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1. Introduction

Singularly perturbed problems are among the ones having solutions with multi-scale character, for which one part of the
solution varies smoothly and the other part varies rapidly. These often arise in various fields of applied mathematics and
engineering, such as fluid dynamics, optimal control theory, elasticity, population dynamics, oceanography, quantum me-
chanics, and so on. This interesting behavior of the solutions and the regular occurrence of these problems make scientists
and mathematicians eager to work for their solutions [1-6]. In this paper, we consider the following singularly perturbed
time-dependent problem

Ly:=% 4 Ly=fxt), (xt)e(0,1)x (0,T],

Dy (0,t) :=y(0,1) = VEZ(0,1) = (1), t € (0,T], (11)
Dry(1,8) :=y(1,t) + Vegr (1,t) = ¢ (t), te (0,T],

Y(x.0) = ¢p(x), x€[0,1],

where Lgy := —eg—fg +a(x)y and 0 < ¢ < 1 is a small positive constant called the perturbation parameter. The functions
a(x) and f(x, t) are assumed to be sufficiently smooth on their respective domains, with 0 < o < a(x) on [0,1]. It is known
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that the solution exhibits layers near the boundaries x = 0 and x = 1, and further the solution y(x, t) can be decomposed as
a sum of a regular part v and a singular part w, satisfying [7,8]

3P+Qy »

”WH <Ce™2, for1<p+2q<4, p qeNy, (1.2)
gptay aPriw _p, _x /T —(1-x)./%

HWH<C and W‘<Ce 2 (e Vite \C), for 1 <p+2q<4, p.qeNo. (1.3)

Inside the layer regions the solution varies very rapidly and this would demand a uniform mesh with mesh size O(1/¢) for
standard methods to resolve the layers, which is computationally very costly and not feasible. Therefore, we require special
meshes that are able to resolve the layers yielding a parameter-uniform accuracy, meaning that the approximate solution
should converge to the exact solution independently of the perturbation parameter [1,3,9].

Special fitted meshes like Shishkin [10] and Bakhvalov [11] meshes are few good and favourable options for standard
methods to produce satisfactory results. But the success of these meshes relies on good a priori knowledge of the location
and size of the layer(s). Otherwise, we need an algorithm which can itself detect the location and width of the layer(s)
and can construct an adaptive mesh. One of the most popular adaptive mesh algorithms is based on the equidistribution
principle [12]. Starting with a uniform mesh, this technique aims to condense the maximum number of mesh points inside
the layer region(s). At any time level t;, the mesh {xiﬁ}f’zo is said to be equidistributed with respect to the monitor function
My(x, &), x) if

Xk 1
/M(y(z, t),2)dz = %/M(y(z, t),2)dz, 1<i<N. (1.4)
0

k
Xiq

Although this idea has been applied to many practical problems, very little progress has been made on its analysis. Based on
the problem considered and the expected order of convergence of the numerical schemes, few different monitor functions
have been suggested in Das and Natesan [13], Qiu and Sloan [14], Mackenzie [15], Gowrisankar and Natesan [16], Beckett
and Mackenzie [17], Kopteva et al. [18], Das et al. [19], Liu et al. [20], Das and Mehrmann [21], Das [22,23].

Singularly perturbed problems similar to (1.1) with Dirichlet type boundary conditions have been studied extensively in
the literature (see [24-31] and the references therein). However, there are only few studies of such problems with Robin
boundary conditions (RBCs) [7,8,32,33]. Note that all of these studies considered Shishkin meshes to resolve the layers and
to develop parameter-uniform numerical methods. As per our knowledge, in the literature there is no result considering the
approximation of a time-dependent problem with Robin’s boundary conditions on layer-adaptive equidistributed meshes. So,
in this paper, we aim to construct a parameter-uniform numerical method on equidistributed meshes for problem (1.1). We
generate the adaptive mesh at each time level based on a suitable monitor function M. The time derivative is discretized
by a modified Euler’s scheme, the space derivative is discretized by the central difference scheme, and the Robin’s boundary
conditions are approximated by a special finite difference scheme to maintain the accuracy. We provide the convergence
analysis of the proposed method and prove that the method is parameter-uniform accurate of first order in time and second
order in space. Some numerical experiments are conducted in order to validate our theoretical results and effectiveness of
the method.

