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A B S T R A C T 
 

 

 

 
This thesis consists of two distinct parts. Chapters 3, 4, 5, 6 are devoted to study the 

geometry of null hypersurfaces by means of the so-called formalism of hypersur- 

face data. In Chapters 7, 8, 9 we address the problem of matching two completely 

general spacetimes across a null hypersurface. 

The formalism of hypersurface data allows one to study hypersurfaces of any 

causal character without considering them as embedded on any ambient space. 

In Chapter 3, we present some new notions and results that are to be used else- 

where in the thesis. Chapter 4 is devoted to the so-called constraint tensor R. This 

tensor can be defined at the abstract level so that, when the hypersurface hap- 

pens to be embedded on an ambient space, it codifies a certain combination of 

components of the ambient Riemann tensor. At null points, R coincides with the 

pull-back of the ambient Ricci tensor to the hypersurface. Chapters 5 and 6 concen- 

trate on the implications at the abstract level due to the existence of a vector field 

in a neighbourhood of a hypersurface. Some core results in this context are the 

new abstract notions of Killing horizons of order zero and one and the so-called 

generalized master equation. From the latter we can recover, as particular cases, the 

well-known near horizon equation of isolated horizons (see e.g. [1]) as well as the 

so-called master equation of multiple Killing horizons (see e.g. [2]). 

The problem of matching two general spacetimes with null boundaries is firstly ad- 

dressed in Chapter 7. In this chapter we assume that the boundaries have product 

topology S × R (S being a spacelike cross-section). We prove that all the informa- 

tion about the matching can be encoded in a scalar function H and a diffeomorph- 

ism Ψ between the sets of null generators of both sides. We find explicit expres- 

sions for the matter-energy content of any null thin shell. In Chapter 8 we apply 

the matching formalism to the case when the boundaries are abstract Killing hori- 

zons of order zero. Finally, in Chapter 9 we provide a fully abstract formulation of 

the matching problem for boundaries of any causality and any topology. The null 

case is analyzed in detail, proving that all information about the matching is codi- 

fied by a diffeomorphism (whose components are precisely {H, Ψ}) and obtaining 

explicit expressions for the gravitational/matter-energy content of the shell. Our 

results are connected with those from the so-called cut-and-paste matching pro- 

cedure (see e.g. [3], [4], [5], [6], [7]). 
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1 
I N T R O D U C T I O N 

 

 

 
1.1 context and motivation 

 

On November 25th 1915, the scientific journal Sitzungsberichte der Königlich Preußis- 

chen Akademie der Wissenschaften (Proceedings of the Royal Prussian Academy of Sci- 

ences) published a paper [8] entitled "Die Feldgleichungen der Gravitation"1 (see Fig- 

ure 1.1). In this work, Albert Einstein provides the first geometric formulation of 

the (latter known as Einstein) equations of the gravitational field. The original ver- 

sion of these equations, derived in a 4-dimensional framework, reads as 

Ricg = χ 

(

T − 
1 

gT 

1 

, (1.1) 

 

where g is the metric, Ricg is the Ricci tensor of g, T is the energy-momentum 

tensor and T its g-trace. With the publication of these equations, Newton’s theory 

of gravitation faded into the background in favour of a new geometric theory of 

gravity, space and time: the theory of General Relativity. 

The theory of General Relativity, presented fully in [9] for the first time, has proven 

to be the most accurate fundamental theory to describe gravitational effects at large 

scales. From its early predictions (the precession of the perihelion of Mercury [10], 

the deflection of light rays [11], the gravitational redshift [12], [13] and the emis- 

sion of gravitational waves [14], [15]) to the more recent ones (e.g. the existence 

of black holes [16], [17], the expansion of the Universe [18] and the Big Bang [19], 

[17]), General Relativity seems to anticipate with extreme accuracy many of the nat- 

ural phenomena supported afterwards by empirical observations. Already from its 

birth, General Relativity has proven to be unswerving and fully consistent with the 

experimental observations, no matter the increasing level of precision of the obser- 

vational results. The robustness of General Relativity makes it the most accepted 

theory of gravity nowadays. 

 
1The field equations of gravitation 

 

 
1 
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Figure 1.1: Fragment of the first page of the paper "Die Feldgleichungen der Gravitation" 
by Albert Einstein, published in 1915 in the scientific journal Sitzungsberichte 
der Königlich Preußischen Akademie der Wissenschaften. 

