
S. Omatu et al. (Eds.): IWANN 2009, Part II, LNCS 5518, pp. 116–123, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Introducing a Distributed Architecture for
Heterogeneous Wireless Sensor Networks

Dante I. Tapia, Ricardo S. Alonso, Juan F. De Paz, and Juan M. Corchado

Departamento de Informática y Automática, Universidad de Salamanca, Plaza de la Merced,
S/N, 37002, Salamanca, Spain

{dantetapia,ralorin,fcofds,corchado}@usal.es

Abstract. This paper presents SYLPH, a novel distributed architecture which
integrates a service-oriented approach into Wireless Sensor Networks. One of
the characteristics of SYLPH is that it can be executed over multiple wireless
devices independently of their microcontroller or the programming language
they use. SYLPH works in a distributed way so that most of the application
code does not have to reside in a central node. Furthermore, SYLPH allows the
interconnection of several networks from different wireless technologies, such
as ZigBee or Bluetooth. This paper focuses on describing the main components
of SYLPH and the issues that lead to design and develop this new approach.
Results and conclusions are presented after evaluating a preliminary version of
this architecture.

Keywords: Distributed Architectures, Wireless Sensor Networks, Service Ori-
ented Architectures, Embedded Devices.

1 Introduction

Whether in home automation, industrial applications or smart hospitals, sensor net-
works are used for collecting useful information for intelligent environments [1]. Sen-
sor networks are made up of a set of devices called sensor nodes, each of which is
habitually formed by a microcontroller, a transceiver for radio or cable transmission
and a sensor or actuator mechanism [2]. Some nodes act as routers, so that they can
forward data that must be delivered to other nodes in the network. There are wireless
technologies such as IEEE 802.15.4/ZigBee and Bluetooth that enable easier deploy-
ments than wired sensor networks [2], avoiding the need of wiring buildings and re-
ducing the costs and disadvantages of the setup stage. Whilst traditional networks aim
at providing high QoS (Quality of Service) transmissions, Wireless Sensors Networks
(WSNs) protocols concentrate their main efforts on energy saving. Thus, WSN nodes
must include some power manager and certain smartness that increase battery lifetime
by means of having worse throughput or transmission delay through the network [1].

This paper describes the Services laYers over Light PHysical devices (SYLPH) ar-
chitecture and explains its main features and components. SYLPH is a functional
architecture which integrates a SOA approach over WSNs for building systems that
allow communicating devices from different technologies. The architecture focuses

 Introducing a Distributed Architecture for Heterogeneous Wireless Sensor Networks 117

on distributing the systems’ functionalities into independent services. This model pro-
vides a flexible distribution of resources and facilitates the inclusion of new function-
alities in highly dynamic environments.

Next, the problem description is introduced and it is explained why there is a need
for defining a new architecture. Then, the proposed architecture is described. Finally,
the results and conclusions are presented, including future lines of work.

2 Problem Description

This section discusses some of the most important problems of existent functional ar-
chitectures for WSNs, including their suitability for constructing intelligent and
dynamic environments. This section also presents the strengths and weaknesses of ex-
istent developments and analyzes the feasibility of a new alternative: SYLPH.

There are different technologies for implementing WSNs, such as ZigBee, Blue-
tooth or Wi-Fi. However, their main problem is the difficulty when integrating de-
vices from different technologies in a single network [2]. In addition, the lack of a
common architecture may lead to additional costs due to the necessity of deploying
non-transparent interconnection elements amongst different networks and technolo-
gies. Moreover, the developed elements (i.e. devices) are dependent of the application
to which they belong, thus complicating their reutilization.

