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ABSTRACT This paper presents a novel automated road damage detection approach using Unmanned
Aerial Vehicle (UAV) images and deep learning techniques. Maintaining road infrastructure is critical for
ensuring a safe and sustainable transportation system. However, the manual collection of road damage data
can be labor-intensive and unsafe for humans. Therefore, we propose using UAVs and Artificial Intelligence
(AI) technologies to improve road damage detection’s efficiency and accuracy significantly. Our proposed
approach utilizes three algorithms, YOLOv4, YOLOv5, and YOLOv7, for object detection and localization
in UAV images. We trained and tested these algorithms using a combination of the RDD2022 dataset from
China and a Spanish road dataset. The experimental results demonstrate that our approach is efficient and
achieves 59.9%mean average precision mAP@.5 for the YOLOv5 version, 65.70%mAP@.5 for a YOLOv5
model with a Transformer Prediction Head, and 73.20% mAP@.5 for the YOLOv7 version. These results
demonstrate the potential of using UAVs and deep learning for automated road damage detection and pave
the way for future research in this field.

INDEX TERMS UAV, road damage detection, deep learning, object-detection.

I. INTRODUCTION
Managing the maintenance of all the roads in a country is
essential to its economic development. A periodic assessment
of the condition of roads is necessary to ensure their longevity
and safety. Traditionally, state or private agencies have carried
out this process manually, who use vehicles equipped with
various sensors to detect road damage. However, this method
can be time-consuming, expensive, and dangerous for human
operators. To address these challenges, researchers and engi-
neers have turned to Unmanned Aerial Vehicles (UAVs) and
Artificial Intelligence (AI) technologies to automate the pro-
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cess of road damage detection. In recent years, there has been
a surge of interest in using UAVs and deep learning-based
methods to develop efficient and cost-effective approaches
for road damage detection.

Unmanned aerial vehicles have proven to be versatile in
various applications, including urban inspections of objects
and environments. They have been increasingly used for
road inspections, offering several advantages over traditional
methods. These vehicles are equipped with high-resolution
cameras and other sensors that can capture images of the
road surface from multiple angles and heights, providing a
comprehensive view of the condition of the road. Addition-
ally, UAVs can cover a large area relatively quickly, reducing
the need for manual inspections, which can be dangerous
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for human operators. As a result, the use of UAVs for road
inspections has gained significant attention from researchers
and engineers. Combining UAVs with artificial intelligence
techniques, such as deep learning, can develop efficient and
cost-effective approaches for road damage detection. It is fre-
quently mentioned as being utilized for urban inspections of
things like swimming pools [1], rooftops [2], vegetation [3],
and urban environments [4], [5].

Currently, road condition inspections in Spain are per-
formed manually, requiring personnel to travel along roads
to identify damage points. This method incurs high costs due
to the need for human labor and specific cameras and sensors
for the task. The decision-making process for repairing road
damages is the responsibility of an expert. In contrast, coun-
tries like China have a vast network of roads and highways,
making them susceptible to surface cracks and rainwater infil-
tration, which can accelerate the deterioration of roads and
pose risks to vehicle safety. Without timely detection and the
rapid availability of information on road defects, excessive
wear on vehicles and an increased likelihood of traffic acci-
dents can occur, leading to further financial losses. Therefore,
the development of automated techniques for detecting road
deterioration has become a critical area of research, with
many universities and research centers collaborating to find
effective solutions.

Automatic road damage detection is an active area of
research that aims to detect and map various types of road
damage using multiple techniques such as vibration sen-
sors, Light Detection And Ranging (LiDAR) sensors [6],
and image-based methods. These techniques are often used
in combination to improve the accuracy of damage detec-
tion. Machine learning approaches, such as deep learning,
are commonly used in image-based techniques to recognize
various types of road degradation. These methods typically
require a dataset of images, which can include top-down pho-
tographs, images captured by unmanned aerial vehicles [7],
pictures obtained by mobile devices [8], [9], images obtained
from satellite image platforms [10], thermal images [11], and
3D images or stereo vision of the asphalt surface [12].

Researchers have been conducting studies using a vari-
ety of datasets to train the model, incorporating additional
images captured by drones, cameras mounted on cars, and
satellites. To facilitate the learning process, these datasets are
often annotated to identify different types of road damage,
including, but not limited to potholes, cracks, and rutting.
Annotating these images enables the algorithm to learn to
detect and classify various types of road damage accurately.
Using a large and diverse dataset, researchers can enhance
the accuracy and reliability of their models, ensuring that they
can effectively identify and address different types of damage
on the roads.

A. THE ROAD DAMAGE DETECTION DATASET
To support the development of automated road damage
detection techniques, the Crowdsensing-based Road Damage
Detection Challenge (CRDDC) [13] was organized as part of

the IEEE BigData Cup 2022. This international competition
involves a published dataset of 47,420 road images from
six countries: Japan, India, the Czech Republic, Norway, the
United States, and China. The images have been annotated
with more than 55,000 instances of road damage, including
longitudinal cracks, transverse cracks, alligator cracks, and
potholes.

CRDDC aims to encourage the development of deep
learning-based methods to detect and classify road damage
automatically. Municipalities and road agencies can utilize
the RDD2022 dataset for low-cost automatic monitoring of
road conditions. Moreover, computer vision and machine
learning researchers can use the dataset to benchmark the
performance of different algorithms for other image-based
applications of the same type, such as classification and
object detection.

