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Abstract

In this article, a third derivative continuous 2-step block Falkner-type method for the general solution of second order
boundary value problems of ordinary differential equations (ODEs) with different types of boundary conditions is developed.
The approaches of collocation and interpolation are adopted to derive the new Falkner-type method, which is then implemented
in a block mode to get approximations at all the grid points simultaneously. This method is said to be a global method since
it simultaneously produces a solution over the entire interval, although it may also be categorized as a boundary value method
(see Brugnano and Trigiante (1998)). The order and the convergence analysis of the proposed method are studied. The new
Falkner-type scheme is applied to solve linear and non-linear systems of second-order boundary value problems of ODEs
considering different types of boundary conditions. Numerical results obtained through the implementation of the scheme are
very much close to the theoretical solution and found favourably compared with various existing methods in the literature.
c⃝ 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

This paper aims at obtaining directly numerical solutions for second-order boundary value problems (BVPs) with
a second-order differential equation of the general form

y′′
= f (x, y, y′), x ∈ [a, b] . (1)

Concerning the boundary conditions we consider different possibilities, of the following types:

(a) Dirichlet boundary conditions, where the solution y(x) is specified at the ends of the integration interval:

y(a) = ya, y(b) = yb . (2)
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(b) Neumann boundary conditions, where the derivative of the solution y′(x) is specified at the ends of the
integration interval:

y′(a) = y′

a, y′(b) = y′

b . (3)

(c) Robin boundary conditions, that consider combinations of y(x) and y′(x) at the ends of the integration
interval:

g1(y(a), y′(a)) = va, g2(y(b), y′(b)) = vb . (4)

We assume that the function f in (1) satisfies the conditions to assure that the existence and uniqueness theorems
are verified (for this, we refer the reader to [9,13,17]).

Numerous boundary-value problems for ordinary differential equations of the form in (1) arise in engineering
and science, mathematical models are often derived to assist in the understanding and solving those problems. It
is imperative to note that most of the differential equations arising from the modelling of physical phenomena
do not always have known analytical solutions. Thus, the need for the derivation of numerical approaches to get
approximate solutions becomes necessary. There are mainly three different types of approximation methods for
solving boundary value problems of ODEs: the shooting method, finite-difference methods, and the class of methods
based on approximating the solution by a linear combination of trial functions (of which collocation methods,
Galerkin method, and Rayleigh–Ritz method are the most typical examples). The shooting method transforms the
boundary-value ODE into a system of first-order ODEs, which must be solved by a suitable initial-value solver.
The finite-difference approach constructs a finite difference approximation of the exact ODE at selected points
on a discrete grid, including the boundary conditions. In this way a system of coupled finite difference equations
results, which must be solved simultaneously, thus obtaining the approximate solution at the grid points. Prominent
researchers like Chen et al. [7], Cheng and Zhong [8], Lomtatidze and Malaguti [20] and Thompson [30] have
applied finite difference methods to solve the problem in (1) together with selected boundary conditions. The
drawback of these methods is that they require great computational costs to obtain high accuracy.

According to Carla et al. [6], the problem in (1) could be solved by reducing it to first-order boundary value
problem with twice dimension. Notable scholars such as Brugnano et al. [4], Amodio et al. [1], Ascher et al. [2]
among others, had transformed the equation in (1) to a first-order boundary value problem with doubled dimension
in order to be able to get numerical solutions.

In this manuscript, we derive a new 2-step Falkner-type block method that uses third derivatives, to obtain directly
the approximate solution of a general second-order BVP with any of the boundary conditions in (2), (3), or (4).
Falkner-type methods, block methods, or even block Falkner-type methods have been used efficiently for solving
initial-value problems (see [3,12,23,25–28]), but not for solving BVPs. The 2-step Falkner block technique is not
so much costly in terms of the number of function evaluations, compared to some existing methods, and the major
advantage of this method over transformation approach is that it gives a better numerical performance when solving
directly problems of the form of the equation in (1).

The remaining part of this manuscript is outlined as follows. In Section 2 we introduce the procedure to develop
the proposed two-step block Falkner method (which will be named 2B F for short). Some characteristics of the new
method are given in Section 3, and the implementation of the proposed approach is explained in Section 4. Section 5
presents some numerical examples to show the efficiency and reliability of the proposed technique. Finally, some
conclusions are reported in Section 6.