This paper is structured as follows: The problem discretization and the adaptive mesh formation are given in Section 2.
In Section 3, the error analysis of the proposed method is studied. Section 4 is devoted to the results and discussion of
numerical experiments on two test examples. Then the paper concludes with Section 5. The appendix is devoted to the
error analysis for a stationary version of problem (1.1).

Notation: We use C for any generic positive constant, which is independent of ¢, M and N. We denote the maximum

norm o fgl.ﬁ( 0.1] lg(x,t)| by ||g|| for any function g defined on the domain [0, 1] x [0, T]. Ng ={0,1,2,...}.
x,t)e|0,1]x]0,

2. Discretization and adaptive mesh generation
2.1. The discretization strategy

In time direction we take a uniform mesh {tj}?”zo with step size At =T/M, where M is the number of mesh in-

tervals. Then an arbitrary non-uniform spatial mesh is considered at any time level t; denoted by {x{}f’= o With step

sizes hi'j =x{ —x{_l,iz 1,...,N. Thus, the complete discretization of the domain is the tensor product of these two one-
dimensional meshes. On this discrete domain, problem (1.1) is discretized by
[LvMY)) o= 8] 4 MY ] = f1, =1 N-1 j=1. M,
N,M j . . . hj . N . . . hj . .
[DYMY ], i=Yg = VEDIY) + 50z (a0Yg + 8:Y)) = @) + 5 f3. j=1....M. 1)
j . _ . h_‘ . N . . h] i .
DIMY], i=Ya + VEDRYi + s (anYy + 8:Y3) = ¢l + 5 fi. j=1.... M,
Y0 =pi i=0,...N,
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where
. A . ooyl _yi!
(LAMY) = —e83Y) + @Y/, &Y/ = 1 —1— I
oyl ) oyl oyl (D —D-)Y/
D;ryij — H;lj i , D;Yij — i - 1—1, afyij — (hjx hjx) ,2’
i+1 i ( 1+ ,'+1)/

a; = a(x{),fij = f(x{,tj), Qi = d)b(x{), and )71,1_1 = Y(x{,tj,l) is obtained by evaluating the piecewise linear interpolation

NG

i H i . . . . .
\/§D,TY({ + ﬁaoY({, that we shall use later in Section 3. Using standard arguments we can prove that the following discrete

maximum principle holds [8].

of Yij_] = Y(x{_l, tj-1).0 <i <N, at the point x/. We also define [DYMYT, := Y] + VeDr Yy + h—”aNYI{, and [fo;CMY]J =Y] -

Lemma 1. (Discrete maximum principle) Consider a mesh function U such that [LN-MU]{ >0fori=1,....N-1, j=1,.... M,
and [DMMUT) > 0, [DYMU)), >0 for j=1.....M. Then U/ = 0 for i =0,....N, j=0,....M.

2.2. Adaptive mesh

The solution of the problem (1.1) possesses boundary layers, so we need a layer resolving mesh in the spatial direction.
We here construct the layer resolving mesh using the equidistribution principle. The following monitor function is consid-
ered
%w 172

’ (2.2)

Ok
M@y, b)), x) =R + A%

(X, tk)

where Rk is chosen according to the specifications in Lemma 2, below. A similar monitor function is also considered in
Gowrisankar and Natesan [16], Beckett and Mackenzie [17] for problems with Dirichlet boundary conditions. Using this
monitor function, the equidistributed mesh at any time t, can be obtained by using the following relation

xk(&) 1
/ M(y(z,tk),z)dz=§/M(y(z,tk),z)dz, £c[01]. (2.3)
0 0

which is equivalent to (1.4). To get the structure of the mesh generated using (2.3), we follow the similar approach as in

Beckett and Mackenzie [17], Das and Vigo-Aguiar [34]. Consider the derivative bounds of w from (1.3) to approximate 2w

dx2
as
azw(x 6) ~ Yo, xe[0,1/2],
02 T | e OVE, xe[1/2.1),
&
where v; and v, are constants, independent of & and x. So,
1
0°w 12 (V1|12 + v, |12
/ W(Z,tk) dZEA%ZI:T].
0
Hence, from (2.2) and (2.3), for x¥(§) < 1. we have the mapping
Rk Rk X 5
S+ 1) = X @) + (1 e V), (24)
where
My = |V]|]/2
P Il 1
Similarly, for x¥(§) > 1. the equidistribution principle gives
Nk Nk ik -
(1= +D =71 =XEN+hl-e 2 V), (25)
where
)\’2 |V2|1/2

T 2 4 g2
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Thus, corresponding to a uniform mesh {5," = i/N}f"= in computational space we obtain a non-uniform mesh {xﬁ‘}?’: o In
physical space at each time level using the following relations

K R s e
%(K+1)=Kxf+)q(1—e*7~/;), X <12 (2.6)
and
i k k —xk
(-G =20 Xy 1021 - TV, X122 (2.7)

The following lemma provides information about the distribution of the mesh points and also gets some bounds on the
mesh spacing.

