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a b s t r a c t 

The growing amounts of online multimedia content challenge the current search, recommendation and 

information retrieval systems. Information in the form of visual elements is highly valuable in a range of 

web mining tasks. However, the mining of these resources is a difficult task due to the complexity and 

variability of images, and the cost of collecting big enough datasets to successfully train accurate deep 

learning models. This paper proposes a novel framework for the categorization of web pages on the basis 

of their visual content. This is achieved by exploring the joint application of a transfer learning strategy 

and metric learning techniques to build a Deep Convolutional Neural Network (DCNN) for feature extrac- 

tion, even when training data is scarce. The obtained experimental results evidence that the proposed 

approach outperforms the state-of-the-art handcrafted image descriptors and achieves a high categoriza- 

tion accuracy. In addition, we address the problem of over-time learning, so the proposed framework can 

learn to identify new web page categories as new labeled images are provided at test time. As a result, 

prior knowledge of the complete set of possible web categories is not necessary in the initial training 

phase. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Over the last decade, there has been an exponential increase

in the webpages available online. The proliferation of blog-hosting

and free content management systems (CMS) such as WordPress,

Blogger or Tumblr have contributed to this growth as they made it

possible for users with no experience in managing digital systems

to share a variety of contents. The nature of these hosting services

promotes the publication of multimedia contents, especially im-

ages and videos. However, as a result of the democratization of the

Internet, new and challenging problems have emerged. Specifically,

it is becoming increasingly difficult for users to find the content

that they are looking for without having to go through related but

undesired results. 

In the recent years, these challenges have attracted the atten-

tion of numerous researchers [1–7] . Web page classification meth-

ods try to categorize web pages according to their subject. This

categorization can later be used to assist tasks such as information

retrieval, recommendation, parental filtering, focused crawling or

contextual advertising [8] . Unfortunately, most of the current web
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age categorization approaches found in the literature focus solely

n mining textual information and meta-data (e.g., plain text, hy-

erlinks, HTML structures, etc.). As a consequence, these methods

eglect the valuable discriminative information present as multi-

edia content in websites, and often become language-specific.

his limitation can be partially explained because mining multime-

ia content is a highly complex problem that frequently demands

ntensive computations and extensive training datasets in order to

uild effective models. In addition, the set of possible web page

ategories that a system must handle depends on the specific ap-

lication and may vary over-time, which supposes a barrier for the

pplication of traditional classification methods. 

On the other hand, the field of artificial vision and specifically

he sub-field of visual object recognition have experienced a ma-

or breakthrough after the general adoption of the deep learn-

ng paradigm in recent years [9,10] . Deep learning models are

omposed of a previously intractable number of processing lay-

rs, which allows them to learn more complex representations of

he data by taking into consideration multiple levels of abstraction.

his eventually led to a dramatic improvement in the state-of-the-

rt of visual object recognition, object detection and other related

omains [11] . 

This paper builds upon the ideas and results presented in [12] ,

here the authors explored the applicability of deep learning

https://doi.org/10.1016/j.neucom.2018.08.086
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echniques to the problem of web page classification by adopting a

ransfer learning strategy. In this paper, we extend the framework

roposed in [12] by also studying the use of different state-of-

he-art metric learning techniques to improve the performance of

istance-based classification on features extracted by a pre-trained

eep Convolutional Neural Network (DCNN). In addition, the use

f metric learning techniques enabled us to address the problem

f over-time learning, evaluating the ability of the proposed frame-

ork to learn to identify new web page categories as new labeled

amples are provided. This feature increases the applicability of the

roposed framework by avoiding the requirement of knowing the

nal set of possible web categories during the initial training phase

nd making the system compatible with online-learning scenarios

nd changes in the distribution and number of categories. In this

egard, we introduce a novel algorithm to control the fine-tuning

f our feature-extraction DCNN as additional labeled samples ar-

ive during test phase. We also extended the database collected for

he experiments in [12] , making the results more reliable. 

. Related work 

This section summarizes the most notable works in the

iterature. We first review the current state of web page

ategorization and then outline the relevant proposals in the fields

f transfer learning and metric learning for neural networks. 

.1. Web page categorization 

As mentioned above, web page categorization refers to the pro-

ess of classifying web pages according to the subject of the con-

ents present on them. Given the increasing amount of online web

ages and the potential benefits of having an effective method for

eb page categorization, numerous researchers have focused on

olving this problem by applying very different techniques. For this

eason, it is not possible to cover all of them in this section. Nev-

rtheless, the following paragraphs provide an overview of the ad-

ances, challenges and current trends in the field of web catego-

ization. 

Early works in the field addressed the problem of web page

ategorization as a simple document classification problem, us-

ng only features derived from the textual content of web pages

13] . Typically, webs pages were represented by n -gram frequency

ectors, and classical classifiers were applied to these representa-

ions. Later on, methods were developed to take advantage of more

eb-specific features such as HTML tags and structures [14,15] . For

nstance, Know and Lee [15] proposed a web page classification

ethod based on the k -Nearest Neighbors algorithm, where terms

ithin different HTML sections are weighted differently. 

More sophisticated methods were later designed to use not only

he information present in the web page being analyzed, but also

he information present in the webs referenced by hyper-links. For

nstance, Utard and Furnkranz [16] proposed using a portion of the

ext present in parent pages (i.e., pages linking the target page)

uch as the anchor text, the neighborhood of the anchor text or the

aragraph containing the link, as well as the text on the target web

age. Studies on this topic suggest that the most relevant infor-

ation for classification can be extracted from sibling web pages 1 

17] . 

The most recent work in the topic of web page categoriza-

ion has focused on specific limitations of the existing techniques.

or instance, Abidin and Ferdhiana [6] proposed and algorithm for

pdating n-grams word dictionaries in the context of web page
1 In this context, the term sibling web page refers to a web page that is linked 

y a parent web page that also linked the target web page. 

b  

t

 

t  
ategorization. Their algorithm can be used to refine the n -gram

hesaurus as new web pages become available for training, with-

ut degrading the classification accuracy. In this manner, the n -

ram dictionaries used to generate the feature representation of

eb pages can be updated dynamically, adapting the feature rep-

esentation to changes in the language used in web pages. 

Another important limitation of text-based web classification

ystems which has been recently addressed in the literature is the

anguage-dependent nature of the solutions. In this regard, Wang

t al. [7] proposed using the large number of available labeled

nglish web pages to help classify web pages in other languages,

hus proposing a cross-language web page classifier. Other recent

orks have focused on the scalability of web categorization sys-

ems [5,18] , classification based solely on the distribution of web

lements [19] , or the application of modern techniques such as

opic modeling [4,20] and deep belief networks [2] . 

Finally, some recent works have shown the potential of analyz-

ng the visual contents of web pages for web page categorization.

n [12] , the authors addressed the problem of web categorization

y using the features extracted by a pre-trained DCNN in conjunc-

ion with simple classifiers. Similarly, in [21] the authors proposed

ombining the pre-trained DCNN with a simple metric learning

echnique to improve the accuracy of the system in the context

f the Case-Based Reasoning (CBR) methodology. 