2. Development of the method

In this section, a 2-step block Falkner-type method for solving the problem in (1) is derived. Consider the interval
[xn, xn+2] where xn+ j = xn + jh, and let us assume that the solution y(x) on this interval is approximated by a
polynomial p(x) of the form

y(x) ≃ p(x) =

7∑
j=0

a j x j , (5)

where the a j are unknown coefficients that will be determined. To do that we impose that the following equations
must be satisfied:

p(xn+1) = yn+1 , p′(xn+1) = y′

n+1 , (6)



H. Ramos and M.A. Rufai / Mathematics and Computers in Simulation 165 (2019) 139–155 141

p′′(xn+ j ) = fn+ j , p′′′(xn+ j ) = gn+ j , j = 0, 1, 2, (7)

where the yn+ j , y′

n+ j , fn+ j = f (xn+ j , yn+ j , y′

n+ j ), gn+ j = g(xn+ j , yn+ j , y′

n+ j ) are respectively approximations for
y(xn+ j ), y′(xn+ j ), y′′(xn+ j ) and y′′′(xn+ j ) with

g(x, y, y′) =
∂ f
∂x

+
∂ f
∂y

y′
+

∂ f
∂y′

f (x, y, y′) .

The undetermined coefficients a j are obtained by solving the system of equations in (6)–(7), and then the obtained
values are substituted into (5). After some manipulations, the continuous representation of the proposed block
Falkner method is obtained as

y(x) ≃ p(x) = α0(x)yn+1 + α1(x)hy′

n+1 + h2

⎡⎣ 2∑
j=0

β j (x) fn+ j

⎤⎦ + h3

⎡⎣ 2∑
j=0

γ j (x)gn+ j

⎤⎦ , (8)

where α0(x), α1(x) and β j (x), γ j (x), j = 0, 1, 2, are continuous coefficients and h is the chosen step-size.

2.1. Main formulas

The main formulas are obtained by substituting the values of α0(x), α1(x) and β j (x), γ j (x), j = 0, 1, 2
into Eq. (8) and evaluating p(xn + 2h) and p′(xn + 2h) to get approximations for y(xn + 2h) and y′(xn + 2h).
Thus, we obtain the following 2-step Falkner-type formulas

yn+2 = yn+1 + hy′

n+1 + h2
(

37
1680

fn +
11
30

fn+1 +
187

1680
fn+2

)
+ h3

(
1

168
gn +

19
210

gn+1 −
2

105
gn+2

)
, (9)

y′

n+2 = y′

n+1 + h
(

11
240

fn +
8

15
fn+1 +

101
240

fn+2

)
+ h2

(
1
80

gn +
1
6

gn+1 −
13
240

gn+2

)
. (10)

These formulas must be considered along with the grid points in order to get a solution of the BVP. That is, if we
consider the grid points a = x0 < x1 < x2 < · · · < xN−2 < xN−1 < xN = b with N ∈ N, we take the formulas
in (9)–(10) for n = 0, 1, 2, . . . , N − 2. This makes a total of 2(N − 1) equations. As the number of unknowns is
2N + 2 and we have two boundary conditions, we still need two additional formulas.

2.2. Additional formulas

In order to get the two additional formulas to form the block Falkner-type method for solving the BVP we
proceed by evaluating the continuous scheme (8) and its first derivative at the point x = xn . We obtain

yn = yn+1 − hy′

n+1 + h2
(

187
1680

fn +
11
30

fn+1 +
37

1680
fn+2

)
+ h3

(
2

105
gn −

19
210

gn+1 −
1

168
gn+2

)
, (11)

y′

n = y′

n+1 − h
(

101
240

fn +
8
15

fn+1 +
11
240

fn+2

)
− h2

(
13

240
gn −

1
6

gn+1 −
1

80
gn+2

)
. (12)

These are general formulas, but we need only two more formulas. Thus, we particularize these formulas for a
specific value of n. This value of n may be any from 0 to N − 2. In our approach, we have considered n = 0, and
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thus the resulting two additional formulas are

y0 = y1 − hy′

1 + h2
(

187
1680

f0 +
11
30

f1 +
37

1680
f2

)
+ h3

(
2

105
g0 −

19
210

g1 −
1

168
g2

)
, (13)

y′

0 = y′

1 − h
(

101
240

f0 +
8

15
f1 +

11
240

f2

)
− h2

(
13

240
g0 −

1
6

g1 −
1

80
g2

)
. (14)

Considering altogether the formulas in (9)–(10) for n = 0, 1, . . . , N − 2, the two boundary conditions (one of
those in (2), (3) or (4)), and the formulas in (13)–(14) we get the 2B F method for solving the BVP. This method
consists in a system of 2N + 2 equations with 2N + 2 unknowns: y0, y1, . . . , yN , y′

0, y′

1, . . . , y′

N . This system may
be linear or not according to the type of function f on the right-hand side of the differential equation in (1). In case
we have a linear system we use any of the available linear solvers in the literature, and in the case of a nonlinear
system, we use Newton’s method. In the latter case, some starting values are needed to initialize the iterative solver.
In the implementation section, we will describe how these values are provided, depending on the type of boundary
conditions.

