed a comparative study of both species (on current carbonised wood from the
reference collection) through a scanning electron microscope (SEM) (Figure 2). We focused
on the most probable criteria for distinguishing between both genera—pore distribution
in earlywood ring and ray morphology (width and heterogeneity)—thus confirming the
criteria described above. However, it should be noted that in archaeological wood charcoal
(sometimes of small size and with preservation problems), these criteria might not be
observable, or they might overlap. For this reason, some references where the taxon
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Ulmus/Celtis was identified were also considered in Tables 1–5 as a possible but not certain
presence of Celtis.
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2.3. Chemical Composition Analysis

Celtis australis fruits are edible, but composition and nutritional analyses are scarce.
Knowing these data is essential in order to assess their potential use as food and to discuss
their use during Prehistory or even favour their consumption nowadays. To carry out
these analyses, 1.8 kg of fruits of an individual was gathered on 14 November 2021 near
Cheste (Valencia, Spain) (39◦29′50.43′′ N; 0◦39′07′′ W) at 218 m a.s.l. The climatic conditions
in the gathering area are classified as BSk following the Köppen–Geiger system, with a
mean annual precipitation of around 456 mm and a mean annual temperature of 16.1 ◦C.
Under these conditions, thermo-Mediterranean flora develops, with Nerium oleander, Olea
europaea var. sylvestris, Rhamnus lycioides, Chamaerops humilis and Quercus coccifera. Celtis
australis concentrate in the more humid spaces, such as talwegs, fields’ edge or ravines.
The criteria applied for the selection of the sampled tree were: (1) a young tree whose size
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allow climbing to the top and (2) standing in a natural environment, not much altered by
humans. Fruits are abundant and remain on the tree until the beginning of the winter when
the flesh is dry, and the fruits are disseminated by gravity or by the birds. Fruit gathering
is laborious, since they do not fall easily knocking down the branches. Moreover, under
the selected tree, there was a dense understorey of tall grasses and thorny bushes. For
this reason, the knocking down was not performed because we would need to put a net
around the trunk to collect the fruits. We do not rule out the use of this gathering method
during Prehistory, but we wanted to check the cost with the minimum technology used in
the collection. Therefore, for the current experimentation, we decided to harvest the fruits
manually. To collect about 2 kg of fruit, a person spent 3 h.

2.3.1. Morphological Parameters

The morphological parameters of hackberry fruits (Celtis australis), such as unit weight,
pulp weight, seed weight, diameter (D), height (H), volume (V), geometric mean diameter
(Dg), degree of sphericity (Ø) and the surface area (S) of the fruit, are noted. The weights
were measured with an analytical balance (CB-Junior, Cobos) with an accuracy of ±0.001 g.
The fruit’s dimensions were measured using an electronic digital slide gauge (model CD-15
DC; Mitutoyo (UK) Ltd., Telford, UK) within 0.01 mm accuracy. The volume of the fruit
was calculated using the adapted formula of a sphere: V = 3

2 ∗ π ∗
(

H
2 + D

2

)
∗D2. The

geometric mean diameter of the fruit was calculated by using the formula Dg = (HD2)1/3,
where the degree of sphericity can be expressed as Ø = Dg/H, and the surface area (S) of
the fruit was calculated by using the formula S = πDg

2 [40]. Thirty random fruits were
selected for morphological measurements, since the variability of the parameters was low.

2.3.2. Nutritional Parameters

For nutritional characteristics, fruits were transversely cut in half. The pulp and peel
were manually separated from the seeds and weighed, and the seeds were eliminated.
Moisture and dry matter were determined for the whole fruit and for the pulp and peel.
The rest of the parameters were determined in pulp plus peel (since fruits are usually
ingested unpeeled).

Proximal composition was carried out following the official methods (Official Method
of Analysis of the Association of Official Analytical Chemists International): moisture [41]
(984.25), proteins [41] (984.13), fat [41] (983.23), fibre [41] (991.43) and ashes [41] (923.03). The
carbohydrate (CH) content was calculated by the difference. The results are expressed as
g·100 g−1 of fresh weight (fw). Energy (kcal 100 g−1) was calculated by multiplying the grams
of fat by 9 kcal and the grams of protein and carbohydrates of each 100 g of fruit by 4 kcal.

To determine the pH, soluble solids content (SSC) and titratable acidity (TA) of the peel
and pulp of the hackberries, 5 g of the sample plus 15 mL of distilled water was crushed
with a domestic blender to obtain a juice-like substance. The pH determination was made
by direct potentiometric measurement of the homogenised peel and pulp with pH and
Ion-metro GLP 22 (CRISON). The SSC in the juice was carried out using refractometric
techniques [41] (932.12). The material used in this determination is a hand-held refractometer
with a range of 0–32 ◦Brix. The determination of total acidity (TA) consists of the potentiometric
titration of the sample with an alkaline solution (0.5 N NaOH) up to pH = 8.1 [41] (942.15).
The results are expressed in grams of citric acid for 100 g of the sample.

The mineral composition was determined by the previous digestion of the samples
following the method AOAC 985.35 [41]. The samples were calcined in a Carbolite CWF
1100 muffle at 550 ◦C. The mineralised samples were analysed by inductively coupled
plasma emission spectroscopy (ICP-EOS) to determine the mineral elements. The equip-
ment used is Agilent ICP-EOS 710 (700 series ICP-OES, Mulgrave, Victoria, Australia). The
wavelengths selected for each element are the following: 317.933 nm for Ca determination,
324.754 nm for Cu determination, 238.204 nm for Fe, 769.897 nm for K, 285.213 nm for Mg,
257.610 nm for Mn, 589,592 nm for Na, 177,434 nm for P, 196.026 nm for Se, 213.857 nm for
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Zn, 249.678 nm for B and 281.615 nm for Mo determination. The results are expressed in
mg of the mineral element per 100 g of fresh fruit.

Total polyphenols (TP) were determined in an aliquot of methanolic extract with a
modification of the Folin–Ciocalteu assay, according to a previously published protocol [42],
using gallic acid as the reference standard. The results are expressed in mg of gallic acid
for 100 g of fresh fruit weight (mg EAG 100 g−1 fw). To measure the extract’s effect on the
DPPH radical, the optimised method of Brand-Williams et al. [43] is adapted. This measure
of the total antioxidant (AOT) capacity is carried out by employing methanol: HCl (99:1) as
dissolvent. The results are expressed in terms of activity equivalent to Trolox of fresh fruit
weight (µmol Trolox 100 g−1 fw).

