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Abstract 

Distributed generation, namely renewables-based technologies, have 
emerged as a crucial component in the transition to mitigate the effects of climate 
change, providing a decentralized approach to electricity production. However, 
the volatile behavior of distributed generation has created new challenges in 
maintaining system balance and reliability. In this context, the demand response 
concept and corresponding programs arise giving the local energy communities 
prominence.  

In demand response concept, it is expected an empowerment of the 
consumer in the electricity sector. This has a significant impact on grid operations 
and brings complex interactions due to the volatile behavior, privacy concerns, 
and lack of consumer knowledge in the energy market context. For this, 
aggregators play a crucial role addressing these challenges. It is crucial to develop 
tools that allow the aggregators helping consumers to make informed decisions, 
maximize the benefits of their flexibility resources, and contribute to the overall 
success of grid operations. This thesis, through innovative solutions and 
resorting to artificial intelligence models, addresses the integration of 
renewables,  promoting fair participation among all demand response providers. 
The thesis ultimately results in an innovative decision support system - 
MAESTRO, the Machine learning Assisted Energy System management Tool for 
Renewable integration using demand respOnse. MAESTRO is composed by a set 
of diversified models that together contribute for handling the complexity of 
managing energy communities with distributed generation resources, demand 
response providers, energy storage systems and electric vehicles.  

This PhD thesis comprises a comprehensive analysis of state-of-the-art 
techniques, system design and development, experimental results, and key 
findings. In this research were published twenty-six scientific papers, in  both 
international journals and conference proceedings. Contributions to international 
projects and Portuguese projects was accomplished. 

Keywords: Aggregation; Decision-support models; Demand Response; 
Machine Learning; Renewables Integration; 
Trustworthiness; Uncertainty. 
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Resumen  

La generación distribuida, en particular las tecnologías basadas en energías 
renovables, se ha convertido en un componente crucial en la transición para 
mitigar los efectos del cambio climático, al proporcionar un enfoque 
descentralizado para la producción de electricidad. Sin embargo, el 
comportamiento volátil de la generación distribuida ha generado nuevos 
desafíos para mantener el equilibrio y la confiabilidad del sistema. En este 
contexto, surge el concepto de respuesta de la demanda y los programas 
correspondientes, otorgando prominencia a las comunidades energéticas locales. 

En el concepto de "respuesta a la demanda" (DR por sus siglas en inglés), se 
espera un empoderamiento del consumidor en el sector eléctrico. Esto tiene un 
impacto significativo en la operación de la red y genera interacciones complejas 
debido al comportamiento volátil, las preocupaciones de privacidad y la falta de 
conocimiento del consumidor en el contexto del mercado energético. Para esto, 
los agregadores desempeñan un papel crucial al abordar estos desafíos. Es 
fundamental desarrollar herramientas que permitan a los agregadores ayudar a 
los consumidores a tomar decisiones informadas, maximizar los beneficios de sus 
recursos de flexibilidad y contribuir al éxito general de las operaciones de la red. 

Esta tesis, a través de soluciones innovadoras y utilizando modelos de 
inteligencia artificial, aborda la integración de energías renovables, promoviendo 
una participación justa entre todos los proveedores de respuesta de la demanda. 
La tesis resulta en última instancia en un sistema de apoyo a la toma de decisiones 
innovador: MAESTRO, Machine learning Assisted Energy System management Tool 
for Renewable integration using demand respOnse. MAESTRO está compuesto por 
un conjunto de modelos diversificados que contribuyen juntos para manejar la 
complejidad de la gestión de comunidades energéticas con recursos de 
generación distribuida, proveedores de respuesta de la demanda, sistemas de 
almacenamiento de energía y vehículos eléctricos. 

Esta tesis de doctorado comprende un análisis exhaustivo de las técnicas de 
vanguardia, el diseño y desarrollo del sistema, los resultados experimentales y 
los hallazgos clave. En esta investigación se publicaron veintiséis artículos 
científicos, tanto en revistas internacionales como en actas de conferencias. Se 
lograron contribuciones a proyectos internacionales y proyectos portugueses. 
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Resumo  

A produção distribuída, nomeadamente as tecnologias baseadas em 
energias renováveis, emergiram como um componente crucial na transição para 
mitigar os efeitos das alterações climáticas, proporcionando uma abordagem 
descentralizada à produção de eletricidade. No entanto, o comportamento volátil 
da geração distribuída criou desafios na manutenção do equilíbrio e da 
fiabilidade do sistema. Nesse contexto, surge o conceito de resposta à procura e 
os programas correspondentes, conferindo proeminência às comunidades 
energéticas locais. 

No conceito de resposta à procura, espera-se um empoderamento do 
consumidor no setor elétrico. Isso tem um impacto significativo nas operações da 
rede e gera interações complexas devido ao comportamento volátil, 
preocupações com a privacidade e falta de conhecimento dos consumidores no 
contexto do mercado energético. Para isso, os agregadores desempenham um 
papel crucial ao lidar com esses desafios. É fundamental desenvolver ferramentas 
que permitam aos agregadores ajudar os consumidores a tomar decisões 
informadas, maximizar os benefícios de seus recursos de flexibilidade e 
contribuir para o sucesso global das operações da rede. 

Esta tese de doutoramento, através de soluções inovadoras e recorrendo a 
modelos de inteligência artificial, aborda a integração de energias renováveis, 
promovendo uma participação justa entre todos os fornecedores de resposta à 
procura. A tese resulta, em última instância, num sistema inovador de apoio à 
tomada de decisões - MAESTRO, Machine learning Assisted Energy System 
management Tool for Renewable integration using demand respOnse. A ferramenta 
MAESTRO é composta por um conjunto de modelos diversificados que, em 
conjunto, contribuem para lidar com a complexidade da gestão de comunidades 
energéticas com recursos de geração distribuída, fornecedores de resposta à 
procura, sistemas de armazenamento de energia e veículos elétricos. 

Esta tese de doutoramento abrange uma análise abrangente de técnicas de 
ponta, design e desenvolvimento do sistema, resultados experimentais e 
descobertas-chave. Nesta pesquisa, foram publicados vinte e seis artigos 
científicos, tanto em revistas internacionais como em atas de conferências. Foram 
realizadas contribuições para projetos internacionais e projetos portugueses. 
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1. Introduction 

The current chapter is divided into four sub-sections. Chapter 1.1 presents 
the motivation behind the PhD work development. Moving on to Chapter 1.2, 
the objectives of the thesis are stated. The key accomplishments of the research 
and the related publications are discussed in Chapter 1.3. Finally, the 
organization of the Ph.D. thesis document are outlined in the last chapter. 

1.1 Motivation 
The energy system is experiencing significant changes to meet climate goals, 

create sustainable policies, and ensure secure, reliable, and affordable energy 
supply. To achieve a low-carbon future, the implementation of Distributed 
Generation (DG) and Demand Response (DR) are present as key in the 
literature [1]. However, these resources are connected to lower voltage levels. To 
avoid costly implementations and network reconstruction, it is essential to 
change the distribution network management, to include all of the associated 
concepts and new volatile resources [2]. 

 The prior paradigm where the generation follows the demand needs no 
longer applies on the smart grid concept and the demand-side must provide 
flexibility throughout DR events [3]. This new chapter of the energy sector 
predicts a consumer-centric approach, by empowering the small players [4]. 
Therefore, in the context of the present thesis, an active player defined as any 
participant that has availability to contribute in a DR event. However, the 
involvement of active players as an individual remains difficult, uncertain, and 
at times insufficient to have a significant impact on market transactions [5].  

The aggregator is then created to be the entity capable of collecting all the 
contributions from active players who wish to participate on the power and 
energy market – both consumers and prosumers [6]. Nevertheless, there is a lack 
of business models that support the complete and stable introduction of DG and 
DR resource – which bring to the equation a complicated set of challenges at 
technical and financial level [7]. In this way, the importance of creating business 
models considering these questions become urgent. 

The United States produced some successful cases of DR, but the potential 
of small and medium-sized consumers is still mostly unexplored [8]. In the 
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European Union (EU), DR programs have gained political support through the 
energy efficiency directives (such as Directive (EU) 2012/27 latter amended by 
Directive (EU) 2019/944), requiring national regulators and system operators to 
enable consumer access to markets through DR [9]. However, the member states 
pace is still slow on incorporating all the elements for the successful operation of 
DR in their markets [10]. Many justify this fact resorting to regulation barriers: 
either it was not allowed by the government, or the rules were not clearly defined 
by the proper entities, or even the existing business cases did not have the 
suitable characteristics [11].  

Besides the regulation obstacles, the incentives for active players to 
participate in such programs are scarce, and the current compensation for event 
participation is the same for all types of consumers [12]. In fact, every player has 
different characteristics that can influence their consumption profile and should 
be consider as such. In this way, understanding each consumer will be essential 
for a successful market management [11]. Machine learning algorithms can be an 
useful tool for DR successful implementation [13]. For instance, by creating an 
active player profile using historical data or in the case of remuneration, 
clustering and classification methods can be applied to group consumers with 
similar characteristics, enabling fair incentivization and decision-making [14]. 

1.2 Objectives 
The main goal from this PhD is to establish a framework, supported by 

several methodologies, for aggregating DG and DR resources in smart grids. 
Therefore, the PhD research addresses the identified gaps in the existing 
literature, answering to the following research question that tackles the 
previously unexplored aspects of the topic: 

Can AI support decisions on DR concept, ensuring renewables integration and fair 
players participation? 

By analyzing the behaviors from these smart grid resources, the idea is to 
further incorporate them in the power and energy market, enabling the intensive 
renewable integration resorting to machine learning algorithms and aggregation. 
With this the following intermediate objectives to achieve this goal were defined 
and accomplished: 

• Identify opportunities for innovative DR models in response to the evolving 
state-of-the-art; 
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• Explore the existing research work on DR programs, player modeling, 
machine learning, and resource management; 

• Develop business models suitable for effective DR use by considering 
appliance management, optimal consumer profiling, and interaction with 
other aggregated resources such as renewable energy, electric vehicles and 
energy storage systems; 

• Increase the economic value of DR in the energy market for all involved 
parties, including the aggregator and DR resources, by adjusting 
remuneration schemes and tariffs; 

• Explore optimization models with distinct objectives considering the players 
perspective: 
o Minimizing operating costs and maximizing profits from the aggregator 

perspective 
o Decrease the small consumers discomfort and enhance DR performance, 

considering social welfare and fairness for each player involved; 
• Validate the models developed in a realistic manner through a diverse range 

of case studies based on real-world data; 
• Contribute to the United Nations 2030 agenda following goals by improving 

energy sustainability and involving consumers as key players: 
o Goal 7 – “Ensure access to affordable, reliable, sustainable and modern 

energy for all”; 
o Goal 11 – “Make cities and human settlements inclusive, safe, resilient 

and sustainable”; 
o Goal 12 – “Ensure sustainable consumption and production patterns”; 

• Refine and enrich the existing literature by providing and exploring the 
following key contributions: 

o Renewable integration; 
o Energy market; 
o Resource/player profiling/modeling; 
o DR program design; 
o Contextual approaching; 
o Aggregation; 
o Machine learning use; 
o DR gathering; 
o Resource scheduling; 
o DR deployment; 
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o Remuneration / assessment; 
o Real-time simulation; 
o Case studies; 

 Chapter 3 will provide a detailed description of each of the key 
contributions listed above. Additionally, it will explore the clear relationship 
between each of the published papers used in this thesis and each of the key 
contributions. 

1.3 Contributions and Publications 
The successful DR program implementation to enable the renewable 

integration in the power and energy system is the primary focus of both the thesis 
research and work. In this way, a decision support system was created and 
developed – MAESTRO, the Machine learning Assisted Energy System 
management Tool for Renewable integration using demand respOnse, to answer 
the gaps found on the literature throughout the research question formulated on 
sub-section 1.2.  

Within the scope of this PhD thesis, different contributions to the objectives 
and results of research projects were achieved. Through the synergy of the 
combined expertise and resources, under the supervision of Research Group on 
Intelligent Engineering and Computing for Advanced Innovation and 
Development (GECAD), the findings and outcomes influenced several projects 
under Fundação para a Ciência e a Tecnologia (FCT) and H2020 “European 
Commission Research and Innovation” program. These include: 

• Contextual  LOad flexibility Remuneration Strategies (COLORS), reference 
no. PTDC/EEI-EEE/28967/2017. Thesis contributions: load flexibility, 
contextual DR, remuneration; 

• Smart Distribution Grid: a Market Driven Approach for the Next Generation 
of Advanced Operation Models and Services (DOMINOES), H2020, 
reference no. 771066. Thesis contributions: DR enabling services, smart 
metering, aggregation; 

• New Markets Design & Models for 100% Renewable Power Systems 
(TradeRES), reference no. 864276. Thesis contributions: spatial flexibility, 
electricity markets; 

Twenty-six scientific papers were published within the timeline of this 
thesis, in both international journals and conference proceedings, where another 
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seven are being developed or in the submission process. It is worth to highlight 
that two of the published articles are literature reviews [11], [15]. Five of the most 
relevant ones were selected as “Core Publications” ([11], [16]–[19]) and other 
eight were added as “Other Publications” ([20]–[27]) to support the content of 
this thesis. From this list, the PhD candidate is first author in twelve out of 
thirteen publications and five of them were published on international journal 
indexed at Scientific Journal Rankings. 

Full versions of the mentioned publications are available in Appendix A 
(“Core Publications”) and Appendix B (“Other Publications”). This work will be 
further discussed in Chapter 3.1., exploring each key contribution mentioned 
above according to Table 3.1. 

1.4 Thesis Outline 
This thesis is organized into four main chapters. The current introductory 

chapter discussed the motivations, objectives and contributions within the thesis 
scope. After this, Chapter 2 is a review on the current state-of-the-art. By focusing 
on the recent trends of renewable integration, resorting to DR programs, the 
associated players and the business models developed considering machine 
learning algorithms and aggregation. Chapter 3 details the list of key 
contributions resulted from the work developed on this PhD thesis and 
demonstrates how these contributions were essential to accomplish and answer 
the research question proposed. With this, both the relation and the role of the 
published papers is discussed. Finally, Chapter 4 gathers the main outcomes and 
findings achieved, also providing several paths for future research. 
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2. Background and related literature 

This chapter explores how the DR topic can be useful for the renewable 
energy integration in the sub-section 2.1. After the DR concept is further studied 
in the sub-section 2.2., followed by a discussion of DR mechanisms and 
programs. Then, in the sub-section 2.3, machine learning and clustering (for 
aggregation) algorithms used for DR are explored, showing the potential to 
optimize the effectiveness of DR programs in the published literature. Finally, in 
the sub-section 2.4, the importance of the aggregator is highlighted, namely the 
tools used for DR events, referring the need for effective strategies to manage risk 
and improve DR outcomes. 

2.1 Renewables integration using demand response 
concept 

 The growing concern, regarding climate change increases the importance of 
DG technologies in the power and energy system, namely the renewable-based 
resources such as wind and solar [28]. Yet, since this resources main source has a 
volatile behavior, the management complexity increases and, therefore, the 
current paradigm where the generation follows the demand needs no longer 
applies [11]. The roles must be reversed, and the demand side should provide 
flexibility to promote the widespread use of these energy resources in order to 
reduce the reliance on fossil fuels [29]. It is crucial to place consumers at the center 
of the business model and consider their flexibility as fundamental for achieving 
system balance [30].  With this, solutions that deal with this problem and include 
DR programs should be developed for local grid operators and small consumers 
actively participate in local electricity markets [31].  

 In the past, the electricity load from consumers in power and energy 
systems was viewed as inflexible by system operators [32]. However, each 
consumer has a set of appliances that can present a flexible behavior, as they do 
not have a fixed schedule. This assumption has led to the emergence of the 
concept of DR, which involves consumers adjusting their electricity usage based 
on signals. This signals might result in the usage of appliances at different times 
(throughout load shifting) or not at all [33]. It is believed that this bottom-up 
approach can effectively tap into the potential of DG technologies without 
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compromising the reliability and security of the system [34]. Therefore, for future 
approaches, the demand side must be empowered. Active players should 
respond to signals (direct or indirectly) from network operators, aggregators or 
utility companies to achieve system balance by participating in DR events [35]. It 
is expected that this approach offers numerous benefits including more and 
better choices for active players, new opportunities and challenges, competitive 
pricing, effective investments, improved service standards, supply security, 
sustainability, and decarbonization of the electrical system [36]. 

 Several designations of DR programs have been proposed in recent years. 
The definition given on [11] is commonly used and defines this concept as a 
“…tariff or program … to motivate changes in electric use by end-use customers” 
where “changes in the price of electricity over time” occur offering “incentive 
payments”, for instance “high market prices” to increase “grid reliability”. The 
definition published in Directive EU 2019/944 [9] is similar and says that DR is a 
“… change of electricity load by final customers” triggered by “market signals… 
time-variable electricity prices or incentive payments” where the “final 
customer's bid to sell demand reduction or increase… alone or through 
aggregation”. 

 Prior to the emergence of smart grids and DR, active players had low or no 
direct access to information about market transactions [37]. A consumer-centric 
approach offers numerous advantages, particularly in flexibility markets where 
Transmission System Operator (TSO), Distribution System Operator (DSO), 
Balance Responsible Party (BRP), aggregators, and retailers are the main 
players [38]. The TSO is responsible for ensuring service and stability in the 
transmission system, while the DSO is responsible for operating the distribution 
system. Collaboration between TSOs and DSOs is essential to unlocking the 
potential of flexibility [39]. Retailers are commercial entities that sell electricity to 
consumers, while aggregators gather flexibility through active players and those 
using renewable-based energy sources [9]. 

 It is important, for the definition of DR, to also consider time range for the 
flexibility [40]. DR programs can operate on different timescales, as depicted in 
Figure 2.1, ranging from several years (on the left) to real-time (on the right). 
Programs with a year-long timescale are typically used to improve long-term 
planning. Shorter timescales are more focused on incentive-based DR programs, 
such as those that use Direct Load Control (DLC).  
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Figure 2.1. Power and Energy System and Demand Response implementation timescales [11]. 

 The implementation timeline for DR is illustrated in Figure 2.2. The DR 
implementation timeline involves several phases that the aggregator must 
consider. During the ramp period, active players must reach the contractual DR 
event baseline. The first phase begins when the aggregator is notified of the DR 
event and continues until the announcement deadline (δ). During this period, the 
aggregator and DR program manager exchange information and setpoints 
regarding the event, assessment duration, and ramp period. The next phase is the 
ramp period. However, the aggregator faces a challenging task due to the 
variable duration of the advance notification to players [41]. 

 Communication between the aggregator and active players occurs in 
different layers, with several iterations, until reaching a goal point (equal to or 
above the reduction baseline). The Deployment period is when the aggregator 
initiates the event and collects information regarding DR amounts. In TDR2, two 
intermediate periods are considered: the activation notification period (αDR2) 
and actual response period (βDR2). The aggregator notifies the active players of 
the difference between actual and goal values in αDR2, and those who agree 
should start the load reduction process demonstrated in βDR2. However, non-
response is always a possibility since the participation is voluntary [11].  
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Figure 2.2. Demand Response implementation timeline. Adapted from [42].  

 Once the forecasted reduction baseline is achieved, the information must be 
returned to the DR program manager. In the case of insufficient reduction in the 
actual period, the aggregator can implement a new TDRN until the reduction 
deadline moment (θ). The DR program manager defines a margin of forecast 
error (∆E), and the sustained period can begin if the available reduction capacity 
exceeds the reduction baseline (σ). The actual DR event starts at this point, and 
active players that agree to participate must maintain their committed level of 
reduction to be further remunerated. 

 With this, the success of DR programs depends heavily on the performance 
and response of active players to the given signals. In this way, gather correct 
and clear information on active players’ behavior is crucial to provide 
appropriate signals and remuneration that meet their goals. By accomplishing 
this target, it  is  expected to reduce response uncertainty and maintaining system 
reliability and security [43].  

 Although various approaches in the literature encourage consumer 
participation, most of them are profit driven from the grid or aggregator 
perspective [44]. Behaviors can change according to the type and goals of active 
player participating in DR events. Residential consumers’ response is highly 
influenced by the level of discomfort they experience during a DR event, 
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sometimes even more important than their profit [45]. While industrial 
consumers aim to maximize their revenues, while managing any possible 
discomfort [46]. Therefore, different players result in different behaviors which 
require different approaches as mentioned on sub-section 1.1. With this, one can 
conclude that a business model to successfully integrate renewable-based 
resources resorting to DR must consider various approaches and contexts, 
according to the current portfolio.  

2.2 Demand response mechanisms and programs 
 DR concept has a wide program portfolio and can be achieved through 
various mechanisms, each with its own unique characteristics and 
requirements [47]. Some of the most common DR mechanisms include price-
based and incentive-based [48]. In this chapter, these mechanisms and programs 
will be explored. Also, the discussion some of the emerging DR programs, such 
as Electric Vehicle (EV) demand response and the Demand Response Exchange 
(DRX), which have the potential to further increase the flexibility and 
responsiveness of the demand side of the power grid [49]. 

 In incentive-based DR programs, active players agree to participate based 
on rules outlined in a contract that includes penalties for non-compliance [50]. 
Price-based programs, on the other hand, rely on changes in energy prices to 
encourage active player response, which can result in more unpredictable 
behavior. In this way, active players have the freedom to choose whether to 
disconnect their appliances in response to these changes or not [51]. DRX is a new 
DR scheduling program that relies on bidding entities rather than prices or 
incentives to motivate changes in load. This implies careful assessment of load 
profile attributes before submitting a bid to avoid negative outcomes such as 
reduced load satisfaction, higher electricity bills, and system stress [52].  

 On the other hand, EVs popularity is increasing. These resources have been 
identified as a flexible and can play a critical role in balancing supply and 
demand in the future smart grid [53]. However, security and privacy concerns of 
EV owners have limited the popularity of EV-based energy management. Some 
works only refer to these resources without making them the focus of the study. 
Furthermore, vehicle owners are hesitant to grant authority to control EVs to an 
aggregator [54]. 
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 Before fully commit to a DR program, it is important to provide the proper 
knowledge to the active players. Both interested parties should learn, use proper 
tools and make clear statements for building a relationship based on trust so 
issues, such as privacy and response uncertainty, be avoided. 

2.3 Machine learning for demand response 
The constant evolving state-of-art from power and energy systems is 

adopting and employing intelligent systems for DR [55]. Not only due to their 
ability to automate and optimize the process but also because these systems can 
make use of various techniques such as machine learning, artificial intelligence, 
and optimization algorithms to provide real-time monitoring and control of 
energy consumption [56]. In fact, the goal is to enable automated decision-
making and improve the overall efficiency of DR. In this chapter, current research 
on intelligent algorithms for DR and their potential benefits will be explored 
where machine learning will have a special focus. 

 Starting with the Autoregressive Integrated Moving Average (ARIMA), due 
to its simplicity and ease to use,  is commonly used for time series forecasting on 
the energy sector and it is an extension of the Autoregressive Moving Average 
(ARMA) model. Hamed Mortaji et al. [57] study showed that utilizing the 
ARIMA time series prediction model and smart load control could significantly 
decrease power outages for consumers. Model-based Predictive Control (MPC) 
algorithm has gained significant attention among researchers in this field due to 
its prediction capabilities, fast processing speed, and suitability for multivariable 
control operations. For example, in their study, Farzad Arasteh and Gholam H. 
Riahy [58] developed a real-time algorithm to coordinate DR programs and 
energy storage systems operation in wind-integrated power systems based on 
market mechanisms. Homa Rashidizadeh-Kermani et al. [59] utilized the 
Conditional Value at Risk (CVaR) as a risk measure embedded in a stochastic 
program for decision making of DR aggregators, considering various sources of 
uncertainty. The aim was to control different levels of risk associated with profit 
volatility. 

 Probabilistic models utilize probability distributions and random variables 
to develop a model. A probabilistic model offers a probability distribution as a 
solution, in contrast to a deterministic model that offers only a single possible 
solution. For example, Zvi Baum et al. [60] employed MCS to develop a 
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framework that estimates the performance of dynamic-active DR, which models 
the behavior of the system over time in response to both internal and external 
influences while reflecting the stochastic characteristics of supply and demand. 
The Markov Chain (MC) is a probabilistic model commonly used for modeling 
random processes. Yue Yang [61] applied an MC model at the appliance level to 
capture correlations in power consumption. 

 Supervised and unsupervised learning are two of the main topics 
approached within the machine learning concept. The first one includes well 
know methods such as Decision Trees (DT), Random Forests (RF) or Artificial 
Neural Networks (ANN). DT operate by recursively partitioning the input data 
into smaller subsets based on the values of specific features. This algorithm is 
also known for its easy interpretability but can be prone to overfitting. Somayeh 
Dehghan-Dehnavi et al. [62] used DT in their study for industrial load 
classification in DR programs. RF, on the other hand, are an extension of decision 
trees that generate a collection of individual trees and aggregate their predictions 
to arrive at a final output. Other difference from the DT is that RF are capable of 
handling both categorical and continuous features. Guo-Feng Fan et al. [63] 
resorted to RF for short-term load forecasting. Regarding ANN, this algorithm 
has been a fundamental in Artificial Intelligence (AI) and aims to mimic the 
information analysis and processing abilities of the human brain [64]. In the 
context of DR, Renzhi Lu et al. [65] utilized both ANN and reinforcement 
learning techniques to design an energy management approach for different 
appliances within a Home Energy Management System (HEMS), where ANN 
was applied for price forecasting.  

 Unsupervised learning algorithms are widely used methods in power 
systems to identify patterns in electrical loads like the clustering methods, as 
demonstrated in a study by Mansour Charwand et al. [66]. The application of 
fuzzy theory can be beneficial for dealing with imprecise, subjective, and 
ambiguous judgments in research. For instance, Skrikanth Reddy K et al. [67] 
used the Fuzzy Inference System (FIS) and compared it with non-fuzzy 
approaches, demonstrating the superior performance of FIS for processing load 
profiles and behavior for designing DR bids for market participation. 
Furthermore, k-means is one of the most used methods of clustering, widely used 
for in the energy sector for load profiling. For instance, Maria Alejandra Zuñiga 
Alvarez et al. [68] created an adaptive clustering process, resorting to k-means, 
that enables the identification of clients who contribute the most to power 
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consumption during peak periods. However, understanding active players is a 
complex task that goes beyond just predicting their load reduction, especially 
since prosumers are still evolving. In their study Kang & Lee [88], the authors 
proposed a data-driven approach that employs the k-nearest neighbor method 
(kNN) and a weighted ensemble model to address the load prediction problem. 
Since each consumer may only receive a request for load curtailment a few times 
a year, the kNN method, which requires small amounts of data, is an appropriate 
choice. However, due to differences between consumers, a single prediction 
method may not be sufficient. To address this, the authors used a weighted 
ensemble model that applies different models for different consumers. 

 Efforts are being made to add “intelligence” to the power and energy sector 
business models, however, the primary focus is on topics like time series 
forecasting or load profiling. Finding ways to reduce the response uncertainty 
from DR events is still unexplored when resorting to machine learning 
algorithms. 

2.4 Aggregator tools to enhance performance from 
demand response participants 

 Like as being reinforced in this chapter, the role of consumers in the energy 
system is evolving, and they are becoming more active players with a significant 
impact on system reliability [69]. DR participants have control over their 
appliances. As such, researchers must consider the availability of these active 
players to enhance their performance [81]. Performance is defined within the 
scope of this thesis as the level of success of players in participating in DR events. 
In other words, when an aggregator sends a signal to change a consumer's load 
consumption, it is expected that the consumer will comply and participate in the 
event and be viewed as a trustworthy player [70]. While participation is 
voluntary, some DR programs require agreements under certain circumstances. 
To be beneficial for both parties, tools must be developed to aid the two 
perspectives. Developing proper aggregator’s tools are crucial for improving the 
performance of DR participants [77]. By enabling scalability, simplifying 
participation, enhance revenue potential, offer technical capabilities, ensure grid 
integration and reliability, and facilitate energy market engagement. With their 
expertise and coordination, aggregators maximize the advantages of DR 
programs for both individual participants and the electricity grid as a whole [78]. 
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However, there is a need to develop tools capable of address uncertainties and 
enhance performance of demand side players. This chapter will focus on these 
primary themes. 

 AI models can be subjected to gamification interactions between 
participants. The prevailing assumption in the literature is that DR participants 
are rational and make optimal decisions. To encourage participation, one 
possible approach is game theory, which is the formal study of the 
interdependence between adaptive agents and the emergence of cooperation and 
competition dynamics [82]. In fact, the literature has been considering game 
theory to be a crucial branch of mathematics for exploring conflicts, 
collaborations, and strategic interactions between rational players in a single 
system [71]. In studies like [72], [73], [74], [75] and [76], game theory is utilized to 
handle DR uncertainty. In this context, agents refer to entities that can make 
informed choices and autonomously act to affect the environment's state [83]. 
Interdependence between agents means that the values associated with a 
particular property of one agent become correlated with those of another. In 
other words, an agent's goal's achievement becomes correlated with others' goals. 
Game theory approaches in DR can be categorized into two types: those played 
between consumers and those played between the utility and consumers [84]. 
The interdependence between agents can also be defined at micro and macro 
levels. Looking at the macro-level, all agents need to collaborate to achieve a 
successful outcome. At the micro-level, active players act in their self-interest by 
choosing the most competitive aggregator to minimize their payments, assuming 
that they have perfect information about the price offered by the aggregators [85]. 

 Starting the macro-level, Talwariya, Singh, and Kolhe [75] used MCS to 
consider uncertainty in consumption and generation, along with a Bayesian 
Game Theory model to analyze the decisions of active players. However, since 
active players are self-interested, their behavior needs further study. 
Niromandfam, Yasdankhah, and Kazemzadeh [44] developed an approach that 
considered the utility function to maximize individual consumer welfare for DR 
programs while studying consumer risk aversion behavior. The utility function 
measures consumer preferences, a critical concept in microeconomics that helps 
understand how rational consumers make consumption decisions. Classical 
game theory assumes that players are always rational and try to maximize their 
payoffs. However, the rules and dynamics of the game may not align with this 
assumption, and what is rational for the whole may be irrational for the 



 

 

Effective DR gathering and deployment for intensive renewable integration using aggregation and 
machine learning 

20 2023 

individual [11]. In some situations, human behavior may differ significantly, 
making it difficult to predict their actions. Various factors such as cultural, 
financial, natural, or social capital can influence the actions of active players, as 
highlighted by Ilieva et al. [86].  

 At the micro level, the assumption that participants always react optimally 
to utility prices for profit maximization can impact the utility's profit, as it 
neglects context and only focuses on a single metric. In a competitive 
environment, players are expected to lower prices to attract more consumers, 
leading to lower profits. In a study by B. Zhang et al. [87], a contract-based 
incentive scheme was proposed to encourage consumer and small-scale supplier 
participation in direct energy trading. However, their behaviors are highly 
coupled, and a model is needed to analyze interactions and find the Nash 
Equilibrium.  

 However, in reality, the active consumer may not always act as a rational 
and economic agent, as they are new players in the market and may not have 
enough information to make informed decisions. Thus, the goal must be to 
provide aid and understanding to enhance their performance in DR events [11]. 
Uncertainties related to the stochastic variations of variables involved in 
residential DR, such as load demand, user preferences, environmental 
conditions, house thermal behavior, and wholesale market trends, can be 
modeled using the Monte Carlo Simulation (MCS) method, as suggested by 
Pierluigi Siano and Debora Sarno [79]. By adapting to and learning about player 
preferences and updating the system, DR implementation can improve consumer 
comfort, a crucial characteristic for its success in the real world. In fact, as already 
mentioned, residential participants are often hesitant to sacrifice their comfort to 
participate in demand response [80].    

 Numerous DR solutions involve clustering of consumer data to analyze 
input data for flexibility, including factors such as occupancy, temperature, 
humidity, and bidding strategy design [89]. However, clustering methods are 
sensitive to input data and may produce incorrect outputs due to errors from 
smart equipment [90]. Therefore, preprocessing of the dataset with data mining 
tools is necessary to provide meaningful information to aggregators, allowing 
them to handle active players correctly and improve their performance. To 
mitigate the impact of errors, fuzzy variables were incorporated in a study 
conducted by Mansour Charwand et al. [66], where intuitionistic fuzzy 
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divergence technique was used to represent the consumer load pattern, modeling 
the indecision and non-determinacy using the membership, non-membership, 
and hesitancy function. To cope with future uncertainties and improve 
performance, Lu and Hong [91] proposed the use of a Deep Neural Network 
(DNN) to predict unknown prices and energy demands. They also employed RL 
to determine optimal incentives for different consumers while considering both 
the service provider's and consumers' profits. The advantage of RL is that it is 
adaptive, model-free, and can autonomously acquire and adapt incentive rates, 
considering the uncertainties and flexibilities of the system.  

 Consumers' willingness to participate in DR programs depends on various 
psychological factors such as cognitive or experimental judgment biases, which 
can lead to shifts in their risk attitudes from risk-seeking to risk-averse or risk-
neutral. To address this issue, Remani et al. [92] used RL as an efficient tool to 
solve the decision-making problem under uncertainty. They modeled the 
problem as a Markov decision process and identified the state, state space, 
transition function, action, and reward function to solve the load commitment 
problem considering consumer comfort, stochastic renewable power, and tariff. 

 Various methods have been employed to improve DR schedules, with the 
goal of predicting unknown prices and energy demands, enhancing 
performance, and managing risks associated with doubt. For instance, Mbungu 
et al. [93] used an adaptive Time of Use (TOU) MPC approach to create a 
managing system for a real-time electricity pricing environment. Hung Khanh 
Nguyen et al. [94] used the Nash bargaining theory to achieve maximum social 
welfare when studying the economic interaction between the DSO and 
microgrids, and Tushar et al. [76] created an energy planning noncooperative 
game for residential consumers with at least a Nash Equilibrium in the prediction 
phase. 

 Again, the importance of learning and understanding the active players is 
highlighted for the successful implementation of DR. Now, the assumption of an 
active player fully aware of the optimal decisions, acting as a rational and 
economical player, might not be the reality for the energy market. The 
aggregator,  resorting to intelligent methods, is capable of using and also 
providing useful knowledge regarding the context on which the DR event is 
triggered. Not only selecting the optimal participants, with this powerful tool, 
can also aid the active players thriving on their role. This can be beneficial to both 



 

 

Effective DR gathering and deployment for intensive renewable integration using aggregation and 
machine learning 

22 2023 

parties, since the aggregator reduces the uncertainty of response to have more 
profit, and the active players become more aware of the market transactions to 
achieve their own agenda. 

2.5 Conclusions 
 In conclusion, the integration of renewable energy sources into energy 
sector will lead to new challenges for managing the grid's stability and reliability. 
DR programs are one of the solutions to tackle these issues, encouraging active 
players to modify their energy consumption patterns in response to grid 
conditions or price signals. DR mechanisms and programs vary from traditional 
to more advanced approaches based on intelligent systems.  

 These systems leverage machine learning algorithms to predict prices, 
energy demand and optimize incentives for different consumers. However, 
uncertainties and flexibilities in the DR system, as well as psychological factors 
influencing consumer behavior, can impact the overall performance of the 
program. While improving DR schedules, it is also essential to consider 
inappropriate strategies that may lead to consumer dissatisfaction and decrease 
their participation in DR events. Therefore, it is crucial for the managing entity of 
these new players to "learn" and capture their behavior to provide the right 
assistance in all situations.  

 Machine learning widely used in the literature but are unexplored on the 
DR uncertainty reduction and performance enhancement. Economic incentives 
could be useful but overall, learning and understanding consumer behavior can 
be a step towards improving the contribution of these new players in the power 
and energy market. 

 



 

 

 

   

 

 

 

 

 

Chapter 3 

Contributions and MAESTRO 
tool 

 





 

 

3. Contributions and MAESTRO tool 

   

3. Contributions and MAESTRO tool 

This chapter outlines the contributions made within the thesis work and the 
role played by each of the published papers in its development. The contributions 
have been categorized and presented in Chapter 3.1, while Chapter 3.2 focuses 
on the main contribution and research question, as well as key contributions, 
which are further elaborated in Chapters 3.3 to 3.15. The chapter concludes with 
a summary of the main findings and conclusions in Chapter 3.16. 

3.1 Introduction 
 The literature analyzed on Chapter 2 highlights the need to carefully 

examine the technical and economic aspects of any business models developed 
for implementing renewable-based technologies before the  widespread 
adoption. Considering this fact, the present thesis shows the created methods  by 
the PhD candidate to effective DR gathering and deployment for intensive 
renewable integration using aggregation and machine learning. With this, a list 
of 13 scientific papers (Journal – J, Conference proceedings – C, Book Chapter – 
B), were carefully selected for this thesis. As already mentioned in sub-section 
1.3, five were considered as “Core Publications” (all as first author), and eight 
more have been selected as “Other Publications” to support the contents of the 
thesis and to successfully answer to the research question.  

Core publications: 

[J1]  C. Silva, P. Faria, and Z. Vale, “Rating the Participation in Demand 
Response Programs for a More Accurate Aggregated Schedule of 
Consumers after Enrolment Period,” Electronics (Basel), vol. 9, no. 2, p. 349, 
Feb. 2020 (2020 IF: 2.397) with the reference [16] 

[J2]  C. Silva, P. Faria, Z. Vale, and J. M. Corchado, “Demand response 
performance and uncertainty: A systematic literature review,” Energy 
Strategy Reviews, vol. 41, p. 100857, May 2022 (2021 IF: 10.01) with the 
reference [11] 

[C1]  C. Silva et al., "Optimal management of an active community for fair 
selection of electric vehicles in a V2G event," CIRED Porto Workshop 2022: 
E-mobility and power distribution systems, Hybrid Conference, Porto, 
Portugal, p. 1069-1073, 2022, with the reference [17] 
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[J3]  C. Silva, P. Faria, B. Ribeiro, L. Gomes, and Z. Vale, “Demand Response 
Contextual Remuneration of Prosumers with Distributed Storage,” Sensors, 
vol. 22, no. 22, p. 8877, Nov. 2022 (2021 IF: 3.847) with the reference [18] 

[J4]  C. Silva, P. Faria and Z. Vale, "Rating and Remunerating the Load Shifting 
by Consumers Participating in Demand Response Programs," in IEEE 
Transactions on Industry Applications, vol. 59, no. 2, pp. 2288-2295, March-
April 2023 (2021 IF: 4.079) with the reference [19] 

Other publications: 

[B1] C. Silva, P. Faria, J.M. Corchado, and Z. Vale, “Clustering Methods for the 
Profiling of Electricity Consumers Owning Energy Storage System,” In 
Intelligent Data Mining and Analysis in Power and Energy Systems (eds Z. 
Vale, T. Pinto, M. Negnevitsky and G.K. Venayagamoorthy), 2022 with the 
reference [20] 

[J5]  C. Silva, P. Faria, and Z. Vale, “Rating consumers participation in demand 
response programs according to previous events,” Energy Reports, vol. 6, 
pp. 195–200, Dec. 2020, (2021 IF: 6.87) with the reference [21] 

[C2]   O. Abrishambaf, C. Silva, P.  Faria, and Z.  Vale, “An Optimization Based 
Community Model of Consumers and Prosumers: A Real-Time Simulation 
and Emulation Approach”, International Conference on Renewable Energy 
(ICREN), 2021 with the reference [22] 

[C3]   C. Silva, P. Faria, Z. Vale, “Classification of New Active Consumers 
Performance According to Previous Events Using Decision Trees”, 
International Federation of Automatic Control (IFAC), vol. 55, no. 9, 2022, 
p. 297-302 with the reference [23] 

[C4]  C. Silva, P. Faria, and Z. Vale, “DR Participants’ Actual Response Prediction 
Using Artificial Neural Networks,” 17th International Conference on Soft 
Computing Models in Industrial and Environmental Applications (SOCO) 
p. 176–185, 2023,  with the reference [24] 

[C5]  C. Silva, P. Faria and Z. Vale, "Using Supervised Learning to Assign New 
Consumers to Demand Response Programs According to the Context," 
IEEE International Conference on Environment and Electrical Engineering 
(EEEIC), Prague, Czech Republic, pp. 1-6, 2022, with the reference [25] 

[C6]  C. Silva, P. Faria, B. Canizes and Z. Vale, "Real-Time Approach for 
Managing Power Network by Shifting Electricity Consumers Demand," 
2022 IEEE PES Innovative Smart Grid Technologies Conference Europe 
(ISGT-Europe), Novi Sad, Serbia, p. 1-5, 2022, with the reference [26] 
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[C7]  C. Silva, P.  Campos, P. Faria and Z. Vale, "Exploring Dataset Patterns for 
New Demand Response Participants Classification," 21st International 
Conference on Practical Applications of Agents and Multi-Agent Systems 
(PAAMS), 2023, with the reference [27] 

 The key contributions defined in Chapter 1.2. are explored within the scope 
of the previous list of “Core” and “Other” publications and can be seen in Table 
3.1. Also, “Support” papers listed in Table 3.1 are auxiliary publications related 
to the context of this thesis. 

Table 3.1. Key contributions according to the core and other publications 

Su
b-

se
ct

io
n 

Key contribution 

Publications 

Support 
Core Other 

J1 J2 C1 J3 J4 B1 J5 C2 C3 C4 C5 C6 C7 

3.3 Renewable integration x x x x x   x       

3.4 Energy Market x  x x x   x       

3.5 
Resource/Player 
profiling/modeling 

x   x x x  x x x x x x  

3.6 DR program design x x x x x  x       [16] 

3.7 Contextual approaching x  x x x  x       [95] 

3.8 Aggregation x  x x x    x  x   [96] 

3.9 Machine learning use x  x x     x1 x2 x3  x4 [96], [97] 

3.10 DR gathering x  x x x x         

3.11 Resource Scheduling x  x x x  x x    x  [98] 

3.12 DR deployment x  x x x x    x     

3.13 
Remuneration / 
Assessment 

x  x x x         [97] 

3.14 Real-time Simulation    x    x       

3.15 Case Studies x  x x x x x x x x x x x  

1 Using classification, namely Decision Trees  
2 Using classification, namely Artificial Neural Networks 
3 Using classification, namely Decision Trees and Random Forests 
4 Using classification (Decision Trees, Random Forests and XGBoost), supervised 
clustering and subgroup discovery 

 The research and contributions in the field of renewable integration have 
been substantial. Considered a core area of focus, emphasizing the need to 
efficiently integrate renewable energy sources into existing energy system. 
Although energy market topic is presented in all publications, it was more 
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discussed on the definition of the different business models ([16]–[19]). 
Additionally, resource and player profiling/modeling have received significant 
attention and support, as evidenced by numerous publications. These studies 
aim to understand the characteristics and behaviors of various resources and 
players in the energy market to enhance decision-making processes.  

 Another important aspect is the DR programs design, which has been 
extensively researched and published ([16]–[19]), resulting on several business 
models. The business models developed resorting to a contextual approaching, 
which focuses on considering relevant contextual factors in decision-making, 
have also received significant support and attention throughout the list of 
publications ([16]–[20], [22]–[26]) and are also considered a core contribution. 

 Algorithms that provide the “smartness” to business models have also an 
important role in this thesis. Aggregation techniques have been explored to 
combine multiple energy resources effectively, as evidenced by the publications 
([16]–[19]). Machine learning applications have been widely adopted ([11], [16]–
[19], [23]–[26]). DR gathering ([17], [18], [20], [22], [24]), Resource scheduling 
([16]–[19]), and DR deployment ([17], [18], [20], [22], [24]) contributed to the 
various steps of the research. The importance of remuneration and assessment is 
evident in the core publications. Finally, the real-time simulation ([18], [22]) and 
case studies ([16]–[20], [22]–[26]) were important for validation and practical 
implementation.  

3.2 Main contribution  
 The main contribution of this Ph.D. for the current state-of-art was 
determined based on the need to address the identified gaps on Chapter 2. With 
the work developed within the PhD timeline, significant advancements have 
been made to answer the following research question: 

Can AI support decisions on DR concept, ensuring renewables integration and fair 
players participation? 

 MAESTRO, the Machine learning Assisted Energy System management 
Tool for Renewable integration using demand respOnse is the culmination of all 
the efforts done. MAESTRO is a Decision Support System (DSS) and was 
designed to help any player with different roles in the power and energy system 
to become better decision-makers, managing their  demand or generation, by 
making informed decisions based on data analysis and modeling. The system has 
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six overlapping key layers for model management: player, role, DR program, 
resources, real-time simulation, and tariff and rate definition. The decision 
support system steps can be seen in Figure 3.1.  

 
Figure 3.1. MAESTRO decision support system. 

   In the background, four other layers were designed to ensure the system's 
proper functioning regarding DR: context definition, services, enrollment, and 
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use. Again, must be highlighted that there is no sequence on any of the layers 
represented in Figure 3.1 since they are overlapping layers. Each layer is related 
to one or more key contributions and will be discussed in their respective sub-
section. 

 MAESTRO gathers all the market players, creating the “Role layer” (Figure 
3.1), to find their purpose and help improve their performance, successfully 
integrating renewable resources. Here, the players are distinguished by their 
roles in power and energy system. MAESTRO considers four main positions: the 
DSO, the aggregator, the consumers, and the prosumers. Figure 4 shows the role 
positions considered for the DSS developed in this thesis. The TSO and BRP, 
although players in the electricity market, are not the focus of this work. As 
mentioned earlier, the DSO is responsible for the distribution system's operation, 
capable of handling the remaining positions, according to Figure 3.2. 

 
Figure 3.2. MAESTRO players and roles interaction.  

 When a load reduction is needed – for instance, due to a voltage violation 
in a grid bus, a request is then sent by DSO to all the aggregators in the local 
communities nearby. The aggregator then manages the local community and 
associated resources to suppress this problem, highlighting their unique 
flexibility during the electricity market negotiations. Active communities might 
aggregate active players with several roles. A single player can have different 

Player 1 Player 2 

TSO

Aggregator

Retailer

BRP
DSO DSO

Player 3 
Electricity 

Market
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roles, for instance, wants to participate in DR programs providing load flexibility 
or even, as a prosumer that want to be paid for the energy they produce and store. 
The aggregator then has bidirectional contracts for remuneration and scheduling, 
with resources and participants in the DR being able to, in some cases, control 
and monitor both of them. 

 With this, the following sub-sections will explore each key contribution 
from the “Core” and “Other” publications to successfully answer to the gap 
presented in the research question. 

3.3 Renewables integration 
 The intensive renewable integration in the real power and energy markets 
is the goal of this thesis, resorting to DR programs. Throughout the work, the 
developed findings indicate that players are unaware of the market transactions 
and how to be an economic and rational agent, as mentioned on sub-section 2.4. 
Therefore, the aggregator represents the entity behind  the management of  active  
communities, and it is expected to have the proper platform for the combined DR 
and DG resources and accept players from various regional infrastructures. In 
fact, with MAESTRO, the active players might choose between more than one 
aggregator for the DR event, introducing competition between these entities. On 
the Services layer, topics such as comfort, reduce uncertainty and competitive 
market can be used within this scope.  

 MAESTRO has models capable of managing complex community resources 
optimally and fairly, as Resources Layer on Figure 3.1 points out. The DSS 
developed in this thesis is qualified to handle the following:  

• Players from different types (small, commercial, industrial);  
• Players with DG resources such as wind and solar;  
• Players with Energy Storage Systems (ESS); 
• Players with EV; 
• Any combination that can result from the previous players. 

 As can be seen in Figure 3.2, a player can have more than one role when 
overlapping “Player” and “Role” layers. For instance, player 1 can be a DSO with 
resources on another DSO, on the aggregator (blue line), or/and on the retailer 
(red line). Player 2 only reports to the aggregator, and player 3 only reports to the 
retailer. The consumers and prosumers are considered the center of the 
MAESTRO approach as players that will enable the intensive integration of 
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renewables, representing the higher share of DR. Combining with their 
resources, and the demand-side will be able to fulfill their purpose on the smart 
grid paradigm successfully, avoiding the use of more fossil fuels on the power 
and energy system. 

 The thesis work has focused on managing renewable energy resources and 
their integration at various levels of the power network, which has been 
discussed in several publications ([11], [17]–[19], [22]). These publications have 
explored the challenges of maintaining network balance faced by the aggregator 
and have proposed several optimal approaches to address them. Although the 
main focus was the consumer flexibility, the thesis work has provided valuable 
insights into managing renewable resources and the role they play in network 
management, especially for small-scale resources, and their impact on demand-
side consumers. 

 In the review done in [11] it was emphasized the significance of consumers 
in integrating renewable energy through DR programs. It was recommend 
exploring contextual resource management as an effective approach for 
implementing DR solutions in the evolving smart grid of the future. For the work 
developed in [19] it was used load shifting for load allocation during DR events, 
considering a broader time range to prevent the creation of additional peak loads. 
The study concludes that this approach brings several benefits.  

 In the simulated scheduling results presented in [18], the behavior of 
prosumer load flexibility was minimally affected by contextual energy price 
changes. However, ESS were frequently utilized when photovoltaic generation 
was low. The study presented on  [20] introduces the perspective of EVs and 
highlights the advantages and disadvantages of these resources moving within 
the grid. The study suggests employing different strategies to prevent congestion 
and the formation of new peaks in the load curve.  

 The studied from [22] and [20] focus on optimizing the management of these 
resources and validate their proposed community model using real-time 
simulation models. They address practical challenges and considerations related 
to electrical grid conditions. Utilizing real-time simulation and laboratory 
equipment offers distinct advantages in these studies. 
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3.4 Energy market 
 The MAESTRO basis, besides promoting competition and consumer choice, 
believes that walking towards a future with a more competitive local energy 
market can also play a crucial role in the integration of renewable energy sources 
into the power and energy market. By enabling DR programs and energy 
efficiency measures, the market can help balance the intermittency of renewable 
energy generation and reduce the need for fossil fuel-based peaking power 
plants. These new players can offer various energy products and services that 
can result in lower prices, better service, and more innovation in the energy 
sector.  

 The aggregator has been an essential entity within the publications in this 
thesis scope. The majority has indeed focused on only one aggregator and the 
complex management of these new resources: DR flexibility ([16], [19]), ESS 
([18]), EVs ([17]), and DGs ([16]–[19], [22]). The competition was implicitly 
created when the trustworthy rate was applied. It was intended for players to 
enhance their performance if they wanted to be called to participate in DR 
programs. Furthermore, the availability was also an important parameter for 
building a trusting relationship. However, the energy market was indirectly 
mentioned. 

3.5 Resource or Player profiling and modeling 
 To successfully implement DR programs, resource or player 
profiling/modeling techniques are employed to categorize and identify DR 
resources or participants based on their behavior and characteristics. In 
MAESTRO, this categorization is utilized by the aggregator to optimize and 
coordinate the DR program used in the majority of the core publications, by the 
system operator to ensure the secure and dependable operation of the power 
system used in [19], or for any other player that wants to enhance its 
performance. The “Player layer” from Figure 3.1 works as the data management 
component where the DSS performs tasks such as collecting, storing, analyzing 
and retrieving information from the several active players to be further used. This 
includes data from various sources such as databases, spreadsheets, and external 
sources (real-time sensors). Services such as profiling, aggregation, forecast or 
consumer profile modeling can be used within the scope of this layer ([16], [18]–
[20], [22]–[26]). 
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 The player profiling in MAESTRO involves grouping DR program 
participants into categories or segments based on their preferences, constraints, 
contextual availability and expectations ([19], [22]–[26]). These categories were 
used in MAESTRO to tailor the DR program according to each scenario needs 
and players proper and fair motivations, such as financial incentives or 
environmental benefits for instance on [18].  

 Resource profiling, on the other hand, was used for analyzing historical data 
of each DR resource and create a model that predicts its behavior during DR 
events ([18]–[20], [24]), where the trustworthy rate could also be used as support. 
With this, the main outcomes withdrawn, and the value created for the literature 
in this topic must be underlined. The developed model in [24] estimates the 
potential demand reduction that can be achieved by each resource. Both [19] and 
[18] emphasize the significance of understanding the behavior of each player 
throughout the day, as the allocation of load during specific periods is crucial to 
prevent exceeding load limits. This understanding is particularly important for 
avoiding load violations. In the case of [17], the profile of EVs is of great 
importance for their participation in Vehicle to Grid (V2G) programs.  

 The study from [20] emphasizes the importance of resource grouping based 
on similarity to improve decision-making processes such as profiling, 
participation and remuneration. For profiling, it was suggested assembling 
resources with similar behaviors into groups which can lead to more accurate 
and fair decisions, especially in real-time scenarios. Additionally, the study 
discusses the need for finding the optimal number of clusters when aggregating 
active players, considering the sensitivity of clustering methods to input data. By 
determining the best number of groups to be implemented, the aggregator can 
enhance the effectiveness of the aggregation process.  

 It was proven that profiling techniques allowed the customization of DR 
programs to achieve greater participation, increased demand response, reduce 
response uncertainty and more efficient use of resources. 

3.6 Demand response programs design 
 As already mentioned, the consumer centric approach was considered as 
the solution for the renewable integration in the real power and energy market 
within the scope of this thesis. Their  flexibility is crucial  to find balance between 
load demand and generation. It is, however, essential to find the proper 
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participants to DR events triggered when, for instance, renewable resources are 
not capable of satisfy the demand requests. Besides, their response it is still 
voluntary. Although DR programs such as DLC, can directly manage an 
equipment, the player can turn it on anytime (facing the proper consequences for 
violating a DR contract).  