Several organizations used the RDD2022 dataset for their
models, while some excluded the China Drone portion of
the dataset. The top algorithms used by these organiza-
tions include YOLO-series and Faster RCNN-series models,
YOLOv5, YOLOv7, and YPLNet.

Many organizations used ensemble models to achieve bet-
ter accuracy, with techniques such as image patch strategies,
customized anchor boxes, attention modules, and ensembling
models trained with multiple levels of augmentations. Other
techniques include image augmentations, label smoothing,
coordinate attentions, cropping Norway images to focus only
on road areas, and training country-specificmodels using data
from all countries.

B. THE YOLO-SERIES
The evidence in the literature presents You Only Look Once
(YOLO) as one of the most used algorithms in the object
detection field. It is a popular object detection algorithm,
and several versions have been released. When we compare
the evolution of all the YOLO series, we can see a signifi-
cant evolution concerning detection time. In the first version
published [14] Since just a single back-propagation neural
network is required to make a prediction, the YOLO is made
to run on devices with low processing power. Since the initial
version was based on AlexNET, this method has undergone
several more iterations.

In the timeline of the YOLO algorithm, YOLOv3 [15]
and the YOLOv4 version [16] appear. In summary, YOLOv3
and YOLOv4 are both deep learning-based object detection
algorithms, but YOLOv4 is an improvement over YOLOv3.
YOLOv4 has been optimized for real-time object detection
and trained on a large dataset of images and videos to improve
its accuracy. YOLOv4 also includes new techniques, such
as Mosaic data augmentation and DropBlock, enhancing its
performance.

The YOLOv4 is considered the latest and most accurate
version of YOLO till 2021. It is built on a custom-designed
neural network architecture that uses a combination of convo-
lutional and transposed convolutional layers to detect objects
in images and videos. YOLOv4 has been optimized for
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real-time object detection and trained on a large dataset of
images and videos to improve its accuracy.

Subsequently, the fifth version of the algorithm, called
YOLOv5 [17], was released. This algorithm turned out to
be a perfect model, bringing more options as we can high-
light the image segmentation, but it still needs to be closer
to the 5th major update. The results are very similar to
YOLOv4 which a considerable amount of work was done,
and all the nuances were taken into account. YOLOv5 is an
improvement over YOLOv4. It is based on a new SPADE
architecture, which uses semantic and spatial information
to improve object detection accuracy. YOLOv5 also uses a
new training algorithm called Mosaic Data Augmentation to
enhance the model’s generalization.

Later and more recently, the seventh version of the
algorithm was released [18], the latest iteration in the
life cycle of YOLO models. YOLOv7 infers faster and
more accurately than its previous versions (i.e., YOLOv5).
YOLOv7 is the latest version of YOLO. It has been built
on a new architecture called Efficient-YOLO, which uses
EfficientNet as the backbone network. YOLOv7 has been
trained on a large dataset, and it has been optimized for
real-time object detection. It is more accurate and faster than
previous versions of YOLO.

In conclusion, YOLOv4 is considered the most accurate
version of YOLO until 2021 and is optimized for real-time
object detection. YOLOv7 is the latest version of YOLO,
and it is based on a new architecture called Efficient-YOLO,
which is more accurate and faster than previous versions.

C. OBJECTIVES AND STRUCTURE
This paper builds upon a previous project proposing an
architecture for a pavement monitoring system with pot-
hole recognition in UAV images [7]. In this new research,
we expand upon the previous solution by comparing it with
new algorithms and datasets, introducing new classes of dam-
age, and adopting data augmentation during training, which
promotes adapting to dramatic size changes of objects in
images. Finally, in this work, the YOLOv5 and YOLOv7 are
compared, and an improvement was made in the YOLOv5
model using the Transformer Prediction Head for the UAV
use case.

We have used a merged dataset from previous work and
Crowdsensing-based Road Damage in this work. Detec-
tion Challenge, including new damage classes for a more
comprehensive understanding of pavement damage. Exper-
imental results demonstrate the effectiveness and efficiency
of our proposed solution, achieving more accuracy on the test
dataset.

The main objective of this project is to improve the
autonomous monitoring system for the state of roads using
images captured by drones and advanced artificial vision and
intelligence techniques. The proposed system will notify the
maintenance company about detected road damage, including
the ability to send messages with the geographical coordi-
nates of the damages found.

FIGURE 1. Road damage classes in the dataset.

Our team has made several contributions, including:
• Adding an extra prediction head to address the issue of
large variations in object scales.

• Incorporating Transformer Prediction Heads (TPH) into
the YOLOv5 model, resulting in improved object local-
ization in high-density scenes.

• Providing a range of useful techniques and filtering out
ineffective approaches for object detection in drone-
captured scenarios.

• Enhancing the classification accuracy of certain ambigu-
ous categories by utilizing a self-trained classifier.

• The project has introduced several new classes of pave-
ment damage, as depicted in Figure 1. These include
longitudinal cracks, alligator cracks, potholes, bumps,
and repairs. The project offers a more comprehensive
understanding of pavement damage by including these
additional classes, enabling more precise and efficient
road infrastructure monitoring.