Thirty fruits were used for the morphological measurements, and the rest of the pa-
rameters were analysed in triplicate. The obtained data were processed using Statgraphics
Plus version 5.1, which computed the means and standard errors to summarise a single
sample of data.

3. Results
3.1. Palaeobotanical Remains

Celtis remains were identified in 51 archaeological sites and 35 palaeobotanical sites of the
Mediterranean Basin (Tables 1–5), chronologically and geographically unevenly distributed.

Following Palamarev [44], the group Celtis lacunosa, which includes the ancestry taxa
of Celtis australis (C. lacunosa, C. japetii, C. begonioides, C. vulcanica and C. cernua), appeared
during the Oligocene, and it was present during this period, the Miocene and the Pliocene
in most parts of Europe (France, Germany, Czech Republic, Poland, Hungary, Austria,
Bulgaria and Moldavia) with some geographic disjunctions.

From the Lower Pleistocene, only 10 sites provide information. Celtis sp. has been
documented in the archaeological sites Gran Dolina (Spain) (936.000 BP), where both
endocarps and pollen were identified [45], Dmanisi (Georgia) [46] and Grotte du Vallonet
(France) [47]. We must highlight that the remains found in Dmanisi are probably Celtis
tournefortii, based on ecological criteria. In Gran Dolina, the remains come from a level
dated to MIS 25, one of the warmest stadials of the Günz glaciation. Moreover, pollen and
leaves of Celtis sp. were recovered in seven palaeobotanical sites in Western Mediterranean
(Table 1, Figure 3).
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Table 1. Lower Pleistocene sites where Celtis remains were reported (types of remains: endocarp (E),
leaves (L), pollen (P)).

ID Site Location Chronology Cultural
Adscription Taxa Type NR Reference

1 Bernasso Lunas, France
2.2 Ma–2.1 Ma (MIS 82–78)

Pollen zone II =
Interglacial

Celtis sp. P

<15% [48–50]L
Celtis cf.
australis/caucasica

2 Tres Pins Porqueres, Spain Early Pleistocene
(interglacial) Celtis sp. P <2% [51]

3 Lamone Valley Lamone Valley, Italy 1.8–1.4 Ma (MIS 64-46) Celtis sp. P <5% [52]

4 Dmanisi Kvemo Kartli,
Georgia 1.8 ± 0.05 Ma Early Palaeolithic Celtis sp.

(cf. C. tournefortii) E 3 [46]

5 Leffe Basin Leffe, Italy MIS 53-52 or 51-50 Celtis sp. P <2% [53]

6 Palominas Baza, Spain 1.8–1.1 Ma Celtis sp. P 10% [8]

7 Saint-Macaire maar Servian, France 1.4–0.68 Ma Celtis sp. P <1% [54]

8 Cal Guardiola Terrassa, Spain 1.2–0.8 Ma Celtis sp. P 0.2% [55]

9 Grotte du
Vallonnet

Roquebrune-Cap-
Martin, France

1,370,000 ± 120,000–
910,000 ± 60,000 BP

(Donau-Günz Interglacial)

Celtis sp. E [47,56]
cf. Celtis australis P <5%

10 Gran Dolina Atapuerca, Spain 936,000 BP (MIS 25) Lower Palaeolithic Celtis cf. australis
E

91 [45,57]P

For the Middle Pleistocene, the evidence increases, with data from 9 archaeological
sites, such as Grotte de l’Escale, Caune de l’Arago or Grotte du Lazaret in France, or even
in Germany, in Kärlich [58,59], De Lumley in Refs [60,61], and 18 palaeobotanical sites,
showing a larger distribution (Table 2, Figure 4). For this period, the expansion of Celtis
to northern Europe must be highlighted, reaching the north of Germany. Most of these
remains were reported in levels dated to warm MIS 11 (Holstein interglacial). Only Grotte
de l’Escale is clearly placed in a cold period (Middle or Upper Mindel glaciation). MIS
10 represents one of the coldest moments in Europe, so this period must be critical for Celtis
in northern Europe. Afterwards, Celtis is documented in Lazaret and during MIS 9 and 7 in
Cova del Bolomor [62].
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Table 2. Middle Pleistocene sites where Celtis remains were reported (types of remains: wood charcoal
(C), endocarp (E), leaves (L), pollen (P), wood (W)).

ID Site Location Chronology Cultural
Adscription Taxa Type NR Reference

11 Łuków Łuków, Poland
Ferdynandovian I
interglacial (MIS

15–MIS 13)
Celtis sp. P [63]

12 Zdany Zdany, Poland
Ferdynandovian I
interglacial (MIS

15–MIS 13)
Celtis sp. P [63]

13 Achalkalakai Achalkalakai,
Georgia

Early Middle
Pleistocene Celtis sp. E [64]

14 Galería Atapuerca, Spain Final Middle
Pleistocene Lower Palaeolithic Celtis sp. P 2% [65]

15 Krzyżewo Krzyżewo, Poland Augustovian interglacial
(cf. Late Cromerian) Celtis sp. P <1% [66]

16 Grotte de l’Escale Saint-Estève-Janson,
France

Middle and
Upper Mindel Without adscription Celtis sp. E [59]

17 Grotte nº1 du Mas
des Caves

Lunel-Viel, Hérault,
France

550,000–400,000 BP
(Mindel–Riss

Interglacial, MIS 11)
Middle Acheulean Celtis sp. E [67]

18 Ceprano Ceprano, Italy 530,000–380,000 BP
(MIS 13) Celtis sp. P <5% [68]

19 Kleszczów Graben Kleszczów, Poland Ferdynandovian and
Holsteinian interglacial Celtis sp. P <1% [69]

20 Terra Amata * Nice, France 380,000 BP (MIS 11) Acheulean Celtis australis E De Lumley in
Refs [60,61]

21 Kärlich
Mülheim-Kärlich,

Germany Interglacial, MIS 11 Early Palaeolithic Celtis sp.
E 1

[58,70]C and W 27
P 1.4%

22
Munster/

Breloh
Niedersachsen,

Lüneburger Heide,
Germany

Holsteinian interglacial Celtis sp.
E Müller 1974

cited in Refs
[70,71]P <5%

23 Southwestern
Mecklenburg Hagenow, Germany Middle Pleistocene Celtis sp. E Erd cited in

Ref [70]

