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Abstract
In this paper, we propose a new method for disjoint principal component analysis based on an intelligent search. The

method consists of a principal component analysis with constraints, allowing us to determine components that are linear

combinations of disjoint subsets of the original variables. The effectiveness of the proposed method contributes to solve

one of the crucial problems of multivariate analysis, that is, the interpretation of the vectorial subspaces in the reduction of

the dimensionality. The method selects the variables that contribute the most to each of the principal components in a clear

and direct way. Numerical results are provided to confirm the quality of the solutions attained by the proposed method.

This method avoids a local optimum and obtains a high success rate when reaching the best solution, which occurs in all

the cases of our simulation study. An illustration with environmental real data shows the good performance of the method

and its potential applications.

Keywords Constrained binary particle swarm optimization � Data mining � Disjoint principal components �
Evolutionary computation � R software � Singular value decomposition

1 Introduction

Most of multivariate techniques are based on the singular

value decomposition (SVD) of the data matrix. This

decomposition allows us to find a system of orthogonal

principal axes (or components) that correspond to the

directions of maximum variance (Beaton et al. 2014). The

vectors corresponding to these new principal components

are linear combinations of the original variables so that

such axes are latent variables. Then, the principal compo-

nent analysis (PCA) is performed by SVD, with PCA being

the simplest of the eigenvectors-based multivariate

techniques.

Each principal axis is related to a principal vector and

the values of its coordinates give practical sense to the

components in the context of the research (Hastie et al.

2009). This task can become a problem if a large number of

coordinates have equal absolute values, with no loads close

to zero, making it difficult to characterize the axis corre-

sponding to the latent variable to be considered. If each of

the principal axes is a linear combination of a few original

variables, its interpretation is simpler within the context.

Several multivariate techniques have been developed to

achieve this goal. For example, the technique proposed by

Vines (2000) consists of obtaining directions that are rep-

resented by vectors of integers with several of their coor-

dinates equal to zero. The sparse PCA proposed by Zou

et al. (2006) seeks factorial axes with few non-zero loads.

The decomposition proposed by Mahoney and Drineas

(2009) represents the data matrix as a product of three low-

rank matrices. These techniques above mentioned permit

us to express the principal axes based on a reduced number

of columns (variables) and/or rows (individuals or objects).
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Another proposal is to use disjoint components that, in

addition to characterizing a component as a linear combi-

nation of a few original variables, they do not appear in the

other components, justifying the name disjoint. Vigneau

and Qannari (2003) performed hierarchical clustering to

relate a latent variable to each previously obtained cluster,

proposing a disjoint PCA. A different approach to that used

by Vigneau and Qannari (2003) was presented by Vichi

and Saporta (2009), determining the latent variables by

means of a PCA, named clustering and disjoint PCA

(CDPCA). The CDPCA consists of sequentially applying

cluster analysis and PCA by means of an alternating least

squares algorithm. Macedo and Freitas (2015) proposed an

algorithm for the CDPCA.

Another approach was proposed by Nieto-Librero et al.

(2017) corresponding to the clustering and disjoint HJ

biplot technique (Frutos et al. 2014). Note that a dispoint

PCA facilitates the interpretation of the results, without the

need of clusters to characterize them. Nieto-Librero (2015)

developed a disjoint HJ biplot technique and its calculation

algorithm is based on the approach proposed by Vichi and

Saporta (2009) and the algorithm presented in Macedo and

Freitas (2015). Ferrara et al. (2016) introduced the three

following techniques to obtain disjoint components:

(i) stepwise PCA; (ii) constrained PCA; and (iii) dis-

joint PCA, where (iii) was derived from the CDPCA.

Freitas et al. (2020) compared two optimization methods

for the CDPCA algorithm, one based on alternating least

squares and the other one based on two-step semidefinite

programming. Lou et al. (2020) proposed a method to

perform PCA selecting the number of positions different

from zero using particle swarm optimization (PSO).

PSO has been applied to control systems, data mining,

graphical computing, neural networks, scheduling prob-

lems and robotics (Alatas and Akin 2008; Vasile and Buiu

2011). In multivariate analysis, Voss (2005) utilized PCA

with PSO based on the system of principal axes being

moved to the swarm, with PCA being used to determine the

directions of these axes in each iteration. Chu et al. (2011)

introduced a method that employs PCA to handle the

bounds of the feasible region. Ma and Ji (2012) utilized

PCA to reduce dimension, selecting the most important

principal components and to then apply PSO. Similarly,

Zhao et al. (2014) used PCA to determine efficient direc-

tions to be employed in PSO. Song et al. (2017) utilized

PSO for global optimization in the presence of disconti-

nuity. Other applications of PSO are in the cluster analysis,

particularly in the detection of centroids and in the selec-

tion of the number of clusters (Van der Merwe and

Engelbrecht 2003; Esmin and Matwin 2012; Gajawada and

Toshniwal 2012; Wang et al. 2018). In the articles cited

above, with the exception of the work on cluster analysis,

the multivariate techniques utilize PSO to improve its

performance in prior or posterior stages.

The present work is based on the disjoint HJ biplot

technique, introducing a different approach in how the

optimization is performed. Here, a new paradigm in the

optimization of data science problems is exhibited to

minimize the objective function using an algorithm of PSO

of binary type with constraints. This technique is named

here as constrained binary particle swarm optimization

(CBPSO), where the term binary is due to the use of binary

matrices in the PSO. Optimization by PSO is an emerging

technique of evolutionary computation based on stochastic

optimization and inspired by the behavior of biological

species, such as starlings (Sangwook et al. 2008).

The objective of the present article is to propose a new

methodology that combines PSO and PCA. Specifically, we

use PSO in the solution of the optimization problem inherent

to the calculation of the disjoint principal components. In

addition, a new proposal is also presented here to compute

the eigenvalues associated with the variability of each of the

new principal axes, enabling us to construct indicators of the

explicability percentages of each disjoint axis obtained.

The rest of his paper is organized as follows. Section 2

describes a dispoint PCA algorithm developed from HJ

biplot, which we name DPCA in short, using an alternating

least squares method. In Sect. 3, we detail the implementa-

tion of an algorithm that uses binary PSO optimization with

binary constraints named here CBPSO-PCA. Section 4

summarizes the new proposed method and exposes the

advantages of using PSO through simulations. In this sec-

tion, we also illustrate our method with real environmental

data to show its potential applications. Finally, Sect. 5 dis-

cusses the conclusions of this study and future research.

2 The DPCA method

In this section, we provide background about the DPCA. In

addition, an algorithm that implements the calculation of

disjoint principal components is provided.

2.1 Background

The I � J matrix X in the DPCA is expressed as in the

standard PCA, that is, as the product of the transpose of the

loading matrix B by the score matrix A (Jolliffe 2002, p.

