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a b s t r a c t 

This paper deals with the development, analysis and implementation of an optimized hy- 

brid block method having different features, for integrating numerically initial value ordi- 

nary differential systems. The hybrid nature of the proposed one-step scheme allows us 

to bypass the first Dahlquist’s barrier on linear multi-step methods. The theory of inter- 

polation and collocation has been used in the development of the method. We assume an 

appropriate polynomial representation of the theoretical solution of the problem and con- 

sider three off-step points in a one-step block. One of these three off-step points is fixed 

and the other two off-step points are optimized in order to minimize the local truncation 

errors of the main method and other additional formula. The resulting scheme is of order 

five having the property of A -stability. An embedded-type approach is used in order to 

formulate the proposed method in adaptive form, showing a high efficiency. The adaptive 

method is tested on well-known differential systems viz. the Robertson’s system, a Gear’s 

system, a system related with Jacobi elliptic functions, the Brusselator system, and the Van 

der Pol system, and compared with some well-known numerical codes in the scientific lit- 

erature. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

The mathematical formulation of many physical phenomena results in differential systems which are very difficult or

even impossible to solve analytically. In such situations, differential systems are usually dealt numerically in order to find

approximate solutions. This article particularly addresses the numerical solution of initial value ordinary differential systems.

Conventionally, Runge–Kutta and linear multi-step methods are used in order to get numerical approximation to the theo-

retical solution of the problem. In these days, many numerical codes are available as built-in functions in Computer Algebra

Systems (CAS), like MATLAB or MATHEMATICA, which make the task of obtaining numerical approximations to the theoret-

ical solution accurately and efficiently. These codes are particularly designed to handle problems having different types of

solutions, for example stiff, non-stiff, singular etc., in variable step-size mode. 
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To develop new efficient and simple structured methods, having good stability characteristics, is a subject of continuous

development in this field. In this article, our objective is to develop and analyze a novel efficient numerical integrator for

solving initial value systems of the form 

Z 

′ = F (t, Z ) ; Z (t 0 ) = Z 0 , (1) 

where t ∈ [ t 0 , t N ] , Z : [ t 0 , t N ] → R 

m , F : [ t 0 , t N ] × R 

m → R 

m . Firstly, we assume that the system (1) satisfies the conditions

of the Existence and Uniqueness Theorem for initial-value problems. In order to solve the system (1) numerically, the interval

of integration [ t 0 , t N ] is discretized as follows: t n = t 0 + nh, n = 0 , 1 , 2 , 3 . . . , N; h n = t n +1 − t n . The step-sizes h n can be

taken as a constant or variable in the interval of interest, according to the implementation of the integrator. The numerical

value of the theoretical solution at t n is denoted by Z n ≈ Z ( t n ). Besides the Runge–Kutta and linear multi-step methods, other

well-known classes of methods for integrating (1) include block methods, hybrid methods, exponentially fitted methods and

trigonometrically fitted methods, etc. For a detailed survey on different classes of methods, one can consult the books by

Butcher [1] or by Hairer et al. [2,3] (and references therein). One can consult specific references concerning the solution of

different types of differential systems, for example see [4–45] . 

The numerical method in the present paper is a combination of block and hybrid nature. The first Dahlquist’s barrier

imposes restrictions on number of steps and order of stable linear multi-step methods [22] . According to this barrier, a

zero-stable linear multi-step method will have order p with p ≤ k + 1 if k is odd, and p ≤ k + 2 if k is even. In order to

bypass this barrier many authors have proposed hybrid methods that also utilize information of the solution at off-step

points. In this way, one can bypass the first Dahlquist’s barrier by using information of the solution at off-step points. These

methods are also called modified linear multi-step methods [1] . On the other hand, block methods produce information of

the solution at several points simultaneously. For more details on block methods, one can consult the book by Brugnano

et al. [4] and references therein. 

In the present paper, we have developed a one-step hybrid method which possesses the characteristic of A -stability. In

the subsequent sections of the article, we will address the theoretical analysis of the method and its implementation on

well-known initial value ordinary differential systems in order to show its good performance. 