 For this thesis, a reliability rate was then created to avoid discomfort and 
reduce the response uncertainty  and was formulated as a hybrid of incentive and 
price-based strategies, making it compatible with both approaches. Initially 
introduced in [16] as a reliability rate used in three different approaches: Basic 
Rate Method, Cost Rate Method, and Clustering Rate Method, where each one 
dealt with the uncertainty of the consumer differently. It must be highlighted that 
the Enrollment layer steps (Figure 3.1) are always present in the proposed 
methodologies within this thesis. 

 The Basic Rate Method selects consumers with higher values for scheduling 
and updates their reliability rate based on past performance and achievement of 
DR targets. The Cost Rate Method introduces a price fluctuation feature, where 
consumers can change their reliability prices to increase their rates, and only 
those with lower prices are selected for DR events. The Clustering Rate Method 
clusters consumers by reliability rate and contracted reduction, and only those 
with higher values are considered for scheduling. All three methods update 
reliability rates based on past performance and achievement of DR targets, with 
remuneration given as an incentive to participants. The Cost Rate Method allows 
consumers who were not selected for DR events to change their cost in DR events 
to increase their chances of being selected. In the end, it was concluded that the 
context of the DR event impacts the actual response from the participants. In 
other words, the consumer's comfort and participation during working hours, 
holidays, weekends, or extreme temperatures may affect their response to DR 
events.  

 The DR program design for MAESTRO was then improved and 
complemented with the core publications ([16]–[19]), resorting to the contextual 
approach mentioned in the following sub-section 3.7. Overall, the results from 
[16] highlighted the need for a contextual approach, that was then improved with 
the work done on [19] and on [21]. The trustworthy rate was also used for the 
remuneration of prosumers within the scope of [18]. For the selection of EVs for 
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a V2G event using extrinsic and intrinsic factors, one of them this rate, which was 
very useful since it can avoid privacy issues [17].  

3.7 Contextual approaching 
 In this way, to update this approach, a new version was developed where 
the context was included so the aggregator could select the proper participants. 
In the studies from [19], [21], and [95] efforts were made to create a Contextual 
Consumer Rate (CCR) or trustworthy rate, revising the formulation of the 
previous reliability rate. The CCR is divided into two rates, the Preliminary 
Contextual Consumer Rate (PR) and Updated Contextual Consumer Rate 
(UCCR), which depend on several factors (independent rates), including Context 
Rate (CR), Historic Rate (HR), Last Event Rate (LER), and Response Rate (RR). 
Both PCCR and UCCR are formulated in equation 1 and equation 2, respectively. 

PCCR = ωHR * HR + ωLER * LER (1) 

UCCR = ωHR * HR + ωLER * LER + ωRR * RR + ωCR * CR (2) 

 The weights assigned to each independent rate are defined through ω. 
Consumers who do not have previous information are assigned the lowest rate 
and can improve their CCR. The value of each weight one was then evaluated to 
define the impact of each independent rate.  

 To fully understand the logic behind this trustworthy rate contextual 
approach, Figure 3.3 shows the different timelines for the independent rates, 
regarding time of the day (24-hour format), day of the week (Sun. – Sunday, Mon. 
– Monday, Tues. – Tuesday), and the weather. Event 1 is represented with the 
red color, and event 2 is represented with the blue color. Considering event 1, 
triggered on the Sunday morning, between 10 and 11 AM. For HR, historic data 
is used where, for instance, this independent rate is the average of the last five 
performances within the same context. HR is different from the LER in the sense 
of representing only the last event – which can positively or negatively impact 
the average from the last performances. In other words, the player might have a 
good performance in this rate but did not have the availability to participate in 
the last event: from the PhD candidate perspective, it is not fair to jeopardize all 
the work done until this point, therefore, LER was created [95]. With this, the 
aggregator can obtain the PCCR to select the proper participants for the DR event.  
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Figure 3.3. Contextual approaching for trustworthy rate. 

 After the event, and the comparison between requested and actual response, 
both RR and CR are used to update the performance with UCCR. Regarding core 
publications studies, it is crucial to highlight the key findings for complementing 
MAESTRO by adding new players and resources to the equation and offering a 
wider version of the approach developed. First, the energy storage systems were 
added to the portfolio in [17], [18]. In this work, a methodology was developed 
and tested within a real-time simulation following the same lines from the 
Enrollment layer steps (Figure 3.1). 

 To complement MAESTRO resource portfolio, another business model was 
developed. The work from [17] proposes a novel methodology for managing 
active local communities with volatile resources, specifically focusing on EVs 
with V2G capability. The methodology includes a V2G perspective to aid the 
aggregator in managing the resources, a fairness model for prioritizing EV 
charging based on performance and departure time, criteria for selecting EVs 
ready for V2G events, aggregation of EVs for events, categorization of EV 
resources based on a previous response, and collaboration among community 
members to prioritize local generation and suppress demand. The methodology 
aims to increase the reliability and accuracy of the management of local energy 
communities and help achieve distribution system operator reduction targets. 
Overall, this methodology focusses on fairness and good compensation to 
motivate continuous participation and reduce uncertainty. Contextual 
remuneration was also applied to show the importance of the event's context for 
both parties involved. 

 Finally, [18] propose a methodology to effectively manage a community, 
focusing on remunerating community members for the flexibility they provide. 
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The study compares and evaluates four different approaches, considering 
contextual tariffs. The results demonstrate that it is possible to enhance the 
fairness of remuneration, which serves as an incentive and compensation for the 
loss of comfort. Among the approaches examined, the single fair remuneration 
approach proved most beneficial to the community manager, as it resulted in 
lower total remuneration compared to the other approaches. On the other hand, 
from the prosumers' perspective, employing a clustering method was more 
advantageous, as it led to a higher distribution of remuneration for the flexibility 
provided. 

3.8 Aggregation 
 In the scope of this thesis, aggregation is considered as the process of 
combining of small, distributed energy resources into larger groups with similar 
characteristics. This allows a better management and utilization of these 
resources, increasing their value and reducing the overall costs. So, making use 
of the developed trustworthy rate, the players are aggregated according to their 
characteristics and their performance for a DR event. MAESTRO has gathered 
different models to not only predict the group/rate from a new player, but also 
select the proper ones for a specific DR event context ([16]–[19]). This sub-section 
is then divided considering the machine learning algorithms used for this goal. 
The candidate had already published different works that only considered the 
trustworthy rate for selecting the DR participants assuming a minimum level to 
participate such as [16] but, as referred in the future works, there was a need for 
contextual approach to improve the business model. 

 Firstly, the main works using supervised learning focused on predicting the 
trustworthy rate for the participants. The study in [23] discusses the use of 
decision trees to classify new active players based on their performance in 
previous events. The goal is to identify patterns in consumer behavior that can 
help predict their performance in future events, using the trustworthy rate 
created. The publication highlights the benefits of decision trees, which allow for 
a simple and easy-to-understand visualization of the decision-making process.  

 Complementing this work, Figure 3.4 presents the proposed methodology 
from [25] where comparison was made between DT and RF for the same goal as 
[23], but using different scenarios where the inputs vary.  



 

 

2. Background and related literature 

Cátia Silva  39 

 
Figure 3.4. Predict the new players trustworthy rate resorting to supervised learning [25]. 

 Concerns regarding the privacy of active players and the impact of their 
current location on the models were also addressed. However, the results 
showed that the current location feature was not critical to achieving the goal of 
classifying new active players. The authors conducted a sensitivity test and found 
that a decision tree with five leaves could achieve an accuracy value above 50%, 
which can be a reasonable number for a player with little to no information. This 
work also emphasizes the importance of balancing the benefits of using machine 
learning techniques with the privacy concerns of active players. The study from 
[23] resorted to ANNs to predict the actual response of DR participants, with 
already contextual and historical performances. The goal is to improve the 
accuracy of predicting participants' response to DR events, which can help 
players optimize their operations. The approach can also help identify the most 
significant factors that influence participants' response to DR events. 
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 Regarding unsupervised clustering, for this thesis, the main uses were 
participant selection and remuneration by gathering the similar players within 
compensation groups. In [16], consumers with a higher trustworthy rate and 
higher values of contracted reduction are selected for the initial scheduling. In 
this way, consumers are clustered by rate, and the group with the highest sum of 
pledged reduction is chosen for the next phase. However, the same logic was  
then used for remuneration in [96]. Focusing on EVs, in [17] clustering was used 
for a selection based on two different inputs: intrinsic and extrinsic factors. The 
intrinsic factors consider EV characteristics, such as the value of charge and 
discharge, while extrinsic factors consider the participation history, period of 
staying in the park, and status during the stay, such as arrival and departure 
times and battery status. By considering these inputs, the group with the most 
interesting typical profile according to the event context is selected. The 
discharge rate is an important parameter to consider, and the group with the 
higher value is chosen. 

3.9 Machine learning use 
 Machine learning is a subfield of artificial intelligence that involves creating 
algorithms and statistical models to create computer systems that can make 
decisions based on patterns or insights from data. Within the scope of this thesis, 
supervised and unsupervised learning was used to accomplish different tasks. 
The most important ones were aggregation and remuneration. However, it must 
be highlighted the fact that machine learning was a crucial piece to build 
MAESTRO, for instance, prediction of the trustworthy rate using classification 
methods ([23]–[25]), selecting participants using clustering ([17], [16], [96]) or 
attributing a fair remuneration ([18], [97]). 

 Undoubtedly, it is crucial to highlight the valuable contributions made by 
these studies to the existing literature in this important and current field. The 
outcomes derived from these research endeavors have yielded significant 
advancements and insights. In the study from [23], classification methods were 
employed to provide a trustworthy rate to a new player without performance 
information. A decision tree was developed, considering various contextual 
factors at the time of the DR event.  

 From the aggregator's perspective, the availability of active consumer data 
proved to be useful, although privacy concerns may arise. Nevertheless, the 
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results indicated that incorporating this information can improve the outcomes. 
The work in [25] had same goal, different features, but compared the results from 
decision trees and random forest. For this case, the scenarios with private features 
were less important, however the accuracy was above 50%.  In the study 
conducted by [24], artificial neural networks were utilized to predict the actual 
response of a participant in a DR event, using multiple features. Notably, the 
inclusion of the consumer's contextual information (such as their geographical 
location) through the concept of CCR resulted in high accuracy values. While 
CCR may entail sharing personal information, it can also equip aggregators with 
the necessary knowledge to predict the actual response of active players in the 
local community using just one feature. These findings greatly contribute to the 
literature by introducing effective methodologies for assigning trustworthy rates 
to new players and enhancing the accuracy of predicting consumer responses in 
DR events, considering privacy concerns and the significance of contextual 
information. 

 Clustering played a significant role within the MAESTRO context. The 
results from [17] indicated that employing a clustering method would be 
advantageous for all parties involved. It led to increased event participation, 
enabled the achievement of state of charge goals for EVs, and resulted in reduced 
final player bills. While performance is a useful indicator of resource availability, 
relying solely on performance may not be the most effective approach for 
selecting EVs for V2G events. Doing so could limit the pool of available resources 
for event participation. Therefore, incorporating a clustering method provides a 
more comprehensive and beneficial approach in selecting EVs for V2G events.  

 Furthermore, used to attribute a fair remuneration, machine learning 
methods were used in [18], comparing three different ones: decision trees, k-
nearest neighbors and artificial networks. The study results indicate that adding 
more contextual information may reduce the total remuneration and still be fair 
with the participation compensation. The outcomes are supported by the study 
in [97] when the optimal number of DR programs and tariffs was defined. 

3.10 Demand response gathering 
 This topic is not commonly discussed in literature related to aggregators. In 
fact, DR gathering becomes more critical in short and real-time DR events due to 
the limited time available to achieve the desired reduction baseline. In this thesis 
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was considered that is crucial motivate the participants by discussing 
remunerations between aggregators and DR participants during the ramp 
period. The majority of the works developed in the scope of this thesis was 
designed to close the existing gap on the relationship between these players ([16]–
[20]). It is in fact assumed that contractual information is complete, clear and 
precise to avoid any misunderstandings or legal disputes. It should specify the 
obligations, responsibilities, and rights of each party involved in the contract. 
This includes the duration of the contract, the terms and conditions, pricing and 
payments, and any other relevant details. Having a well-defined contract is 
particularly important in the case of DR programs, where the aggregation of 
small resources into larger portfolios requires a high degree of trust and 
cooperation between the aggregator and the resource owners,  as can be seen in 
[20] where prosumers were grouped according to their similarity.  

 Considering that uncertainty reduction and performance enhancement are 
key for MAESTRO, the transparency is essential hence the design of a 
trustworthy rate – guaranteeing the fairness and minimizing unnecessary 
expenses. The mentioned works in the Resource Scheduling sub-section 
considered this assumption. For better understanding, Figure 3.5 presents the 
different stages of the V2G model developed, partially used for instance in [17]. 
It is essential to have all the information well-defined from the beginning until 
the event of the model, in order to guarantee the fairness. 

 

Figure 3.5. DR gathering from an aggregator perspective for the V2G  model developed. 
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 Firstly, collect the EVs charging status to select the EVs available for the V2G 
and the ones that need charging – to apply the fairness model. Actually, in [17], 
all the EVs had a previously well-defined parameters, both intrinsic and extrinsic. 
Information such the check-in, check-out, the expected State-Of-Charge (SOC) at 
the check-out, minimum remuneration for participation, were considered 
avoiding misleading and discomfort. For the first stage, the load participants for 
the DR event provide their flexibility available and the aggregator compare if it 
is enough to suppress the DSO target. If so, the resource scheduling is done, and 
the information is updated. Otherwise, on the second stage, after the V2G event 
be triggered, and the total flexibility is confirmed to be enough to suppress the 
DSO target, it is time to find and gathering groups of EVs. Clustering methods 
can be used for this purpose. In this case, the EVs on groups with the sum of 
higher flexibility provided are chosen for participation until achieve the expected 
flexibility. With this, the model was able to guarantee the expected SOC at the 
check-out time, managing optimally and fairly the resources. 

 Again, the innovation from this methodology presented on Figure 3.5 
focuses on the contextual approach, by gathering important DR data, to care for 
the player behavior details – not only the load consumers but also the EV users. 
This business model was created to be possible to avoid players discomfort, since 
it is managed to be guaranteed the SOC expected at the check-out time, which 
can be important to motivate future participations. 

3.11 Resource scheduling 
 The resource scheduling for the active communities was widely 
implemented throughout this thesis. The MAESTRO developed linear models for 
optimal scheduling of several types of resources, namely DR participants, DG, 
ESS, and EV. Mostly in the scope of an aggregator managing a local community 
where a DR event is triggered, and a reduction target must be achieved ([16]–
[19]). The goal is to minimize the operation costs from the perspective of the 
Aggregator considering the fair remuneration of the participating resources.  

 The problem of DR and DG scheduling is addressed in [19], [21], [22], [26] 
with the objective of reducing the operational costs of the aggregator For 
instance, in [19], a hypothetical situation was considered where a voltage 
violation is detected by a power flow analysis conducted by the DSO. 
Aggregators responsible for managing communities located near the affected 
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area would be required to implement load reduction measures. Figure 3.6 shows 
the proposed methodology developed for [21], where the scheduling was 
performed with the initially selected consumers for the DR  event.  

 
Figure 3.6. Resource scheduling approach [21]. 

 The actual and the requested reduction is compared to understand if the 
reduction target is achieved. If not, iteratively, new participants are added, and 
new re-scheduling are performed until the goal is reached. 

 More punctual contributions resorted to mixed-integer linear programming 
optimization. In [18], a prosumers community with ESS was optimally scheduled 
using this technique. On the other hand, [17], simulated a parking lot with V2G, 
where this option was only implemented in situations where DR participants 
flexibility was not enough to achieve a DR target. This would allow EV to increase 
their performance rate if available for participation. 

3.12 Demand response deployment 
 In the context of DR programs, the availability of DR participants plays a 
crucial role in achieving the desired level of demand reduction during, for 
instance, peak hours. It is important for aggregators to have a sufficient number 
of participants and ensure their availability during DR events to meet the 
contracted capacity. To deploy DR programs successfully, aggregators must 
conduct careful planning and preparation to ensure the availability of DR 
participants. This includes identifying and recruiting potential participants, 
verifying their eligibility, and establishing contracts to formalize their 
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participation. MAESTRO guarantees these with the trustworthy rate 
classification applied within the scope of most of the works referred in this thesis 
([16]–[19]).  

 In advance, the aggregator communicate the DR event details and 
requirements to participants, including the start and end times, the expected 
reduction levels, and the expected incentives for participation. In the study from 
[20], energy storage systems were used. It must be highlighted that remuneration, 
depends on the actual response of the participant in MAESTRO. Penalties can be 
applied for non-responses: reducing the trustworthy rates, lower remuneration 
or even both. To avoid these, techniques from the aggregator perspective are 
used to previously select and evaluate each player for the context in which the 
DR event is triggered, considering previous performances, such as in sub-section 
3.7. 

 Furthermore, as soon as the signal is sent to the DR participants, aggregators 
continuously monitor the availability of participants and their ability to provide 
the contracted capacity. With MAESTRO, a comparison between the actual and 
the requested load reduction is performed like in ([18], [19]). Some of the 
MAESTRO approaches are also prepared to address any issues or emergencies 
that may arise during the event, such as equipment failures or unexpected 
participant dropouts. For instance, [16] considers an initial scheduling and a 
further rescheduling if the flexibility provided in the first one is not enough to 
achieve the DR target. The study in [24] was developed a model useful for the 
aggregator to predict the responses and non-responses from the DR participants. 

3.13 Remuneration and Assessment 
 Finally, the Tariff and Rate definition layer comprehends the real and 
widely studied DR programs incentive-based and price based. However, for the 
scope of this thesis, a new way to compensate the participants was designed – 
the Trustworthy Rate, which was used in the majority of works ([16]–[19]). 
Regarding the publication’s role, in [19], the remuneration value used was 
according to the schedule in which the DR event was triggered. For [18], k-means 
clustering method was used for the remuneration step. The proposed 
methodology aims to group prosumers with similar flexibility profiles using this 
approach and offer better tariffs to those with higher flexibility, potentially 
resulting in different tariff values per period as the group with higher flexibility 
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may change. In the same line of thought, [97] also resorted to k-means to form 
these groups based on actual participation of resources in managing the local 
market. The main focus was the comparison of methods to find the optimal 
number of clusters for a given database, highlighting the importance of fair 
remuneration for small resources. However, the results were inconclusive due to 
the significant difference in the optimal number of clusters.  

3.14 Real-time simulations 
 In order to implement any business models, it is crucial to validate and test 
them on reliable and physical simulation platforms. However, conducting 
simulations solely on computational resources, such as electrical distribution 
network simulations, can be challenging and costly, and may not produce 
accurate results. Therefore, employing a real-time simulation strategy can 
provide a satisfactory solution by combining both simulation results and real-
world data to ensure a more realistic representation. This introduces the Real-
time simulation layer from (Figure 3.1), where the overlapped layers become 
understandable since many of these processes can be used in other layers. 
Measuring, monitoring, maintenance, fault prediction, and the infrastructure can 
be used on the Player layer (Figure 3.1), to obtain better datasets as input but can 
also be used for the DR program layer for supervising the different steps.  To sum 
up, this step provides the tools for the other layers to function properly.  

 This was proved within the [18] work, resorting to prosumers, where five 
were connected to real BESS that belongs to the GECAD, Instituto Superior 
Engenharia do Porto research center with a capacity of 2 kW. It was also tested 
on [22] with a different community, where an optimization-based community 
model that aggregates small-scale consumers and producers was explored. The 
model has a central controller or aggregator and multiple local community 
managers to balance the network locally. Real-time simulation and hardware-in-
the-loop devices validate the system's practicality, indicating a difference 
between simulation and experimental results. Nonetheless, the system performs 
well in real-time mode using actual devices. 

3.15 Case studies 
 The effectiveness of each MAESTRO approach has been demonstrated 
through the implementation of relevant case studies that focus on specific 
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parameters, as illustrated in Table 3.2. These parameters were selected based on 
the key contributions outlined in Chapter 1.2. The table lists various 
characteristics of publications related to DR programs. The characteristics are 
grouped into four categories, namely DR program, Players, Decision Tool, and 
Voltage Limit Violation. Under the DR program category, the publications are 
classified into three types, namely price-based, incentive-based, and DR target. 
Under the Players category, the publications are categorized into various groups, 
such as Aggregator, Consumers, Electric Vehicle, Distributed Generation, and 
Energy Storage. These groups represent the different stakeholders involved in 
DR programs within the scope of this thesis. Under the Decision Tool category, 
the publications are classified into two types, namely optimization and intelligent 
approach. Finally, the Voltage Limit Violation category, involves a broader 
approach besides local community management. 

 Based on the analysis of the Table 3.2, several key outcomes can be observed.  

Table 3.2. Case studies summary 

Characteristics 
Publications 

Core Other 
J1 C1 J3 J4 B1 J5 C2 C3 C4 C5 C6 C7 

D
R

 p
ro

gr
am

s Price based x  x   x x x x x  x 

Incentive 
based 

x x x x x   x x x x x 

Target x x x x  x     x  

Pl
ay

er
s 

Consumers 20,310 5 19 96 14 20 156 406 406 406 96 406 

Electric 
Vehicle 

0 30 0 0 0 0 0 0 0 0 0 0 

Distributed 
Generation 

548 5 38 0 14 548 108 0 0 0 0 0 

Energy 
Storage 

0 0 19 0 14 0 0 0 0 0 0 0 

D
ec

is
io

n Optimization Y N Y Y N Y Y N N N Y N 

Intelligent 
approach 

Y Y Y Y Y N N Y1 Y2 Y3 N Y4 

Voltage limit 
violation 

N N N Y N N N Y Y Y Y N 

1 Using classification, namely Decision Trees  
2 Using classification, namely Artificial Neural Networks 
3 Using classification, namely Decision Trees and Random Forests 
4 Using classification (Decision Trees, Random Forests and XGBoost), supervised 
clustering and subgroup discovery 
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 Firstly, the majority of research related to DR programs is focused on 
consumers, with fewer publications related to other players such as aggregators, 
electric vehicles, DG, and energy storage. The publication [11] refers to a review 
paper type so it is not included in the table. The most commonly studied DR 
program types are both price-based and incentive-based approaches. The 
trustworthy rate created, as already mentioned, can be used for both approaches 
but, within the scope of this thesis, was used mainly as incentive. The DR target 
concept was mentioned in fewer publications ([16]–[18], [21], [23], [26]) despite 
being frequently used in an implicit manner. 

 Secondly, the table shows that optimization using mathematical models and 
algorithms was the main approach for resource scheduling ([16], [18], [19], [21], 
[22], [26]). However, the table also reveals that intelligent approaches were a 
main topic within the publications since these methods were very useful for 
identifying patterns and predicting behaviors in DR programs, leading to more 
effective implementation and management ([16]–[20], [23], [25], [27]). These 
approaches have the potential to enhance the accuracy and efficiency of DR 
program implementation. Finally, the table highlights the importance of 
addressing voltage limit violations in DR programs, as this is a relevant aspect of 
program implementation that has been studied in several publications ([19], [23]–
[25], [27]). 

3.16 Conclusion 
 The publications developed within this thesis scope have focused on 
implementing various approaches for DR programs and create a new way to 
properly select DR participants where the goal was enhancing performance and 
reduce response uncertainty. It involved several machine learning models to 
adjust and analyze all the information provided. The thesis also highlights how 
the key contributions are integrated to fulfill the core contribution of the study 
and answer to the research question. 

 The core publications ([11], [16]–[19]) main findings contributed for the 
current state-of-art on the key topics. Regarding [16], by selecting the proper 
participants, the aggregator was able to reduce operation costs and avoid a 
resource re-scheduling in some methods. The review of the literature from [11] 
explored DR performance and uncertainty topics, useful for the development of 
MAESTRO business models. Added to the lessons learned with this paper, the 
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PhD candidate updated the trustworthy rate for a contextual approach, to be 
further used in [17]–[19]. Firstly, with a V2G approach on the [17] study, the EV 
users participated in events where the flexibility goal was achieved by the 
aggregator, and it was also possible to achieve the SOC at the check-out time by 
all users. Regarding the ESS approach on the [18] study, the remuneration 
comparison concludes that the trustworthy rate led to fairer results and had a 
close result to the single fair remuneration plus, has the advantage to increase the 
remuneration by increasing the rate. Finally, the study from [19], introduced a 
spatial perspective, providing the aggregator with a wider portfolio. When 
conjugating this with a contextual trustworthy rate, the approach eases the 
implementation throughout the grid. 

 MAESTRO was proposed and developed to enhance the features and 
benefits of DR implementation in an energy management system, specifically for 
the intensive renewable integration. Case studies were conducted to support the 
key contributions of the thesis. 
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4. Conclusions and Future Work 

This chapter provides the final remarks of the thesis by presenting the key 
findings derived from the research – Chapter 4.1 and suggesting potential areas 
for future work that build upon the current study – Chapter 4.2. 

4.1 Main Findings and Contributions 
The transition to a renewable-based energy system is an ongoing and 

complex process, requiring constant adaptation and innovation. DG using 
renewable-based technologies has emerged as a crucial component in this 
transition, but its unpredictable nature creates challenges in maintaining system 
balance and reliability. To address this, it was concluded that the smart grid 
concept should prioritize active participation of small consumers and the 
utilization of local resources. In this work, the PhD candidate focused on the 
development of DR programs to achieve this goal.  

DR plays a crucial role in ensuring the stability and reliability of the 
electricity grid, especially in the context of increasing integration of renewable 
energy resources. The DSS developed enables active players to adjust their 
energy usage in response to changes in grid conditions or market signals. DR 
provides a valuable tool for balancing supply and demand in real-time, therefore 
it is the core of DSS. It was learned, by analyzing the literature, that this approach 
helps to prevent blackouts, reduce energy costs, and improve overall grid 
efficiency. Additionally, DR approaches incentivizes active players to adopt 
energy-efficient behaviors and reduce their overall energy consumption, leading 
to significant environmental benefits. 

Despite its importance, it was concluded that, for achieving a smarter grid 
with DR, requires a solution that deals with the uncertainties introduced by new 
players. Several factors were considered on the business models developed for 
empowering consumers, such as their limited access to accurate information, 
complex actions in the energy market, privacy concerns, and the need for 
knowledge to support their DR participation.  

This thesis main contribution to the innovation in DR programs is the 
designing and developing of DSS called MAESTRO, Machine learning Assisted 
Energy System management Tool for Renewable integration using demand respOnse. 
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The results obtained demonstrate that the MAESTRO methodologies 
outperformed other methods with which it was compared. The tool has shown 
its ability to learn and adapt to changing circumstances by utilizing the available 
resources, such as distinct DSS, resource scheduling, learning and data analysis 
algorithms.  

MAESTRO was developed to choose the best decisions to make in each 
context and continually improve the way that each player achieves its objectives. 
By studying the behavior and learning from its performance on DR events, the 
trustworthy rate developed aids the managing entity make fair decisions to 
achieve the best outcomes. This capability to learn and adapt allows MAESTRO 
to demonstrate a clear improvement of active players in performance over time. 

When creating a business model to successfully implement DR, one of the 
lessons learned from the consumer's perspective, it is crucial to consider their 
comfort, concerns about remuneration, reliability, and the challenges they face 
when dealing with multiple aggregators in the DR landscape. Small consumers 
prioritize their comfort and convenience when participating in DR programs, 
seeking assurance that their preferences and comfort levels are considered. From 
the results, it is expected from these active players, that aggregator provides fair 
and transparent compensation for their energy reductions or contributions 
during DR events. Simplifying the active player experience, ensuring their trust 
and satisfaction are vital considerations in designing and implementing effective 
DR strategies. These guidelines were considered in MAESTRO. 

Another important lesson learned in this thesis is the need to explore real-
time simulation to ensure that the economic solution is technically robust. 
Resorting and incorporating real-time simulation allowed for a more accurate 
representation of the dynamic behavior of the smart grid and DR programs, 
namely with ESS. In fact, real-time simulation provided a platform to validate 
and fine-tune the technical aspects of this solution, considering factors such as 
resource availability, and demand variations. By leveraging real-time simulation, 
can be concluded that market players can assess the feasibility and effectiveness 
of different DR scenarios, identify potential bottlenecks, and refine strategies to 
achieve optimal outcomes. Therefore, this approach facilitates a comprehensive 
understanding of the economic viability of DR programs. 

With MAESTRO it was possible to achieve the goals and  find  the responses 
to the research questions leading to significant progress in the multidisciplinary 
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fields of AI and power and energy systems. The advancements in AI mainly 
focused on machine learning and data analysis, while in the power systems 
domain, they were particularly related to the electricity markets and optimal 
scheduling. During the research conducted for this thesis, a total of twenty-six 
scientific papers were published in international journals and conference 
proceedings. Additionally, seven papers are currently in development or being 
prepared for submission. Therefore, these findings represent valuable 
contributions to these fields of study.  

4.2 Perspectives of Future Work 
This PhD work has made significant contributions to the field of artificial 

intelligence within the scope of the power and energy sector, making particular 
use of machine learning to achieve the proposed goals. The core contribution 
involved the development of MAESTRO, a decision support tool that focuses on 
leveraging different machine learning techniques to harness their 
complementary strengths and adapt them to specific application contexts. 
Additionally, novel methodologies and techniques were introduced to improve 
the performance of active players in DR events. The progress made in this work 
will serve as a foundation for proposing new and improved methodologies 
aimed at more effective and efficient learning with a deeper understanding of the 
context and dynamics of the applicable circumstances. Several future 
developments are listed below as some of the most relevant: 

• Develop multi-level environment involving negotiations between players 
from the same or neighboring smart grids at different scales; 

• Integration of non-linear optimizations and different metaheuristics 
approaches for  solving the complex management of energy communities; 

• Integration of forecasting methods for optimal scheduling approaches, 
predicting critical factors and improve the model efficiency; 

• Enhance the learning process of MAESTRO, by enriching the database and 
exploring the different behaviors of each resource or player, throughout 
surveys and other data sources; 

• Exploration of additional techniques to improve the effectiveness of 
remuneration and motivation approaches; 

• Improve the triggering of signals for DR programs participation by using, for 
instance, transactive control methods; 

• Testing bigger realistic case studies. 
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Most of these suggestions for future work have been deemed important not 
only for the further development of this PhD research, but also as a crucial part 
of ongoing international research projects. As such, these suggestions ensure the 
continuity of the research carried out within the scope of this PhD. These ongoing 
projects include: 

• New Markets Design & Models for 100% Renewable Power Systems 
(TRADERES), reference no. 864276; 

• Power and Energy Cyber-Physical Solutions with Explainable Semantic 
Learning (PRECISE), reference no. PTDC/EEI-EEE/6277/2020 ; 
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Resumen 

La agregación de consumidores de pequeño tamaño y unidades de Generación 
Distribuida (DG por sus siglas en inglés) tiene un impacto considerable para 
aprovechar todo el potencial de flexibilidad en el contexto de los programas de 
respuesta a la demanda. Se necesitan nuevos mecanismos de incentivos para 
remunerar adecuadamente a los consumidores y reconocer a aquellos que tienen 
una participación más confiable. Los autores proponen un enfoque innovador 
que se puede utilizar en la fase de operación para tratar la incertidumbre en los 
eventos de respuesta a la demanda, donde se solicita un objetivo específico para 
una comunidad energética gestionada por el Agregador. El contenido innovador 
se relaciona con asignar y actualizar una Tasa de Confiabilidad a cada 
consumidor según la respuesta real en una solicitud de reducción. Se han 
implementado y comparado tres métodos distintos. Las tasas iniciales se asignan 
según la participación en los eventos de respuesta a la demanda después de un 
mes del período de inscripción, y las que tienen una mayor confiabilidad siguen 
una programación realizada mediante optimización lineal. Los resultados 
demuestran que utilizando el enfoque propuesto, el administrador de la 
comunidad energética encuentra a los consumidores más confiables en cada 
período y se logra el objetivo de reducción en los eventos de respuesta a la 
demanda. Un algoritmo de agrupamiento es implementado para determinar la 
tasa final del consumidor para un mes considerando el valor del centroid. 
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Abstract: Aggregation of small size consumers and Distributed Generation (DG) units have a considerable
impact to catch the full flexibility potential, in the context of Demand Response programs. New incentive
mechanisms are needed to remunerate consumers adequately and to recognize the ones that have more
reliable participation. The authors propose an innovative approach to be used in the operation phase,
to deal with the uncertainty to Demand Response events, where a certain target is requested for an energy
community managed by the Aggregator. The innovative content deals with assigning and updating a
Reliability Rate to each consumer according to the actual response in a reduction request. Three distinct
methods have been implemented and compared. The initial rates assigned according to participation in
the Demand Response events after one month of the enrolment period and the ones with higher reliability
follow scheduling, performed using linear optimization. The results prove that using the proposed
approach, the energy community manager finds the more reliable consumers in each period, and the
reduction target achieved in DR events. A clustering algorithm is implemented to determine the final
consumer rate for one month considering the centroid value.

Keywords: clustering; consumers; demand response; uncertainty

1. Introduction

The energy sector is facing challenges due to the need for more e�ciency in energy usage.
More reliable and e�cient energy networks and markets are desired, empowering players, enabling
bidirectional communication, and finding solutions to replace fossil fuels [1–3]. Demand Response
(DR) concept is one of the main topics in the literature due to the potential benefits and to the search to
overtake the barriers and achieve successful implementation in the energy market.

1.1. Background and Motivation

Directive 2019/944 [4] defines DR as "the change of electricity load by final customers from their
normal or current consumption patterns in response to market signals, including in response to
time-variable electricity prices or incentive payments, or in response to the acceptance of the final
customer’s bid to dell demand reduction or increase at a price in an organized market". This directive’s
primary goal will be finding a way to overcome existing obstacles to the completion of the internal
electricity market. Directive 2003/54/EC and Directive 2009/72/EC contributed to the conception of
the electricity market as it is currently but, with these new challenges coming from Smart Grids
concept introduction, several updates must be done, namely regarding the consumers’ role [5,6].
With Directive 2019/944, considering that to achieve the main goals with e↵ectiveness, the innovation
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must be incentivized, and the flexibility compensated. Only after a fully functional energy market,
the possibility of adding renewable energy to the actual grid, ready to deal with the uncertainties
associated, can become a reality taking a new step to decarbonize the system.

Currently, and in the context of the work in this paper, the main stakeholders involved in the
flexibility markets are Transmission System Operator (TSO), Distribution System Operators (DSO),
Balance Responsible Parties (BRPs), Aggregator, and Retailer. TSO is responsible for the service and
stability of the transmission system. Regarding DSO, it is the entity responsible for the operation of the
distribution system and the power delivery to customers. The BRP role can be played by a market
entity (such as wholesale supplier or retailer), or its chosen representative responsible, in charge of
dealing with imbalances, paying penalties for deviations from energy schedules. Finally, the Retailer is
an existing commercial entity selling electrical energy to consumers.

Regarding the role of the Aggregator in a local community, it depends on the market model.
Still, this entity can operate in di↵erent parts of the network and use the associated resources for
trading electricity and ancillary service markets. The Aggregator can also act as an intermediary for
the transactions between small entities, such as consumers, and the wholesale market so it is the
entity that accumulates flexibility through renewable-based generation and consumers (through DR),
as Figure 1 presents. In the present paper, the Aggregator acts as a Local Energy Community (LEC)
manager. In [7], LEC is defined as “an association, a cooperative, a partnership, a non-profit organization
or other legal entity which is e↵ectively controlled by local shareholders or members, generally, value- rather
than profit-driven, involved in distributed generation and performing activities of a distribution system operator,
supplier or aggregator at local level, including across borders”. Many benefits were previewed from this
concept, namely regarding the relationship between the DSO and the communities: DSO is now
allowed to manage some of the di�culties associated with the local generation (e.g., by controlling
local flexibility resources) which could drastically reduce the network costs.
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The consumers’ role in this market, although currently less explored and with increasing value,
becomes crucial to achieving the required level of flexibility to adjust the current network to recognize
a distributed, renewable, and volatile generation [8,9]. Currently, consumers do not have the right tools
to access information about their consumption, in real-time or near to real-time, to actively participate
in the energy market. Still, consumers are more conscious and worried with climate issues; aware
of their capabilities as an active role; searching for the investment in Distributed Generation (DG),
for instance in their houses; finding mechanisms to consume in a more clean, e�cient, and economical
way through DR [10,11].

Therefore, the creation of new players and business models developed to deal with this "new
type" of players must exist, considering that not all the consumers have the same behaviour causing
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uncertainties to the management of the market. Services that produce benefits to only a particular
group of the population may bring negative results. In this way, the consumers’ characterization
and behaviour study is crucial. The referred challenges are the primary motivation for the present
work. As already mentioned, being the Aggregator of the entity capable of managing a local energy
community, providing the right tools to be successful. However, this entity must have reliable
information about the resources to decide which one should participate in the eventuality of a DR
event to avoid imbalances. The goal is to create a tool able to answer questions such as: Should
the Aggregator rely on all the consumers in the community? If not, is it possible to di↵erentiate
them? How? When in a DR event, the consumers who reduce accordingly should they compensate
di↵erently? And those who do not answer?

The authors of the present paper designed a methodology that deals with the uncertainty of the
small resources, focusing on the consumers with the assignment of a Reliability Rate to optimally
manage the local community in cases of DR events. Previous works [12–14] already proposed a
business model to help Aggregators, although the doubt associated with the actual response of the
consumers was never considered. The action described in the paper is relevant to the operation being
a simulation of a real-time reaction by the resources to DR events and how the Aggregator should
manage the uncertainties associated.

1.2. Related Literature

The related literature presents distinct approaches to solve the scheduling problem when dealing
with the introduction of demand-side in the energy market and how the load diagram can influence
network reliability. Muhsen et al. [15] proposed a multi-objective optimization di↵erential evolution
method to solve the load scheduling problem in terms of cost and energy saving, creating a set of
optimal solutions. Ilo et al. [16] considered a holistic power system architecture that gathers the
relevant components in a single structure focusing on the decarbonization of the sector cost-e↵ectively
while guaranteeing data privacy and safety against external threats. Li, Dou, and Xu [17] used a firefly
optimization algorithm to solve the scheduling problem of a distribution network. The simulation,
prediction of the load, travel chain of electric vehicles, and di↵erent charging methods were considered
to establish a predictive model, and the establishment of demand response sideload. Khalid et al. [18]
presented a pricing model to delineate the rates for on-peak and shoulder-peak hours having the
goal of charging a per-unit price—taking into account the consumed energy and the extra generation
cost. Faria and Vale [19] proposed a method to minimize the operation costs, where the virtual power
player manages DR programs and respects the consumption shifting constraints making a comparison
between the advantages of DR use and DG. Proving the benefits of DR in the operation of distributed
energy resources, namely when considering the lack of supply. Hu, Lu, and Chen [20] formulated a
stochastic multi-objective Nash–Cournot competition model to simulate DR in an uncertain energy
market. The authors considered that DR programs can reduce peak energy consumption, energy price,
and carbon dioxide emissions. The lack of studies connecting the uncertainty and the actual response
of the consumer in the scheduling is visible. However, these works prove the increasing influence of
this new player in the transactions of the energy market.

The comprehension of the consumer’s behaviour is a significant study as their decision power is
higher, and they may become the focal point of this sector. Nicholas Good [21] presented research on
the suitability of behavioural economics as an approach for modelling demand response. This author
reminds us that most of the studies shaped under the demand response topic assume that the end-user is
always rational and an active economic agent. In this way, its concluded from this study that centrally
coordinated actions may produce the best results since consumers are willing to collaborate and sacrifice
thermal comfort without compensation to achieve a common objective—secure operation of the local
electricity network. Ruiz et al. [22] contradicting the previous conclusion, presented a bottom-up approach
based on physical end-use load models. These authors study the individual responses of combining
a random sample of customers building an aggregated load Demand Response model by performing
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a simulation of the different reactions with an optimization algorithm based on mixed-integer linear
programming. It proved that minimizing the electricity bill occurs while maintaining the consumer’s
comfort level. The results from this study show that the higher the incentive offered by the Aggregator
(disagreeing with [21] which believed in the insignificance of compensation for this kind of discomfort),
obtain higher load reductions with this approach. Both [21,22] agree, as well as the authors of the present
paper that consumers must be willing to participate in the DSM programs. They must also allow the
application of more restrictive control actions, over their controllable appliances, although this implies
higher losses on their comfort level. However, the authors of the present paper consider it essential to
compensate them, incentivizing continuous participation in the management of the local community.

There is a necessity to find techniques to incentivize and support the participation of the small
resources to decrease the uncertainty associated with them. Monfared and Ghasemi [23] proposed a
value-based hourly pricing approach, concluding that the value of the electricity is not the same to
end-users depending on the benefits for each consumer. The objective of the proposed methodology
was to improve the e↵ectiveness of price-based Demand Response programs implemented in a smart
distribution network. Jiang et al. [24] developed a method to deal with performance and e�ciency
uncertainties from distributed energy resources. These authors formulate a scenario-based two-stage
algorithm to solve the problem, preserving the multiple risks in the entire decision-making process.
Khan et al. [25] designed a knowledge-based system for short-term load forecasting where the precision
is improved by a di↵erent priority index to select similar days.

1.3. Innovations and Contributions

The proposed methodology provides innovative contributions in the field of consumers’ response
uncertainty, which is a complicated matter. With the novel approach proposed, after the enrolment
period, the Aggregator will be able to identify and schedule reliable consumers to participate in DR
events, increasing the accuracy and dealing with the doubt. The main goal of the present paper is to
provide essential means and knowledge to the entity that manages the LEC to be successful in DR
implementation and use. It is critical to understand what extent each consumer can contribute to DR
and be more reliable, in each period of the day. In this way, the community manager can appropriately
reward the consumer for the discomfort caused by DR events. The following features are listed as
innovative aspects of the methodology proposed in the present paper:

• Consider the consumer behaviour from past DR events, during a full month period as the
enrolment period;

• Categorize the consumers according to their actual response;
• Remunerate the consumers according to their actual response;
• DR events with DR targets for the community being essential to understand in which consumers

the Aggregator can rely on to achieve the goals;
• Collaboration between members of the community regarding local balance, highlighting the

importance of the role of the prosumer and the influence of prioritizing the local generation to
suppress the demand;

• Comparison between the requested reduction and the actual reduction when on DR event, being
a crucial factor to increase or decrease the reliability rate;

• Interactions from the consumers’ side to improve the reliability rate, either through higher
reductions or with lower tari↵s;

• Incentives, through remuneration, according to the reliability rate group inserted;
• Identify the monthly reliability rate of a consumer.

According to the actual response for DR events, in di↵erent temporal ranges, a reliability rate is
assigned to each consumer. This rate was calculated through three independent rates. The way of
using the reliability rate through the proposed methodology depends on three methods: Basic Rate
Method, Cost Rate Method, and Clustering Rate Method.
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After this introduction, Section 1 presents several related works and the comparison with the
proposed methodology detailed in Section 2—Materials and Methods, as well as the case study.
Section 3 presents the scenarios selected, the results obtained by the application of the proposed
approach to show the feasibility of the methodology and the respective discussion. Finally, Section 4
brings the conclusions from this study.

2. Materials and Methods

The authors implemented a methodology that gives the Aggregator, as the entity that manages
the energy community, a tool to optimally manage the resources associated and have some knowledge
about their reliability when participating in DR events. With this, Figure 1 shows the proposed
methodology. Presenting three approaches—Basic Rate Method, Cost Rate Method, and Clustering
Rate Method, and each one deals with the uncertainty of the consumer di↵erently. These methods are
applied per DR event and can be used in di↵erent contexts, namely di↵erent seasons, as the consumers’
behaviours change through the year.

In the Basic Rate Method, the selection phase considers only consumers with values higher than
the nominated minimum for scheduling, i.e., for example in Figure 2 consumers with more than three
“stars”, were represented as green faces, chosen to participate in DR event. The initial reliability rate
considers two independent rates: Historical Rate (HR) and the Last Day Rate (LDR). The first one takes
into account past information from the consumer. The second considers the reliability rate assigned
to the consumer in the same period of the previous day. The Aggregator schedules its resources
considering a DR target for this community. After, a comparison is made between the actual response
and the requested one. In the hypothesis of not achieving the DR target in a first schedule, a re-schedule
considering the remaining consumers with DR contracts is performed, allowing their reliability rate to
increase by participating in the management of the local community.

The update of the final reliability rate of each consumer considers more than one independent
rate related to the actual response. Although Cut-Rate (CR) has some percentage in the formulation,
a higher reduction than the requested may not be enough to increase their rate. The other two, HR and
LDR, have also weight in the formulation of the final reliability rate of a consumer to control the rate
change speed.

In the case of the Cost Rate Method, a feature is added when updating the final reliability rate: The
price also fluctuates. The entire process is similar to the primary method but introduces a new strategy
for the consumer. They can change their reliability prices to increase their rates. In other words, when
each group of resources is called to participate in a DR event, the ones with lower prices are selected
(considering minimization of operational costs regarding the Aggregator). If the actual response
surpasses the expectations, the possibilities of increasing the final reliability rate arises. The third and
final approach is formulated based on clustering: The idea is to compare with the Basic Rate Method.
Let’s call it the Clustering Rate Method. Mainly, the consumers are also classified by reliability rate
and only the ones with a higher rate will be considered in the scheduling. However, an adaptation
is considered using clustering: Only the consumers with higher values of contracted reduction are
considered for the first scheduling. That is, each rate will be clustered, and the group with the higher
sum of pledged reduction follows to the next phase. The remaining process stays the same.

Regarding the scheduling phase, a linear optimization is performed to minimize operation cost
from the perspective of Aggregator. The scheduling input needs several parameters, and it is the
responsibility of the Aggregator to gather them all to schedule all the associated resources successfully.
Information such as the maximum capacity of the DG units, the external suppliers, and the reduction
capacity of the consumers belonging to DR programs, as well as the consumption tari↵s associated
with each resource is needed. The authors considered the existence of two types of external suppliers:
Regular and additional.
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Equation (1) introduces the objective function of the problem:

Min OS =
P

[PDG (p, t) CDG (p, t)] +
P

[PIDR (c, t) CIDR (c, t)] +
P

[PSUPA (sa, t) CSUPA (sa, t)]
+
P

[PSUPR (sr, t) CSUPR (sr, t)] + PNSP(t) CNSP (t)
(1)

The optimal scheduling is done for each period t and the di↵erent resources in the local community
such as DG units (PDG), consumers belonging to DR programs (PIDR) and suppliers, both regular
(PSUPR) and additional (PSUPA) are considered. The external suppliers are only applied in the case
of DG units that were not able to suppress the total amount of consumption to achieve the network
balance, as presented in Equation (2):
X

[Pinitial (c, t) � PIDR (c, t)] =
X

[PDG (p, t)] +
X

[PSUPA (sa, t)] +
X

[PSUPR (sr, t)] + PNSP(t) (2)

This equation is essential and a complex problem for the network operators. The goal is to
maintain the value of Non-Supplied Power (NSP)—the amount of demand not satisfied, null proving
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that the network is being optimally managed. In this way, several options to fulfil the demand (Pinitial)
requests are available: DG units and external suppliers are also included in the production side, and DR
events are also considered.

Other restrictions were added to the presented optimization: Regarding the consumers who
participate in DR events Equation (3) and Equation (4) control, their participation and Equation (5) and
Equation (6) defines the DR target for the community. When compared with previous works from the
authors, Equations (4)–(6) are an innovation.

The proposed method, as shown in Figure 2, includes a possible rescheduling with all the
consumers in the impossibility of the actual response from the selected were not enough to achieve
the DR target in the first stage. Giving this, the ones chosen in the scheduling should maintain
the requested reduction—considered as the new PIDR

Min in Equation (4), and only be added to the
di↵erence needed being the value of the first scheduling considered as DRtargetmin in Equation (6):

PIDR (c, t)  PIDR
Max (c, t) (3)

PIDR (c, t) � PIDR
Min (c, t) (4)

X
[PIDR (c, t)]  DRtargetMax (c, t) (5)

X
[PIDR (c, t)] � DRtargetMin (c, t) (6)

Regarding the distributed generation resources in the local community, they are restricted by
Equations (7)–(9). Equation (7) represents the upper bound, considering the maximum capacity and
Equation (8) the lower bound. The lower bound was considered for specific cases such as type wind
units, which must be constrained by the resulting power from the cut-in and cut-out wind. Equation (9)
gives the Aggregator more control when using the generation, restricting the amount that can be used.
A similar tactic used for external suppliers:

PDG (p, t)  PDG
Max (p, t) (7)

PDG (p, t) � PDG
Min (p, t) (8)

X
[PDG (p, t)]  PDG

Total (p, t) (9)

The constraints related to external suppliers are presented from Equation (10) to Equation (13).
The upper bound is established by Equation (10) for additional suppliers and Equation (12) for regular
suppliers. Equation (11) and Equation (13), as in DG units, restrict the total amount of generation from
this source:

PSUPA (sa, t)  PSUPA (sa, t) (10)
X

[PSUPA (sa, t)]  PSUPA (t) (11)

PSUPR (sr, t)  PSUPR (sr, t) (12)
X

[PSUPR (sr, t)  PSUPR (t) (13)

After DR target is achieved for the DR event, there is the update of the reliability rate and the
remuneration for the participants. The remuneration is considered as an incentive and done according
to tari↵s existing in the same reliability rate. For the three methods, the reliability rate update is
the same: Considering HR, LDR, and CR in the formulation. However, for the Cost Rate Method,
the consumers that were not selected for the DR event can change their cost in DR events to be selected.

As soon as the three approaches are compared, a final study is done. The authors propose to
find the proper reliability rate per consumer per month, using a clustering method. The task of the
clustering object is created from the need of the human to define prominent attributes and identify
them as a type. Therefore, several disciplines use this method—from mathematics to biology, the goal
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is the same: Establishing categories for the objects and assigning individuals to the proper groups
within it [26]. In this way, the selected method for the first study is a well-known partitioning clustering
method: K-means. The algorithm consists in finding, iteratively, the value that represents each
group—centroid. The centroid element is found when the distance between itself and the remaining is
minimal. Several techniques are applied to calculate the gap, namely Euclidean distance. The results
for one month will be considered, and the consumers will be represented by one reliability rate only.

The proposed methodology was studied resorting to a database formed by a real distribution
network, with ten random local communities and a total of 20,310 consumers from five di↵erent
types classified as Domestic, Small Commerce, Medium Commerce, Large Commerce, and Industrial.
Although the consumers are the focus of this work, for the scheduling phase, the generation units were
also considered in this study, highlighting Distributed Generation (DG) units, namely Small Hydro,
Waste-to-energy, Wind, Photovoltaic, Biomass, Fuel Cell, and Co-generation. Table 1 presents the
characterization of all consumers and generation units in the ten local communities.

Table 1. Small resources characterization in the ten communities.

CONSUMPTION

Type Domestic Small Commerce Medium
Commerce

Large
Commerce Industrial

# elements 10,168 9828 82 85 147
Energy (kWh) 9369.35 7983.35 11,254.75 10,880.48 23,142.48

Max Load Reduction (kW) 4684.7 3991.7 15,756.7 9792.4 20,828.2
Initial Price (m.u./kWh) 0.12 0.18 0.20 0.19 0.15

GENERATION

Type Small
Hydro Waste-to-Energy Wind Photovoltaic Biomass Fuel

Cell CHP

# elements 25 7 254 208 25 13 16
Energy (kWh) 214.05 53.10 5866.09 7061.28 2826.57 2457.60 6910.10

Tari↵ (m.u./kWh) 0.0961 0.0900 0.0988 0.2889 0.1206 0.0945 0.0975

One month of information was considered for the present study. The whole database, consumption,
and generation are divided into periods of 15 min, so a day has 96 periods where the first one is at
12 am and 96 is at 12 pm. The chosen historical information used for the creation of scenarios was
April 2018. In this way, the database has 2880 periods.

The present study focuses on the reliability of each consumer when requested to participate in
DR events. The Aggregator of the local community has DR targets according to the period of the
day, and it is expected that consumers with higher reliability rate answer as requested. In the present
scenarios, it was considered a DR target of 100 kW for each type of event.

For the three proposed methods, the techniques to calculate the initial and final reliability rate is
di↵erent and can influence other variables—namely in the Cost Rate Method where the consumers
change their cost to be considered in the scheduling. Both initial and final reliability rates have a value
between 1 and 5. They are dependent on the consumers’ performances in DR events for di↵erent
periods where independent rates were attributed as Table 2. A Historical Rate (HR) to past information
with more than one day; the Previous Day Result Rate in the same period (LDR), and the Actual
Reduction Rate for the studied period (CR).

Table 2. Independent rates weights.

HR CR LDR

Initial 0.4 - 0.6
Final 0.33 0.33 0.33

According to the stage of the method, the weights of these independent rates in the formation of the
reliability rate are different. In this way, Table 2 presents the masses considered in the present case study.
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3. Results and Discussion

The current section shows a comparison between three methods and the analysis done to
understand the behaviour of the consumers over a month regarding the uncertainty of their participation
in the management of the community.