31) given by

X ¼ AB>; ð1Þ

where I is the number of individuals and J is the number of

variables; A is the I � Q score matrix, containing the

coordinates of the individuals in the reduced Q-
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dimensional space of the disjoint components; B ¼ ðbijÞ is
the J � Q component loading matrix, containing the

coordinates of the variable j in the reduced Q-dimensional

space and is subject to the following constraints:

(i)
PJ

j¼1 b
2
jq ¼ 1, for q ¼ 1; . . .;Q;

(ii)
PJ

j¼1ðbjqbjrÞ
2 ¼ 0, for q ¼ 1; . . .;Q� 1 and

r ¼ qþ 1; . . .;Q;

(iii)
PQ

q¼1 b
2
jq [ 0, for j ¼ 1; . . .; J.

Constraint (i) indicates that each column of B has norm

one. Constraint (ii) expresses that two different columns of

B are orthogonal, while constraint (iii) establishes that B

does not have zero vectors. Since this is a low-range

approximation, we have that X defined in (1) is now given

by X ¼ AB> þ E, where E is the error matrix. Minimizing

the Frobenius norm squared of the error matrix E is

equivalent to minimizing the objective function

FðA;BÞ ¼ kX � AB>k2 ¼ kEk2; ð2Þ

that corresponds to the sum of residual squares. Then, we

have the optimization problem stated as

minFðA;BÞ ¼ X � AB>�
�

�
�2

subject to A;B as described above.

(

ð3Þ

Since X is the data matrix, it is a given matrix and

therefore it does not vary throughout the optimization

process, so that it is constant, such as its norm kXk is. Note

that minimizing

kX � AB>k2

kXk2

is equivalent to minimizing kX � AB>k2. The function F

stated in (2) is now redefined as

FðA;BÞ ¼ kX � AB>k2

kXk2
: ð4Þ

Thus, F redefined in (4) represents the squared relative

error and is used as the objective function. Note that

F measures the degree of fit of the low-range approxima-

tion. Hence, minimizing the objective function is equiva-

lent to minimizing the relative error, and therefore a better

fit corresponds to smaller values of the objective function.

In the next subsection, we explain how F is minimized

to determine the number Q of principal components. This

generates a Q-dimensional subspace where the original

data are projected so that each original variable contributes

to only one component. Note that these disjoint compo-

nents are orthogonal.

2.2 Explanation of the DPCA

As mentioned, the DPCA is an adaptation of the analysis

employed to construct the HJ biplot technique and the

principal components (Ferrara et al. 2016). The DPCA

contains the following steps:

Step 0. Let X be an I � J data matrix, with Q being

chosen as the number of disjoint components to be con-

sidered. The J � Q stochastic binary matrix V0 is randomly

generated by rows, such that its elements are given by

vjq ¼
1; if the variable j contributes to the component q;

0; otherwise;

�

satisfying the constraints

XQ

q¼1

vjq ¼ 1; j ¼ 1; . . .; J; ð5Þ

XJ

j¼1

vjq [ 0; q ¼ 1; . . .;Q; ð6Þ

where the expression defined in (5) ensures that there is a

one and nothing more than one in each row, whereas the

expression defined in (6) ensures that there are no columns

filled with zeros. From (5) and (6), we have that

XJ

j¼1

vjqvjr ¼ 0; q 6¼ r;

which means the columns are orthogonal.

Example 1 Let J ¼ 5 and Q ¼ 3. Then,

V0 ¼

1 0 0

1 0 0

0 0 1

0 1 0

0 0 1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

Note that V0 is a position matrix of the original data, since

it indicates how the original variables are distributed in the

selected disjoint components. This must ensure that any

component has all null loadings. Hence, the component

with the largest number of assigned variables is randomly

divided into two parts and then one of the halves is passed

to the component that has the column of zeros.

Once V0 is calculated, the loading matrix B0 is obtained

as follows. For each component q ¼ 1; . . .;Q, a partition

matrix W0q is generated from the data matrix X, with W0q

having I rows, such as X, and a number of columns cor-

responding to the variables indicated by the ones in the q-th

column of V0, as indicated in Remark 1, where the matrix

W is defined.
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Remark 1 Note that the matrix W is generated from the

original data X taking those columns corresponding to

variables for which a one is present in the matrix V at the

associated component. For instance, if for the component 1,

the non-null elements of each column in the matrix V0 take

the values 1, j and J, then we must take the 1-th, j-th and J-

th columns. Such columns are those forming the matrix

W01. For this matrix W01, we apply the HJ biplot technique

calculating the coordinates for the variables. From these

coordinates, we must choose the first column and such

values are the coordinates of the variables 1, j and J in the

first component. The remaining variables have coordinates

equal to zero for this component.

Example 1 (continued) Recall that J ¼ 5 and Q ¼ 3.

Then,

W01 ¼

x11 x12

x21 x22

..

. ..
.

xI1 xI2

0

B
B
B
B
@

1

C
C
C
C
A

X1 X2

;W02 ¼

x14

x24

..

.

xI4

0

B
B
B
B
@

1

C
C
C
C
A

X4

;W03 ¼

x13 x15

x23 x25

..

. ..
.

xI3 xI5

0

B
B
B
B
@

1

C
C
C
C
A

X3 X5

:

Note that each W0q is expressed by its SVD in the form

W0q ¼ RKT>; ð7Þ

where R is a unitary matrix, K is a rectangular diagonal

matrix with non-negative real numbers on the diagonal, and

T is also a unitary matrix, assuming suitable dimensions for

these matrices. The diagonal entries ki of K are known as

the singular values of W0q. The columns of R and T are

called the left and right singular vectors of W, respectively.

Thus, we obtain Q SVDs of the form represented in (7).

Once the matrix W0q is obtained, the matrix B0 is

constructed, with the q-th column of B0 being the right

singular vector corresponding to the largest singular value

of the q-th SVD. This column contains the loadings cor-

responding to the variables considered in the q-th column

of V0, with zeros in the positions that are not taken into

account for the q-th column. Since Q SVDs are taken into

account, the number of columns of B0 is Q. Once the

matrix B0 is computed, the coordinates for the objects are

obtained as A0 ¼ XB0, and then the objective function is

calculated as F0ðA0;B0Þ.
Step k. It is assumed that k � 1 steps of the algorithm

have already been executed and then arrays

Vk�1; Ak�1; Bk�1 of Fk�1 are available. We start by

updating the matrix Vk, letting the j-th row, with

j ¼ 1; . . .; J, to locate a one in the q-th position of this row,

for q ¼ 1; . . .;Q, and zeros in the rest of the row. Main-

taining unchanged the rest of the rows of Vk�1, we obtain a

new position matrix denoted by bV kq. With this position

matrix, we get the partition matrix cW kq, the respective

bAkq; bBkq matrices and then the objective function

bFkqðbAkq; bBkqÞ is evaluated. The position where

bFkqðbAkq; bBkqÞ is minimum assigns a one in that row. This

process of relocating the ones in all the rows of Vk�1 is

continued and the resulting matrix is called Vk. Since in

each row the position containing the one runs through all

the Q entries of the j-th row, the number of SVDs to

determine Vk is J � Q. If during the process some column

of Vk is generated with all its elements equal to zero, it acts

in the same way as explained in the construction of V0.