Excessive centralization of services negatively affects the systems’ functionalities,
overcharging or limiting their capabilities [3]. In classic functional architectures their
modularity and structure are oriented to the systems themselves [4]. Otherwise, mod-
ern functional architectures, such as SOA, allow functionalities to be created outside
the system. That is, as external services linked to the system. Thus, distributed archi-
tectures look for the interoperability amongst different systems, the distribution of re-
sources and the independency on programming languages [5]. Services are integrated
by means of communication protocols which have to be used by applications in order
to share resources in the network [6]. The compatibility and management of messages
that the services generate to provide their functionalities are important and complex
elements in any of these approaches. Some developments try to reach integration be-
tween devices by implementing some kind of middleware, which can be imple-
mented, for instance, as message-oriented middleware [7] or a multi-agents approach
[8] [9]. However, these solutions require devices whose microcontrollers have large
memory and high computational power, increasing costs and physical size. These
drawbacks are very important regarding wireless sensor networks, as it is essential to
deploy applications with reduced resources and low infrastructural impact.

SYLPH faces some of these issues by enabling an extensive integration of WSNs
and providing a greater simplicity of deployment, optimizing the reutilization of the
available resources in such networks. SYLPH integrates a SOA approach for facilitat-
ing the distribution and management of resources (i.e. services). A distributed archi-
tecture provides more flexible ways to move functions to where actions are needed,
thus obtaining better responses at execution time, autonomy, services continuity, and
superior levels of flexibility and scalability than centralized architectures [3]. Unfor-
tunately, the difficulty in developing a distributed architecture is higher [8]. It is also

118 D.I. Tapia et al.

necessary to have more complex system analysis and design, which imply more time
to reach the implementation stage.

There are several attempts to integrate WSNs and a SOA approach [10] [11] [12].
In SYLPH, unlike those approaches, services are directly embedded on the WSN
nodes and can be invoked from other nodes in the same network or other network
connected to the former one. Moreover, in those developments it is not enough con-
sidered the necessity of minimize the overload of the services architecture on the
devices. In this sense, SYLPH focuses specially on devices with small resources in
order to save CPU time, memory size and energy consumption. For instance, SYLPH
is able to run over ZigBee nodes having a C8051F121 microcontroller with only 8448
bytes of RAM and 128 kilobytes of Flash memory for program code. Furthermore, as
said above, SYLPH contemplates the possibility of connecting WSNs based on dif-
ferent technologies (e.g. ZigBee and Bluetooth), whilst other approaches do not.

3 SYLPH: A New SOA-Based Architecture for WSNs

SYLPH (Service laYers over Light PHysical devices) is a distributed architecture
which integrates a SOA approach over WSNs. The main objective of this proposal is
to distribute resources over multiple WSNs by modelling the functionalities as inde-
pendent services. As described by [13], “A SOA-based system is a network of
independent services, machines, the people who operate, affect, use, and govern those
services as well as the suppliers of equipment and personnel to these people and ser-
vices”. The term service can be defined as a mechanism that facilitates the access to
one or more functionalities (e.g. functions, network capabilities, etc.). Services are
linked by means of standard communication protocols that must be used by applica-
tions in order to share resources in the services network [6]. A SOA approach has
been chosen because such architectures are asynchronous and non-dependent on con-
text (i.e. previous states of the system) [14]. Thus, devices working on them do not
take up continuously processing time and are freer to do other tasks or consume less
energy. SYLPH is based on a SOA approach, but modifying this model to fit our re-
quirements and designing goals.

Using SYLPH, a node designed over a specific technology (e.g. ZigBee or Blue-
tooth) can communicate to a node from a different technology. In this case, both
WSNs are interconnected by means of a set of intermediate gateways connected si-
multaneously to several wireless interfaces. Such gateways are called SYLPH Gate-
ways and can be, for instance, a personal computer with both Bluetooth and ZigBee
network adapters (i.e. network cards). SYLPH allows applications to work in a dis-
tributed way and independently of the technology (i.e. network standard) used by
each node. Thus, neither developers nor users have to worry about what kind of tech-
nology each node in the system uses.