Considering 96 periods in a day, to perform scheduling for one period, the solving time for the
community as a whole is overly high to be used in a real-time situation, not considering the remaining
process. Giving this, the authors opt for presenting the study only for one community: The one with a
higher reliability rate, being this one the centre of the case study. In this way, Table 3 presents a survey
of the average rate found in the communities and the one with higher value was considered.

Table 3. Average rates from the local communities.

Community 1 2 3 4 5 6 7 8 9 10

Number of Elements 2501 658 3480 406 4982 1598 398 3789 1509 989
Average Rate 2.97 3.03 2.99 3.10 3.01 3.03 2.94 3.01 3.00 2.98

Section 3 is subdivided into five subsections. Firstly, the results from each method which
represent three subsections. After, a study of Consumer Reliability Rate Identification for the
Month—k-means—where a clustering method is used to assign a reliability month rate for each
consumer. Finally, a survey on Reliability Rates over di↵erent seasons. The steps taken in the first three
subsections are presented in Table 4, as well as the criteria used to compare them. Moreover, in the same
table, there is a correspondence between the subsections and the steps taken to clarify the structure of
the present section.

Table 4. Study steps and criteria to compare the three methods.

Basic Rate Method
(Section 3.1)

Cost Rate Method
(Section 3.2)

Clustering Rate Method
(Section 3.3)

Consumer Selection by
Initial Rate
(Sub-section 3.X.1.)

Rate � 3 Rate � 3

Rate � 3
and

The group with higher
reduction according to
the clustering method

Scheduling and
Re-Scheduling
(Sub-section 3.X.2)

Until achieving the target in a DR event
(comparison between how quick the goal can be achieved by understanding the

quality of the selected samples—the more reliable consumers)

Rate Update
(Sub-section 3.X.3)

Actual reduction vs.
Requested Reduction

Actual reduction vs.
Requested Reduction

and
Cost Update

Actual reduction vs.
Requested Reduction

Remuneration
(Sub-section 3.X.3)

Maximum tari↵ per rate
(final minimum reward in the perspective of the Aggregator)

In the analysis of the results from the three methods, there are three parts. The first one, Initial Rate,
the initial number of elements per period and per group is presented. The Scheduling and Re-scheduling
Results, showing the requested and the actual reduction through the month. Finally, Rate Update and
Remuneration, where the final reliability rates and the remuneration are presented analyzing per period.

3.1. Basic Rate Method

The Basic Rate Method consists of only selecting the higher reliability rate consumers to the
scheduling. Regarding the update of the final reliability rate for each period, considering the three
independent rates and the cost associated with the DR events is not revised. Since it is the first method
to be analyzed, a more detailed view of the results is done. As mentioned, April 2018 was selected,
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and the DR events are exhibited in Table 5. As can be seen, two types of events are considered: Event
1 is between 11 am–12 am, and Event 2 is between 6 pm and 7 pm. The frequency of each occurrence in
this month is five, having been performed ten events in this study.

Table 5. DR (Demand Response) events.

Day Event 1 (11:00–12:00) Event 2 (18:00–19:00)

Sunday, 1 x -
Thursday, 4 x -
Saturday, 7 x -
Tuesday, 10 - x

Friday, 13 - x
Monday, 16 - x

Thursday, 19 x -
Sunday, 22 - x

Wednesday, 25 - x
Saturday, 28 x -

3.1.1. Initial Reliability Rate

The Initial Reliability Rate considers the HR and the LDR, finding that Day 1 does not have LDR,
and the Initial Reliability Rate is equal to the HR. Figure 3 shows the number of elements per group in
each event day. Each event has four periods—15 min each.
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Initially, on the first day of the month, a DR event between 11 am and 12 am happened. For the
DR event, in Period 1 only 250 were able to participate; for Period 2 the value increased to 266; for
Period 3 and Period 4 the value decreased to 260 and 243, respectively.

For the following days, the actual response in the previous day was impacted by LDR.
Day 4 also had an event between 11 am and 12 am. The Reliability Rate 4 had the highest number

of elements in all the periods, counting with 167 in the last one. In this second day of Event 1, more
consumers were able to participate: In Period 1 the total was 273, Period 2 was 305, Period 3 was
307 and, finally, Period 4 was the one with the lower number of elements, 292.

On Day 7, Event 1 also occurred. The number of consumers able to participate in Period 1 was 265; in
Period 2 were 290; in Period 3 decreased to 277, and in the final period of the event 291 consumers were able
to participate. On the third day of Event 1, Reliability Rate 3 had the highest number of elements over time.

On Day 10, the DR event occurred between 6 pm and 7 pm. For the first event of this genre, the HR
was the only rate considered in this Initial Rate. For Period 1, there were 253 elements capable of
participating in the scheduling; in Period 2, 15 elements were added; Period 3 increased to 22 elements
and, finally, for Period 4 the number of elements reached 292.

Day 13 had an Event 2, similar to the previous day. The number of elements in Reliability Rate
1 decreased from 58 to 9 at the end of the DR event. Reliability Rate 2 increased ten elements comparing
the initial and the final period. Reliability Rate 3 doubled the number of elements. Regarding Reliability
Rate 4 elements, it decreased the number of elements from 108 to 85. Reliability Rate 5 also had a
relative decrease in the number of elements comparing the beginning and the end of the event (�82%).
Day 16 was also one of the Event 2 days. The third event of this type counted with 247 consumers in
the first period of the event, 277 in the second, 298 in the third, and 306 in the final.

Regarding Day 19 from the study month, an event between 11 am and 12 am occurred, being the
fourth of Event 1 type. At the beginning of the event, 247 consumers were available to participate.
For the following periods, this number increased to 22, 46, and 49 elements.

The final two events from type 2 happened on Day 22 and Day 25. The number of elements increased
over time for both situations, with 304 and 299 elements, respectively, being able to participate at the end of
the event.

The last event of the studied month was type 1, as can be seen in Table 4. Both Reliability Rate
1 and Reliability Rate 5 decreased the number of elements over time, meaning that consumers’ rates
were updated to the groups in-between. In this case, the Reliability Rate 3 had the highest number
of elements in the final period of the event, and through Event 1 it was possible to notice the impact
from the last day in the number of elements per period. In Period 1, when comparing the number of
elements in the first day of this type of event with the last one, the total of elements able to participate
decreased by 1.60%. Regarding Period 2, the number of elements increased by 1.8%. For Period 3,
the impact was higher than the previous ones, increasing by 14.23%. However, Period 4 was the one
with a more significant di↵erence (24.28%).

Now, Event 2 had a distinct outcome since the percentual di↵erence between the number of
elements in the first day of this type of event (per period) and with the last one did not reach 5% in all
periods. Comparing with the other occasion, maybe this period of the day brings more discomfort to
the consumers and less are willing to reduce their consumption.

3.1.2. Scheduling and Re-Scheduling Results

In this subsection, the results from the scheduling of the local community according to the method
are presented. This method considers that all consumers with reliability rates above the nominated
minimum are convoked. Still, the proposed optimization will decide which of those are selected to
achieve the DR target for the events. Figure 4 shows the initial load curve for the event days (darker
colour) and the values of the DR target (medium colour) and actual reduction (lighter colour) from each
period. A more comprehensive chart of the DR event is also presented. Moreover, di↵erent colours
were applied to ease the distinction between the type of events: One is green, and two is blue.
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two is blue. 
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(c) (d) 

  
(e) (f) 

 
(g) (h) 
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Figure 4. Scheduling results for: (a) Day 1, Event 1; (b) Day 4, Event 1; (c) Day 7, Event 1; (d) Day 10,
Event 2; (e) Day 13, Event 2; (f) Day 16, Event 2; (g) Day 19, Event 1; (h) Day 22, Event 2; (i) Day 25,
Event 2; (j) Day 28, Event 1.
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In the Day 1 period of the DR event, the initial load floated between 1510 and 1568 kW, with
the DR target of 100 kW being achieved in all the events: Period 1 with 1402 kW; Period 2 with
1425 kW; Period 3 with 1444 kW, and Period 4 with 1459 kW. For Day 4, the initial load curve had a
more significant di↵erence between the initial and the final period of the event (1309 and 1437 kW).
The actual reduction was always above the DR target—highlighting Period 1 and Period 2, where this
value was more than 10 kW higher than the expected. In Day 7, the actual reduction was also above
the target passing the load curve from 1489 to 1382 kW in Period 1; from 1506 to 1392 kW in Period 2;
from 1529 to 1423 kW in Period 3, and from 1542 to 1432 kW in Period 4.

Between 6 pm and 7 pm on Day 10, the initial load curve increased from 1423 to 1511 kW. In this
event, the DR target is achieved, and the maximum actual reduction reached 8 kW higher than the
expected. Regarding Day 13, the initial load curve, at the beginning of the event had, for Period 1,
1263 kW and reached 1151 kW with the actual reduction. Regarding Period 2, decreased from 1385 to
1274 kW; Period 3 started with 1415 kW and finished with 1308 kW and, finally, for Period 4 the actual
reduction were reduced from 1442 to 1339 kW. As can be seen in Figure 4f, the DR target was achieved
in all periods of the event for Day 16—the maximum reduction that was completed in the first period
of the event decreased the initial load from 1254 to 1142 kW.

Day 19 returns to the type 1 DR event, with the DR target being also accomplished. For Period
1 the initial load was 1232 kW, and 110 kW were reduced; Period 2 started with 1240 kW and were
reduced to 106 kW; Period 3 initially had 1245 kW where 110 kW were reduced; in Period 4, 101 kW
were reduced from 1254 kW.

Day 22 and Day 25 had the same type of event (1), and the actual reduction was higher than the
DR, not reaching 10 kW higher than the denominated value of DR target.

The last Event 2, Day 28, the actual reduction for Period 1 was 106 kW; for Period 2 was 104 kW;
for Period 3 was 107, and for Period 4 was 111 kW.

Through this stage of the study and with Method 1, the Aggregator was able to select the proper
consumers initially—the ones able to reduce the DR target in the Scheduling phase being not needed
to resort to a Re-scheduling in the following days: Day 13, Day 16, Day 28 resorted to Re-scheduling
in Period 2 and Period 4. For Day 1 and Day 19, the opposite situation happened (Re-scheduling for
Period 1 and Period 3). In Day 4, Day 22, and Day 25, the Scheduling was enough to achieve the DR
target for Period 3, Period 2, and Period 4, respectively. Day 7 was the only one where all the periods
from the DR event needed a Re-scheduling. In total, the Re-scheduling step was required 25 times.

3.1.3. Rate Update and Remuneration

Figure 5 presents the accumulated number of elements in each group per period and day to the
two events.

According to the actual response of each consumer, the reliability rate is updated to the
final reliability rate of the current period. This rate is considered as LDR for the following
day. Additionally with of this value, the Remuneration Rate is found for each Reliability Rate
group—regarded as the maximum value detected in each group. When comparing with the results in
Figure 3, where the initial number of elements per Reliability Rate was presented, for Event 1, the group
with a higher di↵erence was Reliability Rate 3—the number of elements reduced for all the DR event
periods when comparing. The second group with the lower number of elements was Reliability Rate
4. For Reliability Rate 1 and Reliability Rate 2, the number of elements floated but always above the
initial value. Regarding Reliability Rate 5, the highest di↵erence record achieved an increase of 288.89%
from the initial value: Day 28, Period 4—started with nine elements and finished with 35.

Applying the same analysis to the results from Figure 5b, similar conclusions can retreat: Reliability
Rate 3 was the one where the frequency of negative percentages (lower number of elements than
initial) was higher, followed by Reliability Rate 4. The Reliability Rate 1 and Reliability Rate 2 had
increased their number of elements most of the time. The Reliability Rate 5 also had the highest
increase—366.67%, on Day 10, Period 4 – started with six elements and finished with 28.
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Having the updated rates, Table 6 introduces the remuneration values per period, day and
event, and the number of consumers’ needs for each period to achieve the DR target (# is the number
of elements).

Table 6. Remuneration.

Day
Period 1 Period 2 Period 3 Period 4

Total Day
(m.u.) # (m.u.) # (m.u.) # (m.u.) #

Event 1

1 27.64 73 28.30 71 27.32 70 28.02 68 111.28
4 28.33 50 28.84 60 25.06 58 25.39 53 107.62
7 27.19 73 28.02 72 26.86 70 27.87 71 109.94

19 28.05 75 27.11 71 27.95 70 24.91 68 108.02
28 27.00 72 25.83 72 26.59 69 27.17 67 106.59

Total Period 138.21 - 138.10 - 133.78 - 133.36 - 543.45

Day
Period 1 Period 2 Period 3 Period 4

Total Day
(m.u.) # (m.u.) # (m.u.) # (m.u.) #

Event 2

10 27.13 61 27.05 60 25.87 70 27.20 73 107.25
13 26.98 73 26.63 73 25.57 58 23.85 60 103.03
16 26.88 68 25.26 67 24.54 65 24.30 64 100.98
22 26.44 70 26.16 69 25.84 72 25.28 82 103.72
25 25.09 69 25.39 75 24.94 75 25.76 74 101.18

Total Period 132.52 - 130.49 - 126.76 - 126.39 - 516.16

According to the total remuneration per period, Period 4 is the one where the Aggregator spends
less in the compensation of the participants in the management of the community, for both events.
The total remuneration for Event 1 was higher than Event 2 because, in 14 of this event periods, the value
of actual reduction was much higher than the DR event (considering values below 105 kW acceptable).
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3.2. Cost Rate Method

The Cost Rate Method is a variant from the Basic Rate Method. The consumers that were not able
to increase their Reliability Rate may decrease their DR event cost to be selected by the optimization in
the Scheduling phase of the next period for the following DR event. As mentioned, this method and
the following will not have the same detailed explanation and analysis of the Basic Rate Method.

3.2.1. Initial Reliability Rate

Figure 6 introduces the initial number of elements in a Reliability Rate group per day and period.
The assumptions from Basic Rate Method for this phase are now applied: The initial reliability rate
considers the HR and the LDR. Moreover, the first day of each event does not have an LDR so, only
HR is applied. By analyzing Figure 6a, one of the points that stand out is the reduction of the number
of elements from Reliability Rate 5 through the days until it reaches a null value. This fact will have a
massive impact on the performance of this method—considering that only the elements with reliability
rates above the denominated minimum can join the scheduling phase. If the consumers with Reliability
Rate 3 and Reliability Rate 4 do not have enough reduction power available, a Re-scheduling stage will
be needed to achieve the DR target. Another highlight is the fact that the number of elements from
Reliability Rate 2 highly increased overtime. When comparing the number of elements in the first day
of this type of event with the last one, the total of elements able to participate in Period 1 decreased
by 1.60%. Regarding Period 2, the number of elements increased by 1.88%. The di↵erence for Period
3 was the highest being �49.62% from the initial value of participants. The amount of Period 4 was
also high, being �34.98%.
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About Event 2, the reduction of elements for Reliability Rate 5 started right on the first day of the
event, unlike Event 1. Giving this, the e↵ect in the comparison between the number of elements in the
first day with the last one was not so impactful. From Period 1 to 3, the number of elements floated but
always increased. Period 4, instead, decreased by 3.27%.

3.2.2. Scheduling and Re-Scheduling Results

Due to space limitations in this paper, the results are not shown for this method. Anyway, it has
been computed, and the rate update and remuneration are given in the next sub-section.

According to Figure 2, when the method that selected the consumers were not able to achieve the
DR event in the Scheduling, one or several Re-scheduling must be done. In this case, a maximum of
five more iterations was needed to accomplish the DR target. On Day 16 and Day 25, the first two
periods were able to meet the goal in the Scheduling. For Day 7, Day 10, Day 13, Day 19, Day 22, only
in Period 1 the objective was achieved with a Scheduling. In total, the Re-Scheduling step was needed
31 times.

3.2.3. Rate Update and Remuneration

Figure 7 shows the accumulated number of elements for each Reliability Rate group per period,
per day, and event. The missing Reliability Rate 5 for both events can be easily noticed.

 
(a) 

(b) 

Figure 7. Number of elements per Reliability Rate regarding final rate: (a) DR event 1; (b) DR event 2.

The formula used to update the reliability rate of each consumer is the same as the Basic Rate
Method but, the variant is presented here since the cost from the DR event can be updated according
to the reliability rate. In Figure 7a, Reliability Rate 1 was the one with a higher increase of elements
when comparing with Figure 6a—starting from +183.33% to +320.93%. Reliability Rate 2 was the other
one where this percentage was maintained above 0%. The remaining saw their number of elements
reduced. Regarding Figure 7b, the scenario is similar for all days: In the first period, Reliability Rate
4 still had some elements but, over time, tended to null. In this way, the final reliability rate resumed



Electronics 2020, 9, 349 17 of 24

into three groups. The remuneration provided by the Aggregator to the participants and the number
of participants per event is in Table 7. The period with a lower value was Period 3 for both events.

Table 7. Remuneration.

Day
Period 1 Period 2 Period 3 Period 4

Total Day
(m.u.) # (m.u.) # (m.u.) # (m.u.) #

Event 1

1 27.51 73 28.26 71 28.01 70 26.94 68 110.72
4 28.00 50 27.03 64 25.55 56 27.95 49 108.53
7 28.30 73 25.67 33 25.48 53 26.93 41 106.38
19 27.31 75 26.57 30 26.62 44 28.81 38 109.31
28 28.31 72 27.98 35 26.05 41 28.33 42 110.67

Total Period 139.43 - 135.51 - 131.71 - 138.96 - 545.61

Day Period 1
(m.u.)

Period 2
(m.u.)

Period 3
(m.u.)

Period 4
(m.u.) Total Day

Event 2

10 25.60 69 25.78 39 25.59 47 25.81 52 102.78
13 25.85 73 25.04 38 25.82 48 23.96 45 100.67
16 25.99 68 25.06 52 25.69 48 23.98 59 100.72
22 24.92 70 23.95 64 24.40 79 25.44 57 98.71
25 25.58 69 25.87 52 23.96 46 26.56 55 101.97

Total Period 127.94 - 125.7 - 125.46 - 125.75 - 504.85

Regarding the total remuneration per day, the lower value in Event 1 was on Day 7 with 106.38 m.u.
and for Event 2 was Day 22 with 98.71 m.u. When comparing Table 7 with Table 6, along with results
from the remuneration of the Basic Rate Method, the number of elements needed to achieve the DR
target is generally less.

3.3. Clustering Method

The Clustering Method is another variant from the Basic Rate Method. On the contrary to the
Cost Rate Method, the final cost stays the same. The only di↵erence is the technique for participant
selection—a clustering method is used to split each reliability rate into groups. The one with the higher
accumulated reduction from each reliability rate is selected, and all the elements are selected.

3.3.1. Initial Reliability Rate

The logic for the Initial Reliability Rate calculation is the same as previous methods, only the
selection of the consumers to participate in DR events is di↵erent. In this way, the HR and the LDR
are considered except on the first day of each event. Figure 8 introduces the number of elements
per Reliability Rate, for each day and per period. It is also separated by type of event. The number
of elements that could participate in the management of the community in the first event of type
1, for Period 1 was 250 being reduced by 1.60% by the last day. In Period 2, a little increase was
noticed (1.88%) being the Reliability Rate 3 the group with more elements. For Period 3 and Period 4,
the number of elements able to be selected increased by 15.77% and 27.16%, respectively.

Forward to Event 2 results in Figure 8b, Period 1 had an increase of 3.56% in the number of
elements above the denominated minimum. For Period 2, the number of elements increase was the
same as Event 1. Period 3 had the higher growth of elements in this event and to this comparison being
3.041%. Period 4 was the only one with a reduction, where the number of elements able to participate
reduced by 0.03%.
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3.3.2. Scheduling and Re-Scheduling Results

The clustering method was applied to each Reliability Rate group above three, and the selected
consumers were able to participate in the Scheduling. The days where a Re-scheduling was needed for
only one period in the DR event were Day 1, Day 10, and Day 13. Day 4 and Day 16 were the only
days where the DR target was achieved with Scheduling in one period, and the remaining needed
another iteration. On Day 7, Period 1 and Period 5 went to Re-scheduling. On Day 19 and Day 25,
Period 1 and Period 2 went to Re-scheduling. On Day 22, Period 2 and Period 3 went to Re-scheduling.
In total, the Re-scheduling step was needed 18 times, the lowest value from the three methods.

3.3.3. Rate Update and Remuneration

With the results from the Scheduling phase, it is possible to revise the Reliability Rate.
The Clustering Method has the same formula and weights as the Basic Rate Method, and no DR event
costs are changed. In this way, Figure 9 shows the results from this update. Reliability Rate 3 was the
one that su↵ered more changes negatively, since, in all periods of Event 1, the number of elements
reduced when compared with the initial value. Reliability Rate 5 was the one with a higher sum of
elements when compared with the initial number; however, the maximum number of elements was
never higher than 70, as well as Reliability Rate 1. In this way, most elements are concentrated between
Reliability Rate 2 and Reliability Rate 4. Regarding Event 2, the picture is similar: Reliability Rate
1 and Reliability Rate 5 with fewer elements, having the last one the higher increase in Day 10, Period
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3 passing from 3 to 28 elements. Over periods, regarding Reliability Rate 5, the tendency seems to
increase the percentage of elements.
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Forwarding to the remuneration of the participants, Table 8 presents the compensation values and
the number of elements needed to achieve the DR event target. For the analysis of Event 1, the most
expensive period was the first one. Still, over time the value reduced being the last one the cheapest
from the perspective of the Aggregator—also, fewer members were needed to achieve the target.

Table 8. Remuneration.

Day
Period 1 Period 2 Period 3 Period 4

Total Day
(m.u.) # (m.u.) # (m.u.) # (m.u.) #

Event 1

1 27.85 52 32.60 23 29.57 15 25.61 28 115.63
4 31.16 28 28.00 28 26.27 25 27.29 22 112.72
7 32.67 9 29.24 19 29.79 15 25.99 11 117.69

19 30.93 9 29.21 9 25.67 31 26.98 24 112.79
28 26.07 12 26.79 24 24.50 20 28.82 22 106.18

Total Period 148.68 145.84 135.80 134.69 - 565.01

Event 2

10 28.28 20 25.58 22 25.68 74 25.63 14 105.17
13 24.03 31 24.03 32 24.06 28 25.53 17 97.65
16 24.25 30 28.67 33 25.40 32 25.82 39 104.14
22 24.93 34 24.02 30 24.75 43 24.59 17 98.29
25 24.07 35 24.02 31 27.44 27 23.99 26 99.52

Total Period 125.56 - 126.32 - 127.33 - 125.56 - 504.77

In Event 2, the final remuneration per period was around 125 m.u., the lowest value achieved in
both Period 1 and Period 4. This event was also the cheapest to the Aggregator (in days: 504.77 m.u.).
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3.4. Consumer Reliability Rate Identification for Month—k-Means

A clustering method was used to identify a Month Reliability Rate to each consumer. This approach
was already applied for Clustering Rate Method. The idea is to study the centroid value to assign
proper rates according to the performance of that consumer over the entire month, for both events.
In this way, per consumer, a monthly curve per event was designed, and the rate was designated with
the maximum value found in the mentioned curve.

Figure 10 presents the total elements per Reliability Rate. The three methods were compared,
and the groups with null values were hidden. Considering that the Basic Rate Method is Method 1,
Cost Rate Method is Method 2, and the Clustering Rate Method is Method 3. Starting with Method 1,
Figure 10a finds the more significant number of elements between Reliability Rate 3 and Reliability
Rate 4 with a total of 394 elements. The other 12 elements were attributed to Reliability Rate 2 and
Reliability Rate 5.
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Figure 10. The number of elements per Reliability Rate over a month, being (a) DR event 1; (b) DR
event 2.

The results from Figure 10b are similar, although Reliability Rate 4 has more elements this
time: 244 elements. Moreover, Reliability Rate 4 increased the number of elements. Method 2 has
the highest number of elements in Reliability Rate 2 for both events: Event 1 with 388 and Event
2 with 374. The remaining consumers were attributed to Reliability Rate 1 and Reliability Rate 3.
Finally, Method 3 results were similar to Method 1. In Figure 10a, most consumers are centered
between Reliability Rate 3 and Reliability Rate 4, where the remaining were assigned to the higher
reliability rate. Regarding Figure 10b, Reliability Rate 4 has 251 elements when comparing with the
142 of Reliability Rate 3. The missing 13 were assigned to Reliability Rate 2 and Reliability Rate 5.
To justify these results and understand the behaviour of some consumers the following Tables 9–11
present the results from five selected consumers for Method 1, Method 2, and Method 3, respectively.

Table 9. Final Reliability Rate from selected consumers when using Method 1.

Consumer
ID

Final Month Rate Reliability
Rate 1

Reliability
Rate 2

Reliability
Rate 3

Reliability
Rate 4

Reliability
Rate 5Event 1 Event 2

41 4.40 (4) 4.00 (4) 8 12 2 3 15
119 3.20 (3) 3.00 (3) 0 12 18 10 0
162 4.00 (4) 4.00 (4) 1 6 17 13 3
232 3.00 (3) 4.20 (4) 7 14 6 6 7
356 3.40 (3) 3.00 (3) 6 9 14 11 0
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Table 10. Final Reliability Rate from selected consumers when using Method 2.

Consumer
ID

Final Month Rate Reliability
Rate 1

Reliability
Rate 2

Reliability
Rate 3

Reliability
Rate 4

Reliability
Rate 5Event 1 Event 2

41 1.80 (2) 2.00 (2) 16 24 0 0 0
119 2.00 (2) 1.80 (2) 16 20 4 0 0
162 2.00 (2) 2.40 (2) 11 25 2 2 0
232 1.60 (2) 2.00 (2) 23 16 0 1 0
356 2.20 (2) 2.00 (2) 16 19 5 0 0

Table 11. Final Reliability Rate from selected consumers when using Method 3.

Consumer
ID

Final Month Rate Reliability
Rate 1

Reliability
Rate 2

Reliability
Rate 3

Reliability
Rate 4

Reliability
Rate 5Event 1 Event 2

41 4.00 (4) 4.40 (4) 3 9 8 12 8
119 3.20 (3) 3.00 (3) 1 12 17 10 0
162 4.00 (4) 4.00 (4) 1 6 17 13 3
232 2.80 (3) 3.60 (4) 7 17 8 5 3
356 3.40 (3) 3.00 (3) 6 9 14 11 0

Consumer 41 and Consumer 162 were assigned to Reliability Rate 4 for both events in Method
1 and Method 3. In Method 2, both decreased two levels. Consumer 119 and Consumer 356 were
assigned by Method 1 and Method 3 to Reliability Rate 3 and by Method 2 to Reliability Rate 2.
Consumer 232, in Method 1, was assigned to Reliability Rate 3 in Event 1 and Reliability Rate 4 in
Event 2. In Method 2, the Reliability Rate 2 was attributed to this consumer. Finally, Method 3 was
assigned the Reliability Rate 3 in both events.

3.5. Reliability Rates over Di↵erent Seasons

From the previous sub-sections, one consumer was chosen by the authors to examine the behaviour
and the possibility of reliability change throughout the year. In this way, prior results from April
were compared with a month in another season with October in Autumn being chosen. October 2018,
in Portugal, was classified as usual regarding air temperature and as dry concerning precipitation.
The month of April 2018 was pouring and normal regarding air temperature.

Figure 11 presents both initial and final rates for Consumer 41 to the ten di↵erent events simulated
in these months. The highlight rates (black outline) represent the times when the consumer was
selected to participate in the scheduling. Method 1, for both months, was the one that considered more
times in the management of the local community.

On the contrary, Method 3 only chooses this costumer one time. Using a clustering approach where
only the ones with the higher value of reduction are adopted, it can be concluded that a re-scheduling
was needed in the DR event from October 28, also considering the consumers with Reliability Rate 4.
In this way, the detailed overview of Method 1 and Method 2 was done. Regarding the comparison
between the initial and final rate for both months, studying the availability and the possibility of
reliability change through seasons, for Method 1, for the selected consumer the results were inferior in
October since there was a decrease in the reliability rate 30% across the several DR events comparing
with 18% from April. The highest share is represented by the equal reliability rate: 45% in October and
55% in April and the periods where the reliability rate increased represent 25% and 28% for October
and April, respectively. However, the actual response from this consumer did not have a considerable
di↵erence between the selected months and seasons. The authors of the present paper consider that
further studies must be done regarding the number of days submitted to DR programs, di↵erences
between periods of the day and compensation. Regarding Method 2, the values were worst in April
since 70% of the reliability rates decrease over the DR events.
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(f) Method 3—final rate.

The authors are aware that this study did not represent all communities but goes according to
what was said by Srivastava et al. [27] in their research understanding the willingness of the consumers
to accept limits on the use of smart appliance-based DR program in return for a recompense. One of the
main conclusions from these authors was that consumers are motivated by the amount of compensation
they would receive for the flexibility given. Since one of the main focuses of the small consumers is the
comfort—the abdication of this goal would require high remuneration. Therefore, this method must
be reformulated.

4. Conclusions

The solution proposed in the present paper has as the main goal of defining a proper approach
to aid the Aggregator in the complex management of small resources in a local community, taking
into account the uncertainty associated with the demand response. The literature presents fewer
approaches considering this problem. Hence, the authors introduce, as a noble factor from previous
works, a Reliability Rate that will be useful to decide which consumers this entity may trust in a
certain period for a DR event with a specific DR target. The goal is to minimize the operation costs,
for the Aggregator, with an optimization to manage all the resources associated with this entity—
small consumers and DG are considered, and still achieve the DR target when DR events occur.
The case study had a dataset with information from all the resources for a whole month. Regarding the
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Scheduling phase, the proposed methodology is suitable to be used as a tool to aid the Aggregator
in the management of a local community where DR targets are applied. Although some periods
need Re-scheduling, it is considered as a successful approach to deal against the uncertainty of the
consumers and a step forward when comparing with previous works by the authors since the DR target
was always achieved. The technique of aggregate consumers with higher reduction power between
the rates with more reliability was the one with lower failures. Additionally, from the perspective of
the Aggregator, the one with lower remuneration costs.

By analyzing results from three methods, the duration of the DR event as an impact on the
actual response of the consumers. Independent of the event, when comparing the first period and
the remaining, a notorious increase of Reliability Rate 3 can be noticed. Several conclusions can be
withdrawn from this study:

• A 15-min interval between actualizations of the actual response is a bearable time for a DR event
to have more reliable answers and understand the condition of each consumer;

• The Aggregator, as a community manager, must take into account not only the past information
but also the actual response for the previous event in the calculation of the initial rate to consider
the results of earlier events. Although the historic quota is relevant, the behaviour of the consumer
and recent information may indicate a change useful for the reliability;

• The remuneration for participating in DR programs is essential. When the value of compensation
decreases, the consumers were less willing to contribute to the balance of the local community.

Overall, the approach implemented in this paper is found to be useful in assessing and rewarding
the consumers’ performance, giving reliability signals to the Aggregator after the enrolment phase,
in opposition to traditional approaches where consumer participation in DR is assessed in each
event individually.

Anyway, more improvements and further studies are needed. As future work, authors intend
to investigate: The behaviour of consumer—according to the period of the day, day of the week,
and month or even to an entire season. The ways to incentivize their participation is to increase their
reliability rate since the consumption habits can vary through the year and the right remuneration
is crucial.
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Resumen 

La presente revisión se ha llevado a cabo utilizando la metodología PRISMA y 
analizando 218 artículos publicados. Se ha realizado un análisis exhaustivo del 
papel del consumidor en el mercado energético. Además, se han revisado los 
métodos utilizados para abordar la incertidumbre en la respuesta a la demanda 
y las estrategias utilizadas para mejorar el rendimiento y motivar la participación. 
Los autores encuentran que los participantes estarán dispuestos a cambiar su 
patrón de consumo y comportamiento siempre que tengan plena conciencia del 
entorno del mercado y busquen la decisión óptima. También se encuentra que 
una solución contextual, que brinde las señales adecuadas según los diferentes 
comportamientos y los diferentes tipos de participantes en el evento de respuesta 
a la demanda, puede mejorar el rendimiento de la participación de los 
consumidores, proporcionando una respuesta confiable. La respuesta a la 
demanda es un medio de gestión del lado de la demanda, por lo que ambos 
conceptos se abordan en el presente artículo. Finalmente, se discuten las 
direcciones futuras para la investigación. 
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A B S T R A C T   

The present review has been carried out, resorting to the PRISMA methodology, analyzing 218 published articles. 
A comprehensive analysis has been conducted regarding the consumer’s role in the energy market. Moreover, the 
methods used to address demand response uncertainty and the strategies used to enhance performance and 
motivate participation have been reviewed. The authors find that participants will be willing to change their 
consumption pattern and behavior given that they have a complete awareness of the market environment, 
seeking the optimal decision. The authors also find that a contextual solution, giving the right signals according 
to the different behaviors and to the different types of participants in the DR event, can improve the performance 
of consumers’ participation, providing a reliable response. DR is a mean of demand-side management, so both 
these concepts are addressed in the present paper. Finally, the pathways for future research are discussed.   

1. Introduction 

In the local electricity markets, bottom-up approaches have been 
proposed to boost the involvement of local grid operators and encourage 
the active participation of small consumers [1]. These tactics are crucial 
to successfully penetrate Distributed Generation (DG) technologies in 
the current network, avoiding the use of fossil fuels. So, by focusing on 
the empowerment of the local resources, namely active consumers’ 
flexibility, the potential of renewable energy resources can be explored 
without jeopardizing the system’s reliability and security. 

Progressing towards a future where the demand side has greater 
importance in the system, consumers should follow the signals from 
network or utility companies. To achieve system balance, their response 
is crucial [2]. Many advantages come from this approach, such as real 
choices to end-users, new opportunities and challenges, more competi-
tive prices; effective investments; higher service standards; security of 
supply, sustainability; and the decarbonization of the electrical system 
[2,3]. The Demand Response (DR) concept and the respective programs 
were then defined [4]. Nevertheless, it is important to enabling tech-
nologies such as the Internet of Things (IoT) to be used to raise the 
consumers’ awareness and their contribution to market transactions [5]. 

1.1. Contextualization and background 

In the former paradigm, the system operator considered the load 
from electricity consumers in power and energy systems as rigid. 
However, each consumer has a set of appliances that do not have a fixed 
schedule and can be used flexibly by introducing the DR definition [6]. 
This concept means that following the different signals, the consumer 
uses them at different times or does not use them. In recent years, 
numerous definitions of DR have been proposed. A commonly used 
definition says [7]: “… tariff or program … to motivate changes in electric 
use by end-use customers … changes in the price of electricity over time, … 
incentive payments … high market prices … grid reliability …”. A more 
recent one, published in European Directive 2019/944, says [8]: “… 
change of electricity load by final customers … market signals … 
time-variable electricity prices or incentive payments, …final customer’s bid 
to sell demand reduction or increase … market … alone or through 
aggregation”. 

Until introducing the smart grid concept and DR, the consumer had 
no direct information regarding the market transactions. With the 
growing concern regarding climate change, the role of this new player 
must be empowered. Due to the volatile behavior of DG, it is crucial to 
make the consumers the center of the business model and consider their 
flexibility as fundamental to achieve the system balance. A consumer- 
centric approach has countless advantages, for example, for flexibility 
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markets, where the main players are [1]: Transmission System Opera-
tors (TSO), Distribution System Operators (DSO), Balance Responsible 
Parties (BRPs), aggregators, and retailers. The TSO is responsible for the 
service and stability of the transmission system, while the DSO is the 
entity responsible for the distribution system’s operation. TSO/DSO 
collaboration is crucial to unleashing the potential of flexibility [9,10]. 
The retailer is a commercial entity selling electricity to consumers. The 

aggregator gathers flexibility through renewable-based and active con-
sumers [11]. 

In this way, the DR definition must also comply with time flexibility. 
Thus, DR programs have different timescales, as presented in Fig. 1, and 
range from several years (on the left) to real-time (on the right). Year- 
long timescales are usually applied to improve long-term planning. 
Shorter timescales are more devoted to incentive-based DR programs, e. 
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RL Reinforcement Learning 
RTO Regional Transmission Organization 
TLP Typical Load Pattern 
TOU Time of Use 
TSO Transmission System Operator 
VaR Value at Risk  

Fig. 1. Electric Power System and Demand Response implementation timescales.  
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g., applying Direct Load Control (DLC). 
The performance from consumers’ participation and how they react 

to a given signal are critical topics to successfully implement DR pro-
grams [6]. From the perspective of the entity requesting DR, gathering 
this type of information to give the right signals to the right consumers 
and the proper remuneration that will fit their needs is the right path to 
reduce the response uncertainty and maintain the system reliable and 
secure [6]. From the active consumers’ perspective, the type of con-
sumer participating in this type of event matters. The residential con-
sumer’s response is highly affected by the level of discomfort caused 
during a DR event [12]. However, industrial consumers’ goal is to 
maximize their profits when participating in these programs and while 
managing any discomfort [13]. 

For this reason, different objectives require different approaches. 
Thus, it is necessary to respond to the consumers by adopting different 
approaches and contexts. Although approaches in the literature 
encourage consumer participation, most of them are profit-driven 
[14–16]. 

1.2. Motivation and contributions 

The main motivation of the present literature review is to understand 
the current state-of-art of approaches to the uncertainty, performance, 
and reliability of consumer participation in DR programs. Some of the 
questions are: Is it important to deliberate methods to reduce uncer-
tainty and enhance consumers’ participation in DR programs? Should 
the distinct types of active consumers be treated differently? Should the 
individual behavior be analyzed to find proper methods of incentivizing 
each consumer’s response? The authors have found interest in these 
questions after analyzing the related literature, as explained from now 
on, and finding the need for it doing their research. 

The authors want to understand the implications of adding such an 
uncertain player into the current system. In the previous paradigm, 
consumer contributions were indirect, having little or no knowledge 
regarding this matter. Gathering different algorithms, solutions, and 
conclusions into a single document summarizing the current state of the 
art regarding this topic can be useful to create better-quality models. As 
far as the authors’ knowledge, the DR concept has already been applied 
in some real markets but is still fresh in others. These new players should 
be further studied and understood to achieve a successfully imple-
mented solution throughout the system. Their response is uncertain and 
could impact the performance of the remaining players in the market, 
jeopardizing the security and reliability of the system. For instance, in 
the review carried out by Ivana Dusparic et al. [17], whose focus was the 
residential DR, several algorithm characteristics have been discussed, 
concluding that performance concerning the algorithm for a particular 
DR implementation has been discussed energy use should be considered. 
The conclusion of this study emphasizes that a DR approach may use 
more than one algorithm that can be combined to meet the imple-
mentation requirements. Each solution must be tailored to a particular 
context. 

Thus, context is also an important topic addressing DR programs that 
need to be customized. For instance, the type of consumer, their energy 
patterns be influenced by climate, and many more in the review pub-
lished by Miadreza Shafie-khah et al. [13] where the recent advances in 
DR for industrial and commercial sectors were studied, as well as the 
benefits and barriers associated with their role. The authors categorized 
the different business models and objective functions. Consumer 
behavior was mentioned referring to trust level among parties – high 
trust levels should be sufficient to prevent any barriers to viewing DR as 
a reliable source, and widespread adoption of DR programs – lack of 
understanding of the benefits of DR can cause less investment by 
different parties. 

A broader review of the barriers and enablers of DR in the Smart Grid 
was conducted by Nicholas Good, Keith Ellis, and Pierluigi Mancarella 
[18]. The barriers were categorized into fundamental and secondary, 

producing a comprehensive and discrete classification. The first ones 
include challenges related to intrinsic human nature, namely social/-
economic barriers and enabling essential technology. The second type of 
barrier is related to anthropogenic institutions, such as regulations en-
tities or markets, or even the resulting behaviors from feedback in 
response to DR participation, known as physical constraints. One of the 
study’s important highlights is behavioral economics, which indicates 
that individual factors play a critical role in shaping consumers’ de-
cisions. In the paper, these authors refer to those behavioral aspects 
attracting more interest more recently. The focus is especially for resi-
dential and small commercial consumers, where the uncertainty has 
been emphasized as a particularly inflexible barrier to the exploitation 
of DR. 

Furthermore, with an emphasis in terms of social welfare losses, 
Marilena Minou, George D. Stamoulis, and Thanasis G. Papaioannou [15] 
study considers that appropriate policies and demand reduction strate-
gies exploiting altruism can benefit consumers (mainly in 
contracted-based Automated DR (ADR) programs and considering the 
consumers’ preferences external contexts). Regarding the ADR provider 
perspective, the benefits will come in terms of incentive costs. However, 
the leveraging of altruists should be performed carefully. They are 
saddle with high energy reductions. Moreover, although yielding in 
small values of total incentives, they can yet prove inefficient for the 
social welfare of the system. 

Consequently, with introducing these new concepts, the policies 
must be updated. Policymakers are making advances to create common 
rules for the new paradigm. In Europe, the Directive (EU) 2019/944 
[11] recasts Directive 2012/27/EU on common rules used in the internal 
electricity market. It puts citizens at the center as they take ownership of 
energy transition and take advantage of innovative technologies to 
decrease costs by actively participating in the market, with the most 
vulnerable consumers being protected. Also, it was mentioned that the 
retail market should serve consumers better, notably by improving the 
links between the wholesale and retail markets, allowing all consumers 
to participate in the transition of energy and contribute to the overall 
reduction of energy consumption by providing efficient solutions. This 
results in more flexible markets and fully integrates all market players, 
including renewable energy producers, new energy service providers, 
energy storage, and flexible demand. 

The present literature review discusses the uncertainty, perfor-
mance, and reliability of consumer participation in DR programs. An 
innovative exploration is made into the behavior of active consumers 
and the aspects that may impact their response – which is highly un-
certain and difficult to predict – and, consequently, impacts their per-
formance and energy management reliability. Thus, the authors 
consider as a hypothesis, that the need for a more in-depth study of the 
influence of the context on the response should be explored and the 
different compensation techniques for the distinct types of active par-
ticipants. The Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) methodology is used. 

The present paper is then organized into seven sections. An intro-
duction is provided in section 1. Then, in section 2, the methodology 
followed to carry out this research review is described. Section 3 and 
Section 4 show, respectively, mechanisms to control DR and techniques 
and methods applied to DR. This is followed by Section 5, where con-
sumer response uncertainty, performance, and reliability for DR are 
presented. Section 6 discusses the findings. Final remarks are presented 
in section 7. 

2. Methodology 

A systematic literature review has been performed considering the 
PRISMA methodology [19]. The present literature review started with 
formulating the research questions in the first phase: Should the distinct 
types of active consumers be treated differently? Should the authors 
analyze individual behavior in-depth to find proper methods for 
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incentivizing their response? How the consumers’ performance can be 
improved in DR programs? The current study focuses on finding answers 
to these questions in the reviewed literature. 

The second phase of a systematic review involves the inclusion and 
exclusion criteria. The research results were obtained considering the 
following:  

1. Include 
a. Describe any Demand Response tactics and other related con-

sumer concepts (namely Demand Side Management or Consumer 
Flexibility).  

b. Consumer Behavior analysis considering their performance or 
response uncertainties.  

c. Document related to the Demand Response topic or similar, 
referring to the keywords considered as important by the authors 
(refer to Table 1).  

2. Exclude  
a. No access to the full paper.  
b. Written in a language other than English or Portuguese. 

The authors selected the online research tools and the multiple da-
tabases in the third phase. The five chosen databases were Web of Sci-
ence, Science Direct, SciELO, IEEEX, and ACM. Table 1 presents the 
definition of the keywords and expressions that have been used. 

Clarification of definition comparison for “performance” and 
“behavior” should be done. When the authors refer to consumer 
behavior, it means the players’ actions to respond to a DR event in a 
certain context. Performance is related to the actual consumer response 
quantification, i.e., how much KW or KWh of reduction was provided. 

A research equation must be formulated according to the language of 
each tool. For instance, Science Direct does not support the substitution 
symbol, also known as wildcard, represented by a “?” or truncation 
symbol represented by a “*.” Both symbols are useful for substituting 
letters within a word or retrieving words with the same origin. However, 
all the remaining research tools supported the utilization of Boolean 
operators for the formulation of research equations, for instance (“De-
mand Response” AND Uncertainty* AND Real-time). The quotation 
marks mean that the word must be contained within the resulting 
document. 

Several levels, resulting in different combinations of keywords or 
expressions, have been applied and are presented in Fig. 2. 

In this way, the keywords in the first three levels must exist within 
the full paper searching these fields: title, abstract, keywords, or ’all 
fields’ (search simultaneously in all record fields). The research finished 
in May 2021, so the listed references are published until this date. 
Therefore, the studies considered in this literature review have been 
published no farther than five years before this research. This assures 
that only the most recent studies have been considered. 

Level 4 was considered for online research tools such as Science 
Direct, which does not support wildcards, for instance, when there were 
important related words within level 3, in plural form, or varying in 
spelling (American English vs. the United Kingdom English) like 
behavior and behavior. 

Moving on to evaluating the obtained results, Fig. 3 represents a 
systematic review of the information flow. In the Identification stage, 
the agglomerated number of the identified records is too high 
(3,148,838 records). Still, it must be highlighted that there were five 
databases, several combinations of keywords, and the number also in-
cludes duplicate material and papers from different languages and areas. 
However, after analyzing the results, the research equations where most 
of the non-related documents were found included the keyword “flexi-
bility” – should be reformulated as “load flexibility” or “consumer 
flexibility” to avoid an excessive number of references from other areas. 

During the screening stage, the duplicates, non-related references, 
and documents in languages other than Portuguese and English were 
excluded reducing the total to 6,784 records. After that, to filter the 

Table 1 
Keywords and expressions (ordered by relevance).  

Keyword Definition 

Demand Response 
(Flexibility, 
Program, 
Participation, 
Performance, 
Uncertainty, 
Reliability) 

According to the Directive 2019/944 (EU), the 
definition of Demand Response is “the change of 
electricity load by final customers from their normal or 
current consumption patterns in response to market 
signals, including in response to time-variable electricity 
prices or incentive payments, or in response to the 
acceptance of the final customer’s bid to sell demand 
reduction or increase at a price in an organized market 
“[11]. Thanks to real-time information exchange, 
active consumers can schedule their appliances 
according to signals designed to induce lower 
consumption, for instance, when system reliability is 
jeopardized. Their performance in these events will 
define the success of the DR implementation in real 
markets. So, the response uncertainty must be 
mitigated to increase reliability from the systems 
perspective [15,20–25]. 

Demand Side Management 
(DSM) 

Demand-side management is a portfolio of 
procedures to enhance energy systems’ utilization 
on the demand-side to meet several goals. These 
measures may include the management of 
consumption patterns of smart appliances, 
renewable energy systems, and home energy 
management systems to improve energy utilization 
efficiency [26–28]. 

Compensation 
(Remuneration, 
Incentive, 
Payment, reward) 

Benefits are given to a person to reward 
participation in a DR event to motivate continuous 
participation. Several types can be used, such as 
economic remuneration, for instance, discounts on 
the energy bill or shopping vouchers to be used in 
stores of the consumer’s choice, etc. This benefit 
should be fair and consider the remaining 
participants [29]. 

Penalty (Penalties) Punishment for not fulfilling the agreement on a DR 
program, where penalty policies may also exist for 
violating contract obligation [30,31]. 

Behavior (Behavior, 
Behavior, Behaviours) 

A set of reactions in response to the stimulus 
provided in a DR event. These can be signals sent to 
the active consumer to change the consumption in 
response to variations in the electricity price, 
incentives applied in high market prices, or when 
system reliability needs improvement [32]. 

Real-time According to the Directive 2019/944 (EU), in the DR 
area and the context of smart metering: “a short time 
period, usually down 2 s or up to the imbalance 
settlement period in the national market” [11]. 

Community (Communities, 
Local Community, Local 
Communities) 

In a DR context, an active community is a group of 
individuals working together for the same goal. In 
this way, distributed generation and consumer 
empowerment have made local energy communities 
effective and cost-efficient to meet consumers’ 
needs and expectations regarding energy sources, 
services, and local participation. In addition, these 
communities offer inclusive options for all 
consumers to directly produce, consume, or share 
energy [8]. 

Electricity Market Unlike other markets, electricity markets involve 
trading a service that cannot be easily stored and 
produced using a large variety of generating 
installations. Therefore, incorporating electricity 
markets requires a high level of collaboration among 
system operators, market participants, and 
regulatory authorities, particularly where electricity 
is traded via market coupling in the DR context [11]. 

Local Electricity Market Considering the electricity market definition, the 
local electricity market can be defined for a 
particular region. So, it can be thought of as a sub- 
market for a commodity that serves a specific 
purpose for that local community, including in DR 
programs [33].  
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articles that were not within the scope of this research, the title and 
abstract adequacy were verified. Finally, the records were subjected to a 
fluctuating reading guaranteeing their relationship with the study. 

According to Fig. 4 and Dataset II in Fig. 3, “Demand Response” has 
the highest influence in the dataset of level 1 keywords, with an influ-
ence of more than 55%. 

For level 2 keywords, “uncertainty” has the highest level of influence 

and exceeds “performance” by 4.5%. These two keywords have a higher 
level of influence than “reliability.” Unfortunately, the trustworthiness 
of the active consumer’s response to demand-side management methods 
is not yet addressed in the literature. 

The resulting dataset, Dataset IV, as defined in Fig. 3, was analyzed, 
and nine factors were highlighted as important for the role of active 
consumers in the electricity market. The keywords were grouped and are 

Fig. 2. Keywords combinations.  

Fig. 3. A number of records in the dataset at each step.  

Fig. 4. Keywords in Dataset II: a) related to level 1; b) related to level 2.  
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listed in Table 2. 
The following sections present the extraction, analysis, and inter-

pretation of the information found, the discussion, and conclusions from 
this systematic review. 

3. Mechanisms to control DR 

The present section organizes the reviewed papers according to the 
type of DR they addressed, indicating the ones that contributed to DR 
Uncertainty, Performance, and Reliability research. The detailed 
exploration of the works gathered in the dataset will be further discussed 
in section 5. Although many other DR programs can be defined, the 
authors selected those with higher mentions in the publications from the 
resulting dataset. Price and Incentive-based are the types of DR with the 
most references in the resulting dataset. Demand Response Exchange 
(DRX) and Electric Vehicles (EV) were the least referenced types of DR in 
the dataset. However, as mentioned by Zhiwei Xu et al. [119], the 
flexible resources from the demand-side can play a critical role in 
balancing the supply and the demand in the future smart grid, namely 
providing various DR services. One of these resources is the EV. How-
ever, as Bhagya Nahali Silva, Murad Khan, and Kijun Han [223] 
emphasize, EV owners’ security and privacy concerns is another chal-
lenge that limits the popularity of EV-based energy management 
because, although it is a hot topic, there are w low number of publica-
tions in the resulting dataset regarding uncertainty ([1,20,47,69,164, 
224–226]), performance ([59,104]) and reliability ([167]), as can be 
seen. Some of these works only refer to these resources, and it is not the 
focus of the study. Vehicle owners are hesitant to grant authority to 
control EVs to an Aggregator. 

3.1. Incentive-based 

Under incentive-type programs, consumers agree to participate ac-
cording to rules by signing contracts. These usually determine that 
penalties are applied to the consumer in case of lack of response in the 
contractual terms. J. Meng et al. [213] consider an incentive-based DR 
in their study and used a multi-dimensional DR evaluation method 
considering the several affecting factors such as response speed and 
response duration that can comprehensively evaluate the response 
performance of users on the power demand side and effectively quantify 
the contribution of its response to grid load regulation. In work done by 
Ioannis Konstantakopoulos et al. [178], they created an adaptive model 
that learns active consumers’ preferences and how they change over 
time to generate the appropriate incentives to ensure active participa-
tion. The uncertainty topic, regarding the incentive-based programs, 
were mentioned on [1,20,69,77,86,140,164,177,226]. The performance 
was an important topic in Refs. [14,21,84,115,125,140,144,146,147, 
195,213,215,227–229]. Lastly, fewer works mentioned reliability, 
namely [14,84,87,213,228]. 

3.2. Price-based 

Moving to Price-based, these programs are based on the energy price 
change, looking for the consumers’ response to those changes. This 
could lead to more randomness in consumer behavior when compared to 
incentive-based programs, for which the contractual rules determine 
predefined response behaviors. Still, there is always the freedom of 
choice from the perspective of the active consumer who has the power to 
disconnect the appliance. 

Active consumers can receive discounts by reducing energy demand 
during critical peak periods, as in the work done by Gerardo Osorio et al. 
[135]. Namely, Real-time Pricing programs are deeply intertwined with 
the wholesale market price, varying in real-time throughout the day. In 
the straightforward approach used by Byung-Gook Kim et al. [20], with 
dynamic consider the decision from the active players in their envi-
ronment and learn the dynamics of the entire system and find its optimal 
energy consumption scheduling based on the observations. Reliability 
was the keyword least mentioned for this type of DR program: [22,106, 
135,171,213,228,230]. The performance was started in 13 works: [40, 
117,158,186,192,195,202,205,213,228,231–233]. Finally, uncertainty 
was a mentioned in the following works: [ [20,29,36,40,43,46,47,65,98, 
100,106,112,116,118,119,121,133,156,161,185,186,214,231,232]. 

3.3. Both incentive and price based 

By analyzing the combination of these two types of DR programs in 
the resulting dataset can be concluded that performance and Reliability 
were mentioned in less than five works when combining these two types 
of DR programs: [195,213,228]. Two of them refer to these topics in 
their studies. The uncertainty was highlighted in Refs. [14,23,30,54,55, 
77,84,86,88,111,115,132,192]. 