Once the position matrix Vk is computed, the correspond-

ing matrices Wkq are obtained and from them the loading

matrix Bk is also reached in the way already indicated.

Hence, the matrix Ak of scores is evaluated at Ak ¼ XBk

and then FðAk;BkÞ ¼ Fk is calculated to check whether the

stopping criterion is attained as indicated below.

Stopping criteria. Set a tolerance value e[ 0 and if we

have jFk � Fk�1j\e, then the algorithm is stopped. If this

is the case, the algorithm is finished and the solution is

attained at this step, which is assumed as the final solution.

If the stopping criterion is not reached, iterate until

reaching it. Another stopping criterion is the total number

of iterations to be performed. This is the stopping criterion

used in the DPCA.

The matrix Vk is constructed in a non-flexible way,

since when descending by rows in its construction, the

positions that contain the ones of each row are fixed and do

not change once they are determined. Another option is to

consider all possible binary matrices for Vk, but the number

of possible partitions can be excessively high, even for

small values of J and Q, as shown in Table 1 assuming

Example 1.

Table 1 Number of operations to be performed for Example 1

J Q ¼ 2 Q ¼ 3

10 Sj j ¼ 1 022 Sj j ¼ 55 980

15 Sj j ¼ 32 766 Sj j ¼ 14 250 606

20 Sj j ¼ 1 048 574 Sj j ¼ 3 483 638 676

30 Sj j ¼ 1 073 741 822 Sj j ¼ 2:058879109� 1014
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2.3 The algorithmic form of the DPCA

Algorithm 1 summarizes the DPCA.

3 The CBPSO-PCA

As mentioned in Sect. 1, the PSO is an optimization

technique where individuals (particles) move in the space

of feasible solutions of the objective function, communi-

cating with each other in search of the best solution (op-

timal approximation). The generic PSO method is

presented next.

3.1 The PSO method

The PSO has the following individual and social behaviors:

(i) Particles or individuals are attracted to the

optimum.

(ii) At any moment, individuals know their closeness

to the optimum. The closeness is estimated

through the so-called fit and is the value assigned

by the objective function to the position where the

particle is located.

(iii) Each particle or individual remembers its closest

position to the food (the optimum). This is the

individual’s historical knowledge.

(iv) Each particle shares its information about its

closest position to the optimum with the particles

closest to it, which is the historical knowledge of

its neighborhood.

Through two rules of interaction, particles adapt their

behavior to that of the most successful particles in their

environment (Imran et al. 2013). The PSO method allows

the particles to explore the set of feasible solutions S in

search of the optimum. The initial particle population is

kept constant through the search process. At the instant of

time k, each particle has a positionk, a velocityk, and a

value of fit Fk. The PSO method iterates at each instant of

time k for each particle as follows:

(i) Local information (linformationk): The current

position where the particle reaches its best fit, that

is, the smallest value of Fk for the particle.

(ii) Global information (ginformationk): The position

where the neighborhood reaches the best fit, that is,

the smallest value of Fk for the swarm.

Each particle updates its position according to

positionkþ1 ¼ positionk þ velocitykþ1; ð8Þ

where

velocitykþ1 ¼inertiak þ linformationk

þ ginformationk;
ð9Þ

with inertiak being the component responsible for

keeping the particle moving at the same direction that it is

moving until k.

Remark 2 Note that, in the PSO context, inertia allows a

better exploration of feasible solutions to be obtained. This

inertia must not be confused with the inertia in the context

of multivariate analysis, in which it is a measure of the

statistical variability of the data set. It must be emphasized

that PSO has absolutely no guarantee to find a global

optimum.

3.2 Explanation of the CBPSO-PCA

Recall that particles are represented by binary position

matrices of the form V as defined in Sect. 2. In each iter-

ation, when updating the position, the particle leaves the set

of feasible solutions S, since although the position matrix is

binary, the velocity matrix is not. To solve the optimization

problem given in (3), the particles are represented by

binary matrices V satisfying the constraints defined in (5)

and (6). We must find the binary matrix VH that minimizes

the objective function F and therefore this is a binary

optimization problem with constraints. The search for

feasible solutions leads to a problem of high computational

complexity (NP-hard) due to combinatorial explosion, as

mentioned at the end of Sect. 2 and exemplified in Table 1.

In the present article, we use constrained binary PSO to

solve the combinatorial optimization problem associated.

The first step of the PSO method is to initialize the

particles, which means that they are placed at a random

initial position. The number of particles P is an important

input parameter at this stage. The initial position of any

particle is a feasible solution of the problem, that is, an

element of a set of the feasible solutions S. In each itera-

tion, the position and velocity of the particles must be

updated according to the expressions given in (8) and (9).

The velocity matrices always have their components in the

interval ½�1; 1�, as shown in the continuation of Example 1

provided below. By updating the position at the stage

Stochastic Environmental Research and Risk Assessment (2021) 35:1969–1984 1973
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k þ 1, we have a new position that is not a binary matrix

nor satisfies the conditions of the feasible space.

Example 1 (continued) Recal that J ¼ 5 and Q ¼ 3.

Suppose that any particle, in the stage k, has position and

velocity matrices stated by

positionk ¼

1 0 0

1 0 0

0 0 1

0 1 0

0 0 1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

;

velocitykþ1 ¼

�0:51 0:75 0:12

�0:33 0:24 0:68

�0:83 �0:45 0:53

0:71 0:58 0:91

0:46 �0:79 0:64

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

Then, when updating the position at the stage k þ 1,

according to (9), we have a new position given by

positionkþ1 ¼positionk þ velocitykþ1

¼

0:49 0:75 0:12

�0:33 0:24 0:68

�0:83 0:55 0:53

0:71 0:58 0:09

0:46 �0:79 0:64

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

where positionk is not a binary matrix nor satisfies the

conditions of the feasible space. Note that the positionk
and velocityk matrices are chosen for illustrative pur-

poses only, showing how the particle (in the positionk)

leaves the space of feasible solutions. The calculation of

both matrices is explained below.

In order to avoid the problem indicated above, we pro-

pose the following procedure:

(i) In each row, the entry with the largest absolute

value is selected. The positions of these rows are

occupied by ones and the rest by zeros. This

procedure, as opposed to choosing random ones,

allows the memory of the particle to be preserved.

(ii) In the case where a column results only with zeros,

choose the column with the largest number of

ones, locate the one that come from the smallest

absolute value, and change it to a column full of

zeros. Thus, the matrix obtained satisfies the

conditions of the set of feasible solutions S.

(iii) If there are two columns full of zeros, apply the

same procedure, that is, choose the two ones that

come from the two smallest absolute values and

then pass them to the columns of zeros.

(iv) If there is a tie in the largest absolute values of a

row, choose the first of them from left to right.

The points indicated in (i)–(iv) above as solution proposed

convert a matrix with real components into a binary matrix

in the set of feasible solutions S, and they are executed by a

matrix operator denoted by O. The fit function is given by

the squared relative error, which represents, as in the

DPCA, the change for one unit, such as defined in Sect. 2.1.