2. Development of the hybrid block method 

For convenience, we consider the derivation of the method for solving the problem in (1) in the scalar case, that is, for

m = 1 . Keeping this in mind, we assume an approximation to the theoretical solution of (1) by an appropriate interpolating

polynomial of the form 

Z(t) ≈ Q(t) = 

u + v −1 ∑ 

j=0 

ξ j � j (t) , (2) 

on the interval [ t n , t n +1 ] considering initially a constant step size, h = t n +1 − t n . Here, ξ ′ 
j 
s are unknown constants, and

� j (t) = (t − t n ) 
j are polynomial basis functions. The values u and v are regarded as the number of interpolation and distinct

collocation points, respectively, that are considered to satisfy 0 ≤ u ≤ k, v > 0 . Further, the positive integer k stands for the

number of steps in the block. The method is developed by specifying the following parameters, u = 1 , v = 5 and k = 1 . We

also consider three off-step points t n + ν1 
= t n + ν1 h, t n + ν2 

= t n + ν2 h and t n + ν3 
= t n + ν3 h in (t n , t n +1 ) with ν2 = 1 / 2 . The two

unknown off-step points will be optimized in order to minimize the local truncation error in the main method and other

additional formula. 

We impose the following restrictions on the approximating polynomial (2) as follows: 

(i) Consider that the approximating polynomial in (2) interpolates the theoretical solution of (1) at the point t = t n , that

is, 

5 ∑ 

j=0 

ξ j � j (t n ) = Z(t n ) . (3) 

(ii) Next, we impose that the first derivative of the polynomial in (2) coincides with the derivative of the true solution of

(1) at the points t n + j , j = 0 , ν1 , ν2 , ν3 , 1 , that is, 

5 ∑ 

j=1 

ξ j �
′ 
j (t n + i ) = Z ′ (t n + i ) , i = 0 , ν1 , ν2 , ν3 , 1 . (4)

From the equations in (3) and (4) , we get a system of six equations in six unknowns. We solve this system to get the

values of the coefficients ξ ′ 
j 
s. By inserting the values of ξ ′ 

j 
s into (2) , we get the method written in the following convenient

form 

Z(t) ≈ λ(t ) Z n + h 

1 ∑ 

j=0 

δ j (t ) F n + j + h 

3 ∑ 

j=1 

δν j 
(t ) F n + ν j 

, (5)
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Table 1 

Coefficients of the method. 

Z λ δ0 δν1 
δν2 

δν3 
δ1 

Z n + ν1 
1 83+29 

√ 
3 

360(3+ √ 3 ) 
171+63 

√ 
3 

360(3+ √ 3 ) 
32 −64 

√ 
3 

360(3+ √ 3 ) 
81 −27 

√ 
3 

360(3+ √ 3 ) 
−(7+ √ 3 ) 

360(3+ √ 3 ) 

Z n + ν2 
1 31 

480 
72+45 

√ 
3 

480 
64 

480 
72 −45 

√ 
3 

480 
1 

480 

Z n + ν3 
1 83 −29 

√ 
3 

360(3 −√ 
3 ) 

81+27 
√ 

3 

360(3 −√ 
3 ) 

32+64 
√ 

3 

360(3 −√ 
3 ) 

171 −63 
√ 

3 

360(3 −√ 
3 ) 

−7+ √ 3 
360(3 −√ 

3 ) 

Z n +1 1 1 
15 

3 
10 

4 
15 

3 
10 

1 
15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where λ( t ), δj ( t ) and δν j 
(t) are continuous coefficients of the method. Here, F n + j = F (t n + j , Z n + j ) and F n + ν j 

= F (t n + ν j 
, Z n + ν j 

) .

