
Stockholm, 13-19 July 2018

Edited by Jérôme Lang
Sponsored by 

International Joint Conferences on Artifical Intelligence (IJCAI)
Published by 

International Joint Conferences on Artificial Intelligence
Copyright © 2018 International Joint Conferences on Artificial Intelligence 

All rights reserved. No part of this book may be reproduced in any form by any electronic or

mechanical means (including photocopying, recording, or information storage and retrieval)

without permission in writing from the publisher.

IJCAI Secretary-Treasurer: Prof. Dr. Bernhard Nebel, Computer Science Department, Albert-

Ludwigs-Universitaet Freiburg, Georges-Koehler-Allee, Geb. 052 D-79110 Freiburg, Germany

IJCAI Executive Secretary Ms. Vesna Sabljakovic-Fritz, Vienna University of Technology, Institute

of Discrete Mathematics and Geometry, E104 Wiedner Hauptstr. 8-10, A-1040 Vienna, Austria

ISBN (Online): 978-0-9992411-2-7

Preface

Content

Invited Speakers

 (/)
IJCAI (/)
International Joint Conferences on Artificial Intelligence Organization

Filter titles and authors

HOME (/) CONFERENCES (/FUTURE_CONFERENCES)

PROCEEDINGS (/PROCEEDINGS/2018) AWARDS (/AWARDS)

TRUSTEES/OFFICERS (/TRUSTEES/CURRENT_TRUSTEES) AI JOURNAL (/AIJD)

ABOUT (/ABOUTIJCAI)



Sister Conferences Best Papers
Finite Controllability of Conjunctive Query Answering with Existential Rules: Two Steps
Forward
Giovanni Amendola, Nicola Leone, Marco Manna
(PDF (0719.pdf) | Details (/proceedings/2018/719))

Weighted Bipolar Argumentation Graphs: Axioms and Semantics
Leila Amgoud, Jonathan Ben-Naim
(PDF (0720.pdf) | Details (/proceedings/2018/720))

TensorCast: Forecasting Time-Evolving Networks with Contextual Information
Miguel Araújo, Pedro Ribeiro, Christos Faloutsos
(PDF (0721.pdf) | Details (/proceedings/2018/721))

A Unifying View of Geometry, Semantics, and Data Association in SLAM
Nikolay Atanasov, Sean L. Bowman, Kostas Daniilidis, George J. Pappas
(PDF (0722.pdf) | Details (/proceedings/2018/722))

Reduced Cost Fixing for Maximum Satisfiability
Fahiem Bacchus, An�i Hy�inen, Ma�i Järvisalo, Paul Saikko
(PDF (0723.pdf) | Details (/proceedings/2018/723))

Improving Information Extraction from Images with Learned Semantic Models
Stephan Baier, Yunpu Ma, Volker Tresp
(PDF (0724.pdf) | Details (/proceedings/2018/724))

Learning with Sparse and Biased Feedback for Personal Search
Michael Bendersky, Xuanhui Wang, Marc Najork, Donald Me�ler
(PDF (0725.pdf) | Details (/proceedings/2018/725))

Dynamic Dependency Awareness for QBF
Joshua Blinkhorn, Olaf Beyersdorff
(PDF (0726.pdf) | Details (/proceedings/2018/726))

The Finite Model Theory of Bayesian Networks: Descriptive Complexity
Fabio Gagliardi Cozman, Denis Deratani Mauá
(PDF (0727.pdf) | Details (/proceedings/2018/727))

Combinatorial Cost Sharing
Shahar Dobzinski, Shahar Ovadia
(PDF (0728.pdf) | Details (/proceedings/2018/728))

Importance Sampling for Fair Policy Selection
Shayan Doroudi, Philip S. Thomas, Emma Brunskill
(PDF (0729.pdf) | Details (/proceedings/2018/729))

Inductive Certificates of Unsolvability for Domain-Independent Planning
Salomé Eriksson, Gabriele Röger, Malte Helmert
(PDF (0730.pdf) | Details (/proceedings/2018/730))



Reducing Controversy by Connecting Opposing Views
Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis, Michael Mathioudakis
(PDF (0731.pdf) | Details (/proceedings/2018/731))