In the PSO method, there are two types of variables:

individual and collective (or global). For individual vari-

ables, each particle stores its own values, but for the global

variables the values are shared by all the particles. As PSO

is an evolutionary algorithm, it may happen that, in two or

more successive iterations, there is no change of the

objective function. For this reason, the stopping criterion is

the number of iterations defined by the user (Martı́ et al.

2009).

In the sequel, T is a matrix operator that transforms the

binary matrix V into the loading matrix B as described in

the step k of Sect. 2.2. It is important to emphasize that, for

calculating B ¼ TðVÞ, the number of SVDs performed by

the operator T is the same as the number Q of desired

disjoint components. Next, we describe how local and

global informations work to reach the best fit.

3.2.1 Local information

The local information of a particle quantifies its attraction

to the position where it reaches its best fit. For a specific

particle p, the following information is stored in memory:

• Vp corresponds to the binary matrix V for the particle

p and represents the current position of that particle

(current binary position).

• Bp ¼ TðVpÞ is the loading matrix B for the particle p in

the current position Vp.

• FðVpÞ corresponds to the value of the objective

function evaluated at the current position Vp of the

particle p, that is, FðVpÞ ¼ FðAp;BpÞ, where

Ap ¼ XBp.

• VH

p is the best binary matrix V found by the particle

p locally.

• BH

p ¼ TðVH

p Þ represents the best loading matrix found

by the particle p locally.

• FðVH

p Þ is the value of the objective function evaluated

at the best solution found by the particle p locally.

• velocityp is the current velocity of the particle p used

to generate a disturbance of the current position of this

particle to place it at a new position. Thus, velocityp
is a J � Q matrix, and as part of the algorithm, each

entry in this matrix is in the interval ½�1; 1�.
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3.2.2 Global information

The global information quantifies the attraction of the

particle towards its position that obtains the best global fit.

In order to make it, the following information is collected

at the level of the entire swarm:

• VH is the best binary matrix V found by the swarm of

particles globally.

• BH ¼ TðVHÞ is the best loading matrix found by the

swarm of particles globally.

• FðVHÞ represents the value of the objective function

evaluated at the best solution found by the swarm of

particles globally.

As mentioned, the PSO method consists of three main

steps: initialization of the particles, iteration and update.

The second step of the algorithm is the most important

because it corresponds to the iterations. In each iteration,

all particles must move to a new position. Each position is

a feasible solution to the problem, that is, it is not allowed a

particle to place itself in the position of an unfeasible

solution. In this stage, we have the following parameters:

• nIter: number of iterations.

• minIner: minimum inertia value, which corresponds

to the value of the inertia in the last iteration.

• maxIner: maximum inertia value, which is the value

of the inertia in the first iteration.

• wCognition: cognitive weight that serves to control

the cognitive component of the new velocity.

• wSocial: social weight, which is used to control the

social component of the new velocity.

To determine the new position of a particle p, it is neces-

sary to calculate a new velocity that depends on three

components: (i) the first of them is the velocity in the

previous iteration that we control with inertia; (ii) the

second one is the cognitive component that we handle with

the cognitive weight; and (iii) the third one is the social

component that we control with the social weight. The

inertia decreases linearly from iteration to iteration. The

iterations are initiated with maxIner, whereas the itera-

tions are finished with minIner. Thus, for an iteration

0� k� nIter, the inertia factor value is given by

finertia ¼ maxIner� maxIner� minIner

nIter

� �

k:

ð10Þ

The expression defined in (10) implies that, as it is iterated,

the new velocity depends less on the previous velocity, and

the cognitive and social components affect it more. The

value of the new velocity for a particle p in the k-th iter-

ation is obtained by

newVelp ¼finertia� velocityp

þ q1 � wCognition� ðBH

p � BpÞ
þ q2 � wSocialðBH � BpÞ

where q1; q2 2 ½0; 1� are pseudo-random numbers so that

newVelp hasa stochastic component,BH

p is thebest local loading

matrix, and BH is the best global loading matrix. Note that the

J � Q matrix newVelp generally does not comply with the

constraint that the entries are in the interval ½�1; 1�. Therefore, a
transformation must be applied to satisfy this constraint. For this

purpose, we define the operator L as follows.

Let z 2 R be any entry in thematrixnewVelp. The operatorL

is defined by a convex linear combination of the sigmoid func-

tion, a particular case of the logistic function (Nezamabadi-Pour

et al. 2008; Sangwook et al. 2008) defined as

LðzÞ ¼ 2sigmoidðzÞ � 1;

where sigmoidðzÞ ¼ ð1þ e�zÞ�1 2 ½0; 1� so that

LðzÞ 2 ½�1; 1�. The operator L is applied to all entries of

newVelp as explained above, obtaining velocityp. Then,

a new position (in floating point format) is calculated using

VðtempÞ
p ¼ Bp þ velocityp: ð11Þ

Again, the operator L is applied to VðtempÞ
p in (11), so that its

inputs are in the interval �1; 1½ �. Now, by applying the

matrix operator O to VðtempÞ
p , the new binary position of the

particle p is obtained in the set of feasible solutions as

Vp ¼ OðVðtempÞ
p Þ and Bp ¼ TðVpÞ.

Next, we summarize the steps of initialization, iteration

and update of the PSO method in an algorithmic structure:

Step 1 (initialization)

1:1 For each particle p ¼ 1; . . .;P:

1:1:1 Generate randomly the matrix Vp.

1:1:2 Do Bp ¼ TðVpÞ.
1:1:3 Compute FðVpÞ.
1:1:4 Make VH

p ¼ Vp.

1:1:5 Establish BH

p ¼ Bp.

1:1:6 State FðVH

p Þ ¼ FðVpÞ.
1:1:7 Express velocityp randomly (initial velocity).

1:2 Among all the P particles, search for the particle with

the best binary initial position, that corresponds to the

particle with the best fit, denoted by pH. Then:

1:2:1 Do VH ¼ VpH .

1:2:2 Make BH ¼ BpH

1:2:3 State FðVHÞ ¼ FðVpHÞ.
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Step 2 (iteration)

2:1 Determine the new position of a particle p.

2:2 Establish the value of the new velocity for a particle

p in the k-th iteration.

2:3 Transform the entries to the interval ½�1; 1� using the

operator L.

2:4 Calculate a new position using the expression given

in (11) for VðtempÞ
p .

2:5 Apply again the operator L to VðtempÞ
p so that its inputs

are in the interval �1; 1½ �.
2:5 Obtain the new binary position of the particle p in the

set of feasible solutions by using the operators O and

T in VðtempÞ
p to reach Vp ¼ OðVðtempÞ

p Þ and

Bp ¼ TðVpÞ.
Step 3 (updating)

3:1 For each iteration k ¼ 1; . . .; nIter :

3:1:1 Compute finertia.

3:1:2 For each particle p ¼ 1; . . .;P :

3:1:2:1 Calculate newVelp.

3:1:2:2 Do velocityp ¼ LðnewVelpÞ.
3:1:2:3 Make VðtempÞ

p ¼ Bp þ velocityp.

3:1:2:4 State Vp ¼ OðVðtempÞ
p Þ.