The main formula of the hybrid method is obtained by evaluating (5) at the point t = t n +1 . The other additional formulas

of the method will be obtained by evaluating (5) at the off-step points t n + ν1 
, t n + ν2 

and t n + ν3 
. Note that when we evaluate

(5) at the points t = t n +1 and t n + ν2 
, we get the main formula and another formula at the midpoint of the interval [ t n , t n +1 ] ,

which approximate the values of the theoretical solution Z ( t ) at t n +1 and t n + ν2 
. Both formulas depend upon the parameters

ν1 and ν3 which are related to the off-step points t n + ν1 
and t n + ν3 

. The expressions of Z(t n +1 ) and Z(t n + ν2 
) are not presented

here, as they are very cumbersome expressions, although they can be obtained easily using a computer algebra system. In

order to get adequate values of the parameters ν1 and ν3 , we adopt the following procedure: 

(i) Firstly, we obtain the local truncation errors of the formulas for Z(t n +1 ) and Z(t n + ν2 
) after expanding them in Taylor

series about the point t n . Those local truncation errors are given respectively by 

L (Z(t n +1 ) , h ) = 

(−1 + ν1 + ν3 ) Z 
(6) (t n ) h 

6 

14400 

+ O( h 

7 ) (6)

and 

L (Z(t n + ν2 
) , h ) = 

(−2 + ν1 (7 − 30 ν3 ) + 7 ν3 ) Z 
(6) (t n ) h 

6 

230400 

+ O( h 

7 ) . (7)

(ii) In order to find the optimized values of ν1 and ν3 , we consider the coefficients of the principal terms in the local

truncation errors in (6) and (7) , and equate them to zero. Thus, we get the following nonlinear system of equations 

−1 + ν1 + ν3 = 0 

−2 + ν1 (7 − 30 ν3 ) + 7 ν3 = 0 . 

After solving this nonlinear system of equations, we get the optimized values of ν1 and ν3 as follow (we note that

the above system is symmetric in ν1 and ν3 , and the solution is unique with the restriction 0 < ν1 < ν3 < 1) 

ν1 = 

1 

6 

(3 −
√ 

3 ) ≈ 0 . 211325 , ν3 = 

1 

6 

(3 + 

√ 

3 ) ≈ 0 . 788675 . 

Substituting these values in the local truncation errors (6) and (7) , we get 

L (Z(t n +1 ) , h ) = 

Z (7) (t n ) h 

7 

3628800 

+ O(h 

8 ) , (8)

L (Z(t n + ν2 
) , h ) = 

Z (7) (t n ) h 

7 

7257600 

+ O(h 

8 ) . (9)

Using the obtained values of ν1 and ν3 , after substituting the values of t = t n + ν1 
, t n + ν2 

, t n + ν3 
, t n +1 in (5) we obtain the four

formulas of the hybrid method. The coefficients of the new method can be written compactly in Table 1 . 

This method will produce approximate solutions of (1) simultaneously at the points t n + ν1 
, t n + ν2 

, t n + ν3 
and t n +1 . We note

that this is an implicit method, and thus to get the solution, a system of equations must be solved in each iteration. The

usual choice to solve the system is the Newton’s method (or its variants [26] , although sometimes suitable ad-hoc proce-

dures can be employed, based on a diagonalization of the matrices involved or, alternatively, on the use of suitable splitting

techniques [27,28] ). 

3. Theoretical analysis of the hybrid block method 

This section is concerned with theoretical analysis of the proposed hybrid block method given in Table 1 . 

3.1. Local truncation error, order and consistency 

The hybrid block method developed in the previous section may be written in the following form 

U Z n = h V F n , 
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where U and V are matrices of coefficients of dimension 4 × 5 that can be easily obtained from Table 1 , and 

Z n = (Z n , Z n + ν1 
, Z n + ν2 

, Z n + ν3 
, Z n +1 ) 

T , 

F n = (F n , F n + ν1 
, F n + ν2 

, F n + ν3 
, F n +1 ) 

T . 

Let Z ( t ) be a sufficiently smooth function and consider the linear difference operator L̄ associated with the hybrid block

method, given by 

L̄ [ Z(t) , h ] = 

∑ 

j 

ᾱ j Z(t + jh ) − h 

∑ 

j 

β̄ j Z 
′ (t + jh ) , j = 0 , ν1 , ν2 , ν3 , 1 , (10)

where ᾱ j and β̄ j are respectively designated as columns of the matrices U and V . 