Toeplitz Inverse Covariance-based Clustering of Multivariate Time Series Data
David Hallac, Sagar Vare, Stephen Boyd, Jure Leskovec
(PDF (0732.pdf) | Details (/proceedings/2018/732))

A Model of Distributed Query Computation in Client-Server Scenarios on the Semantic
Web
Olaf Hartig, Ian Le�er, Jorge Pérez
(PDF (0733.pdf) | Details (/proceedings/2018/733))

Translation-based Recommendation: A Scalable Method for Modeling Sequential Behavior
Ruining He, Wang-Cheng Kang, Julian McAuley
(PDF (0734.pdf) | Details (/proceedings/2018/734))

Search Progress and Potentially Expanded States in Greedy Best-First Search
Manuel Heusner, Thomas Keller, Malte Helmert
(PDF (0735.pdf) | Details (/proceedings/2018/735))

Accelerating Innovation Through Analogy Mining
Tom Hope, Joel Chan, Aniket Ki�ur, Dafna Shahaf
(PDF (0736.pdf) | Details (/proceedings/2018/736))

Make Evasion Harder: An Intelligent Android Malware Detection System
Shifu Hou, Yanfang Ye, Yangqiu Song, Melih Abdulhayoglu
(PDF (0737.pdf) | Details (/proceedings/2018/737))

Unbiased Learning-to-Rank with Biased Feedback
Thorsten Joachims, Adith Swaminathan, Tobias Schnabel
(PDF (0738.pdf) | Details (/proceedings/2018/738))

Orchestrating a Network of Mereotopological Theories: An Abridged Report
C. Maria Keet, Oliver Ku�
(PDF (0739.pdf) | Details (/proceedings/2018/739))

Emergent Tangled Program Graphs in Multi-Task Learning
Stephen Kelly, Malcolm Heywood
(PDF (0740.pdf) | Details (/proceedings/2018/740))

Geolocating Images with Crowdsourcing and Diagramming
Rachel Kohler, John Purviance, Kurt Luther
(PDF (0741.pdf) | Details (/proceedings/2018/741))

Counterexample-Driven Genetic Programming: Stochastic Synthesis of Provably Correct
Programs
Krzysztof Krawiec, Iwo Błądek, Jerry Swan, John H. Drake
(PDF (0742.pdf) | Details (/proceedings/2018/742))

Attributed Description Logics: Reasoning on Knowledge Graphs



Markus Krö�sch, Maximilian Marx, Ana Ozaki, Veronika Thost
(PDF (0743.pdf) | Details (/proceedings/2018/743))

Multi-Robot Motion Planning with Dynamics Guided by Multi-Agent Search
Duong Le, Erion Plaku
(PDF (0744.pdf) | Details (/proceedings/2018/744))

An Empirical Study of Branching Heuristics through the Lens of Global Learning Rate
Jia Liang, Hari Govind, Pascal Poupart, Krzysztof Czarnecki, Vijay Ganesh
(PDF (0745.pdf) | Details (/proceedings/2018/745))

Inhibition of Occluded Facial Regions for Distance-Based Face Recognition
Daniel López Sánchez, Juan M. Corchado, Angelica González Arrieta
(PDF (0746.pdf) | Details (/proceedings/2018/746))

Cost-Based Goal Recognition for the Path-Planning Domain
Peta Masters, Sebastian Sardina
(PDF (0747.pdf) | Details (/proceedings/2018/747))

Distributing Frank-Wolfe via Map-Reduce
Armin Moharrer, Stratis Ioannidis
(PDF (0748.pdf) | Details (/proceedings/2018/748))

Completeness-aware Rule Learning from Knowledge Graphs
Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski, Paramita Mirza, Gerhard Weikum
(PDF (0749.pdf) | Details (/proceedings/2018/749))

The Intricacies of Three-Valued Extensional Semantics for Higher-Order Logic Programs
Panos Rondogiannis, Ioanna Symeonidou
(PDF (0750.pdf) | Details (/proceedings/2018/750))

Evaluating and Complementing Vision-to-Language Technology for People who are Blind
with Conversational Crowdsourcing
Elliot Salisbury, Ece Kamar, Meredith Ringel Morris
(PDF (0751.pdf) | Details (/proceedings/2018/751))