.2. Deep transfer learning and metric learning 

Over the past years, the field of computer vision has wit-

essed a major breakthrough thanks to the development of the

eep Learning paradigm [11] . Deep Learning models have drasti-

ally changed fields such as object detection [22] , speech recogni-

ion [23] or activity recognition [24] . Deep learning relies on the

vailability of large training datasets to build very complex models

composed of millions of parameters) that effectively benefit form

he volume of training data and achieve unprecedented accuracy

ates on a range of tasks. However, collecting such datasets can be

n expensive and not always feasible task. As a consequence, an al-

ernative strategy called transfer learning has become increasingly

opular by enabling researchers and practitioners to re-purpose

he weights learned by other networks in their own application

omains [23,25,26] . 

Metric Learning has also gained attention within the deep

earning community during the recent years. Early work on this

opic provided a means to train neural networks to produce a use-

ul feature space rather than a final label prediction [27] . The rep-

esentation of samples generated by the network can then be used

ith a distance-based classifier to classify test samples. Two of the

ost popular metric learning techniques for neural network train-

ng are DrLIM [27] and Triplet-Loss [28] . Originally presented in

006, DrLIM has been the object of a renewed interest after the

eneral adoption of the Deep Learning paradigm. In fact, the Dr-

IM method or slightly modified versions of it have been recently

pplied with great success in a range of domains including visual

lace recognition [29] , clickbait detection [26] or product image re-

rieval [30] among others [31–33] . More recently proposed, Triplet-

oss also enjoys a notable popularity, and has been recently used

or speaker change detection [34] , image-based clothes recognition

35] and sketch-based image retrieval [36] . One major advantage of

etric learning techniques for neural networks lies in their ability

o learn new classes without the need to re-train the network, just

y adding the representation of new samples generated by the net-

ork to the current sample database. In addition, the networks can

e fine-tuned as new labeled samples become available to adapt

hemselves to changes in the classification problem [26] . 

Aside from neural networks, metric learning is also an ac-

ive topic of research within the machine learning community
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Fig. 1. Overview of the proposed framework’s processing steps, from the input of 

the system (URL of a web page) to the output (predicted category). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Example of Document Object Model (DOM) tree representation for a very 

simple web page. The branches of the trees are explored recursively to find all the 

image elements. 
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[37] . Most approaches in this field formulate the metric learn-

ing problem as learning pairwise real-valued metric of the form

d M 

(x, x ′ ) = 

√ 

(x − x ′ ) � M (x − x ′ ) where M ∈ R 

d×d is a symmetric

positive semi-definite matrix (i.e., a Mahalanobis distance). Note

that one can express M as L � L where L ∈ R 

k ×d and k is the rank of

M . As a consequence, it is possible to rewrite d M 

(x, x ′ ) as follows:

d M 

(x, x ′ ) = 

√ 

(x − x ′ ) � M (x − x ′ ) 
= 

√ 

(Lx − Lx ′ ) � (Lx − Lx ′ ) 
(1)

Therefore, learning a Mahalanobis distance is equivalent to

learning a linear projection of the data (defined by the pro-

jection matrix L ) and then using the Euclidean distance in the

resulting feature space. The different Mahalanobis metric learning

algorithms mainly differ in the way they learn the matrix M . How-

ever, they are somehow limited by the linear nature of the trans-

formation they learn. In this paper, we use a number of represen-

tative methods of this type as a baseline for comparison with our

proposed model. In particular, we evaluate our approach against

MLEV-G [38] , KISSME [39] , OASIS [40] and ITML [41] . Henceforth,

we will use the term Mahalanobis metric learning to refer to these

methods, in contrast to the other evaluated metric learning tech-

niques specially designed to train neural networks. 

3. Proposed framework 

This section details the proposed framework. First, the global

structure and elements of the processing pipeline are outlined, fol-

lowed by a detailed description of each module in the framework.

Our system is designed to perform the following task: given a URL,

the system must (1) access that URL, extract all the images avail-

able on the web page, and filter those that do not contain any

discriminative information; (2) extract a feature descriptor from

each image such that the classification problem becomes easier

over that feature space; and (3) analyze each feature descriptor

and combine the results to emit a prediction concerning the cat-

egory of the entire web page. As shown in Fig. 1 , the proposed

framework consists of four major processing modules: 

1. Visual content extractor . This module deals with the extrac-

tion and pre-processing of the images present in the input URL

to be classified. 

2. Feature extractor : The feature extraction module, based on a

DCNN, generates a high-level feature descriptor for each of the

extracted images, easing the classification process. 
3. Metric learning (optional): The optional metric learning mod-

ule adapts the final layers of the feature extraction network

to make the generated image-descriptors more suitable for

distance-based classification, improving the accuracy of subse-

quent k -Nearest Neighbors ( k -NN) classification. 

4. Final classification module : this module utilizes different clas-

sification algorithms to analyze the feature descriptors ex-

tracted from the web page, assigning a class label to each de-

scriptor and combining them to categorize the complete web

page. 

.1. Multimedia content extractor 

The first module of the proposed framework is in charge of ex-

racting all the images that are present on a web page and filter-

ng the ones that do not contain useful information (i.e. navigation

cons, advertisements, banners, etc.). To do this, a web-scrapping

pproach was used. In this approach, the system begins by down-

oading the HTML document that corresponds to the provided URL.

hen, the Beautiful Soup library [42] is used to analyze the struc-

ure and the HTML hierarchy in the document. After this, the web

age is represented by a tree structure called Document Object

odel (DOM) whose leaves are the elements of the document (e.g.

itles, links, images, etc.). Fig. 2 shows the DOM of a very simple

eb page. 

Once a DOM has been built for a given web page, it is explored

xhaustively in the search for images. The URLs of those images

re stored and later used to download the pictures. Several crite-

ia can be applied to filter the extracted images. For example, it

s possible to discard the images that contain a specific group of

eywords in the alt attribute (e.g., we might discard images that

ontain the word “advertisement” in its alt attribute). Another pos-

ible approach consists of rejecting the images whose dimensions

re outside a specific range or aspect ratio. This is because images

ith extreme proportions do not usually contain discriminative in-

ormation. For example, very small images might correspond to

avigation icons, while those with an elongated shape tend to be

dvertisement banners. In our experiments, the system was con-

gured to discard images whose height or width was lower than

00 px or whose aspect ratio (i.e., height divided by width) was

utside the range [0.5, 2]. 

.2. Deep feature extractor 

Once a number of images have been extracted from a web page,

t would be possible to directly apply any classification method.

owever, the complexity of the image recognition problem that we

re trying to solve demands a large number of training instances

nd a very complex model that can tackle the difficulty of the
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Fig. 3. Architecture of the VGG16 Deep Convolutional Neural Network and names 

of the layers. The shown layer sizes are use the channels-first format. The standard 

image input-size is 3 × 224 × 224. 

c  

v  

l  

c  

c  

t  

w  

s  

t  

l  

n  

s  

i  

i  

t  

t  

t  

w

 

t  

s  

d  

f  

d  

e  

b  

o  

A  

y  

o  

(  

c  

c  

c  

i  

f  

w  

N  

r  

e

 

l  

a  

c

(

e

[

a  

e  

t  

t  

l  

n  

p  

t  

f  

a  

c

3

 

u  

n  

s  

[  

o  

t  

m  

k  

e  

t  

i  

n  

f

 

 

 

 

 

 

 

 

 

 

i  

a  

c  

p  

i  

t  

s  

fi  

a  

c  

w  
lassification problem. This is mainly due to the high intra-class

ariability of the images from such artificial vision problems. Col-

ecting such an extensive dataset can be a tedious and very time-

onsuming task. In addition, the time it requires to train such a

lassifier would be prohibitively long even if complex computa-

ion parallelization techniques and expensive specialized hardware

ere used. To overcome these limitations, we propose the use of a

trategy known as transfer learning (see [43] for a recent survey on

his strategy). The key idea of this approach is to solve a new prob-

em using the knowledge gained from solving a previous intercon-

ected problem. In fact, this approach has been applied with great

uccess in the context of artificial neural networks and deep learn-

ng [25,44] . In the case of a neural network, some of its layers are

nitialized with the weights learned by another network that was

rained to solve a different but somehow related problem. Then,

he resulting network is used either as an off-the-shelf feature ex-

ractor to train simple classifiers [25] , or as part of a bigger net-

ork that will be fine-tuned to solve the target problem [44] . 

