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Abstract: The difficulty in precisely detecting and locating an ear within an image is the first step to
tackle in an ear-based biometric recognition system, a challenge which increases in difficulty when
working with variable photographic conditions. This is in part due to the irregular shapes of human
ears, but also because of variable lighting conditions and the ever changing profile shape of an ear’s
projection when photographed. An ear detection system involving multiple convolutional neural
networks and a detection grouping algorithm is proposed to identify the presence and location of an
ear in a given input image. The proposed method matches the performance of other methods when
analyzed against clean and purpose-shot photographs, reaching an accuracy of upwards of 98%,
but clearly outperforms them with a rate of over 86% when the system is subjected to non-cooperative
natural images where the subject appears in challenging orientations and photographic conditions.

Keywords: ear detection; computer vision; convolutional neural network; image recognition;
video analysis

1. Introduction

The problem of people recognition by means of identifying them biometrically by their ear
has received considerable attention in the literature. Forensic science has often used a person’s
ear to establish someone’s identity, and considerable improvements are being made in this field to
improve these systems—more so now that it starts to be implemented as a new method for biometric
recognition [1]. However, for an ear recognition system to be accurate, the first and obvious step it must
take is to properly detect the presence and location of an ear within an image frame. This seemingly
simple task is often made more difficult because in practice, such images very commonly present the
subject’s ear in poses which are much different to those a system is usually trained for. Furthermore,
occlusion and partially visible ears is very common in natural images, and it presents a challenge
which must be addressed.

The Convolutional Neural Network (CNN) [2] is considered today to be one of the broadest
and most adaptable visual recognition systems, especially in the case where the imagery is highly
variable in form, illumination, and even perspective. A standard CNN is made up two sequential
parts, the first one is in charge of feature extraction and learning based on these features, while the
second one is (usually) dedicated to classification and the final recognition of the object of interest.
A gradient descent algorithm [3] can be used to train these two stages together, end-to-end, and it is
precisely this characteristic which gives CNNs their power and flexiblity. This type of networks have,
in recent years, come to almost entirely replace other machine learning systems. This is especially the
case in image recognition tasks over large datasets [4]. These systems are even capable of performing
better than humans can when manually classifying large image datasets [5]. In this work, we exploit
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the flexible architecture of CNNs to apply them in a custom-designed manner to the particular task of
human ear recognition.

The article follows this outline: Section 2 presents a review on the existing methods for the
detection of ears and describes the current state of the art. A brief review and explanation of typical
CNN architectures is also given. Section 3 describes the methodology our proposed system follows;
Section 4 discusses the results and compares them qualitatively to existing methods; and finally
Section 5 gives our conclusions and discusses future lines of work that will follow from this research.

2. Background

2.1. Ear Detection State of the Art

Most systems that do ear detection rely on properties in the geometry and morphology of the ear,
such as in specific features being visible, or patterns in frequency of low level features. Considerable
progress has been made recently in the area of biometrics related to the human ear. One of the best
known techniques for ear detection was given by Burge and Burger [6] who proposed a system that
makes use of deforming contours, although it does need user input for initializing a contour. As a
result, the localization process with this system is not truly automated. Hurley et al. [7] uses force
fields, and in this process the location of the ear is not necessary as input in order to do the recognition;
however, this technique is very sensitive to noise and requires a clean image of the ear to perform well.
In [8], Yan and Bowyer uses a technique that requires two user defined lines to carry out the detection,
which again is not fully automated—as one of the input lines must run along the boudnary between
the ear and the face, and the second line must cross vertically through the ear, thereby providing a
rough localization of the ear as input to the system.

Three additional techniques are given by Chen and Bhanu for the task of ear detection. First of
all, they develop a classifying system that can recognize a varying shape indices [9]. This technique,
however, only works on images of a side view of the face and is furthermore not very robust against
variations in perspective or scale. They also proposed a system that analyzes individual image patches
that exhibit a large amount of local curvature. This system makes use of “Step Edge Magnitude”, as the
technique is called [10]. This system is template-based, requiring a stencil for the usual outline shape of
the helix and anti-helix of the ear, this template is then fitted to line clusters. One final technique they
propsed reduces the possible number of ear detection candidates by detecting patches of skin texture
as an initial step before applying a similar helix stencil matching system to the local curvatures [11].

Another example for detection is described by Attrachi et al. [12] who use contour lines to detect
the ear. They locate the outer contour by performing a search on the image for the longest single
connected edge feature in the image. By selecting three keypoints for the top, bottom, and left of the
localized region. Image alignment can then be done by forming a triangle, such that its barycenter
can be used as alignment reference. A. Cummings et al. [13] propse a techinque based on image ray
transform that finds the specific tubular shape of an ear. This system relies on the helical/elliptical
shape of the ear for localizing it. Kumar et al. [14] created a technique that starts by segmenting
the skin, then creates an edge map with which it can finally localize the ear within the input image.
They then proceed to use active contours [15] to get a more precise location of each contour.

While there are many proposals attempting to solve the problem of ear detection, only a small
portion of them has been described here. An overview is presented in Table 1 outlining the best known
methods, along with their reported accuracy rates, when available. A deeper review is also given
in [16].
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Table 1. Existing ear detection approaches.