Recursive Spoken Instruction-Based One-Shot Object and Action Learning
Ma�hias Scheu�, Evan Krause, Bradley Oosterveld, Tyler Frasca, Robert Pla�
(PDF (0752.pdf) | Details (/proceedings/2018/752))

An Efficient Minibatch Acceptance Test for Metropolis-Hastings
Daniel Seita, Xinlei Pan, Haoyu Chen, John Canny
(PDF (0753.pdf) | Details (/proceedings/2018/753))

Marathon Race Planning: A Case-Based Reasoning Approach
Barry Smyth, Padraig Cunningham
(PDF (0754.pdf) | Details (/proceedings/2018/754))

A Genetic Programming Approach to Designing Convolutional Neural Network
Architectures
Masanori Suganuma, Shinichi Shirakawa, Tomoharu Nagao



Inhibition of Occluded Facial Regions for Distance-Based Face Recognition

Daniel López-Sánchez1, Juan M. Corchado1,2, Angélica González Arrieta1

1 University of Salamanca, BISITE Research Group
2 Osaka Institute of Technology
{lope, corchado, angelica}@usal.es

Abstract
This work focuses on the design and validation of
a CBR system for efficient face recognition under
partial occlusion conditions. The proposed CBR
system is based on a classical distance-based clas-
sification method, modified to increase its robust-
ness to partial occlusion. This is achieved by us-
ing a novel dissimilarity function which discards
features coming from occluded facial regions. In
addition, we explore the integration of an effi-
cient dimensionality reduction method into the pro-
posed framework to reduce computational cost. We
present experimental results showing that the pro-
posed CBR system outperforms classical methods
of similar computational requirements in the task
of face recognition under partial occlusion.

1 Introduction
This work focuses on the design and implementation of a
Case-Based Reasoning (CBR) system for efficient face recog-
nition, with a special focus on robust face recognition under
partial occlusion conditions1. Although the problem of face
recognition has been extensively addressed in the available
literature, most state-ot-the-art proposals impose a series of
constraints that limit their applicability in real world scenar-
ios where only a limited amount of computational power and
training information is available. The CBR method proposed
in this paper seeks to cover the full recognition process (i.e.,
face detection, normalization, and identity prediction). In ad-
dition, we focused on methods which are able to work under
the constraints of low computational power and little train-
ing information. As opposed to other occlusion-robust face
recognition systems, the proposed CBR framework does not
make any assumption about the nature of occlusion that it
will have to face at test time. We also studied the possible
integration of an efficient dimensionality reduction method
in the proposed framework to reduce the computational cost.
The experimental results presented in this paper show that
the proposed method outperforms traditional face recognition
methods in the task of partially occluded face recognition.

1This paper is an abridged version of a paper titled “A CBR Sys-
tem for Efficient Face Recognition Under Partial Occlusion”, pre-
sented at the ICCBR-2017 conference

2 Related Work
Most occlusion-robust face recognition systems available in
the literature include a prior step to identification where they
determine which parts of the images are affected by occlu-
sion. In particular, some studies have used manually anno-
tated occluded/non-occluded facial image patches to explic-
itly train a classifier [Min et al., 2011]. However, this ap-
proach has the drawback of requiring occluded face images
during the training stage. As a consequence, if the nature
of occlusion changes, the accuracy of the occlusion detector
might be affected. Using color-based segmentation methods
to detect occluded facial regions has also been proposed in the
literature [Jia and Martinez, 2008]. However, these methods
are very sensitive to lighting conditions and make the unsafe
assumption that the occlusion is not caused by artefacts with
human-skin color. [Ekenel, 2009] holds the idea that most of
the accuracy loss registered by face recognition systems when
dealing with partially occluded images is due to alignment er-
rors, rather than information corruption by the occlusion. To
address this problem, he proposed a method which seeks to
minimize the distance between each sample in the training
set and a new observation by evaluating a number of different
alignment variations. As a consequence, searching for the
best alignment variation requires hundreds of comparisons
for each training sample. Although this method achieved no-
table accuracy rates, the computational cost supposes a major
drawback.

Nowadays, the state-of-the-art in one of the most
widespread face recognition datasets, namely the LFW
dataset, is mostly held by deep neural network models2.
However, such models are not always applicable due to com-
putational constraints. In scenarios with this limitation, LBP
descriptor-based methods remain as one of the best options.