Lemma 2. Taking R* = A, the nonuniform mesh generated by (2.6) and (2.7) satisfies

Xk < 2,/§logN <xf, and %, <1-2 2 logN < xk, (2.8)
where

0= [%(2\/gNlogN+)»1(N— 1))],r= [N— %(2\/51\110;;1\1“2(1\1— 1))] +1

and [ - | is the integer part function. Moreover, the mesh spacing satisfies

hf<C\/§ fori=1,....,¢andi=r+1,....N—-1 (2.9)
with

|h¥, —hf| <C(h¥)? fori=1,....,¢-1 and |h¥ —hf|<ChY,)? fori=r+1,....N-1. (2.10)
Further, we have

h¥ <CN-' fori=1,...,N. (2.11)

Proof. The proof of (2.8)-(2.10) can be obtained using arguments similar to those in Beckett and Mackenzie [17]. To prove
(2.11), we use the idea in Das and Natesan [13], Das et al. [19]. Note that for the monitor function (2.2) we have A = Rk <
MY (X, t),x). So, using the derivative bounds we get

1
f/vl(y(z, t).2)dz < C.
0

Thus, by the equidistribution principle, we get
Xf 1
1
NEhi < / My (z ), 2)dz = N/M(y(z, te),z)dz < CN~'.
xk 0

i-1

Hence, hk <CN-1. O
3. Error analysis

The parameter-uniform convergence analysis of the difference scheme (2.1) is provided in the following theorem.

Theorem 3.1. Let y(x{, tj) and Yij be the solutions of (1.1) and (2.1), respectively. If for some 0 < y < 1 itis N-V < CAt, then
fori=0,....,N, j=0,...,M, we have the following bound

(. £) = Y]] < C(At+N-2*7),

Proof. Suppose nij = y(x{ ) —Yij denotes the error in the numerical solution at (x{ ,t;). So, we can write the truncation
error as follows

(Sl + LMY =)+ 2] fori=1,.. N-1, j=1,...M,
where
. . . . . oy
Xl =[LYMy)] — (Ley)! and ij;i:SEY(Xf’tj)_%(X;’tf)'
Also,

[Df“”’?]j = fl],'uo + 51{2;0’
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[DMMn], = r{1;N+§r{2:N’
where
. . h )
¢l o= DMyT - ((D,y)a 5 f(cey)1> G20 =5 f@;y(xf,q) {(xf,r,»»,
o8yl — (O et ), and = TRy ) - 2t
rlN_ My WY)N T+ 2\/» ey AN = 2f 4 5 *no L))

Now we split the error nij as nij = pij +a)ij , where pij , for each fixed j, is the solution of the following stationary discrete
problem

[L¥Mp]! =ali=1. . N-1,
[0 0]y = ¢o (3.1)

[DITYM ] é‘rlN’

and a){ is the solution of the following parabolic discrete problem

[5*w+LN’V’ ] _Xf —8*,01, =1,....N=1, j=1,....M,
[DNM ] —5120 2\}8;,00, j=1...M, (3.2)

hi i
[DNM ] —ger ZiNf(S;ION’ j=1L...M,
w?=-p) i=0,....N.

Here we see that equation (3.1) is the same that we obtain when we analyse the error component p in a stationary problem
that is discretized using £, with Robin boundary conditions, and X{I., §1]1»0' ;’rf_l_N, the corresponding truncation errors (see
Appendix A.1). So, we can invoke the error bound of Appendix A.1 to get

lp/| <CN-% for all i, j. (3.3)

Now we shall obtain a bound for the error component wlf Note that the problem (3.2) is similar to the discrete problem
(2.1). Hence, using the discrete maximum principle (Lemma 1) we get

|| < C(max |p0] + max IIDMMwl)| + max IIDMMow]] | + max |X2j;,- —8:p7]) < C(AL+ N7 4 max 182 p71),