Publication Detection Approach Database
Size

Accuracy
Rate (%)

Abaza et al. [17] Cascaded Adaboost 940 88.72

Ansari and Gupta [18]
Edge Detection and
Curvature Estimation 700 93.34

Alvarez et al. [19] Ovoid Model N/A N/A
Arbab-Zavar & Nixon [20] Hough Transform 942 91

Arbab-Zavar & Nixon [21]
Log-Gabor Filters and
Wavelet Transform 252 88.4

Attarchi et al. [12] Edge Detection and Line Tracing 308 98.05

Chen & Bhanu [9]
Template Matching with
Shape Index Histograms 60 91.5

Cummings et al. [13] Ray Transform 252 98.4
Islam et al. [22] Adaboost 942 99.89
Jeges & Mate [23] Edge Orientation Pattern 330 100

Kumar et al. [14]
Edge Clustering and
Active Contours 700 94.29

Liu & Liu [24]
Adaboost and Skin Color
Filtering 50 96

Prakash & Gupta [25] Skin Color and Graph Matching 1780 96.63
Shih et al. [26] Arc-Masking and AdaBoost 376 100

Yan & Bowyer [27]
Concha Detection and
ActiveContours 415 97.6

Yuan & Mu [28] CAMSHIFT and a Contour Fitting Video N/A

An issue to consider is the great importance of robustness against pose variation and occlusion
when an ear detection algorithm is put to practice. It is worthwhile to note that most of the detection
systems listed above are not tested nor developed for difficult occlusion scenarios, such as partial
occlusion by the hair, jewelry, or even hats and other accessories. The most likely reason is simply
the lack of public datasets containing appropriately occluded images. Furthermore, to the best of
our knowledge, there is no major research that has been performed on the effect of ear occlusion in
natural images.

Additionally, there does not seem to exist any approaches for the specific task of ear detection
based on CNNs. Not surprisingly, as CNNs have only started to become popular relatively recently,
and the extent of biometric applications using this type of system has so far been limited to full face
detection, for example [29].

2.2. Convolutional Neural Networks and Shared Maps

This work is based mainly on a neural network that does classification as its main task. This is a
standard CNN with an architecture composed of convolutional and max-pooling layers in alternating
order as part of the feature extractor stage. After this, a few fully connected linear layers make up the
the final classification network stage.

The network’s first/input layer always consists of at one or more units that contain the input
image data to be analyzed. For this task, the input consists of a single grayscale channel as input data
to the system.

Data next travels to each of the feature extraction stages. The first part of every such stage
is a convolutional layer, wherein each neuron linearly combines the convolution of one or more
maps from the preceding layer, and then passes the output through a nonlinearity function such as
tanh(x). A convolutional layer is usually paired with a max-pooling layer which primarily reduces the
dimensionality of the data. A neuron in this type of layer acts on a single map from the corresponding
incoming convolutional neuron of the previous layer, and its task is to pool several adjacent values
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in the map for every sampling pixel in the neuron. The sampling function used takes the maximum
value among the pooled region.

The information then travels to one or more additional feature extraction stages, each of which
works in a very similar manner as that described above. The result of this is that every stage
extracts more and more abstract features that can eventually be used to classify the input, a process
done in the final stage of the network. This consists of linear layers which ultimately classify the
extracted features on the previous layered stages through a linear combination similar to a traditional
multi-layer perceptron.

At the end, the output of the final layer doing the classification finally selects the class that
best matches the input data image, based on the predetermined annotation labels with which the
system was trained. The output of the network is composed of multiple numeric values, each one
giving a probability-like expectancy of the image belonging to the particular class associated with each
corresponding estimate.

Recognition of images with dimensions bigger than the input data size with which a CNN was
trained with can be achieved by using sliding windows. This is defined by two parameters: S is the
size of the window to use, which is set to the network’s original input data size; T is the window stride,
a value that specifies how far apart sequential windows are spaced. As a result, the stride parameter
defines the number of individual windows that must be analyzed for a given input. It is therefore
necessary to choose an optimal value for the stride, since this amount is inversely proportional to the
classifier “resolution”, in other words the resolving power of fine featues in the image. The resolution,
in turn, also determines the computing resources necessary to analyze the number of windows W, as
more windows obviously require more computations. For an image of size Iw × Ih, the number of
windows is determined as follows:

W =

(
Iw − S

T
+ 1
)(

Ih − S
T

+ 1
)

=⇒ W ∝
Iw Ih
T2 (1)

As an example: Taking an input image that has been downsampled to 640× 360, individual
windows can be defined, each one of size S = 64. To simplify calculations, a stride value of
T = S/2 = 32 can be used. In this case, a network would require 190 executions to fully analyze
each extracted window at this scale. If a smaller stride is used, the computation requirement increases.
For example reducing the stride to T = S/8 = 8, results in over 2700 individual CNN executions.
Taking into account that a single CNN execution, due to its complex nature, can require several million
floating point operations, it can be seen that a dense window stride value can increase exponentially
the computing toll on the system.

This process can be greatly optimized by executing the network as Shared Maps, a detailed
explanation of which is given in [30]. This allows executing the network for the entire image frame in
parallel, thus requiring a single execution. Although, a shared map execution of the CNN is higher
in computational cost than that of a single window, it can still save on the total computing resources
required for the full image by not requiring to re-analyze overlapping regions of adjacent windows,
resulting in speed-ups of up to 30x. This process is exploited at its fullest potential here, and its
implications are taken into account when designing the structure of the network for this task, as will
be described later in this work.

3. System Description

3.1. Datasets

The existence of ear-centric data is limited and sparse. There exist no standard datasets upon
which a large body of work can be contrasted with. As a result, there is great difficulty in properly
comparing the system we propose with those described in Section 2, as they primarily use private data.
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In this work, however, we attempt to use a variety of datasets in order to establish some
benchmarks upon which future works can be built upon. For this purpose, we use a total of four
datasets in our experiments. Three of these are public and only one is private. Each of these datasets
has a set of features which make them particularly useful for a particular task, and each one introduces
new challenges. As such, we use them all to base a selection of real-world experiments on each.