3:1:2:5 Establish Bp ¼ TðVpÞ.
3:1:2:6 Determine FðVpÞ.
3:1:2:7 If FðVpÞ\FðVH

p Þ, then
A. VH

p ¼ Vp.

B. BH

p ¼ Bp.

C. FðVH

p Þ ¼ FðVpÞ.
If FðVpÞ\FðVHÞ, then

A. VH ¼ Vp.

B. BH ¼ Bp.

C. FðVHÞ ¼ FðVpÞ.

3:2 Report the best solution found.

3.3 The CBPSO-PCA algorithm

The way how the CBPSO-PCA works is summarized in

Algorithm 2. The function Step that we see in Algorithm

2 is used to represent, in a single instruction, the movement

of a particle to a new position. Every time a particle moves

to the next position, the best position found by that particle

and the best position found by all particles are updated, if

necessary. Note that the finertia is updated when going

from an iteration to the next. All the particles of the same

iteration share the same finertia value. In Algorithm 2,

the presence of the matrices Vp, V
H

p , and VH is omitted to

simplify the operation of the CBPSO-PCA algorithm.

Here, FðBpÞ ¼ FðAp;BpÞ.

3.4 Explained variance

Note that the CBPSO-PCA does not calculate the matrix K

defined in (7). Then, the singular values of X are unknown and

therefore the eigenvalues ofX>X as well. Here, we estimate the

eigenvalues corresponding to each of the disjoint components

by means of the calculation of the variance that the individuals

exhibit in the new system of principal axes. This enables us to

find the percentage of explained variance for each of the disjoint

axes and the respective principal planes. Specifically, let X be a

centered I � J data matrix, and let VarðXÞ ¼ S be its variance-

covariance matrix. Then, the total variation of X is defined by

traceðSÞ ¼r21 þ � � � þ r2J ¼
XJ

j¼1

r2j ; ð12Þ

where r21; . . .; r
2
J are the variances of the J variables con-

tained in the columns of X, that is, VarðXjÞ ¼ r2j . Alter-

natively, we have that

trace Sð Þ ¼ a1 þ � � � þ aJ ; ð13Þ

where a1; . . .; aJ are the eigenvalues of S.

Let B be a J � J rotation matrix, that is, B is orthogonal

in the sense that B>B ¼ IJ , where IJ is J � J identity

matrix. The column vectors B define a new rotated system

of axes. Each new axis is a linear combination of the

original variables representing a new variable. Let A be a

rotation transformation of X given by A ¼ XB. Its vari-

ance-covariance matrix is stated as

R ¼ VarðAÞ ¼ B>SB:

Since the columns of A contain the coordinates of the

individuals with respect to the new system of axes, the

variance of each column represents the variance of the new

variables obtained by rotation B. The total variation of A is

defined as
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trace Rð Þ ¼ trace B>SB
� �

¼ trace SBB>� �

¼ trace SIJð Þ
¼ trace Sð Þ;

ð14Þ

that is, the total variation of X and A is the same. Note that

the rotation B does not affect the total variation. If

b1; . . .; bJ are the eigenvalues of the matrix R in descend-

ing order, then the variance of the j-th new variable,

denoted by Aj, is VarðAjÞ ¼ bj; for j ¼ 1; . . .; J, and

trace Rð Þ ¼ b1 þ � � � þ bJ : ð15Þ

From (12), (13), (14) and (15), we have

r21 þ � � � þ r2J ¼ a1 þ � � � þ aJ ¼ b1 þ � � � þ bJ :

Therefore, the coefficients bi can be used to determine the

percentages of explanation of the disjoint axes. Thus, the

percentage of the total variation explained by the q-th

disjoint axis is given by

bq
PJ

i¼1 bi
� 100% ¼

bq
PJ

j¼1 r
2
j

� 100%: ð16Þ

The amount
PJ

j¼1 r
2
j can be obtained directly from the

matrix X and the coefficients bj may be estimated from

VarðAjÞ. In the case Q ¼ J, when applying the CBPSO-

PCA algorithm to obtain the disjoint components, the

loading matrix B ¼ IJ is obtained and then

A ¼ XB ¼ X:

If Q\J, the columns of B are disjoint with norm equal to

one. Thus, they form an orthonormal set of Q vectors in RJ ,

and additionally B>B ¼ IQ. Hence, B can be considered as

a projection matrix in the new rotated disjoint system of

axes and A ¼ XB is the matrix containing the coordinates

of the I objects found in the vector subspace generated by

the first Q disjoint components.

Note that our proposal is to use the variance of scores,

that is, we can apply the indicators defined in (16). The

variance of the columns of A is employed to calculate the

variance explained by each disjoint axis obtained, and for

each principal plane required. This criterion for calculating

the variance of the columns of the scores matrix is uti-

lized to determine the proportion of variability explained by

each factor axis, both in the DPCA and CBPSO-PCA in the

numerical examples of the following sections. Observe that

is not required to calculate the matrix of singular values K.

3.5 Application of the CBPSO-PCA algorithm

Algorithm 3 presented below is a guide to how using

Algorithm 2 (CBPSO-PCA, given in Sect. 3.3) when

computing the disjoint components in a practical context,

that is, when a centered data matrix X is available.

4 Empirical illustrations

In this section, we show the advantages of the CBPSO-

PCA algorithm, illustrating with empirical data the quality

of the solutions that can be found. First, we consider two

simulated examples and then a real environmental data

example.

4.1 Computational and simulation aspects

All computational experiments are performed on a 64-bit

Windows 10 computer, 8 GB of RAM, and an Intel

(R) Core (TM) i7-4510U 2-2.60 GHz processor. The

algorithm is implemented employing C#.NET and R. The

use of the R statistical software (R Core Team 2018) is

important primarily for performing the SVD. More

specifically, the irlba package is used as it provides a

fast and efficient way to calculate a partial SVD for large

matrices, instead of using the svd function of the svd

package of R, that provides a generic SVD of a matrix.

Communication between C#.NET and R is possible using

the R.NET middleware, which is installed in the corre-

sponding code project as a NuGet package. The data

matrix is located in an Excel sheet and is read from

C#.NET code at runtime using COM?.

The stopping criterion used in the CBPSO-PCA algo-

rithm is the number of iterations. However, each time the

algorithm finds a better solution, it is stored along with its

processing time. The best solution found by the algorithm

usually has a processing time less than the time needed for

all iterations to run.

4.2 Generator with disjoint component structure

A simulation algorithm is constructed to randomly generate

a data matrix, with an ad-hoc structure of easy interpreta-

tion. Then, when applying a dimension reduction by
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disjoint principal components, the CBPSO-PCA algorithm

is able to detect it.

Let x1; . . .; xp be the values of original p variables and

y1; . . .; yq be the values of q latent variables (q\p) with

disjoint structure. Consider the linear combination given by

yi ¼ c1;ix1 þ � � � þ cp;ixp. If the m original consecutive

variables xj; xjþ1; . . .; xjþðm�1Þ are represented in the latent

variable yi, then the scalars cj;i; cjþ1;i; . . .; cjþðm�1Þ;i are

defined as independent and uniform discrete distributed

random variables with support on the integers from 70 to

100. Note that the remaining scalars are defined similarly

but with support on the integers from 1 to 30. This pro-

cedure is performed for each i from 1 to q. Keep in mind

that each original variable must have a strong presence in

one single latent variable.