In the overall project, convolutional neural networks detect
asphalt defects, allowing for operator overrides or sugges-
tions for improved accuracy over time. Additionally, we will
implement a feature for automatically planning routes to
cover the entire road, eliminating the need for manual oper-
ation by the pilot and utilizing PIX4D to automate the route
planning.

The structure of this paper is as follows: Section II
thoroughly analyzes existing literature on damage detection
methods and UAVs. Section III delves into the proposed
system’s architectural design, the dataset used, and its imple-
mentation. The experiments carried out, and their results are
discussed in Section IV. Finally, Section V concludes the
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paper by presenting a summary of the findings and outlining
potential future work.

II. RELATED WORKS
Imagery capture plays a crucial role in the initial assessment
of a road or highway’s condition. AUAV, specifically a drone,
is an efficient and cost-effective way to capture high-quality
and detailed photographs of the road surface from various
perspectives. In this study, we have used the DJI Mavic Air
2S drone, a more recent drone version budgeted for this
project. This drone has advanced features such as a high-
resolution camera, GPS, and obstacle avoidance sensors,
enabling it to capture high-quality road surface images with
minimal distortion. Additionally, using a UAV allows for
more comprehensive coverage of the road surface, especially
in hard-to-reach areas, and can be done safely and quickly.

Related articles focus on improving existing algorithms
in deep learning and unmanned aerial vehicles (UAVs).
For example, autonomous UAVs have been used for struc-
tural health monitoring and real-time damage mapping using
deep learning methods and ultrasonic beacons with geo-
tagging [19], [20]. Deep learning techniques, such as CNNs,
have shown promising results in various domains, including
vehicle traffic monitoring [21], large population monitoring
[22], animal identification [23], wind generator inspection
[24], and electric component detection [25]. These techniques
can also be used to analyze images or video from cameras
mounted on vehicles to detect road potholes, making them an
effective approach for automated road damage detection.

The transportation industry is no exception, and the task of
road damage identification is ready to profit from the rapid
advancement and diffusion of deep learning technologies.
Using convolutional neural networks (CNNs) or other deep
learning techniques to analyze images or video from cameras
mounted on vehicles to detect road potholes is possible. One
of the fundamental approaches for automated road damage
detection is using deep learning algorithms. These algorithms
effectively detect a range of objects, including damage.

Standard deep learning methods in this area include the
implementation of Convolutional Neural Networks (CNNs).
In the paper [26], the authors proposed a deep convolu-
tional neural network (CNN) for road damage detection from
UAV images. The proposed CNN was trained and tested
on a dataset of UAV images, and the results showed that
it could detect road damage accurately. In [27] proposes a
novel approach for detecting concrete cracks using a deep
architecture of CNN without the need for image processing
techniques (IPTs) to extract defect features. The CNN is
trained on a large dataset of 40.000 images and achieves an
accuracy of about 98%. The proposed method is tested on a
different structure under various conditions and performs bet-
ter than traditional Canny and Sobel edge detection methods.

In another recent work [28], the authors proposed a deep
learning-based object detection method for automated road
damage detection using UAV images. They used the Faster
R-CNN algorithm as the object detector. Results reflected

that the proposed method is superior to other methods of road
damage detection.

Also, with Regions with Convolutional Neural Network
(R-CNN) and their improvements called Faster R-CNN, the
authors in [29] and [30] proposes for structural visual inspec-
tion, which can detect multiple types of damages, including
concrete cracks, steel corrosion, bolt corrosion, and steel
delamination. The proposed method achieves an average pre-
cision rating of 87.8%. The proposed method provides a
remarkably fast test speed of 0.03 seconds per image and can
potentially be used for quasi-real-time damage detection on
video using the trained networks.

Finally, [31] proposes a crack detection and quantification
method using Faster R-CNN and modified TuFF and DTM
algorithms. The proposed method achieved high accuracy
with 95% average precision, 83% intersection over union, and
93% accuracy for crack length.

In [32], the authors developed a new sensor technol-
ogy for road damage detection using a deep learning-based
image processing algorithm with super-resolution and semi-
supervised learning methods based on GAN. Tested on
400 road images, the proposed method showed an average
recognition performance of 81.54% and 79.228% in terms
of mean intersection over union and F1-score, respectively.
The paper suggests that the proposed method can be used for
efficient road management in the future.

Nowadays, simply detecting damage in structural images is
not enough. To fully understand and assess the extent of the
damage, it is necessary to quantify it by measuring the size of
the detected defects. This requires a more advanced technique
known as pixel-level segmentation, which can accurately
delineate the boundaries of the damaged areas in the image.

Kang [33] proposes a novel semantic transformer rep-
resentation network (STRNet) for crack segmentation in
complex scenes, achieving high performance and fast pro-
cessing speed. The network was evaluated and comparedwith
other advanced networks, showing superior performance and
processing speed compared with other networks, including
attention on [34], which proposes a high-performance deep-
learning network for real-time pixel-level segmentation of
internal damages in concrete members using active thermog-
raphy. The attention-based IDSNet outperforms state-of-the-
art networks with a mean intersection over the union of 0.900,
a positive predictive value of 0.952, an F1-score of 0.941, and
a sensitivity of 0.942.