Table 2 gives an overview of the content in each dataset, and Figure 1 displays some samples of
each to qualitatively demonstrate their contents.

Table 2. Details on the contents of the various datasets used in this work.

Dataset Dataset
Size Subjects Images per

Subject
Resolution
Size pixels

Color
Channels Content Source

AMI [31] 700 100 7 492× 702 Color Closeup ears,
both sides Photo

UND [32,33] 464 114 4 1200× 1600 Color Bust profile,
right side only Photo

Videos (Train) 950 5 190 1920× 1080 Color Head profile,
both sides Video

Videos (Test) 910 7 130 1920× 1080 Color Head profile,
both sides Video

UBEAR v1.0 [34] (Train) 4497 127 35 1280× 960 Grayscale
Head profile,

both sides,
and masks

Video

UBEAR v1.1 [34] (Test) 4624 115 40 1280× 960 Grayscale Head profile,
both sides Video

The first dataset is the AMI dataset [31], a collection of 700 closeup images of ears. These are
all high quality images of ears perfectly aligned and centered in the image frame, as well as having
high photographic quality, in good illumination conditions and all in good focus. This dataset is
therefore exemplary in order to test the recognition sensitivity towards different ears, however, due to
the closeup nature of the images, they are not really well suited for ear localization tasks.

The second dataset we use is the UND dataset [32,33]. A collection of photographs of multiple
subjects in profile, where the ear covers only a small portion of the image. The photographic quality
of these images is very high, and again all in constant and good illumination, and with none of the
ears being occluded by hair or other objects. The poses of subjects varies very slightly in relation to
the camera, but not so much as to introduce distracting effects due to head rotation and pose. As a
result, these images are suitable in testing the specific task of localization among a large image frame,
while avoiding the challenges of viewpoint and illumination variation.
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Figure 1. Samples from each of the four datasets used in this work: (Top Left) AMI Dataset,
(Top Right) UND Dataset, (Bottom Left) Videos Dataset, (Bottom Right) UBEAR Dataset.

The third dataset is the Video dataset. A private collection of 940 images composed of HD frames
extracted from short video sequences of voluntary participants. There are 14 image sequences of
7 subjects—one for each person’s ear. Each sequence consists of 65 frames from a span of approximately
15 seconds in time extracted from a continuous video. The subjects were asked to rotate their
heads in various natural poses following smooth and continuous motions throughout the sequence.
The illumination and environment are relatively consistent across all videos, and subjects were asked
to move any potential occlusion away from their ears. We use this dataset primarily to test the
detector sensitivity only towards different relative rotations of the subject’s head in relation to the
camera, while avoiding challenges due to variable illumination. The higher number of images per
subject, combined with a low number of total subjects, are useful to also reduce the effect from using a
large number of wildly variable ear shapes in the tests, and again, concentrate mainly on their pose.
A variation of this dataset was created and set aside for training purposes. This comprised profile
image frames from an additional 5 participants, different from the subjects in the test dataset.

The final and perhaps most important dataset we use is the UBEAR [34] dataset. This is a very
large collection of images of subjects shot under a wide array of variations, which spans multiple
dimensions—not only in pose and rotation, but also in illumination, occlusion, and even camera
focus. These images, therefore, simulate to a very good degree the conditions of photographs in
non-cooperative environments were natural images of people would be captured ad hoc and used to
carry out such a detection. These images, although definitely being ear-centric, make no attempt at
framing or capturing the ear under perfect conditions, and as such reflect a real-world test scenario.
As our main interest in this work is the detection of ears in natural images, this then becomes our main
dataset to test the fullest potential of the system we propose. Table 3 gives a more in depth review on
the different challenges found in this specific dataset.
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Table 3. Differences and challenges presented in the UBEAR dataset.

Angles

Exposure

Blur

Gender

Occlusion

It is also important to note that the UBEAR dataset comes in two versions, both of which consist
of unique non-repeating images across both sets. The first of these versions, named 1.0, includes a
ground truth mask outlining the exact location of the ear in each image. As will be described later,
this inclusion was important for our training procedure. The other version, 1.1, does not include such
masks, and is therefore reserved for testing and experimentation.

3.2. Convolutional Neural Network

The CNN used is based on a standard architecture with a few customizations made to the
architecture which greatly help for the use case presented. The network architecture used is visually
depicted in Figure 2.
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Figure 2. Convolutional Neural Network (CNN) Architecture used in the system.

The target use case of the system is to perform real time ear detection, especially with input
video streams. For this, a system that can run quickly is a fundamental requirement. For this reason,
an optimized architecture is needed. The target classes we seek to recognize with the neural network
are only three: (i) Left Ear, (ii) Right Ear, and (iii) Background—referred to by their corresponding
abbreviations: LE, RE, and BG in all the following descriptions of the system. As the data variability
within each class is relatively low, with many training data samples having a similar set of characteristic
ear features, the network can perform relatively well by learning only a small number of unique features
(unlike the case of large modern CNNs). Therefore, a small neural network, with a low layer and
neuron count is enough to learn the training data used by this system.

Furthermore, a size of 64×64 is selected for the input data of the network, as images at this
size carry enough features and information to properly define the ear shape, while at the same time
not being so large that the system would require large convolutional kernels to properly analyze
the images.

Finally, as Shared Maps execution will be used to do the analysis over full images, the maximum
accumulated pooling factor needs to be kept small. This ensures that the stride size on the final output
map is still small for fine localization to take place. For this reason, 3 convolutional and pooling layers
are decided as the base of the architecture.