In the context of our framework, we propose using a pre-

rained model of DCNN as a feature extractor for simple clas-

ifiers. Specifically, the selected model is the VGG16 DCNN [45]

eveloped by the Visual Geometry Group at the University of Ox-

ord. The VGG16 model was originally trained on the ImageNet

ataset, which consists of 14 million images belonging to 10 0 0 cat-

gories. The VGG team scored a 92.7% top-5 test accuracy on this

enchmark 2 , achieving the second place in the classification task

f the Large Scale Visual Recognition Challenge (ILSVRC) 2014 [9] .

lthough several models have outperformed VGG16 in the recent

ears (e.g., [47,48] ) this model remains competitive with the state-

f-the-art, and is often the model of choice for transfer learning

e.g., [49] ). Mainly, we selected VGG16 for our experiments be-

ause of two reasons: (1) It maintains a good balance between

omputational cost and accuracy as compared to other popular ar-

hitectures [50] , and (2) Its architecture is remarkably simple as

t contains only the widely used convolution/max-pooling blocks

ollowed by some fully-connected layers and a final softmax layer,

hich makes VGG16 a paradigmatic example of the success of DC-

Ns. Fig. 3 shows the overall architecture of the network. We will

efer to this figure to name each of the layers of the model in the

xperimental results section. 

In the proposed framework, the network is cut at a specific

ayer and the activations of the neurons in that layer are used as

 representation of the input image. A simpler classifier is then
2 The 92.7% accuracy obtained by the VGG team at the ILSVRC 2014 classification 

hallenge was in fact the result of using an ensemble of 7 VGG16-like networks 

see [45] for details). The single, pre-trained VGG16 network instance used in our 

xperiments achieves a 90.1% top-5 accuracy on the ImageNet validation dataset 

46] . 

e  

i

a

l

pplied over that feature space. It has been proved that the out-

rmost layers provide a more abstract and compact representa-

ion of the input images [44] . However, the final layers are more

ask-dependent and might not be appropriate if the target prob-

em we want to address is very different from the problem the

etwork was originally trained to solve. In general, the layer that

roduces the most suitable representation for a task must be de-

ermined empirically. To this end, the accuracy rates obtained with

eatures from different layers and various classification methods

re reported in Section 4 . The next section describes the different

lassification methods we used for this task. 

.3. Selected classification algorithms 

After the high level features have been extracted from images

sing the DCNN, a simpler classifier is in charge of emitting the fi-

al class prediction. Provided that the features are sufficiently ab-

tract, the use of simple and efficient linear classifiers is adequate

25] . In addition, using simple classification models can prevent

ver-fitting, especially in scenarios where little training informa-

ion is available. Nevertheless, we also evaluated a simple nonpara-

etric classifier that is not strictly a liner classifier, namely the

 -Nearest Neighbors (k-NN) algorithm. Additionally, k -NN was

valuated with L 2 unit-length normalization of the feature descrip-

ors extracted by the DCNN. The reason for which k -NN is included

n our comparative is that, thanks to its lazy learning nature, it is

aturally compatible with over-time learning as explained in the

ollowing sections. The following linear classifiers were evaluated: 

1. Linear Support Vector Machine (L-SVM), as implemented in LI-

BLINEAR [51] . This classifier’s decision function is: 

h (x ) = sgn (w 

T x + b) (2)

Where w is calculated by solving the primal optimization prob-

lem with L 2 penalty: 

min 

w 

1 

2 

w 

T w + C 

n ∑ 

i =1 

max (1 − y i (w 

T x + b) , 0) 2 (3)

The multi-class support is obtained following a one-vs-the-rest

scheme. 

2. Logistic Regression (LR) as implemented in LIBLINEAR [51] . The

decision function of this method is the following 3 : 

h (x ) = 

1 

1 + e −μ
where μ = w 

T x + b (4)

Here, the multi-class support was obtained using a one-vs-the-

rest scheme. 

3. Perceptron with linear activation function as implemented by

scikit-learn [52] . 

The majority of the web pages we analyzed, contained several

mages with relevant information. All the images extracted from

 web page must be considered when making a prediction of the

ategory of the web page as a whole. In our experiments, a sim-

le vote aggregation approach is taken where the final prediction

s the most common label among the images of the web. When a

ie occurs, it is solved at random. While our experimental results

how that this approach if very effective when using linear classi-

ers such as Support Vector Machines and Logistic Regression, we

lso obtained relatively poor results when using a distance-based

lassifier directly on the features extracted by VGG16, especially

hen the L2 normalization was not enabled. This motivated us to

xplore the applicability of metric learning techniques in improv-

ng the feature descriptors generated by the DCNN. 
3 Note that despite the nonlinearity of the decision function, the decision bound- 

ry { x : h (x ) = 0 . 5 } is a hyperplane and therefore this classifier is considered to be 

inear. 
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3.4. Application of metric learning methods 

As briefly described in Section 2.2 , the term Metric Learning

(ML) in the context of deep learning refers to the set of tech-

niques that enable the training of neural networks to output a use-

ful representation of samples rather than class-label predictions. In

particular, most neural network metric learning techniques try to

learn a feature representation where Euclidean distances become a

meaningful similarity measure for distance-based classification or

retrieval. 

In the context of our framework, we propose the application of

metric learning in conjunction with transfer learning to improve

the performance of distance-based classification over the features

generated by the DCNN. Specifically, metric learning is applied to

fine-tune the final layers of the pre-trained DCNN. The reason for

using ML to adjust the final layers of our pre-trained DCNN is

twofold. The first reason is that training the final layers of the

DCNN will improve the discriminative information present in the

generated descriptors, thus increasing the accuracy obtained by a

k -NN classifier trained on them. Secondly, as explained in the next

section, the use of metric learning to adapt the final layers will

preserve the natural compatibility of our feature-extraction DCNN

with over-time learning. Therefore, in a real application environ-

ment the system could be trained on an initial set of categories

by collecting a relatively small training set (in our experiments we

use ∼ 130 images per class) and then new classes may be learned

over-time by providing the system with new labeled samples at

test time. Conveniently, since only a few layers at the end of the

network’s architecture will be trained, it is not necessary to have

a large number of training samples and training times are in the

order of minutes instead of hours or days. For our experiments,

we selected two of the most popular metric learning techniques to

train neural networks, namely DrLIM [27] (often referred to as the

Siamese network method) and the Triplet-Loss method [28] . 