Example 2 Suppose that p ¼ 8, q ¼ 3 and Udða; bÞ
denotes the discrete uniform distribution, with support on

the integers from a to b (a; b 2 N; a\b). Note that the first

linear combination is stated as y1 ¼ c1;1x1 þ c2;1x2 þ
c3;1x3 þ c4;1x4 þ c5;1x5 þ c6;1x6 þ c7;1x7 þ c8;1x8: If x1; x2;

x3; x4 are represented in y1, then c1;1; c2;1; c3;1; c4;1 �IIDUd

ð70; 100Þ and c5;1; c6;1; c7;1; c8;1 �
IID

Udð1; 30Þ; where ‘‘IID’

denotes ‘‘independent and identically distributed’’. The

second linear combination is defined as y2 ¼ c1;2x1 þ
c2;2x2 þ c3;2x3 þ c4;2x4 þ c5;2x5 þ c6;2x6 þ c7;2x7 þ c8;2x8: If

x5;x6;x7 are represented in y2, then c5;2;c6;2; c7;2�
IID

Ud

ð70;100Þ and c1;2;c2;2;c3;2;c4;2;c8;2�IIDUdð1;30Þ: And the

third linear combination is expressed as y3¼ c1;3x1þ
c2;3x2þc3;3x3þc4;3x4þc5;3x5þc6;3x6þc7;3x7þc8;3x8: We

only have left the original variable x8, which must be

represented in y3. Then, we get c8;3�Udð70;100Þ and

c1;3; c2;3; c3;3; c4;3; c5;3; c6;3; c7;3 �IIDUdð1; 30Þ:

In Example 2, the first four original variables have a

strong presence in the first latent variable, the next three

original variables do so in the second latent variable, and

the last original variable has a strong representation in the

third and last latent variable. We indicate this, in a general

way, by the finite succession frkgqk¼1, whose elements for

the previous particular case are r1 ¼ 4, r2 ¼ 3 and r3 ¼ 1.

The algorithm designed simulates a matrix with n indi-

viduals and p variables. The orthonormalization Gram-

Schmidt process is applied to this matrix to obtain the

simulated data matrix X. The algorithm that builds the n�
p random matrix X should, in general, implement the

mapping / defined as

/: N�N�N�Nq ! Mn�p

n; p; q; rkf gqk¼1

� �
7!/ n; p; q; rkf gqk¼1

� �

subject to the constraints n� p and q\p. In addition, it

should be satisfied that

p ¼
Xq

k¼1

rk:

The mapping / returns an n� p matrix X that has the ad-

hoc structure mentioned above, which should be detected

by the CBPSO-PCA algorithm.

4.3 Simulation studies

For the first simulation, the mapping /ð100; 8; 3; f4; 3; 1gÞ
is executed, that is, there are 100 individuals and 8 original

variables and then a 100� 8 data matrix X is obtained. In

addition, the latent structure is made up of three disjoint

components: the first one has non-zero charges in the first

four positions. The second disjoint component has non-

zero charges at 5-th, 6-th and 7-th positions. The last dis-

joint component has a non-zero charge at the last position.

The CBPSO-PCA algorithm provides the loading matrix B

reported in Table 2.

The CBPSO-PCA is executed 100 times with 50 parti-

cles and 10 iterations as the stopping criterion. It should be

stressed that no background process is run on the computer

while the calculations are being made. In all 100 execu-

tions, the same solution is reached as shown in Table 2,

needing two or three iterations at most. The CBPSO-PCA

algorithm is able to detect the ad-hoc structure contained in

the data. The fit obtained when applying disjoint principal

components is 0.021859878 and the total variance

explained by the model is 97.81%. The DPCA algorithm is

also executed 100 times and the same solution given in

Table 2 is reached 100% of the times. A usual PCA is also

Table 2 Loading matrix B obtained by CBPSO-PCA and DPCA

algorithms with simulated data

Y1 Y2 Y3

X1 0.43413655 0 0

X2 0.53903007 0 0

X3 0.56700392 0 0

X4 0.44663027 0 0

X5 0 0.57919604 0

X6 0 0.56750625 0

X7 0 0.58520817 0

X8 0 0 1

% of EV 35.54% 33.01% 29.26%

where EV denotes the explained variance
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performed on the same data matrix and the loading matrix

defined in Table 3 is obtained. Note that the usual PCA

does not clearly detect the underlying structure in the data.

For example, what happens to the second original variable

X2 is noteworthy: it cannot be concluded with certainty in

which component it has a strong presence. The same can be

said of the last original variable X8.

A second simulation study is conducted to compare the

performance of the CBPSO-PCA and DPCA algorithms

when the matrix size is large. The simulation algorithm

implements the mapping /ð200; 200; 3; f50; 70; 80gÞ and a

200� 200 data matrix X with three disjoint components.

After executing both algorithms 100 times each, the results

obtained are summarized in Table 4. Both algorithms found

the best solution, with a fit of 0.02543703 and a total

explained variance of 97.46%, with different success rates.

The CBPSO-PCA algorithm is executed with the same

input parameters as in the first simulation study, and the

best time reached is 4.2 minutes in 6 iterations. In addition,

for the DPCA algorithm, the best time reached is 9.8

minutes in two iterations. The last row of Table 4 reports

that the DPCA is trapped in a local optimum in 7 of the 100

executions. It is important to highlight that the DPCA

algorithm does not perform an exhaustive search, since

starting from the binary matrix V that it initially generates

randomly, it begins to move by column the number one in

all possible positions.

Note that, as the number of original variables and latent

variables increases, we detect a larger processing time in

this algorithm. The CBPSO-PCA algorithm is better suited

for large arrays, since it has the flexibility to fit its

parameters allowing a better search strategy. The DPCA

algorithm has only one parameter (tolerance) that is used as

a stopping criterion. With respect to the percentages of

success, the DPCA algorithm has a larger probability of

being trapped in a local optimum, since it begins its

processing with a single binary matrix V, that is modified

by displacements of the one row and column, not neces-

sarily leading to an optimal matrix. As mentioned in

Macedo and Freitas (2015), the algorithm can be trapped in

different local optimum so that it is recommended to

execute it several times. In addition, the CBPSO-PCA

algorithm starts with a matrix V for each particle, and it is

the joint and intelligent search of the particles, which

permits the CBPSO-PCA to have a small probability of

being trapped in a local optimum.