Both the proposed hybrid block method given in Table 1 and the difference operator L̄ are said to be of order p if after

expanding Z(t + jh ) and Z ′ (t + jh ) by Taylor series about t , we have 

L̄ [ Z(t) , h ] = κ̄0 Z(t) + κ̄1 hZ ′ (t) + κ̄2 h 

2 Z ′′ (t) + · · · + κ̄p h 

p Z (p) (t) + . . . , (11)

with κ̄0 = κ̄1 = κ̄2 = · · · = κ̄p = 0 and κ̄p+1 	 = 0 . Here, the κ̄ ′ 
i 
s are vectors and κ̄p+1 is called vector of error constants. For the

proposed method, we get κ̄0 = κ̄1 = κ̄2 = κ̄3 = κ̄4 = κ̄5 = 0 and 

κ̄6 = 

( −1 

311040 

, 0 , 
−1 

311040 

, 0 

)T 

. 

Thus, the hybrid block method specified in Table 1 has order 5. Hence, the proposed hybrid block method is consistent with

the differential equation in (1) . 

3.2. Zero-stability 

The concept of zero-stability is related with the behavior of the method when h → 0. Considering that the step-size tends

to zero in the proposed method, we have 

Z n + ν1 
= Z n 

Z n + ν2 
= Z n 

Z n + ν3 
= Z n 

Z n +1 = Z n . 

This can be expressed in the following compact form 

I 4 ˆ Z η − Ū 

ˆ Z η−1 = 0 , (12) 

where ˆ Z η = (Z n + ν1 
, Z n + ν2 

, Z n + ν3 
, Z n +1 ) 

T , ˆ Z η−1 = (Z n + ν1 −1 , Z n + ν2 −1 , Z n + ν3 −1 , Z n ) 
T , I 4 stands for the identity matrix of dimen-

sion four, and Ū is the matrix ⎛ 

⎜ ⎝ 

0 0 0 1 

0 0 0 1 

0 0 0 1 

0 0 0 1 

⎞ 

⎟ ⎠ 

. 

It can be easily verified that the characteristic polynomial is given by | [ I 4 ξ − Ū ] | = ξ 3 (ξ − 1) whose roots ξ i satisfy | ξ i | < 1

and those which satisfy | ξi | = 1 are just simple roots. Thus, the method is zero-stable [2] . 

3.3. Convergence 

The necessary and sufficient conditions for a method to be convergent are that it is both consistent and zero-stable

[29] . As we have established the consistency and zero-stability of the proposed method, then it implies that the method is

convergent. 

3.4. Linear stability analysis 

In order to determine the stability region of the given numerical method, we consider the test equation made famous by

Dahlquist 

Z ′ (t) = λZ(t) , Re (λ) < 0 . (13) 

It can be easily observed that the true solution Z(t) = e λt of this test equation decays as t tends to ∞ and we expect that

the numerical solution provided by the proposed scheme for solving the problem in (13) behaves in the same manner. By
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applying the proposed method to the Dahlquist’s test equation (13) , we get a system that may be expressed in a matrix

form as 

U 

⎛ 

⎜ ⎝ 

Z n + ν1 

Z n + ν2 

Z n + ν3 

Z n +1 

⎞ 

⎟ ⎠ 

= V 

⎛ 

⎜ ⎝ 

Z n + ν1 −1 

Z n + ν2 −1 

Z n + ν3 −1 

Z n 

⎞ 

⎟ ⎠ 

(14)