Knowing these three constraints, for the input and output, and the maximum number of layers,
through a process of iterative trial and error, a final architecture was decided upon as follows:

18C5:MP3 + 36C5:MP2 + 36C5:MP2 + 144L + 3L

where the notation A(C, MP, L)B means a convolutional (C), max-pooling (MP) or linear (L) layer, of
A neurons, and kernel size B. This architecture, when executed as Shared Maps, yields a minimum
window stride size of 3 × 2 × 2 = 12, which is quite efficient for purposes of detection over a
half-HD image frame, as it allows analyzing the image at intervals as close as 12 pixels apart,
or multiples thereof.

3.3. 3-CNN Inference

Training a single neural network and expecting it to be sufficient to properly tell apart ears from
background noise in real-world imagery is quite the leap of faith.

In practice, a neural network of this type will be quite capable at properly recognizing the large
majority of ear-shaped objects that are presented to it. Thus, when tested against a set of cut-out ear
images specifically prepared for such a task of recognition, its true positive inference performance will
be quite good. However, it will be prone to make many mistakes when presented with background
images or noise. The network is trained with a BG class to help it learn the difference between an ear
and background noise, but no matter how the training for this class is prepared, a CNN will always
be prone to false detections simply due to the internal functionality of neural networks. There will
always be patterns or combination of features that can be easily found on natural imagery which will
randomly trigger internal neural paths and thus produce a large false positive rate as well—a type
of artificial pareidolia. For real world purposes of image detection over large input image frames,
this results in a large number of false hits. Table 4 describes this effect in more detail. A single CNN
will very often detect the ear correctly (Ears Detected metric), both in close up images as in the AMI
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dataset (99.70%), but also in the more challenging full image frames of the UBEAR dataset (93.90%).
However, this metric disregards the effect of false positives. The F1 metric is useful to uncover the
great performance disparity that occurs in reality. While, in the AMI dataset, the F1 value remains
high (99.86%), in the UBEAR dataset it drops abysmally (41.46%) due to the very large number of false
positives introduced.

Table 4. Single vs. 3-Convolutional Neural Network (CNN) inference performance, showing how both
systems vary greatly when tested against different data types.

Dataset Algorithm True
Positive

False
Positive

False
Negative

Ears Detected
(%)

F1 Score
(%)

AMI Single CNN 698 0 2 99.70 99.86

3-CNN 693 0 7 99.00 99.50

UBEAR Single CNN 4326 11,935 280 93.90 41.46

3-CNN 3814 605 661 82.80 85.77

This problem can usually be addressed by creating ensemble systems consisting of multiple
classifiers, each one different in a specific manner. They all analyze the same data input, and their
different outputs are then combined to create a final result whose accuracy will usually be larger than
that of any single classifier running by itself [4].

We apply a variation on this idea, in that we do not process all classifiers in the ensemble with
the exact same input data, but rather we present different data to each component of the ensemble.
Therefore, each of the classifiers must then be trained to specialize in the kind of data which will be
presented to it. The different data inputs are carefully constructed so that each one carries meaning
specific to that component according to its own specialization.

The main idea then is to feed to three neural networks three different images, each one
corresponding to the same image region being analyzed but at different cropping scales. Figure 3
depicts the three different scales which are ingested by the triple classifier ensemble. We appropriately
label each of the three networks used to analyze these as S, M, and L (for their corresponding
size abbreviations).

Figure 3. The three scales that are used for every data point in the training dataset.

The purpose of the three scales is mainly to train specialized networks for the specific purposes
of (i) recognizing the tubular features of the inner ear, (ii) framing the correct coordinates of the ear,
and (iii) inferring ear context within a surrounding head region. Training a network with any single
one of these scales would specialize it in that particular data, but the network would be oblivious to
other natural image data with similar structure but not really belonging to a true ear, and thus leading
it to produce a large number of false positives which would end up affecting the overall detection
accuracy. However, the three networks working together as a committee of classifiers produces a
much more robust result that is far more resilient against noise, as a true positive hit will require the
activation of all three networks, simply by integrating contextual information into the system.
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Each of the three neural networks produces three output values, which correspond to the
likelihood of each target class having been perceived in that network’s input. We denote the
output values as O K

A , where A ∈ {S, M, L} represents the network index denoted by its size,
and K ∈ {LE, RE, BG} represents the output class index of each network, for each of the possible
detection outcomes. Each of these outputs will lie in the [−1,+1] range as the neural networks have
been trained with those ideal values.

To combine the outputs of all three networks as a unified ensemble, we filter each class output
with the corresponding values across all three networks, after each one has been linearly rectified.
The final outputs of the ensemble are defined by:

O LE
F = dO LE

S e+ · dO LE
M e+ · dO LE

L e+ (2)

O RE
F = dO RE

S e+ · dO RE
M e+ · dO RE

L e+ (3)

O BG
F = dO BG

S e+ · dO BG
M e+ · dO BG

L e+ (4)

where dxe+ ≡ max(0, x), is a linear rectification operation. By passing through only the positive values
of each interim output, we avoid interference from multiple negative values, any of which then has the
effect of zeroing the final output. Figure 4 depicts the process visually.

Figure 4. Data flow in the inference process of 3-CNN detections.

The net effect of this process, then, is to have all three networks work in tandem, where only the
regions for which all three networks are in full agreement will survive. Furthermore, the final output
will be weighed by the individual network certainty, and thus regions where all three networks have a
high likelihood output will outweigh regions where the output distribution is more disparate.

3.4. Training Data

As the system will comprise three individual neural networks, we already know beforehand
that the training data will need to be gathered in accordance to the requirements for each of the
individual networks.

It was previously discussed that each network will essentially analyze three different crop sizes
of each region, so the data for all three can be prepared simultaneously by simply starting with
one dataset, and extending it by cropping and scaling accordingly to generate the data for the two
other sizes.