(3.4)

where we have used the triangle inequality, the inequality in (3.3), and the fact that iji, Czjz-o’ and ;rjm are bounded by

C(At 4+ N=2t7) for some 0 < ¥ < 1 such that N < CAt, which can be verified using Taylor expansion, standard interpola-
tion error estimates, and (1.2). So, now it remains to bound the term S;pil in (3.4). Using (3.1), a straightforward calculation
shows that (Sgpij satisfies

1o i=1,...,N-1,
[D;\.I}(M‘S;p] =4 gllo’ (3.5)
[Dlr\{kM‘Sr'p] =5 §r1N

To analyse the problem (3.5), we write the right hand side as

. 1 S
* vl _ J j—1
afxl;i ~ At I:Xhiixl:i ]

[L’g""/’cS;,o] =8

= e (7 = Cenl) = (15}~ o))

(MY = a0 ) |

where
j-1 j-1
x 7 —x —X ,
Y1 (x) = =—2——— and ¥, (x) = n- 11 with x] ! 1=x < {1 for some n.
n X{I n _X£_1
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Set Loy = —82 J and suppose its discretization is [[Q’*MY]{ = —88,%}’1.]. Now by using the fact that the linear interpolation

error is O(N~2), we can write
i 1 (b dy < 0y
>yl - N.M _ 2 (%) —2+y
|5tX1*'|§’Atffj,l[ Y (l.0) Egat(xl,t)]dt‘—i-CN .

Thus, using the Peano kernel theorem [35,36] and the bounds in (1.2), we get the same bound for S*Xj that we get for the

corresponding truncation error for stationary problem. Similarly we can obtain also same bounds for 8 {l 1.0 and &; g“ﬂ N

Hence, we get 5{/),- < CN~2+Y for all i, j. Therefore, on combining (3.3) and (3.4) we get the desired result. O

Remark 3.1. The assumption N~ < CAt for some 0 < ¥ < 1 used in the above theorem is for the theoretical proof only.
However, in the numerical experiments there is no influence of this restriction on the parameter-uniform convergence be-
havior. Such an assumption is common in the literature (see, e.g. [21]).

4. Numerical experiments

We now present the numerical experiments that we performed for two test examples to verify our theoretical result. To
construct the adaptive mesh we use Algorithm 1. In the stopping criterion we have taken the value o = 1.1. As the second

Algorithm 1: Algorithm for the adaptive mesh and adaptive solution.

Input: NMeN,O<e<1landp > 1.
Output: Adaptive mesh {xg‘} and adaptive solution Yik at each time level .

Step Initialization: Initialize the mesh (for iteration r = 1) taking {xf’(”} as the uniform mesh for k = 1, otherwise xk~1
for kth time level.

Step Solve the discrete problem (2.1) for Yik‘(r) on {xf'(r)}.

Step Find the discrete monitor function defined by

MED = RI® 527k D12 for j = 1,.. N -1,
where 8% (™ is defined by
BHEO2 4 2002
2

N-1
Nk,(r) _ hll<,(r) |53Y1k’(r)|1/2 + Z hf,(r){ } + hk],(r) |52yk (r)|1/2
i=2

k.(r)
Step Set Hk‘(r) hk (')( ) fori=1,...,N, take M'g’(') = M’{'(” and M’b‘,'(r) = Mﬁ,‘f?. Then define L;“(T) by

L0 =i H" @ fori=1,...Nand L§® =0.
Step Stopping crlterlon. Define o by o™ = Lki(r) max Hl< " Go to Step 7 if o < o, else continue with Step 6.
N

04
2

Step Define Zk O _ for i=0,1,...,N. New mesh {xf’(”])} is generated by evaluating the interpolant function of the
points (L:.‘ (r), :‘ (’)) at Z:‘ ™ set r=r+1 and return to Step 2.

Step Take {x;"(r’l)} as the final layer adaptive mesh and Yik’(r’” as the required adaptive solution at the k-th time level.
Step Go to Step 1 with k =k + 1, repeat the same process for the adaptive mesh and solution at (k + 1)th time level.

derivative of the smooth part v is bounded independently of ¢, in practice, it is observed that the monitor function with w
replaced by y also produces similar layer-adapted meshes and numerical results [19].

Example 4.1. Consider the problem

_e¥y 1y 3 (x,t) e (0,1)x (0,1],
Dy(0,t) = — s w12t72 t e (0,1],
Dry(1,t) = 21272 t e (0,1],
y(x,0)=0, xe[0,1].