24 Dethlingen Lüneburger Heide,
Germany Holsteinian interglacial Celtis sp. P <5% [72]

25 Döttingen Rheinland-Pfalz,
Eifel, Germany Holsteinian interglacial Celtis sp. P <5% [71]

26 Bilzingsleben Bilzingsleben,
Germany Holsteinian interglacial Celtis sp. P [73]

27 Kreftenheye Formation Raalte,
The Netherlands

>MIS 5 (reworked,
remains from

older interglacials)
Celtis sp. W 1 [74]

28 La Celle-sur-Seine
Vernou-La

Celle-sur-Seine,
France

425,000 ± 46,000 BP
(MIS 11) Celtis australis L (impressions) [75]

29 Caune de l’Arago Tautavel, France 320,000–220,000 BP Acheulean Celtis australis E De Lumley in
Ref [60]

30 Grotte du Lazaret Nice, France Late Middle Pleistocene
(Riss I, II and III) Acheulean Celtis australis E De Lumley in

Refs [60,61]

31 La Rouquette Millau, France 273,000 ± 23,000 BP
(MIS 7) Celtis australis E 1 [76]

32 Coudoulous I Tour-de-Faure,
Lot, France 300,000–200,000 BP Celtis australis E

Bonifay and
Clottes 1981 in

Ref [76]

33 Cova del Bolomor
Tavernes de la

Valldigna, Spain
>350,000 BP (MIS 8-9)

Mousterian Celtis australis
P <3% [62]233,000–152,000 (MIS 7) E

34 Cova Negra Xàtiva, Spain 303,000–148,000 BP
(MIS 6–8) Mousterian Celtis sp. E 25 Unpublished

35 Meyrargues Meyrargues, France 170,000 and 145,000 BP Celtis australis L [77]

36 Aygalades Marsella, France Middle Pleistocene Celtis australis L [77,78]

37 Padul Padul, Spain 180,000 cal BP (MIS 6e) Celtis sp. P <5% [79]

* The presence of Celtis australis is not stated in Ref [61].
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During the Upper Pleistocene, the distribution of Celtis australis suffered a profound
modification. Between MIS 5 and MIS 3, hackberry remains were present in different
archaeological sites of the western Mediterranean Basin, such as Cova del Bolomor, Abrigo
de la Quebrada or Cova Negra [62,80]. On the other side of the Mediterranean, C. australis is
documented in Douara Cave (Syria) [81], together with C. tournefortii, a species reported in
Theopetra (Greece) [82]. On the contrary, Celtis australis is completely absent in the western
part of the Mediterranean Basin beyond 35,000 BP, not being present in MIS 2 deposits,
except for the pollen grains detected in Teixoneres [83], Cova del Toll [84] and Padul [79].
In the eastern part of the basin, Celtis sp. endocarps were recovered in Karain B and
Oküzini [85], whereas Celtis tournefortii was reported in the palaeobotanical site of Ezero
wetland (Bulgaria) [86] and again in Theopetra [82] (Table 3, Figures 5 and 6).
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Natural Earth Data).
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Table 3. Upper Pleistocene sites where Celtis remains were reported (types of remains: wood charcoal
(C), endocarp (E), leaves (L), pollen (P), phytoliths (Ph), wood (W)).

ID Site Location Chronology Cultural
Adscription Taxa Type NR Reference

38 Cova del Toll Moià, Spain MIS 5–6? Middle Palaeolithic Celtis sp. P <3% [84]

33 Cova del Bolomor
Tavernes de la

Valldigna, Spain <121,000 BP (MIS 5e) Mousterian Celtis sp. P <3% [83]E

39 Theopetra Kalambaka, Greece
129,000 ± 13,000

BP–57,000 ± 6000 BP
(MIS 5-4)

Middle Palaeolithic
Celtis
cf. tournefortii

E 1 [82,87]
Ph <6%

37 Padul Padul, Spain 107,000–92,000 cal BP
(MIS 5c and MIS 5b) Celtis sp. P <5% [79]

40 Lake Ohrid FYROM 131,000–69,900 BP
(MIS 5 and early MIS 4) Celtis sp. P [88]

41 Castelnau le Lez Castelnau le Lez,
France

113,700
(+7200/−6700)–44,700

(+2100/−2000)
BP (MIS 5-3)

Celtis australis L [78,89,90]

42 Douara Cave Palmyra Basin, Syria 52,000 (+5000/−3000)
BP (MIS 3) * Mousterian

Celtis cf.
australis and C.
cf. tournefortii

E >127 [81,91,92]

43 Abric de El Salt Alcoi, Spain 52,300 ± 4600 BP
(MIS 3) Mousterian Celtis australis

E 1 [93,94]Ph

44 Cueva del Niño Ayna, Spain 55,550 BP (MIS 3) Mousterian Celtis sp. E 17 [95]

45 Abrigo de la
Quebrada Chelva, Spain 40,243–39,075 cal BP

(MIS 3) * Mousterian Celtis sp. E 7 [80]

46 Baaz Damascus, Syria 39,565–36,169 cal BP
(MIS 3) Upper Palaeolithic Celtis sp. P <5% [96]

47 Cueva del Arco Cieza, Spain 36,091–35,203 cal BP
(MIS 3) * Mousterian Celtis sp. E 10 Unpublished

48 Straldzha Mire Bulgaria 37,500–17,900 cal BP
(MIS 3-2) Celtis sp. P <5% [97]

37 Padul Padul, Spain 27,000–15,000 cal BP
(MIS 2) Celtis sp. P <5% [79]

49 Teixoneres Barcelona, Spain 20,000–16,000 cal BP
(MIS 2) Upper Palaeolithic Celtis sp. P <3% [98]

39 Theopetra Kalambaka, Greece 20,000–12,000 cal BP
(MIS 2)

Upper Palaeolithic Celtis cf.
tournefortii

E 50 [82,87]Ph <3%

50 Karain B Antalya, Turkey 19,899–18,991 cal BP
(MIS 2) Epipalaeolithic Celtis sp. E 6 [85]

51 Öküzini Antalya, Turkey 19,080–13,747 cal BP
(MIS 2) Epipalaeolithic Celtis sp. E 380 [85]

52 Pınarbaşı Konya Plain, Turkey 16,000–14,000 cal BP
(MIS 2) Epipalaeolithic Celtis sp. C 1.09% [99]

53 Ezero wetland
Nova Zagora,

Bulgaria
15,550–14,950 cal BP

(MIS 2) *

Celtis sp. P 20%
[86]Celtis tournefortii tp. E 3 per 45 cm3

Celtis sp. W 4 per 45 cm3

38 Cova del Toll Moià, Spain

<13,000 cal BP
(probably MIS 1, but

perhaps covers part of
MIS 2)

Celtis sp. P <3% [84]

54 Tell Abu Hureyra Euphrates Valley,
Syria

13,111 ± 94–11,981 ±
217 cal BP (MIS 2) Epipalaeolithic Celtis tournefortii E [100,101]

55 Körtik Tepe Diyarbakir/Batman,
Turkey 12,479–11,388 (MIS 2) Epipalaeolithic Celtis sp. C 1 (0.01%) [102]

56 Bagnoli San Gimignano, Italy GI 1e and GI 1c (MIS 2) Celtis sp. P <5% [103]

57 Pella T. abaqat Fah. l, Jordan MIS 2 Kebarian Celtis sp. C [104]

* Direct dating of Celtis remains.