Existing image datasets consisting of segmented ear photographs are very scarce and small in
volume. Creating sufficiently large amounts of training data, therefore, required a lot of manual labor
in image manipulation. The datset UBEAR v1.0 was particularly helpful, as described in Section 3.1,
in that it includes for each of its images a ground truth mask. This mask outlines the exact location
of the ear in each image, and this aided in cropping out the corresponding bounding boxes for each
ear. Not all patches from this dataset could be used, however, as many were extremely blurry and
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not appropriate for training. In the end, approximately 3000 images were used from this set for
training data.

Furthermore, we supplemented the training data with additional samples that were manually
cropped from video frames. These originate from the Videos (Train) dataset described in Section 3.1.
With this addition, the training dataset now consisted of roughly 4000 images.

To increase the dataset size even more, the data was augmented in two ways: (i) images
were randomly modified by adding small translations, rotations and rescales; and (ii) images were
horizontally flipped, and the resulting image was assigned to the opposite ear dataset. This artificial
augmentation boosted the training data size tenfold. It now consisted of approximately 40,000 images,
or 20,000 for each ear.

In order to prepare for the training of our final 3-CNN architecture, we processed the images for
each ear side into three separate sets, for each of the 3-CNN scales: S, M, and L. This was done by
simply cropping and rescaling each sample appropriately.

The process was repeated for both sides, thus producing six separate image collections for left
and right ears, at each of the three scales. Finally, one more background noise dataset was also created,
of the same size as the others, and consisting of randomly cropped patches from a large flickr photo
database and from non-ear regions of the UBEAR and Videos training sets.

In total, we ended up with seven distinct collections for training purposes, each one consisting of
roughly 20,000 images. Figure 5 shows an example of these.

Figure 5. A small subset of each of the seven datasets used for training. From top to bottom: Left-Small,
Left-Medium, Left-Large, Right-Small, Right-Medium, Right-Large, Background.

3.5. Network Training

Our final neural network classifier was trained with the three-scale collection described above.
Each of the three networks used a 3-class training dataset compiled from left and right ears at the
corresponding network scale, and a copy of the background image collection.

The structure of all three networks was exactly the same, and is the one described in Section 3.2.
The input consists of a single grayscale channel image resized to a square of size 64× 64. The input
images are then passed through a pre-processing step which consists of a Spatial Contrastive
Normalization (SCN) process, which helps to enhance image edges and redistribute the mean value
and data range, something which greatly aids in the training of CNNs.

Each network is trained with its corresponding small, medium or large datasets. A standard SGD
approach was used for training, and ran for a duration of approximately 24 iterations until no further
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improvement could be made on the test-fold of the data. Ideal targets for each of the output labels
were assigned in the [−1,+1] range, where active labels are positive, and inactive labels are negative.
This distribution was chosen in this manner (as opposed to the more traditional [0, 1] range) to aid
with the 3-CNN inference as explained in Section 3.3.

All datasets are divided into training and testing folds, at an 80% to 20% ratio as per standard
machine learning training practices. The final results of training over these two sets are summarized in
Tables 5 and 6.

Table 5. Final confusion matrix of the training data fold.

Classified As/
Real Class Left Ear Right Ear Background Total in Class Accuracy (%)

Left Ear 16,040 56 88 16,184 99.11
Right Ear 46 16,064 74 16,184 99.26
Background 63 194 15,927 16,184 98.41

Total 48,552 98.93

Table 6. Final confusion matrix of the testing data fold.

Classified As/
Real Class Left Ear Right Ear Background Total in Class Accuracy (%)

Left Ear 3964 34 49 4047 97.95
Right Ear 14 4002 31 4047 98.89
Background 8 42 3997 4047 98.77

Total 12,141 98.54

3.6. Detection

Runtime operation of the network is performed through Shared Map execution of CNNs.
This allows for an optimized method of inferring detection predictions from a full image frame
in a manner that is much more efficient than the traditional sliding window approach.

The process requires the input image to be first prepared as a multi-scale pyramid. This is simply
to be able to detect ears in all possible sizes relative to the image frame, so as to be able to properly
carry out the detection, regardless of the subject’s relative distance to the camera.

Each of these pyramid levels will be given to each of the three networks to be analyzed
independently. Each network, thus, creates three output maps per level, corresponding to each
of the target classes trained, LE, RE, and BG. Figure 6 depicts the shared map execution of one of the
networks for a particular pyramid level of size 274× 366.

Figure 6. Shared map execution of one of the CNNs over a sample input image.
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Every pixel in each of these output maps corresponds to that class’ predicted likelihood at a
window whose location can be traced back to the input image according to the shared map’s alignment
and position configuration. Figure 7 shows how windows can be re-constructed from these shared
maps and they correspond precisely to the multiple detections that a traditional sliding window
approach would produce, but at a fraction of the computing time.

Figure 7. Sample of multiple overlapping detections casted as individual detection windows on an
input image.

In order to collapse these multiple detections into a single final result, a partitioning algorithm
based on Disjoint-set data structures is used. This is very similar to the groupRectangles and partition
functions of OpenCV [35], but customized in a few particular ways. This algorithm allows the grouping
of similarly positioned and scaled windows as all belonging to a single object detection. Figure 8
shows a diagram of how the grouping algorithm would behave on various sample window clusters.

Figure 8. Sample of how the partitioning and grouping algorithms cleans up multiple overlapping
detection windows.

This is a very common practice taken as a post-processing cleanup procedure in many computer
vision tasks. For this particular work, however, a special grouping rule is created in order to weigh the
grouping allowance.