where the matrix U is given by 

U = 

⎛ 

⎜ ⎝ 

U 11 U 12 U 13 U 14 

U 21 U 22 U 23 U 24 

U 31 U 32 U 33 U 34 

U 41 U 42 U 43 U 44 

⎞ 

⎟ ⎠ 

with 

U 11 = −9(−40(3 + 

√ 

3 ) + (19 + 7 
√ 

3 ) H) , U 12 = 32(−1 + 2 
√ 

3 ) H

U 13 = 27(−3 + 

√ 

3 ) H, U 14 = (7 + 

√ 

3 ) H, U 21 = 

1 
480 (72 + 45 

√ 

3 ) H, U 22 = −1 + 

2 H 
15 

U 23 = 

1 
480 (72 − 45 

√ 

3 ) H, U 24 = 

H 
480 , U 31 = 27(3 + 

√ 

3 ) H, U 32 = 32(1 + 2 
√ 

3 ) H

U 33 = −9(−40(−3 + 

√ 

3 ) + (−19 + 7 
√ 

3 ) H) , U 34 = (−7 + 

√ 

3 ) H, U 41 = 

3 H 
10 , 

U 42 = 

4 H 
15 , U 43 = 

3 H 
10 , U 44 = −1 + 

H 
15 and the matrix V is given by 

V = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 360(3 + 

√ 

3 ) + (83 + 29 

√ 

3 ) H 

0 0 0 

−1 

480 

(480 + 31 H) 

0 0 0 360(−3 + 

√ 

3 ) + (−83 + 29 

√ 

3 ) H 

0 0 0 

−1 

15 

(15 + H) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where H = λh. 

Then, the application of the hybrid block method to the Dahlquist’s test equation may be expressed as follows ⎛ 

⎜ ⎝ 

Z n + ν1 

Z n + ν2 

Z n + ν3 

Z n +1 

⎞ 

⎟ ⎠ 

= P (H) 

⎛ 

⎜ ⎝ 

Z n + ν1 −1 

Z n + ν2 −1 

Z n + ν3 −1 

Z n 

⎞ 

⎟ ⎠ 

(15)

where P (H) = U 

−1 V is called the stability matrix. 

Now, in order to study the stability characteristics of the hybrid block method, we consider the spectral radius ρ[ P ( H )]

of the stability matrix given by 

ρ[ P (H)] = 

M(H) 

N(H) 
, (16)

where 

M(H) = 1440 + 720 H + 156 H 

2 + 18 H 

3 + H 

4 , 

N(H) = 1440 − 720 H + 156 H 

2 − 18 H 

3 + H 

4 . 

Thus, we have | ρ[ P ( H )]| < 1 for Re( H ) < 0. This establishes that the proposed hybrid block method is A -stable. Fig. 1 repre-

sents the absolute stability region of the proposed method. 

4. Formulation as an adaptive method 

To formulate the present method in an adaptive step-size form, we have adopted the approach considered by Shampine

et al. [30] . This formulation can be done by executing a combination of the proposed method and a lower order method

simultaneously. The purpose of considering the lower order scheme is just to assess the local error that we want to estimate

at the final point of [ t n , t n +1 ] , while the higher order method is used to advance the integration process. This is a similar

procedure to the one used in the case of embedded Runge–Kutta methods. 

In order not to increase the number of function evaluations in the simultaneous implementation of both methods, the

lower order method is obtained considering that it uses the same function evaluations as with the higher order method. In

this way, this embedding-like procedure will not increase the computational cost in terms of number of function evaluations.

The following fourth order formula 

Z n +1 = Z n + 

h 

(F n + ν1 
+ F n + ν3 

) , (17)

2 
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Fig. 1. Stability region of the method given in Table 1 . 

 

 

 

 

 

 

 

 

whose local truncation error is given by LTE = 

Z (5) (t n ) h 5 

4320 + O 

(
h 6 

)
, has been implemented simultaneously with the higher

order method. One can observe that the lower order method (17) uses two function evaluations which are already used in

the main method. Therefore, there will be no extra function evaluation cost needed in order to estimate the local error. The

difference between the approximate solutions obtained by the higher order method and the lower order method will be

used as an error estimate ( EST ) for the local error that will be further used in deciding the appropriate size of the new step.

Thus, we consider the following criterion in order to decide the size of the next step: 

h new 

= θ h old 

(
T ol 

‖ EST ‖ 

)1 / (p+1) 

, (18) 

where p is order of the lower order method, and 0 < θ < 1, is called the safety factor. The major objective of the safety factor

θ is to avoid large variations in the new step. The notation Tol is designated for user defined tolerance. 

We further impose the following conditional structure in the execution of the method 

If h min ≤ h new 

≤ h max then h old = h new 

. 