3. Characteristics of the method

3.1. Order and local truncation errors

Although we have particularized the equations in (11)–(12) for n = 0, as we can choose any value of n =

0, 1, . . . , N − 2 we consider these formulas in general. Equations in (9)–(12) may be written in the following form

P Yn = h Q Y ′

n + h2 R Fn + h3 S Gn , (15)

where P, Q, R, S are matrices of coefficients with dimensions 4 × 3, and

Yn = (yn, yn+1, yn+2)
T ,

Y ′

n =
(
y′

n, y′

n+1, y′

n+2

)T
,

Fn = ( fn, fn+1, fn+2)
T

Gn = (gn, gn+1, gn+2)
T .

The corresponding matrices for the formula in (15) are given by

P =

⎛⎜⎜⎝
0 −1 1
0 0 0
1 −1 0
0 0 0

⎞⎟⎟⎠ , Q =

⎛⎜⎜⎝
0 1 0
0 −1 1
0 −1 0
1 −1 0

⎞⎟⎟⎠ ,

R =

⎛⎜⎜⎜⎜⎝
37

1680
11
30

187
1680

−
11
240 −

8
15 −

101
240

187
1680

11
30

37
1680

101
240

8
15

11
240

⎞⎟⎟⎟⎟⎠ , S =

⎛⎜⎜⎜⎜⎝
1

168
19
210 −

2
105

−
1
80 −

1
6

13
240

2
105 −

19
210 −

1
168

13
240 −

1
6 −

1
80

⎞⎟⎟⎟⎟⎠ .

Following the lines proposed by Ramos et al. [24] for a Falkner-type method, assuming that y(x) is a sufficiently
differentiable function, we denote the linear difference operator L associated to the formulas in (15) as follows:

L[y(x); h] =

2∑
j=0

[
ᾱ j y (xn + jh) − hβ̄ j y′ (xn + jh) − h2γ̄ j y′′ (xn + jh) − h3δ̄ j y′′′ (xn + jh)

]
, (16)

where ᾱ j , β̄ j , γ̄ j and δ̄ j are respectively the vector columns of matrices P, Q, R and S.
Expanding Eq. (16) using Taylor series about xn we obtain that L[y(x); h] may be written as

L[y(x); h] = C̄0 y(xn) + C̄1hy′(xn) + C̄2h2 y′′(xn) + · · · + C̄q hq yq (xn) + . . . , (17)
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where

C̄q =
1
q!

⎡⎣ 2∑
j=1

jq ᾱ j − q
2∑

j=1

jq−1β̄ j − q(q − 1)
2∑

j=1

jq−2γ̄ j − q(q − 1)(q − 2)
2∑

j=1

jq−3δ̄ j

⎤⎦ , (18)

for q = 0, 1, 2, 3, . . . .

Definition 3.1. The linear difference operator and the associated formulas are said to be of order p if C̄0 = C̄1 =

· · · = C̄ p+1 = 0, C̄ p+2 ̸= 0. The C̄i are column vectors of scalars of size 4, and C̄ p+2 is the vector of error constants
(see Rufai [29]).

From (18), we readily obtain that C̄0 = C̄1 = · · · = C̄7 = 0 and

C̄8 =

(
29

604800
,

1
9450

,
29

604800
, −

1
9450

)T

.

We note that all the proposed formulas in Eqs. (9)–(12) are of order p = 6.

3.2. Convergence analysis

It is well known that if a numerical method does not converge then it is of little use. This subsection is devoted
to prove the convergence of the proposed method. We begin by exposing the definition of convergence, and then
we will show that the proposed method is convergent by compactly writing the main formulas in (9)–(10) and the
additional ones in (13)–(14) in matrix–vector form (see [16]).

Definition 3.2. Let y(x) be the solution of the considered boundary value problem and
{

y j
}N

j=0 the approximations
provided by the proposed method. The numerical method is said to be a pth-order convergent method if for h
sufficiently small, there exists a constant K independent of h such that

max
0≤ j≤N

|y(x j ) − y j | ≤ K h p .

Note that in this case we have that max
0≤ j≤N

|y(x j ) − y j | → 0 as h → 0.

We will consider that the boundary conditions are of the type in (2), which is a very common case. For other
cases the proof can be made similarly, making the appropriate changes. We assume that these are exact boundary
conditions, and thus we have the known values y0 = y(x0) = ya and yN = y(xN ) = yb, while the unknowns will
be y1, y2, . . . , yN−1, y′

0, y′

1, . . . , y′

N . To proof convergence, we introduce the following notations. Let D represent
the 2N × 2N matrix defined by

D =

(
D11 D12
D21 D22

)
,

where D11 and D21 are submatrices of dimension N × (N − 1) given respectively by

D11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 . . . 0 0
−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
0 0 −1 1 . . . 0 0
...

...
...

. . .
. . .

...
...

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1
0 0 0 . . . 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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D21 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

. . .
. . .

...

0 0 0 . . . 0 0
0 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and D12, D22 are submatrices of dimension N × (N + 1) given respectively by

D12 = h

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0 0
0 −1 0 . . . 0 0 0
0 0 −1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −1 0 0
0 0 0 . . . 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

D22 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
0 0 −1 1 . . . 0 0
...