SYLPH implements an organization based on a stack of layers. A layer is a set of
conceptually similar functions that offers some services to the higher layer over it, but
hiding to it the details of the implementation of such services [1]. Moreover, each
layer in one node communicates with its peer in another node through an established
protocol [2]. The stack layers organization allows to SYLPH layers to be reutilized
over multiple WSNs’ technologies or standards. Thus, the SYLPH layers are added

 Introducing a Distributed Architecture for Heterogeneous Wireless Sensor Networks 119

over the application layer of each WSN stack. Figure 1 shows the basic schema of the
communication between two ZigBee devices using the SYLPH architecture layers. In
such Figure, it can be seen the next layers: the SYLPH Message Layer (SML), the
Application Layer (Apps) and the SYLPH Services Directory (SSD) Layer. The SML
layer offers to the upper layers the possibility of sending asynchronous messages
between two wireless devices through the SYLPH Services Protocol (SSP). Such
messages specify the origin and target nodes and the service invocation in a SYLPH
Services Definition Language (SSDL) format. SSDL describes the service itself and
its parameters to be invoked. The Application Layer can communicate directly
amongst devices using the SML layer or by means of the SYLPH Services Directory
(SSD) layer, that uses, in turn, the mentioned SML layer. The SSD layer is used by
nodes for locating services on other nodes in the network. SSD nodes act as directo-
ries of the services offered by the network nodes. Thus, any node in the network can
ask a SSD for the location of a certain service. As the Apps layer, SSD layer uses the
SSDL language as protocol for register and locate services over SSP messages.

Fig. 1. Communication between two ZigBee devices using SYLPH architecture layers

SSDL is the IDL (Interface Definition Language) [5] used by SYLPH. Distributed
architectures use an IDL in order to enable communication between software compo-
nents regardless their programming language or hardware implementation. Unlike
other IDLs as WSDL (Web Services Definition Language), based on XML and used
on Web Services [14], SSDL does not use so many intermediate separating tags and
the order of its elements is fixed. Using a simple IDL allows utilizing nodes with
fewer resources, less power consumption and at a lower cost; all of them key chal-
lenges when using embedded devices. In most cases it is enough with a few float
point data for informing the status of a sensor. Thus, most service definitions require
only a few bytes. SSDL considers the basic types of data (e.g. Integer, Float or Boo-
lean), allowing more complex data structures as variable length arrays or character
strings.

The behavior of SYLPH is in essence similar to other Service Oriented Architec-
tures [14]. However, SYLPH has several characteristics and functionalities that make
it different to other models [5]. The first step in SYLPH begins when a service
registers itself on the SSD and informs of its location in the network, the parameters it
requires and the types of output values returned in the response message after its

120 D.I. Tapia et al.

execution. In order to do that, it is used SSDL which has been created to work with
limited resources nodes.

The next example shows the use of SSDL to define a SYLPH service. There is de-
fined a simple service called registerServiceOnFireAlarm. This service is
stored in a smoke sensor device that belongs to a WSN with the SYLPH architecture
running over it. The service can be invoked by any other node in the SYLPH network
to register another service that will act as a callback. Thus, when the smoke sensor
obtains a read over the specified threshold, the node where it is stored will invoke the
service labeled as callback in the interface definition.

service registerServiceOnFireAlarm {
 input {
 uint16_t threshold;
 servicepoint callback {
 output {boolean status;};
 };};
 output {boolean status;};};

After specifying the service by means of SSDL human-readable syntax, developers
translate definitions to specific code for the target language (e.g. C or nesC languages)
and microcontroller where service will run. When the node registers its service in a
SSD, SYLPH layers do not transmit the human-readable SSDL message, but a more
compact array of bytes which describes the service and how to invoke it from other
nodes. Once the service has been registered in the SSD, it can be invoked by any ap-
plication by means of SYLPH. Both the SSD and the services can be stored in any
node of any WSN that forms part of the SYLPH network. Thus, the developers decide
which nodes will implement each part of the distributed application. Any node in the
network can ask the SSD for the location of a certain service and its specification us-
ing SSDL. The sequence diagram of the fire alarm using the registerSer-
viceOnFireAlarm service defined above is shown in Figure 2. In such Figure, it
can be seen how node 2 registers the mentioned service on node 0 (SSD). Node 1 asks
node 2 for the service location and definition. Then, node 1 invokes the service

Fig. 2. Example of service registration and invocation

 Introducing a Distributed Architecture for Heterogeneous Wireless Sensor Networks 121

through a message to node 2. On such message node 1 registers some service to act as
callback, as defined before. When the smoke sensor on node 2 detects a fire, it in-
vokes callback on node 1.