 

The first remarkable achievement of General Relativity is the already mentioned 

prediction of the precession of Mercury’s orbit around the Sun. The problem of 

the discrepancy between the observational and the (Newtonian) theoretical values 

for the precession of Mercury was addressed by Einstein in 1905, shortly after 

publishing the theory of Special Relativity [20]. After a burdensome research, he 

was able to apply General Relativity to study the orbit of Mercury [10], obtaining 

the exact value of precession supported by the observations. This event translated 

into Einstein’s revolutionary theory achieving support from the vast majority of 

the scientific community. The results by Arthur S. Eddington and Frank W. Dyson 

[11], which constituted an experimental proof of the effect of deflection of light 

rays because of gravity, also contributed significantly to the quick acceptance of 

the theory. In the words of the mathematician David Hilbert in 1920 [21], 

"Die Aufstellung der allgemeinen Relativitätstheorie ist m.E. eine 

der größten Leistungen in der Geschichte der Wissenschaften. Den 

von Pythagoras begonnenen, von Newton ausgestalteten, Bau hat 

Einstein zum Abschluß gebracht." 

("The establishment of the General Theory of Relativity is, in my 

opinion, one of the greatest achievements in the scientific history. 

What was begun by Pythagoras and designed by Newton has been 

completed by Einstein.") 

Not all predictions of the theory were demonstrated observationally within Ein- 

stein’s lifetime. For instance, the emission of gravitational waves (already con- 

sidered by Einstein [14], [15], see also the later works [22], [23], [24]) took much 

longer to be endorsed by empirical experience. It was not until 2015 (coincident- 
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ally a hundred years after the publication of [8]) that the Laser Interferometer 

Gravitational-Wave Observatory (LIGO) detected gravitational waves from the 

merger of two black holes. The corresponding publication [25] was released in 

2016. 

Beyond Einstein’s imagination, the most astonishing prediction of General Relativ- 

ity is the existence of black holes. Although the first black hole solution was found 

by Karl Schwarzschild [26] soon after the publication of the field equations (1.1) in 

[8], the discussion on whether black holes were of actual physical nature or rather 

a pathological aspect of the theory kept the scientific community divided for a 

long time. It was in 1965, ten years after the demise of Einstein, that the work [16] 

by Roger Penrose provided the first significant improvement in this regard. In [16] 

(and later in [17] in collaboration with Stephen W. Hawking), Penrose proved that 

the absence of spherical symmetry still allowed for the formation of singularities2, 

contrary to what was believed at the time. Almost contemporaneously, some ex- 

perimental results suggested the existence of black holes (see e.g. [29]). Over the 

years many observational facts on the real existence of black holes have accumu- 

lated. This effort has culminated with the striking first direct observation of the 

black hole shadow by the Event Horizon Telescope [30], [31], [32], [33], [34], [35] 

(see also [36]). All these observational facts have turned black holes into widely 

accepted physical objects within the scientific community. 

So far the theory of General Relativity has not been refuted by any of its tests, 

but this does not mean that it is a complete theory of gravity. There are various 

reasons supporting this last claim, among which we stress that General Relativity 

predicts the existence of singularities and, perhaps more important, that the three 

main fundamental theories in current physics, namely Quantum Mechanics [37] (a 

theoretical framework to understand dynamics at atomic and subatomic scales), 

the Standard Model of Particle Physics [38] (which describes all matter that can be ob- 

served directly as well as its non-gravitational interactions) and General Relativity, 

cannot be matched. Thus far these three theories continue providing (sometimes 

astonishingly) accurate predictions, despite they seem to be incompatible. 

Of course, there has been various attempts to unify these three theories and con- 

struct one single theory of quantum gravity. The most important ones are Loop 

Quantum Gravity [39] (which provides a quantum description of gravity, space 

and time) and String Theory [40] (where point-like particles are substituted by 

one-dimensional objects called strings which interact with each other). Other al- 
 

2The existence of naked singularities contradicts the Cosmic Censorship Conjecture [27], [28]. 
Thus, if General Relativity allows for the formation of singularities and (assuming that the Cosmic 
Censorship Conjecture is true) they must be "clothed" by an event horizon, then General Relativity 
predicts the existence of black holes. 
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ternative theories are the so-called Modified Theories of Gravity [41], which propose 

different extensions of General Relativity that generically lead to different field 

equations, and with which scientists have tried to endow many cosmological phe- 

nomena with an appropriate explanation. It seems however clear that, within its 

range of applicability (i.e. far enough from quantum scales), General Relativity is 

a suitable theory. 