The above criterion can be expressed in the following simple steps: 

1. If ‖ EST ‖ < Tol , then accept the obtained values and double the step-size in order to advance the integration process. 

2. If ‖ EST ‖ ≥ Tol , then redefine the current step-size using the above criterion and redo the calculations. 

In the scientific literature, different strategies are used in order to select the appropriate size of the initial step which we

denote as h ini , for example see [32] . On the other way, one can choose a small h ini (see for reference [33] ) and the algorithm

will automatically redefine if it is required. 
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Table 2 

Numerical results for Section 5.1 . 

h ini Tol Method MaxErr FEvals C. time 

RADAU 5 . 2187 × 10 −10 504 0.080 

10 −2 10 −9 ode15s 2 . 6289 × 10 −9 351 0.088 

Opthbm 1 . 3022 × 10 −13 290 0.071 

RADAU 6 . 0419 × 10 −12 735 0.094 

10 −3 10 −10 ode15s 1 . 3305 × 10 −9 475 0.097 

Opthbm 2 . 0650 × 10 −14 435 0.092 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Numerical experiments 

This section deals with the implementation of the proposed adaptive step-size method on some well-known differential

systems existing in the scientific literature. Some notations have been used in the following Tables which are designated as

follows: Tol:Tolerance, FEvals: Number of function evaluations, MaxErr: Maximum absolute error in all the components of

the solution at the integration interval or at the end point, and C. time: CPU time measured in seconds. The following ODE

solvers have been considered for comparisons: 

1. ode15s: ode15s is a variable-step, variable-order (VSVO) IVP solver. This code is based on the numerical differentiation

formulas (NDFs) of orders 1 to 5. This code is a built-in ODE solver in MATLAB which is specifically designed for solving

stiff systems. For more details on this code, one can consult the references [30,31] . 

2. RADAU: This code is based on implicit Runge–Kutta methods (Radau-IIa) with variable order (1, 5, 9, 13) and step size

control. This code is also specifically designed for solving stiff systems. We have used a MATLAB code of this scheme

(see MatlabStiff package in http://www.unige.ch/hairer/software.html ). 

3. Opthbm: This is the new proposed scheme in this article which is implemented in adaptive size mode using the step-size

strategy given in Section 4 . At each step of integration, one has to solve a system of linear/nonlinear equations arising

due to the implicit nature of the scheme. We have developed a MATHEMATICA code of this scheme and enhanced the

code using the FindRoot command in order to solve the resulting nonlinear system and the NSolve command in case of

linear systems. 

Note. The used MATLAB codes ode15s and RADAU are variable-step, variable-order methods which use different criteria for

changing the step size and order of the schemes. The new scheme presented here uses the change of step-size strategy given

in Section 4 . For solving the test problems, we have considered T ol = AbsT ol = RelT ol, where the notations AbsTol and RelTol

stand for absolute error tolerance and relative error tolerance respectively. Recall that AbsTol and RelTol are used by the ODE

solvers ode15s and RADAU, whereas the Tol will be used by the new scheme in order to estimate the error at each step

of integration. The codes ode15s and RADAU are implemented in MATLAB2013a on a laptop with configuration i7-7500U,

2.70 GHz, Win10. The new scheme is implemented in MATHEMATICA, version 2011 on the laptop with same configuration. 

5.1. Robertson’s chemistry problem 

Firstly, we have taken the well-known Robertson’s nonlinear stiff differential system arising in chemical sciences [34] that

describes the kinetics of an autocatalytic reaction. It is considered in the well-known ‘Test Set for Initial Value Problem

Solvers’ [37] and also studied by Cash [38,39] . 

Z ′ 1 = −0 . 04 Z 1 + 10 

4 Z 2 Z 3 , Z 1 (0) = 1 

Z ′ 2 = 0 . 04 Z 1 − 10 

4 Z 2 Z 3 − 3 × 10 

7 Z 2 2 , Z 2 (0) = 0 

Z ′ 3 = 3 × 10 

7 Z 2 2 , Z 3 (0) = 0 . 

(19)

The above problem is integrated over the interval [0, 40] as in [38] . The numerical results in Table 2 have been obtained

by using 

(h ini , T ol) = (10 

−κ , 10 

−(κ+7) ) , κ = 2 , 3 . 