Single-Shot Detection (SSD) is another point-of-view
specifically for road or concrete damage detection. The
work [35] presents the SDDNet, a deep learning model for
real-time segmentation of concrete cracks in images, achiev-
ing high accuracy on a manually created dataset. The model
is compared with recent models and outperforms them while
processing images at 36 FPS, which is significantly faster
than previous works.

In another work, Arya et al. [36] reported a set of state-of-
the-art solutions in global road damage detection and clas-
sification tasks. For example, Pham et al. [37] experimented
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with a study with Detectron2, implementing Faster R-CNN.
Generally, these reviewed studies show that the Faster
R-CNN model provides better accuracy with the trade-off of
prediction time (8 frames per second) than the YOLO model
(40 frames per second). In contrast, SSD balances the two
concerning prediction accuracy and time.

A. YOLO IMPLEMENTATIONS
In [38], presents a deep learning approach to identifying pot-
holes on Indian roads using the YOLO algorithm to improve
road maintenance and reduce accidents. A new dataset of
1500 images of Indian roads is created and trained using
YOLOv3, YOLOv2, and YOLOv3-tiny, and the results are
compared in terms of accuracy. In contrast, the authors in [39]
present theM-YOLO, which uses a light network architecture
based on MobileNet V3 and YOLOv5S to improve the detec-
tion efficiency of pavement oil repair using UAV images. The
results of experiments showed that the M-YOLO algorithm
has an accuracy of 98.3%, an average accuracy of 95.5%,
and a detection speed of 96.6fps, which is significantly better
than YOLOv3 in terms of accuracy, speed, and number of
parameters.

In addition, the authors in [12] present a novel automated
pavement distress detection framework that combines stereo
vision and deep learning. The proposed method is tested
on asphalt roads under various conditions. The results show
that it can achieve millimeter-level accuracy in the crack
and pothole segmentation and that the enhanced 3D crack
segmentation model is superior to other models in terms of
accuracy and inference speed. It also uses the high-resolution
pothole segmentation map to measure the pothole volume
accurately.

Another solution related to the literature is using multi-
spectral images to detect road damages [40]. Multispectral
imaging using UAVs is a powerful tool for detecting and ana-
lyzing road damage. Another approach is using hyperspectral
images to detect road pavement cracks. In the study [41],
an asphalt crack index is introduced and found to be effec-
tive for crack detection, with an average 21.37% increase in
F1-score compared to the existing metric in literature.

Convolutional Neural Networks (CNNs) and Transformer
can also be used for hyperspectral image classification [42].
CNNs can extract features from hyperspectral data by
learning spatial patterns in the spectral domain, while Trans-
formers can capture global contextual information by mod-
eling long-range dependencies. Both approaches have shown
promising results in hyperspectral image classification tasks.

In the literature, many works are connected to this field,
which is developing very fast, and more experiments should
be performed to find a better approach in this specific case.
In this work, we approached YOLO because it is the most
efficient technique. When we wrote the first article, the most
recent version was YOLOv4. YOLOv7 is the current version
of this algorithm, which has been tried extensively in this
work. Currently, the work of Wang et al. [18] is the official

FIGURE 2. Design of the proposed method.

implementation, which some of the authors are the same as
the YOLOv4 version [16].

The speed and precision of YOLOv7 are between five and
160 frames per second. This project tested various hyperpa-
rameters (using the freebies) and models (adding modules
and custom configuration files) to train models for road dam-
age detection and classification tasks.

III. DESIGN AND IMPLEMENTATION
A. IMPLEMENTATION
The proposal’s main objective is the detention of deformi-
ties on street surfaces, roads, highways, and other vehicle
traffic surfaces. The initial proposal of this project, as seen
in Figure 2, uses a commercial drone integrated with a
high-resolution camera and, in its case, also the use of a
multispectral camera. The multispectral camera, as its name
suggests, is a camera that is capable of capturing several light
spectra. In the case of the dataset of this article, the use of
a multispectral camera is not involved and uses only images
from high-resolution cameras.

B. UAV IMAGE DATASET
First, we conducted a literature search to find a dataset of
potholes and cracks in asphalt at the outset of this study. How-
ever, the databases were different from the current suggestion
of utilizing an unmanned aerial aircraft to take photographs
at a safe distance from the road. Therefore, a new dataset
was required to depict the Spanish road situation accurately.
In total, 600 pictures with a resolution of 3840× 2160 pixels
were taken. The images were taken from a DJI Air 2S drone
50 meters from the ground on roads in Spain and only had
two classes, potholes (D40) and cracks (D00).

Upon dataset creation and labeling of all photographs,
568 tagged photos were recovered. The photos’ orientation
was adjusted during the pre-processing stage and got a new
size (640 × 640). Different iterations of each image in the
collection were created utilizing augmentation techniques.
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TABLE 1. Spain roads dataset.

The zoom levels of the photographs ranged from 0% to 15%.
In total, 1362 images are included in the collection. 70% of
these photos were used for training, 20% for validation, and
10% for testing the trained model’s efficacy. This dataset was
used in previous work [7], and its repository is available.1

Table 1 shows how the classification is organized.
Continuing to compose the dataset, we approached the

previous datasets (Spain) as a reference for training deep
learning models to detect road damage from the collected
videos automatically. Added to this, we joined the dataset
provided in the CRDDC2022. This dataset is a dataset of road
damage in multiple countries [43].