Depending on the approach and on the sort of problems that are addressed, Gen- 

eral Relativity is divided in several branches. We find Numerical General Relativity 

[42], based on numerical methods and programming codes; Relativistic Astrophysics 

[43] and Cosmology [44], concentrated on providing theoretical and computational 

models as well as on experimental aspects of the theory; and Mathematical Gen- 

eral Relativity [45], which addresses fundamental questions of gravitational physics 

within a rigorous mathematical framework. It is precisely the area of Mathematical 

General Relativity in which this thesis is framed. 

Despite its long lifetime, Mathematical General Relativity is far from being com- 

pletely unravelled. To mention some of its most important open problems, we 

stress the (strong and weak versions of the) Cosmic Censorship (see e.g. [27], [28], 

[46], [47]) and the final state conjecture [48] (and related problems such as unique- 

ness of black holes, or stability of Kerr-Newman black holes). This makes the field 

of Mathematical General Relativity a highly active research ground. 

The scientific discipline in which Mathematical General Relativity relies on is Geo- 

metry, whose fundamental objects are manifolds and tensors. In particular, one of 

the milestones of Geometry is the study of hypersurfaces (i.e. codimension one 

submanifolds embedded in an ambient space). Depending on the causal character 

of the hypersurface, they are called null, timelike, spacelike or mixed. 

For spacelike hypersurfaces, the first and second fundamental forms (which we 

shall denote by γ and K) codify the intrinsic and the extrinsic geometry respect- 

ively. In this case, there is no need to introduce additional tensor fields. This also 

happens with timelike hypersurfaces or, more precisely, with any hypersurface em- 

bedded in a semi-Riemannian manifold of any signature, provided that the first 

fundamental form is everywhere non-degenerate on the hypersurface. When the 

ambient manifold is strictly Riemannian the property that γ and K encode all the 

geometric information holds for any embedded hypersurface. However, for any 

other ambient signature (in particular in the Lorentzian case), there exist many 

types of hypersurfaces which does not fulfil this condition. 

Null hypersurfaces constitute the main object of study in this thesis. They are pre- 

cisely defined to be such that the first fundamental form γ is everywhere degen- 
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erate. Therefore, the first fundamental form does not encode the whole intrinsic 

geometry of the hypersurface. As we shall see later in the thesis, in order to charac- 

terize the intrinsic part of the hypersurface one needs, in addition, a scalar function 

and a one-form field along the hypersurface. 

The prime example of null hypersurface is the light-cone (either future or past) at 

any point within a spacetime, which defines a smooth null hypersurface after re- 

moving the origin of the cone as well as caustics that may form. There are however 

countless scenarios where null hypersurfaces are involved. For instance, they play 

a core role in causality, in the context of emission of gravitational waves, in the ana- 

lysis of the geometry of the null infinity, in the characteristic problem, in the study 

of any sort of horizon such as Cauchy horizons, event horizons of black holes, non- 

expanding or (weakly) isolated horizons, (multiple) Killing horizons, cosmological 

horizons... Understanding the geometry of null hypersurfaces is therefore key for 

the comprehension of the physical and mathematical aspects of General Relativity. 

In fact null hypersurfaces are essential in General Relativity because they describe 

(at least locally) the trajectories of light rays that are emitted perpendicularly to a 

spacelike surface of codimension two. 

Given a point p of a null hypersurface N , we call it null whenever the first funda- 

mental form γ at p is degenerate, otherwise p is referred to as non-null. It turns out 

that, besides hypersurfaces that are fully null, there also exists cases of physically 

relevant hypesurfaces containing both non-null and null points. As an example, 

we can mention the ergosphere of the Kerr spacetime, which is a spacelike hyper- 

surface off the axis of symmetry and null where the ergosphere cuts the axis. In 

this thesis, we shall mainly focus on null hypersurfaces, but some of the results 

will hold for hypesurfaces of any causality. 

In most of the literature, the geometry of hypersurfaces is studied by considering 

them as embedded in an ambient manifold. However, in many circumstances this 

approach is definitely not the most convenient. An illustrative example of this 

is the standard Cauchy problem [49], [50], [51], [52], or its null version, i.e. the 

characteristic initial value problem [53], [54] [55], [56], [57]. In these two situations, 

one needs to prescribe some data on a spacelike or null hypersurface, and then 

study the existence and uniqueness of the would-be spacetime where the data 

is to be embedded. Throughout this thesis we shall see many more examples of 

scenarios where the study of hypersurfaces in a detached way from the space 

where they may be embedded turns out to be a great advantage. Indeed, most 

of the results in this thesis will be based on a formalism that allows one to do 

precisely this: the so-called hypersurface data formalism. 
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Figure 1.2: Null hypersurface N- with a rigging vector field ζ. 