Even though the original DrLIM method was proposed more

than a decade ago [27] , it has gained in popularity with the ir-

ruption of the deep learning paradigm. Moreover, nowadays it re-

mains as one of the preferred choices for metric learning with

neural networks [31,53] . With DrLIM, a parametrized function is

optimized in such a way that samples with the same class label

are placed nearby in the output representation, whereas samples

with different class labels are pushed far away from each other.

As a consequence, samples in the output representation get ar-

ranged in clusters according to their class label, easing the clas-

sification based on Euclidean distances. To achieve this, DrLIM per-

forms the training on a set of sample-pairs that are generated by

pairing samples from the original training dataset. Particularly, let

the initial training dataset be represented by a set of sample/label

pairs { (x 1 , y 1 ) , . . . , (x n , y n ) } . DrLIM then works by choosing sam-

ple pairs from the training dataset alongside a pair-label y , which

takes the value of one when both samples in the pair share the

same class label and zero otherwise. Originally, the authors pro-

posed generating the complete space of pairs by exhaustively pair-

ing each sample with all the other samples in the training dataset,

resulting in 

(
n 
2 

)
pairs for a training set with n samples [27] . How-

ever, a more efficient training strategy can be adopted by using

Mini-Batch Stochastic Gradient Descent (MB-SGD) and generating

pairs online to complete each bath [31] . In our experiments, the

following steps were taken to form each batch: (1) Select a sample

at random from the training dataset, (2) Couple the selected sam-

ple with another randomly selected sample with the same class la-

bel, adding the pair to the batch with a pair-label y = 1 , (3) Couple

the selected sample with another randomly selected sample that

has a different class label, adding the pair to the batch with a pair-

label y = 0 , and (4) Repeat steps 1–4 until the desired batch size is

reached. By generating the batches in this manner, we ensure that
hey contain a balanced number of similar/dissimilar pairs, with

ould otherwise cause the output representation to collapse. For-

ally, a training batch consists of a set containing b pairs with

heir corresponding pair-labels: 

atch = { (x 1 , x 2 , y ) 
(1) , . . . , (x 1 , x 2 , y ) 

(b) } (5)

To train a network f W 

( ·) parametrized by the set of weights W ,

rLIM begins by conceptually duplicating the network to simulta-

eously process the two samples of a pair from the batch. Note

hat, even though the network is duplicated the weights of both

opies are tied. The Euclidean distance is then computed between

he resulting representations f W 

( x 1 ) and f W 

( x 2 ): 

 W 

(x 1 , x 2 ) = || f W 

(x 1 ) − f W 

(x 2 ) || 2 (6)

or convenience, D W 

( x 1 , x 2 ) is henceforth abbreviated as D W 

. Based

n this distance measure, DrLIM defines the Contrastive Loss: 

 (W, (x 1 , x 2 , y )) = (1 − y ) 
1 

2 

(D W 

) 2 

+(y ) 
1 

2 

{ max (0 , α − D W 

) } 2 (7)

ntuitively, this loss function penalizes distances between the out-

ut representations of samples from the same class. Similarly, it

ewards up to a certain margin α the distances between the repre-

entations of samples with dissimilar class labels. The total batch

oss is computed as the sum of all the pairs’s losses in the batch:

 (W ) = 

b ∑ 

i =1 

L (W, (x 1 , x 2 , y ) 
(i ) ) (8)

he use of this loss to optimize the weights of the network pro-

uces the above mentioned class-clustering effect. Fig. 4 .a provides

 schematic overview of the training process of a network f W 

( ·)
ith DrLIM and MB-SGD. 

More recently proposed, the Triplet-Loss method [28] tries to

nsure that the representation of each training sample is closer to

he representations of all other samples of the same class than it is

o the representation of any sample from a different class. To this

nd, the training is performed on triplets of samples rather than

airs. Each triplet contains an anchor sample x a , a sample x p that

omes from the same class as the anchor, and a sample x n from a

ifferent class to the anchor (see Fig. 5 ). x p and x n are commonly

eferred to as the positive and negative samples in the triplet.

gain, rather than exhaustively generating all possible triplet com-

inations from the training dataset, the authors proposed using

n online generation method combined with MB-SGD. First, the

raining dataset is sampled at random to select b anchor samples,

here b is the desired batch size. Then, instead of choosing the

ositive/negative samples at random, hard negative/positive sam-

les are selected from within the batch. In particular, for each se-

ected anchor x a , the corresponding positive sample x p is selected

rom within the batch such that: 

rg max 
x p 

|| f W 

(x a ) − f W 

(x p ) || 2 2 (9)

imilarly, the negative pairs are selected such that: 

rg max 
x n 

|| f W 

(x a ) − f W 

(x n ) || 2 2 (10)

Intuitively, this selects positive samples that are too far away

rom the anchor, and negative samples that are too close to the

nchor. Note that this selection process involves processing the

amples in the batch with the most recent version of the network

 W 

( ·), thus being significantly more expensive than the pair selec-

ion process of DrLIM. Once the batch has been built, it can be

epresented as: 

atch = { (x p , x a , x n ) 
(1) , . . . , (x p , x a , x n ) 

(b) } (11)
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Fig. 4. Schematic view of the training process for a network f W ( ·) with DrLIM (left) and the Triplet-Loss method (right) using Mini-Batch Stochastic Gradient Descent (MB- 

SGD). The total batch loss is calculated as the loss-average for all the training pairs/triplets in the batch. 

Fig. 5. Schematic view of training pairs for DrLIM (left) and training triplets for 

Triplet-Loss (right). The shapes of the samples indicate the corresponding class la- 

bels, and the color of links the similarity/dissimilarity in class labels. 

L

 

a  

p  

b

L  

 

o  

b  

a  

a  

f  

w  

l  

i  

s  

i  

l  

C  

t

 

 

 

Fig. 6. Illustration of modes A and B for adapting the final layers of the pre-trained 

VGG16 model by using Metric Learning (ML) training algorithms. 

 

 

 

 

 

 

f

 

i  

s  

w  

b  

k  

t  

t  

b

 

p  

n  

l  

b  

a  

i

Then, the Triplet Loss is applied to each triplet in the batch: 

 (W, (x p , x a , x n )) 

= 

[|| f W 

(x a ) − f W 

(x p ) || 2 2 − || f W 

(x a ) − f W 

(x n ) || 2 2 + α
]
+ (12) 

This loss forces the distance between the anchor and the neg-

tive sample to exceed the distance between the anchor and the

ositive sample by at least a margin α. As with DrLIM, the total

atch loss is the sum of the losses for each triplet in the batch: 

 (W ) = 

b ∑ 

i =1 

L (W, (x p , x a , x n ) 
(i ) ) (13)

Thus far, we have described the selected metric learning meth-

ds. However, we still need to define how these methods will

e applied in conjunction with the transfer learning strategy

dopted by our framework. Usually, metric learning methods such

s Triplet-Loss and DrLIM are used to train an entire deep network

rom scratch. However, in the context of the proposed framework

e decided to use a pre-trained model to avoid the need for a

arge training dataset and excessive training times. Moreover, try-

ng to train from scratch or fine-tune a complete DCNN with very

carce data would most likely result in over-fitting. To avoid these

ssues and preserve the advantages of both transfer and metric

earning, we just adapt the final layers of the pre-trained model.

oncretely, we compare two modes of adapting the final layers of

he pre-trained VGG16 model used in our framework: 

• Mode A. The pre-trained VGG16 model is chopped at the se-

lected layer. Then, a new fully-connected layer is appended at

the end of the resulting network. Only the final fully-connected
layer is trained by the selected metric learning method, while

all the previous layers remain fixed in all experiments. 