The surface plot in Fig. 1 displays the numerical solution of Example 4.1 for € = 10~% with N = 128 and M = 32. This
clearly shows the existence of boundary layers near x =0 and x = 1. The exact solution of Example 4.1 is unknown, so
the maximum pointwise errors and rates of convergence are calculated by using the double mesh principle. We bisect the
meshes in space and time, and calculate the pointwise errors at the coarse mesh points using the formula

GSNM |Y2k 2N.2M Y’CNM'
ik
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Fig. 1. Surface plot of the numerical solution of Example 4.1 with N =128, M =32, and ¢ = 10~%.

Table 1
Errors and convergence rates for Example 4.1.

e N=32 N =64 N=128 N =256 N =512
M=38 M =16 M =32 M =64 M =128

100 3.2130e-02  1.6470e—02  8.3343e-03  4.1915e—-03  2.1018e—03
0.9641 0.9827 0.9916 0.9958

10! 9.5181e-03  5.0272e-03  2.5857e-03  2.1018e-03  6.5953e-04
0.9209 0.9592 2.9895 1.6721

102 2.4266e-02 1.1996e-02  5.9569e-03  2.9678¢—03  1.4812e-03
1.0164 1.0099 1.0052 1.0027

103 2.5267e-02  1.2420e-02  6.1519e-03  3.0609e-03  1.5266e—-03
1.0246 1.0135 1.0071 1.0036

1074 2.5445e-02  1.2489e-02  6.1824e-03  3.0754e-03  1.5336e-03
1.0268 1.0144 1.0074 1.0038

10~  2.5488e-02  1.2505e—02  6.1883e—-03  3.0776e—-03  1.5346e—03
1.0274 1.0149 1.0077 1.0039

106 2.5493e-02  1.2507e-02  6.1893e-03  3.0780e-03  1.5348e-03
1.0274 1.0149 1.0078 1.0039

107 2.5495e-02  1.2507e-02  6.1897e-03  3.0782e-03  1.5348e-03
1.0275 1.0148 1.0078 1.0040

108 2.5497e-02  1.2508e-02  6.1896e-03  3.0782e-03  1.5348e-03
1.0275 1.0149 1.0078 1.0040

GNM  32130e-02  1.6470e-02  8.3343e-03  4.1915e-03  2.1018e-03

FNM 0.9641 0.9827 0.9916 0.9958

Using these values, the maximum pointwise errors and the parameter-uniform errors are calculated by

GENM — max G and  G"M =maxG=NM,
ik ’ &

respectively. We then calculate the rates of convergence and the parameter-uniform rates of convergence by

&,N.M l G&N'M d N.M l GN’M
F =108, (Ga,ZN,ZM) and  F™" =log, (GZN,ZM)’

respectively. The numerical results for Example 4.1 are presented in Table 1. From this table, we observe that the error is
decreasing as the number of mesh points is increasing. Moreover, the rate of convergence is one. This is due to the fact that
the time discretization errors are dominating the global errors in this case. In order to show the contribution of the space
discretization errors to the global errors we calculate the following convergence rates

- Ge-N-M GNM
NM _ FNM _
F&NM _ Jog, (m) and F“" =log, (W)

Observe that the number of mesh points in space is doubled, whereas the number of mesh points in time is quadrupled. In
this way, the contributions of time and space discretizations are balanced. The results are displayed in Table 2. From these
results, we observe that the rate of convergence is two.
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Table 2
Errors and convergence rates for Example 4.1.

e N=32 N =64 N=128 N =256 N =512
M=38 M =32 M =128 M =512 M = 2048

100 3.2130e-02  8.3210e—03  2.980e—03 5.2559e-04  1.3143e-04
1.9490 1.9877 1.9969 1.9995

10! 9.5181e-03  2.5657e-03  6.5031e-04  1.6078e-04  4.0673e-05
1.8193 1.9801 2.0160 1.9829

1072 2.4266e-02 5.9485e-03  1.4783e-03  3.6896e—-04  9.2221e-05
2.0283 2.0084 2.0024 2.0003

103 2.5267e-02  6.1456e-03  1.5248e-03  3.8039e-04  9.5049e-05
2.0396 2.0108 2.0031 2.0007

1074 2.5445e-02  6.1794e-03  1.5329e-03  3.8240e-04  9.5546e-05
2.0418 2.0112 2.0030 2.0008