 
The formalism of hypersurface data [58] [59] allows one to study hypersurfaces 

of any causal character from a completely abstract viewpoint, namely without 

them being embedded. We shall see some interesting applications of this formalism 

throughout the thesis. However, just to mention another recent achievement of the 

formalism, we stress the works [60], [61] on the characteristic problem in General 

Relativity. 

The main difficulty that one must solve in order to codify the geometry of a hyper- 

surface abstractly is that at null points the directions normal to the hypersurface 

are tangent as well. Thus, there does not exists a proper notion of tangent part 

and normal part of a vector field. The other important obstacle is that the first 

fundamental form γ at a null point is degenerate, so γ does not define a metric on 

the hypersurface. This means, in particular, that one cannot construct a canonical 

covariant derivative induced from the ambient geometry. 

The seminal idea to deal with hypersurfaces containing null points was originally 

presented by Jan A. Schouten [62], and it consists of introducing an additional 

structure based on a vector field ζ which is everywhere transverse along the hy- 

persurface. The vector field ζ is known as rigging, and it was used later e.g. to 

study the problem of matching two spacetimes across boundaries of any causality 

(see [63], [64], [65]). It is worth mentioning that the rigging vector field is highly 

non-unique. This lack of uniqueness translates, in the language of the formalism 

of hypersurface data, into an inherent gauge freedom. 

ζ 
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The formalism of hypersurface data is based on the two notions of metric hyper- 

surface data and hypersurface data. The first one is given by an abstract manifold 

N , a symmetric 2-covariant tensor field γ, a one-form ℓ and a scalar function ℓ(2). 

The tuple {N , γ, ℓ, ℓ(2)} codifies the intrinsic geometry of the hypesurface so that 

when it is embedded on an ambient space, γ coincides with the first fundamental 

form, ℓ is the pull-back of a rigging one-form (i.e. a one-form metrically related to 

a rigging) and ℓ(2) is the norm of such rigging. In this way, a metric hypersurface 

data set codifies the full ambient metric at any point of the hypersurface. A hyper- 

surface data is equipped, in addition, with another symmetric 2-covariant tensor 

Y, which encodes the extrinsic geometry of the hypersurface. In the embedded 

picture, the tensor Y is related to transverse first derivatives of the metric at points 

on the hypersurface. These two data sets are endowed with an inherent gauge 

freedom, justified at the embedded level by the fact that rigging vector fields are 

highly non-unique, as we mentioned before. 

It turns out that one can define two natural torsion-free covariant derivatives 

within the formalism of hypersurface data. The first one, denoted by 
◦ 

, is con- 

structed from the metric part of the data. Thus, it only depends on the intrinsic 

geometry. One can show that  
◦

 coincides with the Levi-Civita covariant derivat- 

ive whenever the hypersurface is everywhere non-null (and one makes a suitable 

choice of gauge, or of rigging at the embedded level). The second torsion-free con- 

nection is denoted by ∇ and is built from a hypersurface data set. It therefore 

depends not only on the intrinsic but also on the extrinsic geometric properties 

of the hypersurface. In particular, the connection ∇ coincides with the covariant 

derivative projected from the ambient space along the rigging whenever the hy- 

persurface happens to be embedded (see [64] for details on the so-called rigged 

connection). We emphasize, however, that these two connections can be constructed 

at a purely abstract level, i.e. without requiring the existence of an ambient space. 

The first part of this thesis will be devoted to develop the formalism of hypersur- 

face data. Our main interest is to understand the implications at the abstract level 

due to the existence of a privileged vector field along the hypersurface. This scen- 

ario is addressed both at the abstract and at the embedded levels, where we let 

the vector field extend off the hypersurface in any manner. Our aim is to codify 

as much information as possible in terms of the deformation tensor associated to 

such special vector field. 

The idea of studying the geometry of hypersurfaces equipped with an additional 

vector field arises when addressing the problem of matching two spacetimes across 

Killing horizons. As we shall see later, in these circumstances the matching free- 

dom is huge, which makes the situation specially interesting. It is natural to ask 
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whether the two spacetimes can be matched so that the Killing vectors are iden- 

tified in the process of matching, as this would give rise to a resulting spacetime 

with a global symmetry. In this context (and in many others), the understanding 

of the geometry of hypersurfaces admitting a privileged vector becomes essential. 