We compare the convergence of the proposed algorithm

with the usual PCA. If the mathematical optimization

model for obtaining disjoint components is relaxed, elim-

inating precisely the constraint for the calculation of these

components, the minimization model for calculating the

usual principal components is obtained. Therefore, the fit

of this PCA is always better than the fit of a DPCA. Fig-

ure 1 shows a black curve that relates the number of iter-

ations of the CBPSO-PCA algorithm with the fit (value of

the objective function). The gray line, parallel to the hor-

izontal axis, shows the fit of a standard PCA. For the

second simulation study, the fit value of a PCA is so small

that the R software represents that fit with a zero. Observe

that the best fit obtained by the CBPSO-PCA algorithm in

one of the executions is 0.02543703 in 6 iterations of a

maximum of 7 iterations.

4.4 Application to real environmental data

A problem that arises when conducting studies with envi-

ronmental or ecological data is that of the presence of

Table 3 Loading matrix B obtained by usual PCA algorithm with

simulated data

Y1 Y2 Y3

X1 0.39512468 �0.09020236 0.14824807

X2 0.39775809 �0.00322755 0.40788776

X3 0.44254179 �0.17190775 0.31755350

X4 0.35239424 �0.11448361 0.25061667

X5 0.26682407 0.46011771 �0.25159988

X6 0.30662152 0.39441186 �0.26207760

X7 0.35705213 0.28282245 �0.38998176

X8 �0.27007773 0.70847497 0.60326462

% of EV 39.81% 32.27% 27.92%

where EV denotes the explained variance

Table 4 Summary of the second simulation study

Characteristic CBPSO-PCA DPCA

Average execution time (in minutes) 4.6 10.2

Best execution time (in minutes) 4.2 9.8

Worst execution time (in minutes) 4.8 10.4

Success rate 100% 93%

Fig. 1 Convergence analysis for the second simulation study accord-

ing to the method indicated
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redundant variables, that is, variables that are an exact or

approximate linear combination of one or more of the

remaining variables. These variables can be eliminated

without losing information or with minimal loss of it,

resulting in a smaller data set, reducing the costs for the

study.

Eliminating redundant variables, and retaining those that

provide the most information is relevant, particularly if the

data set is massive, as it is often occurs in environmental

studies. The PCA allows us to reduce the dimensionality of

the problem under study. Since the principal components

are not correlated, they remove redundant information. The

problem that arises, as already indicated, is its interpreta-

tion, because the loadings do not always approach zero in

absolute value. The CBPSO-PCA permits us to alleviate

this problem by presenting the variables that contribute

little information (to a certain principal component) with

values equal to zero. Thus, we can select the variables that

provide the most information to the first disjoint principal

component (that is, the one that explains a high variability)

and discard the variables that are found in the remaining

disjoint principal components. Obviously, this decision

depends on many factors such as the type of research to be

carried out, the importance of the variables to be excluded

and the knowledge of the researcher who collected the

data.

There is an extensive bibliography in which different

methodologies are presented for reducing the number of

variables in a multivariate study, among which we can

highlight: the seminal work of Jolliffe (1973), who used

PCA through multiple linear regression, and the work of

King and Jackson (1999), which is more specific, since

there different methods are proposed to discard redundant

variables in environmental studies. King and Jackson

(1999) showed that the Broken-Stick method is the best

criterion to determine the number of principal components

to retain, and then select the variables to be discarded using

the different models developed by Jolliffe (1973).

When the size of a data set is decreased, a stability

problem arises, which consists of the concordance between

the distances of the individuals in the space generated by

the original variables and the space generated by the set

containing the selected variables (Sorzano et al. 2014). In

order to reduce the number of the original variables using

PCA in ecological data to be stable, the interested reader is

referred to Grossman et al. (1991), where the ratio between

original variables and selected variables is considered to be

less or equal than three.

In this application, we use the Broken-Stick method and

the CBPSO-PCA algorithm to select the variables to be

retained in an environmental study. The data set used is

taken from a database corresponding to the

FOREGSEuroGeoSurveys Geochemical Baseline available

at http://www.gtk.fi/publ/foregsatlas.

The data correspond to samples of contents of minerals

taken in the subsoil of different countries of the Union

European. The list of variables is shown in Table 5. These

data can be used to measure subsurface contamination and

obtained from the file C_XRF_data_2v6_8Fe-

b06.xls, available at http://weppi.gtk.fi/publ/foregsatlas/

ForegsData.php.

For the analysis, the columns corresponding to the

coordinates of their geographical location and the country

to which they correspond have been eliminated. The data

matrix consists of 19 columns or variables (the elements

and chemical compounds) and 788 rows (locations where

the samples are collected). The variables represent the

content of mineral found in the soil at each sampled

location. Since the units of measurement differ, depending

on the variable, we standardize the variables for the

analysis.

We proceed as follows. First, we apply a usual PCA to

the data set. Second, we select Q, the number of principal

components to consider using the Broken-Stick method.

Third, we calculate the Q disjoint principal components

with the CBPSO-PCA algorithm. And fourth, we take into

account the variables that make up the first disjoint prin-

cipal component. The results of the PCA of the data matrix

are reported in Table 6.

Table 5 List of variables under study

Variable Chemical compound/element Measurement units

SIO2_SI Silicon oxide kg

TIO2_SI Titanium oxide kg

AL2O3_SI Aluminum oxide kg

FE2O3_SI Iron oxide kg

MNO_SI Manganese oxide kg

MGO_SI Magnesium oxide kg

CAO_SI Calcium oxide kg

NA2O_SI Sodium oxide kg

K2O_SI Potassium oxide kg

P2O5_SI Phosphorus oxide kg

BA_SI Barium mg

CR_SI Chrome mg

RB_SI Rubidium mg

SN_SI Tin mg

SR_SI Strontium mg

W_SI Tungsten mg

Y_SI Yttrium mg

ZN_SI Zinc mg

ZR_SI Zirconium mg
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Figure 2 shows a graph corresponding to the Broken-

tick method (black line) superimposed on a gray curve that

indicates the explained variance percentage by considering

the principal components indicated on the x-axis. The point

cutting is close to the third principal component. For this

reason, we take into account three principal components to

retain (that is, Q ¼ 3). These first three principal compo-

nents explain 51.66 % of the total variability. Therefore,

we use Q ¼ 3 to apply the CBPSO-PCA algorithm, whose

results are reported in Tables 7 and 8. The three disjoint

components explain 46.78 % of the total variability. If we

consider the first three principal components suggested by

the Broken-Stick method, which explain 51.96 % of the

variability, we have that the disjoint components explain

90.01 % of the variance by using the usual first three

principal components. This low percentage explained by

the disjoint components is due to the fact that they must

satisfy a set of additional restrictions to the usual principal

components; see Sect. 2. In Fig. 3, the results of Table 7 are

represented, where we clearly appreciate how the original

variables are distributed in the disjoint principal compo-

nents, their weight and their sign.