3 Proposed Framework
In this section, we describe in detail both the proposed CBR
framework and the selected pre-processing steps needed for
face recognition. At test time, when the system is presented
with an image that contains a human face in it, the following
processing stages are executed: (1) A region of interest is de-
termined for the human face in the image; (2) the detected
face is aligned; (3) the image is pose-normalized, rotating

2http://vis-www.cs.umass.edu/lfw/results.html#UnrestrictedLb
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Figure 1: Architecture of the proposed CBR framework and prepro-
cessing steps.

and scaling the face to a standard size and orientation; (4)
the lighting conditions of the image are normalized; (5) a fea-
ture extraction method is applied; and finally (6) the proposed
retrieval and reuse stages are executed to emit a prediction re-
garding the identity of the person in the original image.

3.1 Preprocessing
This section describes the successive preprocessing stages ex-
ecuted before the actual retrieval and reuse stages in the pro-
posed CBR framework.

• Face detection. For our experiments, we used the HOG
face detector provided by the Dlib C++ library3.

• Face alignment. Our framework uses the face align-
ment algorithm proposed by V. Kazemi in 2014 [Kazemi
and Josephine, 2014]. In particular, for the experiments
in this paper we used the pre-trained model provided by
Dlib C++3.

• Pose normalization. Previously detected facial key-
points are used to normalize the facial image by rotating
and cropping it to display the aligned face in its center,
in a vertical pose. In addition, the resulting image is re-
sized to a standard size.

• Light normalization. Due to its simplicity, efficiency
and good performance, Histogram Equalization (HE)
was used to normalize the lighting conditions in all ex-
periments in this paper.

3.2 Feature Extraction: Local Binary Patterns
In this paper, we focus on a specific family of feature de-
scriptors known as Local Binary Patterns (LBP) [Ojala et al.,
2002]. As described in the following sections, the local na-
ture of this descriptor will allow us to maintain features from
occluded regions isolated from those extracted from visible
parts of the face. The LBP descriptor labels pixels in an image
by considering value differences with their neighbors. This
label is treated afterwards as a binary number. The notation
LBPP,R is usually used to denote the LBP descriptor with
P neighbors and a radio of value R. It has been proved that,
using the LBP8,1 descriptor, almost 90% of the extracted la-
bels are uniform (i.e., its binary representation contains two
transitions at most) [Ojala et al., 2002]. For this reason, a
variant of LBP was designed where non-uniform patterns are
merged together in a single label. This variant of the descrip-
tor is known as uniform LBP (LBPu

P,R). Before training a

3 Dlib C++ web page: http://dlib.net

Figure 2: Differential distribution of minimum local distances for
occluded and non-occluded blocks in the ARFace database.

classifier, the LBP representation is often refined by dividing
the image in a number of blocks (arranged in a grid structure)
and counting the number of occurrences of patterns in each
block. After this, the corresponding histograms of each block
are concatenated to form the final descriptor. This approach
in known as Local binary pattern histograms (LBPH).

3.3 Identification: Occlusion-Robust Retrieval
First, we introduce a method to detect partial occlusion in
LBPH blocks. Conveniently, our method requires no a pri-
ori knowledge about the nature of occluded blocks. We de-
fine the minimum local distance for the histogram of an LBP
block as the minimum squared Euclidean distance obtained
when comparing this histogram with the LBP histograms cor-
responding to the same facial region in the descriptors stored
in the Case-Base. Then, the only assumption made by our
method is that minimum local distances of occluded blocks
are usually larger than those of unoccluded blocks. To pro-
vide insight into the veracity of this assumption, we calcu-
lated the distribution of minimum local distances for occluded
and unoccluded blocks in the ARFace database4; the resulting
distributions are shown in figure 2. Although some overlap-
ping exists among the two distributions, it might be possible
to define a conservative threshold to discard most occluded
blocks. Formally, the Case-Base of our framework is defined
as a set of identity label y and LBPH descriptor x pairs:

CB = {(y(i), x(i)), i = 1, 2, ..., n} (1)