With the aim of the architecture to be as distributed as possible, it is allowed to be
more than one SSD in the same network, so that can exist redundancy or services or-
ganized in different directories. Any node in the network can not only offer or invoke
SYLPH services but also include SSD functionalities to provide services descriptions
to other network nodes. SSDs stores an entry for each service including its invocation
and response descriptions, what node offers it, a Quality of Service (QoS) rate and a
timestamp that represents the last time the SSD checked the service was available.

Fig. 3. SYLPH over ZigBee and Bluetooth networks

As mentioned above, several heterogeneous WSNs can be connected using a
SYLPH Gateway. Figure 3 shows a ZigBee network and a Bluetooth network work-
ing together using SYLPH over them. The SYLPH Gateway is connected to several
sensor networks through different hardware interfaces. Thus, it can forward messages
amongst the different networks to which it belongs. From the Application Layer’s
point of view, there is no difference between invoking a service stored in a node in the
same sensor network or invoke another one stored in a remote node in a different
network. In the example of the Figure 3, if a ZigBee node invokes a service in a Blue-
tooth node, the ZigBee node will look for the service in a SSD belonging to the Zig-
Bee network. The entry stored in the services table of the SSD points, in fact, to the
SSP address of the SYLPH Gateway. When the ZigBee node invokes the service in
the Bluetooth node, the SYLPH Gateway forwards the call message to the Bluetooth
node through its Bluetooth hardware interface. The inverse process is done by the
SYLPH Gateway in order to forward the response message from the Bluetooth node
to the ZigBee one.

4 Results and Conclusions

SYLPH allows integrating heterogeneous WSNs in a distributed way. It has been
taken into account a SOA approach for designing this architecture. Thus, functional-
ities are modeled as independent services offered by nodes (i.e. wireless devices) in

122 D.I. Tapia et al.

Table 1. Performance of SYLPH networks formation

Factor Only ZigBee WSN Dual WSN
Runs network successfully formed 48 (96%) 42 (84%)
Average number of successfully registered services 39.12 (97.8%) 39.40 (98.5%)

the network. These services can be invoked by any node in the SYLPH infrastructure,
regardless the physical WSN which they belong (e.g. ZigBee, Bluetooth, etc.). In ad-
dition, SYLPH nodes do not need large memory chips or fast microprocessors. The
easy deployment of SYLPH-based systems reduces the implementation costs in terms
of development and infrastructure support.

Several experiments were carried out to evaluate the performance of SYLPH,
mainly to test the network formation and the services registration. Table 1 shows the
main results of two different experiments. The first experiment consisted on trying to
form a ZigBee WSN using SYLPH. Such network was intended to be made up of 20
ZigBee nodes, two of them acting as SSDs. Each node was instructed to try to register
one service on each SSD after joining the network. This test was run 50 times in order
to measure the network successfully formed ratio and the services successfully regis-
tered ratio. The second experiment consisted on a dual SYLPH network made up of
one 10-node ZigBee network and another 10-node Bluetooth network, both of them
interconnected by means of a SYLPH Gateway. There were also two nodes in this ex-
periment acting as SSDs, one in each WSN. The introduction of the SYLPH Gateway
makes harder the formation of the whole SYLPH network. However, once the net-
work is successfully made up, there is almost no difference in the service successfully
registered ratio. In addition, the SSDs worked correctly over the hybrid SYLPH
network.