3.4. Demand Side Management (DSM) 

DSM can be defined as the modification of consumers’ demand. As 
Julián Valbuena et al. [190] refer, DSM modeling at the building sector 
is challenging since the existing models are not flexible enough to 
incorporate a wide set of modeling features and guiding principles, 
while including all important aspects of end-use. The performance was 
the keyword with more mentions in the dataset gathered: [27,59,61, 
113,123,127,155,158,164,187,192,196,205,234–236]. Uncertainty 
was reported in Refs. [20,109,116,137,158,164,168,187,235] and the 
Reliability concept in Refs. [28,190,201,206]. 

3.5. Demand Response Exchange (DRX) 

DRX refers to a new DR scheduling program. Derived from the 
market clearing mechanism, the motivation for change in load is 
dependent on a bidding entity and not price or incentive. Therefore, load 
profile attributes should be assessed carefully before submitting any bid 
to avoid losing load satisfaction, higher electricity bills, system stress, 
etc. [195]. With this, only a few works refer to this DR program and only 
consider uncertainty and performance topics: [31,149,195]. 

3.6. Load shifting 

In this DR program, the Aggregator has permission to use consumers’ 
loads for DR within pre-specified limits for internal balancing. So, it is 
defined as shifting electricity consumption to another period. Pedro 
Faria et al. [32] proposed scheduling load-shifting opportunities per-
formed by a VPP. The main advantage is modeling the consumption 
shifting constraints (limits for each period/set of periods) from the VPP 
and the consumer standpoints. 

Mellouk et al. [187] scheduled energy consumption profiles for each 
active consumer. They are treated independently to determine the 
optimal distribution of devices’ operating time among different periods 

Table 2 
Main topics in the dataset IV.  

Keywords References 

Aggregator [13,34–67] 
Behavior [21–23,30,32,68–97] 
Prosumer [20,25,55],[98–138] 
Community [139–151] 
Compensation/Penalty [22,85–88,152] 
Electricity Market/Local 

Electricity Market 
[41–44,46,153] 

Participation [16,24,29,31,33,38,154–183] 
Program [14,16,26,43,48,184–215] 
Real-time [26,185,186,193,194,196,198–200,202–205, 

207,209,210,214,216–222]  
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to avoid peak hours generally characterized by the highest values for the 
cost coefficient. Load shifting is one of the types of DR with more studies 
regarding the performance topic: [32]. The reliability was not 
mentioned, and uncertainty has a total of 6 publications in the resulting 
database: [58,120,122,136,163,207]. 

3.7. Others 

Other less known DR types were found in the gathered publications. 
The keyword with more mentions was the uncertainty: [13,14,18,23,29, 
31,32,34,36,37,44,47,55,58,69,84,85,87,103,110,112,113,117–120, 
126,129,134,137,144–146,149,159,164,171,172,176,180,186,190, 
193,195,198,201,206,210,211,214,225,228,231,232,235,237–244]. 
For instance, Chen et al. [29] proposed a framework to encourage the 
new active players and their resources, such as parking lots with high 
penetration of electric vehicles, to participate directly in the real-time 
retail electricity market based on an integrated eVoucher program. As 
the authors mentioned, this program can work for various scenarios 
involving economic or physical extreme events. 

To study and select the right participants for a DR event, Yingying Li, 
Qinran Hu, and Na Li [77] formulate the DR problem as a combinatorial 
multi-armed bandit (CMAB) problem with a reliability goal. These au-
thors believe that the multi-armed bandit (MAB) method emerges as a 
natural framework to handle intrinsic and heterogeneous uncertainties 
associated with small consumers such as residential. 

Reliability was the second one with more mentions: [13,14,22,30,38, 
77,83,84,87,100,106,109,111,112,121,167,171,173,197,201,213,228, 
230,241,243,245]. As can be seen, some of the references were 
mentioned in both keywords search. Shuai Fan et al. [144] focused on 
large-scale DR. These authors mention that current incentive-based DR 
schemes are unsuitable for large-scale DR due to their centralized 
formulation, jeopardizing the system reliability. With this, propose a 
consumer directrix load (CDL), which is a desired load profile, to replace 
the customer baseline load (CBL). The authors refer that the uniqueness 
of this solution makes it more suitable for distributed schemes, while 
numerous CBLs must be calculated in a centralized manner to ensure 
fairness. 

The performance was the least mentioned keyword in the others 
point: [21,27,31,37,84,85,115,140,145,170,192,193,213,215,228, 
229]. One concern that has become major in the DR program design 
topic is resource privacy and preserving the managing entity. Amir 
Ghasemkhani et al. [246] affirm that active consumers’ privacy pro-
tection is being ignored when designing DR programs since their 
behavior patterns can be easily recognized when interacting with the 
managing entity. The proposed and commonly used solution in-
corporates perturbations in users’ load measurements. However, 
although it can protect the active consumers’ privacy, this modification 
would reduce the managing tools’ performance in achieving an optimal 
incentive strategy. Therefore, further studies should be developed to 
include privacy-preserving solutions. 

4. Technics and methods applied to DR 

Discussing the methods found in the resulting database, Artificial 
Intelligence (AI) methods were reviewed first and then non-AI methods. 
Although some methods can be converted into AI approaches, the pre-
sented studies used the method in their original form. 

4.1. Artificial Neural Networks 

Artificial Neural Networks (ANN) methods are the foundation of AI 
methods and are designed to simulate how the human brain analyzes 
and processes information. In the DR Uncertainty topic, as mentioned in 
Refs. [104,185] and for DR performance [77,180,196,209,215,247]. 
None of these works mentioned reliability. Renzhi Lu et al. [202] resort 
to both ANN and Reinforcement Learning (RL) to design an hour-ahead 

energy management scheme for different appliances within a HEMS, 
where ANN was used for price forecasting. 

4.2. Reinforcement Learning 

RL is characterized by Machine learning models trained to make a 
sequence of decisions to achieve a goal in an uncertain, potentially 
complex environment. All the keywords from level 2 were included in 
the RL works in the gathered dataset: uncertainty ([20,40,87,108,112, 
180,202]), performance ([20,77,87,180]) and reliability ([20,77]). For 
instance, Amir Ghasemkhani and Lei Yang [112] leverage RL to learn 
the users’ response functions. In theory, AI models can be subjected to 
gamified interactions between participants. 

4.3. Game theory 

Game Theory is considered the most vital mathematical branch was 
exploring the conflicts, collaborations, and strategic interactions be-
tween rational players within a single system by several authors such as 
Haytham A. Mostafa, Ramadan El Shatshat, and M. M. A. Salama [175]. 
Their study considered a participant system to achieve rational and in-
dependent interaction with several players, improving the distribution 
system. The works using this algorithm mentioned uncertainty ([47,54, 
59,85,113,125,144]), performance ([20,158,164,178]) but not 
reliability. 

4.4. Autoregressive Moving Average 

The autoregressive integrated moving average (ARIMA) is one of the 
easiest and most effective Machine Learning algorithms for performing 
time series forecasting. It is a generalization of the Autoregressive 
Moving Average (ARMA) model. The study of Hamed Mortaji et al. [48] 
indicated that load shedding using the ARIMA time series prediction 
model and smart, direct load control could remarkably reduce con-
sumers’ power outage. In the resulting database from the present paper, 
the uncertainty keyword ([21,36,44,58,65,115,173,202,214]), the per-
formance keyword ([21,58,87,115,124,202]) and the reliability 
keyword ([21,58,87,115,124,202]) were mentioned when using these 
algorithms. 

4.5. Clustering methods 

Researchers use Clustering Methods extensively in the power system, 
mainly to find patterns in electrical loads, as in the study conducted by 
Mansour Charwand et al. [91]. The cluster analysis was mentioned 
works where the uncertainty keyword ([115,143,150]), performance 
keyword ([73,215]) and the reliability ([26,126,137,139,146–148,151, 
214]) were referred. The last one has a higher number of publications. 

4.6. Fuzzy theory 

Fuzzy theory can also be applied, and the research approach can deal 
with ambiguous, subjective, and imprecise judgments. In the resulting 
dataset, when looking for fuzzy theory algorithms, uncertainty ([91,107, 
149,163,195]), performance ([83,91,124,149,163,186,195,248]), and 
reliability ([13,83,117,121,248]) keywords were found. For example, 
Fuzzy Inference System (FIS) was used and compared with other non-
fuzzy approaches by Skrikanth Reddy K et al. [149], where the superior 
performance of FIS concludes the efficacy of this type of model for 
processing load profiles and behavior (willingness) in designing the DR 
bids for market participation. 

4.7. Model-based predictive control 

Model-based predictive control (MPC) has attracted the researchers’ 
attention to this area due to its prediction abilities, quick processing 
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capacity, and suitability for multivariable control operations. However, 
few works mentioned this algorithm, including only uncertainty ([86, 
122,123]) and performance ([86]). For instance, Farzad Arasteh and 
Gholam H. Riahy [123] developed a real-time algorithm to systemati-
cally coordinate the DR programs and ESS operation in market-based 
wind integrated power systems. 

4.8. Conditional Value at risk 

In the DR perspective, Conditional Value at Risk (CVaR) can be used 
for the stochastic program for decision making of DR aggregator 
considering various sources of uncertainty, as done by Homa 
Rashidizadeh-Kermani et al. [55]. Since CVaR as a risk measure was 
embedded in the problem to control different levels of risk associated 
with profit volatility. Works using this algorithm also mentioned DR 
uncertainty ([36,55,121,211]), DR performance ([86,119,121,131]) 
and DR reliability ([119,228]). 

4.9. Monte Carlo Simulation 

Probabilistic models incorporate random variables and probability 
distributions into the model. Confronting this stochastic solution with a 
deterministic model with only a single possible, a probabilistic model 
gives a probability distribution as a solution. Many works mentioned 
probabilistic models also including uncertainty ([65,98,110,120,133, 
136,191]), performance ([77,140]) and reliability ([47,154]). One of 
the best-known probabilistic methods is the Monte Carlo Simulation 
(MCS). Zvi Baum et al. [14] resort to MCS the of design a convenient 
framework to estimate Dynamic-Active DR’s performance in which the 
stochastic characteristics of supply and demand can be reflected and the 
behavior of the system over time, in response to both external and in-
ternal influences, can be modeled. This algorithm was also mentioned in 
publications with uncertainty ([14,25,106,109,159,214]), performance 
([38,41,56,98,119,180,190]) and reliability ([59,98,137,154,180]) 
were highlighted. 

4.10. Markov Chain 

Also, the Markov Chain (MC) follows probabilistic rules and is a 
common, relatively simple means of modeling statistically random 
processes. Yue Yang generates an MC model at an appliance level to 
capture temporal and inter-device correlations in power consumption. 
Further works with MC refer to uncertainty ([24,111,137]), perfor-
mance ([86,137]) and reliability ([13,86,101,123]). 

4.11. Others 

Other algorithms were also found in the resulting database, however, 
they only refer to uncertainty keyword ([21,23,29,30,34,43,46,58,60, 
69,77,83,84,88,105,116–118,126,132,134,140,152,156,157,161,186, 
192,207,231,232]). 

5. Uncertainty, performance, and reliability of the DR 
participants 

The role of the consumer is changing. These new players are 
becoming more active participants with a great influence on system 
reliability, so their performance must be enhanced, and the response 
uncertainty dealt with. The focus of the present section is the main 
keywords found in the studies from the dataset obtained: uncertainty, 
performance, and reliability. 

5.1. DR uncertainty 

DR resources’ load reduction process is stochastic, statistical, and 
stationary [169]. Many approaches are used in the literature, but many 

consider probabilistic distribution regarding the participation uncer-
tainty dilemma and how it was dealt with. According to Bo Zeng and 
Xuan Wei [107] study, where the Capacity Credit (CC) from DR is 
assessed, which accommodates probabilistic and possibilistic un-
certainties. The definition of CC was developed to quantify DG re-
sources’ capability to offer the capacity to power systems. However, the 
DR participants’ flexibility could play a similar role in the Smart Grids 
concept, so the definition was extended. These authors resort to the 
fuzzy theory to express the uncertainty introduced by incomplete in-
formation and probabilistic propagation technique to describe the 
human-related uncertainties, standardizing them under the same 
framework. Consequently, the value of participation level changes with 
the decision-making during operation, making the formulation a 
time-dependent model. In the case of Smriti Singh and Ashwani Kumar 
[100], the MCS was used to model the uncertainty in consumers’ 
participation, extracting samples that correspond to the most probable 
event. Since the active consumer often fails to reduce their load due to 
some external factors, the authors developed a probabilistic load model 
based on a normal distribution function according to the available his-
torical load data. The uncertainties related to the stochastic variations of 
the variables involved in residential DR include load demand, user 
preferences, environmental conditions, house thermal behavior, and 
wholesale market trends. As Pierluigi Siano and Debora Sarno [214] 
believed, they can be modeled using the MCS method. 

As mentioned earlier, besides MCS, MC is a stochastic process in 
which the present status is quite independent of past or future ones being 
suitable for modeling the uncertainty introduced by DR participants 
[123]. Abbas Tabandeh, Amir Abdollahi, and Masoud Rashidinejad 
[111] share this opinion and mention the importance of Advanced 
Metering Infrastructure (AMI) for this process. A failure from these 
technologies can influence the consumers’ participation. In their study, 
the MC model is used for a DR resource to determine the consumers’ 
participation by splitting the participation percentage into finite states – 
from 0 to 100% with a step of 25%. However, by distinguishing appli-
ances and resorting to individual smart plugs, Zhai et al. [24] applied the 
same state logic with MC. These authors divided into two main types to 
define the corresponding flexibilities: appliances working in cycles and 
appliances working at fixed state. By understanding the habits and 
routines of this new player, starting with the appliances, the models can 
be more robust and capable of reducing the response uncertainty. In this 
way, Chia-Shing Tai, Jheng-Huang Hong, and Li-Chen Fu [108] develop 
a real-time multi-agent deep RL-based approach to solve the DSM 
problem and consider user behavior. Again, focusing on the state 
extraction part of the appliances, three different groups were created to 
understand the degree of influence of the state of the appliance on the 
user and the tolerance of frequent switching. First, the Heavy Conflict 
group includes appliances whose stat switching would lead to a less 
severe but still strong impact on the user experience. Finally, Less 
Conflict group, the operation time is less conflicting for the consumer 
and can be scheduled later - washing machine, dish dryer. The ability to 
adapt to and learn about user preferences and update the system 
repeatedly can improve one of the crucial characteristics of imple-
menting DR in the real world: consumer comfort. 

As mentioned earlier, for the residential type, comfort is crucial for 
their participation. This type of the participant is less willing to give up 
on certain equipment in a specific context just to participate in the 
market transactions. Nevertheless, the problem can be even more 
complex. In the study done by Liang et al. [211], the relationship be-
tween two pieces of equipment is a particular example of correlated DR 
(CDR). Gaming PCs and Heating, Ventilating, and Air Conditioning 
(HVAC) systems were presented. The authors believe these two appli-
ances created a new factor in the management problem: CDR relation-
ships considering heating and cooling demand. So, with the expected 
increase of power consumption from Gaming PCs, this appliance gen-
erates wasted heat along the DR process, requiring the Air Conditioner 
(AC) system to consume more power to maintain the indoor temperature 
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in summer, which makes the original DR effect worse. However, in 
winter, the AC system consumes less power to maintain the indoor 
temperature when the gaming PC performs DR and generates waste 
heat, which improves the DR effect. In the presented model, the CDR 
unit consists of two parts: an uncertain and uncontrollable internal heat 
source – Gaming PC, and an HVAC system that provides DR indepen-
dently. Considered a whole, the internal heating source brings uncer-
tainty into the entity. Thus, the CDR decisions were operated properly 
by a risk management scheme considering a CVaR incorporated with a 
stochastic approach between many other uncertainties. The results 
confirm that the stochastic approach is more capable of handling un-
certainties than the deterministic approach, reinforcing the approach of 
previous methods. 

Still, the active consumers are responsible for the appliances. 
Participation is voluntary, and although penalties can be applied, they 
have total control to change their minds. In this way, the authors must 
focus on the active consumers’ behavior. The assumption of DR partic-
ipants as rational is widely accepted in many studies from the literature. 
The optimizations from many works look at active consumers as eco-
nomic agents who always make the “right” decisions and understand the 
market transactions [109]. However, should the consumer be consid-
ered a rational agent who makes an optimal decision? 

Bearing in mind, one of the main approaches to encourage others is 
Game Theory. Defined as the formal study of interdependence between 
adaptive agents and the dynamics of cooperation and competition that 
emerge from this [249]. In this case, the term agents refer to an entity 
with the capacity to make informed choices and act upon those choices 
autonomously to affect the state of the environment [237]. The inter-
dependence between these adaptive agents means that the values 
associated with some property of one element become correlated with 
those of another. In other words, and for this context, the achievement of 
a goal of one agent becomes correlated with others. For instance, in this 
topic, game theory approaches can be categorized into two kinds, one is 
played between consumers, and the second is played between the utility 
and consumers. Also, two different levels can be defined for the inter-
dependence between agents: the micro and the macro level. 

5.1.1. Macro-level perspective 
From a macro-level perspective, all the agents must work coopera-

tively to achieve an overall successful outcome at the macro level. 
Pondering the work from Akash Talwariya, Pushpendra Singh, and 
Mohan Kolhe [54], where these authors use the Monte Carlo Simulation 
(MCS) to consider uncertainty in both consumption and generation but 
also build a Stepwise Power Tariff model with Bayesian Game Theory to 
consider the active consumer’s decisions. In this situation, it is expected 
that agents do not want to share their best strategy with other players, as 
happens in non-cooperative games. However, it can be drawn from the 
results that the best response is when consumers share full information 
about energy consumption with energy retailers and consumers. 

Active consumers are selfish, so their behavior should be further 
studied in this situation [172]. Maximizing the individual consumer 
welfare DR programs by building an approach that considered the utility 
function and studying the consumer risk aversion behavior was the goal 
of Amir Niromandfam, Ahmad Sadeghi Yasdankhah, and Rasool 
Kazemzadeh [110] work. The utility function measures consumers’ 
preferences. This is an important concept in microeconomics since it can 
understand how rational consumers make consumption decisions. 
Again, a central assumption in classical game theory is that players are 
always rational and strive to maximize their hyper–rationality payoffs 
[144]. However, the rules and dynamics may not be aligned with this 
assumption because what is rational for the whole is irrational for the 
individual. These agents, assumed to be rational, consistently act to 
improve their payoff without the possibility of making mistakes. They 
also fully know other players’ interactions and have an infinite capacity 
to calculate all possibilities beforehand [250]. So, agents have accurate 
information, and any uncertainty is reduced to a probability 

distribution. However, this prediction may not be applied in certain 
situations as humans’ behavior differs dramatically. 

With this, numerous reasons may impact the active consumer ac-
tions: cultural, financial, natural, or social capital (that is, the relation-
ships with other people and their roles within a social group) [251]. 
From this perspective, it is not the concept that players are trying to 
optimize. Their payoff needs to be adjusted for the different market 
options. Instead, the narrow definition of rationality as optimization 
according to a single metric needs to be expanded within several con-
texts involving social interaction. 

Many examples can support this view of “perfect” agents in many 
other methods. Homa Rashidizadeh-Kermani et al. [55] created an 
interface between the market and the active consumers in a competitive 
environment. These authors designed a decision-making model for the 
DR aggregator. In day-ahead energy and balancing markets, the aggre-
gators offer selling prices to the active consumers to maximize their 
expected profit, considering consumers’ reactions to the rivals’ prices. 
From the utility perspective, the risk aversion was modeled using CVaR. 
As in game theory, the players also have their agendas in this work, and 
two different levels are considered. First, the competition between the 
aggregator and the rivals offers a better price at the upper level. After, 
the active consumers act out of self-interest in the lower level and choose 
the most competitive aggregator to minimize their payments. At this 
level, it is considered that decisions are made with perfectly accurate 
information regarding the price offered by the aggregators. 

Participants were deemed to react optimally to the utility prices for 
the profit maximization problem. This assumption will impact the util-
ity’s profit since, instead of providing to their active consumers, in a 
competitive environment, the players are expected to move to lower 
prices, which consider only a single metric (the pursuit of profit) without 
context awareness from each participant. For instance, in the study 
conducted by Billing Zhang et al. [172], a contract-based incentive 
scheme was proposed to encourage consumers and small-scale suppliers 
to participate in direct energy trading. Based on their achievements, 
consumers’, and suppliers’ behaviors, affect each other, and their stra-
tegies are highly coupled. Therefore, there is a need for a model where 
the utilities are defined, the interactions are analyzed, and the Nash 
Equilibrium is found. However, under asymmetric information, the 
problem becomes more complex. Jianwei Gao, Zeyang Ma, and Fengjia 
Guo [109] wanted to define risk-behavior awareness to focus on the risk 
from the demand side when participating in DR programs. Both orga-
nizations and individuals have different attitudes toward risk-taking. A 
utility function can be considered feasible to illustrate consumer risk 
attitudes toward gain or loss, focusing mainly on power, exponential, 
and logarithmic models. However, the authors pointed out that classical 
utility functions do not consider consumers’ psychological factors. 

5.1.2. Micro-level perspective 
At the micro-level, individual agents pursue their agendas according 

to their cost-benefit analysis. Again, it should be highlighted that the 
standard economic theory assumes that all individuals act solely out of 
self-interest. As an illustration of this point of view, the study presented 
by Shuai Fan et al. [144] designed a model for DR consumers to choose 
an ideal rebate ratio to maximize their welfare. The process is designed 
as a non-cooperative game in which the Nash Equilibrium exists. The 
so-called Gossip algorithm used in this study was improved for a socially 
connected network. In this way, consumers can exchange information 
with familiar DR participants to estimate global information. In the end, 
it impacts as individuals and as a group but always finds the best option. 
For instance, to deal with energy retail market price and develop a 
win-win situation between consumers from several sectors and the 
utility, Akash Talwariya et al. [54] designed a stepwise power tariff 
using a game theory model for DR. The results showed that when con-
sumers shared full information on energy consumption with energy re-
tailers and other consumers, the best response was found. Perhaps, some 
information can be useful to share instead of a non-cooperative 
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approach. 
Still, besides the energy price, many other factors can also influence 

the participation decision, and, again, the context is crucial to under-
standing their actions. Özge Okur et al. [122] introduce a comprehen-
sive MPC to update and reduce individual imbalances based on input 
data. From the utility perspective, the results found considerable season 
discrepancies – the influence of the context in which the event is trig-
gered. June and December were the months with a higher and lower 
total amount of imbalances, respectively. These authors intend to 
explain this difference resorting to the absolute solar generation forecast 
errors: smaller due to lower solar generation. Besides this conclusion, 
Özge Okur et al. [122] found that the type of consumers can impact the 
imbalance. So, while demand profiles from residential consumers peak 
in the early morning and evening hours, the commercial sector peak 
occurs during daytime hours, coinciding with the highest fundamental 
imbalances. Nevertheless, the authors also prove that, although this is 
beneficial for the power system, reducing those imbalances may not 
benefit financially from the aggregator’s point of view. However, these 
conclusions can help understand and build a model to reduce the 
response uncertainty. 

The complexity of defining and understanding the active consumers 
is not just related to the amount of load they reduce – which is quite 
difficult to predict, mainly due to sparse data and each consumer’s 
characteristics. Since it is still in development, their empowerment also 
includes the prosumer concept – where a consumer can also produce 
their energy and sell to the market. In work developed in Ref. [115], the 
authors proposed a data-driven methodology considering the k-nearest 
neighbor method (kNN) and a weighted ensemble model to deal with the 
load prediction problem. First, kNN requires small amounts of data, and 
considering that each consumer may receive a request for load curtail-
ment only a few times a year, the method is adequate. Regarding the 
disparity between consumers, a single prediction method may not cover 
all the consumers – it provides a remarkable prediction operation for one 
consumer but is poor for the remainder. The authors used a weighted 
ensemble model to apply distinct models for different consumers. 
Following the same line of thought, Wang et al. [143] focused on the 
uncertainty related now to the prosumers, the increasing installation of 
photovoltaic systems (PV), how load patterns become more random, and 
the consumer baseline load (CBL) difficult to estimate. Especially hard to 
distinguish between increased PV output power and decreased actual 
load power. However, in this case, the k-means algorithm was used to 
divide the consumers into control groups, after calculating a curve 
similarity index where each DR participant was matched with the most 
similar cluster based on the similarity between its load curve and cluster 
centroids during periods when the distributed photovoltaic output 
power was equal to zero. 

Several issues were addressed throughout the uncertainty topic, and 
the models were used to provide suitable solutions in each authors’ 
opinion. The topic is highly complex. The active consumers’ participa-
tion is very hard to predict since it depends on several factors. Some 
authors tried to predict their contribution and deal with uncertainty 
using probabilistic models [100,107,123,214] since the process is sto-
chastic, statistical, and stationary. However, both AMI failures and ap-
pliances participation context impact the response [24,108,111,211]. A 
focus on ways to incentive their participation and anticipate their 
schedule to avoid discomfort or losses must be included in the final 
solution to implement DR. Still, the active consumers have control over 
these appliances, and some consider that they act as rational and eco-
nomic agents, always to achieve their individual goal [110,172,250]. 
However, some studies found that sharing the information may benefit 
individual and group perspectives [54,144]. Nevertheless, including the 
prosumer definition may also be valuable since the definition of active 
consumer is changing [143]. 

5.2. DR performance 

The performance definition throughout the present paper refers to 
the level of success of the consumers regarding their participation in DR 
events. In other words, when the managing entity sends a signal to 
change its load consumption, it is expected to comply and participate in 
the event, considering this active consumer as a trustworthy player. 
Even though the participation is voluntary, some DR programs require 
participation in a certain context, agreed by both parties. And although 
in the previous section, the active consumer is considered a rational and 
economic agent, always striving to achieve their goals in a “perfect” 
way, the reality may be different. As new players, they have low infor-
mation regarding the market transactions and often do not have the 
availability to decide the proper approach. Aid, understanding, and 
enhancing their performance in DR events are goals. 

5.2.1. Impact of the consumer behavior 
The following works consider the complex non-deterministic nature 

of consumer behavior regarding performance in DR events. For instance, 
Konda et al. [195] proposed an adaptive fuzzy inference system (FIS) 
strategy to improve the performance of DR schedules. The fuzzy method 
is not new for analyzing consumer behavior in responsive loads – 
regarding load type, sectoral and seasonal variation. However, in the 
actual scheduling implementations, the inappropriate strategies may 
lead to consumer dissatisfaction and the consequent decrease of their 
participation in DR events. These authors bet on FIS for DR scheduling 
considering this key aspect: rule-based development and membership 
function (MF) parameter setting/adjustment. However, the idea that MF 
parameters must be tuned using expert knowledge or intelligent 
computational approaches should be reinforced. Thus, the results 
demonstrated improved convergence and performance compared to the 
traditional random willingness assignment methodology regarding 
consumer availability for market participation. 

Still focusing on the importance of FIS in the investigation of the 
impact of consumer behavior, impact of load profile, and temporal 
characteristics of load profile by load sector and load type, the same 
author published another research [149] contemplating the utilization 
factor and availability factors for modeling consumer behavior using 
linear, non-linear, and exponential functions. Firstly, in the Linear 
Response Behavior, the relation of the utilization factor and cost factor is 
linearly proportionate. The Non-linear Response Behavior approach is 
represented as the product between the utilization and availability 
factors. The results revealed the non-linearity/non-smooth nature of 
load profile attributes combined with consumers’ willingness. 

Hence, due to the unclear response characteristics, it would be 
beneficial for the profit-oriented managing entity to employ non-linear 
tools instead of a linear method. Dehghanpour et al. [185] presented 
an Artificial Neural Network (ANN) approach to capture the loads’ 
behavior using a non-linear ANN-based model to capture the 
non-linearities from loads’ aggregate behavior. Based on the study re-
sults, these authors believe that as the penetration level of 
price-sensitive appliances increases in the system, the higher the 
improbability. Their methodology was based on a multiagent frame-
work with machine learning that allows these authors to address inter-
operability and decision-making under incomplete information in a 
system that maintains data privacy, which can be crucial for active 
consumers to participate in DR programs. 

5.2.2. Consumer behavior learning and prediction 
ANN and ARMA prediction techniques to identify unclear load pro-

files. In work done by Mahmud et al. [104] and according to the results, 
day-ahead energy management mitigates indecision by implementing 
preventive measures. So, by considering a “learning” approach, the DR 
could be defined as automated as in the Aras Sheikhi, Mohammad 
Rayati, and Ali Mohammad Ranjbar [180] study. These authors consider 
the participant a price taker consumer with a fully automated energy 
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management scheme (EMS) based on Reinforcement Learning (RL) to 
minimize their energy bills simultaneously. The EMS learns behaviors 
over time, the insecurity of energy prices, and appliance efficiency into 
making optimal decisions in a stochastic environment. The extracted 
information from AMI technologies can be used in a panoply of situa-
tions, namely, DR programs, load profiling, consumer consumption 
prediction, or even theft detection. Thus, the effects of the imprecise and 
incomplete information from failures in AMI technologies may condi-
tion outcomes from an approach, namely clustering algorithms. 

However, many DR implementation solutions include consumer 
clustering to process consumer input data for possible flexibility such as 
occupancy, temperature, humidity, bidding strategy design, etc. 
Focusing on the AMI from the perspective of the residential consumer, 
Table 3 organizes studies that used clustering methods to analyze in-
formation from smart metering data. The table contains the number of 
participants, the data source, the location of the study, the clustering 
method, and the data size. 

Some of the studies have a big dataset. However, as already 
mentioned, clustering is sensible to the input information, and errors 
from smart equipment may result in erroneous outputs. Thus, the a 
priori processing of the dataset with adequate data mining tools is 
crucial. This enables the aggregator to access meaningful information 
that helps deal with active consumers properly and enhance their per-
formance. The incorporation of fuzzy variables to mitigate impact was 
suitable in the study conducted by Mansour Charwadn et al. [91]. This 
study aimed to represent the consumer load pattern, modeling the 
indecision and non-determinacy (hesitation) using the intuitionistic 
fuzzy divergence technique, which contains the membership, 
non-membership, and hesitancy function. Hence, this thresholding 
method considers each consumer’s load pattern as an image, and each 
load value is assigned as a pixel. A minimization procedure is required to 
guarantee high separation accuracy for indecision in the consumer’s 
pattern. Each consumer’s Typical Load Pattern (TLP) is extracted using 
neighbor information (2-dimensional daily load values). The results 
evidenced that, with fewer thresholds, the simulation time is reduced 
and TLP accuracy. 

5.2.3. Economic influence in the DR events 
Employing a Deep Neural Network (DNN) to predict the unknown 

prices and energy demands can be useful to overcome future un-
certainties and enhance performance, according to the Renzhi LU and 
Seung Ho Hong [87] work. In cooperation with DNN, RL is adopted to 
obtain the optimal incentives for different consumers considering both 
service providers and consumers’ profits. RL is model-free, adaptive, and 
concise. Contrarily to the previous methods, the service provider does 
not need prior knowledge. Instead, it discovers the optimal incentive 
rates by “learning” from direct interaction with each active consumer. 

Moreover, the incentive rates are acquired and adapted autono-
mously, considering the uncertainties and flexibilities of the system. 
Finally, it is based on a look-up table, its implementation in the real 
world becomes much easier. As mentioned earlier, consumers are 
finitely rational as agents. However, due to psychological factors, such 
as cognitive or experimental judgment biases, consumers’ positive 
outlook on participating in a DR program (viewing it as either loss or 
gain) depends on the reference point. So, their risk attitudes – risk- 
seeking, risk-averse, or risk-neutral, will shift. Remani T., E. A. Jas-
min, and T. P. Imthias Ahamed [40] also consider RL an efficient tool for 
solving the decision-making problem under doubt. Their study intends 
to solve a load commitment problem considering consumer comfort, 
stochastic renewable power, and tariff. The problem was modeled as a 
Markov decision process. To use RL, state, state space, transition func-
tion, action, and reward function were identified. 

Furthermore, other algorithms were also used to overcome this 
problem. Nsilulu Mbungu et al. [131] used an adaptive Time of Use 
(TOU) Model Predictive Control (MPC) approach to create a managing 
system for a real-time electricity pricing environment, integrating both 
solar energy generation and an energy storage system in an isolated 
power grid. The authors achieved good results in managing energy 
consumption by prioritizing some loads while centralizing the power 
supply as a demand function. In this approach, the consumer had the 
opportunity to keep track of their fee and decide on the use of the 
energy. 

The Nash bargaining theory can be used to achieve the overall sys-
tem’s maximum social welfare when studying the economic interaction 
between the DSO and microgrids. In work performed by Hung Khanh 
Nguyen et al. [125], the authors concluded that when the system’s social 
welfare is positive – the saving cost from the peak ramp reduction of the 
DSO is greater than the total cost of microgrids – the bargaining problem 
is feasible. Mosaddek Hossain Kamal Tushar et al. [59] created an en-
ergy planning noncooperative game for residential consumers with at 
least a Nash Equilibrium in the prediction phase. It was considered that, 
according to the Nash theorem, every noncooperation game with a finite 
number of players and action profile has at least one mixed strategy with 
a Nash equilibrium. So, the game ends when the equilibrium state is 
achieved, and no consumers are willing to change their strategy, 
reducing their payoff. 

A fuzzy stochastic CVaR can be used to manage the risk associated 
with doubt, mainly focusing on price-based DR. The study done by Jiafu 
Yin and Dongmei Zhao [121] established that the price elastic response 
curve is inaccurate, the fuzzy characteristics of consumer behaviors are 
visible. Hence, to mathematically characterize the indecision of DR, the 
authors introduced the concept of self–elastic to formulate the response 
behavior-changing percentage of demand reduction concerning the 
changing percentage in incentive price during the same time interval. To 
assess the probabilistic risk, the authors pointed to the popularity of the 
stochastic CVaR criterion and the necessity to design a coherent risk 
measure in this fuzzy environment. Furthermore, the evidence that 
compared with the Value at Risk (VaR) method, the unit commitment 
model based on the CVaR expands the required reserves to minimize the 
complexity of indecision, protect against the operational risk and meet 
the system trustworthiness requirement. 

Although several methods are used to improve the performance of 
DR schedules, namely fuzzy methods [149,195], it is important to 
deliberate those inappropriate strategies that may lead to consumer 
dissatisfaction and the consequent decrease of their participation in DR 
events. So, the managing entity of these new players must “learn” and 
capture their behavior to be able to provide the correct assistance in all 
situations [104,180,185]. Another approach considered in the former 
works was the clustering method, that although it has input problems, is 
widely used in the literature, as can be seen in Table 3. It was also 
noticed that the economic incentives could be useful for enhancing DR 
performances [40,59,125]. So, learning and understanding consumer 
behavior is a step forward to improving the contribution of these new 

Table 3 
Clustering methods applied to residential consumers’ smart metering data.  

Ref. # Location Method Data size 

[53] 197 UK, 
Bulgaria 

Bayesian non-parametric 9 months 

[50] 1.057 US Dynamic Time wrapping 1 month 
[219] 1.200 China FCM clustering 1 Month 
[252] 3.622 Ireland Finite mixture model 1 year 
[221] 300 – Hierarchical clustering 104 days 
[222] 265 Portugal Hierarchical clustering 2 months 
[51] 656 Switzerland k-means 1 year 
[52] 197 UK, 

Bulgaria 
k-means 1 year 

[218] 4.181 China k-means and spectral 
clustering 

1 Month 

[217] 218.090 – K-Means, Hierarchical 
Clustering 

3 years 

[220] 4.232 Portugal k-means, Logistic 
Regression, Decision trees 

1 year and 6 
months  
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players in the power and energy market. 

5.3. DR reliability 

In the literature, reliability is defined by the system being in a certain 
operating state and measured through indicators such as discontinuity 
duration, interruptions frequency, or not supplied energy [190]. The 
present paper is described from the system operator perspective 
regarding the DR events and all the intervenient. The previous two 
keywords mainly focus on active consumers, empowerment, and ways to 
enhance their role in the energy market. But the introduction of these 
new players will impact the system operation. In this way, the authors 
intend to understand the influence of DR on system security and reli-
ability. Reliability will refer to the quality of being trustworthy or per-
forming consistently well in such events, avoiding further problems. 

Focusing on the perspective service provider, the randomness of DR 
responses caused by the consumers’ volatile behavior when achieving a 
DR target can impact the system’s reliability. Amir Ghasemkhani and Lei 
Yang [112] approach involve incurring a penalty on the participants. 
The authors mentioned that current research on pricing-based DR as-
sumes that consumers’ response functions are available to this player or 
maybe predicted by it. The RL-based algorithm was then used to aid the 
serving entity in learning the customers’ aggregated behaviors to 
determine an optimal pricing strategy instead of using pre-defined 
response functions. 

The non-necessity of gathering a priori information to allow each 
service provider and consumer to understand their position in the grid is 
supported by Byoung-Gook Kim et al. [20] when developing an RL to 
overcome the challenges of implementing dynamic pricing and energy 
consumption schedule. The authors compared two distinct scenarios in 
their study: the consumers with learning capability and the second in-
volves myopic consumers. Not all consumers in the microgrid are not 
necessarily strategic. For them, it is more important to learn the dy-
namics of the entire system and find its optimal energy consumption 
scheduling based on the observations. However, Byoung-Gook Kim et al. 
[20] did not discard studying the strategic behaviors of the rational 
agents and their impact on system operation. Xiaodong Yang et al. [103] 
designed an adaptive MPC scheduling strategy to dynamically deal with 
predicted errors and update decision strategies according to the system’s 
latest status and short-term predicted values. Three objectives were set: 
finding an optimal trajectory for power trade between the cooperating 
microgrids system and the main grid, addressing supply and demand 
uncertainties, and operating with outage events during emergency 
conditions. After several attempts, it was proven that supply-demand 
balance could be enhanced by implementing shift loads in each micro-
grid and can be adjusted by exchanging power with the adjacent 
microgrids. 

Online MPC can be suitable for high indecision regarding the 
renewable generation and consumer responses. In the study performed 
by Farzad Arasteh and Gholam Riahy [123], this method was used for 
optimal real-time operation of wind integrated power systems, including 
coordinating energy storage systems and DR programs. In addition, 
these authors believed that the possibility of shifting load to off-peak 
hours makes the controller more flexible, resulting in a lower amount 
of load shedding and improvement of supply management. In the 
Prajwal Khadgi and Lihui Bai [86] case, MPC was interested in consumer 
response to DR events when applied to control the new active players. In 
this case, the consumers determined their optimal consumption by 
maximizing a multi-attribute utility function based on changing elec-
tricity prices, temperature, and thermal comfort. The results obtained by 
the authors indicate that among various static variable pricing schemes, 
the TOU rate is the most robust in achieving a higher Coincident Load 
Factor – the ratio of average load over a household’s contribution to the 
system peak load in a daily cycle and reducing the costs from the 
perspective of the consumer. 

Regarding the distinct dynamic variable pricing schemes, the former 

improves when comparing Demand Charge with Flat Rate. At the same 
time, Sudip Misra et al. [47] used a robust game theory to account for 
energy management constraints associated with indecision since it 
generally impacts the algorithms in this area. In this way, imperfect 
information was considered regarding all the indecision issues to opti-
mize energy trading in the smart grid. Although, as a result, the con-
sumers and the network act as players and the payoff values are 
optimized, the results showed an improvement compared to the existing 
energy management models. 

However, although some appliances may belong to the same cate-
gory, they can belong to different consumers, so flexibility is quite 
different because of power consumption and the owners’ habits. 
Therefore, the authors determined that analyzing the DR potential by 
only considering appliance type and power consumption is irrational 
because consumer behavior strongly affects consumption, leading to big 
variations in the energy consumed by the same type of appliance. 
Therefore, the human factor cannot be discarded. To prove this view, a 
more specific study was presented by Maomao Hu and Fu Xiao [137] 
using the Markov Chain Monte Carlo model to quantify indecision in the 
aggregate energy flexibility considering stochastic occupancy and 
occupant behavior which characterizes the randomness of people 
entering or leaving a specified space at a particular time – influencing 
the appliances. As affirmed by these authors, the Markov-chain tech-
nique is widely used to simulate this process and generate stochastic 
occupancy patterns. 

A negative impact of the active consumers in the network can lead to 
loss of security and jeopardize the system’s reliability. So, many authors 
opt for economic strategies to test the trustworthiness of the participants 
in DR events using penalties [112] or distinct DR programs [20,86,103], 
some in real-time [123]. The game theory approach was still mentioned 
but explored imperfect information [47]. Again, the human factor 
cannot be discarded, and the different factors that may impact their 
decisions must be widely studied. 

6. Discussion of the identified challenges and future Research 

The active consumers that emerge in power systems are complex, 
and their actions rarely follow the traditional theory of decision-making, 
which makes their behavior hard to predict from this standpoint. 
Instead, psychology and behavioral economics must be employed for 
greater prediction accuracy. Contrasting both theories, traditional eco-
nomic models expect consumers to make optimal decisions that result in 
optimal outcomes. On the other hand, behavioral economics considers 
that consumer choices can be improved by providing more information 
and other options to influence the consumers’ behavioral patterns. 

A growing number of scientific research intends to demystify tradi-
tional economic theory and point to the importance of understanding 
the context in which the consumer operates so that solutions can be 
found to influence their behavior, to make the desired decision easier, 
quicker, and more convenient from their perspective, minimizing the 
physical and psychological effort and reducing the perceived doubt. This 
can be achieved by, for instance, providing the consumer with com-
parisons between themselves and the other players’ performances, 
possessions, and wellbeing. By demonstrating that consumers with a 
profile like theirs (the same power contract, the same consumer type, 
etc.) are using less energy and taking energy-saving actions that are 
beneficial, the consumer will be more encouraged to follow these posi-
tive energy-saving norms and reduce their consumption accordingly. 

Moreover, implementing fair rewards and monetary incentives can 
motivate the DR event participation regarding intrinsic and extrinsic 
compensation. Finally, the trust factor is important to give the right 
message for the demand side to make the right decisions – if they seem 
skeptical can either disengage or react defensively to the information. 
Using simple and easy-to-understand messages to communicate with 
consumers who have limited knowledge of the energy market can help 
increase confidence in the solution. If there is doubt around the 
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electricity supply, market prices, government policies, and long-term 
financial payoffs, investment in this approach may seem risky for 
many consumers. 

Furthermore, there is a need to upgrade to smart equipment to 
enable communication between the active consumer and the energy 
market. The active consumers must improve and integrate technologies 
capable of, for instance, being controlled by the local community 
manager or equipment to simply receive the proper signals to participate 
in the market transactions. Focusing on each appliance instead of 
considering the whole building may reduce doubt in DR events. Thanks 
to advances in AMI technologies and the extracted information, the 
managing entity can delineate and understand its strategy to succeed in 
the energy market by persuading active consumers to opt for coopera-
tion instead of rivalry. 

The above discussion evidence that context-awareness approaches 
are necessary to handle consumer participation more accurately [1]. 
Activating consumers according to the context and providing adequate 
performance evaluation, for example, through key performance in-
dicators [253], makes the consumer better integrated into the process, 
increasing their motivation and understanding of the rewards process. 
Moreover, contracts between consumers and entities requesting DR 
should be drawn up according to the preferences and interests of each 
player [254]. Aggregators will play a key role in collecting the available 
DR from small consumers and establishing contracts using the potential 
of DR to the fullest [122]. Moreover, Artificial Intelligence methods help 
support decisions on DR management, namely load forecasting [255, 
256]. This method helps understand future consumption, which is 
crucial when estimating potential flexibility in managing a DR event. 

Moreover, learning approaches can be used to learn about consumer 
behaviors. These approaches learn from events and apply them to 
similar future events. This enables them to make more accurate de-
cisions in the future [257]. 

In summary, with all the information studied through the present 
paper, the authors believe that future lines of research should focus on 
the consumer side, emphasizing comfort and behavioral aspects, 
privacy-awareness in the DR programs definition, and the contextual 
management of the resources to implement DR solution in the future 
smart grid successfully. 

7. Final remarks 

The role of the end-user is changing together with the gradual 
implementation of the Smart Grid concept. This concept urges for 
greater consumer flexibility: consumers who can control and change 
their consumption according to signals given by the energy market. 
However, this new paradigm also enables on-site production for small 
entities. The new active consumer will have more power over the 
transactions on the market, and thus, understanding and dealing with 
their decisions will be crucial to a successful implementation. Consumer 
empowerment will have an impact on the operation of the grid. If the 
right solution were designed to include all the necessary features to deal 
with the uncertainty introduced by new players, a huge step would be 
taken towards developing a smarter grid. However, when empowering 
the consumers’ many factors should be considered:  

• Consumers should not be considered agents that have access to 
perfectly accurate information – the behavior of real people tends to 
differ dramatically. Although, after the discussion, the authors 
believe that participants will always be active and willing to change 
their strategy and consider them as “perfect” economic and rational 
agents with complete awareness of the market environment, seeking 
the optimal decision may be a faulty assumption. To solve this 
problem and reduce the response uncertainty, the authors suggest a 
contextual solution: giving the right signals according to the different 
behaviors and the different types of participants in the DR event.  

• The DR participants’ actions in the energy market will be complex 
and rarely follow the traditional economic decision-making theory. 
So, they are considered hard to predict from this standpoint but are 
rather predictable from psychology and behavioral economics. In the 
authors’ opinion, implementing DR in the market should discover 
what influences the participants: the social influence, intrinsic and 
extrinsic rewards, and trust may play a key role.  

• Sharing the full information between players, retailers, and other 
consumers leads to better results. However, privacy concerns can be 
raised. The authors believe that trust should be crucial and instigated 
from both sides. Therefore, define limits and boundaries regarding 
which information should or not be shared.  

• Approaches must consider non-linear tools regarding load profiles’ 
uncertain nature combined with consumers’ willingness to partici-
pate. Several study results prove that a stochastic approach can 
handle more uncertainties than a deterministic approach. In this 
case, the authors believe that each type of active consumer has its 
characteristics and should be treated accordingly. 

• Focus on the appliances for DR, through Advanced Metering In-
frastructures, instead of solutions where all the consumers’ flexibility 
is considered. By understanding the functioning of the appliance and 
the impact of the consumer comfort, since it has freedom of choice to 
disconnect any time, the uncertainty of the response can be reduced. 
However, another problem derived from this perspective is the 
correlated DR relationships. For instance, in a load shifting approach, 
an appliance that generates heat may require other cooling equip-
ment to maintain the consumers’ comfort. For this case, the authors 
believe that all the appliances should be listed in the DR contract and 
further define their relationship and consequences.  

• Despite several existing approaches in DR and DSM field, it has been 
found that the consumers deserve more knowledge to support their 
decisions in DR participation instead of reacting to incentives and 
prices. Given that the knowledge is self-reported, there may be a 
considerable divergence between attitudes and observable behav-
iors, for example, the consumers who still depend on non-renewable 
resources, do not rely on public transport, and make heavy use of 
their vehicles, neglect recycling, and any other actions that harm the 
environment. The authors believe that more information should be 
shared on social media, new policies including and giving more 
awareness on the impacts of this concept. 

Thus, influencing the behaviors of active consumers and their de-
cisions to reduce uncertainty and enhance their performance on DR 
events can bring several advantages for all the players involved in 
market transactions and facilitate the penetration of renewable re-
sources in the system. Therefore, more projects should focus on under-
standing how to influence and reduce uncertainty on the consumer side. 
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Resumen 

El concepto de Smart Grids permite el desarrollo de nuevas tecnologías, como la 
interacción de Vehículo a Red (V2G por sus siglas en inglés), lo que hace posible 
transferir energía desde un Vehículo Eléctrico (EV por sus siglas en inglés) a la 
red y viceversa, facilitando así la implementación de la movilidad eléctrica. Sin 
embargo, la confiabilidad y seguridad del sistema pueden estar en peligro al 
surgir estos jugadores inciertos. Para ayudar a la gestión compleja de 
comunidades locales activas y reducir la incertidumbre en la respuesta, los 
autores proponen una metodología capaz de lidiar tanto con los consumidores 
activos como con los vehículos eléctricos, eligiendo los participantes adecuados 
mediante un modelo de equidad de acuerdo al contexto en el que se 
desencadenan los eventos. Además, los autores introdujeron un mecanismo 
contextual de remuneración para incentivar la participación de los usuarios y 
fomentar una respuesta óptima en situaciones de demanda. 
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ABSTRACT 
Smart Grids concept allows the development of new 
technologies, such as Vehicle to Grid (V2G) interaction, 
making it possible to transfer energy from an Electric 
Vehicle (EV) to the grid and vice versa, thus facilitating 
the implementation of electric mobility. However, the 
system's reliability and security can be jeopardized by 
emerging such uncertain players. To aid the complex 
management of active local communities and reduce the 
response uncertainty, the authors propose a methodology 
capable of dealing with both active consumers and EV by 
choosing the proper participants using a fairness model 
according to the context in which the events are triggered. 
Furthermore, the authors introduced a contextual 
remuneration for continuous participation, studying the 
impact from the Aggregator perspective. 

INTRODUCTION 
Moved by the increasing number of electric vehicles 
(EVs), the literature considers this resource part of the 
solution [1]. In this way, one of the explored approaches to 
achieve the climate goals can be the electric vehicle to grid 
(V2G) interaction technology since it can improve the 
utilization of renewable energy and stabilize its grid 
connection [2]. However, if the necessary measures are not 
taken, the high penetration of EVs can bring problems to 
the grid, namely decreased performance and power failure 
[3]. Thus, considering this context, it is essential to apply 
innovative technologies such as Smart Grid (SG) since it 
makes it possible to improve the efficiency and quality of 
grids through bidirectional communication [4].  
With V2G technology, EVs can be seen as relevant entities 
in energy management systems, where they can, through 
the charging and discharging process, bring various 
benefits to the grid, such as system services [5]. These 
system services range from voltage and frequency 
regulation, peak shaving, valley filling, and improving 
distributed generation integration [6]. Furthermore, t 
efficient control of the respective EV charging and 
discharging processes can be performed by an aggregator, 

where it can implement strategies depending on the EV 
owners' preferences, personal or grid objectives, and the 
generation availability [7]. 
The H2020 DOMINOES project implemented a complete 
analysis of the impact of local energy markets (LEM) in 
the active participation of consumers for grid support. 
Looking at the role of Distribution System Operator (DSO) 
in the energy transition at a local level, the assessment of 
possible services to be provided to the DSO in future grid 
scenarios of high Renewable Energy Sources (RES) 
integration is needed to realize not only if these services 
can match the grid needs, but as well if the consumers or 
communities have the right incentives and/or motivation 
for market participation.   
Distributed Generation (DG) has high randomness of 
energy output. The discomfort caused and the uncertainty 
of the response from these new players is a matter of 
concern from the managing entity perspective [8]. 
Therefore, the authors created a concept that intend to 
fairly select the proper participants (both active consumers 
and EVs) for a DR event. To clarify the idea, instead of 
calling all the active consumers, a rate is attributed to each 
resource providing information to the Aggregator 
regarding the performance of the local community 
members for the event context. In the study, the viability 
of the proposed methodology is tested, highlighting the 
remuneration phase for a continuous participation, the 
duration and the context in which the event is triggered.  
The present paper is divided into five main sections. First, 
the introduction to the topic shows its importance and the 
innovation presented with the proposed methodology. The 
procedure is then detailed in the following section. After, 
the case study and the discussion of results are presented 
in Section 3 and Section 4. Finally, the conclusions were 
withdrawn. 

PROPOSED METHODOLOGY 
A detailed explanation regarding the proposed 
methodology is introduced. First, a reduction request is 
required from the DSO to all the aggregators managing the 
local communities associated and by introducing the V2G 
option. In this way, Figure 1 represents the different steps. 



 CIRED workshop on E-mobility and power distribution systems Porto, 2-3 June 2022 
 

Paper n° 1440 
 

 

CIRED 2022 Workshop  2/6 

 
Figure 1. Proposed Methodology 

It is necessary to update the EVs status for each period – 
Event Preparation. Several parameters should be 
considered. After, a Fairness Model is applied, selecting 
the order of charging. This model assumes that the ones 
with higher values of participation in previous events have 
priority if their check-out period is close.  
Gathered all the resources for the First Stage test before 
the Scheduling step was performed. Is the DSO target for 
reduction higher than the flexibility provided by the active 
consumers in the community?  
In the positive case, the Scheduling phase is performed, all 
the EVs charging statuses are updated, and the DR 
participants are notified. Otherwise, the V2G event is 
triggered in the Second Stage.  
In the scheduling phase, resorting to a mixed-integer linear 
programming optimization, the goal is to minimize the 
operation costs from the perspective of the aggregator 
considering the fair remuneration of the participating 
resources. The objective function of the problem is 

introduced by Equation 1. For each period t, let !!" 	 be the 
power for each Distributed Generation (DG) p resource;	
!!#	is the flexibility from each c consumer; !$%!	 is the 
power discharged from each EV who participated in the 
V2G event; !&'(	is the power from an external supplier 

and !)&(	be the Non-Supplied Power (NSP). The 
respective costs are attached to these variables. 