This benchmark dataset is used for training and testing
machine learning models for automated pavement distress
detection. The dataset contains 47,420 road photos from five
countries (China, Japan, the Czech Republic, Norway, the
US, and India). We use these photos to train and test models
to identify four types of pavement damage: alligator cracks
(D20), transverse cracks (D10), longitudinal cracks (D00),
and pothole cracks (D40).

The training set of this dataset is used to train machine
learning models to recognize the four types of pavement
damage. The models learn to identify the characteristics of
each type of damage from the photos in the training set. The
testing set of this dataset is used to evaluate the performance
of the trained models. The models are applied to the photos
in the testing set, and their predictions are compared to the
actual labels to evaluate the model’s accuracy.

This dataset is useful for researchers and engineers work-
ing on automated pavement distress detection because it
provides a large and diverse set of images that can be used
to train and test models. Including images from different
countries ensures that the models trained using this dataset
can generalize well to different road conditions and environ-
ments.

These images were obtained from smartphones, high-
resolution cameras, and satellite images. All are obtained by
employing cars, motorcycles, and drones. The distribution of
damage types (of the four relevant damage types) by countries
is displayed explicitly in Table 2. For China, two datasets
were made available: Ch_M, which refers to images taken by
mobile phones, and Ch_UAV, which refers to images taken
by drones.

To compose the dataset for this article, we used the first
dataset of roads in Spain and a small part of the images taken
by drones in ChinaCh_UAV, as mentioned in the table above.
This dataset also includes two complementary classesRepair
that refers to some repair done on the road and Block Crack.

1https://github.com/luisaugustos/Pothole-Recognition

TABLE 2. Damage category-based data statistics for RDD2022.

FIGURE 3. UAV used to obtain images for the dataset.

TABLE 3. Damage category-based data statistics for the merged dataset.

TABLE 4. Dataset split.

We noticed that including the China_Drone data in the pro-
posed training set increased the dataset’s heterogeneity. They
were aligned with RDD2020 and this work, which focuses
on low-cost and affordable automatic road damage detection
considering feasible methods for the public.

The final dataset has 2893 images and comprises images
from both countries obtained by UAV detailed in Fig. 3(a)
and Fig. 3(b).

Table 3 provides an overview of the damage category-based
data statistics for the merged dataset, including the distri-
bution of classes and annotations for the China_Drone and
Spain datasets.

This dataset is augmented and preprocessed using
auto-orientation and also resized to 640 × 640. The aug-
mentation was performed on the images to increase the size
and diversity of the dataset artificially. Each training example
has been augmented to produce two outputs in this case.
The rotation has been applied to randomly rotate the images
between −15◦ and +15◦ to make the model more robust to
different orientations of the objects being detected. The final
dataset description was presented in Table 4.
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C. DATA PREPARATION
According to the previous table, the two data sets were com-
bined and divided into three versions formatted for YOLOv4,
YOLOv5, and YOLOv7. One directory is needed for training,
while the other is for validation. Additionally, these two
folders must have the label and image directories. The labels
would include a text file holding the image annotation for
each labeled image, while the images would contain the
actual photos. The text file’s name must match that of the
associated image. After producing new YOLO annotations,
the folder follows the YOLO dataset structure. Information
about the data set, including names and the number of classes,
is contained in the file ‘‘data.yaml’’. All this was done thanks
to the platform Roboflow,2 on which all datasets are stored.

D. MODEL TRAINING
The YOLOv4-tiny model served as the initial basis for this
work, which adheres to the coordinated prediction concept
just like YOLOv2 and YOLOv3 did. Multi-class classifica-
tion is possible instead of single-class classification, as in the
older versions. This initial network was set up to detect two
classes within the 568 images. Later with the use of YOLOv5,
YOLOv5-Tranformer, and YOLOv7, the number of classes
increased to 6. Afterward, new training was performed with
the six classes and the 4000 images.

To train our YOLO models, we prepared our data and fed
them with the necessary data set. The model trained is capa-
ble of detecting the following sorts of cracks: longitudinal
cracks (D00), transverse cracks (D10), alligator cracks (D20),
pothole cracks (D40), and repair and block cracks. We used
4873 photos from the dataset generated by the roboflow
platform to train the model. The training and validation of
the models described in this research were carried out using
an Intel(R) Core(TM) i9-10940X CPU@ 3.30GHz computer
with 128GB of RAM and an RTX3090 GPU with 24GB
of integrated memory due to the availability of reasonably
priced GPUs.

E. IMAGE AUGMENTATIONS
Image augmentation is a technique to expand the training
dataset by applying various transformations to the existing
images. Image augmentation aims to introduce variability
and diversity in the training dataset, which helps improve the
model’s generalization ability. YOLOv7 and YOLOv5 can
use various image augmentation techniques, such as:

• Random horizontal flipping: This technique randomly
flips the image horizontally, giving the model more
examples of the same object in different orientations.

• Random cropping: This technique randomly crops a
portion of the image, giving the model more examples
of the object in different scales and positions.

• Random rotation: This technique randomly rotates the
image, providing the model with more examples of
objects in different orientations.

2https://roboflow.ai

FIGURE 4. YOLOv5’s default parameters on augmented images,
showcasing the potential for image distortion and inconsistencies.