• Mode B. The pre-trained VGG16 model is chopped at the se-

lected layer. Then, a new fully-connected layer is appended at

the end of the resulting network. The last two layers of the net-

work are trained by the selected metric learning method, while

all the previous layers remain fixed in all experiments. 

Fig. 6 illustrates both network adaptation modes when selecting

c 1 as the cut-off layer. 

Once the feature extraction network f W 

( ·) has been trained,

t is used to generate the feature representation for the training

amples and a k -Nearest Neighbors classifier ( k -NN) is initialized

ith those descriptors. Formally, given a training dataset of la-

eled images DB = { (x 1 , y 1 ) , . . . , (x n , y n ) } the neighbor database of

 -NN is initialized as DB f = { ( f W 

(x 1 ) , y 1 ) , . . . , ( f W 

(x n ) , y n ) } . Even

hough we characterize the neighbor database as a set of descrip-

or/label pairs, any space-partitioning data structure (e.g., k -d trees,

all trees, etc.) can be applied to reduce query times. 

When a test image x test is presented to the system, it is first

rocessed by the network yielding f W 

( x test ), and the k -nearest

eighbors to f W 

( x test ) are found in DB f . Then, the predicted class

abel for x test is the majority class among the k retrieved neigh-

ors. As when using other classifiers, the predicted class label for

 complete web page is the most frequent class label among the

mages extracted from that page. 
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3.5. Over-time learning 

As mentioned before, one of the main advantages of metric

learning techniques used to train neural networks is that, since

the network generates feature descriptors rather than final label

predictions, new labeled samples can be incorporated to the k -NN

database dynamically. This enables the system to learn over-time,

adapting itself to changes in the classification problem [26] such as

the emergence of new classes. 

Usually, metric learning-based systems deal with over-time

learning by simply adding the representation of new labeled sam-

ples to the k -NN database. This approach relies on the assump-

tion that the feature representation learned by the network on

the training dataset will be meaningful enough to correctly char-

acterize new classes which arise over time. This assumption might

be partially true for problems such as handwritten digit recog-

nition [31] , where all the classes can be characterized by differ-

ent configurations of a set of common base features (e.g., straight

lines, curves, circles, etc.). For instance, the feature representation

learned to classify handwritten letters might be sufficiently dis-

criminative to classify handwritten digits without further tuning

of the feature-extraction network. However, in our target problem,

each class is characterized by a specific set of features and there

is strong intra-class variance. As a consequence, doing some fine-

tuning of the network as new labeled samples become available

may benefit the accuracy of the system. 

In this section, we describe the over-time learning mechanisms

of the proposed framework. First, we introduce over-time learning

without fine-tuning of the feature extraction network, and then we

present an algorithm to control the fine-tuning of the network to

keep computational overheads low. 

3.5.1. Over-time learning without fine-tuning 

The simplest way to enable over-time learning with a metric-

learning neural network consists in adding the feature descriptors

generated by the network for new labeled samples to the k -NN

database (DB) without any adaptation or fine-tuning of the net-

work’s weights after the initial training phase. At a particular point

in time, our web categorization system can be fully characterized

by the feature-extraction neural network f W 

( ·), the available la-

beled images: 

DB = { (x 1 , y 1 ) , . . . , (x n , y n ) } (14)

and the k -NN database generated by passing the available labeled

images through the network: 

DB f = { ( f W 

(x 1 ) , y 1 ) , . . . , ( f W 

(x n ) , y n ) } (15)

To save storage space, images are not stored even if we plan to per-

form fine-tuning latter. Instead, it suffices to store the representa-

tion of those images at the last non-trainable layer of the feature-

extraction network. 

Supposing that a new sample x new 

and its class label y new 

are

provided to the system, it will be able to learn this sample by sim-

ply incorporating the descriptor generated from this image to the

k -NN database: 

DB f ← DB f ∪ { ( f W 

(x new 

) , y new 

) } (16)

Even if x new 

belongs to a new, previously unseen class, the sys-

tem will from then on be potentially able to recognize images from

that class. Of course, the accuracy for a new category will most

likely increase as more images of that class are added to the k -NN

database. In must also be noted that this learning process of new

classes comes with a cost. Intuitively, the overall accuracy of the

system will decrease as new classes are included in the classifica-

tion problem. 
.5.2. Over-time learning with fine-tuning 

One way to mitigate the impact of learning to recognize new

lasses in the overall accuracy is to fine-tune the weights of the

eature representation network as new labeled samples become

vailable. In this way, the overlapping between the new learned

lasses and the existing ones will be lessened, so the negative im-

act in the overall accuracy will be lower. In addition, as shown by

he experimental results presented in Section 4.4 , the fine-tuning

ontrol Algorithm presented in this section enables higher recog-

ition accuracies in the over-time learned classes. 

A naive fine-tuning methodology would be to fine-tune the fi-

al layers of f W 

( ·) by executing a fixed number of training it-

rations as new samples arrive. However, executing even a few

raining iterations each time the system is presented with a new

ample/label pair might be too expensive and potentially lead to

ver-fitting. To avoid this, we propose an algorithm that limits the

ne-tuning to the cases where the new sample contains new dis-

riminative information. In particular, the proposed algorithm trig-

ers the fine-tuning process of the network when an incoming

ample is misclassified, and limits the process to the number of it-

rations needed to ensure a correct classification of the new sam-

le. This also avoids the problem of fixing the number of itera-

ions manually. The proposed fine-tuning triggering algorithm is

escribed in Algorithm 1 . 

lgorithm 1 Over-time fine-tuning control algorithm. 

equire: The current feature-extraction network f W 

(·) , the

database of samples and class labels DB , and the descriptor

database DB f . The new training sample and its correct label

(x new 

, y new 

) . 

1: kNN ← fit_kNN( DB f ) 

2: y pred ← kNN.predict_class( f W 

(x new 

) ) 

3: while y pred 	 = y new 

do 

4: Execute one training iteration for f W 

(·) 
over DB ∪ { (x new 

, y new 

) } 
5: DB f ← { ( f W 

(x 1 ) , y 1 ) , . . . , ( f W 

(x n ) , y n ) } 
6: kNN ← fit_kNN( DB f ) 

7: y pred ← kNN.predict_class( f W 

(x new 

) ) 

8: end while 

9: DB f ← DB f ∪ { ( f W 

(x new 

) , y new 

) } 
10: DB ← DB ∪ { (x new 

, y new 

) } 

We also noted that, to reduce the number of iterations needed

o fine-tune the DCNN and learn to classify new classes with

lgorithm 1 , it helps forcing all the available samples from class

 new 

to be present in each training batch. Section 4.4 presents ex-

erimental results comparing the capabilities of our framework to

earn a new class over-time with and without fine-tuning enabled.