!"#	%&	 = 	∑	[*!" 	(,, .)0!" 	(,, .)] 	
+	∑	[*!#	(3, .)0!#	(3, .)] 	
+	∑	[*$%!	(45, .)	0$%!(45, .)] 	
+	∑	[*&'(	(6, .)		0&'(	(6, .)	] 	
+	*)&(	(.)0)&(	(.) 

(1) 

The scheduling phases can work with a wide variety and 
quantity of resources. In this case, both active consumers 
for a local community and their EV are highlighted – the 
constraints associated with the last one can be seen in 

Equation 2 to Equation 5. However, the proposed 
methodology can deal with prosumers with generation or 
storage resources if needed. 
 

7(+,-)/+012 ≤ 7(+,-)/+ ≤ 7(+,-)/+034, ∀. ∈ {1,… , >}, @
∈ {1,… , A} 

(2) 

0 ≤ *$%5(/5,-)	 ≤ *$%5(/5,-)034 . D(/5,-)/+57 , D(/5,-)/+57 ∈ {0,1}, ∀.
∈ {1,… , >}, @ ∈ {1,… , A} 

(3) 

0 ≤ *$%!(/8,-)	 ≤ *$%!(/8,-)034 . D(/8,-)/+857, D(/8,-)/+857

∈ {0,1}, ∀. ∈ {1,… , >}, @
∈ {1,… , A} 

(4) 

7(+,-)/+ = 7(+,-9:)/+ + *$%5(+,-)	 + *$%8(+,-)	 , ∀.
∈ {1,… , >}, @ ∈ {1,… , A} 

(5) 

 
Equation (2) represents the operation capacity limits, 
Equation (3) the charge needed per period, and Equation 
(4) the discharge limits per period – flexibility provided for 
the V2G event. Finally, Equation (5) is introduced to 
maintain the power balance – the previous state of charged 
and discharged, also known as State-of-charge (SoC). 
So, the Second Stage introduces the V2G event. However, 
earlier, the aggregator in the Event Preparation already had 
information regarding the EVs ready for the V2G event. 
The fairness model applied here divides these resources 
according to previous events in the same context. The 
justice factor will then be applied, organizing the 
participants in different performance groups. The authors 
applied the same logic to active consumers to reduce the 
response uncertainty in a DR event [9]. 
Like the First Stage, a flexibility test is performed before 
the Scheduling step. For example, is the DSO target for 
reduction higher than the community's active consumers' 
flexibility and the EVs available for the event? If so, the 
aggregator must negotiate with the DSO the reduction 
terms according to the results found.  

EVs to charge
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Otherwise, the model moves to the following stage. First, 
in the Select Event participants stage, the groups will be 
clustered according to their characteristics. This is an 
important phase to differentiate if the event is fast (15min) 
or slow (more than 15min) – the aggregator must 
understand which ones are available and keep continuous 
participation for the last case. Then, the V2G event 
participants were found, the Scheduling phase was 
performed, all the EVs charging statuses were updated, 
and both DR participants were notified. 
The following section will present an analysis and 
discussion of the results for all the phases in the proposed 
methodology. 

CASE STUDY  
As an innovation from previous works, the authors intend 
to introduce the V2G option reasonably, promoting the 
continuous participation of active consumers, using their 
several resources, fighting the uncertainty of the response. 
The case study was developed to prove the viability of the 
proposed methodology. In this case, the database is 
composed of a local community, namely office buildings 
with private parking lots. Each building consumption 
throughout the day and the respective flexibility can be 
seen in Figure 2. The days are divided into a 15-minute 
base. If a whole week whole considered, it would start on 
Monday. In this way, a day has 96 periods and a week 652. 
However, in this study, the authors selected a dataset of a 
working day. The expected consumption for the week in 
the study can be seen in Figure 2. 
 

 
Figure 2. Initial Load Consumption and Flexibility provided by 

the active consumers. 

The parking lot located in this community operates 
between 8 AM and 8 PM. There are charging stations for 
electric vehicles associated with each building, thus 
enabling the implementation of the V2G technology. It is 
assumed that each one has three sockets. For each building, 
it is considered that six EVs can participate in V2G events, 
and their characteristics are shown in Table 1. Their 
personal information, such as check-in, check-out, 
percentage before leaving, among others, depends on the 
owner. 

Table I. EV participants main characteristics 

ID Brand Model Battery Capacity 
(kWh) 

Average 
Minimum 
SOC (%) 

1 Renault ZOE 41 50 
2 Renault ZOE 41 15/20 
3 Nissan Leaf 24 50 
4 Renault ZOE 22 40 
5 Renault ZOE 22 15 
6 Nissan Leaf 30 45 

 
The authors consider that remuneration is crucial for 
motivating continuous participation in DR and V2G 
events. However, the motivation must be different 
according to the context in which the event is triggered. 
Therefore, the authors followed a schedule with three 
zones: peak, valley, and off-valley.  
According to the parking lot operation hours, the valley 
zone is excluded in this scenario. 

Table II. V2G participation incentive schedule. 

Schedule Peak Off-valley  Valley  
00:00AM – 08:00AM   x 
08:00AM – 10:30AM  x  
10:30AM – 01:00PM x   
01:00PM – 07:30PM  x  
07:30PM – 09:00PM x   
09:00PM – 10:00PM  x  
10:00PM – 00:00AM   x 

 
Therefore, if a V2G participant collaborated in a peak 
hour, the incentive should be higher. The contribution for 
a reliable and secure network balance should be extremely 
encouraged. Otherwise, although continuous participation 
is equally important, the incentive is inferior for a valley 
zone. Table III presents the values used in the current case 
study. 

Table III. V2G participation incentive value. 

 Peak Off-valley Valley 
Incentive (m.u./kW) 0. 2468 0.1515 0. 1124 

 

To keep the participation both fair and able to reduce the 
uncertainty, the authors added a performance rate, already 
used in other resources by the authors [10]. The 
performance rate range is between 1 and 5. Normally, a 
minimum to participate is added and is performance rate 3. 
As mentioned, groups will be formed to select the proper 
consumers according to the type of V2G event. The 
clustering method used was k-means [11]. 

RESULTS AND DISCUSSION  
In the present section, the authors discuss and analyze the 
results from the case study used to prove the viability of 
the proposed methodology. Firstly, Figure 3 shows the 
number of V2G events triggered throughout the day.  
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Figure 3. V2G events triggered throughout the day. 

It should be mentioned this type of event can only be 
triggered during the parking lot operation hours, assuming 
that outside these periods, there is no EV parked. The 
events identified in Figure 3 are where the flexibility 
provided by the active consumers – in this case, the office 
buildings, is not enough to suppress the reduction target 
requested by the DSO. With this, a total of 31 periods with 
events were recognized. The authors also want to highlight 
that 89% were slow events. –  in this case, with more than 
15 minutes and less than 1 hour and 30 minutes. Table IV 
shows the total number of events and the actual duration.   

Table IV. V2G events identified their duration and type. 

Type Duration 
(Periods) 

Duration 
(minutes) 

Number of 
occurrences  

Fast 1 15 1 
Slow 2 30 1 
Slow 3 45 3 
Slow 4 60 2 
Slow 5 75 1 
Slow 6 90 1 

 
In this way, due to space limitation, the authors select two 
events to analyze in-depth: one fast event (with 15 minutes 
long) and one slow event (the one with the longest 
duration).  

Fast event 
In this scenario, only one fast event was identified. This 
V2G event was triggered on period 34 (8:30 AM). Table V 
shows the results: how many EVs per performance rate in 
this group is proper for fast events according to the 
clustering selection. The EVs selected were previously 
filtered in the Event Preparation phase and separated from 
those that needed to charge in this period. 
Above the denominated minimum rate to participate, the 
total count of participants is 11 EVs; however, the 
flexibility provided from these players is enough to 
suppress the reduction target needed – 5.34 kW vs. 5.57 
kW. With this approach, the aggregator avoids 
unnecessary costs, and the active consumers, with their 
EV, avoid discomfort. 

Table V. Fast event flexibility results. 

Rate Available Selected Flexibility 
(kW) 

Actual 
Flex. 
(kW) 

V2G 
Target 
(kW) 

1 5 0 3.511 0 

5.344 
2 4 0 1.575 0 
3 2 2 1.184 1.184 
4 4 4 1.717 1.717 
5 5 5 2.668 2.668 

 
In this way, these players were called to participate, being 
remunerated with an off-valley zone incentive. Table VI 
shows the remuneration values for this period per 
performance rate. 

Table VI. Fast event remuneration results. 

Rate Count Remuneration 
(m.u.) Zone Incentive 

(m.u./kW) 
3 2 0.179 Off-

valley 0.1515 4 4 0.260 
5 5 0.404 

 
For this event, the aggregator compensates the participants 
with 0.844 m.u. Confronting with the approach where all 
the available players were called to participate, the 
aggregator saves a total of 0.771 m.u. 

Slow event 
Moving to the slow event perspective, the one selected, as 
already mentioned, was the one with the longest duration 
– a total of 1 hour and 30 minutes. This event happens 
between period 41 (10:15 AM) inclusive and period 47 
(11:45 AM) exclusive. Table VII shows the main 
characteristics of this event. 

Table VII. Slow event characteristics. 

Periods 41 42 43 44 45 46 
V2G 

Target 
(kW) 

1,413 6,671 3,517 7,699 8,225 7,818 

Zone off-
valley 

off-
valley peak peak peak peak 

 
The slow event happens between two zones – off-valley 
and peak. In the first-mentioned zone, which has two 
periods in the event, the reduction needed is 8.084 kW. On 
the other side, the event in the peak zone has four periods, 
and the flexibility needed from the EVs is 27,259 kW. 
According to these values and for each period, Table VIII 
shows the total flexibility results for this event and the 
remuneration. For period 41 and period 43, only elements 
from performance rate 5 were selected gathering the 
enough reduction to achieve the V2G target, receiving a 
total of 0.272 m.u. and 0.903 m.u. respectively. 
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Table VIII. Slow event flexibility and remuneration results. 

Periods 
V2G 

Target 
(kW) 

Actual 
Flex. 
(kW) 

Remuneration 
(m.u.) 

Total 
Selected 

41 1.413 1.795 0.272 2 
42 6.671 6.770 1.026 9 
43 3.517 3.660 0.903 7 
44 7.699 7.792 1.923 12 
45 8.225 8.482 2.093 13 
46 7.818 8.023 1.980 11 

 
For period 42 and period 44, the aggregator needed to call 
participants from performance rate 3 until rate 4 to achieve 
the goal – a total of 9 and 12 EVs. In the last two periods, 
and to suppress the needs, all the rates were called to 
participate. 
 

CONCLUSION 
Considering the demand side as the center of the successful 
approach to implementing the Smart Grids concept in the 
real world, dealing with the associated resources must be 
the focus. In this way, the authors propose a methodology 
capable of dealing with both active consumers 
participating in demand response events as well as the 
vehicle to grid (V2G) interaction. 
The authors believe that fairness and good compensation 
will motivate continuous participation and reduce the 
response uncertainty from these new and uniformed 
players. In this way, each resource is classified according 
to a performance rate to aid the aggregator in selecting the 
proper participants for the event. 
In the present paper, the authors focus on two different 
types of V2G events: fast (within 15 minutes duration) and 
slow (more than 15 minutes). For the discussion, the 
authors compare the reduction target and the flexibility 
provided by the selected groups, proving the approach's 
viability. 
Also, contextual remuneration was applied, proving that 
the context in which the event is triggered can be important 
for both parties involved. 
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Resumen 

Los consumidores efectivos y activos que brindan flexibilidad a través de 
programas de Respuesta a la Demanda (DR) tienen tres aspectos importantes: 
clasificar a cada consumidor según su participación anterior, remunerar esa 
participación y determinar el efecto de rebote del consumo después del evento. 
En este artículo, los autores diseñan una tasa para clasificar y seleccionar a los 
participantes adecuados para un evento de DR considerando el contexto en el 
que se desencadena el evento. El agregador estima el desplazamiento del 
consumo a períodos posteriores al evento y se estima la remuneración 
correspondiente bajo diferentes escenarios. Este desplazamiento se puede 
realizar en varios marcos de tiempo en el futuro. Los escenarios se desarrollan 
para probar el rango de tiempo aceptable en el que se debe asignar la carga según 
el efecto de rebote. Los resultados muestran que un mayor rango de tiempo 
puede evitar un consumo pico excesivo, optimizando la operación del sistema 
con beneficios para los consumidores, el DSO y el agregador. 
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Abstract: Prosumers are emerging in the power and energy market to provide load flexibility to
smooth the use of distributed generation. The volatile behavior increases the production prediction
complexity, and the demand side must take a step forward to participate in demand response events
triggered by a community manager. If balance is achieved, the participants should be compensated
for the discomfort caused. The authors in this paper propose a methodology to optimally manage a
community, with a focus on the remuneration of community members for the provided flexibility.
Four approaches were compared and evaluated, considering contextual tariffs. The obtained results
show that it was possible to improve the fairness of the remuneration, which is an incentive and
compensation for the loss of comfort. The single fair remuneration approach was more beneficial
to the community manager, since the total remuneration was lower than the remaining approaches
(163.81 m.u. in case study 3). From the prosumers’ side, considering a clustering method was more
advantageous, since higher remuneration was distributed for the flexibility provided (196.27 m.u. in
case study 3).

Keywords: contextual remuneration; battery energy storage; demand response; optimal management;
smart grids

1. Introduction
1.1. Background

Climate change demands a change in the power and energy sector. It is essential to
find solutions that properly introduce these greener approaches to reduce fossil fuel use
and decrease air pollution and greenhouse effects [1]. The smart grid concept focuses on the
consumer side and their flexibility. However, management tools and knowledge must be
provided to take a step forward towards successful implementation in the real market [2].

1.2. Challenges

Although slow, there have been advances in this area [3]. However, the management
of energy systems is more complex due to the integration of Distributed Generation (DG),
namely renewable-based resources with their volatile behavior, and the addition of energy
prosumers as players in energy market transactions [4]. Not only do they provide flexibility
by participating in Demand Response (DR) events with their appliances, but also as
prosumers, with DG to suppress their own needs or sell their surplus [5]. Still, the flexibility
provided by these new and active communities should be properly managed to avoid
consumer discomfort, and reduce response uncertainty, rebound effect, and unsupplied
power, among other grid problems [6]. It becomes crucial to define a tool to optimally
manage resource scheduling to surpass this challenge; namely, using the BES capacity.

Many solutions are being developed to deal with the complex management of local
communities and their new and complex resources [7]. Indeed, with the concept of the
Internet of Things (IoT), different equipment (sensors and actuators, among others) can
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be applied to gather information on the consumer side and provide proper solutions [8].
Nevertheless, dealing with big data is one of the major issues in the literature, but progress
has been made [9,10]. Prabadevi B et al. [11] analyze the possibility of deep learning
approaches for tackling this challenge, leaving the inaccuracies in electricity load forecast
as an open issue, where the lack of evaluation of real-time data was at issue. According to
these authors, information (both historical and real-time data) is crucial for making wise
and optimal decisions, so there is a challenge for the community manager: decide which
knowledge is useful since, as mentioned, real-time approaches can be challenging and
require fast responses to grid issues.

1.3. Literature Review

System operators require a scheduling model that considers security and economic
issues when using energy storage systems, as Meysam Khojasteh et al. [12] highlight. These
authors proposed a linear optimization model for synchronous generators and BES in the
collective energy and reserve market. Their proposal reduced the total operating costs
and provided adequate security by deploying energy storage systems. In [13], the authors
introduced the aggregated scheduling of energy storage systems and wind power resources
in the same joint markets. For this case study, results indicate that the day-ahead and
real-time markets can be considered the optimal options for buying and selling energy
storage systems’ energy.

Nevertheless, sharing a large capacity battery across a group of small prosumers in
a community can alleviate the economic deterrents but also exploit the fact that behav-
ior patterns do not necessarily overlap, as Jiyun Yao and Parv Venkitasubramaniam [14]
believe. However, this introduces competition [15]. These authors introduce a stochastic,
general-sum, game-theoretical framework to solve this problem and capture the compet-
itive behaviors managing charging and discharging based on the received, sometimes
incomplete, information. The results provided a close-to-optimal performance using the
strategy with real electricity usage and pricing data.

With this, it is crucial to take a step forward to implement energy storage systems
in local communities, namely the ones with residential prosumers with renewable-based
resources, as a means to increase their self-consumption [16]. Lisa Calearo et al. [17]
stress this fact in their work, where a comparison was made between the benefits of a PV
prosumer with an EV under two options: installing a BES or applying smart charging.
Furthermore, Farzad Arasteh and Gholam H. Riahy [18] developed an online model-based
predictive-control approach for optimal real-time operation of wind-integrated power
systems, including DR and energy storage systems facilities. In the results, the authors
could reduce operational costs through optimal uncertainty management.

The proper knowledge must be selected from a large amount of data provided by IoT
devices. In the study from [19], the authors used a contextual approach to improve the
accuracy of aggregated schedules considering DR performances from previous event expe-
riences in the same context (weather conditions and period). The goal was to understand
which factor impacts the final performance rate attributed to participants and improve
the overall method. However, only direct load control and load appliances were contem-
plated in the DR events, disregarding prosumers. A previous work [20] did contemplate
this type of prosumer. Still, the main goal was fair remuneration for DR participants by
understanding the benefits of considering them as individuals or unique players using
clustering methods. Along the same line, the study developed [21] a remuneration structure
comparing hierarchical and fuzzy c-means, considering the maximum tariff in each group
to compensate the DR participants. However, the participant trustworthiness level was not
considered; the prosumers have uncertain behaviors and might not participate as requested.
Considering them as economic and rational agents might lead to misleading results [22].
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Table 1 summarizes the important topics referred to in the literature reviewed pre-
viously, considered to be used for motivation for the current work. Regarding the table:
prosumers were rarely used; the main Demand Response programs used are incentive-
based; the chosen energy storage system is the battery; the horizon most used in these
works is real-time; only one work considers fair remuneration of DR participants.

Table 1. The literature review summarized (3 means that the topic is covered by the reference).

Ref. Prosumers Demand
Response

Energy Storage
System Horizon Remuneration

[12] - - 3 Real-time -
[13] - - 3 Real-time -
[15] - - 3 Real-time -
[17] 3 - 3 - -
[18] - Incentive 3 Real-time -
[19] - Incentive - Planning 3
[20] - Incentive - Planning 3
[21] - Incentive - Planning -

This work 3 Incentive and price 3 Planning and Real-time 3

In the present paper, the authors aim to gather all these concepts with the proposed
methodology.

1.4. Scopes

The present study falls into the scope of optimal resource scheduling, considering a
contextual approach for DR event participants. In this way, the authors aim to address and
solve problems related to fair and contextual remuneration, reduce response uncertainty,
BES optimal management, and self-consumption.

1.5. Motivation

Considering the works analyzed previously, the authors’ main motivation is to pro-
vide innovative contributions for local community management of several resources with
uncertain and volatile behavior. Furthermore, dealing with big data issues by selecting
contextual information could be useful in characterizing DR performances. And finally, the
authors contemplate not only load flexibility prosumers, but also prosumers with more
resources beneficial for the grid functioning, properly managed and well-motivated by
using fair and contextual remuneration.

1.6. Contributions

With this motivation and the mentioned challenges, the authors address the problem
in this paper: how to fairly remunerate prosumers for participating in DR events providing
flexibility with several resources and considering different energy price schemes. The
following features are listed as innovative aspects of the methodology proposed in the
present paper:
• Optimizing prosumer behavior in a distributed management, considering past DR

events to predict and classify their response to an event;
• Evaluate several approaches to increase remuneration fairness;
• Compare several energy price schemes to understand the benefits from the community

manager and the prosumer perspectives.
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1.7. Organization of Paper

The present paper is organized into five main sections. Section 1 presents the present
work’s background, motivations, related works, and innovations. Then in Section 2, the
proposed methodology is presented in detail. The case studies and several scenarios are
presented in Section 3 to be further discussed in the results and discussion section. Finally,
Section 5 brings forth the conclusions from this study.

2. Proposed Methodology
The authors developed a methodology to optimally manage the resources in a commu-

nity, such as Distributed Generation (DG), prosumers, load flexibility, and energy storage
systems. Believing that context is an important matter, bringing intelligence to the models
developed, the authors believe introducing this concept will improve the solution com-
pared with previous works [23]. For the present paper, besides the inclusion of BES in the
prosumer’s portfolio, the authors intend to evaluate ways to motivate participation in DR
events and reduce the operating costs from the community manager by selecting only the
proper participants for a certain context, following the proposed methodology in Figure 1.

  
(a) (b) 

 ocal  ctive Community
 Distributed  eneration
  rosumers
  oad  le ibility
  nergy Storage Systems

  ternal Supplier

Remuneration

Dataset de nition

Re uested vs  ctual participation

ClusteringSingle

Classi cation  erformance

Comunity manager

 nergy retailer ...  nergy retailer n

        S for community representation
 Real ba ery integration with the system 
  ntegration of the optimization model with the

agents 

 ptimal scheduling

Figure 1. Proposed methodology: (a) diagram, (b) flowchart.

For a community manager, several offers are being made from the energy retailers as
a competitive market is introduced. Furthermore, dealing with the new and uninformed
prosumers as market players with a more direct impact on the market transactions increases
the complexity of managing active communities.

Following Figure 1b, the participants are selected to attend, starting with the DR event
triggered in a specific context. To maintain continuity with previous works, the authors
used a rate designed to classify the participants’ performance on a DR event: Consumer
Trustworthy Rate (CTR), defined according to Figure 2. Three yellow stars in Figure 2
means three out of five.
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Figure 2. CTR in the scope of the proposed methodology.

Before scheduling, information is gathered regarding DR events in the same context—
for instance, the same hour, day of the week, or even the temperature registered for each
participant. This rate will be useful for understanding which prosumers are more willing
to participate in each situation. However, privacy matters could be raised since prosumers
might share sensitive information regarding their appliances to participate in DR events.
Before the event, the community manager and the participants should agree on the data
provided, since this is a contextual approach. For instance, in load-shifting programs,
the appliance schedule might be shared to be optimally attributed to a different period,
avoiding consumer discomfort and rebound effect.

To avoid privacy issues, the proposed methodology-optimal schedule in the present
paper is performed in a distributed way, so the aggregator does not have any private
information on a real-time basis or any other horizon. Each prosumer building does
their own internal management with the optimal schedule proposed and does not provide
private information regarding a specific appliance’s availability or behavior. The aggregator
has only the sum of actual flexibility response from each consumer at the end of the month
to update the CTR and proceed for DR participation remuneration.

Participants with high values of CTR are usually the more trustworthy. The formu-
lation of the CTR changes according to the needed step: before (preliminary consumer
trustworthy rate as PR) or after (updated consumer trustworthy rate as UR) the scheduling.
To select the participants for DR events, the PR is defined according to the consumer historic
rate (CHR), the consumer contextual rate (CCR), the consumer last event rate (CLER), and
the consumer spatial rate (CSR). The first one is the average of the last five performances
in the same period. CCR is divided into two different perspectives: time and weather.
The participant’s performance according to these indicators will result in the CCR. After
that, the CLER differs from the CHR to update the CTR according to the last performance.
Finally, CSR is only used if the aggregator has knowledge regarding the participant’s
current location on the grid. For cases where a voltage violation is detected, the participants
closer to the faulty bus must have priority. In the present paper, CSR was not considered
since it was not the focus of the study. Further privacy issues regarding CTR were already
discussed by the authors in prior works with additional consumer information [24], so this
topic will not be approached in the present paper. After the scheduling is performed and
the comparison between the requested and the actual flexibility is made, the CTR must be
updated with the performance from the current period—CCER.

As soon as the participants are selected, the optimal scheduling phase starts.
Equation (1) represents the objective function from the mixed-integer linear program-
ming optimization. Since the tariffs are defined hourly, the term Dt was added to adjust the
consumption for a different time basis.
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Regarding the flexibility provided by the participants in the DR events, it is represented
with P

DR

(c,t) and is limited according to upper and lower limits shown on Equation (4). Also,
the authors considered that loads are connected to relays and only when activated—using
the binary variable X

DR

(c,t), the loads can be shed according to Equation (5).
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Energy storage systems considered in the methodology are limited by several con-
straints represented from Equations (6)–(10). Equation (6) represents the upper and lower
limits of the energy storage system operation capacity. Equations (7) and (8) represent the
charge and discharge limits per period, respectively, associated with binary variables. So
with Equation (9), the aggregator can guarantee the impossibility of charging and discharg-
ing with these binary variables X

ch

(s,t) and X
dch

(s,t) in the same period. Finally, Equation (10)
represents the state of charge of the energy storage system maintaining the power balance—
the sum of the previous state and what was charged or what was discharged for the current
period.
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Once finished with the scheduling, the following stage is represented on Figure 2b
as “Performance Evaluation”, where a comparison between the actual and the requested
participation is made to properly assign the remuneration tariffs to the ones that contributed
to the DR event.

The fair remuneration phase is the focus of this study. The authors proposed four ap-
proaches: single, clustering, classification, and performance. The single approach considers
that flexibility is remunerated according to the energy price applied for the current period.
Several schedules were considered for dividing, for instance, the day into peak, valley, and
off-valley periods. Each period has a different tariff, and the flexibility is compensated with
the same value.
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For the clustering approach, the authors opt for one of the well-known partitional
methods—k-means. The algorithm aims to find a centroid value representing each group,
comparing the distance between elements until the minimum value is found. The k-means
clustering method was already studied and widely used with various extensions in the
literature. For the proposed methodology, the authors intend to aggregate prosumers with
similar flexibility profiles and remunerate higher values with better tariffs, which may
lead to different tariff values per period, since the group with higher flexibility can also
change. By getting the output data from the method in which a group is assigned to each
participant, the authors want to create the proper rules and then attribute the group to
other participants without performing the clustering method each period. In this way,
classification methods can be used. Three different methods were tested within the scope of
the present paper: decision tree, k-nearest neighbors (KNN), and artificial neural networks
(ANN). These methods were then compared and evaluated using accuracy and mean
absolute error (MAE).

Finally, the UR is used for the remuneration since it contains the information from the
actual performance. Each rate is tariff-associated, and the higher the rate, the better the
compensation.

The novelty from previous works relies on the contextual change of energy price and
remuneration. The authors believe proper compensation is crucial to motivate continuous
participation and make this transaction known to prosumers. It will take time, education,
and resources to make the prosumers better power and energy market players. Still,
the authors believe continuous participation and experience will also be important to
progress. With higher knowledge regarding the community come better results in managing
community resources. It will also benefit the prosumers, since their load can be changed to
other periods when the energy price is lower. Comparing several approaches to remunerate
properly and fairly can be useful for developing a tool capable of taking a step forward to
apply DR in the real market with optimal results.

3. Case Study
To test and validate the optimization model, it was used with a novel multi-agent

system conceived and developed by the authors called Python-based Ecosystem for Agent
Communities (PEAK) [25]. PEAK is a multi-agent framework that aims to support and
manage the development of multi-agent ecosystems in a simple way, based on the Python
programming language. This framework can create simulation environments and provide
a feasible solution for a pilot deployment. PEAK can integrate real devices, such as energy
resources, loads, and IoT devices, using specific drivers for each communication protocol.
Furthermore, it is possible to integrate mathematical and machine learning models within
the agents. By default, a system created with PEAK registers every interaction inside the
ecosystem for posterior debugging and analysis.

The paper uses Multi-Agent Systems (MAS) to model and represent smart grid entities.
The authors consider the approach a good fit, as they can decentralize the computational
effort among agents. The proposed MAS solution uses the open-source PEAK framework
(www.gecad.isep.ipp.pt/peak, accessed on 3 November 2022), which enables easy and
fast development and deployment of MAS in simulated and real scenarios. As for the
optimization model, it is distributed among agents, and each agent responsible for the
optimization of its own resources.

Energy storage in the literature has been identified with several options, such as
ultra-capacitor, super magnetic, flywheel, compressed air, pumped hydro energy storage
systems, and Battery Energy Storage Systems (BESS) [26]. In the present paper, BESS has
been selected. As concluded in [26], combining BESS with DR can significantly reduce the
size of conventional energy storage systems and improve power quality. For the present
case study, a total of 19 prosumers/agents were considered, and five of those prosumers
are connected to real BESS, while the others use simulated BESS, and both are constrained
by (6) to (10). These real BESS belong to the GECAD/ISEP research center and can be

www.gecad.isep.ipp.pt/peak
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seen in Figure 3, with a capacity of 2 kW. The developed PEAK agents for the proposed
model do not represent a threat to the equipment when using data simulation. To avoid
damage to the equipment, the PEAK was executed in real-time (running the case study for
24 h) while compliant with the physical limitations of BESS. Also, the BESS used, a Victron
inverter, was configured to set charging, discharging, and state of the charge limits to avoid
physical threats to the equipment. Regarding computational complexity, this framework
uses multiprocessing and multithreading to increase simulation processing speed, enabling
computation processing distribution between different machines.

 

Figure 3. A real BESS from GECAD/ISEP was used for implementing the proposed methodology.

At the beginning of the simulation, the real BESS starts at full capacity. Furthermore,
to communicate with the BESS, the agents use the protocol ModBus/TCP. Regarding the
optimization model, the authors integrated with the multi-agent system’s agents and
optimized each period where the model is executed in each agent. The proposed model
allows BESS configuration. In this way, for the case study in the present paper, the actual
BESS may have a configuration like the simulated BESS.

Focusing on the contextual change of energy prices for resource scheduling, three case
studies were created considering the tariff values from Table 2 and the schedule represented
in Figure 4. The feed-in tariff was not considered for the case studies—values applied
are currently considered by the main Portugal DSO. Only prosumers below 20.7 kW of
contracted power were considered for this study. The 19 prosumers mentioned above with
contracts as DR participants will provide flexibility. Moreover, these prosumers also use
photovoltaic (PV) generation and a BESS associated with each one of them, being able to
suppress their load consumption or sell the excess to the grid. The Portuguese DSO from
which Table 2 tariffs were withdrawn considers two different schedule options: daily and
weekly. However, this fact does not affect the tariff values, only the schedules in which
they are applied; for the weekly schedule, the season matters.

Table 2. Energy tariffs for the scheduling phase.

Tariff Peak (m.u./kWh) Off-Valley (m.u./kWh) Valley (m.u./kWh)

Flat 0.1815 0.1815 0.1815
Bi-hourly 0.1865 0.1865 0.1669
Tri-hourly 0.2724 0.1686 0.1561
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The four remuneration approaches were then compared using the Figure 4 schedule
for the different types of tariffs.

First, the single approach where the same tariffs from Table 2 are used for remunerating
the participants in the DR event is the single approach where the same tariffs from Table 2
are used to remunerate the DR event participants. Then, a clustering approach is applied,
aggregating the participants with similar behaviors. For this scenario, the number of
clusters to be formed will equal three. The tariffs are attributed according to the context
in which the DR event is triggered, following the schedule from Figure 4 according to the
tri-hourly one. The classification scenario will create several rules to assign a tariff to the
participants according to the context. And finally, the authors decided to apply a different
approach. The CTR was used for the remuneration fees regarding participation in the DR
event, as seen in Table 3.

Table 3. Consumer contextual trustworthy rate tariffs applied.

Rate Peak (m.u./kWh) Off-Valley (m.u./kWh) Valley (m.u./kWh)

1 0.1815 0.1686 0.1561
2 0.2042 0.1718 0.1625
3 0.2270 0.1751 0.1688
4 0.2497 0.1783 0.1752
5 0.2724 0.1815 0.1815

Considering the values from Table 2, for the CTR scenario, the authors attribute the
higher tariff value to each scheduled period (i.e., peak, off-valley, and valley) and divide
according to the rate. So with higher rate values, the prosumer will receive more compen-
sation for their participation, sometimes enough to pay for their load consumption for the
current period and have profits. The approach’s main goal is to improve performance and
encourage continuous participation, giving more benefits to the prosumer for participating
in the market transactions. The dataset used for each case study is in Appendix A.

4. Results and Discussion
In the present section, the authors discuss the proposed methodology results when

applied to the previously presented case study. The scheduling was performed for all
the prosumers in the community considering (1) to (10). The prosumer resources flexible
results can be seen in Figure 5a–f, from load reduction values (constrained by (4) and (5))
and BES discharging (constrained by (8)).
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Figure 5. Scheduling results for case studies divided according to clustering method: (a) prosumers’
load flexibility per period for case study 1, (b) prosumers’ BES discharging per period for case
study 1, (c) prosumers’ load flexibility per period for case study 2, (d) prosumers’ BES discharging
per period for case study 2, (e) prosumers’ load flexibility per period for case study 3, (f) prosumers’
BES discharging per period for case study 3.

The results were then aggregated into three groups using the k-means clustering
method to find the similarity between the load profiles. This consumer modeling technique
was used by the authors for ease the analysis—the colors were also changed in the group
according to each ID assigned, but with higher values of opacity.
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Figure 5a,b represent the scheduling results for case study 1 (flat energy price tariff).
Figure 5a clustering results show that Group 0 gathers the prosumers with low values of
flexibility outside the peak zone, namely when compared with Group 2. From period 40
until period 58, Group 0 (represented by the red curve) had higher values of flexibility than
Group 2 (represented by the blue curve), which prevailed mostly higher in the remaining
periods. Regarding Group 1, before period 35, it was also below the blue line but remained
superior to the others until around period 85. It must be highlighted that Group 0 had six
prosumers, Group 1 gathered ten different participants, and the remaining were attributed
to Group 2.

Results from Figure 5b achieved the maximum discharge value (375 W) for many
periods and kept that value for no more than four consecutive periods. Nevertheless, the
participant that contributed with this type of flexibility for the most periods was ID 16,
keeping the maximum for four consecutive periods and then decreasing to 95 W. This
participant was then assigned to Group 1, the four prosumers that have higher values of
contribution for most of the time; namely, when there is no PV generation. Assigned to
Group 0 were six different participants: ID2, ID3, ID5, ID6, ID13, and ID15. Group 2 has
nine participants with lower values of contribution.

Figure 5c,d represent the scheduling results for the second case study that considers
a bi-hourly tariff, meaning there are times of the day considered as valley and off-valley
(including the peak hours) where the energy price is different, as seen in Table 2. As
suggested by the Portuguese DSO, the bi-hourly tariff is ideal for the prosumers, with 40%
of their daily consumption spent between 10 p.m. and 8 a.m. Still, the authors wanted
to understand if these tariffs impact the flexibility in the community schedule—are two
different energy tariffs enough to move the load consumption to lower price schedules?

Figure 5c flexibility results are similar to Figure 5a. Group 0 was assigned ID12, ID14,
and ID19 (represented with purple curves), reducing by a total of 518 W for the whole
day—the group with fewer members and less provided flexibility overall. For Group 1,
the clustering method allocated ten participants to this group, which reduced the day by
2164 W. Finally, in Group 2, the reduction value was 773 W between the six participants
within the group. Regarding the BES discharging results, some disparities can be found
in Figure 5b. For instance, period 29 is highlighted with the red dotted circle on both
figures—the discharging value from Group 2 in Figure 5b is null.

Figure 5e,f represent the results for the final case study where a tri-hourly tariff is
considered, meaning three different values are assigned to periods, such as peak, off-valley,
and valley, according to Table 2. However, applying the tri-hourly tariff did not affect the
flexibility provided by the participants differently from the previous ones. Still, differences
could be seen on the BES discharging chart marked with a red dotted circle in period 36,
where the discharging value was slightly lower than the remaining cases.

The simulated values had differences between the three case studies regarding the
BESS perspective. To prove the viability and robustness of the proposed model, case
study 3, with more tariffs, was tested in a real-time environment. The real state of charge
for the five BES considered can be seen in Figure 6, according to the PEAK execution. When
comparing both expected and real results, most of the time, the real values are above the
expected, although it follows the same tendency. Regarding Figure 6a, between periods 40
and 60, a major difference can be seen between both curves—expected to charge and after
discharge. Still, the real value kept above 500 W. Moving on to Figure 6b, from period 60,
the battery was expected to discharge, but that did not happen in the real curve, similar to
Figure 6c–e. The expected results were constrained by (7).



Sensors 2022, 22, 8877 12 of 20

  
(a) (b) 

  
(c) (d) 

 
(e) 

 

   

    

    

    

    

                                      

  
  

   
   

  
  

   
 

  

       

              

 

   

    

    

    

    

                                      

  
  

  
 

   
  

  
   

 
  

       

              

0

500

1000

1500

2000

2500

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

St
at

e O
f C

ha
rg

e (
W

h)

Periods

Actual Expected

 

   

    

    

    

    

                                      

  
  

  
 

   
  

  
  

  
  

       

              

0

500

1000

1500

2000

2500

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

St
at

e 
O

f C
ha

rg
e (

W
h)

Periods

Actual Expected

Figure 6. Comparison between the expected and the real state of charge from different batteries:
(a) battery ID 0, (b) battery ID 1, (c) battery ID 2, (d) battery ID 3, (e) battery ID 4.

Moving on to the second phase of the study, regarding fair remuneration, the results
for the first approach can be seen in Table 4 regarding the total flexibility of the prosumers’
load and the total BES discharging. By analyzing this table, the authors can conclude
that the total compensation increased from case study 1 to case study 3. BES discharging
remuneration decreased from case study 1 to case study 2 but achieved the maximum in
case study 3 with 4.53 m.u.
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Table 4. Total remuneration according to a single approach.

Case Study Actual Flexibility (m.u.) BESS Discharging (m.u.)

1 156.84 4.45
2 157.76 4.41
3 163.81 4.53

When participating in DR events, the prosumers will benefit from changing their
consumption to other periods with cheaper energy prices or even using PV resources
for self-consumption. Furthermore, they will be fairly remunerated for helping with
market transactions. For instance, according to Table 4, if the community prosumers did
not participate, a maximum of 163.81 would be attributed, and grid problems might not
be solved.

The results from the fair remuneration clustering approach can be seen in Figure 8 for
both prosumers’ load flexibility and BESS discharging.

The remuneration tariffs were assigned according to groups with a higher value of
flexibility for each period. In other words, the ones with higher accumulated flexibility will
be assigned higher remuneration. It must be highlighted that remuneration tariffs were
defined according to the tri-hourly tariff used previously. In this way, the group tariffs
resulting from the prosumers’ flexibility are similar for the three case studies, according
to Figure 7a,c,e. Disparities can be, however, found regarding the BES discharging results.
Focusing again between periods 20 and 40, marked with a red dotted circle in Figure 7,
there were differences between case studies. Firstly, for case study 1, group 2 changed
tariffs twice—from 0.1561 (m.u./kW) to 0.1686 (m.u./kW). Regarding case study 2, group 1
increased their remuneration price from 0.1561 (m.u./kW) to 0.1686 (m.u./kW). Finally,
similar to case study 2, group 0 from case study 3 increased the remuneration but also
participated in period 36, achieving the second-best tariff. In contrast to the results from
Figure 7, Table 5 was created to compare the daily remuneration obtained per group and
case study.

Table 5. Total remuneration according to clustering method.

Case Study
Actual Flexibility (m.u.)

Total
BES Discharging (m.u.)

Total
Group 0 Group 1 Group 2 Group 0 Group 1 Group 2

1 33.22 134.67 28.38 196.27 2.75 2.21 0.84 5.80
2 33.22 134.67 28.38 196.27 2.75 0.87 2.20 5.82
3 33.22 134.67 28.38 196.27 1.08 2.40 2.22 5.70
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As expected from the previous results, the remuneration from the actual flexibility of
participants is the same for all the groups in the different case studies. However, the BES
discharging results are different, demonstrating a higher gap between case study 3 and the
remaining. Group 0 achieved a 2.75 m.u. for case study 1 and case study 2. Group 1 from
case study 1 and Group 2 from case study 2 had similar remuneration of around 2.20 m.u.
Group 2 from case study 3 received 2.22 m.u. The lowest remuneration was attributed to
Group 2 from case study 1 (with 0.84 m.u.), Group 1 from case study 2 (with 0.87 m.u.),
and Group 0 from case study 3 (with 1.08 m.u.). Regarding these results, from an overall
perspective, opting for case study 3 can benefit the aggregator. These results indicate that
adding more contextual information may reduce the total remuneration and still be fair
with the participation compensation.

Furthermore, the authors used three different classification methods to create the
proper tool to attribute the remuneration group to each participant, resorting to the results
obtained from the clustering results. The classification method’s performance, using the
selected indexes (accuracy and MAE), can be seen in Table 6. The results were obtained
using Python libraries created for this goal. In examining the results and regarding the
actual flexibility, the lowest accuracy value was achieved when the decision tree was
performed—10.59%, with the 83.33% achieved with KNN. This method obtained better
results from both accuracy and MAE for both datasets.
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Table 6. Performance results from the classification methods.

Classification Methods
Actual Flexibility BES Discharging

Accuracy MAE Accuracy MAE

Decision Tree 0.10588 0.42105 0.41651 0.50877
K-nearest neighbors 0.83333 0.33333 0.41666 0.50877

Artificial Neural Networks 0.57780 - 0.37780 -

Finally, the last remuneration method, considering the rate created by the authors, is
the CTR. Table 7 shows the total obtained per rate throughout the day according to the
participants’ performance—the actual distribution can be seen in Figure 8. For both cases,
rate 1 is the one with more prosumers—mainly on BES discharging, as seen in the blue
columns in Figure 8b. Throughout the 96 periods, 584 lower rates were attributed to the
load flexibility and 1554 regarding BESS discharging.

Table 7. The number of participants per rate throughout the day.

Actual Flexibility (m.u.) BES Discharging (m.u.)

Rate 1 2 3 4 5 1 2 3 4 5
Participants 584 334 302 290 314 1554 65 83 60 62
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Figure 8. CTR from (a) prosumers’ load flexibility per period and (b) prosumers’ BES discharging.

The remuneration obtained with this approach can be seen in Table 8. Focusing on
the actual flexibility from the participants’ load reduction, as already shown previously,
the results are around 160 m.u. for the three case studies. However, when comparing with
the results from Table 5, the overall remuneration decreased near 20.27 m.u. Although the
ones with better performance receive better compensation, mainly during peak hours, the
number of participants with a rate of 5 is still low.

Table 8. Total remuneration according to the CTR method.

Case Study
Actual Flexibility (m.u.)

Total
BES Discharging (m.u.)

Total
1 2 3 4 5 1 2 3 4 5

1 28.56 34.67 30.01 30.80 36.14 160.16 0.85 0.79 1.09 0.84 0.88 4.45
2 28.56 34.67 30.01 30.80 36.14 160.16 0.91 0.77 1.09 0.84 0.87 4.49
3 28.56 34.67 30.01 30.80 36.14 159.63 0.91 0.77 1.09 0.84 0.87 4.49

To validate the proposed methodology and support the claim that resources from DR
participation in market transactions can bring economic benefits to both players and aggre-
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gators, an individual perspective comparing two prosumers with similar behaviors will be
analyzed. Although remuneration approach 1 provided low values of total remuneration,
which is better from the aggregator perspective, the CTR fair remuneration had a close
result to the single fair remuneration and has the advantage of increasing the remuneration
by increasing the rate. In the end, this is advantageous for both sides—increasing trustwor-
thiness and giving the proper knowledge regarding community members. With this, the
chosen program for this comparison was remuneration approach 4, case study 3.

Figures 9 and 10 show the comparison-resulting load diagram and generation for
prosumer ID2 and prosumer ID6, respectively. It can be seen that the load peak for both
prosumers is in a different period from the generation. Participating in the DR event
can move their consumption where self-consumption can be applied through their PV
generation and saving money, mainly prosumer ID6 from period 36 to 46. Furthermore,
prosumer ID 2, from participating in DR events, received a total of 7.58 m.u., and prosumer
ID 6 received 8.69 m.u.

Figure 9. Prosumer ID2 consumption and generation profiles.

Figure 10. Prosumer ID6 consumption and generation profiles.

5. Conclusions
The consumer’s role is changing in the power and energy market. With the smart grid

concept being implemented in the real market, their market influence will increase, not
only by providing load flexibility, but also by upgrading their portfolio with distributed
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generation resources, such as renewable bases like photovoltaic panels and battery energy
storage systems. For the present paper’s case studies, the authors aim to better understand
the influence of the power and energy price on community resource scheduling and their
willingness to move their load consumption by participating in demand response events.

From the results obtained in the study presented in this paper, the prosumers’ flexibility
to participate was not impacted by the energy price fluctuation for different schedules. The
residential prosumers and their reluctance to change their behavior to avoid jeopardizing
their comfort are still a complex problem. Although flexibility was provided, it was
expected to have a higher level of demand response participation, since the energy prices
increased for several periods. Nevertheless, the authors know that higher participation
levels will move load consumption to other periods. This fact must be well managed to
avoid a rebound effect after the demand response event, considering that prosumers will
also reduce the load requested to the grid and, sometimes, help to balance the generation
resources associated by selling their excess, namely from battery energy storage. Regarding
battery energy storage discharging flexibility, the response to energy price changes in the
scheduling phase was observed for this case. Although photovoltaic generation was also
considered in these case studies, battery energy storage is much more predictable and
controllable, which is useful for load consumption satisfaction for both the owner and the
community-associated.

Regarding the perspective of remuneration, although the single approach had the
lower values of remuneration, the authors believe that the approach with a rate that
classifies the performance from the demand response participants can benefit from the
aggregator perspective without jeopardizing the fairness—the ones with a higher level of
trustworthiness will still have higher values of compensation. Furthermore, this approach
will also motivate continuous participation to increase the rate assigned and have better
benefits, sometimes not paying for the energy prices, since their compensation from the
flexibility provided may be higher.

To conclude, the authors summarize the results found in this study and compare them
with the current state of the art reviewed previously (Table 1):
• On the simulated scheduling results, the contextual energy price did not much change

the behavior from the prosumer load flexibility. However, BES was used several times
when PV generation was low, as mentioned [16,17].

• Single fair remuneration was the one with the lowest total value of remuneration.
From the community manager’s perspective, fair remuneration can still be applied,
since the participants will receive higher compensation values for DR participation.
In [20], single fair remuneration was also considered in the case studies, but not
for prosumers.

• Clustering fair remuneration was the one with the higher total value of remuneration.
From the prosumer perspective, aggregating the participants into three groups might
be interesting, as providing higher flexibility can help them join different groups.
This approach was also considered in [21] but might be highly costly for the commu-
nity manager.

• CTR fair remuneration had results close to the single fair remuneration plus and has the
advantage of increasing the remuneration by increasing the rate. This is advantageous
for both sides, increasing trustworthiness and giving the proper knowledge regarding
community, as in [19].
In future works, the authors will add electric vehicles as prosumer resources for other

types of consumers, such as office buildings. Furthermore, one factor that might impact the
results and was not considered was the ramp period and the number of cycles of charge
and discharge, which can be considered a disadvantage of the proposed methodology.
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Nomenclature

C
gridin

(t) Cost of selling on period t (m.u./kW)

C
gridout

(t) Cost of buying on period t (m.u./kW)
E

stor

(s,t) State of charge from energy storage s on period t (kW)
E

stormax

(s,t) Maximum state of charge from energy storage s on period t (kW)
E

stormin

(s,t) Minimum state of charge from energy storage s on period t (kW)
P

DR

(c,t) Flexibility provided by prosumer c on period t (kW)
P

DRmax

(c,t) Maximum flexibility provided by prosumer c on period t (kW)

P
gridin

(t) Power sold from External Supplier on period t (m.u./kW)

P
gridout

(t) Power bought to External Supplier on period t (m.u./kW)

P
gridmaxin

(t) Maximum power that can be bought from External Supplier on period t (m.u./kW)

P
gridmaxout

(t) Maximum power that can be bought from External Supplier on period t (m.u./kW)
P

DR

(c,t) Power from Demand Response active consumer c on period t (kW)
P

PV

(p,t) Power from Distributed Generation p on period t (kW)
P

ch

(s,t) Power from charging Energy Storage System b on period t (kW)
P

dch

(s,t) Power from discharging Energy Storage System b on period t (kW)

P
grid

(t) Power from External Supplier on period t (kW)
P

load

(t) Initial Load on period t (kW)
W

DR

(c,t) Flexibility weight from prosumer c on period t
X

DR

(c,t) Availability from prosumer c on period t

X
ch

(s,t) Charging status from Energy Storage System b on period t
X

dch

(s,t) Discharging status from Energy Storage System b on period t

Appendix A
The dataset used in the present paper was published on Zenodo (https://zenodo.org/

record/7277686, accessed on 3 November 2022).
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Resumen 

Los consumidores activos, como nuevos actores que pueden contribuir a las 
transacciones del mercado, proporcionarán flexibilidad a través de eventos de 
respuesta a la demanda para hacer frente al comportamiento volátil de los 
recursos de generación distribuida, como la energía solar y eólica. Sin embargo, 
su falta de conocimiento y comportamiento incierto añadirán un nuevo nivel de 
complejidad a la gestión de la comunidad. En este sentido, los autores proponen 
una metodología capaz de lidiar con estos recursos y promover la equidad entre 
todos los participantes. En el presente estudio, para agregar más características y 
enriquecer los diversos pasos metodológicos de trabajos anteriores, se 
compararon varios métodos de agrupamiento para encontrar patrones entre los 
participantes en los eventos de respuesta a la demanda desencadenados. Dado 
que algunos métodos de agrupamiento son sensibles al número inicial de grupos, 
se debe encontrar un número óptimo para el conjunto de datos. Los autores 
también realizaron una comparación entre algoritmos y descubrieron que un bajo 
número de grupos puede ser reduccionista, ya que hay diferentes 
comportamientos de los consumidores en diferentes contextos en cada evento de 
respuesta a la demanda. 
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Abstract: Active consumers will provide flexibility through Demand Response 

events to deal with the volatile behavior from the Distributed Generation resources 

such as solar and wind. However, their lack of knowledge and uncertain behavior 

will add a new level of complexity to the community management. In this way, the 

authors propose a methodology capable of dealing with these resources and 

promoting fairness between all players. Several clustering methods were compared 

to find patterns between the participants in the triggered events in the study present. 

Since some clustering methods are sensitive to the initial number of clusters, an 

optimal must be found for the dataset. The authors also made a comparison between 

algorithms designed for this purpose. 
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1.1 Introduction 
In the current paradigm, small consumers have indirect influence regarding the 

transactions in the energy market. With the Smart Grids concept, namely, to avoid 

the usage of non-renewable generation, new players and resources will be added to 

the energy system (Osório et al. 2019). Distributed Generation technologies, such as 

wind and solar, will be the main source in the future. However, their volatile behavior 

will impact the system's reliability and security (Silva, Faria, and Vale 2019a). To 

avoid this problem, the consumers must provide flexibility, introducing a new 

paradigm where the generation no longer follows demand (de São José, Faria, and 

Vale 2021).  

The Demand Response concept brings the empowerment of the consumers and 

increases their influence in the operations (Faria and Vale 2021). DR allows active 

players to receive and react to signals and change their consumption accordingly. 

These signals can be price-based or incentive-based and are triggered considering the 

system balance achievement. For instance, at peak hours, DR event participants 

receive a signal to reduce their consumption when the generation is low. Those who 

comply are rewarded, and continuous participation is remunerated (Vale et al. 2011; 

Morais, Faria, and Vale 2014; Gomes, Vale, and Corchado 2020). 

However, the implementation of these programs in the real market is still very 

scarce. Efforts are being made to provide all the means necessary to be successful. In 

Europe, for instance, regarding policy and rule creation, Directive 2019/944 was 

created (European Parliament and Council of the EU 2019). The importance of active 

consumers and their core role is well referenced throughout this Directive. Moreover, 

to achieve the targets with effectiveness, innovation must be encouraged, and the 

flexibility from the consumers well compensated. After implementing the DR and 

fully functional energy market, the possibility of adding renewable energy to the 

actual grid can become a reality taking a new step to decarbonize the system 

(Abrishambaf et al. 2019). 

The lack of knowledge from these new players adds complexity to the system 

management (Zheng et al. 2021). Therefore, to supervise the new communities 
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created, a new entity was designed – the Aggregators. By becoming responsible for 

coordinating all the small resources associated with the community, the Aggregator 

will participate in wholesale electricity markets as an intermediary in the transactions 

with the Independent System Operator (Okur et al., 2019). With this approach, the 

active consumers will take a step closer to the energy market without jeopardizing 

the system's functioning. 

The authors propose a methodology to ease the complex task of managing such 

uncertain resources in the current chapter. The methodology comprises several steps: 

Scenario Definition, Optimal Scheduling, Aggregation, Remuneration, and 

Classification. The method may serve as a planning approach with all the aggregate 

resources, being capable of dealing with Distributed Generation (DG), prosumers, 

Energy Storage Systems (ESS), and participants in Demand Response (DR) events. 

But it can also be used in the case of real-time operation, resorting to the last phase, 

Classification. With this, the authors worked to find a solution that contemplates the 

same phases, but quickly. 

The study performed will be crucial for the Aggregation phase, where a clustering 

method is used to find patterns in the consumers' resources profiles. The core idea is 

to gather similar ones and recompense them according to their actual performance - 

incentivizing fairness between all players. This way, four different clustering 

methods were tested and evaluated according to this context. Some of them are 

sensitive to the number of clusters used as input, so three different methods used to 

find the optimal one will also be compared. 

The chapter is organized into five sections. Section 1 serves as an introduction to 

the topic addressed. Section 2 details the methodology proposed by the authors. 