• Random brightness and contrast: This technique ran-
domly adjusts the brightness and contrast of the image,
providing the model with more examples of the object
under different lighting conditions.

• Random color jitter: This technique randomly changes
the image’s color, giving themodelmore examples of the
object under different color variations.

YOLOv5 and YOLOv7 are state-of-the-art algorithms that
enhance and upscale images to improve the robustness and
accuracy of the model. However, as seen in Figures 4 and 5,
several issues with the default parameters negatively impact
the results. Using these techniques, YOLOv7 and YOLOv5
can increase the size and diversity of the training dataset.
This can help prevent overfitting and improve the model’s
generalization ability.

Three models were trained: the first using a YOLOv4
architecture, which replicated the experiment from the prior
study; the second with a YOLOv5 design; and the third with
a YOLOv7 architecture. We will now go over each model’s
outcomes and guess how and why we came to those conclu-
sions to choose the ultimate design that is most appropriate
for the task at hand.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
Intending to test our system, we compare the labeled dataset
photos with the final images identified by the algorithm,
paying attention to quantitative characteristics. In this case,
different experiments result in different models, and in the
case of using three different models, we must pay attention to
the evaluation process.

Therefore, we need a robust metric to select the best models
among all experiments. There are two standard evaluation
metrics used in this area. The first is the Mean Accuracy
(mAP) calculated in IoU (Intersection overlapping) limit of
0.5 (mAP@0.5). The second is the F1 score. The MAP is
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FIGURE 5. YOLOv7’s default parameters on augmented images,
showcasing the potential for image distortion and inconsistencies.

a good measure when we must ensure the model is stable
at different confidence limits (robust) while the F1 score
is computed for a specific confidence limit. The common
practice is to use mAP@0.5 in the validation set to select
the best model and use the F1 score to report the model
performance in the test data set. This project also follows this
common practice (using mAP@0.5 to select the best models
and report the F1 scores in the test sets).

In terms of the quantitative assessment, we’ll employ the
following metrics: the precision, or the ratio of true positives
(TP) to true positives (TP) plus false positives (FP) Equa-
tion 1. Equation 2 combines the recall, the likelihood that a
picture will be categorized as positive, and the ratio of true
positives (TP) to true positives plus false negatives (FN). The
third and final metric is the F1 metric, which combines the
first two abovementioned metrics.

On the other hand, we also have the classification speed,
which is expressed in frames per second (FPS), the mean
average precision (mAP), which is determined by using the
precision and recall curve, and the IoU, or the overlap area
between the detected and imaged areas.

Precision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
(2)

F1 = 2 ·
Precision · Recall
Precision+ Recall

(3)

The model training process was evaluated in 3 steps,
switching between iterations and image resolution. The mea-
sures mAP@0.5 are used to select the best models during
training based on the validation data.

Additionally, with the main evaluation process, we intro-
duced four ways to evaluate the comparative analysis and the

TABLE 5. Performance metric for YOLOv4.

implementation. Using hyperparameter tuning (evolve), error
analysis, transfer learning, and ensemble methods.

• Hyperparameter tuning: This involves adjusting the set-
tings and parameters of a model or algorithm to find the
best configuration for a given task. By systematically
varying the values of different parameters, researchers
can determine which settings lead to the best perfor-
mance and gain insight into which factors are most
important.

• Error analysis: This involves examining the errors made
by a model or algorithm and identifying patterns or
trends. By analyzing the specific cases where a system
fails, researchers can better understand its limitations
and identify areas for improvement.

• Transfer learning: This involves using a pre-trained
model or algorithm as a starting point and fine-tuning
it for a specific task. By leveraging the knowledge and
experience encoded in a pre-trained model, researchers
can often achieve better results with less data and train-
ing time.

• Ensemble methods: This involves combining the pre-
dictions of multiple models or algorithms to improve
overall performance. By leveraging the strengths of dif-
ferent models and compensating for their weaknesses,
ensemble methods can often achieve better results than
any individual model.

A. YOLOv4 EXPERIMENTS
With YOLOv4, the first processing step was performed.
Convolutional layers were adjusted as necessary using a
pre-trained weight model. Compared to the earlier work, the
results of this training could have been better, implying that
the prior work involved overtraining or overfitting. In this
instance, we achieved a precision of 0.50, with a recall of
0.32 and an F1 score of 0.39. They chose a mean average pre-
cision (mAP@0.50) of 0.268638, or 26.86%, for this training,
in just three seconds of detecting time. The performance is
broken down per class in Table 5.

B. YOLOv5 EXPERIMENTS
Employing YOLOv5 v7.0 for road damage detection showed
significant improvements compared to YOLOv4, as indi-
cated in Table 6. The mean average precision (mAP)
at an IoU threshold of 0.5 (mAP@.5) increased from
26.86% to 59.90%, indicating a substantial increase in the
model YOLOv5x ability to detect road damage accurately.
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TABLE 6. Performance metric for YOLOv5.

FIGURE 6. Confusion matrix for the YOLOv5 model.

Additionally, the mAP at an IoU threshold of 0.5 and a recall
threshold of 0.95 (mAP@.5:.95) also showed a significant
improvement, with a boost of around 27%.