...
...

. . .
. . .

...
...

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

On the other hand, let U represent the 2N × (2N + 2) matrix defined by

U =

(
U11 U12
U21 U22

)
,

where the Ui j are submatrices of dimension N × (N + 1) with similar structure given respectively by

U11 = h

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
187
1680 −

11
30 −

37
1680 0 0 . . . 0

−
37

1680 −
11
30 −

187
1680 0 0 . . . 0

0 −
37

1680 −
11
30 −

187
1680 0 . . . 0

0 0 −
37

1680 −
11
30 −

187
1680 . . . 0

...
...

...
. . .

. . .
. . .

...

0 0 0 . . . −
37

1680 −
11
30 −

187
1680

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

U12 = h2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
2

105
19
210

1
168 0 0 . . . 0

−
1

168 −
19
210

2
105 0 0 . . . 0

0 −
1

168 −
19

210
2

105 0 . . . 0

0 0 −
1

168 −
19
210

2
105 . . . 0

...
...

...
. . .

. . .
. . .

...

0 0 0 . . . −
1

168 −
19

210
2

105

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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U21 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

101
240

8
15

11
240 0 0 . . . 0

−
11
240 −

8
15 −

101
240 0 0 . . . 0

0 −
11

240 −
8
15 −

101
240 0 . . . 0

0 0 −
11
240 −

8
15 −

101
240 . . . 0

...
...

...
. . .

. . .
. . .

...

0 0 0 . . . −
11

240 −
8

15 −
101
240

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

U22 = h

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
240 −

1
6 −

1
80 0 0 . . . 0

−
1
80 −

1
6

13
240 0 0 . . . 0

0 −
1
80 −

1
6

13
240 0 . . . 0

0 0 −
1

80 −
1
6

13
240 . . . 0

...
...

...
. . .

. . .
. . .

...

0 0 0 . . . −
1

80 −
1
6

13
240

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Now we consider the exact solution of the problem, y(x), and define the 2N -vector

Y =
(
y(x1), . . . , y(xN−1), y′(x0), . . . , y′(xN )

)T
,

and the (2N + 2)-vector

F =
(

f (x0, y(x0), y′(x0)), . . . , f (xN , y(xN ), y′(xN )), g(x0, y(x0), y′(x0)), . . . , g(xN , y(xN ), y′(xN ))
)T

.

With the above notations, the exact form of the system given by the equation in (13), the equations in (9) for
n = 0, 1, . . . , N − 2, the equation in (14), and the equations in (10) for n = 0, 1, . . . , N − 2, in this order, can be
expressed as (note that we have included as subscripts the corresponding dimensions to make it clearer)

D2N×2N Y2N + h U2N×(2N+2) F2N+2 + C2N = L(h)2N , (19)

where C2N is a vector containing the known values, which in this case is

C2N = (ya, . . . , yb, 0, . . . , 0)T ,

and L(h)2N corresponds to the local truncation errors of the formulas, that is,

L(h)2N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

29
604800 y(8)(x0)h8

+ O(h9)
29

604800 y(8)(x0)h8
+ O(h9)

29
604800 y(8)(x1)h8

+ O(h9)
...

29
604800 y(8)(xN−2)h8

+ O(h9)
−1

9450 y(8)(x0)h7
+ O(h8)

1
9450 y(8)(x0)h7

+ O(h8)
1

9450 y(8)(x1)h7
+ O(h8)

...
1

9450 y(8)(xN−2)h7
+ O(h8)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

On the other hand, the system for the approximate values of the problem is represented by

D2N×2N Ȳ2N + h U2N×(2N+2) F̄2N+2 + C2N = 0, (21)

where Ȳ2N approximates the vector Y2N ,

Ȳ2N =
(
y1, . . . , yN−1, y′

0, . . . , y′

N

)T
,
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and F̄2N+2 approximates F2N+2,

F̄2N+2 = ( f0, . . . , fN , g0, . . . , gN )T .

On subtracting (21) from (19) and simplifying we get

D2N×2N E2N + h U2N×(2N+2)
(
F − F̄

)
2N+2 = L(h)2N , (22)

where E2N = Ȳ2N − Y2N =
(
e1, . . . , eN−1, e′

0, . . . , e′

N

)T contains the errors at the grid points.
By using the Mean-Value Theorem, we can write for i = 0, 1 . . . , N that

f (xi , y(xi ), y′(xi )) − f (xi , yi , y′

i ) = (y(xi ) − yi )
∂ f
∂y

(ξi ) +
(
y′(xi ) − y′

i

) ∂ f
∂y′

(ξi ) ,

g(xi , y(xi ), y′(xi )) − g(xi , yi , y′

i ) = (y(xi ) − yi )
∂g
∂y

(ηi ) +
(
y′(xi ) − y′

i

) ∂g
∂y′

(ηi ) ,

where ξi and ηi are intermediate points on the line segment joining (xi , y(xi ), y′(xi )) to (xi , yi , y′

i ). Thus, we have
that

F − F̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f
∂y (ξ0) 0 . . . 0 ∂ f

∂y′ (ξ0) 0 . . . 0
0 ∂ f

∂y (ξ1) . . . 0 0 ∂ f
∂y′ (ξ1) . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . .
∂ f
∂y (ξN ) 0 0 . . .