In order to compare the errors, the following reference solution at the end point t N = 40 

Z 1 = 0 . 7158270687194135 

Z 2 = 9 . 185534764558135 × 10 

−6 

Z 3 = 0 . 28416374574582 (20)

considered in [40] is used for the problem. It can be viewed from the results in Table 2 that the proposed adaptive step-size

code performs better among the ode solvers considered for comparison. 

http://www.unige.ch/hairer/software.html
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Table 3 

Numerical results for Section 5.2 . 

h ini Tol Method MaxErr FEvals C. time 

RADAU 1 . 8130 × 10 −11 285 0.047 

10 −1 10 −11 ode15s 3 . 2508 × 10 −11 324 0.081 

Opthbm 3 . 3306 × 10 −15 215 0.046 

RADAU 4 . 7764 × 10 −12 349 0.057 

10 −2 10 −12 ode15s 4 . 4668 × 10 −12 406 0.097 

Opthbm 5 . 3290 × 10 −15 315 0.053 

 

 

 

 

5.2. Gear’s problem 

Consider the problem suggested by Gear [41] 

Z ′ 1 = −0 . 013 Z 1 − 10 0 0 Z 1 Z 3 , Z 1 (0) = 1 

Z ′ 2 = −2500 Z 2 Z 3 , Z 2 (0) = 1 (21) 

Z ′ 3 = −0 . 013 Z 1 − 10 0 0 Z 1 Z 3 − 250 0 Z 2 Z 3 , Z 3 (0) = 0 . 

The problem is integrated over the interval [0, 50] as in [41] . The numerical results in Table 3 have been obtained by

considering 

(h ini , T ol) = (10 

−κ , 10 

−(κ+10) ) , κ = 1 , 2 . 

In order to compare errors, the following reference solution at end point t N = 50 

Z 1 = 0 . 59765469806558128638 

Z 2 = 1 . 40234340854787827842 

Z 3 = −1 . 8933865404351958485 × 10 

−6 

obtained by using the NDSolve command with a 10 th order Implicit Runge–Kutta method in MATHEMATICA, has been used.

The proposed adaptive hybrid code again performs well for this problem. 

5.3. Jacobi elliptic functions 

As a next example, we consider the well-known system concerned with Jacobi elliptic functions sn , cn and dn which is

frequently used in numerical experimentation [35] 

sn 

′ (t) = cn (t ) .dn (t ) , sn (0) = 0 

cn 

′ (t) = −sn (t ) .dn (t ) , cn (0) = 1 

dn 

′ (t) = −m.sn (t ) .cn (t ) , dn (0) = 1 , 

(22) 

where m = 

1 
2 . The theoretical solution of the system can be written in terms of series as follows 

sn (t) = 

2 π√ 

1 
2 

K 

∞ ∑ 

n =0 

q n + 
1 
2 

1 − q 2 n +1 
sin ((2 n + 1) v ) 

cn (t) = 

2 π√ 

1 
2 

K 

∞ ∑ 

n =0 

q n + 
1 
2 

1 + q 2 n +1 
cos ((2 n + 1) v ) (23) 

dn (t) = 

π

2 K 

+ 

2 π

K 

∞ ∑ 

n =1 

q n 

1 + q 2 n 
cos (2 n v ) , 

here q = e −π , v = 

πt 
2 K and K = 

∫ π
2 

0 
d θ√ 

1 − 1 
2 

sin 2 θ
≈ 1 . 85 . We have solved this problem over the integration interval [0, 50]. For

this problem, we have considered 

(h ini , T ol) = (10 

−κ , 10 

−(κ+3) ) , κ = 1 , 2 . 

The numerical results presented in Table 4 demonstrate the good performance of the new scheme. 