Furthermore, the recall percentage, which measures the
proportion of actual positive instances that are correctly
detected, also increased from 32% to 56.10%. These results
demonstrate the effectiveness of YOLOv5 in detecting road
damage with high accuracy and recall. Additionally, the
inference time of YOLOv5 is 17.2 milliseconds, with a
pre-processing time of 0.9 milliseconds, an inference time of
17.2 milliseconds, and a Non-maximal Suppression (NMS)
of 6.8 milliseconds per image at shape (1, 3, 640, 640).
These results show that YOLOv5 is accurate and efficient
in processing time. As shown in Figure 6, the confusion
matrix for classifying six groups using test data and YOLOv5
revealed that the model correctly classified most classes.

The horizontal axis represents the ground truth, and the
vertical axis represents the predicted classes. The diagonal
elements, which represent the correctly classified classes, are
the highest among all elements in the matrix, indicating a
high level of accuracy. However, it can also be observed that
classes D10 and D40 have some misclassifications. These
classes are overrepresented in the dataset, which could have
made the model more sensitive to detecting these specific
classes. However, overall, the results demonstrate the effec-
tiveness of YOLOv5.

Additionally, we calculated the F1 score for each class,
as shown in Figure 7. Compared to accuracy, this is a more

FIGURE 7. F1-Confidence curve.

FIGURE 8. mAP@0.5 with the YOLOv7 versions implementing
hyperparameters finetuning.

effective metric. The six groups differ in look and structure,
making the issue more challenging. The system successfully
got a 70% total F1 score. However, the percentage of the
F1 score allocated to each class varies from 50% to 80%.
The D20 class has the lowest F1 score due to weaker recall,
whereas the D40 class has a higher score. A conclusion that
the earlier-presented Confusion Matrix supports.

C. YOLOv7 EXPERIMENTS
The best experiment using the YOLOv7 model was trained
using theYOLOv7x-W6model with 300 epochs. A batch size
of 16 concluded after the grid research proving the accuracy
of prediction and classification try the other YOLO models,
YOLOv7-W6, YOLOv7-E6, YOLOv7-D6, YOLOv7-E6E.
Figure 8 shows the ten performed trains with these models,
changing the batch size and hyperparameters.

Overall, YOLOv7 achieved an mAP of 0.737, indicating
that it performed reasonably well in detecting the different
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TABLE 7. YOLOv7 performance on pavement damage dataset.

classes of pavement damage. The highest mAP was obtained
for the Repair class, which had an mAP of 0.827. The Block
crack class achieved perfect precision and recall, indicating
that the model could detect this type of damage accurately,
but with the low presence of this class in all the datasets, this
class was excluded.

However, some classes, such as D20, had lower preci-
sion and recall values, suggesting that the model struggled
to detect this damage accurately. Nonetheless, the model
achieved an overall precision of 0.788 and recall of 0.714,
indicating that it could detect pavement damage in general
accurately. The YOLOv7 is speedier, with an inference time
of only 11.4 ms, demonstrating all of this. Speed per 640 ×

640 image: 11.4/6.7/18.1 ms inference/NMS/total at batch-
size 1

Table 7 shows the Precision (P), Recall (R), and mean
Average Precision (mAP) scores for different classes of pave-
ment damage.

In the Table, the detection effect of D00 and D20 is lower
than that of other classes. This could be because both D00
(potholes) and D20 (alligator cracks) share some similarities
in their visual appearance, which makes it more difficult for
the model to distinguish between them and other classes.

Some specific strategies could be employed to improve
the detection performance of YOLOv7 on D00 and D20.
For example, data augmentation techniques could be used to
increase the diversity of the training data, including varia-
tions in lighting, angle, and distance. Additionally, transfer
learning could be applied to pre-train the model on a large
dataset of similar objects, such as road surface images, before
fine-tuning the specific classes.

Furthermore, the model architecture was adjusted in the
YOLOv5 with Transformer Head to better handle the com-
plexities and variations of potholes and alligator cracks.
This improvement will be explained in the next subsections.
As shown in Figure 9, the confusion matrix for classifying
six groups using test data and YOLOv7 shows that the model
accurately categorizes most classes. The horizontal axis rep-
resents the ground truth, and the vertical axis represents the
predicted classes. The diagonal elements, which represent
the correctly classified classes, are the highest among all
elements in the matrix, indicating a high level of accuracy.

Compared to the YOLOv5 matrix, it can be observed
that there is an increase in the D10 and D40 classes, which
were overrepresented in the dataset. This could be due to
the improved capability of YOLOv7 to detect these specific
classes, even though they are overrepresented, which leads to

FIGURE 9. Confusion matrix for the YOLOv7 model.

FIGURE 10. F1-Confidence curve.

improved overall identification. Overall, the results demon-
strate the effectiveness of YOLOv7.

The performance of the YOLOv7 algorithm is further ana-
lyzed by calculating the F1 score for each class, as shown in
Figure 10. The system achieved a total F1 score of 59%. The
individual classes have F1 scores ranging from 50% to 80%.
The D10, D40, and Repair classes have higher scores than the
others. Interestingly, the D00 class has a lower F1 score in
YOLOv7 than in YOLOv5, as highlighted by the Confusion
Matrix previously presented.