. Experimental results 

This section presents experimental results evidencing the abil-

ty of the proposed system to effectively classify web pages based

n their visual content. First, we describe the dataset collected

or our experiments. After that, the classification accuracy of the

ifferent algorithmic alternatives presented in Section 3 is eval-

ated for both individual image classification and complete web

age categorization tasks. We then try to provide additional insight

nto the suitability of the representations generated by the feature-

xtraction DCNN by using a 2D data visualization technique. Fi-

ally, we evaluate the ability of our framework to learn a new cat-

gory without degrading the classification accuracy for the already

nown classes, as new labeled images are provided. 
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Fig. 7. Some sample images from each class. As expected, the artificial vision problem that emerged was of significant complexity, as the dataset exhibits a high intra-class 

variability. Also, the extracted images display in a wide range of resolutions and proportions. 
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.1. Dataset creation 

For our experiments, we extended the web page classification

ataset used in [12] by collecting additional web pages. In particu-

ar, the extended dataset consists of a total of 365 web pages dis-

ributed uniformly among six categories, namely “Food and cook-

ng ”, “Motor and races ”, “Interior design ”, “Animals ”, “Fashion ” and

Landscapes ”. Fig. 7 shows some sample images from each class.

t the time of being collected, these web pages contained a to-

al of 4027 images. Both web pages and individual images were

anually labeled by a human annotator. For our experiments, a

andom train/test split was arranged, resulting in 71 training web

ages containing 784 images and 294 test web pages containing

243 images (i.e., approximatelly 20/80%). 

.2. Classification accuracy results 

Our first set of experiments evaluates the classification accu-

acy of both individual images and complete web pages for the

ifferent algorithmic alternatives described in Section 3 . First, as

xplained in Section 3.3 , different simple classification algorithms

ere fitted on the images extracted from the training web pages,

sing the features at various depth levels of the pre-trained VGG16

odel. The image-level classification accuracy was then evaluated

n the images extracted from the test web pages, and the web

age-level test accuracy was also determined. The resulting accu-

acies are shown in Table 1 . For completeness, we also evaluated

he selected classifiers when trained on two state-of-the-art hand-

rafted feature descriptors, rather than using the DCCN for feature

xtraction. These descriptors where Fisher Vector (FV) [54] and

he Vector of Aggregated Local Descriptors (VLAD) with power-law

ormalization [55] . For both FV and VLAD descriptors the selected

ocabulary size was 10, resulting in a descriptor of size of 771 and

280 respectively. 

Table 2 displays the image-level and web page-level classifica-

ion accuracies for our framework using the metric learning tech-

iques as described in Section 3.4 . Note that Mode B accuracies

re only provided for fc2 and fc1 layers. This is because the other

onsidered layers (i.e., pool5-2 ) have no trainable parameters, so

hen cutting the DCNN at them Mode A is equivalent to Mode

. Also note that the hyper-parameter out n denotes the number

f neurons in the final layer of the network. For al the models
valuated in this section, the free hyper-parameters were selected

y a grid search process over typical values with 5-fold cross-

alidation over the training images. For convenience, the tables

nly report the selected hyper-parameters for the image-level ac-

uracy results, but note that these are the same for the web page-

evel accuracy results. As a baseline for comparison, Table 3 shows

he accuracies obtained with a number of representative Maha-

anobis metric learning algorithms, namely MLEV-G [38] , KISSME

39] , OASIS [40] and ITML [41] . As in [39] , we used PCA to re-

uce the dimensionality of the feature descriptors extracted by the

CNN prior to metric learning, so the computations would remain

ractable. 

As we can see in Table 1 , the best performing method when ML

daptation of the final layers of the DCNN was not enabled was

ogistic Regression trained on fc2 features. This method achieved a

1.45% accuracy for single image categorization and a 98.29% accu-

acy for web page categorization. As in [12] , the k -NN classifier ex-

ibited a poor performance when trained directly on the features

xtracted from the DCNN. However, a significant improvement was

egistered by normalizing the image descriptors to L2 unit-length.

evertheless, the accuracy of k -NN even after normalization was

ar below that of simple linear classifiers such as L-SVM and Lo-

istic Regression. This justifies our proposal of applying ML tech-

iques to adapt the final layers of the DCNN to make it more suit-

ble for distance-based classification. 

As expected, hand-crafted feature descriptors performed rather

oorly. The best accuracy on web page categorization with hand-

rafted feature extractors was achieved by using L-SVM with VLAD

eatures, resulting in a mere 73.46% accuracy. This poor perfor-

ance can be partially explained by the fact that, as opposed to

ur DCNN-based approach, FV and VLAD cannot take advantage of

he transfer learning strategy, thus relying completely on the scarce

mount of provided training data. Moreover, hand-crafted feature

escriptors have been consistently outperformed by deep learning

odels in the recent literature [25] . 

Looking at Table 2 , we can see that our proposal of using ML

echniques for adapting the final layers of the DCNN consistently

mproved the accuracy of distance-based classification on the gen-

rated descriptors. Moreover, using the Triplet-Loss method with

ode B at fc 2 resulted in the best accuracy registered in our ex-

eriments, with a 91.85% accuracy for individual image categoriza-

ion and a 98.97% accuracy for web page categorization. In contrast
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Table 1 

Accuracy rates on image-level classification and web categorization for different simple classifies, trained on features ex- 

tracted at different depths of the pre-trained VGG16 DCNN model and on two state-of-the-art hand-crafted feature descrip- 

tors. ( ∗) indicates L 2 normalization of the image-descriptors prior to classification. 

Features Image-level accuracy Webpage-level accuracy 

L-SVM LR Percep. k-NN k-NN 

∗ L-SVM LR Percep. k-NN k-NN 

∗

fc2 91.24% 91.45% 90.81% 82.60% 90.28% 98.29% 98.29% 97.27% 88.77% 97.27% 

fc1 90.90% 91.24% 90.22% 57.29% 87.97% 97.95% 97.27% 97.61% 63.94% 96.25% 

pool5 90.16% 90.19% 90.16% 16.80% 90.47% 97.95% 97.61% 98.29% 14.96% 97.61% 

pool4 84.11% 84.55% 83.47% 16.89% 81.89% 94.84% 95.23% 95.57% 15.64% 94.55% 

pool3 74.12% 74.93% 69.75% 25.31% 64.63% 91.15% 90.47% 86.39% 29.93% 78.23% 

pool2 62.04% 62.84% 62.53% 21.21% 29.07% 82.31% 85.03% 83.33% 25.17% 26.53% 

Param. C = 0 . 01 C = 0 . 1 iter = 5 k = 5 k = 5 

FV [54] 50.97% 48.87% 37.00% 40.54% 40.54% 72.10% 68.02% 42.85% 55.44% 55.44% 

VLAD [55] 50.53% 51.37% 49.39% 41.07% 41.07% 73.46% 72.44% 70.74% 58.50% 58.50% 

Param. C = 1 C = 1 iter = 5 k = 5 k = 5 

Table 2 

Accuracy rates on image-level classification and web categorization for a k -NN classifier, trained on features extracted at different depths of the pre-trained VGG16 

DCNN with the final layers adapted by means of ML, as described in Section 3.4 . 