Celtis remains were reported in 18 archaeological sites and 3 palaeobotanical sites
for the Lower Holocene (Table 4, Figure 7). Celtis tournefortii endocarps are extensively
documented in different sites of the eastern Mediterranean, such as Theopetra, Çayönü
or Tell Abu Hureyra [82,101,105]. On the contrary, Celtis australis is hardly reported, only
in Hacilar (Turkey) [106], together with grain pollen in Lago dell’Accesa [107] and Gorgo
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Basso [108]. However, most of the remains of this period are identified at the genus level,
hindering a precise reconstruction of the impact of climatic change on the Mediterranean
hackberry distribution; still, the absence in the Western Mediterranean is evident.
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Table 4. Lower Holocene sites where Celtis remains were reported (types of remains: wood charcoal
(C), endocarp (E), pollen (P), phytoliths (Ph)).

ID Site Location Chronology Cultural Adscription Taxa Type NR Reference

58 Tell Qaramel Aleppo, Syria 12,193–11,250 cal BP Khiamian Celtis sp. E 400 [109]

59 Lago dell’Accesa Massa Marittima, Italy Ca. 11,650–11,350 cal BP Celtis australis P [107]

55 Körtik Tepe Diyarbakir/Batman,
Turkey 11,600–11,350 cal BP Pre-Pottery Neolithic Celtis sp. C 15 (0.8%) [102]

60 Jerf el Ahmar Middle,
Euphrates, Syria 11,400–10,255 cal BP Pre-Pottery Neolithic Celtis sp. E 1 [109]

39 Theopetra Kalambaka, Greece 11,200–9200 cal BP Mesolithic Celtis cf. tournefortii E 35 [82,87]Ph <5%

61 Shillourokambos Parekklisha, Cyprus 10,700–9529 cal BP Pre-Pottery Neolithic Celtis sp. E 2 [110]

62 Klimonas Ayios
Tychonas, Cyprus

Late 11th–middle 10th
millennium cal BP PPNA Celtis sp. E [111]

63 Nevali Çori Sanliurfa, Turkey 10,350 cal BP PPNB, PN Celtis sp. E 1 [112]

64 Asikli Höyük Aksaray, Turkey 10,220–9468 cal BP Pre-Pottery Neolithic Celtis cf. tournefortii E 17,885 [113]

65 Çayönü Diyarbakır, Turkey 10,200–9700 cal BP Pre-Pottery Neolithic Celtis cf. tournefortii E 2 [105]

66 Ganj Dareh Kermanshah, Iran 10,200–9560 cal BP PPNB Celtis sp. C [114]

67 Lake Voulkaria Acarnania, Greece 9966–8171 cal BP Celtis sp. P 5% [115]

68 Cave of Cyclops Gioura, Greece 9700–6700 cal BP Late Mesolithic cf. Celtis sp. E 1 [116]

69 Lake Gorgo Basso Sicily, Italy 9785–9010 cal BP Celtis australis P 5% [108]

70 Can Hasan III Konya plain, Turkey 9600–8400 cal BP Aceramic Neolithic
Celtis cf. tournefortii E 978 [99,117,118]Celtis sp. C 0.31%
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Table 4. Cont.

ID Site Location Chronology Cultural Adscription Taxa Type NR Reference

71 Çatalhöyük Konya plain, Turkey 9327–8171 cal BP Early Neolithic Celtis sp.
(cf. C. tournefortii)

E 1498 [119]C 9.81%–5.44%

72 Hacilar Burdur, Turkey 9027–7780 cal BP Late Neolithic Celtis australis E
(charred) 125 [106]

73 Cafer Höyük Malatya, Turkey 8990–8150 cal BP Early, Middle and
Late PPNB

Celtis sp. C
[104,120]Celtis sp. E 4

Pistacia/Celtis sp. E 1

74 Khirokitia Larnaka, Cyprus 9th–8th millennium cal BP
Late Aceramic

Neolithic
(Khirokitian)

Celtis sp. E 1 [121,122]

75 Dhali-Agridhi
(Idalion) Dhali, Cyprus c. 9th millennium cal BP

Late Aceramic
Neolithic

(Khirokitian)
Celtis sp. E 1 [123]

76 Kholetria-Ortos Paphos, Cyprus 8550–7750 cal BP
Late Aceramic

Neolithic
(Khirokitian)

Celtis sp. E [124]

We have to wait until the Middle Holocene to witness the beginning of the recovery
of Celtis populations in the Western Mediterranean. In the Iberian Peninsula, the ancient
references from the Holocene come from Poças de São Bento (Portugal), dated to ca.
4600 cal BC [125], and its presence did not consolidate until the Bronze Age. The reduction
in evidence in the whole basin is noteworthy: only nine archaeological sites and two
palaeobotanical sites report Celtis remains (Table 5, Figure 8). This situation, concerning the
archaeological sites, could be related to a loss of human interest in this plant.
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Table 5. Middle Holocene sites where Celtis remains were reported (types of remains: wood charcoal
(C), endocarp (E), pollen (P)).