When an unlabeled image I is presented to the system, it
is first transformed by the successive preprocessing steps de-
fined in the previous section. Afterwards, the LBPH descrip-
tor x ∈ Rd of image I is generated and the retrieval stage
begins. Our proposed retrieval stage begins by computing the
n × d/p local distance matrix L, where p is the size of each
histogram concatenated to form the LBPH descriptors. Each
entry Lij in this matrix corresponds to the local distance be-
tween the j-th histogram in x and the j-th histogram in the
i-th descriptor in the Case-Base; formally:

Li,j = ||(xp(j−1)+1, · · · , xpj)− (x
(i)
p(j−1)+1, · · · , x

(i)
pj )||

2

for i = 1, 2, · · · , n and j = 1, 2, · · · , d/p
(2)

Based on this matrix and the desired threshold value for oc-
clusion detection, the retrieve stage computes an occlusion

4See section 4 for details about the evaluation database.
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maskM ∈ {0, 1}d/p that determines which of the histograms
that conform descriptor x are considered as occluded:

Mj = Th(min( coljL ) )

Th(x) =

{
1 if x < threshold

0 if x > threshold

(3)

Using this occlusion mask, the retrieval stage of the proposed
CBR framework finds the k most similar cases to x in the
Case-Base, according to the following dissimilarity function:

d(x, x(i)) =

j=d/p∑
j=1

Mj · Li,j (4)

Intuitively, this dissimilarity function corresponds to the
squared Euclidean distance between the features in x and x(i)
that do not come from occluded facial zones (as predicted in
the previous step). In other words, the proposed similarity
measure dynamically inhibits the use of corrupted features
while retrieving the most relevant cases from the Case-Base.

Afterwards, the reuse stage analyzes the retrieved cases and
their labels to emit a prediction regarding the identity associ-
ated to the new case. To this extent, we use the weighted vot-
ing scheme proposed in [Hechenbichler and Schliep, 2004]
with the dissimilarity function of eq. 4.

Conveniently, the computations defined by equations 2 and
3 can be done at the cost of timeO(n(dp ·p+

d
p )), which sim-

plifies to O(nd) given that p > 1. Finding the most similar
cases in the Case-Base according to equation 4 takesO(n· dp+
kn) time; which can be simplified to O(nd) by considering
hyperparameters p and k as constants. Finally, the remaining
computations which correspond to the voting process have a
complexity of O(k). Therefore, the computational complex-
ity of the complete test stage is O(nd) + O(nd) + O(k),
which simplifies to O(nd) given that n >> k. Hence, we
can conclude that the scalability of the proposed retrieval and
reuse stages is equivalent to that of classical nearest neigh-
bour search methods.

In the context of the proposed CBR system, the revision
should be carried out by a human expert who determines
whether an image has been assigned the correct identity. In
particular, retaining revised cases only involves storing their
case representation into the Case-Base. In addition, this
mechanism can also be applied to provide the CBR system
with knowledge of previously unseen individuals, thus ex-
tending the number of possible identities predicted by the sys-
tem.

3.4 Multi-scale Local Binary Pattern Histograms
Several studies have found that higher recognition accu-
racy rates can achieved by combining LBPH descriptors ex-
tracted form the same image at various scales [Chan et al.,
2007][Chen et al., 2013]. Unfortunately, the computational
costs derived from using such a high-dimensional feature de-
scriptor suppose a serious problem. Apart from that, this
image descriptor is perfectly compatible with the proposed
method. The only requirement is that histograms correspond-
ing to the same image region are placed next to each other

when forming the final descriptor. Then, selecting the cor-
rect value for p, the corresponding histograms for a specific
face region will be treated as a single occlusion unit (i.e., a
set of features which our method considers as occluded or
non-occluded as a whole).

Local Dimensionality Reduction With Random
Projection
This subsection tries to address the problem of high-
dimensionality of multi-scale LBPH descriptors. In the liter-
ature, [Chen et al., 2013] proposed using an efficient dimen-
sionality reduction algorithm to reduce the size of multi-scale
LBP descriptors. However, this approach is not directly com-
patible with the method proposed in the previous section. The
reason for this being that we need to keep features from dif-
ferent occlusion units (i.e., facial regions) isolated form each
other, so we can later detect and inhibit features coming from
occluded facial areas. To overcome this limitation, we pro-
pose performing dimensionality reduction at a local level. To
this extent, the histograms extracted from a specific facial re-
gion (at various levels) are considered as a single occlusion
unit. Then, the Random Projection [Achlioptas, 2001] (RP)
algorithm is applied locally to each occlusion unit. As op-
posed to other dimensionality reduction methods, RP gener-
ates the projection matrix from a random distribution. As a
consequence, the projection matrix is data-independent and
cheap to build.