Section 4 presents the case study chosen to prove the feasibility of the methodology 

which the results are further presented in Section 5. Finally, Section 6 presents the 

conclusions from the present study.  

1.2 Methodology Definition 
To better define an effective business model, able to adapt to the future changes in 

the energy market the authors consider that there is an important question that should 



 

4 

be analyzed: since the active consumers are now such an important player in the 

future market, providing flexibility when generation is not able to suppress all the 

demand requests, how can the entity manager motivate their participation? Also, 

predict and reduce the uncertainty of their behaviors and the resources associated? 

Because it is already known that these volatile resources will impact the system's 

reliability and security if not well managed. 

In this way, the authors proposed a multifaceted methodology for different 

approaches (both planning and operation) that support the decisions from the 

Aggregator perspective. The previous works developed by the authors were able to 

gather several steps considered crucial to define the proper methodology to manage 

an active community with different types of resources. Figure 1.1 specifies the five 

main phases, further explored after Scenario Definition, Optimal Scheduling, 

Aggregation, Remuneration, and Classification. One of the key factors introduced, 

highly important for the continuous participation in the authors' opinion, is the fair 

compensation of the participants in DR events wherever requested. Although the DR 

contract cannot always imply a guaranteed reduction from the demand side – the 

participation is voluntary. Even with the appliance control, the active consumer can 

withdraw this permission at any time. 

Being a continuity from previous works (Silva, Faria, and Vale 2019b), The 

authors define the model according to a real scenario. Starting with Distributed 

System Operator (DSO) performing the load forecast for the community – in a higher 

or lower time range, meaning, weekly or real-time approach. After, DSO performs a 

Power Flow (PF) and the respective analysis, using the PF service and looking for 

any issues in the considered network. If none is detected, the scheduling is performed 

normally. On the other hand, if any violation is detected, the DSO must request a load 

reduction to each community manager, the Aggregators. This entity will then trigger 

a DR event using the proposed methodology. It must be highlighted that Aggregator 

may or may not have the load forecast information, so both operation and planning 

approaches can be useful. 

Firstly, as entity manager from the active community, the Aggregator must gather 

all the essential information to serve as input for the proposed methodology and do a 

pre-treatment. This solution has already proved to be robust since it can easily be 
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used for a small database and one that reaches thousands of resources (Silva, Faria, 

and Vale 2019a). Remember, however, that there may be a hardware limitation when 

applying in these cases. Furthermore, regarding the time to process the information, 

the authors advise gathering all the information in the planning case to ease a day-

ahead or hour-ahead configuration. So, the input database must collect useful 

contextual knowledge from the External Supplier, the participants in the DR events 

and the resources associated with them, such as the DG found in the active 

community or ESS installed. 

 
Figure 1.1: Proposed methodology. 

Having the database ready for the next phase, Optimal Scheduling, the 

Aggregator collects the current information for the DR participants, the DG 

contribution, and the ESS status. The active consumers must provide information on 

the available demand flexibility and the willingness to participate in this context. 
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External Suppliers are only introduced if the resources in the active community 

cannot suppress the demand. However, the optimization objective function must 

minimize the operation costs, so the priority must be given to the resources within 

the community, always considering the fair remuneration. A linear approach is 

employed and defined in Equation (1.1). Let c be the number of consumers, t be the 

period, g the DG unit, s be the external supplier, and b be the number of Energy 

Storage Systems (ESS). 

!"#. %& =	)*+!"#(%,'),!"#(%,')-

)

*+,

+)*+-!(.,'),-!(.,')-

/

.+,

+	+0#)('),0#)(')		 

+)*+#1**2345(6,'),#1**2345(6,')-

#
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+)*+"##7(8,'),"##7(8,')-

9
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/, 1, 2, 3, 4 ∈ ℤ ∶ 	/, 1, 2, 3, 4 > 0  

(1.1) 

The objective function (OF) represented in Equation (1.1) is subjected to several 

constraints. To maintain the system reliability and achieve the network power balance 

– stability between consumption and generation, Equation (1.2) was defined. The 

sum of the difference between the initial load, the ESS charge, and the requested 

reduction should match the value from the total generation within DG units, external 

suppliers, and ESS discharge. 

∑ [+(.,')
3:3'3;2++"<.(=,')

/
.+, + +"##.(8,') − +-!(.,')] =

	∑ *+!"#(%,')- +
>
%+, ∑ *+#1**2345(6,')- + ∑ *+"<7(=,')- +

<
=+, 	∑ *+"##7(8,')-

9
8+,

#
6+, +

+0#)(')																																												/, 1, 2, 3	 ∈ ℤ ∶ 	/, 1, 2, 3 > 0  
(1.2) 

The OF is restricted by the maximum contribution requested from each active 

consumer to a DR event (+-!	(.,')@;A ), according to the context in which the event is 

triggered. To define boundaries for the DG units' contribution, the Aggregator to 

control the upper (+!"#	(%,')@;A ) and lower limits (+!"#	(%,')@3: ) and the total value of 

generation provided from each different technology found in the active community 

(+BCD	(E)FGEHI ). In the case where the ESS and DG units cannot suppress the demand, other 

constraints are introduced and represent the external suppliers' constraints, restricting 

the maximum capacity (+#1**2345	(6,')@;A ) and the total amount of generation provided 

from this source (+#1**2345	(')JK';2 ). 
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Regarding ESS, firstly the limits and(?) the operation capacity are added, both 

max (>(6,')6'K5L;A) and (>(6,')6'K5L3:). After, the ESS charge (+(6,').ML;A . ?(6,')
466.M, ?(6,')

466.M) and ESS 

discharge (+(6,')7.ML;A . ?(6,')
4667.M, ?(6,')

4667.M), respectively. Each of these equations includes 

one binary variable, which guarantees the impossibility of charging and discharging 

during the same period t (?(6,')4667.M + ?(6,')
466.M). Finally, to maintain the power balance 

within the ESS – the previous state of what was charged and discharged. 

In the meantime, the optimal number of clusters to be used in the Clustering 

method is also defined to serve as input to the third phase of the methodology: 

Aggregation, along with the optimization results, as shown in Figure 1.1. The 

mentioned phase may be used with several intermediate goals and for different 

resources (load consumption or ESS status to find similar profiles, load reduction to 

understand the behavior in a certain context, and many more), but the main goal is to 

always achieve the fairness between participating resources – granting that they are 

compensated according to their contribution. The Aggregator will be more confident 

in other decisions by finding resource groups with similar characteristics. 

The following phase is one of the most important ones in the author's opinion. 

All the work done in the previous phases culminate in this final step, guarantying the 

active community's continuous participation in the management: the Remuneration 

phase. The compensation tariff must be well defined to serve as a good incentive and 

always according to the context and the active consumer characteristics. 

A new phase is added for the operation stage concerning the planning approach 

– the Classification phase. As already mentioned earlier, it will be necessary to find 

a feasible solution promptly. Thus, it is proposed to use classification methods to 

assist this task. With the output from the Optimal Scheduling phase, as shown in 

Figure 1.1, the Aggregator can use any classification method to predict, for instance, 

which remuneration group should assign each resource skipping tasks from other 

phases. 

This proposal presents several contributions to successfully implement DR in real 

market, aiding the Aggregator in the complex task of managing this active 

communities. In this way, the proposed methodology highlights: 

• Active consumers will be the future center of the energy market. 

Therefore, the new business models should study their behavior, the 
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associated resources (prosumers), and ways to motivate their 

participation to maintain the system reliable and secure. In addition, the 

authors believe that unique characteristics should be further studied to 

develop better solutions.  

• Definition of resource groups according to their similarity. For example, 

for both participation selection and remuneration definition, the 

individual approach may not be the quickest one in a real-time approach. 

In this way, assembly resources with similar behaviors in the same group 

may lead to more precise and fair decisions. 

• When aggregating the active consumers, and since some clustering 

methods may be input sensitive, the introduction of methods to find the 

optimal number of clusters is discussed so the Aggregator can determine 

the best number of groups to be implemented. 

• A contextual approach aids the reduction prediction of trustworthy 

consumers. Furthermore, it introduced information from different 

contexts in the model definition, for instance, period, day or even season, 

and historical. Finally, performances add variability to the methodology, 

thus increasing its interest in dealing with the new and complex players 

in the energy market. 

The present study’s focus will be the Aggregation phase detailing all the steps 

and comparing well-known methods to find the optimal number of clusters and 

several Clustering algorithms. 

Twenty prosumers in an active community can participate in DR events following 

a Time-of-use (TOU) tariff as incentive signals for DR events by the Aggregator. 

This DR program is the most widely used strategy in academic research and practical 

projects (Jin et al. 2019). The case study presented TOU tariff is divided into three 

different periods: peak, intermediate, and off-peak, as can be seen in Table 1.1 and 

according to the Portuguese legislation. The table also presents the parameter W, 

representing the DR weight according to the periods. 
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Table 1.1: Active community characterization. 

Transactions Peak Intermediate Off-Peak 
Sell (m.u./kWh) 0.1659 
Buy (m.u./kWh) 0.3326 0.1681 0.0930 

Periods 10 AM – 1 PM 
7 PM – 9 PM 

8 AM – 10 AM 
1 PM – 7 PM 
9 PM – 10 PM 

10 PM – 8 AM 

DR weight 0.000 0.2000 0.4000 
 

The preferred DG technologies used are the Photovoltaic panels. Still, all of them 

also have Energy Storage Systems (ESS) installed, and the main appliances used for 

DR events are the dishwasher, air conditioning, and the water heater. The information 

gathered regarding the mentioned community resources is on a 15-minute interval, 

resulting in 96 periods throughout the day. Figure 1.2 was then created to visualize 

better the expected community resource consumption, production, and DR flexibility 

from each main type of appliance. 

 

Figure 1.2: Discriminated Consumption for the active community: DR flexibility, total consumption, and 
PV Generation. 

Since the ESS focus on the present study, the idea is to optimize their behavior 

according to the remaining resources. With the results, such as their status throughout 

the day, the charge and discharge curve are withdrawn from the Optimal Scheduling 

step for further analysis and discussion. After only the status will be analyzed in the 

Aggregation phase. 

1.3 Clustering of Consumers with ESS 
A comparison between several methods results will be analyzed and discussed in 

a planning perspective further to improve the Aggregation phase from the proposed 

methodology. The results from using the problem database described previously 
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applied to the proposed methodology will be used as input for this phase, namely the 

ESS dataset. The focus is on ESS status to find similar profiles between these 

resources. The dataset to be used is represented in Figure 1.3. There was an 

assumption that the minimum should be 1,5kW to all the ESS in the active 

community. 

The authors use this type of study to answer questions like: which ones should be 

activated in a certain context, according to previous experiences? Instead of calling 

all the resources in the community, by knowing their expected behavior, there may 

be some more trustworthy than others for the DR event.  

 

Figure 1.3: Optimal Scheduling results: State of Charge. 

In this way, the current section will be divided into two main topics: discovering 

the optimal number of clusters and the group definition according to several 

clustering methods for the value found. 

1.3.1 Optimal Number of Clusters 
Three different methods will be compared: average silhouette, elbow, and gap 

statistic methods. The first two are direct methods, and the last one is statistical 

testing.  

Average Silhouette Method  

Kaufman and Rousseeuw proposed the first method in 1990 (Subbalakshmi et al., 

2015), and it is a direct method. The criterion used for this method, the average 

silhouette, determine the clustering quality. In other words, the k with higher Average 
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Silhouette Width (ASW) is considered the optimal cluster in a certain range, as can 

be seen in Equation (1.14).  

@̅(,, C) =
1

#
)

4(") − F(")

GFH{F("), 4(")}

:

3+,

           (1.14) 

Let a (i) be the average distance between the points in the cluster to which it was 

assigned, and b(i) be the average distance of the nearest cluster to which it was not 

assigned. Considering that clusters are meant to be homogeneous and well separated, 

the larger the silhouette score and of ASW, the better the clustering quality is. 

Unfortunately, t ASW cannot be calculated for k=1 because this method cannot 

directly be used to decide whether the dataset is homogeneous and whether there 

should be any clustering at all (Batool and Hennig 2021). The results from the 

selected dataset can be seen in Figure 1.4. All ASW curves were drawn to ease the 

visualization of the optimal number of clusters found, resorting to this method. Data 

treatment was done previously, and all the data was standardized. 

 
Figure 1.4: Average Silhouette method results for the dataset selected – ESS status. 

In the selected range, from k=2 to k=10, the maximum value of ASW can be 

found in k=2. In this way, according to the Silhouette method, dividing the ESS into 

two different groups is the best approach. It should be highlighted that all the 

following clustering methods tested obtained the same value for an optimal number 

of clusters regarding the silhouette method and the remaining. 

Elbow Method  

The following method is one of the oldest ones since it traced to Robert L. 

Thorndike in 1953 (Subbalakshmi et al. 2015) and, like Silhouette Method, it is a 

direct method. So, starting the number of clusters at 2 and incrementing this value 
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with step 1, the total Within-cluster Sum of Square (WSS) is calculated for each of 

them according to Equation (1.15) (Kashani and Graettinger 2015).  

!"" =	% % &'# − )$&
%

&#∈($

)

$*+
           (1.15) 

Let x be the observations, S be the clusters, and μi be the mean of observations in 

cluster Si. Since the sum of squares is the squared Euclidean distance, the minimum 

wss will be generated by choosing the nearest mean. In this way, Figure 1.5 represents 

the results found. For better visualization, these results are plotted by the analyst. The 

value where the cost drastically reduces and then hits the plateau is where the optimal 

number of clusters was found. 

 
Figure 1.5: Elbow method results for the dataset selected – ESS status. 

In other words, by plotting the results of the study set, it will be possible to find 

an "elbow" considered an indicator of the appropriate number of clusters – but it can 

lead to misreading. In this case, for the same range as in the Average Silhouette 

method, the optimal number of clusters is k=2. 

 
Gap Statistic Method  

Finally, the Statistical Testing Method chosen was Gap statistic published by R. 

Tibshirani, G. Walther, and T. Hastie in 2001 (Subbalakshmi et al., 2015). The 

algorithm steps in this method intend to compare the total intra-cluster variation for 

a range of k clusters with their expected values under null reference distribution of 

the data – in other words, with no apparent grouping. So, to find the optimal number 

of clusters, the gap statistic value must be maximum. Figure 1.6 shows the results 

from this method applied to the selected dataset in the case study. The results show a 
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different optimal number of clusters. In the following sub-section, the values will be 

compared. 

 

Figure 1.6: Gap Statistic method results for the dataset selected – ESS status. 

1.3.2 Clustering methods 
Many authors use clustering methods within the current literature on consumer 

profiling modeling (Granell, Axon, and Wallom 2015b, 2015a; Sun, Zhou, and Yang 

2020). Being an unsupervised learning method, from the machine learning 

perspective, this technique of dividing data into different object groups with similar 

characteristics – the so-called clusters- can find hidden patterns in the same 

information. In other words, this algorithm can be used to explore existing relations 

in the patterns set and organize the objects into homogeneous groups. So, unlike the 

supervised learning methods, such as Classification, no data labeling is provided for 

a-priori differentiation.  

In this way, to measure the density of connection between the objects within each 

cluster, intra-connectivity must be used so that the higher the value, the more 

certainty the analyst can have. On the other hand, the concept of inter-connectivity 

measures the degree of connectivity between different clusters. Therefore, this value 

will be important to be low, meaning that each cluster is individually disparate from 

the rest. To further understand the several types of clustering methods, a comparison 

is made in this section and a detailed explanation of each one. For this study were 

selected four of the most-well know methods. 
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Firstly, the following methods distribute the data into non-overlapping subsets, 

guaranteeing that all data belongs to a cluster. As mentioned, the number of k clusters 

to be generated must first be defined by the analyst – as done before. Partitioning 

clustering includes several known methods, such as k-means or k-medoids clustering. 

K-means is the most common unsupervised machine learning algorithm for 

partitioning (Singh, Yadav, and Rana 2013). Between many adaptations done 

throughout the years, the one defined by Hartigan-Wong in 1979 (Hartigan and Wong 

1979) treats the total variation within a cluster as the sum of the squares of Euclidean 

distance between a point and the center of the cluster, assigning the point to the 

nearest k cluster. Iteratively, each cluster is represented by a new centroid, which 

corresponds to the average of the points assigned to the k cluster in question. 

However, the main problems from this method are the sensitivity to noise and 

outliers, so the previous data treatment is crucial to the successful implementation 

(Sinaga and Yang 2020).  

Resorting to the ESS dataset, regarding the status throughout the day from each 

ESS in the active community, Figure 1.7 represents the comparison between the 

optimal numbers found with the three methods used in the previous sub-section. 

In Figure 1.7 (a), the centroid values to all the periods are represented and can be 

seen for Group 0 and Group 1. The first one gathered 14 ESS profiles, and the 

remaining were assigned to Group 1. From around period 51, Group 0 gathered the 

ESS with power higher value, achieving almost 12kW – the maximum capacity from 

these resources. On the other hand, group 1 consumers did not achieve the 10kW. 

These consumers were probably the ones called to participate, being unable to charge 

until the maximum level. 

(a) 
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(b) 

 

Figure 1.7: Partitional Clustering: k-means results for the dataset selected for (a) kopt=2; (b) kopt =9. 

Moving to Figure 1.7 (b), it became harder to visually understand a pattern 

between groups and why the algorithm gathered these consumers. Table 1.2 is 

introduced to aid with more information regarding the results obtained. 

Table 1.2: Partitional Clustering - Number of ESS per group (k-means). 

Group 0 1 2 3 4 5 6 7 8 
Number of ESS 4 4 1 2 1 4 1 2 1 

 

By analyzing this table, Group 0, Group 1, and Group 5 gather more ESS within 

a cluster. These follow a similar pattern to the groups in Figure 1.7 (a). Furthermore, 

it can also be observed that Group 2, Group 4, Group 6, and Group 8 are composed 

of only one object. Taking a closer look, these ESS profiles are very different from 

the remaining, for instance, from period 6 to period 36. Their dissimilarity from the 

other objects can impact the motivation from the active community due to the fairness 

matter. For example, suppose the Aggregator opt with the Figure 1.7 (a) solution. In 
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that case, the remaining groups contributed to the market's electricity transactions. In 

contrast, these groups – for instance, the ESS assigned on Group 2, Group 4 in the 

mentioned period in Figure 1.7 (b), these resources were able to charge until they 

reached max capacity and received the same remuneration as if they contributed. 

Moving on to k-medoids, two algorithms can be identified: Partitioning around 

medoids (PAM) and Clustering Large Applications (CLARA). The second is an 

extension of the first to deal with datasets with thousands of observations, where 

typically PAM is unsuccessful. This algorithm is search-based for objects, medoids, 

representing a cluster. After each medoid exchange with each non-medoid and only 

if there is an improvement over a criterion (minimization of the sum of the 

dissimilarities of all objects relative to the nearest medoid), this non-medoid will 

represent the group. Iteratively, all the non-medoids are tested until found achieve 

the criterion value. 

The PAM method was also tested, and the results can be seen in Figure 1.8. In 

Figure 1.8 (a), both groups have a similar behavior overall. However, differences can 

be seen around period 67 until period 80 – Group 1 objects may have participated in 

the market transactions since the ESS status reduces almost 1/3 of their capacity in 

certain periods. Similar behavior was seen in Figure 1.7 (a) for the same group. 

Also, the difference between these curves in the PAM method results and those 

shown in Figure 1.7 (a), where the lines are curvy.  

In Figure 1.7 (a), k-means assigned to Group 0 a total of 14 objects, while in 

Figure 1.8 (a), the dataset was divided more evenly: Group 0 with 11 elements and 

Group 1 with nine elements. In this way, the centroids found within these groups 

result in a distinct curve in Figure 1.7 (a) – remembering that k-means centers are 

created resorting to the mean. However, the PAM method to find the cluster centers, 

medoids, is different, so the curves are more like those seen in Figure 1.3. 

(a) 
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(b) 

 

Figure 1.8: Partitional Clustering: PAM results for the dataset selected for (a) kopt=2; (b) kopt =9. 

Moving to Figure 1.8 (b), the first highlight when compared with Figure 1.7 (b) 

are the periods mentioned earlier (period 6 to period 36). There are no longer the two 

groups with values closer to the maximum capacity. However, with the help from 

Table 1.3, there are still two groups with only one object. By taking a closer look and 

analyzing the Groups in Figure 1.8 (b), Group 2 was assigned consumer ID 12, and 

Group 4 was assigned consumer ID 11. 

Table 1.3: Partitional Clustering - Number of ESS per group (PAM). 

Group 0 1 2 3 4 5 6 7 8 
Number of ESS 3 3 1 2 1 2 4 2 2 

 

Regarding the results from k-means in Figure 1.7 (b), Group 2 was assigned 

consumer ID 14, and Group 4 was assigned consumer ID 5. Compared with Figure 
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1.3., these were the ones with higher values in the mentioned periods – so their group 

should be different from those with a higher contribution in the market transactions. 

 
Fuzzy Clustering 

This algorithm has been used in many areas: cluster analysis, pattern recognition, 

image processing, and so forth. C-means is the most used within fuzzy clustering 

methods. Using fuzzy theory divides data points into a set of fuzzy clusters according 

to a certain partitioning criterion.  

The core idea behind this concept is that objects within the same cluster have high 

values of similarity and minimal values of similarity among the different clusters 

(Wan et al., 2019). To do this, it is considered a membership degree to which an 

element can belong to a given cluster, being this degree between 0 and 1. With this, 

objects near the center of the cluster may have a degree greater than the points at the 

cluster's edges. Furthermore, due to this membership degree, the final center 

coordinates will always be affected by choice of initial center coordinates – stochastic 

algorithm. In this way, selecting the right center will have a high impact on the results 

(Wu et al., 2018).  

The results for k=2 and k=9 using the ESS status dataset can be seen in Figure 

1.9. Starting with Figure 1.9 (a) and comparing with the outcomes from the 

Partitional Clustering methods, the results from c-means were more like the k-means 

method in Figure 1.7 (a). Again, the calculation method uses the mean. Here, Group 

0 also had 14 elements and assigned six elements to Group 1. The most notorious 

difference, although small, can be seen between period 50 and period 60, where the 

curve from Group 1 is closer to Group 0. 

Regarding Figure 1.9 (b), the groups can again be well spotted when confronting 

the previous results, but the consumer ID 14 from Figure 1.3. has not a single group 

assigned to him like Figure 1.7 (a). 
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(a)

 
(b)

 

Figure 1.9: Fuzzy Clustering: c-means results for the dataset selected for (a) kopt=2; (b) kopt =9. 

In this way, Table 1.4 is added to understand how many elements each group has. 

According to the values shown, the groups with a single element are Group 2, 

Group 3, and Group 7. 

Table 1.4: Fuzzy Clustering - Number of ESS per group (c-means). 

Groups 0 1 2 3 4 5 6 7 8 
Number of ESS 2 2 1 1 3 3 3 1 4 

 

In this way, Group 2 was assigned consumer ID 2, Group 3 was assigned 

consumer ID 19, and Group 7 was assigned consumer ID 16. None of the consumers 

previously mentioned in the single groups were also attributed in this method. It is 
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important to highlight that consumer IDs 5 and 14 were assigned to the same group 

in this method – Group 1. 

Hierarchical Clustering 

Unlike other algorithms, the number of groups to be defined is not required a 

priori. As the name suggests, this method defines a hierarchical structure according 

to a proximity matrix. This structure is usually presented in dendrograms or binary 

trees. Consequently, if the analyst wants any other specific number of clusters, just 

cut the dendrogram at the desired level. Hierarchical clustering is subdivided into two 

main groups: Agglomerative Clustering and Divisive Clustering.  

Firstly, Agglomerative Clustering starts by gathering all objects in the database 

as a singleton cluster or a "leaf." After, clusters are successfully created until each 

object is in a single cluster, or "root." For Divisive Clustering, the opposite logic 

applies – as a top-down approach. In this way, it is considered that Agglomerative 

Clustering is a good option to identify smaller clusters. On the other hand, Divisive 

Clustering is the preferred choice for recognizing larger clusters.  

Considering this assumption, Figure 1.10 represents the results from applying the 

Hierarchical Clustering method chosen to the dataset selected. Both values of the 

optimal number of clusters can be seen in the figure by cutting the dendrogram in 

k=2 and k=9.  

 

Figure 1.10: Hierarchical Clustering: Agglomerative results for the dataset selected. 

k cluster



 

21 

However, to ease the understanding of the results, Table 1.5 was added to indicate 

the group for each consumer, in k=2 and k=9. 

For the first scenario, where k=2, there were 14 elements in Group 0 and 6 

elements in Group 1, the same result as in s 1.7 (a) and (a). Regarding the scenario 

where k=9, Group 0 gathered consumer ID 10 and consumer ID 19; to Group 1 was 

assigned consumer ID 2, consumer ID 4, consumer ID 7, consumer ID 9, and 

consumer ID 18; Group 2 has a single element (consumer ID 20); Group 3 has two 

elements, consumer ID 13 and consumer ID 17; Group 4 has four elements being 

consumer ID 1, consumer ID 3, consumer ID 15 and consumer ID 16; Group 5, Group 

6 and Group 7 are single elements groups gathering consumer ID 5, consumer ID 14, 

and consumer ID 6 respectively; finally, Group 8 has the remaining consumers. 

Again, consumer IDs 5 and 14 are highlighted with a single group. 

Table 1.5: Hierarchical Clustering: Group attribution. 

Consumer 
ID k=2 k=9 

1 0 4 
2 0 1 
3 0 4 
4 0 1 
5 1 5 
6 1 7 
7 0 1 
8 0 8 
9 0 1 
10 1 0 
11 0 8 
12 0 8 
13 1 3 
14 0 6 
15 0 4 
16 0 4 
17 1 3 
18 0 1 
19 1 0 
20 0 2 
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1.4 Conclusion 
A methodology to optimally manage an active community from the Aggregator 

perspective was presented throughout this chapter. In the future, in Smart Grids, the 

consumers will become the core player due to the load flexibility provided to suppress 

the volatile behavior from the distributed generation resources. However, their 

knowledge regarding this matter is still very scarce, and to depend on their behavior 

to guarantee the reliability and security of the entire system can be faulty. In this way, 

the authors believe in understanding the consumers, how they react in the event 

context, their behaviors, and new ways to motivate their participation in the market 

transactions to reduce the uncertainty. 

Clustering methods are widely used in different areas such as cluster analysis, 

pattern recognition, image processing, among others. In the present chapter, the 

authors intend to use these algorithms to find patterns and use consumer profiling to 

find the proper motivation for Demand Response events, with information not only 

from the load consumption but also the remaining resources that can be associated 

with this new player, for instance, Distributed Generation or Energy Storage Systems. 

The core idea is to find, within the dataset, objects with similar characteristics. So, 

the number of groups to be formed is crucial for the method's success. 

Three of the most well-known methods were compared: Elbow, Silhouette, and 

Gap-statistic. The direct methods obtain a different value from the statistical method 

from the study. So, the authors went further and tested both approaches in the second 

comparison: different types of clustering methods. Partitional, Fuzzy, and 

Hierarchical Clustering methods were confronted for both "optimal" numbers of 

clusters found. From the authors' perspective and after the analysis of all the methods 

performed, the solution k=2 might be very reductive for a 96 periods perspective. 

Consumers with different behaviors were assigned to the same group to receive 

remuneration. So, fairness, in this case, may have been jeopardized. Although the 

perspective presented was on a planning approach, the Aggregator might benefit from 

performing the aggregation phase each period and understanding the complex 

behavior in a deeper form of contextualization. To ease the task, the authors suggest 

using Hierarchical clustering since several k can be visualized. 
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Resumen 

El sector energético, al igual que muchos otros, se está adaptando para satisfacer 
las preocupaciones ambientales y evitar los combustibles fósiles. Por ello, se 
promueve el concepto de Smart Grids, que incorpora la Generación Distribuida 
en la red, especialmente energía basada en fuentes renovables, como una 
alternativa respetuosa con el medio ambiente. Además, se empodera el papel de 
los consumidores a través de la Respuesta a la Demanda (DR, por sus siglas en 
inglés). Los consumidores reciben incentivos para modificar activamente su 
comportamiento de consumo y recibir una remuneración adecuada. Con esto, el 
sistema eléctrico reduce los costos de operación y la DR se puede utilizar como 
una alternativa a la generación. Sin embargo, gestionar estos nuevos recursos 
activos y sus transacciones en el mercado energético es una tarea compleja debido 
a la incertidumbre asociada. Muchos factores pueden provocar una falta de 
respuesta y el Agregador debe ser capaz de gestionar estas situaciones, 
especialmente cuando se requiere una cierta reducción objetivo del mercado 
mayorista. Los autores propusieron un enfoque que incluye una clasificación 
confiable para seleccionar a los consumidores en eventos de DR: los 
consumidores participan teniendo en cuenta su confiabilidad. En el presente 
artículo, se compararán los efectos del enfoque entre dos estaciones, 
demostrando la viabilidad de proporcionar la información correcta al 
administrador de la comunidad y comprendiendo qué tan variable es el 
comportamiento de esta clasificación en diferentes momentos del año. 

. 
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Abstract

The energy sector, as many, is being adapted to meet environmental concerns and avoid fossil fuels. So, Smart Grids concept
is promoted, penetrating Distributed Generation into the grid, namely renewable-based energy, providing an environmentally
friendly alternative. Also, the consumers’ role is empowered through Demand Response (DR). The consumers are incentivized
to actively modify their consumption behavior receiving the proper remuneration. With this, the power system will decrease
operation costs and DR can be used as an alternative to generation. However, manage these new and active resources as
well as their transactions in the energy market is a complex task due to the uncertainty associated. Many factors can cause a
non-response and the Aggregator must be able to manage these situations mainly when a certain target of reduction is required
from the wholesale market. The authors proposed an approach including a Trustworthy Rank to select consumers for on DR
events: consumers participate considering their reliability. In the present paper, the effects of the approach will be compared
between two seasons, proving the viability on giving the correct information to the community manager and understanding
how variable is the behavior of this rank at different times of the year.
c� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the scientific committee of the 7th International Conference Energy and Environment Research, ICEER, 2020.

Keywords: Demand response; Energy market; Trustworthiness; Smart grids

1. Introduction

Currently, the energy sector is facing changes that will drive towards a more sustainable and efficient energy
usage. The growing concern motivates all the intervenient on working in ways to preserve the environment to
not compromise the natural resources of upcoming generations. For the energy sector, it is believed that Smart
Grids concept is the future and can find the balance between social, energy, economic and environmental issues.
The concept guarantees a more reliable and efficient market, empower the small players introducing Demand
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Response (DR), enabling bidirectional communication and penetrate Distributed Generation (DG) resources, namely
renewable-based such as wind and solar, fighting the intensification of the greenhouse effect and air pollution.
Although slow, the implementation of Smart Grids in real markets is starting and political efforts are being made
to introduce DR and empower consumers, such as Directive 2019/944 providing common rules for the internal
market [1]. The role from consumers in the energy market and their potential is crucial to take the step forward
to a sustainable future. The definition of consumer is changing. Now, being able to participate in the transactions
in the market, understand their consumption and find ways to improve and reduce their costs, even produce their
energy as prosumers, it creates a new player in the energy sector, a more active and conscious one. Yet, it will
take time, education, and resources until taking rational decisions. Still, Ilieva et al. [2] highlight the impact of
millennials actions and how there are different from previous generations. Their sensitivity to environmental aspects
makes them more ready to embrace “green initiatives”. Considered as the type of users that will be responding to
energy flexibility signals, promote local and sustainable energy production as well as consumption. However, the
actual business models do not include or can deal with the uncertainty associated with these new resources. The
unpredictable behavior, from both consumers and DG units, increase the complexity of managing the network. An
entity was created to be responsible for the transactions in local communities with active players — the Aggregator.
Many models in the literature were created finding solutions to optimally manage and to aid and decrease the
difficulty of the [3–5]. However, the authors found the necessity to search for a way to increase reliability in the
network namely when DR events are triggered, considering the uncertainty associated with the small consumers’
behavior. As Good [6] reminds, most of the studies are shaped given end-users as always rational and economic
agents, and the uncertainty behind their random behavior must be considered. Taking a step forward from previous
works [7], the methodology proposed in the present paper was designed to select trustworthy consumers to be
selected for a DR event. Considering a DR target required from the wholesale market, the Aggregator must rely on
the active consumers in the community to achieve the goal. The idea is assigning a trustworthiness rank considering
previous experiences and, for the case of none, the low rank is attributed and continuous participation with good
results will rise their reputation. Having this information, the Aggregator will opt for the more “reliable” for this
task. The proposed methodology can optimally manage several resources: the mentioned DR program participants,
DG units and the joint from those concepts. A more detailed explanation of the process is present in Section 2.

The present paper is divided into five sections. Section 1 is an introduction to the theme approached. Section 2
details the proposed method. The case study, the results, and the discussion are presented in Sections 3 and 4.
Finally, the conclusions from the study are summarized in Section 5.

2. Materials and methods

The authors proposed a method including a trustworthy rank (TR) considering past experiences from the active
consumers with DR events through time: Current Reduction (CR) being the actual reduction in the present event,
Last event Day (LD) being the performance from the last event in the same period and Historical Rank (HR) is the
average from previous performances within the same context, explained on Fig. 1.

The innovation from previous works is the influence from different contexts, namely different seasons, as the
consumers’ behaviors change through the year. The higher the rank, the more trustworthy is considered the active
consumer giving useful information to the Aggregator for the following DR events on the same context. The lowest
rank is attributed to the first participation, and consumers must continuously contribute to obtaining an improve. At
the beginning of the DR event, the Aggregator selects the consumers with TR higher than a denominated minimum
to participate and schedules them with the remaining resources.

The objective function aims to minimize operational costs from the perspective of the aggregator and fairly
remunerate active consumers (Eq. (1)). Let PDG be the power for each p DG resources; PDR is the flexibility from
each c consumers; PSUP is the power from each s external suppliers and PNSP be the non-supplied Power. Each
of these variables has an associated cost. To achieve the balance between consumption (Pinitial) and generation,
the Eq. (2) is added. The remaining constraints introduce inequations used to bound to all resources involved. From
Eq. (3) to Eq. (6), control the DR event targets and the amount of reduction from each active consumer.

Eqs. (7) and (8) constrain DG units on upper and lower bounds. Eq. (9) restrict the amount of DG used. Eq. (10)
provides an upper limit for external suppliers and Eq. (11) restrict the total amount of generation from this source.

Min O F =
X ⇥

PDG (p, t) CDG (p, t)
⇤
+

X
[PDR (c, t) CDR (c, t)]
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Fig. 1. Proposed methodology.

+
X

[PSU P (s, t) CSU P (s, t)] + PN S P (t) CN S P (t) (1)
X

[Pinitial(c, t) � PDR(c, t)] =
X

[PDG(p, t)] +
X

[PSU P (s, t)] + PN S P (t) (2)

PDR(c, t)  PMax
DR (c, t) (3)

PDR(c, t) � PMin
DR (c, t) (4)

X
[PDR(c, t)]  DRMax

target(c, t) (5)
X

[PDR(c, t)] � DRMin
target(c, t) (6)

PDG(p, t)  PMax
DG (p, t) (7)

PDG(p, t) � PMin
DG (p, t) (8)

X
[PDG(p, t)]  PTotal

DG (t) (9)

PSU P (s, t)  PMax
SU P

(s, t) (10)
X

[PSU P (s, t)]  PTotal
SU P

(t) (11)

Performed the scheduling phase, the requested reduction is compared with the actual response. If DR target is not
achieved, the remaining consumers are called, iteratively, allowing increasing their rank. After achieving the goal,
proceeds the following stage where the rank is updated. Compensation for the response plays as an incentive to
motivate a continuous contribution to DR events and it is done after the update. For the present paper, the purpose
is to investigate the performance of the proposed methodology for distinct seasons. It is known that consumers
behaviors and willingness to participate in DR events can be different throughout the year. The innovative element
from previous works done by the authors is the addition of uncertainty regarding context. The following section
will detail each assumption considered in the case study developed.

3. Case study
To prove the viability of the proposed approach, the authors wanted to simulate the current implementation of

DR in the real world. A database with 20,310 consumers between ten communities was considered, and the main
characteristics can be seen in Table 1.

The one with a higher average of trustworthiness from previous events was considered (406 consumers where
263 are active elements). Is composed mainly by households where, usually, the approach is reducing the impact of
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Table 1. Characterization of consumers in the ten communities.

Type Domestic Small commerce Medium commerce Large commerce Industrial

# elements 10,168 9828 82 85 147
Energy [kWh] 9369.35 7983.35 11,254.75 10,880.48 23,142.48
Max Load Reduction [kW] 4684.7 3991.7 15,756.7 9792.4 20,828.2

DR events in their comfort and wellbeing. For example, one of the age range to likely have a lower response or not
willing to participate are the elderly. Ilieva et al. [2] wrote about how the elderly may have problems or be inhibited
from using certain technologies. Alexander [8] refers to a more critical matter and presents evidence that elderly
consumers, being more fragile, will not seek out or apply for “low income” programs due to their necessities.
Information extracted from official entities affirms that almost 35% of the population with private households is
composed of people above 65. In this scenario, the same percentage of the dataset will not participate in DR
events (35%) and the remaining established DR contracts, being some of them not willing to participate at the
weekend. Spring and Autumn were the chosen seasons considering April and October. Two different event types
were considered: Event Type 1 (ET1) occurs between 1 pm–3 pm represented by 13 to 15 and Event Type 2 (ET2)
occurs between 6 pm–8 pm represented by 18 to 20. A wide range was studied to see the variety of responses in the
selected periods. It is also considered a DR target of 100kW per period of the event (each divided into periods of
15 min). The risk of not achieving the goal is high, considering the uncertainty of behaviors from users, however, the
limit from the model is tested to include all the active members and understand if the information obtain is useful
for the Aggregator. TR goes between 1 and 5 and rank 3 is the minimum in the first active consumers’ selection.

4. Results and discussion
Fig. 2 presents the comparison between the selected and the actual participants as well as the actual and requested

reduction for DR events. The darker color charts represent the which was trigged on Monday (a), Tuesday (c),
Thursday (e), and Sunday (g). The lighter color chart represented ET2 and was tested for the remaining weekdays.
The proposed approach was able to always reach the DR target in events from April by calling the remaining
active consumers, the value of 100 kW in every 15 min from the DR event was achieved by the optimization
(Requested line on Fig. 2). Ideally, this would happen in the actual line as well, and the target of reduction would be
accomplished. However, in the simulation, not all the selected users responded as expected. The authors considered
them has not always rational and active agents, and that assumption had an impact as can be seen in the Actual
curve from Fig. 2. The group with a higher percentage of non-responses was rank 1. Taking as an example Fig. 2(a)
at 13:30, from the rank 1 elements was requested 13,62 kW and the actual value was 2,12 kW.

These achievements highlight the necessity and the importance of focusing on consumers and ways to increase
their willingness to participate in DR events but also find models to avoid high risks on the management side
perspective. Fig. 3 presents the results from October.

The darker color charts represent the ET1 which was trigged on Tuesday (a), Wednesday (c), Friday (e), and
Monday (g). The lighter color chart represents ET2 and the remaining weekdays. Once again, the DR target could
be achieved by the active consumers, but their actual responses were different from the requested. The elements
on lower TR groups were again essential to achieve the goal. However, a distinct month did have a greater impact
on the overall reduction since the value was always between 80 kW and 100 kW as in April. The authors prove
the viability of the model on finding useful information from the community behavior. Also add a step forward on
design solutions to deal with consumers, an important role in the future energy market.

5. Conclusions
Empowering the consumer’s role in the energy market is one of the main topics on the Smart Grid approach.

However, introducing DR programs on the management can be a complex task considering the uncertainty.
The authors proposed a model where a Trustworthy Rank was created to provide the Aggregator with valuable
information from active consumers. Two different events were created and triggered throughout April and October
to compare the impact of the seasons on the model. Also, on the contrary of several models on the literature, the
consumers were assumed as not always rational and economic agents, so their response was difficult to predict, and
the target was not achieved. Regarding the season impact on the ranks, being a studied as group, the effects were not
noticed. For future works, find ways to motivate positive responses on DR events and penalize for non-responses.
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Fig. 2. Participants and Average Rank in DR events from April: ET1 (a), (c), (e) and (g). ET2 (b), (d), (f).. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Participants and Average Rank in DR events from October: ET1 (a), (c), (e) and (g). ET2 (b), (d), (f).. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Resumen 

El patrón de consumo de electricidad está aumentando día a día. Actualmente, 
los operadores de redes se están moviendo hacia recursos de energía renovable 
y aplicando programas de respuesta a la demanda. Sin embargo, es necesario 
aglutinar a los consumidores y productores de pequeña y mediana escala para 
que participen en los mercados eléctricos como un recurso único. En este 
documento se propone un modelo de comunidad basado en optimización para 
aglutinar a los consumidores y productores de pequeña escala. El modelo incluye 
un controlador central, que se considera un agregador, y varios administradores 
de comunidades locales para mantener el equilibrio de la red a nivel local. 
Además, se utiliza un enfoque de simulación en tiempo real y varios dispositivos 
reales como hardware-in-the-loop para validar el sistema frente a desafíos 
prácticos. Los resultados del artículo revelan una brecha entre los resultados de 
la simulación y los experimentales, y demuestran el rendimiento del sistema en 
modo en tiempo real utilizando dispositivos reales. 
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Abstract. The electricity consumption pattern is being increased day by 
day. Currently, network operators are moving towards renewable energy 
resources and applying demand response programs. However, the small and 
medium scale consumers and producers are needed to be aggregated and 
participate in the electricity markets as a unique resource. This paper 
proposes an optimization-based community model for aggregating the small 
scales consumers and producers. The model includes a central controller, 
which is considered as an aggregator, and several local community managers 
to keep the network balanced locally. Furthermore. real-time simulation 
approach and several real devices as hardware-in-the-loop are used to 
validate the system under practical challenges. The results of the paper 
reveal a gap between the simulation and experimental results and prove the 
performance of system in real-time mode using actual devices.  

1 Introduction  
The actual trend of power systems operation and continued growth of consumption forced 

the network operators all around the world to consider Distributed Renewable Energy 
Resources (DRERs), such as Photovoltaic (PV) and wind turbine [1]. In order to effectively 
merge the large scale of DRERs in the network, further tactical services are needed, such as 
Demand Response (DR) program [2]. In fact, DR brings flexibility in the current trend of 
power systems, enabling the network operator to relieve congestion of the grid and reduce 
the peak periods [3][4]. DR program is defined as the modification in the consumption 
patterns of the end-users in order to respond to the incentives paid by DR entity [5]. Based 
on the information provided by [6], there is a limitation for minimum reduction capacity by 
consumers and prosumers (consumers who can also produce electricity) in order to 
participate in the DR programs (i.e. 100 kW [7]). This limitation makes the small and medium 
electricity customers almost incapable to participate in these kinds of management programs 
[8]. Therefore, the need of a third-party entity is evident in this context (i.e. aggregator), in 
order to aggregate all small and medium consumers and prosumers and participate them as a 
unique resource in the electricity markets [9]. 
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This paper presents an optimization-based community model for electricity consumers 
and producers. The model contains a central controller unit (i.e. aggregator), and several local 
community managers to control the electricity network locally, as Fig. 1 shows. An 
optimization algorithm is also used for the community model to optimally schedule the 
resources and apply DR programs [10]. Furthermore, real-time simulation and several 
laboratory resources are employed using Hardware-In-the-Loop (HIL) method, to survey the 
performance of the model by actual consumers and producers. 

There are plenty of related works in this context. In [11], the authors presented a smart 
community model to control the energy resources of its member by establishing contract. 
Also, a single period optimization algorithm was used in the same work to minimize the 
operational cost of the community by applying different types of DR programs. In [12], a 
real-time simulation model has been presented for a curtailment service provider, and an 
optimization problem was used to perform energy scheduling and applying DR programs. In 
[13], a real-time commercial aggregator model has been presented that utilized flexibilities 
offered by its customers to participate in the market bids and negotiations. The emulation 
results of the same work showed the effect of participating DRERs and microgrids for 
minimizing the congestion management of the network. However, the contribution of this 
paper is centered on two levels: (i) Real-Time Simulation: to develop a Simulink model for 
the community model, running in real-time and obtaining the simulation results; (ii) 
Laboratory Emulation: to test the model with actual and laboratory resources under practical 
challenges and technical issues. 

After this introductory section, the real-time simulation model for community is described 
in Section 2. The components modelling used for system are shown in Section 3, and the 
proposed optimization method is described in Section 4. A case study in Section 5 is set to 
validate the system, and its results are presented in Section 6. Finally, Section 7 explains the 
main conclusions of the work. 

2 Real-Time Simulation Approach for Community  

This section describes the theory of the proposed community model. As Fig. 1 illustrates, 
there is a central management entity in the model, which is an aggregator. Also, there are 
several local managers that are responsible for local communities of consumers and 
prosumers. In fact, the aggregator is accountable for communicating with each local 
community manager to keep the network balanced and perform other tactical services, such 
as DR programs.  The main purpose of using local community managers behind of aggregator 
is that the energy balance being performed locally in several small communities, which then 
can be employed in the local transactive systems and peer-to-peer electricity markets.  
Moreover, the aggregator in this model is an entity between the upstream level and demand-
side level of the power system. In the upstream level, it negotiates with the market operators, 
and in demand-side, it deals with local community managers for defining the DR programs, 
and purchase or sell energy to them. The main focus of this paper is given to the downstream 
level of the aggregator and technically validating the performance of the community model. 

In this community model, the main intention of the aggregator is to supply the electricity 
demand from the local energy resources and prevent purchasing energy from the electricity 
markets. In fact, the aggregator is not owning any resources, and it only controls and manages 
the rate of consumption by applying for DR programs and paying remunerations to the 
consumers and purchase the surplus of the generated power by the prosumers. Therefore, 
aggregator in this model is not accountable for the technical validation of the network, such 
as voltage or frequency control. These technical management of the network in this model is 
considered as the responsibilities of the grid operators, such as Distribution network operators 
(DSO).  



 
Fig. 1. The architecture of the proposed community model for real-time simulation. 

Furthermore, the aggregator is able to perform energy transaction between the local 
communities to keep the network balance without buying energy from the electricity markets. 
Also, the aggregator is able to perform scheduling of the resources by relying on the external 
supplier (electricity markets), RERs available in the community, and DR programs. While 
the aggregator keeps the network balance between all local communities, it can negotiate in 
the electricity markets with the flexibilities provided by each local community. In fact, the 
aggregator can present several bids in the market with the available energy from the local 
communities and a certain price that has been obtained based on the financial profits of the 
customers. 

3 Components Modelling  

This section presents the real-time simulation architecture, and proposed model for the HIL 
methodology. The main player of this model is OP5600 (www.opal-rt.com). In fact, OP5600 
is capable to run the MATLABTM/Simulink models in real-time that enables the operator to 
integrate the real data in the Simulink environment via HIL methodology. 

In other words, OP5600 integrates the emulation and simulation results in a unique model 
that can be used for the management and control scenarios, such as optimization algorithms 
and resources scheduling. This integration enables the system to have more reliable results 
to verify and validate the performance of the model under practical challenges namely 
voltage variations, frequency instabilities, devices response time, etc.  

Fig. 2 shows the Simulink model concerning a part of the community electricity network 
placed. As Fig. 2 demonstrates, all consumers are modelled by a three-phase dynamic load 
model, where all of them are connected and supplied by a three-phase source model. 
Furthermore, there are several three-phase series RLC branch blocks to simulate the 
impedance of each line in the network. By this way, the model can provide the most accurate 
and near to real results.  

 In Fig. 2, the colour of each block indicates its role in the community model. Dark green 
and red blocks are showing the consumers of the community (e.g., residential and commercial 
buildings), and light green blocks are the RERs (e.g., PV units). As it was mentioned, real 
laboratory devices are integrated into the proposed Simulink model via HIL methodology. 



For this purpose, three network players of the community model are dedicated for the HIL 
devices and considered these three players are real consumers and producers, as Fig.2 shows.  

 
Fig. 2. Simulink model of the community electricity network including laboratory HIL devices. 

The HIL devices are two laboratory load banks and a real top roof PV installation. The 
two load banks are a 30 kW and a 4 kVA loads considered as two HIL consumers in the 
model. In the 30 kW load, there are four relays that increase or decrease the desire rate of 
consumption, and in 4 kVA load, there is an Arduino® (www.arduino.cc), which manages 
the amount of consumption.  

In the top roof PV, the model only acquires the real-time generation data and integrates 
them in the Simulink. The nominal generation rate of this PV installation is 10 kW. The 
hardware installation and configuration of the HIL devices have been developed by the 
authors in the scope of their previous works, and more detailed information is available on 
[14]. 

To sum up, by using the Simulink models shown in this section, the user can specify any 
rate of consumption and generation to be simulated and emulated through the full simulation 
models as well as the HIL devices. Also, it is possible to compare the results obtained from 
real equipment with the gained results from the full simulation models. 

4 Optimization Methodology  

This section discusses the proposed optimization method for the community model. The 
objective is to find a balance locally to minimize the operational costs. For this purpose, the 
proposed optimization algorithm considers a linear cost for each resource and performs the 
optimization in line with the costs in each single period. 

In this way, the following optimization algorithm has been developed where all 
consumers participate in DR programs (PDR). Distributed Generation (PDG) units and External 
Supplier (PSupplier) are the energy providers in this model. All the consumers from DR 
programs should have a pre-contracted reduction limit as well as the remuneration tariffs 
associated with each one. Equation (1) presents the objective function of the problem. In (1), 
C is the associated cost for each resource. 
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This function is from the local community managers standpoint and considers all the 
different participants and their associated costs. The goal is to guarantee the balance in the 
local communities, as shown in (2). In the hypothesis of the local communities, the manager 



won’t be able to find the equilibrium locally with only production from DG units, an external 
supplier is applied. The idea is to only use external suppliers in extreme case, giving always 
priority to the DG units in the local community network. 

( ) ( ) ( ) ( )
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Equation 2 shows that sum of consumption (should be the possible reduction from DR 
program for each consumer to its initial load – PInitialLoad) equals the sum of production (all 
DG units and Suppliers) to find the network balance. In this objective function, there are 
other constraints that should be considered. Firstly, the restriction associated with the 
consumers belonging to DR programs, and the maximum reduction capacity (PMax

DR) is 
presented in (3). 

 ( ) ( ) 1, ... ,,Max
DR c DR c c CP P    (3) 

For distributed resources, the DG units are limited by (4) and (5) being the upper bound 
and the total amount that can be used from DG units, respectively. In the case of PV 
production, (4) and (5) would come as equality equations, so all the PV production should be 
used. 
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In the case that external suppliers are needed, (6) - (9) are introduced. The upper bound 
and the total available amount helps the local community managers to restrict the use of this 
option. 
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In fact, in this optimization two types of external suppliers are considered: Regular 
(Pregsupplier); and Additional (Paddsupplier). The additional supplier is considered as an auxiliary 
supplier that would be used while the regular supplier is not able to provide the committed 
amount of energy. Also, additional supplier is considered as a more expensive resource 
comparing to the regular supplier.  

In this way, PregMax
supplier and PaddMax

supplier are maximum power from a regular or additional 
supplier respectively. Also, PregTotal

supplier and PaddTotal
supplier are total power allowed from all 

the regular and additional suppliers respectively. Therefore, the use of external supplier is 
being optimized by the proposed algorithm to minimize the costs, while network balance has 
been respected in all communities.  

The output of optimization algorithm proposed in this section is a requested amount of 
power for each consumer to reduce its demand in a certain period. The actual implementation 
of this demand reduction request in a real load will depend on the electrical grid conditions. 
This is in fact one of the advantages of using real-time simulation (in this paper OP5600) and 
laboratorial equipment for consumption modelling. In this way, the actual demand reduction 
will be validated to be included in the simulation results, namely for remuneration purposes. 



5 Case Study  

This section focuses on a case study in order to test and validate the functionalities of the 
developed community model. For this purpose, it is considered there are four villages in the 
proposed community network that each is being controlled by local community manager. 
The number of consumers and producers in this community network is shown in Table 1. 

Table 1. Quantity and type of consumers and producers in the case study for the community network. 

 
Consumers Producers 

Residential Building Public Building PV 

Village 1 93 7 100 
Village 2 23 4 4 
Village 3 12 4 4 
Village 4 13 - - 

Therefore, there are 156 consumers and 108 PV units in the community in total. The 
consumption and generation profile of the entire community network considered for day-
ahead scheduling are illustrated in Fig. 3. 

 
Fig. 3. Day-ahead profiles of the community network considered for the case study: (A) 
Consumption, (B) PV Generation. 

As it is clear in Fig. 3, a huge part of consumption and generation of the community is 
dedicated to the Village 1. The profiles shown in Fig. 3 – B has been created by aggregating 
several real generation data from GECAD research center database, Porto, Portugal. As it 
was mentioned in Section 4, the priority of the system is to supply the electricity demand 
from the local generation resources (i.e. PV units). In the periods that the local resources are 
not adequate to supply the demand, the system decides to purchase energy from an external 
supplier or apply DR programs to reduce the consumption. This is dependent on the market 
prices and the incentives that are being paid to the customers for applying DR. There are two 
types of electricity prices considered in this case study, as Fig. 4 shows. In fact, the market 
price belongs to the energy that aggregator purchases from the electricity markets and 



External Supplier price is for the energy that aggregator sells to the local community 
managers. 