ID Site Location Chronology Cultural Adscription Taxa Type NR Reference

52 Pınarbaşı Konya plain, Turkey 8395–6392 cal BP
Final Neolithic Celtis sp. C

2.34% [99,126]Chalcolithic 1.12%

77 Ramad Damasco, Syria 8250–7950 cal BP PPNB Celtis/Ulmus sp. C [118,127]

70 Lake Gorgo Basso Sicily, Italy 8213–4402 cal BP Celtis australis P <5% [108]

78 Aknashen Ararat valley,
Armenia 7975–7157 cal BP Neolithic Celtis sp. E 5 [128]

79 Aratashen Ararat valley,
Armenia 7861–7428 cal BP Neolithic Celtis sp. E 1 [128]

80 Kumtepe A Troas, Turkey 7435–6550 cal BP Late Neolithic Celtis sp. C
1.17% [129]4950–4400 cal BP Early Bronze Age 0.82%

81 Lake Beloslav Varna, Bulgaria 6796–3874 cal BP Celtis sp. P >1% [130]

82 Ayios Epiktitos-Vrysi Kirenia, Cyprus 6750–5750 cal BP
Late Aceramic

Neolithic
(Khirokitian)

Celtis australis E [124]

83 Poças de São Bento Torrão, Portugal ca. 6550 cal BP Early Neolithic Celtis australis E (charred) 12 [125]

84 Kissonerga-Mosphilia Kissonerga, Cyprus 6550–4150 cal BP Chalcolithic (Early,
Middle and Late) Celtis sp. E 7 [124,131]

85 Heraion of Samos Kastro-Tigani,
Samos, Greece 5050–3950 cal BP Early Bronze Age Ulmus/Celtis sp. C <1% [132]

86 El Carrizal de Cuéllar Lastras de
Cuéllar, Spain 4576–4346 cal BP Celtis sp. P <10% [133]

3.2. New Direct Radiocarbon Dating of Celtis Remains

The only way to settle the discussion regarding the antiquity of Celtis remains is
through their radiocarbon dating. Radiocarbon dating is a method, which provides ob-
jective estimates of the age of carbon-based materials that originated from living organ-
isms [134,135]. However, the direct chronological dating of Celtis sp. endocarps is really
scarce (in Tables 1–5, we present the chronology of the level where the remains were recov-
ered, obtained on other types of samples). Moreover, most of the deposits where they were
found are beyond the range covered by this dating method. As far as we know, for the
Middle Palaeolithic, only Celtis endocarps from Douara cave were directly dated, yielding
a date of 52,000 (+5000/−3000) BP [136]. In addition, in the palaeobotanical site of Ezero
wetland, Celtis endocarps were directly dated at 12,900 ± 60 BP [86]. For this work, two
endocarps from Middle Palaeolithic Iberian sites (Abrigo de la Quebrada and Cueva del
Arco) were dated (Figure 9). The radiocarbon dating results and the specifics of the analysis
are presented in Table 6.
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Table 6. Radiocarbon dating results of Celtis endocarps.

Site Laboratory
Number

Analysed
Material

Radiocarbon
Age (BP) Cal BP (95.4%) Stable

Isotopes
Percent Mod-
ern Carbon D14C ∆14C

Abrigo de la
Quebrada Beta–506374 Carbonate 35,120 ± 220 40,243–39,075

IRMS δ13C:
−9.3 o/oo

IRMS δ18O:
+6.1 o/oo

1.26 ± 0.03 pMC −987.37 ± 0.35 o/oo −987.48 ± 0.35 o/oo
(1950:2018)

Cueva del Arco Beta–627630 Carbonate 31,190 ± 190 36,091–35,203

IRMS δ13C:
−6.5 o/oo

IRMS δ18O:
+9.0 o/oo

2.06 ± 0.05 pMC −979.41 ± 0.49 o/oo −979.58 ± 0.49 o/oo
(1950:2022)

Both Celtis endocarps provide results coherent with the archaeological deposits where
they were found, so their intrusive character must be rejected, despite their uncharred
preservation, and they demonstrate the undeniable presence of Celtis sp. in the Iberian
Mediterranean Basin during MIS 3.

3.3. Chemical Composition of Celtis australis Fruits

Regarding the morphological analysis of hackberry fruits, the unit weight of hackberry
fruits ranges between 0.400 and 0.587 g (Table 7). It is a small fruit, and the weight found in
this study from the Valencian area is lower than that registered by Vidal-Cascales et al. [137]
in fruits from wild trees growing in the forests of Moratalla (Murcia, Spain). These authors
found an average unit weight of 0.77 g. The greater weight of the fruit is related to the
greater dimensions of calibre (diameter and height). The calibre values of the fruits found
in this study are similar to those reported by Demir et al. [138] in hackberries from Turkey,
where more than 50% of the fruits had a diameter of 9.47 mm and a fruit height of 10.73 mm,
a geometric mean diameter of 9.75 mm, a degree of sphericity of 0.9099 and a surface
area of 283.25 mm2. These authors indicate that the area and, consequently, the volume of
hackberry fruits increased with the moisture content. This would explain the differences in
the values of fruit volume.

Table 7. Morphological parameters of hackberry fruits (mean ± SD, minimum and maximum value,
n = 30).

Parameter Value (Mean ± SD) Minimum Value Maximum Value

Unit fruit weight (g) 0.505 ± 0.051 0.400 0.587
Fruit diameter (mm) 9.20 ± 0.63 7.89 10.35
Fruit height (mm) 10.22 ± 0.84 8.49 11.67
Fruit volume (mm3) 1742.60 ± 326.99 1067.82 2425.30
Geometric mean diameter (mm) 9.31 ± 0.57 7.92 10.4
Degree of sphericity 0.91 ± 0.05 0.79 1.01
Surface area (mm2) 273.29 ± 33.34 196.86 339.56
Pulp and peel weight (g) 0.211 ± 0.005 0.207 0.217
Seed weight (g) 10.833 ± 0.472 10.200 11.300
Pulp and peel (%) 42.88 ± 0.48 42.35 43.50
Seed (%) 56.43 ± 0.23 56.12 56.67

The pulp and peel fraction represents 42.88% of the fruit’s fresh weight, whereas the seed
or stone is 56.43% (Table 7). Boudraa et al. [139] reported that the Algerian hackberry pulp
represents 55.6% of the fruit’s fresh weight, higher than the value obtained in this study.

The proximal nutritional composition and energy value of the fruits are presented in
Table 8. The moisture content in the whole fruit is 21.9% lower than the exclusive moisture
of the pulp and peel. The results of this study concerning dry matter are similar to those
reported by Demir et al. [138] with Turkish hackberries (90.23%). In contrast, the moisture
content is lower than that found by other authors: 43.9% of moisture content in the flesh
and 39.7% in the peel reported by Vidal-Cascales et al. [137], 31% in fresh hackberries
from Algeria according to Boudraa et al. [139], 30% in fresh Croatian hackberries reported
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by Ota et al. [140]. Moisture content is inversely related to dry matter fraction, and its
variations may be related to the contribution of rainwater or possible irrigation. Moreover,
the difference in the moisture content could be due to different harvesting seasons and their
impact on the loss of water. In our sample, harvesting took place well into the autumn, and
the fruits may have lost moisture.