For each of the two positive classes, LE and RE, the following procedure is performed:
Every window i has a value assigned to it corresponding to the neural network output prediction

value at that window, denoted by Oi. This window weighs its own value by squaring itself. Therefore,
windows with a low prediction value have their overall importance reduced, whereas windows with a
large output value to begin with, maintain their standing in the grouping.
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For a potential grouping cluster j composed of N multiple windows, each with a weighed output
value O2

i , the final output value Gj for the group is then given by:

Gj =

√
∑N

i O2
i

N
(5)

This corresponds to an RMS of all composing window output values in that cluster. The end result
of this is that the process favors those clusters that are composed of windows with large significant
confidence outputs, where as windows with low confidence (such as in the case of false positives) end
up with a lower value.

As each cluster has a single final numerical value assigned to it corresponding to its overall
significance, a thresholding operation can be passed through all final clusters in order to reject those
with low confidence.

In order to find a suitable threshold value, an experiment was performed over the full UBEAR
test dataset. All final clusters generated in this process were then manually classified as either True
Positive or False Positive. Figure 9 shows the distribution of True Positive cluster output values and
that of clusters classified as False Positives. After analyzing these distributions, it can be seen that
the chosen threshold value of 0.224 most optimally separates it, where a balance can be achieved in
rejecting the largest majority of false positive hits, while keeping as many true positives as possible
above the threshold.

Note that this process, although similar to traditional Non-Maximum Suppression (NMS), has the
added advantage of providing a better filtering mechanism of detections that are likely to be false
positives. NMS simply clusters boxes together and keeps the box with highest confidence per cluster,
regardless of the distribution of confidence values in the remaining boxes. The proposed method,
by comparison, takes into account a weighted distribution of all contributing detections in order to
make a more informed decision on the filtering, as this method requires all contributing detections in
each clustered set to have a higher confidence value.

Figure 9. Response of CNN outputs for true positive (TP) and false positive (FP) groups.

A summary of this whole process, starting from the inference, continuing through the grouping,
and ending in the thresholding operations, is listed in Algorithm 1:
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Algorithm 1 The proposed process including steps for inference, grouping, and applying the threshold.

for all Z ∈ {PyramidScales} do
for all A ∈ {L, M, S} do

O LE
A , O RE

A , O BG
A ← SharedMap(ImageZ, NetworkA)

end for
for all K ∈ {LE, RE, BG} do

O K
F,Z ← Ensemble(O K

S , O K
M, O K

L )
end for

end for
for all K ∈ {LE, RE} do

G K ← Group(O K
F,Z)

if G K > Threshold then
Keep(G K)

else
Discard(G K)

end if
end for

The correct threshold to use should be carefully decided upon depending on the type of data
being analyzed. In the case of the AMI database, where images are already prepared as cropped ears,
the system detects no False Positives whatsoever, and thus the threshold value decision does not affect
the False Positive rate in any way. In this case, a very low (or zero) threshold can be chosen in order to
maximize the number of correctly detected ears. This can be seen in the results shown in Figure 10,
where the accuracy rate of varying threshold amounts is depicted.

In the case of natural images in non-cooperative environments as with the UBEAR dataset,
the effect of false positives is much more important, as can be seen in Figure 10, where small variations
in the threshold value lead to a drastic drop in the false positive rate, while not significantly affecting
the accuracy of detected ears.

Figure 10. Threshold sensitivity on ear detections: (Left) AMI Dataset Detections, (Right) UBEAR
Dataset Detections.

4. Experiments

4.1. Test Methodology

Multiple experiments were conducted with the various datasets in order to evaluate the system’s
accuracy in different scenarios. For all tests, the experiment was carried out with the 3-CNN method
proposed in this work. To contrast the results, the same tests were also performed with a standard Haar
Cascade Classifier trained on similar data as implemented in OpenCV [35], and executed with a similar
sliding window configuration while post-processing them with the same window grouping algorithm.

In all cases, the results reported are defined as follows:
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• True Positive: Detection groups which successfully enclose the bounding box of an ear within
the image.

• False Positive: Detection groups which mis-classify the side of the ear detected, or which
erroneously detect noise in the image that does not correspond to an actual ear.

• False Negative: Ears in an image which failed to be detected by the network entirely, or whose
final detection group confidence value was below the selected threshold.

• True Negative: This value would usually describe the rate at which non-ear noise is successfully
ignored by the classifier. However, in the case of full image frames, this would greatly offset the
result bias by greatly increasing the overall classification accuracy needlessly. We avoid recording
this on purpose such that the results given represent the true nature of correctly classified ears only.

The performance metrics reported for all cases are the precision which measures the exactness of
the classifier; the recall which measures its completeness; and the F1 metric which provides a balance
between precision and recall, and is therefore a more objective comparison of the performance of
two classifiers. Furthermore, the traditional accuracy rate is also reported, in order to provide a basic
performance metric.

4.2. Comparison with State of the Art

Due to varied nature of the state of the art in this field, it is very difficult to make a comparative
study on performance of our proposed method with all of the existing methods in the literature. In part,
this is due to there not being a standard dataset by which all of these algorithms have be benchmarked,
but rather every method so far examined in Section 2.1 tends to use their own private data. Similarly,
testing existing methods on the same data we use is difficult as most existing implementations remain
private and their source code is not readily available for implementation.

Therefore, we can only contribute to Table 1 with our own accuracy results on datasets such as
UND and AMI, which are images of similar qualities as the data used in those studies, consisting of
ready made images made for this exact purpose. In the case of closeup cropped images such as AMI,
our 3-CNN system reaches an accuracy of 99.0% and an F1 metric of 99.50%. On full frame images,
such as UND, where localization also plays a part, our system reaches an accuracy of 95.25% and an F1
metric of 97.57%. Full details on these results are found in Section 4.6.