The convergence analysis shows that the CBPSO-PCA

algorithm takes six iterations to converge to the value

0.5322, whereas he CBPSO algorithm converges in just 5

Table 6 Results of the PCA of the environmental data matrix

#PC Eigenvalue % of EV % of AEV

1 5.095 26.815 26.815

2 2.941 15.477 42.292

3 1.838 9.674 51.966

4 1.488 7.833 59.799

5 1.301 6.845 66.644

6 1.025 5.397 72.041

7 0.904 4.759 76.800

8 0.797 4.193 80.993

9 0.722 3.801 84.794

10 0.650 3.423 88.217

11 0.489 2.572 90.789

12 0.412 2.166 92.955

13 0.387 2.039 94.994

14 0.325 1.708 96.703

15 0.267 1.408 98.110

16 0.125 0.657 98.768

17 0.105 0.554 99.322

18 0.079 0.417 99.739

19 0.050 0.262 100.000

where PC principal component, EV explained variance, and AEV
accumulated explained variance

Fig. 2 Broken-Stick plot with environmental data (in black) and %

of explained variance by the indicated principal component (in gray)

Table 7 Results of the CBPSO-PCA for the indicated variable and

component with environmental data

# disjoint principal component

Variable 1 2 3

SIO2_SI 0 0 0.57973524

TIO2_SI 0.44020387 0 0

AL2O3_SI 0 �0.46399195 0

FE2O3_SI 0.49562162 0 0

MNO_SI 0.44137161 0 0

MGO_SI 0 0 �0.34305531

CAO_SI 0 0 �0.55125267

NA2O_SI 0 �0.28220297 0

K2O_SI 0 �0.49633089 0

P2O5_SI 0.27387266 0 0

BA_SI 0 �0.43570013 0

CR_SI 0.18954184 0 0

RB_SI 0 �0.47588306 0

SN_SI 0 �0.15767984 0

SR_SI 0 0 �0.34117431

W_SI 0 �0.13253821 0

Y_SI 0.42150555 0 0

ZN_SI 0.27779775 0 0

ZR_SI 0 0 0.35488125

% of EV 17.34% 16.86% 12.58%

where EV denotes the explained variance

Table 8 Results of the CBPSO-PCA of the environmental data matrix

#PC % of EV % of AEV

1 17.34 17.34

2 16.86 34.20

3 12.58 46.78

where PC principal component, EV explained variance, and AEV
accumulated explained variance
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iterations, reaching its best fit that differs by 0.051 from the

fit achieved when using the usual PCA algorithm, indi-

cating a lost in fit but a gain in interpretation; see Fig. 4.

The variables to select, according to our proposal, are the

variables that appear in the first disjoint principal compo-

nent, which is the one with the largest percentage of

explained variance. There are seven variables with non-

zero loadings, which are:

• TIO2_SI,

• FE2O3_SI,

• MNO_SI,

• P2O5_SI,

• CR_SI,

• Y_SI,

• ZN_SI.

The ratio between the number of original variables and the

number of selected variables is 19=7 ¼ 2:71, which satis-

fies the recommendation given in Grossman et al. (1991).

5 Conclusions, discussion and future
research

This paper reported the following findings:

(i) A new methodology for calculating principal

components based on an intelligent search is

proposed, which uses binary optimization with

constrains by means of particle swarm.

(ii) A stochastic optimization method was used to find

solutions in cases of high computational

complexity.

(iii) A numerical evaluation of the proposed method-

ology was considered by means of Monte Carlo

simulations.

(iv) By using a case study with real-world environ-

mental data, we have illustrated the new method-

ology for DPCA.

The new methodology consists of a PCA with constraints,

allowing us to determine components that are linear com-

binations of disjoint subsets of the original variables.

Because the components are of norm one and disjoint, the

matrix of factorial loads is orthogonal, enabling us to

interpret it as a rotation of the space of individuals. This

permits us to preserve the original variability in the rotated

space, and to use, in a natural way, the variance of the new

variables as an indicator of the variance explained by the

disjoint components. By replacing the local search with the

intelligent search, the set of feasible solutions is better

explored, enabling us high-quality solutions to be reached

regardless of the size of the matrix. In addition, the parti-

cles have shared memory enabling them to ignore routes

that lead to solutions that represent local optima, something

which is seen in the percentage of success in obtaining the

best solution for the empirical illustration with simulated

data. The numerical evaluations of the proposed method-

ology with simulated and real data sets allowed us to show

its good performance and its potential applications. We

obtained a new technique which can be a useful knowledge

addition to the tool-kit of diverse practitioners, environ-

mental engineers, applied statisticians, and data scientists.

Some open problems that arose from this study are the

following:

(i) DPCA seeks the global optimum through succes-

sive local optimal choices, that is, it is an

algorithm of the type known as greedy algorithms.

For small instances, a greedy algorithm usually

provides the optimal solution, but in larger

instances, it is usually trapped in a local optimum.

In general, greedy algorithms provide a good

solution, but the quality of this solution usually

degrades as the size of the data set increases. This

Fig. 3 Disjoint components obtained by the CBPSO-PCA algorithm

for environmental data

Fig. 4 Convergence of the CBPSO-PCA algorithm with environ-

mental data according to the method indicated
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is shown in the two empirical illustrations with

simulated data in Sect. 4. When the number of

individuals is small, as in the first simulation (100

individuals and 8 variables), both the DPCA

algorithm (that uses alternating least squares)

and the proposed algorithm (CBPSO-PCA) reach

the best solution at 100% of the simulated cases.

Note that by increasing the size of the X matrix

(200 individuals and 200 variables), the DPCA

algorithm achieves the best solution in 93% of the

cases, while the CBPSO-PCA algorithm does so in

100% of the cases. It should be mentioned that the

fit obtained with the usual PCA is slightly better

than the fit obtained with the DPCA. However,

what is lost in fit is compensated by obtaining a

factor structure that is easier to interpret. This is an

aspect to be improved for the new methodology.

(ii) Regression modeling, errors-in-variables, func-

tional data analysis and PLS regression, based on

the proposed methodology, are also of interest

(Huerta et al. 2019; Martinez et al. 2019; Carrasco

et al. 2020).

(iii) In the present work, the global topology has been

used (all particles communicate with all). An open

area of research on this topic is to determine other

topologies to determine if there are any that

accelerate the convergence of the algorithm.

(iv) Inertia decreases in a linear way. Then, it is

possible to test our methodology with another type

of variation of the coefficients of inertia, such as

slowed exponential decrease. In addition, we can

try using other functions instead of the sigmoidal

function, for example, we can use the probit

function.

(v) Other applications of the algorithm developed in

the context of multivariate analysis are: discrim-

inant analysis, correspondence analysis, and clus-

ter analysis, as well as the already mentioned

functional data analysis and PLS.

(vi) There is also a promising field of applications in

the so-called statistical learning; for example, for

image compression.

(vii) Another frequently studied problem in environ-

mental sciences is to identify the spatio-temporal

variability in environmental fields by using the

PCA. A good example is given by Barnston and

Livezey (1987) for atmospheric circulation pat-

terns. Nevertheless, Hsieh (2004) stated that the

drawback of linear methods is that only linear

structures can be correctly extracted from the data,

but some environmental data can be highly non-

linear. An impact of nonlinearity in time series of

environmental data on the performance of the

method proposed in the present study is of interest

and deserves further research.

Therefore, the new methodology proposed in this study

promotes new challenges and opens issues to be explored

from the theoretical and numerical perspectives. Research

on these and other issues are in progress and their findings

will be reported in future articles.
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