Table 8. Proximal parameters for fresh weight of hackberry fruits (mean ± SD, minimum and
maximum value, n = 3).

Parameter Value (Mean ± SD) Minimum Value Maximum Value

Dry matter (%) whole fruit 81.60 ± 0.22 81.30 81.80
Dry matter (%) pulp and peel 76.44 ± 0.40 75.90 76.81
Moisture (%) whole fruit 18.40 ± 0.22 18.20 18.70
Moisture (%) pulp and peel 23.56 ± 0.40 23.19 24.10
Fat (%) 0.489 ± 0.052 0.449 0.561
Protein (%) 2.49 ± 0.02 2.45 2.51
Ashes (%) 4.035 ± 0.118 3.934 4.198
Fibre (%) 7.34 ± 0.21 7.18 7.62
Carbohydrates (%) 62.10 ± 0.27 61.73 62.32
Energy (kcal 100 g−1) 262.75 ± 0.56 13.849 15.064

The major nutrients of fresh fruits (pulp and peel) are carbohydrates (62.10%), followed
by fibre (7.34%) and protein (2.49%). Fat is a minor component (0.489%), and the ashes,
which include the total minerals’ fraction, present a high value (4.035%) (Table 8). Ota
et al. [140] found that hackberry fruits contained 10.2% of total dietary fibre when the
moisture content was 30%. The work of Demir et al. [138] evidenced that fat and protein
content is 6.7% and 19.32%, respectively, when the moisture of the fruits is 9.77% (equivalent
to 0.625% fw in fat and 1.887% fw in protein), in line with the values found in this study of
fruits from the Valencian area. This proximal composition provides an energy content of
262.75 kcal 100 g−1, similar to that reported by other authors [138]. This energy content
is approximately three times higher than that provided by the apple fruit [141] due to the
lower water content and higher protein and carbohydrate content in hackberry fruits.

The high content of carbohydrates is positively related to the high soluble solids (sug-
ars) content (Table 9). The soluble solids in fresh hackberry fruits (pulp and peel) present
an extraordinarily high value (48.67 ◦Brix) compared to the values of commonly consumed
fruits [142]. This result is in complete agreement with other works [137,140]. Vidal-Cascales
et al. [137] relate this unusually high content in soluble solids to the high individual values
of sucrose, glucose and fructose. Hackberry fruits are non-acidic (pH = 6.55) and have low
total acidity, expressed in g citric acid 100 g−1 (0.247). The acidity values are similar to
those found by other authors [137,140].

Table 9. pH, titratable acidity, soluble solids content, total polyphenols and total antioxidant capacity
parameters for fresh weight of hackberry fruits (mean ± SD, minimum and maximum value, n = 3).

Parameter Value
(Mean ± SD) Minimum Value Maximum Value

pH 6.55 ± 0.05 6.49 6.59
Titratable acidity (g citric acid 100 g−1 fw) 0.247 ± 0.029 0.210 0.280
Soluble solids content (◦Brix) 48.67 ± 1.73 47.00 51.00
Total polyphenols (mg EAG 100 g−1 fw) 192.19 ± 12.60 174.85 203.03
Total antioxidant capacity (µmol Trolox 100 g−1 fw) 770.70 ± 97.85 650.43 885.92

Regarding the bioactive components (Table 9), the amount of total phenolic (192.19 mg
equivalent gallic acid 100 g−1) is slightly lower (249.1 mg equivalent gallic acid 100 g−1)
than that reported by Vidal-Cascales et al. [137] in fruits from wild trees of Moratalla (Spain)
and that (239.1 mg gallic acid 100 g−1) reported by Ota et al. [140] in Croatian hackberry
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mesocarp but similar (172 mg gallic acid 100 g−1) to that in edible fruits from the Indian
Himalayan region [143]. Biotic and abiotic stress conditions are responsible for the greater
accumulation of polyphenols in plants, and it is one of the factors, which can influence
these differences. The antioxidant capacity of the fruits is high. It was not possible to
compare it with other studies due to the different analysis methods and expression of the
results. Nevertheless, the literature confirms that the high antioxidant capacity of hackberry
fruits justifies their use in traditional medicine [144].

Among the minerals (Table 10), Mg was at the highest concentration in the pulp and
peel of hackberry fruits, followed by K, Ca and P. This variation of macrominerals coincides
with that shown by Ota et al. [140], except for magnesium, which does not provide values
for this mineral. Boudraa et al. [139] found that Ca is the major mineral element, followed
by Mg and K. For the microelements in the pulp and peel of hackberry fruits, B was the
major microelement at 3.687 mg 100 g−1 fw, followed by Fe (2.307 mg 100 g−1 fw) and Cu
(0.479 mg 100 g−1 fw) and slightly lower concentrations for Zn, Mn and Se. The mineral
element with the lowest concentration is Mo. Demır et al. [138] also found that boron
concentrations are slightly higher than those of iron in hackberry fruits.

Table 10. Individual minerals for fresh weight of hackberry fruits (mean ± SD, minimum and
maximum value, n = 3).

Parameter
(mg 100 g−1 fw) Value (Mean ± SD) Minimum Value Maximum Value

Magnesium 413.910 ± 1.020 412.550 414.940
Potassium 358.247 ± 1.822 356.35 360.65
Calcium 212.479 ± 1.148 211.601 214.073
Phosphorus 104.670 ± 0.022 104.640 104.690
Sodium 10.978 ± 0.493 10.353 11.534
Boron 3.687 ± 0.045 3.625 3.729
Iron 2.307 ± 0.108 2.188 2.447
Copper 0.479 ± 0.042 0.421 0.510
Zinc 0.203 ± 0.020 0.177 0.226
Manganese 0.144 ± 0.007 0.139 0.153
Selenium 0.143 ± 0.022 0.113 0.163
Molybdenum 0.013 ± 0.010 0.006 0.028

Ota et al. [140] found that hackberry fruits contained 1060 mg of K 100 g−1 dw when
the moisture content was 30% (equivalent to 315 mg of K 100 g−1 fw). Demır et al. [138]
found that hackberry fruits contained 344.26 mg of K 100 g−1 fw. Both results align with
the concentrations found for this element in the fruits from Valencia in this study.