10> 2.5488e-02  6.1871e-03  1.5342e-03  3.8272e-04  9.5608e-05
2.0425 2.0117 2.0032 2.0011

106 2.5493e-02  6.1889e-03  1.5345e-03  3.8278e-04  9.5627e-05
2.0423 2.0119 2.0032 2.0011

GNM  32130e-02  8.3210e—-03  2.980e-03 5.2559e-04  1.3143e-04

Fnm 1.9490 1.9877 1.9969 1.9995
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Fig. 2. Surface plot of the numerical solution of Example 4.2 with N = 128, M =32, and & = 104,

Example 4.2. Consider the problem

Yoy (T+xe)y=fx 1), (xt)e(0.1)x (0.1],
Diy(0,t) = i(t), te (0.1],

Dry(1,t) = ¢r(t), t e (0,1],

y(x,0)=0, xe[0,1],

where the functions f(x, t),¢,(t), and ¢(t) are such that

e*’(/x/g + 37(1 —X)/VE

y(x’t):t< T+e Ve

— cos? (nx)).

The surface plot in Fig. 2 displays the numerical solutions of Example 4.2 for &£ = 104 with N = 128 and M = 32. This
clearly shows the existence of boundary layers near x = 0 and x = 1. We calculate the pointwise errors using the formula

N.M
Gfk = |Ylk _.V(Xf‘{a tk)|-

After that the errors G&NM and GNVM, and convergence rates FENM and F¥M are computed as described earlier. Table 3
displays the numerical results for Example 4.2, where the last two rows represents the parameter-uniform errors and the
parameter-uniform rates of convergence. In this table, observe that N and M are increasing with the same ratio. From this ta-
ble, we can deduce that the rate of convergence is two. Note that in this case the space discretization errors are dominating
the global errors.

In summary, we observe that the proposed numerical method is parameter-uniformly convergent of order two in space
and order one in time. Further, the assumption N=¥ < CAt is not necessary in practice.
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Table 3
Errors and convergence rates for Example 4.2.

e N=32 N =64 N=128 N =256 N =512
M=38 M =16 M =32 M =64 M =128

100 1.5235e-03  3.9133e-04  1.0052e—-04  2.5109e-05 6.2779e—06
1.9610 1.9609 2.0012 1.9998

10" 1.3209e-03  3.3450e-04  8.4770e-05 2.1185e-05  5.2967e-06
1.9814 1.9804 2.0005 1.9999

102 2.5805e-03  6.2775e—04  1.5569e-04  3.8792e-05 9.6878e—06
2.0394 2.0115 2.0048 2.0015

103 7.8877e-03  2.0397e-03  4.7116e-04  1.1462e-04  2.8424e-05
1.9513 2.1140 2.0394 2.0117

104 1.3994e—-02  3.2189e-03  7.6427e-04  1.8904e-04  4.8325e-05
2.1202 2.0744 2.0154 1.9678

105 1.9291e-02  4.0366e-03  9.7065e-04  2.3620e-04  5.8728e-05
2.2567 2.0561 2.0389 2.0079

106 2.3577e-02  4.5430e-03  1.0548e-03  2.5887e-04  6.3981e-05
2.3757 2.1066 2.0267 2.0165

1077 2.7531e-02  4.8054e—03  1.1034e-03  2.6761e-04  6.6108e—05
2.5183 2.1227 2.0438 2.0172

108 2.8902e-02  52693e-03  1.1260e-03  2.7197e-04  6.6985e—-05
2.4555 2.2264 2.0497 2.0215

GNM  2.8902e-02  52693e-03  1.1260e-03  2.7197e-04  6.6985e—05

FNM 2.4555 2.2264 2.0497 2.0215

L R L e e ek 1

0.8r

06r

Iteration

0471

0.2

. . ‘ . ‘ .
0 20 40 60 80 100 120 140

X Position of mesh points

Fig. 3. Mesh trajectory and position of space mesh points taking N = 128, M = 32, and ¢ = 10> for Example 4.1.

At the first time level t;, we have shown the adaptive movement of spatial mesh points for Examples 4.1 and 4.2 in Figs. 3
and 4, respectively. These figures display the condensation of mesh points towards the boundary layers in few iterations
and finally the adaptation of solution behavior by itself. In Fig. 5, we have plotted the log-log graphs of the maximum
pointwise errors versus the number of spatial mesh points N for both test examples. The slopes of these plots also validate
the theoretically obtained convergence result in space.