∂ f
∂y′ (ξN )

∂g
∂y (η0) 0 . . . 0 ∂g

∂y′ (η0) 0 . . . 0
0 ∂g

∂y (η1) . . . 0 0 ∂g
∂y′ (η1) . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . .
∂g
∂y (ηN ) 0 0 . . .

∂g
∂y′ (ηN )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e0
e1
...

eN

e′

0
e′

1
...

e′

N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 ∂ f
∂y′ (ξ0) 0 . . . 0 0

∂ f
∂y (ξ1) . . . 0 0 ∂ f

∂y′ (ξ1) . . . 0 0
...

. . . 0
...

...
. . .

...
...

0 . . .
∂ f
∂y (ξN−1) 0 0 . . .

∂ f
∂y′ (ξN−1) 0

0 . . . 0 0 0 . . . 0 ∂ f
∂y′ (ξN )

0 . . . 0 ∂g
∂y′ (η0) 0 . . . 0 0

∂g
∂y (η1) . . . 0 0 ∂g

∂y′ (η1) . . . 0 0
...

. . . 0
...

...
. . .

...
...

0 . . .
∂g
∂y (ηN−1) 0 0 . . .

∂g
∂y′ (ηN−1) 0

0 . . . 0 0 0 . . . 0 ∂g
∂y′ (ηN )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1
...

eN−1
e′

0
e′

1
...

e′

N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= J(2N+2)×2N E2N ,

where the second identity has been achieved through the fact that we know the exact boundary conditions, that is,
e0 = y(x0) − y0 = 0 and eN = y(xN ) − yN = 0.

Finally, using the above result, the equation in (22) may be rewritten as follows

D2N×2N E2N + h U2N×(2N+2) J(2N+2)×2N E2N = L(h)2N , (23)

and setting M2N×2N = D2N×2N + h U2N×(2N+2) J(2N+2)×2N we have that for sufficiently small values of h, M is
invertible and thus

E2N =
(
M−1)

2N×2N L(h)2N . (24)

We consider the maximum norm in R2N , ∥E∥ = max
i

|ei |, and the corresponding matrix induced norm in R2N×2N .

After expanding each term of
(
M−1

)
2N×2N in series around h it can be shown after tedious calculations that
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∥
(
M−1

)
2N×2N ∥ = O(h−1). This is essentially related to the fact that the uniform norm of the inverse of D grows

like h−1, as one can verify rather simply.
Consequently, from the equation in (24) and the form of the vector L(h)2N in (20), assuming that y(x) has in

[a, b] bounded derivatives up to the eighth order, we have that

∥E2N ∥ ≤ ∥
(
M−1)

2N×2N ∥ ∥L(h)2N ∥

= O(h−1)O(h7)

≤ K h6.

Therefore, the proposed method 2B F is a sixth-order convergent method.

4. Implementation

In order to give numerical approximations to the considered problems, we have to solve the system of 2N + 2
equations with 2N +2 unknowns given by (9)–(10), j = 0, 1, . . . , N −2, (13)–(14) and the two boundary conditions
(either (2), or (3), or (4)). If the function f in (1) is linear we use any available linear solver, in our case we have
considered the one in the Mathematica 8.0 system. If f is nonlinear we use Newton’s method. If the system to
be solved is denoted by F(y) = 0, the stopping criterion considered has been ∥F(yi )∥ ≤ 10−16, with a maximum
number of iterations established in Max I ter = 100. When using Newton’s method it is important to consider initial
guesses reasonably close to the true roots. We distinguish two situations:

• In case of Dirichlet conditions it is y0 = ya, yN = yb, and thus the system is reduced to 2N equations with
2N unknowns. In this case we consider as initial starting points:

y(0)
j = y0 +

yN − y0

b − a
jh , j = 1, 2, . . . , N − 1; (25)

y′(0)
j =

yN − y0

b − a
, j = 0, 1, 2, . . . , N . (26)

• In case of Neumann of Robin conditions, we may consider that they are of the general type in (4). In this
situation, we adopt a strategy similar to the one in [10] or [22], where a homotopy-type procedure was used.
We consider a family of nonlinear BVPs Pj , j = 0, 1, 2, . . . , s, such that for j = 0 the problem P0 admits
only the solution y(x) = 0, while when j = s we recover the original problem. In this way, we have a family
of BVPs given by

Pj ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y′′

= f (x, y, y′) − f (x, 0, 0) +
j
s

f (x, 0, 0) ,

g1(y(a), y′(a)) =
j
s

va ,

g2(y(b), y′(b)) =
j
s

vb,

(27)

for j = 0, 1, . . . , s. Each of these problems Pj for j = 1, 2, . . . , s is solved using the method developed in
this paper, taking as starting guesses the values obtained after solving the previous problem Pj−1. For j = s
the nonlinear system corresponding to the original BVP is solved taking as starting guesses the values obtained
after solving the problem Ps−1.