4.3. Video Analysis

Additionally, we also test the detection accuracy on individual video frames. An experiment was
carried out with the Video dataset as described in Section 3.1. The purpose of this test is to ensure
that both ears can be correctly classified as either left or right, while working with data of variable
head poses.

Results of these tests is presented in Table 7, where it can be seen that our system greatly
outperforms Haar in this particular task.

Table 7. Results of testing over the Videos dataset.

Haar 3-CNN

Subset
Size

Precision
(%)

Recall
(%)

Accuracy
(%)

F1 Score
(%)

Precision
(%)

Recall
(%)

Accuracy
(%)

F1 Score
(%)

Middle 470 97.60 97.60 95.32 97.60 99.57 99.79 99.36 99.68
Upwards 162 100 69.75 69.75 82.18 95.95 91.03 87.65 93.42
Downwards 284 98.77 57.09 56.69 72.36 94.83 95.19 90.49 95.01

Left Ear 455 97.85 71.21 70.11 82.43 97.07 97.29 94.51 97.18
Right Ear 461 98.53 88.57 87.42 93.29 97.98 96.46 94.58 97.21

Complete Dataset 916 99.05 80.07 79.45 88.55 97.59 96.95 94.68 97.27
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The significance of this test is in the ability to continuously detect the same ear on a moving image
sequence, regardless of head orientation. The high detection rate ensures that the ear is consistently
detected during the majority of each video’s duration, except for a few odd frames where detection
might fail from time to time. However, a few frames later, the ear is found again and detection
continues as normal. This result rate would therefore allow for a tracking mechanism to be successfully
implemented in such video streams.

4.4. Image Resolution

Detecting images of subjects at a great distance from the camera is usually problematic.
To quantitatively measure the performance of the system in cases where the relative size of the
image is very small, various tests were performed on the AMI dataset with the ears previously resized
at different scales, ranging from 16× 16 up to 96× 96. The results of both the combined 3-CNN system
as well as that of the individual S, M, and L CNNs are displayed in Figure 11.

This shows that even ears which are found at scales much lower than the networks’ input size of
64× 64 can still be successfully detected, albeit at a lower rate depending on the actual size.

Figure 11, in particular, explains the dropoff in resolving power at smaller scales. The S CNN
is the first one to fail at diminishing scales, as could be expected due to the nature of the data this
network analyzes. Meanwhile, the other two CNNs continue to detect with sufficient accuracy at even
the smallest scales. Arguably, it could be said that a system without the S scale might do better for
this particular purpose, as the dropoff exhibited by the S CNN is the main reason behind the 3-CNN
difficulty in detecting smaller sized ears. However, the S CNN has been shown before to be essential
for noise differentiation, and as such, this side effect is an acceptable tradeoff.

Figure 11. Image resolution and ear size sensitivity: (Left) Individual CNNs, (Right) 3-CNN System.

4.5. Non-Cooperative Natural Images

Traditional computer vision approaches usually require the ear to be perfectly aligned, or at
the very least in the same plane as the photograph projection, thus imposing restrictions that are
very restrictive when analyzing real world imagery. Due to the ability of CNNs to learn multiple
representations of the same object, and given the pose variety used in the training data, the final
trained system is capable of detecting ears at very different angles with respect to the camera.

The UBEAR dataset contains labels for each image which facilitates its partitioning according
to the relative pose of the subject in relation to the camera. Tests were run over the full dataset and
the results were divided according to the angle of the subject’s gaze. These results are depicted in
Figure 12 and summarized in Table 8.

The common trend of our 3-CNN outperforming Haar continues to be seen here. However,
the real significance behind these results is that Haar, not unlike most traditional computer vision
approaches, is highly dependent on viewpoint, and its performance largely drops off as the angle varies
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from the more normal “Middle” and “Towards” angles. Meanwhile, our 3-CNN system maintains a
very similar and stable performance rating regardless of the angle at which the ear is presented.

Further UBEAR labels can be used to split the data into additional folds, such as ear sidedness.
As expected, the system works mostly the same for either left or right side ears. The small differences
in the results might just be due to a random variation in the images, and not to a real side preference of
the classifier.

Finally, we tested the system on images which were marked to have occlusion against those that
did not. Occlusion is not a defined label in the UBEAR dataset, therefore, for this study, we manually
defined this data fold based on a subjective decision of which images could be considered as occluded.
This is because degrees of occlusion can vary from merely a few small strands of hair or a small earring,
to very large accessories or full sections of hair covering well over half of the ear. The final occlusion
threshold decision was made to mark only those ears which had their outline covered at least 25%.
This resulted in approximately one third of the images to be marked as occluded.

Not surprisingly, the 3-CNN system performs better when no occlusion is present. However, it is
worth noting that even when analyzing occluded ears, the 3-CNN system outperforms Haar when it
analyzes clearly visible, and non-occluded ears.

Furthermore, analyzing the literature of existing ear detection systems, such as those described in
Table 1, it is obvious that most of the systems which seemingly have very high reported accuracy rates
on clearly defined ear images, would drastically fail when the ear is occluded in any way—especially
those systems which rely on shape analysis and detection of the tubular or helix properties of an ear.

A final study was performed on gender sensitivity of the detector. The classifiers are not
necessarily sensitive to the different shapes of male and female ears. However, a visible disparity can
be seen, simply due to the fact that female ears are far more likely to be occluded by longer hair or
more prevalent accessories such as large earrings. Thus, gender sensitivity results closely resemble
those of occlusion sensitivity.