5. Conclusions

A parameter-uniform adaptive mesh method is introduced for a class of singularly perturbed parabolic reaction-diffusion
problems with RBCs. The adaptive mesh is generated using the equidistribution principle and the main advantage is that
it does not require a priori information about the location of the boundary layers. The method is proved to be parameter-
uniformly convergent of order two in space and order one in time. The theoretical error bound is supported by the numerical
results.
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Appendix A. A stationary problem

The stationary version of problem (1.1) is an important ingredient needed to study the time dependent problem (1.1). So,
this appendix is devoted to the parameter-uniform convergence analysis of a finite difference scheme (similar to (2.1)) on
equidistributed meshes for the following stationary problem

Loy = —8% +ax)y = f(x), xe(0,1),
D1,y(0) 1= y(0) = VEG (0) = ¢, (A1)
Dry(1) i=y(1) +VEL(1) = ¢

We assume that the functions a(x) and f(x) are sufficiently smooth and that 0 < o < a(x), x € [0, 1]. This problem has been
previously studied in Das and Natesan [13], where y is decomposed as y = v+ w, and the following bounds were obtained

dPU(x) p2

‘ v ‘fc(”“’" %), (A2)
p

‘d ;}Vdﬁ")‘ <Ce f(e™WF e 1VT) 0<p<dxc[0.1]. (A3)

10
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A coupled system of two stationary problems with RBCs is studied in Das et al. [19]. In [13,19], for boundary conditions a
scheme based on cubic splines is used and for interior points differential equation is discretized using the classical central
difference scheme. But, here we discretize problem (A.1) using a scheme similar to (2.1). The discretization is as follows

[LYY], := —e82Yi +aYi = f,, i=1...N-1,
[DYY], :=Yo— VeD{Yo + 5 aoYo = ¢l JE fo. (A4)
[Dlr\.]xY]N = YN + fDx YN + 2\/§aNYN ¢r %fNa

where the difference operators Df, Dy and 82 defined analogously as for the discretization (2.1), and the mesh {x,~}lf"=0 is
the following equidistributed mesh with step sizes h; = x; — x;_;, where

%(7+1)_Nx,+k1(1—e zf) xi<1/2 (A5)
and
i N N Xi) 3
I-PGE+h=7 (1=x)+r(1—e2VE), x>1/2, (A.6)

which is obtained using the monitor function M = R + |‘;27‘§’|1/2 (see Section 2 for details). The discretization (A.4) satisfies
the following discrete maximum principle which can be proved using standard arguments [8].

Lemma 3. (Discrete maximum principle) Consider a mesh function U such that [[NU); >0 fori=1, ..., N -1, and [DINXU]O >
0, [DNUly = 0. Then U; > 0 for i=0,..., N.
Theorem A.1. Let y and Y be the solutions of (A.1) and (A.4), respectively. Then, fori=0,...,N, we have

ly(x;) —Yi| <CN—2.

Proof. At the left boundary, we proceed as follows
(D=l = [Dylo — 61+ 5 =Fo)

= [y(xo) VeDly(xo) + 2fa0y(XO)] - [y(xo) —f (xo) + ﬁ 0]

f( (Xo) - D;yom)) (a0y(x0) — fo)

20E
hye d?
= Ve( o) - Diyow) + 1YL LY )
2 3y
= h é[d (n) for some n € (Xg, X1).
Now using the solution decomposmon we have
h?J/e|d h2/e|d Ve |dPw
DY~ V)lol = MY\ T | TR )' =5 (n)‘-

Using the derivative bounds of v from (A.2) and Lemma 2, we get

Vel () < N2
Ve 5 () = :
For the layer component, we use the derivative bounds from (A.3) and proceed as follows
h2VELY (n) < CehzeoV/E
2
<Cs! (fx"n‘ e*fx/;dz) <Ce (Ve [ M(y(z),z)dz)2
< CA2N-2 <(CN—2.

Hence

IID}Y, v = Y)]ol <CN—2. (A7)
Similarly

DY (y = Y)In| <CN2. (A.8)
We can use the arguments in Beckett and Mackenzie [17] to show that

LNy -Y)li| <CN~2 fori=1,...,N—-1. (A.9)

Thus, we consider the barrier function \IJ,»i =CN~2 + (y(x;) — Y;) and use the discrete maximum principle (Lemma 3) to get
the desired result. O

1
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