Cut VGG16 at Image-level accuracy Webpage-level accuracy 

DrLIM Mode A DrLIM Mode B Triplet Mode A Triplet Mode B DrLIM Mode A DrLIM Mode B Triplet Mode A Triplet Mode B 

fc2 90.87% 90.25% 91.27% 91.85 % 97.95% 98.63% 97.61% 98.97 % 

fc1 89.39% 86.67% 87.94% 91.48% 97.61% 96.93% 96.59% 97.95% 

pool5 89.30% – 85.66% – 97.27% – 96.25% –

pool4 78.10% – 79.24% – 92.51% – 93.19% –

pool3 54.79% – 69.56% – 73.80% – 88.77% –

pool2 46.99% – 60.99% – 65.64% – 80.33% –

Param. lr = 0 . 005 lr = 0 . 005 lr = 0 . 001 lr = 0 . 0 0 05 

batch = 100 batch = 100 batch = 200 batch = 200 

iter = 10 0 0 iter = 10 0 0 iter = 750 iter = 750 

out n = 100 out n = 100 out n = 200 out n = 300 

Table 3 

Accuracy rates on image-level classification and web categorization for Mahalanobis metric-learning algorithms 

followed by k -NN classification, trained on features extracted at different depths of the pre-trained VGG16 

DCNN model. L 2 normalization of the image-descriptors generated by VGG16 was performed in all cases, fol- 

lowed by PCA dimensionality reduction to 500 features prior to metric learning. 

Features Image-level accuracy Webpage-level accuracy 

MLEV-G KISSME OASIS ITML MLEV-G KISSME OASIS ITML 

fc2 90.25% 91.11% 91.64 % 91.52% 97.61% 97.95% 98.29 % 97.61% 

fc1 86.83% 90.96% 91.51% 90.56% 95.91% 97.61% 97.61% 97.27% 

pool5 88.89% 90.44% 91.36% 90.84% 96.93% 96.93% 97.27% 97.27% 

pool4 66.01% 84.73% 84.92% 82.70% 78.23% 95.23% 94.55% 94.89% 

pool3 51.77% 74.39% 75.11% 71.01% 67.34% 89.45% 90.81% 89.11% 

pool2 25.40% 64.87% 64.87% 46.37% 24.14% 85.03% 86.73% 51.36% 

Param. λ = 10 −6 C = 1 

γ = 1 

p = 450 – make_psd = true 
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to the general criterion that deeper layers are more task-specific

and less transferable [44] , features extracted at deeper levels of

the pre-trained network performed better in our experiments. We

believe this is a consequence of the relative similarity between the

original problem on which VGG16 was trained and our target prob-

lem. For instance, while the Imagenet dataset on which VGG16 was

trained does not contain an “Interior design” class, it does include

classes such as “folding chair”, “pillow” or “table lamp”. Lastly, by

looking at both Tables 1 and 2 , we can see that, even though a

very simple voting scheme was used to aggregate individual image

predictions for web page categorization, the web page-level accu-

racy was consistently greater than that of single image classifica-

tion. Therefore, we can conclude that our framework benefits from

the presence of multiple images in every web page. 

Finally, the Mahalanobis metric learning algorithms compared

in Table 3 performed reasonably well with the exception of

MLEV-G. KISSME, OASIS and ITML managed to improve the
istance-based classification accuracy significantly for features ex-

racted at various depths of the DCNN. The best performing

ethod of this class was OASIS, whit a 98.29% web page classi-

cation accuracy when running on features extracted at layer fc 2

f the DCNN. However, these methods were outperformed by the

est neural metric learning approach, Triplet-Loss, as highlighted

efore. We believe the fact that the compared Mahalanobis metric

earning algorithms are restricted to learning a linear projection is

omehow limiting their performance in this particular application

cenario. 

.3. Feature representation visualization 

In this section, we try to provide some insight into the suit-

bility of the features at different depths of the network to solve

he proposed problem. To do this, we use the metric Multidimen-

ional Scaling (MDS) algorithm as implemented in the scikit-learn
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Fig. 8. MDS embedding of features extracted with different configurations of the feature extraction DCNN. Training samples are depicted in color and test samples in gray. 

The shape of the markers indicates the corresponding class label: Food ( ), Motor ( ), Interior design ( ), Animals ( ), Fashion ( ) and Landscapes ( ). 
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ibrary [52] . MDS is a popular dimensionality reduction algorithm

ainly used in data visualization contexts. It works by generating a

ow-dimensional representation of the high-dimensional input data

uch that pairwise distances between data points are preserved.

s opposed to other popular dimensionality reduction techniques

uch as t-SNE [56] , which focuses on preserving local structure,

DS confers the same importance to the preservation of small and

arge distances. As a consequence, MDS will enable us to get a in-

uitive visualization of the structure and distribution of samples in

he k -NN database when using different feature-extraction network

ptions. Fig. 8 shows a 2D representation of train and test images

enerated by using MDS. Training samples are depicted in color

hile test samples are represented in gray 4 . Plotting training and

est samples separately will enable us to detect over-fitting in the

epresentations. The class label of each sample is indicated by its

hape. 

The first three scatter-plots correspond to L2 normalized de-

criptors extracted at layers fc 2, fc 1 and pool 5. As we can see, a

ignificant level of class-clustering exists in these representations.

owever, margins are not clearly defined and some overlapping

ccurs. As a consequence, test samples falling in the boundaries

f clusters will likely be misclassified. This problem becomes even

ore apparent when looking at the scatter-plot corresponding to

c 2 without normalization. Here, the different classes exhibit a high

egree of overlapping, explaining the poor performance registered

hen using distance-based classification on this representation. 
4 To ease the visualization, only a random subset of the test images were in- 

luded in the figures. 

a  

t  

i  
The final two plots correspond to the representation of sam-

les generated by adapting the final layers of the DCNN with Dr-

IM and Triplet-Loss, with Mode B at fc 2 (see Section 3.4 ). These

gures clearly illustrate the nature of both techniques and the ef-

ect of their corresponding loss functions. First, we see that in both

ases training samples have been accurately clustered, with more

efined boundaries than in the previous plots. This explains the

mprovement in the classification accuracy of k -NN when trained

n these representations, as even test points falling in the bor-

er of clusters will be surrounded mostly by training samples of

he correct class. However, we see a fundamental difference in the

lusters generated by DrLIM and Triplet-Loss, which can be ex-

lained by their corresponding loss functions. In the case of Dr-

IM, the clusters seem to be more compact and of lower vari-

nce, as if all the training samples of each class had been forced

o collapse into one point. This is a consequence of the loss func-

ion used by DrLIM, which forces samples from the same class to

e as close as possible to each other in the output representa-

ion, collapsing the intra-class variance present in the input im-

ges. Unfortunately, the visualization suggests that this behavior

ed to some degree of over-fitting, as a significant number of test

amples fall far from the training clusters, being more prone to

isclassification. 

Conversely, whereas the clusters in the scatter-plot of Triplet-

oss are well separated, they preserve a certain degree of intra-

lass variability. In other words, while the network has lever-

ged the discriminative information present in images to arrange

hem in non-overlapping class clusters, it has not collapsed the

nformation present in the form of intra-class variability. In ad-
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Fig. 9. Some sample images from the new classes “Military forces ” (top) and “Gar- 

dening ” (bottom), collected to evaluate the over-time learning capabilities of the 

proposed framework. 
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dition, the representation of test samples is more consistent with

that of training samples, which suggests the absence of over-fitting.