The main theoretical result behind RP is the Johnson-
Lindenstrauss (JL) lemma. This result guarantees that a set of
points in a high dimensional space can be projected to a Eu-
clidean space of much lower dimension while approximately
preserving pairwise distances between points [Dasgupta and
Gupta, 2003]. Formally, given 0 < ε < 1, a matrix X with n
samples from Rp, and k > 4 · ln(n)/(ε2/2 − ε3/3) a linear
function f : Rp → Rk exists such that:

(1− ε)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ε)||u− v||2

∀u, v ∈ X
(5)

In particular, the map f : Rp → Rk can be performed by
multiplying data samples by a random projection matrix R
whose elements are drawn from N (0, 1):

f(x) =
1

k
xR (6)

As previously said, in order to apply RP in the context of
the proposed method, me must first ensure that histograms
coming from the same face region are placed contiguously in
the final descriptor (see Fig. 3). Afterwards, we can apply the
RP method locally to each occlusion unit. Formally, let x ∈
Rd be a multi-scale LBPH descriptor where each occlusion
unit consists of p features. The reduced version of descriptor
x is computed as follows:

x′ = f(x1:p) || f(xp+1:2p) || · · · || f(xd−p+1:d) (7)

where || denotes vector concatenation. Note that, thanks to
the JL-lemma, for a sufficiently large k value the result of ap-
plying the proposed retrieval and reuse stages over reduced
descriptors is approximately the same as doing it over the
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Figure 3: Features are grouped together in the final descriptor ac-
cording to the facial region they come from.

original high-dimensional descriptors. To prove this, it suf-
fices to consider the different computations carried out by the
proposed retrieval and reuse stages. First, the local distance
matrix is computed according to eq. 2. If we reduce both the
new case x and the descriptors x(i) in the Case-Base as de-
scribed in eq. 7, and set hyperparameter p to the new size of
occlusion units (i.e., p = k), equation 2 can be rewritten as
follows:

L′i,j = ||(x′k(j−1)+1, · · · , x
′
kj)− (x

′(i)
k(j−1)+1, · · · , x

′(i)
kj )||2

for i = 1, 2, · · · , n and j = 1, 2, · · · , d′/k
(8)

where x′ ∈ Rd′
. Then, applying the JL-lemma, for a suffi-

ciently large k value we can ensure that:

(1− ε) Li,j ≤ L′i,j ≤ (1 + ε) Li,j

for i = 1, 2, · · · , n and j = 1, 2, · · · , d′/k
(9)

In other words, the distortion induced in matrix L′ with re-
spect to L is bounded. The following steps of the proposed
method are based on L′. Therefore, if the difference between
L′ and L is small enough, the proposed retrieval and reuse
stages will provide the same results when executed over the
reduced descriptors. Section 4 reports on several experiments
where the descriptors were reduced with this approach.

4 Experimental Results
We evaluated the proposed system over a database of facial
images with different types of occlusion and using different
image descriptors. In particular, the evaluation dataset is the
ARFace database [Martinez, 1998]. This dataset contains
about 4,000 color images corresponding to 126 individuals
(70 men and 56 women). The images display a frontal view
of individuals’ faces with different facial expressions, illumi-
nation conditions and partial occlusions. We used the images
in the ARFace dataset to create several subsets for our exper-
iments. In particular, we arranged a training set, a validation
set, and several test sets with different characteristics:

• Training set: one image per individual (neutral, uniform
lighting, first session).

• Validation set: almost one image per individual5 (neu-
tral, uniform lighting, second session).

5Second session images are not available for all individuals in
the dataset.

• Light test set: almost four images per individual (neutral,
illumination left/right, first and second sessions).

• Glasses test set: almost two images per individual (sun-
glasses, uniform lighting, first and second session).

• Scarf test set: almost two images per individual (scarf,
uniform lighting, first and second session).