The mineral contents of the fruit depend on genetic factors and edaphoclimatic condi-
tions. The hackberry trees from which the fruit was harvested in the present study were
growing wild, with no agricultural practices applied.

4. Discussion
4.1. All That Is Uncharred Is Not Intrusive

Given the data presented above, we can affirm that the documentation of Celtis sp. is
abundant, even in ancient chronologies where the archaeobotanical data are usually scarce.
However, why does its presence in the archaeological sites raise some doubts? The state of
preservation of the remains is key.

The endocarps of Celtis sp. hardly ever appear charred (they have been documented in
Cova Negra, Poças de São Bento and La Cisterne). They are frequently preserved uncharred
or characterised in the bibliography as mineralised. This state of preservation can be
explained because of the high mineral content of the woody endocarp walls [31,34,36].
This composition makes their preservation in archaeological sites possible without the
action of other preservation agents, such as carbonisation. In fact, the practical absence of
charred remains of Celtis sp. is used as an argument to affirm that the remains are intrusive.
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We must point out here that, possibly, some documented remains are actually charred.
However, their state of preservation could be misidentified, since the endocarps do not
turn black when charred but grey or white, as pointed out by Miller [145], as is the case in
other diaspores with high mineral content, such as the Boraginaceae nutlets [146].

Their antiquity is also questioned because this taxon is not usually documented in
other macrobotanical assemblages, such as in the anthracological. The anatomy of Celtis
spp. wood is well defined—although sometimes it cannot be differentiated from Ulmus
spp.—so its absence in the Pleistocene archaeological deposits is striking; it has only been
documented in the Middle Pleistocene deposits of Kärlich and Ezero and in the Upper
Pleistocene sites of Pınarbaşı, Körtik Tepe and Pella. Nevertheless, we can propose two
possible hypotheses to explain this absence: (A) the antiquity of the sites mentioned
above, together with the fragility of the angiosperm wood charcoal fragments compared to
gymnosperms charcoal pieces [147–149], could result in their remains being identified only
at the group level as Angiosperm due to their state of preservation (in Holocene sites, Celtis
wood charcoal is more ubiquitous); (B) the absence of charred wood of Celtis sp. could
be explained by the possible protection of a tree which provides humans with food, as
has been observed for Pinus pinea [150,151] and Corema album [152], and raw material for
elaborate tools.

The only way to settle the discussion regarding the antiquity of Celtis sp. remains
in archaeological sites is through their radiocarbon dating, as has been carried out with
other species, such as Olea europaea [153]. However, most of the deposits where they were
found are beyond the range covered by this dating method, and it is an expensive method.
Nevertheless, Wang et al. [31] noted the interest in dating the endocarps of Celtis sp., since
the biogenic carbonate reflects the C14 atmospheric values of only one growing season. The
radiocarbon data obtained for Celtis endocarps from Abrigo de la Quebrada and Cueva del
Arco confirm the antiquity of these remains, as well as their presence during MIS 3 in the
Mediterranean Iberian region. Jahren et al. also pointed out the interest in Celtis endocarps
as a proxy for palaeoclimatic reconstructions through oxygen isotope analyses [154].

4.2. Variation in the Geographic Distribution of Celtis spp.

Climatic changes and anthropic action have modified the distribution of flora up to
the current situation [155–159]. The native character of Celtis australis in the Mediterranean
Basin is widely accepted. However, its geographic distribution extremely changed accord-
ing to the climatic condition changes from the Pliocene, as shown by the palaeobotanical
data gathered in this work.

The Pliocene was a warm and humid period. Therefore, subtropical climatic conditions
prevailed in most of Europe, where the forests were dense and diversified. During Upper
Pliocene, Quaternary vegetation was established in Europe, so the Mediterranean and
temperate or subtropical species lived together. Nevertheless, the progressive worsening of
the climatic conditions caused the migration of the subtropical taxa and the consolidation
of the Eurosiberian and Mediterranean plants [5], such as Celtis australis.

An increase in aridity 2.6 million years ago favoured the spread of Mediterranean
species. With the beginning of the glacial–interglacial cycles, the exotic elements of Tertiary
flora gradually disappeared from Europe, such as Carya, Tsuga or Pterocarya. In contrast,
Mediterranean species, such as Quercus, Acer or Artemisia, continued their spread [5].
During the Lower Pleistocene, Celtis was detected in the northwestern part of the Mediter-
ranean Basin, basically during warm periods, such as along the Gelasian or at the end of
the period during MIS 25 in Gran Dolina. During the Middle Pleistocene, Celtis spread to
the north of Europe, at least during the warmest moments of the period [58,160]: most of
the remains were reported at levels dated to the Holsteinian interglacial (MIS 11) or the Fer-
dynandovian interglacial (MIS 15-13). During these warm and humid periods, hackberry
was documented in German or Polish sites with other exotic taxa, such as Pterocarya and
Juglans [161]. The longer duration of the Holsteinian interglacial could allow the expansion
of thermophilous species [162]. However, hackberry would not be an abundant species,
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considering that its pollen curve is always under 5% of the assemblages. Celtis presence
clearly placed during cold stages is restricted to southern Europe, such as in Grotte de
l’Escale (Middle or Upper Mindel glaciation) or Padul (MIS 6e). MIS 10 represents one of
the coldest moments in Europe, so this period must have been critical for Celtis popula-
tions in northern Europe, where they disappeared. In fact, after this stage, Celtis is only
documented in the Mediterranean Basin, such as in Lazaret or Cova de Bolomor. Even
in the later interglacials, such as MIS 9, when temperatures where higher than in MIS 11,
Celtis is not documented in Europe outside this area. This could be related to their shorter
duration [162,163].

During the Upper Pleistocene, climatic oscillations were more pronounced and faster.
These new climatic conditions deeply affected the distribution of Celtis populations. Al-
though during the interglacial of MIS 5, warm and temperate species were well represented
in Europe [164–168], with the beginning of MIS 4, steppe elements were predominant,
together with cryophilous trees [80,87,94]. Therefore, although Celtis is documented during
the initial moments, from 30,000 cal BP onwards, it is only present in the Eastern Mediter-
ranean, limited to the species Celtis tournefortii. The presence of Celtis during the cold
periods of the Middle Pleistocene and part of the Upper Pleistocene in southern parts of
Europe could be interpreted within the characterisation of the European Mediterranean
Peninsulas as refugia [155,158,169,170], restricted to warmer areas, not being documented
in the Atlantic watershed of the Iberian Peninsula [171–173]. From these refugia, some
species could recolonise Europe after the ice retreat: for instance, Postigo Mijarra et al. [55]
pointed out that Juglans, Carpinus, Platanus, Fagus, Celtis and Castanea survived in the
Iberian Peninsula during the Upper Pleistocene. The rare presence of Celtis pollen in the
western Mediterranean Basin in MIS 3 and MIS 2 in Teixoneres, Padul and Bagnoli could
be evidence of the resistance of some small and isolated populations in the Iberian and
Italic Peninsula. In fact, the late recolonisation of the western Mediterranean Basin by
Celtis australis could be explained by the small size of the surviving populations or by their
scattered and discontinuous distribution: Celtis pollen in these sites represents less than
5% of the assemblages. However, the contribution of long-distance transport should be
considered, since no macrofossils have been reported.