These two factors explain the superior performance of Triplet-Loss

in the experiments of this paper. 
Fig. 10. Evolution of class-specific accuracies as labeled sames from the new classes “M

different configuration options. 
.4. Over-time learning results 

Finally, we present experimental results concerning the claimed

ver-time learning capabilities of the proposed framework. As ex-

lained in Section 3.5 , over-time learning can be implemented by

imply incorporating new labeled samples to the k -NN database,

r it can additionally include fine-tuning of the feature-extraction

etwork (see Algorithm 1 ). Here we evaluate the performance of

oth approaches by monitoring the class-specific accuracy of the

ramework as labeled samples from new classes are provided to

he system. For simplicity, we focus solely on single image classifi-

ation. 

For this set of experiments, we collected images from web

ages of two new categories. Specifically, the new categories were

Military forces ” and “Gardening ”. The former category contains im-

ges of soldiers, weapons, ammunition, military vehicles such as

anks and other military-related items. The latter consists of im-

ges related to gardening and agriculture, such as pots, flowers,

actuses and other plants (see Fig. 9 ). A total of 790 images were

xtracted for the class “Military forces ”, while 782 were collected

or “Gardening ”. Out of each of these new classes, 50 images were
ilitary forces ” and “Gardening ” are provided to our framework, instantiated with 
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s  
et aside to be provided to the framework for over-time learn-

ng. The remaining images were added to the test set described

n Section 4.1 . 

To evaluate the over-time learning capabilities of our frame-

ork, we simulated an online learning scenario by first training

he system in the standard, six-classes training dataset used in the

revious sections. Afterwards, the 100 “Military forces ” and “Gar-

ening ” labeled images that we set aside were sequentially and in

 random order provided to the framework, which incorporated

hem into its k -NN database as described in Section 3.5 . At ev-

ry step, the accuracy of the framework was measured using the

est set, which now included the “Military forces ” and “Gardening ”

est images. The accuracy was computed independently for each

lass, so we could assess whether learning the new class decreased

he performance of the system in recognizing the original classes.

his experimental protocol was repeated for different configuration

ptions of our framework. Namely, we experimented with DrLIM

nd Triplet-Loss ML techniques, Mode B (see Section 3.4 ) and fine-

uning with Algorithm 1 enabled/disabled. The resulting learning

urves are shown in Fig. 10 . 

The first plot in Fig. 10 corresponds to our framework with Dr-

IM as the ML algorithm and fine-tuning disabled. In other words,

ew labeled samples were just included into the k -NN database

ithout altering the weights of the feature-extraction network. As

e can see, the classification accuracy for samples of the new

lasses starts at zero (since at the beginning the k -NN database

ontains no samples of those classes) and grows rapidly as new la-

eled samples are provided. By the time the 100 over-time learn-

ng samples had been incorporated into the system, the accuracies

or the new classes reached 72.46% and 75.55% respectively. Unfor-

unately, this learning process also caused a noticeable drop in the

ccuracy for the original classes. We believe this effect is related

o the intra-class variance collapse caused by DrLIM as described

n the previous section. This lack of variability might be causing

he learned samples from the new class to fall near or inside the

lusters of the other classes, leading the system to incorrectly clas-

ify some of the test samples as members of the new learned class.

he final overall accuracy with this configuration was 78.38%. 

The second set of curves corresponds to the use of Triplet-Loss

lso with fine-tuning disabled. As in the previous case, the accu-

acies for the new classes started at zero and grew up to 81.28%

nd 71.96%. Whereas in this case the accuracy of the new class

tabilized at a modest accuracy, over-time learning did not cause a

ecrease in the accuracy for other classes. As a consequence, this

ption can be considered as a conservative approach, which en-

ures that new classes will be classified with a reasonable accu-

acy once enough samples have been incorporated into the k -NN

atabase, while preserving almost intact the recognition accuracy

or the already-known classes. The final overall accuracy with this

onfiguration was 87.71%. 

The plot in the bottom left corner of Fig. 10 corresponds to the

nstance of our framework using DrLIM as the ML technique and

ne-tuning controlled by Algorithm 1 . In this case, the accuracies

or the original classes were affected considerably during the initial

earning stages. However, once the number of learned samples ex-

eeded 70, the accuracy in recognizing the original classes partially

ecovered and the accuracy of the system in recognizing the new

lasses began to approach them. At the end of the over-time learn-

ng simulation, the accuracies of the system in recognizing the new

lasses were 90.09% and 90.75%. The final overall accuracy with

his configuration was 88.07%. 

Lastly, the final set of curves in Fig. 10 corresponds to the use of

riplet-Loss with fine-tuning enabled. As shown in the figure, this

onfiguration provided the best results by both approximately pre-

erving the accuracy for the initial classes and successfully learn-

ng to recognize images from the new classes with accuracies of
8.74% and 88.40%. The final overall accuracy with this configura-

ion was 90.34%. 

. Conclusions and future work 

In this paper, a novel framework for image-based web page cat-

gorization has been proposed. The system is able to classify web

ages based on their visual content rather than their textual infor-

ation. This makes the proposed technique very suitable for mod-

rn website analysis where visual elements have a dominant role.

s opposed to traditional web page categorization techniques, our

pproach is language independent, thus being more widely appli-

able. The major drawback of the proposed approach is that it re-

ies on the presence of images in web pages. As a consequence,

t is unable to deal with web pages that only contain textual in-

ormation. This limitation could be overcome by combining our

isual content-based categorization approach with existing text-

ased web categorization techniques to create a more robust hy-

rid categorization model, as both approaches are compatible and

omplementary. 

The major contribution of this paper is the application of trans-

er learning techniques in conjunction with metric learning to the

roblem of visual-content based web page categorization. Our ex-

erimental results show that this approach enables the construc-

ion of very accurate classifiers even when the artificial vision task

s noticeably complex, and little training data is available. The ex-

eriments presented in Section 4.2 show that high classification

ccuracies can be achieved by using simple linear classifiers on

eatures extracted from a pre-trained DCNN, greatly outperforming

tate-of-the-art handcrafted feature descriptors. Our results also

evealed the importance of L2 normalization for distance-based

lassification of the features extracted by a DCNN. The results pre-

ented in Section 4.4 evidence that metric learning techniques can

e applied to adapt the final layer of the feature-extraction DCNN

nd push the accuracy of distance-based classification even further.

he results also suggest that Triplet-Learning is the most appro-

riate metric learning technique for this task. The visual analy-

is and discussion presented in Section 4.3 provided insight into

he nature of the compared feature representations, and a bet-

er understanding of their applicability to the problem being ad-

ressed. Finally, the results presented in Section 4.4 suggest that

ur framework is capable of learning new classes over-time, with

ittle impact on the accuracy of the originally known classes if

riplet-Loss is used in combination with our fine-tuning control al-

orithm. 

Nevertheless, the proposed approach could be further im-

roved. First, a more sophisticated method to filter advertisements

nd other non-relevant visual content from web pages could be

mplemented. Also, it would be interesting to reproduce our ex-

eriments with different pre-trained DCNN models, investigating

hether the higher performance of features extracted at deeper

ayers and the superiority of Triplet-Loss as compared to Dr-

IM is independent of the selected pre-trained model. Another

nteresting research line would be trying to address the prob-

em of imbalanced training datasets with methods like Condensed

earest-Neightbours or Near-miss [57] , as a prior stage to met-

ic learning. Finally, a more advanced way of combining individual

mage predictions to categorize web pages could be applied, in-

luding techniques such as ensemble classification and mixture of

xperts [58] . In the future, we will also intend to apply the pro-

osed framework to more specific tasks such as visual content-

ased parental filtering. 
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