This strategy has the sole purpose of providing suitable starting values for the Newton’s method. If one has another
way of supplying the starting values it can be used, even sometimes it is enough just to take these starting values
as zero (which may be accomplished taking s = 1). There are no established criteria for choosing the number s of
intermediate problems, it depends on the difficulty of the problem. Nevertheless, in our numerical experiments we
have taken in general s = 1 (that is, just the original problem), and in the more complicated cases with s = 6 we
got good results.

5. Numerical examples

This section is devoted to determine the accuracy, suitability and applicability of the new proposed 2B F method
for solving the problem in (1) for different types of boundary conditions. We have tested the performance of the
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Table 1
Comparison of the maximum absolute errors (MAE) on Problem 1.

h MAE with 2B F MAE in [31]
1
2 1.51722 × 10−7 0.26400 × 10−4

1
4 2.11789 × 10−9 0.16600 × 10−5

1
8 3.78544 × 10−11 0.10700 × 10−6

1
16 6.27165 × 10−13 0.67200 × 10−8

1
32 1.03251 × 10−14 0.42200 × 10−9

proposed method on different BVPs including linear and non-linear, scalar and systems of second-order. In each
example, we determine the absolute errors of the approximate solutions and the numerical results obtained are
compared with various existing approaches in the literature. The accuracy of the proposed method may be seen in
Tables 1–8.

5.1. Problem 1

We consider the following BVP that was solved by Usmani [31],

y′′(x) = y(x) + x2
− 2, y(0) = 0, y(1) = 1, 0 ≤ x ≤ 1 ,

whose exact solution is given by

y(x) =
e2x2

− x2
+ 2e1−x

− 2ex+1

1 − e2 .

The numerical results with the proposed method are compared with those provided with a method of high-order
accuracy, discussed in Usmani [31] which solved the same problem using the same values of h in Table 1. The
local truncation errors in the method by Usmani were also of the form Tn+1 = O(h8), but the difference with the
proposed method is that it was designed for linear equations and consists of a system of N equations. The differential
equation of the problem solved by Usmani was simpler, y′′(x) = f (x)y(x) + g(x), without the appearance of the
first derivative. It was observed that the maximum absolute errors (MAE) obtained with our method are smaller
than those with the method in [31].

5.2. Problem 2

We now consider the nonlinear BVP that was solved by Ha [14]

y′′(x) = y3(x) − y(x)y′(x),

subject to the boundary conditions

y(1) =
1
2
, y(2) =

1
3
, 1 ≤ x ≤ 2,

whose exact solution is given by

y(x) =
1

x + 1
.

Ha uses a shooting method that requires two initial-value problems which must be solved at each iteration. As an
initial-value solver, he considers the classical Runge–Kutta method, which is combined with a generalized Newton’s
method that uses a relaxation parameter. The difficulty with this method relies on determining a suitable relaxation
parameter and a suitable initial guess for the velocity. In fact, for this problem, the author finds some troubles
because there exists a critical value between 4.15 and 4.20 for which using an initial velocity greater than this
value the method does not converge. Table 2 shows the absolute errors at different points taking h = 0.05, that is
N = 20. We have included the best results in [14] which were obtained for an initial guess for the velocity v0 = 4.
We see that the proposed method greatly outperforms those results.
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Table 2
Comparison of the maximum absolute errors (MAE) on Problem 2.

x MAE with 2B F MAE in [14] taking v0 = 4

1.0 0 0
1.1 1.93168 × 10−12 0.0000550
1.2 2.91617 × 10−12 0.0000910
1.3 3.27344 × 10−12 0.0001110
1.4 3.23480 × 10−12 0.0001180
1.5 2.94503 × 10−12 0.0001160
1.6 2.49561 × 10−12 0.0001050
1.7 1.94511 × 10−12 0.0000880
1.8 1.33088 × 10−12 0.0000650
1.9 6.77347 × 10−13 0.0000370
2.0 0 0.0000060

Table 3
Comparison of the maximum absolute errors (MAE) on Problem 3.

h BC1 with 2B F BC2 with 2B F BC1 in [19] BC2 in [19]
1
5 1.06656 × 10−8 1.47864 × 10−8 2.88500 × 10−6 7.69400 × 10−6