 
Fig. 4. Electricity prices during the case study. 

The electricity market price shown in Fig. 4 have been adapted from Portuguese sector of 
Iberian Electricity Markets (MIBEL – www.omie.es). Also, the External Supplier price is 
based on Time-Of-Use (TOU) scheme according to the tariffs provided by incumbent 
Portuguese electricity retailer in the liberalized market (EDP Commercial – www.edp.pt). 
Furthermore, a linear cost considered for the energy resources of the community. Also, Table 
2 shows the linear remuneration costs regarding DR programs considered for each consumer 
based on its type. These costs are for load reduction, and in this case, study it is considered 
that 7% of initial consumption belongs to the maximum load reduction capacity of customers. 

Table 2. Remuneration costs of DR programs for community consumers. 

Residential 
Buildings 

Period [1-20], [37-57], [74-96] [21-36], [58-73] 

Incentive  0.7 (m.u./kWh) 0.12 (m.u./kWh) 

Public 
Buildings 

Period [1-28], [70-96] [29-69] 

Incentive 0.04 (m.u./kWh) 0.1 (m.u./kWh) 

6 Results  

In this section, the optimization methodology is being solved by RStudio ® tools 
(www.rstudio.com) using the presented case study data, and the results are shown. The 
algorithm is solved on a personal computer with Intel® Xeon® CPU @2.10 GHz, and 16 GB 
RAM. The total solving time of the optimization problem was 6.92 seconds, which the 
average time per iteration was 0.04 seconds, and 51.3 MB was used during the problem 
solving. While the optimization results have been adapted, they will be provided to OP5600 
to validate the system using real devices. Considering the accumulated results from all 
villages, Fig. 5 presents the difference between the initial load profile of all communities and 
DR reduction results while applying the optimization methodology. The highest reduction 
value from DR programs is reached around the period of 46, reducing the initial load from 
305.98 kW to 284.56 kW.  Fig. 6 shows the optimization results for all the resources, from 
aggregator point of view. 

According to Fig. 6, the highest supply from PV units in this case study is 24% of the 
total production needed to satisfy the demand of the community. In village 1, the total 
remuneration cost during the case study is 52.57 m.u./kWh, and in village 2, the total 
remuneration equals to 44.39 m.u./kWh. Also, in village 3 and 4, the total remuneration cost 
is respectively 14.09 and 0.16 m.u./kWh. 



 
Fig. 5. Optimization results after applying DR programs (Power axis zoomed in the corresponding 
values). 

 
Fig. 6. Scheduling results for all the resources of the community. 

Moreover, since there are a lot of consumers and producers in the model, only some 
sample results are demonstrated. Fig. 7 – (A) shows the consumption profile of a residential 
building that has been fully simulated by community Simulink model. Also, Fig. 7 – (B) 
shows the consumption profile of a public building in community network emulated by the 
HIL devices. The results shown in Fig. 7 is for 96 periods of 7 seconds (672 seconds in total). 

 
Fig. 7. Real-Time simulation results of consumption in: (A) a residential building in simulation phase, 
(B) a public building in emulation phase. 

As Fig. 7 – (B) shows, while the consumption rates are being changed, the laboratory 
devices need some time to reach the favourable rate of consumption. In fact, this is the main 
differences between the laboratory experiments and simulation models; in the simulation 
environment the consumption rates change instantly (Fig. 7 – (A)), although, the 
consumption profile emulated by the HIL devices used in this model require some times to 
reach the favourable rates since several technical challenges and practical conditions are 
involved, such as voltage and frequency variations. 



7 Conclusions  

An optimization-based community model was proposed in this paper. The model contained 
an aggregator and several local community managers to optimally schedule resources and 
apply for demand response programs. Also, a real-time simulation model was shown to 
validate the proposed community model. The actual implementation of demand reduction 
and consumption profiles were shown as well. 

This implementation of some resources in practice validated the performance of the 
model under practical challenges and electrical grid conditions. In fact, this is the advantage 
of using real-time simulation and laboratory equipment, since the actual demand reduction is 
being integrated with a full simulation model. So, the system is able to provide more reliable 
results, which can be useful in network management scenarios, such as remuneration and 
scheduling purposes. 
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Resumen 

Con la creciente preocupación sobre el cambio climático, soluciones como la 
generación distribuida, especialmente basada en fuentes renovables, han 
aumentado en el sistema energético. Sin embargo, su comportamiento volátil 
requiere una mayor flexibilidad por parte de la demanda para equilibrar el 
sistema, recurriendo a programas de respuesta a la demanda. Los consumidores 
activos desempeñan un papel fundamental en este nuevo paradigma. De esta 
manera, la incertidumbre de su respuesta a eventos desencadenados debe ser 
modelada. Los autores han desarrollado una tasa contextual del consumidor para 
seleccionar adecuadamente a los participantes en un evento de respuesta a la 
demanda según sus eventos anteriores en contextos similares. La innovación en 
el presente artículo radica en la clasificación de nuevos consumidores activos sin 
experiencia previa. Luego, se utilizó un método de árbol de decisiones para 
atribuir una tasa de confiabilidad. Se exploró un estudio de sensibilidad sobre el 
número de nodos hoja utilizados. Los resultados demuestran que el uso de 
información privada relacionada con los consumidores activos mejora el 
rendimiento del algoritmo.
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Abstract:  With the growing concern regarding climate change, solutions such as distributed 
generation, namely renewable-based, increased in the energy system. However, their volatile behavior 
needed more flexibility from the demand side to balance – resorting to demand response programs. 
Active consumers play a critical role in this new paradigm. In this way, the uncertainty of their 
response to triggered events should be modeled. The authors developed a contextual consumer rate to 
properly select the participants in a demand response event according to their previous events in similar 
contexts. The innovation in the present paper lies in the classification of new active consumers with 
no prior experience. A decision tree method was then used to attribute a trustworthy rate. A sensitivity 
study on the number of leaf nodes used is explored. The results prove that the use of private information 
related to active consumer increase the performance of the algorithm.  

Keywords: Active consumer, Behavior, Decision Trees, Demand Response, Uncertainty.

1. INTRODUCTION 

As an alternative for the fossil fuels in the power and energy 
systems, the Smart Grid concept focuses mainly on 
Distributed Generation (DG), particularly the renewable-
based technologies, and the inclusion of the Demand Side in 
the market transactions. However, both have an uncertain 
behavior, which adds high values for the control and 
management of the network (Yang et al., 2019). First, the 
sources from DG are highly volatile. With this new 
paradigm, it is expected from the end-users to adapt their 
consumption and offer more flexibility, becoming a crucial 
part of the energy market for periods with low generation 
values.  

Nevertheless, and until this point, the end-users have little 
or no knowledge of what was happening in the energy 
market since their contribution was always in an indirect 
way. The Demand Response (DR) concept brings the 
empowerment of the consumers. It increases their influence 
in the operations being able to react to signals and modify 
their consumption (Scott and Thiebaux, 2019). However, 
having a role in the market, it is not yet possible to transact 
by themselves. It is risky to give so much control to such an 
uncertain player with such a reduced experience. It takes 
time, education, and resources until they can make rational 
decisions. There are successful DR cases in the industrial 

sector since this consumer is more reliable and predictable 
(Vale et al., 2010). But smaller consumers represent a more 
complex problem and have a higher percentage in the total 
load consumption of the system. Human behavior depends 
on distinct factors, and the accurate response prediction in 
a certain situation can be extremely complex. From the 
perspective of the small consumers, comfort can be a very 
important topic, and to be willing to surrender would 
require a good motive or a good incentive (Yang et al., 2018). 
The authors believe that context is a crucial topic to find 
more acceptable assumptions. In this way, a new entity was 
created for the management of participants in DR events – 
Aggregator. It must acquire the right tools to deal with the 
uncertainties associated with the consumers' response (Faria 
and Vale, 2021). As mentioned earlier, each active consumer 
has a singular behavior and depends on their inserted 
context. For instance, information such as the time of day, 
the day of the week, or even the temperature that has been 
recorded will impact the availability modify their 
consumption. According to a given context, an approach 
gives the Aggregator confidence of the most trustworthy 
participants in the work developed by the authors. 

The proposed methodology, presented in Figure 1, includes 
a Contextual Consumer Rate (CCR), which classifies each 
consumer according to their performance on previous 



 

 

events in the same context. So, suppose they have a good 
rate value. In that case, they can be selected to participate in 
the current event – giving the aggregator a higher level of 
confidence in the selection process. However, some of them 
may not have previous experience on DR events – new DR 
event players. The innovation from previous works by the 
authors is the "Rate Prediction" phase. Resorting to a 
machine learning algorithm, the authors intend to attribute 
a trustworthy rate to these new players, with only 
information regarding the actual context, by training the 
model with information for the current community. 
Another approach is also introduced regarding the privacy-
awareness matters raised in (Silva et al., 2020) since players 
are hesitant on granting access and sharing private 
information. Different scenarios were created and 
compared. The rate definition is important to select 
trustworthy consumers from the aggregator perspective. 
Although the aggregator and the active consumers have a 
DR contract, the latter has control over the appliances. 
Penalties should be applied but the system was already 
jeopardized. This is the role of our research question: 
understanding the type of consumers and classifying them 
to decide the proper participants for each context. 

The present paper is organized according to five different 
sections. The first one is an introduction to the topic with 
the motivations of the study and innovations from previous 
works. The following sections present a detailed explanation 
of the proposed methodology, a case study section, and the 
results found are analyzed and discussed. Finally, the 
conclusions withdrawn will be reviewed. 

2. MATERIALS AND METHODS 

Managing the flexibility provided by the active consumers 
in a local community can be a complex task – the right 
methods and tools must be applied by the aggregator – 
entity behind the community's supervision. In this way, the 
authors proposed a method to successfully operate the 
network in a real-time perspective – as shown in Figure 1.  
The focus of the present methodology is reducing the 
uncertainty in the response from the active consumers. 
However, the authors will focus on new participants with 
no information regarding DR events in this paper. So, the 
authors intend to predict their behavior according to a 
certain context to attribute a CCR. 

 

Figure 1. The proposed methodology, focusing on paper 
innovation. 

The basis of the proposed methodology considers a setting 
where the Distributed System Operator (DSO) performs the 
load forecast for the community followed by an Optimal 
Power Flow and the respective analysis, looking for voltage 
limit violations for upper and lower bounds. If none is 
detected, the scheduling is performed normally. On the 
other hand, if any violation is detected, the DSO must 
request a load reduction to each community manager, the 
aggregators. Many other alternative solutions could be 
applied in this case,  such as adjusting upstream transformer 
tap settings. However, the authors believe that active 
consumers should be further studied since they are 
becoming the center of the Smart Grid paradigm. Studying 
and finding solutions to deal with their uncertainty is the 
focus of this study. 

The aggregator will then trigger a DR event – The event 
Preparation phase. The active consumers, with a contract, 
must provide demand flexibility, their availability, and the 
willingness to participate in this context – community info 
step. In previous works, the author created a trustworthy 
rate useful for selecting the participants of DR events, 
according to their performance on previous ones – the 
mentioned CCR. The definition and the difference between 
Preliminary and Updated CCR presented in Figure 1 can be 
seen in detail in Figure 2. 
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Figure 2. Contextual Consumer Rate formulation. 

Consumer Historical Rate (CHR) represents the historical 
performance of each consumer in previous events, in similar 
contexts – as the average. Consumer Context Rate (CCtR) 
considers two viewpoints and changes according to the daily 
availability of the consumer – which can be different for a 
certain day of the week and period of the day. Consumer 
Last Event Rate (CLER) shows the performance of the active 
consumer in the last event of the same context (weekday, 
period, and temperature). The addition of this performance 
rate is important to understand and update the consumer's 
behavior. Consumer Location Rate (CLR) introduces the 
spatial flexibility concept, considering that the aggregator 
can access the grid bus where the violation was detected. 
The small consumers near this location must prioritize 
participation since they can be crucial to solving the 
problem. Equation (1) adds CLR along with CHR and CLER 
for this initial trustworthy rate. 

!"	 = 	%	!_#$%&'"	 + 	%!_#&'%	&)*"	
+	%!_#&%	&)" +	%	!_##(%&&+" (1) 

But a consumer with none of this information, a CCR 
cannot be attributed. The innovation from the present study 
focuses on this situation with the "Rate Prediction" step, 
resorting to a machine learning algorithm. The authors 
opted for the Decision tree (DT) method. This technique is 
the hierarchical exemplification of knowledge relationships 
that contain nodes and connections and is mainly used for 
grouping purposes. Like a tree, DT has a root, branches, 
nodes, and leaves (Charbuty and Abdulazeez, 2021). The 
path begins from the root, and the data is separated in 
sequence until a Boolean outcome at the leaf node is 
achieved. Decision trees have found many implementation 
fields because of their simple analysis and precision on 
multiple data forms (Zhou et al., 2021). The training 
database will be composed of the remaining members of the 
community, whereas the test database will gather 
contextual information regarding the current event and the 
new participants. Mean absolute error (MAE) measures the 
accuracy of continuous variables. It was used to evaluate the 
model, defined in (2) (Jumin et al., 2021), as CCR was 
considered a continuous variable. 

!"# =	1'( |*! − *!|
"

#$%
 (3) 

With all the consumers with a CCR, the participation 
selection phase moves on to the next step. A linear approach 
is employed in the resource scheduling, and the objective 
function aims to minimize operational costs from the 
Aggregator perspective. The detailed formulation from this 
optimization can be seen in (Silva et al., 2021). If the 
reduction target is achieved, the CCR must be updated 
according to (4). 

UR = ωU_CHR CHR + ωU_CLER CLER + ωU_CSR CSR+ 
ωU_CCtR CCtR+ ωU_CCER CCER 

(4) 

The difference from the preliminary one is the Consumer 
Current Event Rate (CCER). Defines the rate according to 
the actual response of the consumer to the event: if 
responded as requested, the resulting rate is high. The 
opposite applies, and the active consumer is penalized with 
a lowered value of RR. The UR is highly important for the 
Participant Remuneration Phase because the compensation 
value is defined according to the performance. 

3. CASE STUDY 

The current section presents the detail regarding the case 
study and the scenarios created to prove the viability of the 
proposed methodology. Figure 3 shows the low voltage 
distribution network used, based on a real distributed grid 
with 236 buses. Several zones are defined according to the 
buses where a voltage limit violation was detected – 
triggering a DR event. Considering real events, the DSO 
detected a total of 13 voltage limit violations throughout one 
week. This information was used for defining the CCR but 
being able to attribute the proper rate to each participant is 
highly difficult. The authors believe that context is 
important, so, it should be necessary for consumers to 
participate several times in the same context, for different 
contexts. In this way, to define this dataset, the authors use 
information from several consumers and the different 
contexts they participate. 

The personal availability from the consumers is provided 
prior when the DR contract with the aggregator is done – 
several schedules are agreed between both parties. 

 These zones were useful to define the CLR. However, the 
model created in the present paper is only valid for the 
violation detected in this zone since the CLR changes 
accordingly. The DR program applied was load shifting. 
Participating consumers, with a previous contract, allows 
the aggregator to shift the appliances schedule to different 
times. Must be highlighted that both players agreed on a 
schedule to control this load, to avoid causing major 
inconvenience to the participants. Still, an uncertainty 
factor exists since the consumer can switch on the appliance 
without further notice – penalties should be applied. 



 

 

 

 

Figure 3. Zone Definition for according to the limit violation 
detected. 

For the test dataset, it is crucial to have information 
regarding the new participants and the context in which the 
DR event was triggered. For example, figure 4 has the 
temperature registered in a period where a limit violation 
could be detected. 

 

Figure 4. The temperature is registered to define the CCtR. 

The dataset used to train the DT algorithm has information 
regarding 406 participants in DR events for several contexts. 
This study attributes a CCR to new players with no previous 
information regarding their DR event performances. Table 
1 defines the scenarios created regarding the target, features, 
and the type of variables included in the algorithm. The 
authors opt for contextual information such as period, 
temperature, day of the week, day of the month, and if it is 
a holiday or not. A data preparation step was performed, 
where all the missing values and categorical data were dealt 
with. In the "Day of the week" feature, the first day is 
Sunday, classified as 1. The "Period" feature regards the data 
gathered every 15-minutes, where the first period was at 12 
PM, and the dataset has information regarding one month 
of events. 

It was also included personal information regarding the 
participant – their expected availability for the context in 
which the DR event was triggered. However, as mentioned 
before, privacy matters could be raised. Therefore, the 
authors wanted to distinguish between both perspectives: 

with and without any information that could probably 
identify the active consumer. 

Table 1. Scenario Definition 

Scenario Type 1 2 3 4 

Fe
at

ur
es

 

Period Integer x x x x 

Temperature Decimal x x x x 

Day of Week Integer x x x x 

Day of 
Month Integer x x x 

x 

Holiday Binary x x x x 

Availability Binary  x  x 

Includes all rates? - No No Yes Yes 

 
The difference between scenarios lies in both availability 
features as well as the inclusion of all rates. For example, in 
the database used as training, the number of samples for 
rates 1 and 5 was far less than the remaining. By creating 
these unique scenarios, the authors want to understand the 
real impact of these variables in the result.  

4. RESULTS AND DISCUSSION 

Throughout the present section, the authors analyze and 
discuss the results presenting the distinct DT for each 
scenario and their performance when predicting the CCR. 
For better understanding, Figure 5 presents the DT with 
only five nodes. This decision tree structure was created to 
predict the CCR in an easy and quick way. The authors’ 
goals are to develop a tool to be used in both planning 
situations (maybe weekly plan) as well as in real-time 
approaches. Analyzing a decision tree with several nodes 
takes time that sometimes the Aggregator does not have and 
increases the computational cost. The authors picked, in 
their opinion, some crucial factors that can impact 
consumer behavior and provoke a non-response, which will 
affect their CCR. 

However, a sensitivity analysis was done regarding the 
number of nodes and the corresponding performance to 
understand which scenario is more reliable. The color scale 
in the decision trees (from white to orange) is regarding the 
CCR range – the higher, the darker is the color. 

Analyzing the results found in Figure 5, the first scenario 
starts with the feature "Day of the Week." If before a 
Monday, the initial CCR was 3.2. On the other hand, if the 
"Temperature" was less than 11.5 ºC and the "Day of the 
Month" was less than 14, the CCR value was 2.9. 
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Otherwise, 3.1. However, if the "Temperature" was more 
than 11.5 ºC and less than 14.5ºC, the CCR value was 2.8. 
Otherwise, 2.9.  

a)  

b)  

c)  

d)  
Figure 5. Decision trees a) Scenario 1, b) Scenario 2, c) Scenario 

3, and d) Scenario 4. 

In this perspective, "Holiday" and "Period" features were not 
used. Moving to Scenario 2 in Figure 5 b), if the consumer 
has no availability at the event, the CCR is 2.1. Else, if the 
"Period" is higher than 662, the CCR is 3.5. Otherwise, if the 
"Temperature" is higher than 15.5 ºC, the CCR is 3.6. But if 
the "Temperature" is less than 15.5ºC and the "Period" is 
lower than 29, the CCR value is 3.6 else, 2.9. In this case, 
"Day of the Month," "Day of the Week," and "Holiday" 
features were not used. In Scenario 3 (Figure 5 c)), if the 
"Day of the Week" is before a Monday, the initial CCR was 
3.2. On the other hand, if the "Temperature" was less than 
11.5 ºC and the "Day of the Month" was less than 14, the 
CCR value was 2.9. Otherwise, 3.1. However, if the 
"Temperature" was more than 11.5 ºC and less than 14.5ºC, 
the CCR value was 2.8. Otherwise, 3.0. In this perspective, 
"Holiday" and "Period" features were not used in Scenario 1. 
Finally, Scenario 4 in Figure 5 d) has a resulting DT with 
five nodes equal to Scenario 2 in Figure 5b). However, as 
shown in Table 2, their mean absolute error is different for 
the same number of nodes.  

This approach is used because the sensitivity test was done 
for eight different experiments: 5, 20, 35, 50, 100, 500, 5000, 
and 10.000. Therefore, the lower the MAE, the better is the 
result. By analyzing the prior results, Scenario 1, the MAE 
reduced from 5 to 35 leaf nodes from 0.75 to 0.70. When the 
DT has 100 nodes, the MAE is 0.64, and only 5.000 leaf 
nodes reduce to 0.57. There is no value difference between 
the 5.000 and 10.000 leaf nodes for the first five decimals' 
digits: 0.57179.  

Scenario 2 includes the availability for the DR event in both 
tests (new participants) and training databases. Compared 
with the previous scenario, the performance was much 
better since the higher value of nodes in Scenario 1 has a 
lower performance than the five-leaf nodes resulting in 
Scenario 2: 0.57 vs. 0.47. However, the difference between 
the several experiences is lower than in Scenario 1. For 
example, between 5 leaf nodes and 10.000 leaf nodes in 



 

 

Scenario 1, the MAE difference is 0.17633. For this case, 
with five leaf nodes and 10.000 leaf nodes, the MAE 
difference is 0.10346. The results of Scenario 3 are like 
Scenario 1 regarding MAE since, with five leaf nodes, the 
MAE value was 0.75 and with 10.000 nodes was 0.57. The 
differences are only noticed on the third decimal digit. Since 
the availability is also used, the results are better than the 
previous scenario regarding the last scenario results. The 
better MAE was found here, being 0.36181 with 5.000 or 
10.000 leaf nodes. 

Table 3 presents the sensitivity test results with a different 
perspective: the number of actual right predictions 
regarding the number of samples in the total number of 
samples. The authors believe that an acceptable and useful 
accuracy, from the Aggregator perspective, is above 60%, 
for lower nodes. If the accuracy is low can attribute wrong 
CCR to the consumers, leading to loss of fairness. 

 Like the sensitivity test with MAE, the results for 5.000 leaf 
nodes and 10000 leaf nodes are similar, having the same 
value within scenarios. The performance of the dataset from 
Scenario 1 with five leaf nodes was 26.56%, and on the 50-
leaf node, experience achieved the 32.57%. The higher 
value from this scenario was achieved in the prior 
experience with 47.47%, not achieving a 50% correct 
prediction from the total dataset. 

Table 2. Sensitivity study – MAE 

Max leaf 
nodes 

Mean absolute error 
Scenario 

1 
Scenario 

2 
Scenario 

3 
Scenario 

4 

5 0.748 0.466 0.745 0.464 

20 0.721 0.445 0.727 0.443 

35 0.703 0.435 0.708 0.433 

50 0.693 0.428 0.690 0.426 

100 0.643 0.412 0.647 0.411 

500 0.574 0.372 0.574 0.370 

5,000 0.571 0.362 0.571 0.361 

10,000 0.571 0.362 0.571 0.361 

 

Table 3. Sensitivity study – Accuracy 

Max leaf 
nodes 

Accuracy 
Scenario 

1 
Scenario 

2 
Scenario 

3 
Scenario 

4 

5 26,56% 64,03% 26,90% 63,95% 

20 28,84% 62,06% 29,67% 62,04% 

35 31,53% 65,76% 30,68% 65,86% 

50 32,57% 66,84% 33,47% 67,03% 

100 41,59% 68,11% 39,01% 68,19% 

500 46,94% 66,84% 47,24% 70,19% 

5,000 47,47% 70,55% 47,81% 70,59% 

10,000 47,47% 70,55% 47,81% 70,59% 

 
Regarding Scenario 2, considering the availability from all 
the consumers in the training dataset and the new ones, the 
performance from 5 leaf nodes was way superior achieving 
64.03% of correct answers – almost 40% higher than the 
previous scenario in the same experience. Like the previous 
table results, the difference between leaf nodes test for the 
several experiences is lower than in Scenario 1. For example, 
between 5 leaf nodes and 10.000 leaf nodes in Scenario 1, 
the percentage difference is 20.91%. For this case, with five 
leaf nodes and 10.000 leaf nodes, the percentage difference 
is 6,52%. 

Moving on to Scenario 3, the resulting percentages are like 
Scenario 1 – starting with 26.90% in 5 leaf nodes. However, 
on 10.000 leaf nodes, the percentage was 47.81% (only 
0.34% better than the same experience on Scenario 1).  
Although the number of samples from rates 1 and 5 was 
lower, it is important to include them in the training dataset. 
Lastly, the first two experiences of Scenario 4 had a lower 
percentage than Scenario 2. Also, the difference of 
performance between the max-leaf nodes in this sensitivity 
was 0.04%. In Figure 6, the authors compare both Scenario 
2 and Scenario 4, choosing a consumer in a certain context 
to understand and further discuss the results in a more 
detailed perspective. 



 

 

 

Figure 6. Comparison between Scenario 2 and Scenario 4 for 
a selected consumer in a certain context. 

For 5 leaf nodes, both Scenario 2 and Scenario 4 models 
could not attribute the right rate to this consumer – 
predictions indicate a rate 4, but the actual one was 3. 
Moving to 20 leaf nodes, Scenario 4 made the right 
prediction while Scenario 2 maintained the previous result. 
In the following leaf nodes studies (35 and 50), both 
scenarios fail to attribute the right rate to this consumer. 
However, after these two studies, Scenario 4 was always able 
to attribute the actual rate to the consumer, unlike Scenario 
2, which managed to fail again on the 500 leaf node study.  

When the aggregator has no private information regarding 
the new participant, it is worth increasing the number of 
leaf nodes. Otherwise, although the results are better, the 
percentage difference between fewer leaf nodes and 10000 
leaf nodes may not be worth visual analysis. 

5.  CONCLUSION 

To suppress the impacts of the non-renewable resources 
regarding climate changes, the demand side must provide 
flexibility to achieve system balance when the renewable 
resources may not be sufficient. However, the uncertain 
behavior from the active consumers increases the 
complexity of managing an active community. The authors 
propose a tool to aid the aggregator in choosing the proper 
participants for a DR event. This rate classifies the 
participants according to their performance on DR events. 
In the case study, the idea is to give a trustworthy rate to a 
new player with no performance information. To achieve 
this, a decision tree was developed considering different 
context information at the DR event time. From 
Aggregator’s perspective, the availability from active 
consumers can be useful, but privacy matters could be 
raised. The scenarios were divided: with and without 
private information. A sensitivity test was done regarding 
the leaf nodes used in the decision tree. Results show that 
scenarios with private information have better performance 
results – 71% accuracy. When no data is given, the higher 
the number of leaf nodes, the better the algorithm's 
performance.  
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Resumen 

Empoderar a los consumidores aumentará la complejidad en la gestión de las 
comunidades locales. Habilitar la comunicación bidireccional y hacer que los 
electrodomésticos sean más inteligentes puede ser un gran avance hacia la 
implementación de la respuesta a la demanda. Sin embargo, es necesario 
desarrollar una solución capaz de proporcionar el conocimiento y las 
herramientas adecuadas. Los autores proponen una metodología para gestionar 
de manera óptima a los consumidores activos en eventos de respuesta a la 
demanda, teniendo en cuenta el contexto en el que se desencadenan. El operador 
del sistema de distribución detecta una violación de voltaje y solicita una 
reducción de carga a los agregadores. En este estudio, para probar una tasa de 
rendimiento diseñada por los autores para lidiar con la incertidumbre de la 
respuesta, se realiza una comparación entre la reducción solicitada y la reducción 
real. La metodología propuesta se aplicó a tres escenarios donde el objetivo es 
predecir la respuesta de los consumidores utilizando redes neuronales 
artificiales, modificando las características utilizadas en la entrada.
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Abstract. Empowering the consumers will increase the complexity of local 
communities’ management. Enabling bidirectional communication and ap-
pliances to become smarter can be a huge step toward implementing demand 
response. However, a solution capable of providing the right knowledge and 
tools must be developed. The authors thereby propose a methodology to man-
age the active consumers on Demand Response (DR) events optimally, con-
sidering the context in which it is triggered. The distribution system operator 
detects a voltage violation and requests a load reduction to the aggregators. 
In this study, to test a performance rate designed by the authors to deal with 
response uncertainty, a comparison between requested and actual reduction 
is done. The proposed methodology was applied to three scenarios where the 
goal is predicting the response from the consumers using artificial neural net-
works, by changing the features used in the input. 

 

Keywords: Active consumers, Artificial Neural Networks, Demand re-
sponse, Machine Learning, Smart grids 

1 Introduction 

The energy sector is facing changes that will drive toward a more sustainable power 
and energy use. The growing concern, regarding climate change, introduce distrib-
uted generation solutions to deal with the greenhouse effects and air pollution. How-
ever, the volatile behavior of these resources requires more flexibility from the de-
mand side. So, the active consumers are empowered and their role in the market is 
changing. The authors in [1] reinforce the importance of flexibility in the system to 
enable and promote renewable consumption and reduce the consumers' energy costs 
while maintaining comfort. Their study presents a Stackelberg game optimization 
framework for integrated energy systems scheduling by coordinating renewable 
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generations and demand response. However, only the uncertainty from renewable 
generations is included. The authors in [2] refers those small consumers such as 
domestic will play a more active role in managing the system and becoming pro-
ducers of their energy. The simulation results from their study showed that promot-
ing cooperation between the power supplier and the prosumer could lead to signif-
icant cost reductions and energy savings. É. Mata et al. [3] also refer that including 
flexible behavior can bring several benefits for all the parties: providing service 
toward energy system stability, security, and cost-effectiveness as well as growing 
energy awareness for active consumers who participate and provide load reduction. 

With this, solutions must be developed to aid the aggregator in the complex task 
of managing the active communities to be able to send the proper signals to the most 
trustworthy players. The complexity comes from the different behavior of each re-
source for each context, increasing the uncertainty of the response. The authors be-
lieve that attributing a Contextual Consumer Rate (CCR) will be useful to select the 
right participants for a DR event since avoiding discomfort from the consumer side 
and reducing costs from the aggregator perspective. CCR's goal is to characterize 
the performance of each resource in a DR event, for each context. The present study 
is a continuation of previous works [4]–[6], where the goal is to find ways to deal 
with the DR response uncertainty 

The present paper is organized according to five different sections. The first one 
is an introduction to the topic with the motivations of the study and innovations 
from previous works. The following sections present a detailed explanation of the 
proposed methodology, a case study section, and the results found are analyzed and 
discussed. Finally, the conclusions withdrawn will be reviewed. 

2 Proposed Methodology 

To further apply the smart grid concept in the real market, it will be crucial to give 
active consumers the proper information regarding the market transactions to pro-
vide the flexibility to achieve reduction goals. Figure 1 shows the algorithm for the 
proposed methodology. Considering that Distribution System Operator (DSO), af-
ter a power flow analysis where a voltage violation was found, requires a load re-
duction to all the aggregators associated. With this signal, all of them must trigger 
a DR event.  

With this, it will be possible to identify the proper participants, the ones with 
higher levels of trust for the context, dealing with the uncertainty. For instance, are 
all active consumers prepared to participate in the same way and give up their com-
fort to assure their position in the market? Currently, probably not. Most of them, 
being new players in the market, have no or insufficient knowledge regarding the 
actual transactions. Many works in the literature are expecting them to be as always 
rational and economic players and, in the authors’ opinion, this approach may lead 
to inaccuracies. So, understanding previous behaviors in the same context, and con-
templating their availability at the time of the event, can avoid misleading the 
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aggregator perspective when performing the scheduling of the small resources in 
the community. 

 

 
Fig 1. The proposed methodology, focusing on consumer response. 

CR depends on several factors regarding consumer characteristics: Context Rate 
(CR), Historic Rate (HR), Last Event Rate (LER), Spatial Rate (SR), and Response 
Rate (RR). This rate has two phases: the preliminary (PR) - for the selection pur-
poses, and the updated (UR) - for remuneration purposes. The first one is formulated 
by the sum of CR, HR, SR, and LER, each one with an attributed weight. If a con-
sumer does not have any previous information, for instance, when it is the first time 
with DR programs, the lowest rate is assigned and must improve the CCR.  

Understanding each one, CR depends on the availability and the willingness to 
participate according to the time (ωCRP CRP) and weather (ωCRW CRW) recorded 
during the period of the event – both have a major influence on consumer response, 
particularly when distinguishing working days from the weekend or days with ex-
treme temperatures. The formulation can be seen on Equation 1. 

CR = ωCRP CRP + ωCRW CRW (1) 

Using HR, the Aggregator learns from historical information collected from ac-
tive consumer and their performance in previous events in similar contexts, accord-
ing to Equation 2.  

HR = average (previous performances same context) (2) 

DSO

Aggregator 1 Aggregator 1 Aggregator n…

DR event Trigger

Identification of
participants

Reduction request

Actual reduction

Reduction goal
achieved?

Remuneration Inform DSO

Update consumer rate
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LER is used to update CCR according to only previous event performance. For 
instance, a consumer with a higher rate on HR can have a poor LER, which will be 
important for updating issues.  

LER = UR last event in the same context (3) 

In the case of SR, for the case where the aggregator has information regarding a 
voltage violation in a network bus, it will be important to give priority to the ones 
closer to the local. 

 
The preliminary CCR is formulated according to Equation 5. 

PR = ωHR * HR + ωLER * LER+ ωCR * CR+ ωSR * SR (5) 
Moving on to the reduction request phase, a linear optimization of the resources 

scheduling is done. The objective function aims to minimize operational costs from 
the Aggregator perspective  [7], [8]. Performed the scheduling phase, the reduction 
is requested to the active consumers. In this step, the innovation from the present 
paper is presented. Here, the authors intend to predict the actual response from the 
selected participants as an evaluation of the CCR methodology. The authors opted 
for the Artificial Neural Networks method. The training database will be composed 
of the members of the community that already participated in the event, whereas the 
test database will gather contextual information regarding the current event and will 
try to predict the response from the active consumers for the event.  Should be high-
lighted that the load requested to be reduced is shifted to another period according 
to the consumers' preferences. 

After, as soon as the reduction request and the actual reduction is compared, the 
CCR is updated, as mentioned earlier. This updated version is formulated by the 
sum of CR, HR, SR, LER, and RR, each one with an attributed weight, according 
to Equation 6. 

UR = ωHR HR + ωLER LER + ωSR SR+ ωCR CR+ ωRR RR (6) 
 RR represents the performance according to the actual response of the consumer 

in the current event: if the active consumer responded as requested, the rate would 
be high, the opposite will also apply, and the active consumer will be penalized with 
a reduced value. Once the CCR is updated, the remuneration is attributed to the 
participants, and the DSO is informed of the DR reduction obtained.  

3 Case Study 

For the present section, the authors intend to test the proposed innovation in the case 
study, creating different scenarios. For this case, Figure 2 represents the low voltage 
distribution network used for the case study, based on a real distributed grid with 
236 buses.  

The authors believe that context is important, so, it should be necessary for con-
sumers to participate several times in the same context, for different contexts. In 
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this way, to define this dataset, the authors use information from several consumers 
and the different contexts they participate. 

The active consumer availability must be also provided in the input since it is 
essential to predict the actual response from the participants – several schedules are 
agreed upon in the DR contract between both parties. As mentioned in the previous 
section, the DR program applied is load shifting. The selected consumers allow 
shifting the appliances' schedule – both players agreed on a schedule to control this 
load, to avoid causing major inconvenience to the participants. Still, an uncertainty 
factor exists since the consumer can switch on the appliance without further notice 
– penalties should be applied. 

To the ANN algorithm training step, a total of 406 participants in the DR events 
were used, considering several contexts – both temperature and time factors. Also, 
to evaluate the importance of the personal data, the authors added two new features 
and simulated according to the percentages presented in the study done in [9], per-
forming the extrapolation for this case.  

The goal of the ANN is to try to predict the actual response from the active con-
sumer, as their expected availability for the context in which the DR event was trig-
gered. The authors wanted to distinguish between both perspectives: with (Scenario 
2 and 3) and without (Scenario 1) any information that could probably identify the 
active consumer. With this, the authors intent to understand if the personal data can 
lead to better results, since can better identify each consumer.  

4 Results and Discussion 

Table I defines several scenarios where the features are DR period, temperature, day 
of the week, day of the month, the CCR, age and gender of the participants. The 
independent rates such as CR, HR, SR and LER were not included as input feature 
since are already represented by the CCR. To express the age interval and gender 
with integers, the authors used a label, and their distribution can be seen in Table II 
and Table III. Also, reference [9] was used to extrapolate the percentage of partici-
pants within the age interval and gender features. 

Table I. Scenarios defined for the proposed study. 

Scenario Type 1 2 3 

Fe
at

ur
es

 

Period Integer x x x 
Temperature Decimal x x x 
Day of Week Integer x x x 
Day of Month Integer x x x 
CCR Integer  x x 
Age Integer   x 
Gender Integer   x 
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Table II. Age interval input definition 

Age Interval [9] Participants Label 
[20,29] 3.00% 11 1 
[30,39] 25.80% 105 2 
[40,49] 38.70% 158 3 
[50,59] 23.8% 97 4 
[60,69] 8.60% 35 5 
[70,79] 0.10% 0 6 

 
Table III. Gender input definition 

Gender [9] Participants Label 
Female 49.80% 202 0 
Male 50.2% 203 1 

 
The three defined scenarios are increasing the level of information since more 

features are added. The first one does not include any knowledge that could lead to 
the identification of the active consumer, since privacy problems can be raised – 
namely since CCR includes the SR. A data preparation step was performed, where 
all the missing values and categorical data were dealt with. In the "Day of the week" 
feature, the first day is Sunday, classified as 1. The "Period" feature regards the data 
gathered on a 15-minute basis, where the first period was at 12 PM, and the input 
dataset has information regarding one month of events. 

The implementation of ANN for the present case study was performed using py-
thon language and resorting to Google Colab. The libraries for this purpose were 
pandas, numpy, tensorflow and scikit-learn. As input, the dataset with more features 
has 6 dimensions and a total of 1.169.274 records per dimension and was withdrawn 
from previous works by the authors [7], diving the test and train datasets in a 20 to 
80 percentage. The authors main goal is to create an ANN capable of predict the 
active consumer availability to respond to a DR event in a certain context. There 
was a total of two hidden layers, the batch size was 32 and the number of epochs 
was 100. For the target value, it was considered that 0 represents a non-response 
and 1 represents a response.  

When importing the dataset, and since the categorical variable were already dealt 
with, it was time to split into training and testing dataset. Firstly, the authors used 
the train_test_split function from the scikit-learn library, using a configuration such 
that 80 percent of data will be there in the training phase and 20 percent of data will 
be in the testing phase. Also, the feature scaling was performed. 

Initializing the ANN by creating an object by using a Sequential class – the input 
layer. After, the first test is initialized, modifying the number of hidden layers 
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comparing one and two. It is believed that one hidden layer might be enough by 
many authors in the literature in the Dense class: units and activation. Units stands 
for the number of neurons that will be presented in the layer and activation specifies. 
For the present study, rectified linear unit was used as an activation function. Fi-
nally, the output layer is created. Should be highlighted that, since this is a binary 
classification problem – 0 represents a non-response and 1 represents a response, 
only one neuron it is allocated to the output. So, unit is equal to one. For this final 
layer, the activation function was sigmoid. With this, it is possible to compile the 
ANN, where the optimizer used was adam, the loss function was binary_crossen-
tropy, and the performance metrics used was accuracy. As the last step, the fitting 
process introduces the number of epochs. For this case, one hundred epochs were 
studied. 

So, the results from the case study one, as a training dataset with 80 percent, 
number of hidden layers equal to one and number of epochs equal to 100 and can 
be seen in Figure 2. 

 
Fig 2. Case Study 1 – Scenario accuracy comparison 

The time per epoch was rather small for all the data considered, around 20s, tak-
ing a maximum of 34 minutes per scenario. Regarding the values of accuracy, sce-
nario 1 was the one with a lower value. The remaining had similar behaviour, 
achieving 87.32% and 87.41%, respectively. Regarding the prediction results, Table 
IV, presents the comparison for this case study 

 
Table IV. Case Study 1 – Prediction vs Actual results from ANN 

Scenario 
Prediction Actual 

Responses 
Non-re-
sponses Responses Non-responses 

1 115199 0 
74.065 41.134 2 78939 36260 

3 71080 44119 
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The ANN in scenario 1 predicted that all the participants responded for the con-

texts in the test. Although only 74.065 actually participated. Regarding scenario 2, 
the error on the prediction was a total of 4874 records while scenario 3 deviation 
was around 2985 records. 

Moving for the case study 2, where the dataset was divided into 80 percent for 
training, the number of hidden layers equals to two and number of epochs equals to 
100. So, the ANN accuracy for the three different scenarios can be seen in Figure 
3. Again, the time per epoch was rather small for all the data considered, around 
20s, taking a maximum of 36 minutes per scenario.  

 
Fig 3. Case Study 2 – Scenario accuracy comparison 

The scenario 1 was the one with the lowest accuracy. Considering only the out-
side contexts do not lead to a high value of accuracy since the maximum value 
(64.35%) was found on epoch 16 and maintained this value until epoch 100. Re-
garding scenario 2, remembering that the different between the last is the CCR, the 
accuracy increased around 24.95% for the maximum value. However, this value 
was only achieved in the epoch 86. For the last scenario, the maximum accuracy 
value was close to scenario 2 (89.29%), yet, it was reached sooner, on epoch 55. 

So, in terms of practical numbers, Table V presents the comparison between the 
predicted and the actual values for the trained ANNs. 

 
Table V. Case Study 2 – Prediction vs Actual results from ANN 

Scenario 
Prediction Actual 

Responses Non-re-
sponses 

Responses Non-responses 

1 115.199 0 
74.065 41.134 2 80.217 34.982 

3 78.944 36.255 
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The test dataset had a total of 115.199 records and, that was the number of re-
sponses that scenario 1 predicted – although the number of actual responses was 
74.065. For scenario 2, the number of predicted responses was 6.152 above the ac-
tual value. While for scenario 3, the predicted responses were below, 4.879 records 
closer to the actual value. Indeed, having more information regarding the active 
consumers helped reduce the number of responses that were non-responses. Regard-
ing the number of hidden layers, for scenario 1 there was no difference. For both 
scenario 2 and scenario 3, two layers had a higher value of accuracy but in the com-
parison of predicted records, one layer had lower errors.  

5 Conclusion 

Nowadays, to deal with the impacts of the non-renewable resources regarding 
climate change, the active consumers must provide flexibility to achieve system 
balance when the renewable resources do not. Yet, it will take time, education, 
and resource to make rational decisions as economic players. In this way, the 
authors propose a Contextual Consumer Rate as a tool to aid the aggregator in 
choosing the proper participants for a DR event. This rate classifies the partici-
pants according to their performance at DR events.  

In the case study presented, the idea was to design an ANN capable of pre-
dicting the actual response of a participant in a DR event using features such as 
DR period, temperature, day of the week, day of the month, the CCR, age, and 
gender of the participants. However, privacy concerns were raised so, three dif-
ferent scenarios were created to understand the need for personal information 
for the proposed methodology. Also, a comparison between the number of hid-
den layers in ANN was performed. The scenario, where besides outside context 
information, the CCR was included had high values of accuracy. Although CCR 
can provide personal information, regarding to the location of the active con-
sumer, can also give to the aggregator proper knowledge to predict the actual 
response from the active consumers in the local community with only one fea-
ture. Also, according to the results section, after epoch 30 nothing significant hap-
pens but, to take this conclusion was needed to test with a higher number of epochs. 
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Resumen 

Los consumidores activos ahora tienen un mayor poder gracias al concepto de la 
“smart grid”. Para evitar el uso de combustibles fósiles, el lado de la demanda 
debe proporcionar flexibilidad a través de eventos de respuesta a la demanda. 
Sin embargo, seleccionar a los participantes adecuados para un evento puede ser 
complejo debido a la incertidumbre de la respuesta. Los autores diseñan una Tasa 
del Consumidor Contextual para identificar a los participantes confiables según 
su desempeño anterior. En el presente estudio de caso, los autores abordan el 
problema de los nuevos jugadores sin información previa. De esta manera, se 
compararon dos métodos diferentes para predecir su tasa. Además, los autores 
también hacen referencia a la prueba de privacidad del consumidor en el 
conjunto de datos con y sin información que pueda llevar a la identificación de 
los participantes. Los resultados encontrados demuestran que, para la 
metodología propuesta, la información privada no tiene un impacto significativo 
en la atribución de una tasa. 
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Abstract—Active consumers have now been empowered 
thanks to the smart grid concept. To avoid fossil fuels, the 
demand side must provide flexibility through Demand Response 
events. However, selecting the proper participants for an event 
can be complex due to response uncertainty. The authors design 
a Contextual Consumer Rate to identify the trustworthy 
participants according to previous performances. In the present 
case study, the authors address the problem of new players with 
no information. In this way, two different methods were 
compared to predict their rate. Besides, the authors also refer to 
the consumer privacy testing of the dataset with and without 
information that could lead to the participant identification. The 
results found to prove that, for the proposed methodology, 
private information does not have a high impact to attribute a 
rate. 

Keywords—Active Consumers, Decision Tree, Demand 
Response, Random Forest, Spatial Flexibility  

I. INTRODUCTION  

The progression to a future without fossil fuels in the 
power and energy systems includes the smart grid concept, 
which presents the Distributed Generation (DG) option such 
as renewable technologies [1]. However, the volatile 
behaviours from the sources, such as sun and wind, will 
jeopardise the reliability and security of the network. In this 
way, the demand side must provide more flexibility in 
changing the existing paradigm – where the supply follows the 
demand needs [2]. With the introduction of the Demand 
Response (DR) programs, the active consumers are 
empowered, and their influence in the market increases. By 
pursuing the signals given by the community managing entity, 
active consumers should change their load profile by 
participating in the market transactions to provide a smooth 
transaction of the renewable technologies into the energy 
market [3]. 

Yet, most active consumers have no or low information 
regarding the market transactions since their contribution was 
always indirect. Furthermore, predicting behaviour from the 
demand side can be rather difficult. For instance, industrial 
and commercial consumers can be more predictable since 
their routines are more stable, and there are successful DR 
cases that prove this statement. But, for the domestic type, 
which represents a more complex problem since human 
behaviour depends on distinct contexts and factors, finding a 
way to motivate their participation can be extremely complex. 
The literature refers that, from a smaller consumer’s 

perspective, from a smaller consumer perspective, the 
literature refers that comfort is crucial, and being willing to 
forfeit would require a good motive and a good incentive 
[4][5]. 

In this way, giving an important role to such uncertain 
players is highly risky. Active communities should be 
managed with the proper tools by an experienced entity. It will 
take time, education, and resources until active consumers 
make rational decisions on their own that benefit both parties 
[6]. Until then, the literature must gather knowledge to design 
a proper solution capable of dealing with the uncertainty from 
both active consumers’ behaviour and the volatile behaviour 
of the DG resources.  

 To contribute, the authors of the present paper introduce 
an approach that is qualified to complete the previously 
mentioned task. Although the focus of the present paper is the 
active consumers, the proposed methodology is being built to 
be also capable of dealing with all the resources from an active 
community. For instance, DG, prosumers, energy storage 
systems and electric vehicles [7]–[9]. 

With this, the authors believe that the context in which the 
DR event is triggered is crucial for the active consumers’ 
continuous participation. In other words, understanding their 
availability and flexibility for different contexts can be crucial 
in selecting the proper participants in a community for a 
requested reduction event. For instance, external factors such 
as the time of day, the day of the week, or even the temperature 
can impact the active consumer response to an event. In this 
way, gathering this knowledge is important to reduce 
uncertainty. The authors design a Contextual Consumer Rate 
(CCR) to classify each consumer according to their 
performance in previous events in the same context to deal 
with this. The aggregator has more confidence in selecting the 
most trustworthy participants according to a certain context. 
The baseline scenario for the proposed methodology 
presented in this paper starts with a power flow analysis from 
the Distribution System Operator (DSO). When a voltage 
limit violation is identified, this entity requires a load 
reduction to all the aggregators in the nearby communities. 
Here, a DR event is triggered, and the event must be prepared 
with the information from the participants. The innovation 
from previous works by the authors is a new phase where the 
new players – with no DR performance and therefore no CCR, 
are classified, and a rate is attributed: Rate Prediction. In the 
present case study, the authors compare two supervised 
machine learning methods, both used in classification: 
Decision Trees (DT) and Random Forest (RF).  

The objective of the present paper is to build a model 
capable of attributing a CCR to a new player. In this study, as 
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innovation and contribution from the previous works done by 
the authors [7], this new phase was added to the methodology, 
and two different supervised learning models were compared: 
Decision Tree and Random Forest. Although private 
information may be needed – such as the location of the active 
consumer, the authors want to understand the impact of this 
knowledge.  

Five sections divide the present paper. After the 
introduction, a more detailed explanation of the methodology 
is presented, followed by the case study definition and a 
discussion of the results. Finally, the conclusions withdrawn 
are summarised. 

II. METHODOLOGY 

The complexity of managing a local community becomes 
higher with the empowerment of the consumers. As the focus 
of the new paradigm introduced by the smart grid concept, the 
active consumers’ flexibility is crucial to maintaining the 
system’s reliability and security. In this way, the authors 
proposed a methodology capable of dealing with the response 
uncertainty of these new players, as can be seen in Figure 1.  

 
Fig. 1. Proposed Methodology – focus on rate prediction from new players. 

The baseline scenario for the proposed methodology 
simulates a voltage limit violation identified by the DSO (its 
actions are represented with a blue line in Figure 1). A 
reduction request is sent to the community managers to trigger 
a DR event. The aggregator (represented with the red line and 

mentioned as AGG) gathers all the data to prepare for the 
event. In the same stage, the expected demand flexibility for 
the event context by the active consumers (represented with a 
green line) is also collected. The aggregator searches for new 
players from the demand side – new participants with no 
information regarding DR events performance and, therefore, 
no CCR. In this step, the authors intend to predict their 
response to the event context to attribute the proper CCR. This 
rate is useful for classifying the active consumers and 
selecting the proper participants according to the DR event 
context. Detailing the formulation of the CCR, Figure 2 
represents all the components for both stages: preliminary and 
updated. The first one is used to aid in participation selection. 
The update includes each participant’s performance, 
comparing the requested and the actual response. 

 
Fig. 2.  Contextual Consumer Rate formulation – Preliminary and Updated. 

As mentioned before, the context, in the authors’ opinion, 
is crucial for the performance of an active consumer. Is a 
domestic consumer disposed to give up on an air conditioning 
when the temperature is above 30ºC? The comfort for this type 
of player is important, so their performance might be poor. 
However, if the period in which the event was triggered is 
between 1 PM and 3 PM? What if this player is at work during 
this period? Although the air conditioning example might not 
be applied for this case, a dishwasher or a washing machine 
schedule can be moved. Participation might be more 
acceptable since active consumer comfort is not jeopardised 
in this scenario. However, both parties must agree when the 
DR contract is made. Considering all these factors, the authors 
included in the CCR several independent rates: Consumer 
Historical Rate (CHR), Consumer Context Rate (CCtR), 
Consumer Last Event Rate (CLER), and Consumer Location 
Rate (CLR) and Consumer Current Event Rate (CCER). 

CHR characterizes the player's historical performance 
average in previous events in similar contexts. CCtR gathers 
the expected behaviour from the players from two 
perspectives: weather (temperature) and time (weekday and 
period). CLER illustrates the active consumer performance in 
the last event of the same context. CLR disseminates the 
spatial flexibility concept, considering that the aggregator has 
grid bus information regarding where the violation was 
detected. Equation (1) adds CLR along with CHR, CLER and 
CCtR for the preliminary CCR. 

!"	 = 	%	!_#$%&'"	 + 	%!_#&'%	&)*"	
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(1) 

Focusing on the Rate Prediction stage, for the present 
paper, two different methods will be compared: DT and RF. 
The first one can be defined as a hierarchical exemplification 
of relationships that contain nodes and connections [10]. This 
method is mainly used for grouping purposes, and like a tree, 
DT has a root, branches, nodes, and leaves. Starting from the 
root, the data is separated in sequence until the leaf node is 
achieved [11]. On the other hand, RT is based on a DT and 
can be used for classification and regression [12]. The RT 
predicts by averaging the prediction of each component tree. 
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Overall, the literature says that RT has much better predictive 
accuracy than a single decision tree, and it can work well with 
default parameters [13]. 

For both methods, the training database will be composed 
of the remaining members of the community information. For 
validation, the contextual information from the current event 
and the availability of the new players are considered. To 
measure the performance from the selected methods, the 
authors opt to use Mean absolute error (MAE). This indicator 
measures the accuracy of continuous variables, as CCR was 
considered a continuous variable, and it is defined in (2) [14]. 

!"# =	1'( |*! − *!|
"

#$%
 (2) 

Attributed a CCR to all the active consumers in the 
community, the Resource Optimal Scheduling phase starts. In 
this stage, the main goal is to minimize the operational costs 
from the aggregator perspective, achieving the reduction 
target. The detailed formulation from this optimization can be 
consulted in [15].  

After, the aggregator must understand if the selected 
participants were enough to suppress the request or if more 
should be called – a comparison between actual and requested 
reduction. This stage is where the uncertainty of the active 
consumers is tested. If the players respond according to the 
expected, their result in the Updated Consumer Contextual 
Rate (UR) is positive. Otherwise, they are penalized in both 
rate performance and the remuneration phase. The 
formulation of UR can be seen in (4). 