D. YOLOv5 + TRANSFORMER PREDICTION HEAD
EXPERIMENTS
In our YOLOv5+Transformer PredictionHead experiments,
the transformer architecture has been used as the predic-
tion head of the YOLOv5 model, replacing the conventional
CNN-based prediction head. The transformer head takes in
the features extracted by the YOLOv5 backbone network and
generates predictions for object locations and class probabili-

VOLUME 11, 2023 62927



L. A. Silva et al.: Automated Road Damage Detection Using UAV Images and Deep Learning Techniques

FIGURE 11. YOLOv5 + transformer prediction head model.

TABLE 8. YOLOv5 with Transformer Prediction Head performance on
pavement damage dataset.

ties. Figure 11 shows the YOLOv5+ Transformer Prediction
Head model.

The transformer head consists of multiple layers similar to
those used in NLP tasks. Each transformer layer contains a
self-attention mechanism, which allows the model to attend
to different parts of the input features to make predictions.
The transformer head also includes fully connected layers and
sigmoid activation functions to produce the final output.

The Experiments have shown that the YOLOv5 + Trans-
former model can achieve higher accuracy than the standard
YOLOv5 model while reducing the computational cost of
object detection. In the training process, the model takes
212 epochs completed in 6.121 hours, 10 hours less when
compared with YOLOv7x-W6. Table 8 shows the perfor-
mance metrics for object detection using a YOLOv5 model
with a transformer head prediction.

The use of transformer architecture allows the model to
capture more complex spatial relationships between objects,
resulting in better localization and classification perfor-
mance. Additionally, the transformer-based prediction head
can be trained more efficiently, requiring fewer iterations to
converge to a good solution. Figures 12 and 13 shows the
perfomance of the model.

The YOLOv5 + Transformer model achieved a mAP@.5
of 0.657 on all objects, with a precision of 0.71 and a recall
of 0.672. The model also achieved high mAP values for
individual classes. Overall, this experiment demonstrates the
high performance of the YOLOv5 + transformer model with
the dataset.

E. VISUAL ANALYSIS
As shown in Figure 14, YOLOv5 could accurately recog-
nize and identify road damage structures from UAV images.
The predicted model outcome closely reflects the initial test

FIGURE 12. Confusion matrix for the YOLOv5 + transformer prediction
head model.

FIGURE 13. F1-Confidence curve.

photographs, indicating high accuracy and performance. Sim-
ilarly, YOLOv7’s ability to identify road damage structures
can be observed in Figures 15, 16 and 17. Themodel correctly
detects the damages, even in cases where the images contain
minor flaws or unclear classes.

Visual analysis shows that bothYOLOv5 andYOLOv7 can
accurately identify and locate road damage structures in UAV
images. Specifically, when comparing Figures 14 and 15,
it can be seen that YOLOv5 has a slightly more accurate
and precise bounding box placement around the damage,
whereas YOLOv7 tends to have slightly larger bounding
boxes that encompass more of the surrounding area. It can
also be observed that YOLOv7 tends to split the damage class
into smaller sub-regions, which can be seen in the increased
number of bounding boxes around the same area of damage
compared to YOLOv5. This is particularly noticeable for the
D40 category, which is overrepresented in the data.

In Figure 16, the bounding box around the recheck at
the center of the image may be inadequate, possibly due to
occlusion or a high box loss value. This highlights the need
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FIGURE 14. Validation YOLOv5.

FIGURE 15. Validation YOLOv7.

TABLE 9. Performance comparison for YOLOv4, YOLOv5 and YOLOv7.

for further improvement in the model’s ability to correctly
identify and draw bounding boxes around such instances of
damage.

F. COMPARISON
Table 9 compares the performance of theYOLOv4, YOLOv5,
and YOLOv7 architectures for road damage identification.

FIGURE 16. Validation YOLOv7.

FIGURE 17. Validation YOLOv7X-W6.

The results show that YOLOv4 performed poorly in pre-
cision and detection speed, while YOLOv5 and YOLOv7
performed significantly better. Specifically, YOLOv7 stood
out for its high accuracy and fast detection time. The table
also includes information on the number of images used for
testing, precision, recall, mean average precision (mAP), and
inference time for each model.

V. CONCLUSION AND FUTURE WORKS
In conclusion, this study compares the YOLOv4 from past
work, the YOLOv5 and YOLOv7 architectures, and includes
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an implementation of the YOLOv5 with Transformer for
road damage identification using UAV images. The research
successfully achieved its goal of creating an architecture
capable of detecting road damage and demonstrated that new
architecture versions, such as YOLOv5 and YOLOv7, can
improve upon previous work.

A significant contribution of this study was the develop-
ment of a UAV image database tailored explicitly for training
the YOLO versions, which was further enhanced by merging
with the RDD2022 dataset. This improved detection of road
damage samples, particularly for Spanish and Chinese roads,
and helped reduce class imbalance for specific forms of road
damage, such as potholes and alligator cracks. The findings
of this study provide a valuable contribution to the field
and pave the way for future research in this area. As pre-
sented in the results section, our implementation achieved a
mAP.5 of 26.8% with YOLOv4, 59.9% with YOLOv5, and
73.20% with YOLOv7, finally the implemented Transformer
achieved 65.7%. There is still scope for improvement in our
work.

Future research can explore the different types of images,
such as multispectral images and LIDAR sensors, to further
enhance the performance. The fusion of such information is
potentially possible to yield better results using embedded
computer. Moreover, another approach to this work is the use
of fixed-wing UAV.
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