5.4. Brusselator system 

Now, we consider a diffusion-free nonlinear Brusselator system [2] which is also studied in [6] 

Z ′ 1 = V + Z 2 1 Z 2 − (U + 1) Z 1 , Z 1 (0) = Z 0 1 

Z ′ = U Z 1 − Z 2 Z 2 , Z 2 (0) = Z 0 . 
(24) 
2 1 2 
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Table 4 

Numerical results for Section 5.3 . 

h ini Tol Method MaxErr FEvals C. time 

RADAU 1 . 0737 × 10 −3 1115 0.105 

10 −1 10 −4 ode15s 8 . 5313 × 10 −3 646 0.112 

Opthbm 8 . 6642 × 10 −6 430 0.102 

RADAU 2 . 6296 × 10 −4 1323 0.115 

10 −2 10 −5 ode15s 1 . 0373 × 10 −3 771 0.117 

Opthbm 2 . 0913 × 10 −7 670 0.110 

Table 5 

Numerical results for Section 5.4 . 

h ini Tol Method MaxErr FEvals C. time 

RADAU 4 . 0992 × 10 −7 1692 0.088 

10 −3 10 −6 ode15s 2 . 2601 × 10 −5 894 0.097 

Opthbm 1 . 2513 × 10 −8 695 0.077 

RADAU 9 . 3148 × 10 −9 2371 0.113 

10 −4 10 −7 ode15s 3 . 3122 × 10 −6 1129 0.118 

Opthbm 9 . 6196 × 10 −10 1070 0.107 

Table 6 

Numerical results for Section 5.5 . 

h ini Tol Method MaxErr FEvals C. time 

RADAU 4 . 6122 × 10 −6 72 0.014 

10 −3 10 −5 ode15s 2 . 9788 × 10 −5 39 0.018 

Opthbm 5 . 0900 × 10 −8 30 0.011 

RADAU 6 . 0016 × 10 −7 145 0.016 

10 −4 10 −6 ode15s 4 . 8015 × 10 −6 63 0.021 

Opthbm 2 . 8070 × 10 −9 45 0.014 

 

 

 

 

 

 

 

 

 

 

Here, U and V are positive real constants [44] . The critical point of the differential system is (Z ∗1 , Z 
∗
2 ) = (V, U/V ) . In the

experiments, we have taken U = 3 , V = 1 and initial values Z 0 
1 

= 1 . 5 , Z 0 
2 

= 3 , and the integration interval [0, 20] as it was

used by Butcher and Podhaisky [45] . The reference solution at end point t N = 20 , 

Z 1 = 0 . 4 9863707126 834784 83331816235 

Z 2 = 4 . 5967803494520111826429803773 (25)

is obtained by the NDSolve command with a 10 th order Implicit Runge–Kutta method in MATHEMATICA. The problem is

solved by considering 

(h ini , T ol) = (10 

−κ , 10 

−(κ+3) ) , κ = 3 , 4 . 

The results in Table 5 give a numerical evidence of the good performance of the proposed method. 

5.5. Van Der Pol Ssystem 

As a last example, consider the following well-known Van der Pol system [36] 

Z ′ 1 = Z 2 , Z 1 (0) = 2 

Z ′ 2 = 

(1 − Z 2 1 ) Z 2 − Z 1 

ε
, Z 2 (0) = 

−2 

3 

+ 

10 

81 

ε − 292 

2187 

ε2 − 1814 

19683 

ε3 . (26)

This problem is solved over the integration interval [0, 0.55139] and ε = 10 −1 as was done in [36] . The numerical results

have been obtained by considering 

(h ini , T ol) = (10 

−κ , 10 

−(κ+2) ) , κ = 3 , 4 . 

The reference solution Z 1 = 1 . 5633739442300918 , Z 2 = −1 . 0 0 0 0208318542727 at the end of the integration interval is used

for numerical experiments. The numerical results in Table 6 support the good performance of the adaptive step-size scheme

compared with the other codes considered for comparisons. 

6. Conclusions 

In this article, we have developed a one-step hybrid block method in optimized version for integrating differential sys-

tems. An embedded-type approach is used in order to formulate the proposed scheme in an adaptive step-size mode. Some

well-known differential systems are solved in order to illustrate the good performance of the proposed scheme. 
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