The framework in this thesis is however much more general. We shall mostly focus 

on abstract null hypersurfaces and on the case when the vector field is null and 

tangent. The reason why our work is of interest is that we keep as much generality 

as possible, e.g. by not making any global topological assumptions, or by refraining 

ourselves from restricting the set of zeroes of the vector field. As a consequence, 

our results can be particularized to a variety of situations, for instance to non- 

expanding, (weakly) isolated and Killing horizons. 

The second part of this thesis, addressed in Chapters 7, 8 and 9, is devoted to 

the problem of matching two spacetimes across a hypersurface, which we briefly 

introduce next. 

The question of under which conditions two general spacetimes can be matched 

across a hypersurface and give rise to a new spacetime is a fundamental prob- 

lem in any metric theory of gravity. The properties of the resulting spacetime (in 

particular on the matching hypersurface) are certainly worth analyzing. 

One prime example of this appears when studying the gravitational field gener- 

ated by a self-gravitating object, e.g. a neutron star. In this context, the matter 

content in the interior region of the star is non-zero, hence the gravitational field 

must verify the Einstein equations (or the field equations of any other theory of 

gravity) with a non-vanishing source term. On the other hand, in the exterior re- 

gion there is no matter and therefore the gravitational field must be a solution of 

the vacuum field equations. This argument does not change even if one considers 

magnetic fields, any flux of matter or the existence of an interstellar medium, as 

the matter content differs from the inner and the outer part in any case. The Ein- 

stein equations are not the same in the inside and in the outside so the solutions 

are necessarily distinct. However, the spacetime is not separated in two regions, 

which makes it essential to match the exterior and the interior solutions in one 

only solution. 

In many physically interesting situations, the transition zone between the exterior 

and the interior regions is thin enough (compared with the dimensions of the 

problem) for one to address the problem by considering that a hypersurface (e.g. 

the surface of a star) separates the outer and the inner regions. Then, the core 

problem is to identify the conditions that must satisfy the two spacetime regions 

for the matching to be possible. 
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Another framework where a matching theory is required occurs in any physical 

situation where a substantial amount of matter-energy is located in a region of the 

spacetime which is thin enough with respect to the dimensions of the problem. 

Sometimes, the matter-content can be modelled as concentrated on a hypersurface 

(this is analogous to considering a surface distribution of charge in a theory of 

electromagnetism). This thin layer of matter-energy possesses its own gravity and 

therefore affects the spacetime geometry, and the key problem lies now upon find- 

ing the specific relationship between the matter-energy content of the layer and the 

properties of the spacetime containing it. Here one also finds two distinct space- 

time regions (one at each side of the layer) that must be matched according to the 

corresponding theory. 

Over the last hundred years, many authors have contributed to the problem of 

matching in General Relativity. The standard approach consists of considering two 

(a priori different) spacetimes and then constructing the matched spacetime by 

fulfilling two tasks. First, one must construct a differentiable manifold from the 

two initial spacetimes. For this purpose, one must cut each original spacetime so 

that one obtains two differentiable manifolds with boundary, and then provide 

an identification between the boundary points (which in particular requires that 

both boundaries are diffeomorphic). This process results in a new differentiable 

manifold without boundary, and allows one to construct a C1 atlas. However, it is 

well-known that any differentiable boundary admits a C∞ subatlas (see e.g. [66]), 

and hence the resulting spacetime can be treated (with full generality) as a smooth 

manifold. 

The second task is to endow the resulting spacetime with a Lorentzian metric. Since 

the metric must exist everywhere on the manifold (in particular on the matching 

hypersurface), one needs to identify not only the points of the boundaries but also 

their tangent spaces. The directions tangent to the boundaries are automatically 

identified as a consequence of the mapping between the points. Therefore, it suf- 

fices to provide an identification between two transverse directions, one on each 

spacetime. The full construction requires, in addition, that one of these transverse 

directions points from the boundary inwards while the other points outwards. Of 

course, in general any two transverse directions cannot be identified in such a way 

that the metric of the resulting spacetime is well-defined and continuous. The two 

spacetimes to be matched must verify certain conditions which we briefly describe 

next. 