Future work on SYLPH includes an improved SYLPH Gateways performance and
support for other WSNs different from ZigBee or Bluetooth (e.g. Wi-Fi). In order to
reduce design and implementation times, it is in progress the development of a tool
for generating code skeletons from the human-readable SSDL language, so that the
building and delivering of SSDL frames will be coded directly from the services
definitions. We are currently exploring alternative case studies for applying this archi-
tecture and demonstrate that the approach presented is flexible enough to be imple-
mented in other scenarios. However, one main issue to be taken into account is that
the architecture is still under development so it is necessary to define it by means of
formal analysis and design methodologies and tools.

Acknowledgments. This work has been supported by the Spanish Ministry of Sci-
ence and Technology project TIN2006-14630-C03-03.

References

1. Sarangapani, J.: Wireless Ad hoc and Sensor Networks: Protocols, Performance, and Con-
trol. Control Engineering Series (2007)

2. Ilyas, M., Mahgoub, I.: Handbook of Sensor Networks: Compact Wireless and Wired
Sensing Systems, 1st edn. CRC, Boca Raton (2004)

 Introducing a Distributed Architecture for Heterogeneous Wireless Sensor Networks 123

3. Fuentes, R., Gómez-Sanz, J.J., Pavón, J.: Managing Contradictions in Multi-Agent Sys-
tems. IEICE Trans. Inf. Syst. E90-D(8), 1243–1250 (2007)

4. Molina, J.M., García, J., Jiménez, F.J., Casar, J.R.: Cooperative Management of a Net of
Intelligent Surveillance Agent Sensors. International Journal of Intelligent Systems 18(3),
279–307 (2003)

5. Cerami, E.: Web Services Essentials Distributed Applications with XML-RPC, SOAP,
UDDI & WSDL, 1st edn. O’Reilly & Associates, Inc., Sebastopol (2002)

6. Ardissono, L., Petrone, G., Segnan, M.: A Conversational Approach to the Interaction with
Web Services. Computational Intelligence 20, 693–709 (2004)

7. Souto, E., Guimarães, G., Vasconcelos, G., Vieira, M., Rosa, N., Ferraz, C., et al.: Mires: a
Publish/Subscribe Middleware for Sensor Networks. Personal Ubiquitous Comput-
ing 10(1), 37–44 (2005)

8. Molina, J.M., Herrero, J., Jiménez, F.J., et al.: Fuzzy Reasoning in a Multiagent System of
Surveillance Sensors to Manage Cooperatively the Sensor-to-Task Assignment Problem.
Applied Artificial Intelligence 18, 673–711 (2004)

9. Pavón, J., Gómez, J., Fernández, A., Valencia, J.J.: Development of Intelligent Multisen-
sor Surveillance Systems with Agents. Robot. Auton. Syst. 55(12), 892–903 (2007)

10. Meshkova, E., Riihijärvi, J., Oldewurtel, F., Jardak, C., Mähönen, P.: Service-oriented De-
sign Methodology for Wireless Sensor Networks: A View Through Case Studies. In: Pro-
ceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and
Trustworthy Computing, pp. 146–153 (2008)

11. Yang, C.C., Lin, C.M., Yu, C.Y.: Integration of Web Services with Mobile Home Auto-
mation. Journal of Internet Technology 7(3), 269–273 (2006)

12. Song, E.Y., Lee, K.B.: STWS: A Unified Web Service for IEEE 1451 Smart Transducers.
IEEE Transactions on Instrumentation and Measurement 57(8), 1749–1756 (2008)

13. OASIS: Reference Architecture for Service Oriented Architecture Version 1.0 (2008)
14. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling

the Web services Web: An introduction to SOAP, WSDL, and UDDI. IEEE Internet Com-
puting 6(2), 86–93 (2002)

	Introducing a Distributed Architecture for Heterogeneous Wireless Sensor Networks
	Introduction
	Problem Description
	SYLPH: A New SOA-Based Architecture for WSNs
	Results and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