1
10 1.70827 × 10−10 3.47774 × 10−10 1.83500 × 10−7 4.37200 × 10−7

1
20 2.76146 × 10−12 5.99476 × 10−12 1.15100 × 10−8 2.66600 × 10−8

1
40 4.39648 × 10−14 9.72555 × 10−14 7.20200 × 10−10 1.65600 × 10−9

1
80 6.80012 × 10−16 4.44089 × 10−15 4.49800 × 10−11 1.03100 × 10−10

5.3. Problem 3

In the third example, we solve the problem appeared in [19] given by

y′′(x) + (x2
− 6x − 1)y′(x) + (5x − x2

+ 6)y(x) = ex
− x2

+ 5x + 6, 0 ≤ x ≤ 1 ,

subject to boundary conditions either of Neumann or Robin types:

BC1 = {y′(0) = 1, y′(1) = 2e}

or

BC2 = {y(0) + y′(0) = 2, 2y(1) − y′(1) = 2} .

In both cases the exact solution is

y(x) = xex
+ 1.

Problem 3 was also solved by Lang and Xu [19] using a quintic B-spline collocation method that needs to solve a
system of N +5 equations. In order to provide the numerical solution, we consider different step-sizes and compare
the numerical results of the proposed method with the method in [19]. From the data in Table 3, it could be seen
clearly that 2B F method gives better numerical results.

5.4. Problem 4

Here, we consider a nonlinear BVP with Neumann boundary conditions

y′′(x) = 2y3(x), y′(0) = −1, y′(1) = −1/4, 0 ≤ x ≤ 1,

that was presented in [15] and previously in [18], whose exact solution is given by

y(x) =
1

1 + x
.
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Table 4
Comparison of the maximum absolute errors (MAE) on Problem 4.

h MAE with 2BF MAE in [15]
1
16 1.40300 × 10−8 5.94920 × 10−4

1
32 2.23986 × 10−10 1.55450 × 10−4

1
64 3.45612 × 10−12 3.97570 × 10−5

1
128 5.34017 × 10−14 1.00550 × 10−5

1
256 9.99201 × 10−16 2.52830 × 10−6

1
512 7.77156 × 10−16 6.33925 × 10−7

Fig. 1. Comparison of the exact solution of problem 4 with the discrete solution provided by 2B F for N = 64.

The maximum absolute errors (MAE) for various values of h are displayed in Table 4. This problem was also solved
by Siraj-ul-Islam et al. [15] using a collocation method combined with the Haar wavelets. The MAE with this later
method for N = 16 and N = 512 collocation points are 5.94920 × 10−4 and 6.33925 × 10−7 while the MAE with
our 2B F approach as seen in Table 4 are 1.40300 × 10−8 and 7.77156 × 10−16 for the same number of collocation
points. It is obvious from the results in Table 4 that our method is more accurate than the collocation method with
the Haar wavelets proposed in [15]. Comparison of the analytical versus approximate solution is displayed in Fig. 1.

For this nonlinear problem, we have used the strategy described in the implementation section concerning the
starting values. The sequence of approximate solutions for s = 6 is shown in Fig. 2.

5.5. Problem 5

Now we consider a non-linear second order two point boundary value problem

y′′(x) = −
1
2

y(x)y′(x),

subject to the mixed boundary conditions of Robin type

{2y(0) − y′(0) = −1.44, y(4) + 0.5y′(4) = −6} 0 ≤ x ≤ 4 ,

whose exact solution is

y(x) =
4

x − 5
.

We have solved this problem with the proposed method and the strategy described in the implementation section
for s = 1, that is, the starting guesses have been taken equal to zero for the approximate values of the solution
and the derivative. Table 5 shows the maximum absolute errors (MAE) with our method for different step-sizes(
h =

4
10 , 4

20 , 4
40 , 4

80 , 4
100

)
. This problem was also solved by Lang and Xu [19] using a quintic B-spline collocation

method. From the data in Table 5 we can see that the new approach outperforms the method in [19].
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Fig. 2. Sequence of approximate solutions of Problem 4 (dots) to the exact one (continuous line) for N = 16.

Table 5
Comparison of the maximum absolute errors (MAE) on Problem 5.

h MAE with 2BF MAE in [19]
4
10 6.25766 × 10−4 3.66300 × 10−3

4
20 1.87062 × 10−5 2.64200 × 10−4

4
40 4.07756 × 10−7 1.77700 × 10−5

4
80 7.49040 × 10−9 1.12500 × 10−6

4
100 2.02945 × 10−9 4.61700 × 10−7

5.6. Problem 6

This problem corresponds to Example 4.3 appeared in [2] (p. 140). It was included there as an example of stiff
problem, with the presence of rapidly increasing and non-increasing of fundamental modes. Although in [2] it was
presented by a system of two first order equations, as our method is intended for directly solving second order
problems, we have reformulated it as

y′′(x) = λ2 y(x) −
π

(
λ2

+ 4π2
)

λ
sin(2πx) ,

with Dirichlet conditions

y(0) =
e−λ

− 1
e−λ + 1

, y(1) =
1 − e−λ

e−λ + 1
.