We evaluate the proposed method against other common
classification methods used in the field of face recognition,
namely Logistic Regression (LR), Support Vector Machine
(SVM) and Naive Bayes (NB). In the case of the proposed
method, p determines the size of the occlusion unit, and is
fully determined by the parametrization of the LBP descrip-
tor. The remaining hyperparameter is the threshold for occlu-
sion detection. This hyper-parameter can be selected using a
validation set of images without occlusion, even if such val-
idation set contains less than one image per individual. In
particular, the threshold is set to the minimum possible value
which does not produce misclassification of non-occluded
blocks in the validation set as occluded (see [López-Sánchez
et al., 2017] for more details).

The evaluation protocol for all our experiments has been
the following: (1) the classifier under evaluation is trained
over the training set; (2) the validation set is used to perform
hyperparameter selection; (3) the classifier, parametrized as
determined in the previous step, is re-trained over the union of
the training set and the validation set; (4) the trained classifier
is evaluated over the different test datasets available.

Table 1 presents the results obtained by using the automatic
face detection and alignment methods explained in section
3.1. Similarly, Table 2 compiles the results obtained by using
the manual face alignment annotations provided by the AR-
face database. For single scale descriptors, we used LBPu

8,2
histograms over a 8 × 8 grid, thus obtaining a descriptor of
3, 776 dimensions. In the case of multi-scale descriptors, we
used LBPu

8,2 histograms over 12 × 12 and 6 × 6 grids. The
resulting descriptor dimension was therefore 10, 620. Finally,
for our experiments with local RP (see Sec. 3.4), each 295-
dimensional occlusion unit in the high-dimensional multi-
scale descriptor was reduced to 150 features. Therefore, the
complete descriptor ended up having a dimension of 5, 400
(i.e., approximately half the original dimension).

5 Discussion and Future Work
This work proposed a novel CBR framework for occlusion-
robust face detection. The retrieval and reuse stages of the
system use a modified version of the weighted k-Nearest
Neighbour [Hechenbichler and Schliep, 2004] algorithm to
dynamically inhibit features from occluded face regions. This
is achieved by using a novel similarity function which dis-
cards local distances imputable to occluded facial regions.
As opposed to recent deep learning-based methods, the pro-
posed system can operate in domains where only a small
amount of training information is available, and does not re-
quire any specialized computing hardware to run. In addition,
we proved that the Random Projection algorithm can be ap-
plied in a local manner to reduce the dimension of multi-level
LBPH descriptors, while ensuring that the proposed retrieval
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Features Classifier Light Scarf Glasses

LBPu
8,2 wkNN 81.4% 39.4% 30.0%

LBPu
8,2

our CBR
p=59, thr=27 96.2% 83.6% 50.2%

LBPu
8,2 SVM (poly) 78.1% 36.9% 25.1%

LBPu
8,2 LR 84.8% 45.0% 23.4%

LBPu
8,2 NB 82.5% 43.7% 20.1%

m.s. LBPu
8,2 wkNN 98.8% 73.3% 34.9%

m.s. LBPu
8,2

our CBR
p=295, thr=17 99.2% 89.2% 50.6%

m.s. LBPu
8,2 SVM (poly) 88.1% 59.6% 27.9%

m.s. LBPu
8,2 LR 96.2% 75.1% 28.3%

m.s. LBPu
8,2 NB 86.29% 72.1% 37.03%

m.s. LBPu
8,2 + RP wkNN 98.5% 66.5% 31.2%

m.s. LBPu
8,2

+ local RP
our CBR
p=150, thr=100 98.8% 90.5% 51.0%

m.s. LBPu
8,2 + RP SVM (poly) 85.5% 55.3% 20.9%

m.s. LBPu
8,2 + RP LR 93.3% 69.0% 25.5%

m.s. LBPu
8,2 + RP NB 84.0% 54.5% 27.1%

Table 1: Experimental results with automatic face alignment.

and reuse stages will perform approximately as well as they
do over the original high-dimensional descriptors. Experi-
mental results carried out over the ARFace database show
that, in most cases, the proposed method outperforms clas-
sic classification algorithms when using LBPH features to
identify facial images with partial occlusion. As for future
work, we propose investigating how automatic face alignment
methods can be made more robust to partial facial occlusion.
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