The climatic change at the beginning of the Lower Holocene seemed to positively
impact the spread of Celtis species, at least for Celtis tournefortii in Eastern Mediterranean
and Near East, whose endocarps are frequently (and abundantly) found in Neolithic
sites. On the contrary, Celtis australis is not frequently identified for this period. Its
spread in the Western Mediterranean Basin only occurs during the Middle Holocene and
is consolidated in the Bronze Age. Mateu-Andrés et al. [174], considering its low genetic
diversity, point to a recent expansion of Celtis australis in the Mediterranean Basin from the
Eastern Mediterranean following the Neolithic expansion routes, thanks to human action
due to the economic interest in it. On the contrary, the presence of Celtis spp. in the Near
East and Eastern Mediterranean decreased during the Middle Holocene.

4.3. Gathered during the Palaeolithic

If we accept that the presence of Celtis remains in the Palaeolithic sites is not a con-
sequence of post-depositional disturbances but contemporaneous to the formation of the
archaeological level where they were recovered, we can question what their route of entry
to the archaeological deposit was. In the archaeobotanical record, three types of routes
of entry are distinguished: animal, physical and human. Birds propagate the seeds of
Celtis sp. easily, so they can be considered a potential deposition agent. The growth of
this tree near the site could cause its natural deposition in the deposit. Finally, humans
can be considered potential depositional agents when gathering fruits for consumption,
discarding the inedible part, the endocarp, in the habitat.

The economic interest in Celtis fruits is beyond doubt: they are edible and, as our
composition analysis reveals, they are rich in carbohydrates, fibres, proteins and minerals,
being an energetic source. Moreover, their sweetness and low acid flavour make them
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attractive to humans. Their intentional gathering and consumption have been pointed out
during the Neolithic in several sites, such as Çatalhöyük and Hacilar (Turkey), where the
endocarps are extremely abundant [106,119]. In more recent chronologies, their use was
documented in Lattes during the 1st century AD [175]. Even a ritual character has been
attributed to hackberry fruits found in the Middle Bronze Age burial mound of Izvorovo
(Bulgaria) [176,177].

It is not easy to define the deposition agent, since, in any case, the endocarps remain
unaltered. In Gran Dolina, a spatial analysis of the Celtis remains was carried out to assess
their possible intentional gathering [45]. These authors also considered other criteria, such
as the absence of rodent gnaw marks, the absence of Celtis remains in hyena coprolites,
their fragmentation degree and their association with univocal anthropic remains.

The ubiquity of Celtis endocarps in Lower and Middle Palaeolithic sites where car-
pological analysis was carried out must be stressed: they are present in 80% of the Lower
Palaeolithic sites and 50% of the Middle Palaeolithic sites. The reduction in their presence
in the Upper Palaeolithic (5%) could be related to the reduction in the Celtis populations in
the Mediterranean Basin due to the increased aridity in the last glacial cycle (Figure 10). In
most of the Palaeolithic sites included in this work, human gathering of Celtis fruits was
suggested, as well as in other sites beyond the range of this paper, such as Zhoukoudian
(China) [178,179]. Hackberry fruits can be gathered by different methods: (A) climbing up
the trees to collect the fruits manually; (B) cutting the branches with fruits to collect them
more easily on the floor, although this method is not sustainable because the crown of the
tree is considerably reduced; or (C) knocking down the fruits, combined or not with the use
of a net, but this is difficult considering the thorny and dense Mediterranean understorey
and the resistance of the fruits to fall. Despite the complex and time-consuming gathering,
rich in carbohydrates, tasty and sweet foodstuff is obtained.
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The analyses carried out on Celtis australis fruits in this paper showed that, despite
being a small fruit, it offers a large amount of nutrients, such as carbohydrates, fibre and
protein, and higher energy content than other fruits. Since fruit size can vary depend-
ing on the degree of moisture throughout the year (as well as the region in which it is
found), it likely became a profitable seasonal resource in the Palaeolithic; the possible
gathering of this fruit would be understood in a context of growing evidence of plant con-
sumption in hunter–gatherer groups, which demonstrates an omnivorous and diversified
diet [119,150,151,180–182], even more so if there is evidence of its collection in Neolithic
contexts with consolidated agriculture, as in the case of Çatalhöyük [119].



Forests 2023, 14, 779 21 of 28

5. Conclusions

This work shows different approaches to the presence of Celtis in Pleistocene and
Holocene deposits.

• Celtis sp. is present in archaeological contexts even in ancient chronologies and despite
its (usually) uncharred state. The dating of the remains of Abrigo de la Quebrada and
Cueva del Arco joins that of Douara cave and confirms their antiquity, so we must not
systematically doubt the uncharred remains.

• Celtis australis seems to be adapted to Mediterranean droughts but sensitive to cold
periods, such as MIS 10 or MIS2, founding refugia, firstly in the Mediterranean Basin,
and secondly being reduced in the Near East.

• During the Lower Pleistocene and the Middle Holocene, the distribution of Celtis
populations matches up with their current distribution, whereas during the Middle
Pleistocene, they exceed their current limits, reaching northern Europe, which is
related to climatic phases that are more favourable to their spread.

• Its scarce presence in the southern peninsulas of Europe, traditionally considered
refugia, during the Final Upper Pleistocene and Lower Holocene is noteworthy, but
we cannot rule out that this is due to bias in the sampling or in data publication.

• The hypothesis of human gathering of Celtis fruits is based on (1) the absence of
charred hackberry wood, perhaps linked to some vegetation management, which
protects the foodstuffs, and (2) their high protein and carbohydrates input related to
the presence of sucrose, glucose and fructose fits within a diet, which includes different
types of resources, as documented in several Palaeolithic sites.
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