The exact solution is given by

y(x) =
eλ(x−1)

− e−λx

1 + e−λ
+

π

λ
sin(2πx) .

We have taken λ = 50 as in [2], where it was shown the bad performance of the shooting method due to the
exponential growth of the error. Table 6 presents the maximum absolute errors with the proposed method when
s = 1 for different stepsizes, showing the good performance of the 2B F approach. Fig. 3 shows the exact and
discrete solutions taking N = 32.
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Table 6
Maximum absolute errors (MAE) with the
proposed method for Problem 6.

h MAE with 2B F
1
32 2.23714 × 10−4

1
64 4.40660 × 10−6

1
128 6.91612 × 10−8

1
256 1.08359 × 10−9

1
512 1.69079 × 10−11

Fig. 3. Exact and discrete solutions of Problem 6 (for N = 32).

5.7. Problem 7

In the next problem we consider a linear system of second order BVPs of ordinary differential equations given
by

y′′

1 (x) + (2x − 1)y′

1(x) + cos(πx)y′

2(x) = f1(x),
y′′

2 (x) + xy1(x) = f2(x),

subject to the boundary conditions

y1(0) = y1(1) = 0,

y2(0) = y2(1) = 0,

where 0 ≤ x ≤ 1 and

f1(x) = −π2 sin(πx) + (2x − 1)π cos(πx) + (2x − 1) cos(πx),
f2(x) = 2 + x sin(πx) .

The exact solution of the problem is given by:

y1(x) = sin(πx), y2(x) = x2
− x .

This problem was also solved by Caglar and Caglar [5], Lu [21] and Dehghan and Nikpour [11]. In Table 7 we
can observe the good performance of the proposed method 2B F . The other approach considered for comparison
was the B-spline method in [5]. Our method shows better accuracy compared with the existing method in [5].

5.8. Problem 8

Finally we consider a nonlinear system of second order BVPs of ordinary differential equations given by

y′′

1 (x) + xy′

1(x) + cos(πx)y′

2(x) = f1(x),
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Table 7
Comparison of the Maximum Absolute Errors (MAE) on Problem 6.

h y1(x) with 2B F y2(x) with 2B F y2(x) in [5] y2(x) in [5]
1
21 1.09056 × 10−9 5.56843 × 10−11 1.89579 × 10−3 9.60501 × 10−5

1
41 1.97582 × 10−11 1.00642 × 10−12 4.74623 × 10−4 2.40866 × 10−5

1
61 1.82310 × 10−12 9.27314 × 10−14 2.10999 × 10−4 1.07113 × 10−5

Table 8
Comparison of the Maximum Absolute Errors (MAE) on Problem 7.

h y1(x) with 2B F y2(x) with 2B F
1
21 1.04966 × 10−12 8.54872 × 10−14

1
41 1.88183 × 10−14 1.55431 × 10−15

1
61 1.77636 × 10−15 1.66533 × 10−16

h y1(x) with N-LMQDQ in [11] y2(x) with N-LMQDQ in [11]
1
21 3.8393 × 10−5 5.5775 × 10−5

1
41 9.5835 × 10−6 1.3892 × 10−5

1
61 4.2655 × 10−6 6.0484 × 10−6

y′′

2 (x) + xy1(x) + xy′

2(x) = f2(x),

subject to the boundary conditions

y1(0) = y1(1) = 0,

y2(0) = y2(1) = 0,

where 0 ≤ x ≤ 1 and

f1(x) = sin(x) + (x2
− x + 2) cos(x) + (1 − 2x) cos(πx),

f2(x) = −2 + x sin(x) + (x2
− x) cos(x) + x(1 − 2x)2 .

The exact solution of the problem is given by:

y1(x) = (x − 1) sin(x), y2(x) = x − x2.

This problem was also solved by Dehghan and Nikpour [11]. In Table 8 we can observe the good performance
of the proposed method 2F B. The other approach considered for comparison was the method based on the Local
Radial Basis Function Differential Quadrature (LRBFDQ) technique for approximating the derivative, in [11]. Our
method shows better accuracy compared with the existing method in [11].

Fig. 4 shows the exact and discrete solutions provided by 2B F (for N = 21) for y1(x) and y2(x).

6. Conclusions

In this manuscript, a 2-step Falkner-type block method (2B F) has been developed for the direct solution of
general two-point boundary value problems for ordinary differential systems. The main and additional formulas
are obtained from the continuous scheme developed through interpolation and collocation procedure. Numerical
solutions obtained using the proposed method show that it is adequate and efficient for solving different kinds of
problems. We conclude that the new method proposed in this article is more accurate and can compete favourably
with some existing numerical methods for solving the problem in (1).
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Fig. 4. Exact and discrete solutions (for N = 21) of y1(x) (top) and y2(x) (bottom).
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