UR = ωU_CHR CHR + ωU_CLER CLER + ωU_CSR CSR+ 

ωU_CCtR CCtR+ ωU_CCER CCER 
(4) 

The major difference between the preliminary and the 
updated CCR is the CCER. This independent rate considers 
the actual response of the consumer to the event: if responded 
as requested, the resulting rate is high. The opposite applies, 
and the active consumer is penalized with a lowered value of 
RR. So, this independent rate is the only one obtained during 
the event and shows the raw performance. 

For the proposed methodology, UR is highly important. 
The authors believe that proper remuneration can be a key 
factor for continuous participation. The Participant 
Remuneration Phase was included, and the compensation 
value is defined according to the player’s performance. 

Finally, the DSO is informed of the load reduction value 
from this community and the load shifted to other periods – 
the selected DR program in this situation. This must be 
highlighted that both real-time and planning perspectives can 
be applied to the proposed methodology. In other words, from 
a real-time perspective, by applying the load shifting program, 
the Aggregator may shift to a period with other voltage limit 
violations without having acknowledged, causing even more 
problems in the future. However, from the planning 
perspective, for instance, a weekly-based, DSO must provide 
all the expected voltage limit violations, and the aggregator 
avoids these periods. 

III. CASE STUDY 

In the current section, the authors define the case study and 
the scenarios used to prove the viability of the proposed 

methodology. Since the focus of the present paper is the 
comparison between DT and RF, Table I defines the features 
used in the training dataset – period, temperature, day of the 
week and day of the month are crucial to identify the context 
in which the event is triggered.  Personal information that 
could lead to the identification of the active player was also 
included to better differentiate from other players. For 
instance, the active consumers are divided according to their 
distance from the bus where the voltage limit violation was 
identified to identify the new participants. 

TABLE I.  SCENARIO DEFINITION 

Features Type 
Scenario 

1 
Scenario 

2 
Period Integer x x 
Temperature Decimal x x 
Day of 
Week Integer x x 

Day of 
Month Integer x x 

Location Integer x  
Availability Binary x x 

Method DT RF 
 

In Figure 3, different zones are represented – zone 1 is the 
farthest and zone 5 is the closest. 

 

 

Fig. 3. Zone Definition according to the voltage limit violation detected. 

Although other voltage limit violations can be included, 
the authors believe that each one should have its model since 
zone 1 to zone 5 can define distinct locations leading to 
misunderstanding. 

Regarding Figure 4, the aggregator is working with a 
weekly-based perspective – having the information of all the 
expected voltage limit violations thought the week. So, it is 
important to gather all the information regarding the 
contextual features. The days are divided into a 15 minute-
period resulting, for instance, in 672 periods in one week. 
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Fig. 4. The temperature registered throughout the week – features. 

Going back to Table I, besides comparing two different 
methods (DT vs RF), the authors also are aware of the privacy 
problems that could arise from this solution. In this way, two 
scenarios were designed where only one of them has the 
location feature. More than the availability to participate, the 
location zone from where the consumer is participating could 
lead to a more accurate player association. Although the idea 
to use this information is far from real identification, 
cybersecurity is increasingly an important topic in energy 
system solutions. 

With both scenarios, the authors can understand the real 
necessity of having this information and how this knowledge 
impacts the results from the proposed methodology 
perspective. 

IV. RESULTS AND DISCUSSION 

In the current section, the authors analyse and discuss the 
results obtained from comparing methods for both scenarios: 
including or not the location feature to obtain the CCR for new 
players. 

Firstly, the authors compare the rules obtain from both 
methods limiting the number of leaves to 5. After to further 
searching the selected methods' capability, the authors 
increased the number of leaves from 5 to 10.000, testing their 
performance with both MAE and the accuracy percentage 
from the validation dataset.  

The models were implemented using python language 
resorting to the sklearn library. When comparing the running 
times, DT was faster. The validation dataset always had 20% 
when splitting the database, and the training dataset had the 
remaining. Starting with scenario 1 – where the location 
feature is included, Figure 5 shows the resulting rules for both 
DT and RF. By analysing the DT results in Figure 5 a), if the 
active consumer does not have availability in this context, the 
CCR attributed is 2.1. Otherwise, if the period exceeds 662, 
the CCR attributed is 3.5. But if the period is less than 662 and 
the temperature is higher than 15.5ºC, the CCR attributed is 
3.6. However, if the temperature is lower than 15.5ºC and the 
period is higher than 29, the CCR assigned is 2.9, otherwise is 
3.6. So, with these results, the aggregator can only assign the 
new players’ rates between 2 and 4 if rounded. It must be 
noticed that features like the day of the week, day of the month 
and the location were not included in this DT with five leaves. 

Focusing on Figure 5 b), where the results from RT are 
presented, the authors can see the similarities between this and 
the prior method. So, if the active consumer is not available in 
the event context, the CCR attributed is 2.1. If the active 
consumer is available and the period is higher than 662, the 
CCR attributed is 3.5. However, if the period is less than 662 
and the temperature is higher than 15.5ºC, the CCR attributed 
is 3.6. But, if the temperature is lower than 15.5ºC and the 
period is higher than 29, the CCR assigned is 2.9, otherwise is 
3.6. Again, for this perspective, the aggregator can assign to 
the new participants’ rates between 2 and 4. And still, features 
such as the day of the week, day of the month and the location 
were not included.  

Moving to the results from scenario 2, the authors found 
out that both method rules were equal to the first scenario – 
the location did not influence the 5five leaves approach. 

The authors went into more detail and selected five 
different consumers from each method’s results and studied 
them. 

 

a) 

 
b) 

 

Fig. 5. Results from Scenario 1 comparison where a) Decision Tree and b) 
Random Forest. 

Table II shows the attributed CCR for each scenario, 
according to each method. Again, the results are similar, 
seeing the differences only with more than three decimals’ 
places. Although different consumers, there were only five 
options to attribute being all the same. 

TABLE II.  RANDOM CONSUMERS RESULTS 

RF 
Scenario 1 3,53 2,13 3,52 2,93 3,52 
Scenario 2 3,53 2,13 3,52 2,93 3,52 

Real 4 2 2 2 4 

DT 
Scenario 1 3,52 2,13 3,52 2,93 3,52 
Scenario 2 3,52 2,13 3,52 2,93 3,52 

Real 4 2 4 3 4 
 

According to Figure 5, the consumers within positions 1, 
3 and 5 from Table II probably followed the rules and were 



 

 

available to participate. The period when the DR event was 
triggered was superior to 662. Regarding the individuals in 
position two from Table II, they were not available for the 
event. Finally, the participants from position 3 in Table II had 
the availability to participate, the period was inferior to 662 
but higher than 29, and the temperature was below 15.5ºC. 

With the results found, the authors realised it would be 
better to search deeper and make a sensitivity test to 
understand the impact of more leaves on the CCR prediction. 
Table III and Table IV show the results for both scenarios 
within 5 to 10.000 leaves. The first one refers to the DT results 
and the second to RF results. The MAE and the accuracy of 
the validation dataset are presented. The better performance 
values are highlighted in these tables in a grey colour. The blue 
colour represents the samples where scenario 1 differs from 
scenario 2 – meaning that the location feature could impact the 
rules since it is the only modification between them. Most of 
cases, the MAE decreases whenever the number of leaves 
increases.  

TABLE III.  DECISION TREE SENSITIVITY TEST 

Leafs 
Scenario 1 Scenario 2 

MAE (#) Accuracy 
(%) MAE (#) Accuracy 

(%) 
5 0,4645 64,00 0.4645 64,00 
20 0,4432 62,04 0.4431 62,09 
35 0,4336 66,00 0.4336 66,00 
50 0,4263 67,08 0.4263 67,08 
100 0,4111 68,24 0.4111 68,24 
500 0,3708 70,42 0.3706 70,24 
5,000 0,3629 70,24 0.3618 70,65 
10,000 0,3633 69,86 0.3618 70,65 

 

Starting by analysing scenario 1, the MAE did follow the 
previous logic until reaching the 10.000 leaves. The previous 
sample had a lower value of MAE and a higher value of 
accuracy. However, it was not the highest in this scenario – 
reached with 500 leaves, a total of 70.42% of accuracy. 
Regarding scenario 2, the results were similar excepting the 
three final samples. With 500 leaves, the MAE difference was 
0.002 and prejudice on the accuracy decreased to 70.24%. The 
value of MAE for the last two tests was the same, and the 
accuracy value – was the highest within the DT method.  

The RF sensitivity test results show similar results to DT - 
if rounded to the decimals, a difference cannot be noticed. In 
Table IV, these disparities can be found for both scenarios, 
and the previous conclusions can also be applied in this case. 
Again, the highest accuracy found in scenario one was reached 
with 500 leaves, superior to this method – 70.54%.  

TABLE IV.  RANDOM FOREST SENSITIVITY TES 

 Decision Tree 
Max leaf 
nodes 

Scenario 1 Scenario 2 

MAE (#) Accuracy 
(%) MAE (#) Accuracy 

(%) 
5 0.4642 64,00 0.4642 64,00 
20 0.4434 62,09 0.4434 62,09 
35 0.4327 66,00 0.4327 66,00 
50 0.4253 67,16 0.4253 67,16 
100 0.4089 68,25 0.4089 68,25 
500 0.3708 70,54 0.3705 70,35 
5000 0.3628 70,39 0.3618 70,68 
10000 0.3631 69,99 0.3618 70,68 

 

Concerning scenario 2, the three final samples should 
again be highlighted. With 500 leaves, the MAE difference 
was 0.003 in this case, and with prejudice on the accuracy – 
decreasing to 70.35%. The value of MAE for the last two tests 
was the same, and the accuracy value – was the highest within 
the RF method. 

Considering that five leaves result in a 64% accuracy, to 
achieve a less than 10% improvement, it is necessary to 
increase the number of leaves a total of 2000 times more. The 
authors believe this could be a reasonable value – avoiding 
high processing times and getting satisfactory results, mainly 
since the range between 2 and 4 seems fair to both the 
remaining consumers and new ones. None of them is getting 
the worst-case scenario – it is more difficult to increase their 
CCR and get higher remuneration values. On the other hand, 
giving the best rate to a new player with no historical 
information can be a wrongful approach and jeopardise the 
fairness of the solution. 

V. CONCLUSION 

To successfully implement the smart grid concept in the 
whole energy system, the literature must find the proper 
solution to integrate Distributed Generation and active 
consumers into the market. Both are unpredictable and 
volatile, but to maintain the reliability and security of the 
network, the end-users must provide flexibility. 

The authors of the present paper believe that dealing with 
the uncertainty and finding the proper motivation can be 
useful to guarantee the continuous contribution of the small 
players. Industrial and commercial consumers have more 
stable schedules. On the other hand, domestics are the more 
representative type of human behaviour – contexts have a 
higher impact. To deal with the response uncertainty in 
Demand Response events, a Contextual Consumer Rate was 
defined to classify the performance of each active consumer. 
Selecting the proper participants can be crucial to having a 
successful approach.  

The authors believe that knowledge regarding previous 
experiences can be useful for future events. The present paper 
studied two methods to attribute this trustworthy rate to new 
players with no historical information: Decision Trees and 
Random Forests. One of the concerns also addressed by the 
authors was the active consumer privacy: understanding the 
impact of their current location on the models. The results 
found that this feature was not critical to fulfilling the goal. 
Through a sensitivity test, the authors also found out that five 
leaves could be a reasonable number to achieve an accuracy 
value above 50%.  

The authors intend to study more features that could 
impact the active consumer behaviour to reduce the response 
uncertainty from a DR event in future works. 
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Resumen 

El concepto de Ciudades Inteligentes está evolucionando desde la etapa de 
proyecto hacia el mundo real. Los electrodomésticos se vuelven más inteligentes 
y permiten la comunicación bidireccional, lo cual es un gran avance hacia la 
implementación de la respuesta a la demanda y el empoderamiento de los 
consumidores activos en el mercado energético. Sin embargo, gestionar 
comunidades locales con estos nuevos participantes es complejo y la entidad 
detrás de ellos necesita el conocimiento y las herramientas adecuadas. Por lo 
tanto, los autores proponen una metodología para gestionar óptimamente a los 
consumidores activos en eventos de respuesta a la demanda. El estudio en el 
presente artículo se realiza desde una perspectiva en tiempo real. El operador del 
sistema de distribución detecta una violación de voltaje y solicita una reducción 
de carga al Agregador, que son los 96 consumidores activos, a través del 
desplazamiento de carga. La metodología propuesta se aplicó a ocho escenarios 
y se encontró el número correcto de participantes en respuesta a la demanda para 
el caso de estudio. 
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Abstract—The Smart Cities concept is evolving from the 
project stage to the real world. Appliances become smarter and 
enable bidirectional communication – a huge step toward 
implementing demand response and empowering active 
consumers in the energy market. However, managing local 
communities with these new players is complex, and the entity 
behind them needs the right knowledge and tools. The authors 
thereby propose a methodology to manage the active consumers 
on DR events optimally. The study in the present paper is done 
from a real-time perspective. The distribution system operator 
detects a voltage violation and requests a load reduction to the 
Aggregator, the 96 active consumers, through load shifting. The 
proposed methodology was applied to eight scenarios, and the 
correct number of demand response participants for the case 
study was found. 

Keywords— Active Consumers, Demand Response, 
Flexibility, Load Shifting, Power Flow  

I. INTRODUCTION  
The current systems infrastructure is not ready for the 

introduction of the Smart Grid concept[1]. Great challenges, 
namely on the distribution level regarding congestion 
avoidance and voltage control, can be avoided with the 
flexibility provided by the participants in Demand Response 
(DR) program [2]. By managing the system with several 
active communities, the Distribution System Operator (DSO) 
must guarantee the constraint satisfaction of the distribution 
network since the Distributed Generation (DG) resources' 
behavior is highly uncertain [3]. So, requests for a reduction 
on critical periods are sent to the Aggregator – responsible for 
an active community, and by managing all the resources 
associated, demand peaks can be alleviated [4].  

With advanced metering infrastructures, bidirectional 
communication enables DR events by offering information 
and signals to the new active players to participate in the 
energy market transactions [5]. The managing entity – mostly 
aggregators- gives signals – and the active consumers with DR 
contracts must be compensated for the events[6]. Some 
programs allow the Aggregator to control the appliances and 
properly manage them, ensuring the security and reliability of 
the system [7]. So, developing smart buildings and smart 
homes, giving the right tools for the active consumers is a 

great step to successfully implementing DR in the real energy 

market [8]. However, the use of such technologies results in 
large amounts of data, concerns regarding data security, 
safety, and privacy [9].  

The designed method to successfully implement DR in the 
real market should be able to manage these matters[10]. 
Thereby, taking a step forward from previous works [11], 
[12], the authors propose a methodology to aid the Aggregator 
in dealing with the complex task of managing the local 
community when problems on the network request reductions 
trigger DR events [13]. 

In this paper, the study developed initiates with a 
magnitude voltage violation detected by the DSO, verifying 
that this value is below the limit imposed. Then, the load 
reduction request is sent to the Aggregator. A DR event is 
triggered with a signal, and it is expected to demand flexibility 
from the consumer's side. If the actual reduction equals the 
requested reduction, the participants are compensated, and 
their load is shifted to an adequate period according to their 
preferences. The DSO is informed of the load reduction by the 
Aggregator, and a new power flow is performed to verify that 
the voltage violation was solved with the requested load 
reduction. However, this is a real-time approach so, the 
Aggregator has no information regarding the following 
periods where the load is shifted. This fact could result in 
further limit violations.  

The approach presented by the authors intent to reduce this 
risk – the load can be scheduled in a wider interval, and not all 
the reduction should be attributed to one period only. Besides, 
another study discussed in the present paper refers to the 
number of participants needed to mitigate the voltage limit 
violation. The method starts with a minimum number of 
participants until calling all the community to participate, if 
necessary. The active consumers will be called randomly 
without any previous selection regarding their characteristics. 
The innovation from previous works refers to the availability 
from the participants at the time of the DR event. This 
information will impact the results from the managing strategy 
perspective because the requested reduction may not be the 
actual reduction from participants. 

The present paper is structured with five different 
sections—first, an introduction to the topic with the 
motivations of the study and innovations from previous 
works. After, a detailed explanation of the proposed 
methodology. Then, a case study section is presented, giving 
a base to work. Next, the results will be analysed and 
discussed. Finally, the conclusions withdrawn will be 
reviewed. 
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II. MATERIALS AND METHODS 
Managing the flexibility provided by the active consumers 

in a local community can be a complex task – the right 
methods and tools must be applied by the Aggregator – entity 
behind the community's supervision. In this way, the authors 
proposed a method to successfully operate the network in a 
real-time perspective – as shown in Figure 1, the focus of the 
present paper study. 

 
Fig. 1. Proposed Methodology 

When the DSO detects a voltage violation in the power 
flow analysis, it requests a load reduction to the Aggregator, 
when the violation was detected, and a DR event must be 
triggered. From the active consumers, it is expected to demand 
flexibility for the time of the event. The available consumers 
are then included in the scheduling phase. A linear 
programming approach is then employed to optimally manage 
the community, dealing with several types of small active 
resources. In this way, the goal is to maximize the 
Aggregators' profit, minimize operational costs from the 
community and fairly remunerate active consumers. The 
objective function is presented in (1) [14]. 

 

 

  

(1) 

PDG is the power for each p resource; PDR is the 
flexibility from each c consumer; PSup is the power from an 
external supplier; PNSP is the non-supplied power (NSP). The 
respective costs are attached to these variables, such as CDG 
is the cost for each g resource; CDR is the cost of flexibility 
from each c consumer; CSupplier is the cost of the external 
supplier; CNSP is the cost of NSP. The objective function (1) 
is subject to the constraints (2) to (7).  First, the network power 
balance - Equation 2, is defined to achieve the equilibrium 
between consumption and generation. So, the sum of the 
requested reduction to the consumer initial load (Pinitial) 
should be equal to the total generation from DG units and 
external suppliers.  

Second, the NSP variable is included to avoid network 
problems in extreme situations, for instance, when the 
generations mean, and DR programs cannot suppress the 
demand side needs. So, in normal situations, it should be equal 
to zero. Finally, the forecasting error of DG units is not 
considered. 

 

  

(2) 

Regarding the constraint related to consumer participation 
in DR events, (3) represents the maximum contribution 
requested from an active consumer. Therefore, it is expected 
that each participant contributes with the amount requested 
from the Aggregator. 

 (3) 

To bound the DG units, three equations are employed – (4) 
and (5). With these equations, the Aggregator can restrict the 
upper and lower thresholds and the total value of generation 
provided from this source. 

 (4) 

 

(5) 

Finally, the External Supplier constraints are represented 
by (6) and (7), constraining the maximum capacity and the 
total amount of generation provided from this source to 
suppress the demand side needs. 

 (6) 

 

(7) 

Performed the scheduling phase, the reduction is requested 
to the active consumers, and the load is shifted to another 
period according to the consumers' preferences. The reduction 
information is given to DSO to perform other power flow 
considering the results, and the active consumers who 
participated in the event are compensated to incentivize 
further participation. The innovation of the present work, in 
respect to the previous, is achieved with a real-time 
perspective, understanding the interval of participants needed 
to suppress the limit violation detected. 

III. CASE STUDY 
The present section has the details regarding the case study 

based on real data. Several scenarios were formed to prove the 
viability of the proposed methodology. The low voltage 
distribution network is based on a real distributed grid and has 
236 buses. It is operated under a radial topology with a total 
installed power of 679.65 kVA. There are 96 residential 
consumers connected to this network, from which two have 
rooftop PV panels.  

The power flow was performed using the MATPOWER 
tool, in which the simulation and analysis are done through the 
Newton Rapson method. Using this traditional method for 
power flow analyses was possible since the used network has 
a low R/X ratio. Otherwise, methods like forward and 
backward sweep should be used. The convergence criteria 
used was ε=1x10-8. The method converges in an average of 
=~3 iterations for each period. For the linear optimization, the 
lp solve package from the R software environment.  



 

 

The days are divided into periods of 15 minutes and a 
whole week is considered, starting on Monday. The lower 
limit voltage assumed in this case study is 0.95 p.u. The upper 
limit is 1.05 p.u. A lower voltage bound limit violation was 
detected on period 460, representing Friday at 6:45 PM, as 
shown in Figure 2. These voltage values are the minimum 
values verified when comparing all buses. The DR event is 
trigged upon lower voltage bound limit violation detection, 
and participants should reduce the amount contracted at the 
time requested to be further scheduled according to the 
mentioned range.  

 
Fig. 2. Real-time Limit Violation detection 

As mentioned earlier, the DR program known as load 
shifting is applied to mitigate limit violation throughout the 
day – the programmed consumption is moved forward in time 
to another period. Normally, the notice period to participate in 
more or less 0.3 seconds for each period. Therefore, it was 
assumed that shifted consumption should be scheduled 
randomly within a range agreed between the two parties. In 
this study, a between 5 hours after the DR event but never 24 
hours after the same – a range of 19 hours. Figure 3 presents 
expected load consumption for the range where the load can 
be shifted. This data is before the DR event is triggered, where 
the initial load consumption (PInitial) was 383.7 kW, and the 
maximum value of flexibility provided by the 96 active 
consumers (P DR max) was 105.9 kW, represented with red 
and yellow colors, respectively. 

 
Fig. 3. Prediction of the Load Consumption before DR event 

Being a real-time simulation, no information regarding the 
later periods is known, so the load is shifted without 
considering the limit violations that could be triggered in the 
future. In the present paper, a sensibility analysis is performed 
to understand the number of participants needed in the DR 
event to suppress this violation problem. The method starts 
with a minimum of 12 active consumers until achieving the 
totality of the community – 96 consumers reducing the total 
amount of 105.9 kW. With a step of 12 consumers, a total of 
8 scenarios is performed, and the participants are chosen 
randomly without any previous selection regarding their 
characteristics. Although no information on the latter 
consumption is provided, to avoid additional violations upon 
the event, the shifted load is assigned to different periods 
according to the consumer needs – also to prevent any 
discomfort from the consumer perspective. The remuneration 

for the participation is a monetary value of 0.22 m.u./kW. 
With this, a comparison between the scenarios is also 
performed to understand the impact of the expenses from the 
Aggregator perspective. 

IV. RESULTS AND DISCUSSION 
Throughout the present section, the authors analyze and 

discuss the results focusing on the Demand side and their 
performance on DR events. As already mentioned, eight 
scenarios are explored, simulating the results after applying 
the shifting on the reduced load from period 460. In this 
period, a lower voltage bound limit violation was detected, as 
shown in Figure 2, and the authors aim to find the number of 
participants required to solve this problem. Although multiple 
voltage events were triggered, the authors focus on only one 
in this study. Also, the goal is to not trigger any other lower 
voltage bound limit violation on the periods after – from 
where the load reduced on period 460 was shifted.  

The assumption made earlier should be highlighted – the 
load can only be randomly scheduled between 5 hours after 
the DR event but never 24 hours after the same, resulting in a 
range of 19 hours. In this way, the results show the time frame 
where the load could be shifted. The results obtained from the 
eight scenarios can be found in Figure 4 and Figure 5. The 
scenarios were separated according to the results after the new 
power flow test – lower voltage bound limit violation was 
detected or not. So, the scheduling phase was performed for 
each scenario, considering that participants always reduce the 
amount requested from the Aggregator. With this, the power 
flow phase was again executed to understand if the problem 
persists.  

Each scenario is identified by "SX," where the X indicates 
the number of participants in the referred scenario. By 
analysing Figure 4, the results from six of the eight scenarios 
are presented according to the number of elements, i.e., S12, 
when 12 active consumers are participating in DR events. The 
column chart represents the load consumption after the event 
comparing with the line curve from the expected load without 
triggering the event. Also, the voltage results from the second 
power flow phase are presented. The red dot identifies the 
periods where a limit violation was identified. In these six 
scenarios, the Aggregator could not achieve the goal – the 
lower voltage bound limit violation of period 460 can still be 
detected.  

A zoomed perspective is given on the time of the event 
showing the amount reduced on each scenario. Scenario S12, 
where 12 active consumers were expected to provide 
flexibility at the time of the event. The value reduced on period 
460 was 14.73 kW. As shown in Figure 4 a), this amount was 
insufficient to solve the lower voltage bound limit violation 
detected. The load shifted did not cause problems in the 
periods after. Moving to scenario S24, a total of 29.35 kW was 
reduced, and this amount was shifted without triggering 
further complications.  

Following scenario S36, the consumption value decreased 
from 383.71 kW to 340.21kW, but the violation was still 
identified later.The differences between initial and actual 
predictions from this scenario are noticed on the interval 
between period 510 and period 520, but no other limit 
violation was detected. Regarding scenario S48, the 
Aggregator requested a total of 57.18 kW to the 48 active 
consumers. There was no success in eliminating lower voltage 
bound limit violation, but again, the load shifted did not 



 

 

trigger others. Reaching the 60 participants at the DR event, 
the reduced load was 70.87 kW, which was still insufficient to 
achieve the goal.  
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
Fig. 4. Limit violation detected after DR a) S12, b)S24, c) S36, d) S48, e) 
S60 and f) S27 participants 

Figure 4 f) presents the results from the sixth scenario, 
where the limit violation was not yet solved with the reduction 
of 77.89 kW. Although the actual and predicted consumption 
differences are higher, it was not enough to trigger other lower 
voltage-bound limit violations. Figure 5 shows the results of 
the scenarios where the – lower voltage bound limit violation 
of period 460 was solved. So, it can be concluded that, for this 
study and with the assumptions considered, the appropriate 
number of participants is between 72 and 84 active consumers, 
which results in a reduction between 77.89 kW and 92.86 kW.  

Figure 5 a) represents scenario S84 where the voltage 
result was above the limit – 0.952 p.u. Regarding the final 
scenario, where all the community consumers participate, the 
total reduction was 105.91 kW to stay higher than the limit 
violation – 0.963 p.u. The approach on distributing the load 
shifting along 19 hours instead of attributing the whole 
reduction to one period only came out as successful. 

a) 

 
b) 

 
Fig. 5. Limit violation detected after DR a) S84, b) S96 participants 

With the lower voltage bound limit violation resolved, the 
Aggregator must compensate the active consumers, which 
helped on this task to encourage continued participation in the 
following events and offset the discomfort caused. As 
mentioned in the case study section, the remuneration value 
was equal to all the consumers – 0.22 m.u./kW and equaled 
the maximum electricity tariff price contracted to motivate 
continuous participation. The results for each scenario are 
presented in Table I, with the amount of reduction and the 
subsequent total remuneration value. 

TABLE I.  REMUNERATION PER SCENARIO 

# Participants Reduced Amount 
(kW) 

Total Remuneration 
(m.u./kW) 

12 14.73 3.24 
24 29.35 6.46 
36 43.50 9.84 
48 57.18 13.04 
60 70.87 16.05 
72 77.89 18.30 
84 92.86 21.59 
96 105.91 24.47 

As the previous results show, the first six scenarios could 
not solve the limit violation, represented with red color on 
Table I. In the first scenario, the Aggregator attributes to the 
12 participants a total of 3.24 m.u. Almost the double was 



 

 

reduced on scenario S24, resulting in the compensation of 6.46 
m.u./kW. With more than 12 participants comparing with the 
previous scenario, S36 compensation was 9.84 m.u. for the 
43.50 kW reduced. The participants called on the fourth 
scenario cut a total of 57.18kW, receiving 13.04 m.u. In 
scenario S60, the Aggregator paid a total remuneration of 
16.05 m.u. for 70.87 kW of the requested reduction. Now, on 
the interval between 72 and 84 participants, the difference 
between the amount of reduction is around 15 kW which is 
equivalent to the remuneration of 18.30 m.u. and 21.59 m.u., 
respectively. 

In the final scenario, with all the community, the 
Aggregator spent 24.47 m.u. To conclude the discussion on 
this section, it should be emphasized that under these 
conditions, the 72 to 84 can be the proper interval, but to 
understand further, more parameters should be considered. 
For instance, they were obtaining the bus location where the 
fault was found and requesting the reduction from the active 
consumers in the nearby areas. When considering the 
availability and the willingness of the active consumers at the 
time of the event, the response can be uncertain. Although 
there are some DR programs where the managing entity has 
power over the appliance, the final decision is always 
dependent on consumer behavior. Furthermore, 72 to 84 
active consumers are more than 75% of the community to 
reduce the same amount that the aggregator requests. That is 
if all community is willing to participate in DR events and give 
away their comfort to help on the network matters. As 
Nicholas Good [15] reminds us, most of the studies are 
shaped, given end-users as always rational and economic 
agents, and the uncertainty behind their random behavior must 
be considered. Although the proposed methodology has 
implemented a remuneration stage, it might not encourage all 
the consumers. Although the economic incentive might 
persuade the majority, each one of the consumers has different 
motivations and behaviors. Therefore, the community 
manager must consider the uncertainty of active consumer's 
responses, understanding their availability and willingness to 
participate in a certain context 

V. CONCLUSIONS 
The authors present a tool to optimally manage the small 

resources in real-time, resorting to DR programs and the 
active consumers' flexibility. From a wider perspective, when 
the DSO detects a limit violation on the network power flow, 
it sends reduction requests to the Aggregator – triggering the 
DR events. According to the results, it was possible to find the 
proper interval of participants to mitigate the problem found. 
However, utilizing almost 75% of the community might not 
be feasible in the real world. So, considering and 
understanding the availability and willingness of the 
participants in such a context is essential. Also, understand the 
impacts of the DR programs, such as load shifting, in the 
network could also be a key topic – the communication and 
information exchange between DSO and Aggregator is 
important for the successful implementation of DR programs 
in the real market. From this perspective, the goal was 
achieved, and no other voltage limit violation was triggered 
with the scheduled load from the DR event. As future works, 
when finding the bus location where the fault was found, the 
method should request the reduction from the active 
consumers in the nearby areas and the applicability of the 
proposed system within a day with multiple voltage events. 
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Resumen 

Existe una tendencia creciente hacia enfoques centrados en el consumidor que 
integran recursos de generación distribuida en el sector de energía y electricidad. Sin 
embargo, esto añade complejidad a la gestión de las comunidades a medida que se 
introducen nuevos participantes. Los autores han diseñado un sistema de tasa 
confiable (TR por sus siglas en inglés) para abordar este problema de selección de 
participantes para eventos de respuesta a la demanda basándose en su desempeño 
previo. El objetivo es evitar molestias para los consumidores y reducir los costos de 
los agregadores mediante una selección justa de los participantes. Sin embargo, esto 
plantea un desafío para los nuevos jugadores sin historial de rendimiento. Este estudio 
tiene como objetivo desarrollar un método para asignar el TR a los nuevos jugadores. 
Con este propósito, los autores utilizaron el agrupamiento supervisado y el 
descubrimiento de subgrupos para identificar las características relevantes del 
conjunto de datos sin comprometer la privacidad, y luego emplearon técnicas como 
árboles de decisión, bosques aleatorios y aumento de gradiente extremo para asignar 
el TR adecuado a cada jugador. El rendimiento de los métodos se ha evaluado 
utilizando métricas como precisión, exhaustividad, recuperación y puntuación F1. 
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Abstract. There is a growing trend towards consumer-focused approaches inte-
grating distributed generation resources in the power and energy sector. This, 
however, adds complexity to community management as new players are intro-
duced. The authors have designed a trustworthy rate (TR) system to address this 
issue of selecting participants for demand response events based on their previous 
performance. The aim is to avoid discomfort for consumers and reduce aggrega-
tor costs by selecting participants fairly. However, this poses a challenge for new 
players with a performance history. This study aims to develop a method to as-
sign the TR to new players. For this purpose, the authors used supervised clus-
tering and subgroup discovery to identify the relevant features of the dataset with-
out compromising privacy after employing techniques such as Decision Trees, 
Random Forest, and Extreme Gradient boosting to assign the appropriate TR to 
each player. The performance of the methods has been evaluated using metrics 
such as accuracy, precision, recall, and f1 score. 

Keywords: Classification, Demand Response, Subgroup Discovery, Supervised 
Clustering, Uncertainty. 

1 Introduction 

In the power and energy sector, all the players are working toward decarbonizing the 
system by replacing fossil fuels with renewable-based Distributed Generation (DG) 
technologies, such as wind and solar. However, these renewable sources have uncertain 
and non-programmable behavior, leading to a new paradigm where generation no 
longer follows demand needs [1]. Consumers must provide flexibility to avoid negative 
impacts on grid management, and Demand Response (DR) programs are an effective 
solution for this. The definition of consumers is changing as they become new market 
players in the energy system [2]. But they need proper knowledge to participate effec-
tively. While many consider consumers as rational and economic agents, the reality 
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may differ, and they require time, education, and resources to make better judgments 
[3]. 
So, despite the need for consumer flexibility through DR programs, business models 
do not include or cannot deal with the uncertainty associated with these new resources. 
Consumer participation in the market is indirect due to the small load flexibility pro-
vided and the high response uncertainty [4]. Aggregators manage active communities 
by gathering all the load flexibility from community members and entering the market 
on their behalf, but their response is only guaranteed if participation is voluntary [5]. 
The volatile behavior from consumers and DG units increases the network's complex-
ity. To deal with this problem, the authors have developed a trustworthy rate (TR) to 
classify consumers based on the context in which DR events are triggered. The trust-
worthy rate is based on the participant's performance in previous events, and if their 
performance is good, they receive a high rate and better rewards. Otherwise, if their 
performance is poor, penalties are applied. The aggregator then uses the trustworthy 
rate to select the appropriate participants for the DR events triggered. However, this 
approach relies on historical information on the consumer. As innovation from previous 
works, such as [6] and [7], for new participants, the authors want to discover the pat-
terns for specific combinations of characteristics that will help classify each consumer 
using the TR. Based on prior knowledge, supervised clustering and subgroup discovery 
are used to similar group objects into these predefined categories, assuming a target 
variable a priori. Decision trees, random forests, and Extreme Gradient Boosting 
(XGBoost) will be used and compared for classification tasks. In general, XGBoost 
performs better than random forests on large datasets, while random forests may per-
form better on smaller datasets with fewer features. Decision trees remain a useful tool 
for understanding the underlying relationships in data by learning simple decision rules 
inferred from the data features and can be a good starting point for more complex ma-
chine learning models.  
The paper is structured into five main sections. The first section contains the introduc-
tion, which sets the context and outlines the paper's main objectives and research ques-
tions. In the second section, the proposed methodology is described in detail. The third 
section presents the case study, defining the different scenarios. The fourth section dis-
cusses the results of the study. Finally, the conclusions are drawn in the last section of 
the paper. 

2 Proposed Methodology 

In the present section, the authors define the proposed methodology to manage and 
select DR resources considering the triggered event context optimally and fairly. Fol-
lowing Figure 1, DR participants identification, Optimal Scheduling, and Remunera-
tion are the three main steps, where the first is the focus of this study. 
As soon as the DR event is triggered, the entity responsible for active community man-
agement – the aggregator, should decide which resources are needed to achieve the 
reduction target. Reducing the uncertainty response and enhancing DR participants' 
performance are the two key goals behind the proposed rate for selecting the proper DR 
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participants – the Trustworthy Rate (TR). For the authors, this is an important step to 
avoid discomfort for the participants and increase the profit from the aggregator – pre-
venting calling unnecessary participants. For instance, avoiding turning off the air con-
ditioning or shifting the washing machine program to a different schedule at times of 
need might increase the motivation to participate in DR events. To do this, it is im-
portant to understand the contexts in which the players have more availability. 
The idea is to characterize the DR participants with a contextual rate that evaluates the 
performance for the given context, easing the task of deciding which ones should par-
ticipate in future events. So, in an early stage, the TR is defined as a preliminary TR 
(PTR) that depends on three independent rates: Context Rate (CR), Historic Rate (HR), 
and Last Event Rate (LER).  

 

 
Fig. 1. Proposed methodology. 

HR is the average TR from previous events that occurred in similar contexts. The LER 
alludes just to the last event to avoid misleading. Furthermore, considering the recorded 
weather and the time the event is triggered, CR depends on the active consumer's avail-
ability and willingness to participate.  
The study for this paper focuses on this step and the fact that aggregator needs to have 
historical information on new players. In previous works, for this case, the TRassigned 
was the lowest, and the participant must earn the trust of the aggregator. However, un-
derstanding the behavior of similar participants might lead to a pattern, which can be 
used to attribute a more accurate TR to this new player.  
Following this assumption, the authors intend to find patterns in the dataset to discover 
which features have more impact on the rate and then classify the participants. Finally, 
the authors will apply useful techniques such as supervised clustering and subgroup 
discovery for exploratory data analysis and identifying complex relationships.  
According to [8], using an unsupervised clustering algorithm does not necessarily guar-
antee that objects of the same class or type will be grouped. Some form of supervision 
or labeling is required to ensure that objects with the same label are grouped into the 
same cluster. This procedure helps the algorithm identify which attributes or features 

Optimal Scheduling

DR Participants Identification

Remuneration

Feature importance
• Subgroup Discovery
• Supervised Clustering
TR attribution models
• Decision Tree
• Random Forests
• XGBoost
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are important for determining the similarity between objects and which objects should 
be grouped based on their shared labels or classes [9]. In this way, supervised clustering 
can be useful in applications with prior knowledge about the classes or labels of the 
data and where the goal is to group similar objects into these predefined categories, as 
in the present study. Subgroup discovery, explored by [10], aims to find interesting 
subsets of data that exhibit a certain property or behavior. It involves identifying sub-
groups or subsets of data significantly different from the rest in terms of their charac-
teristics or attributes [11]. 

For the TR attribution, three classification methods are compared: Decision Trees, 
Random Forests, and XGBoost. Decision trees work by recursively splitting the input 
data into smaller subsets based on the value of a certain feature. Each split creates a 
new decision node, and the process continues until a stopping criterion is met, such as 
reaching a certain depth or minimum number of samples in a node. The final nodes of 
the tree are called leaves and represent the predicted value for a given input. Decision 
trees are easy to interpret and visualize but can be prone to overfitting. Random forests 
are an extension of decision trees that create a collection of decision trees and aggregate 
their results to make a final prediction [12], [13]. Each tree is trained on a random subset 
of the data and a random subset of the features, which helps reduce overfitting and 
improve performance. Random forests are often used for classification tasks and can 
handle categorical and continuous features. XGBoost is a powerful ensemble method 
that builds upon the concept of decision trees [14]. It trains a sequence of decision trees 
that each try to correct the errors made by the previous tree. XGBoost is known for its 
speed and scalability. While all three algorithms are based on decision trees, random 
forests, and XGBoost are designed to reduce overfitting and improve performance. 
Random forests use multiple trees and random sampling to create a more robust model, 
while XGBoost uses a gradient descent optimization approach to iteratively improve 
the performance of individual trees.  

3 Case Study 

The historical information used as input for the case study was taken from previous 
work by the authors [6] and [7]. An active community where the aggregator triggered 
several DR events throughout the month. Information such as availability, period, day 
of the week, day of the month, and temperature were withdrawn. Table 1 shows an 
initial dataset summary. For the current case study and considering the number of sam-
ples from each rate – where rate 1 and rate 5 have fewer observations, the authors cre-
ated a new range group. So, from now on, the participants with TR lower than three 
will be in group -1; TR equal to 3 will be in group 0; and TR higher than three will be 
in group 1. In addition, the authors added new information for this paper based on Por-
tuguese Statistics National Institute (INE - Instituto Nacional de Estatística)data for the 
North of Portugal, such as the building year, age group, and education level [15]. Table 
2 presents the labeling used for the mentioned data. The authors widely discussed the 
chosen information, considering privacy issues from the participant's perspective. So, 
the aggregator has some knowledge regarding the participant, which could lead to 
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distinguishing them from others without jeopardizing their privacy. With the infor-
mation from INE, the authors gathered the percentage of participants from each label 
and adapted it for the initial dataset. This makes it possible to find patterns and with-
draw knowledge using supervised clustering and subgroup discovery. Ultimately, the 
classification can be performed after finding the important features.  

Table 1. Characterization of the number of occurrences for each rate [7]. 

Day of 
Month 

Day of 
Week Temperature Period Rate 1 Rate 2 Rate 3 Rate 4 Rate 5 

1 1 16 61 17 77 102 179 25 
3 3 13 253 19 119 130 132 0 
5 5 11 445 7 132 130 131 0 
8 1 12 733 14 120 131 135 0 
10 3 14 925 2 123 151 124 0 
12 5 14 1117 15 77 98 172 38 
15 1 17 1405 12 66 147 156 19 
17 3 17 1597 5 120 141 134 0 
19 5 16 1789 13 133 114 140 0 
22 1 19 2077 24 101 56 187 32 
24 3 11 2269 8 126 143 123 0 
26 5 14 2461 9 135 132 124 0 

Total 145 1329 1475 1737 114 

Table 2. Labeling for the new input information – categorical variables. 

Building year Label Age group Label Education level Label 
> 1945 A 

>25 
Men HJ None NN 

1946 - 1960 B Women MJ 
Basic  

education 

1º BU 
1961 - 1970 C   

2º BD 
1971 - 1980 D 

25-64 
Men HM 3º BT 

1981 - 1990  E Women MM 
Secondary 
education BS 

1991 - 1995 F  
 

1996 - 2000 G 
>65 

Men HI 
2001 - 2005 H Women MI 
2006 - 2021 I   

Higher education ES 

4 Results and Discussion 

The results from the case study were achieved using libraries written using R language. 
The dataset was previously handled regarding missing values and categorical variables. 
Missing values can occur due to various reasons. For instance, the malfunctioning of a 
smart plug can lead to measurement errors. Categorical variables represent qualitative 
data that fall into distinct categories, such as those selected in Table 2. Although tree-
based algorithms can directly handle these variables, for XGBoost, the authors used 
one-hot encoding, creating a binary column for each category. After performing both 
pattern definition methods and rules for TR attribution, the results are analyzed and 
discussed. 
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4.1 Dataset patterns 

Firstly, the dataset was tested using subgroup discovery. This technique process in-
volves selecting a target variable of interest and searching for subsets of the data that 
exhibit significant differences concerning that variable. The library used was rsubgroup 
developed by Martin Atzmueller [16]. As input, the authors provided the dataset, the 
target, and the set of configuration settings, including the mining method, the quality 
function, the maximum number of patterns to be discovered, and the parameter to con-
trol whether irrelevant patterns are filtered during pattern mining. The quality function 
chosen was adjusted residuals, where the difference between the observed and expected 
samples is divided by an estimate of the standard error, according to Equation (1).  

Adjusted residual = (Observed value - Expected value) / Standard error of the 
residuals (1) 

 
Table 3 shows the results of subgroup discovery, showing the rules for each TR 

group and the quality value. According to the rules created, none of the new features 
was considered important for this technique. The most used were availability, temper-
ature, day of the week, period, and by order. 

All the quality values are positive and below 20, presenting the lower ones for TR 
group 0. A positive value for this quality function indicates that the observed value is 
higher than predicted by the model, adjusted for sample size. This suggests the presence 
of an outlier or unusual observation that is not captured by the model and may indicate 
the need to include additional factors in the model or investigate further. Furthermore, 
for the goal of the case study, the authors need features that do not rely on historical 
information.  

Table 3. Subgroup Discovery Results. 

Trustworthy 
Rate Group 

Rules Quality 

<3 
"Availability=0.000" "DayofWeek=1.000" 18.17 
"temperature[16.5;∞[" "Availability=0.000"  "DayofWeek=1.000" 14.65 
"Availability=0.000" 14.17 

3 
"temperature]-∞;13.5[" "Availability=1.000" 5.92 
"temperature]-∞;13.5[" "Period]-∞;829["       "Availability=1.000" 5.44 
"temperature]-∞;13.5[" 5.26 

>3 

"temperature[16.5;∞[" "Availability=1.000" 18.53 

"Availability=1.000" 15.23 
"DayofWeek=1.000" 12.01 

 
The dataset was tested using a supervised clustering technique, which resorted to a 

supclust library developed by Marcel Dettling and Martin Maechler [17]. This library 
can perform both “PELORA” and “WILMA” algorithms. The authors have chosen the 
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first one since it performs the selection and supervised grouping of predictor variables 
in large datasets, where most parameters were considered the default. Only noc, the 
number of clusters that should be searched for on the data, was revised. Equation (2) 
shows the default quality function used to evaluate this technique – the within-cluster 
sum of squares (WSS), where i ranges over the observations in the cluster, j ranges over 
the clusters, !! is the i-th observation, "" is the centroid of the j-th cluster, and d(!!, "") 
is the distance between the i-th observation and the j-th cluster centroid. 

 

 WSS =∑ ∑ $(!! , "")#"!   (2) 

 
Results from the supervised clustering algorithm can be seen in Table 4. Regarding the 
criterion used to evaluate the clusters, the results from Table 4 are relatively high. A 
high WSS indicates that the observations within the cluster are relatively spread out. 
However, the results from pelora method show the features that have a stronger asso-
ciation with the labels assigned to the data points, which is the purpose of this section. 
For the first group, where TR 1 and TR 2 are considered, the availability, day of the 
week, and building year were impactful features. In the next group, with only TR 3 
samples, most of the features were included, excluding the day of the month. Regarding 
the final group, availability was selected as the representative entry. From this, the au-
thors can move to the next phase, considering all the features except the day of the 
month that was not mentioned in any of the performed techniques. The following sub-
section compares the three selected classification methods used for TR rule definition. 

Table 4. Supervised Clustering Results. 

Trustworthy 
Rate Group 

Features Quality 

<3 
Availability 2884.79 
DayofWeek and Availability 2864.62 
Availability and Building Year and DayofWeek  2859.15 

3 

temperature 2937.35 
Temperature and Availability and Building Year and DayofWeek 
and Age Group and Period 

2921.81 

Temperature and Availability and Building Year and DayofWeek 
and Age Group and Education level 

2916.97 

>3 

Availability and temperature 3076.53 
Availability and DayofWeek 3038.97 
Availability and temperature and Building Year and Age Group and 
Education Level 

3027.37 

 
4.2 TR attribution models 

The first method to be tested is decision trees resorting to the rpart package [18]. The 
dependent variable in the model is "TR", and the independent variables are all other 
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variables in the "train" dataset. The "method" parameter is set to "class" indicating a 
classification problem, and the "maxdepth", "minsplit", and "minbucket" parameters 
are used to control the size and complexity of the tree. The "cp" parameter is set to a 
small value, which controls the tree's complexity and helps avoid overfitting. 
According to the results in Table 5, for TR less than 3, the following conditions must 
be met: Availability is 1, Temperature is between 13 and 15 degrees Celsius, and Build-
ing Year is either A, B, C, or F. Additionally, when Availability is 0, the TR will be 
less than 3. For TR equal to 3, the participant must have Availability equals 1 and Tem-
perature is less than 12 degrees Celsius, or Availability is 1 and Temperature is between 
13 and 15 degrees Celsius, and Building Year is either D, E, G, H, or I. For TR greater 
than 3, Availability is 1 and Temperature is between 12 and 13 degrees Celsius, or 
Availability is 1 and Temperature is greater than or equal to 15 degrees Celsius.  

Table 5. Decision tree results. 

Trustworthy 
Rate 

Rules 

<3 
when Availability is 1 & Temperature is 13 to 15 & Building Year is A or B 
or C or F 
when Availability is 0                                                                         

3 
when Availability is 1 & Temperature <  12                                                     
when Availability is 1 & Temperature is 13 to 15 & Building Year is D or E 
or G or H or I      

>3 
when Availability is 1 & Temperature is 12 to 13                                                

when Availability is 1 & Temperature >= 15                                               
 

Table 6 presents the confusion matrix for the decision tree model – where from the 
dataset, 80% were used for training and 20% used for testing. The matrix shows the 
predicted versus actual values for the three groups: "TR< 3", "TR=3", and "TR> 3". 
The model correctly predicted 70 instances and misclassified 121 instances as equal to 
3 and 103 as superior to 3.  
 

Table 6. Confusion matrix for Decision tree. 

 Predicted results 

< 3 3 > 3 

A
ct

ua
l  < 3 70 33 3 

3 121 110 109 

> 3 103 147 264 

 
For the group TR equal to 3, the model correctly predicted 110 instances and mis-

classified 33 instances as inferior and 147 as superior. For the last group, the model 
correctly predicted 264 instances, misclassified 3 instances as "TR< 3" and 109 in-
stances as "TR=3". Moving on to the random forest technique, where the R library has 
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the same name, and the default parameters were considered, only using the data training 
predictors and the dependent variable TR as input [19]. Table 7 presents the resulting 
confusion matrix for the Random Forest. The first row of the matrix shows that out of 
303 instances with the actual class value of TR inferior to 3, 143 instances were cor-
rectly classified, 95 instances were misclassified as TR equal to 3, and 65 instances 
were misclassified as TR superior to 3. Similarly, the second row of the matrix shows 
that out of 286 instances with the actual class value of TR equal to 3, 110 instances 
were misclassified as inferior, 93 instances were correctly classified, and 83 instances 
were misclassified as TR superior 3. The third row shows that out of 371 instances with 
the actual class value of TR superior to 3, 78 instances were misclassified as inferior, 
85 instances were misclassified as TR equal to 3, and 208 instances were correctly 
classified. 

Table 7. Confusion matrix for Random Forest. 

 Predicted results 

< 3 3 > 3 

A
ct

ua
l < 3 143 95 65 

3 110 93 83 

> 3 78 85 208 

 
The final classification model is XGBoost, similarly to the random forest, the library 

used in R has the same name [20]. The authors adjusted the algorithm's parameters and, 
besides the input data, limited the maximum number of boosting iterations to 1000; the 
evaluation metric used to measure the performance of the model during training was 
multiclass classification error rate; the objective function used to optimize the model 
was multiclass classification problems and the number of classes in the target variable. 
The minimum train error obtained was 0.19 at iteration 803 – after this value was not 
modified. Table 8 presents the confusion matrix for the XGBoost model. By analyzing 
the results, from the 283 instances with the actual class value of TR inferior to 3, the 
model correctly classified 114 instances, misclassified 91 instances as TR equal to 3 
and misclassified 78 instances as superior.  

Table 8. Confusion matrix for XGBoost. 

 Predicted results 

< 3 3 > 3 

A
ct

ua
l  < 3 114 91 78 

3 98 100 99 

> 3 74 98 208 

 
Similarly, the second row shows that out of 297 instances with the actual class value 

of TR equal to 3, the model misclassified 98 instances as inferior, correctly classified 
100 instances, and misclassified 99 instances as superior. The third row of the matrix 
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indicates that out of 380 instances with the actual class value of TR superior to 3, the 
model misclassified 74 instances as TR inferior to 3, 98 instances as 3, and correctly 
classified 208 instances. Resorting to the confusion matrix created in the previous ta-
bles, the authors have chosen four commonly used metrics for evaluating the selected 
classification models: accuracy, precision, recall, and F1 score. Accuracy measures the 
percentage of correct predictions made by the model, while precision measures the per-
centage of true positive predictions out of all predicted positives. In other words, a high 
accuracy score indicates that the model correctly predicts most instances, while high 
precision can help reduce false positives. Conversely, Recall measures the percentage 
of true positive predictions out of all actual positives. When false positives are costly, 
precision is a useful metric, while recall is useful when false negatives are costly. Fi-
nally, the F1 score is a metric that balances precision and recall and is particularly useful 
for imbalanced datasets. By combining these metrics, the authors can gain a more com-
prehensive understanding of the performance of the selected classification models. Ta-
ble 9 shows the results. According to the results, there is a small variability in the per-
formance of each method across the different metrics. For example, random forests 
showed the highest Precision among the three methods, while decision trees had the 
highest Recall. From the aggregator perspective, using the decision tree model for this 
dataset might lead to better results since the overall performance evaluation had higher 
results. 

Table 9. Classification models evaluation metrics results. 

Metric  
functions Method 

TR group 

< 3 3 > 3 

Accuracy 

Decision Trees 0.59 0.52 0.65 

Random Forest 0.58 0.51 0.65 

XGBoost 0.57 0.53 0.62 

Precision 

Decision Trees 0.51 0.37 0.49 

Random Forest 0.40 0.31 0.60 

XGBoost 0.40 0.34 0.55 

Recall 

Decision Trees 0.31 0.28 0.76 

Random Forest 0.47 0.28 0.55 

XGBoost 0.40 0.35 0.54 

F1 

Decision Trees 0.38 0.32 0.60 

Random Forest 0.43 0.29 0.57 

XGBoost 0.40 0.34 0.54 

5 Conclusion 

In conclusion, the energy sector is transforming decarbonization with a shift toward 
renewable-based technologies. DR programs provide a solution by enabling consumers 
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to provide flexibility and avoid negative impacts on grid management. Still, their re-
sponse can be uncertain. Therefore, the authors developed a trustworthy rate, consider-
ing previous performances, to select the optimal participants for the event considering 
the context. For the study in the present paper, the authors went a step further and 
wanted to create models for participants without any DR experience. Considering the 
features selected by the subgroup discovery and supervised clustering techniques, the 
authors were able to develop three different models and compare their performances. 
The results prove that availability is an important, crucial feature in defining the TR for 
a participant. Furthermore, the temperature felt at the event context and the building 
year are also considered for the rule definition. Regarding overall performance, Deci-
sion Trees and Random Forest had similar Accuracy, Recall, and F1 Score values, while 
XGBoost generally had lower scores across all metrics. However, decision Trees and 
Random Forest significantly improved Recall and F1 Score for TR superior to 3, while 
XGBoost performed more consistently across all groups. 
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