Figure 13 shows a few selected samples of the 3-CNN and its detection in particularly challenging
images, due to either occlusion or extreme viewpoint perspectives.

Figure 12. Detection performance of our 3-CNN system vs Haar on the different data folds of the
UBEAR dataset: (Top Left) Angle Sensitivity, (Top Right) Occlusion Sensitivity, (Bottom Left) Gender
Sensitivity, (Bottom Right) Ear Side Sensitivity.
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Figure 13. Sample detections on particularly difficult images from the UBEAR dataset, including
extreme head orientations and occlusion.

Table 8. Detection performance of our 3-CNN system vs. Haar on the different data folds of the
UBEAR dataset.

Haar 3-CNN

Subset
Size

Precision
(%)

Recall
(%)

Accuracy
(%)

F1 Score
(%)

Precision
(%)

Recall
(%)

Accuracy
(%)

F1 Score
(%)

Middle 1392 95.90 74.31 72.03 83.74 89.89 93.92 84.95 91.86
Upwards 813 85.87 30.42 28.97 44.93 87.47 84.94 75.73 86.19
Downwards 784 88.65 16.23 15.90 27.44 85.68 84.57 74.09 85.12
Outwards 789 89.96 30.34 29.35 45.37 85.92 71.26 63.81 77.91
Towards 829 95.10 73.24 70.57 82.75 79.70 84.40 69.47 81.99

Male 3403 94.17 51.58 49.99 66.65 86.10 87.84 76.93 86.96
Female 1204 91.06 42.47 40.77 57.92 86.99 77.83 69.71 82.15

Left Ear 2289 93.49 47.33 45.82 62.84 83.64 83.11 71.48 83.37
Right Ear 2318 93.42 51.07 49.30 66.04 88.97 87.32 78.79 88.14

Occlusion 1491 89.70 36.49 35.03 51.88 85.01 71.63 63.60 77.75
No Occlusion 3116 94.70 55.24 53.59 69.78 86.79 91.53 80.34 89.10

Complete Dataset 4607 93.45 49.22 47.58 64.48 86.31 85.23 75.08 85.77

4.6. Summary

To conclude, Table 9 lists a summary of all total results across all four datasets while comparing
our 3-CNN system with the well known Haar Cascade Classifier algorithm.
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Table 9. Summary of the total results over all four datasets contrasting the Haar and 3-CNN algorithms.

Dataset Algorithm Positive Negative Precision
(%)

Recall
(%)

Accuracy
(%)

F1 Score
(%)

UND [32,33]
3-CNN Positive 461 20 95.84 99.35 95.25 97.57Negative 3 0

Haar Positive 270 7 97.47 58.44 57.57 73.07Negative 192 0

Videos
3-CNN Positive 890 22 97.59 96.95 94.68 97.27Negative 28 0

Haar Positive 727 7 99.05 80.07 77.47 87.31Negative 181 0

AMI [31]
3-CNN Positive 693 0 100.00 99.00 99.00 99.50Negative 7 0

Haar Positive 382 7 98.20 55.12 54.57 70.61Negative 311 0

UBEAR [34]
3-CNN Positive 3814 605 86.31 85.23 75.08 85.77Negative 661 0

Haar Positive 2227 156 93.45 49.22 47.58 64.48Negative 2298 0

As can be seen, the CNN based system always outperforms the Haar algorithms in all sets,
by an amount ranging between 10% to 29% in the F1 metric. This is particularly so in the UBEAR
dataset, since the Haar classifier is incapable of modelling the higher variety of internal representations
required to properly classify images in that dataset.

Figure 14 shows a summary of these results. It is important to remark that that our proposed
system has stable performance figures across the first three datasets, all of which consist of perfect
purpose-made ear photography. The results only slightly drop when presented with natural images
due to the challenges already described. This is in contrast to the Haar classifier, which has wildly
disparate results, demonstrating the large dependency of this system on the particular conditions of
one dataset or another.

Figure 14. Results of our 3-CNN system compared to the Haar classifier over the various test datasets.
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5. Conclusions

We propose a new technique based on CNNs to carry out ear detection on natural images.
As opposed to traditional computer vision approaches that are based on hand-crafted features,
Convolutional neural networks perform image and shape perception, which is far more robust
against variable perspective, occlusion and illumination conditions. These difficult conditions are
very common in natural images, compared to synthetic photographs taken in strictly controlled
photographic and illumination conditions.

All previously proposed systems usually fail in one important way or another. Some require the
ear to be properly aligned. Others require the full ear to be visible. Most commonly, they are highly
sensitive to illumination and require images shot in the exact same conditions as the training data,
or they may even fail when the images are not fully in focus or when the relative size of the ear in the
image is not sufficiently large.

Up to now, we have not seen a robust all-encompassing system capable of detecting ears under
all possible conditions in natural images, and we are glad to introduce this new alternative. Granted,
our system still has some important failures which we must address in future versions of the system,
primarily to decrease the false positive rate, which would allow decreasing the threshold and thus
improve the overall performance. However, the results so far are very encouraging, and having such
a robust detector is the first important step towards building an ear recognition system, something
which obviously is a future line of research to be conducted presently.

Further future lines of research include the implementation of this system in an even more
optimized manner in order to deploy it on low power mobile or embedded devices for practical
biometric applications.

Finally, it is important to note that although this work was aimed mainly towards ear detection,
it presents an end-to-end object recognition framework which can be adapted very similarly to other
computer vision tasks requiring a comparable type of classification executed over natural imagery
for real-time detection and tracking. Convolutional neural networks have been shown time and time
again to be extremely powerful image classifiers, especially when they are used as ensemble systems,
and this work has presented one more way in which they can be applied to this kind of task.
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