Let us consider two (n + 1)-dimensional spacetimes (M±, g±) with respective 

boundaries N ±. As already mentioned, both boundaries must be diffeomorphic 

for the matching to be possible. The standard way of imposing this is by requiring 
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manifold M as the union of M+ and M− where any two points p± ∈ N-± are 

identified if and only if Φ(p−) = p+. The manifold M must also admit an every- 

where continuous metric g which coincides with the metrics g± on the spacetime 

regions that have been matched. The necessary and sufficient conditions for such 

metric g to exist where firstly studied by Christopher J. S. Clarke and Tevian Dray 

[67] for boundaries with any constant causal character. They obtained that the two 

first fundamental forms must coincide. Later on Marc Mars and José M. M. Senov- 

illa [64] proved that the reasoning by Clarke and Dray extends to boundaries with 

arbitrary causal character. These conditions, while necessary in all cases, are not 

quite sufficient when there are null points. This was noticed by Mars, Senovilla 

and Raül Vera in [65], where it was shown that one must add a condition on the 

relative orientation of the riggings. 

Combining the results from [67], [64], and [65], one concludes that the necessary 

and sufficient conditions for the matching of two completely general spacetimes 

are (i) that the first fundamental forms from both boundaries coincide, (ii) that 

there exists a pair of riggings ζ± along the boundaries N ± with the same norm 

and such that their metrically-related one forms g±(ζ±, ·) are the same and (iii) 

that ζ± are such that one points inwards and the other outwards, as we pointed 

out before. 

When the boundaries do not contain null points, the coincidence of the first fun- 

damental forms of each boundary automatically guarantees the matching. This is 

because one can always select the riggings to be unit and normal to the boundaries 

and fix their orientations so that one points inwards and the other outwards. This 

works differently when there exist null points on the boundaries. Then, the exist- 

ence of the riggings verifying (i)-(iii) does not follow from the equality of the first 

fundamental forms [65]. This makes it necessary to include the third requirement 

(iii). One can indeed fix one orientation but then the other is automatically fixed, 

and it can well happen that (iii) does not hold. 

Once we have identified the conditions that allow for the existence of a space- 

time (M, g) resulting from the matching and with a continuous metric g, the next 

step is to analyze the physical properties of the matched spacetime. In particu- 

lar, it is interesting to study whether M contains matter or energy located on 

the matching hypersurface. This problem was addressed in the spacelike case by 

George Darmois [68], Stephen O’Brien and John L. Synge [69] and André Lichner- 

owicz [70]. These three works rely on distinct approaches, but the relation between 

them is well-known [71], [72]. The Darmois matching conditions are coordinate- 

independent and require the first and second fundamental forms of the boundar- 
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ies to coincide. In these circumstances, there exists a subatlas of M in which the 

resulting metric g is of C1 type [73], [71]. The Riemann tensor can be discontinu- 

ous at the matching hypersurface (this is because second transverse derivatives 

of the metric do not need to coincide at the boundaries) but it must be regular 

everywhere. Hence, in this case one concludes that there is no concentration of 

matter or energy on the matching hypersurface. On the other hand, if (still in the 

spacelike case) we relax the condition on the second fundamental forms and allow 

for a jump on them, then the Riemann tensor of g can only be defined everywhere 

on M by using distribution theory (among the many contributions to the field of 

theory of distributions, we mention [70], [74], [75], [64], [76], [77], [78], [79], [80], 

[81]). Applying distributional calculus to compute the Riemann tensor of g yields 

a Dirac delta distribution with support on the matching hypersurface. Physically, 

this corresponds to a concentration of energy-momentum (and also of gravitational 

field) on a thin layer, i.e. along the matching hypersurface. The singular part of the 

Einstein tensor of g is given by the discontinuity of the second fundamental form 

K through the tensor T , namely 
 

T =
d e f  − ([K] − [trγK]γ ), (1.2) 

where we have defined [Q] =
d e f  

Q+ − Q− for any tensor pair {Q+, Q−} along N 

and γ♯ is the contravariant metric of N (i.e. the inverse of the non-degenerate 

first fundamental form γ). The tensor T must satisfy certain equations that were 

originally obtained by Kornel Lanczos [82], [83] and later by Werner Israel [73] 

using a more covariant method. These equations are currently known as Israel 

equations, thin shell equations or surface distribution equations, and they arise 

from the distributional equation ∇µGµν = 0 for the distribution Gµν associated to 

the Einstein tensor of (M, g). The Israel equations read 

(K+ + K− )T ab = 2[(Eing)(ν, ν)], ∇
(γ)

T b = [Ja], (1.3) 

where Ein±
g ±  are the Einstein tensors on each side, ν± are the unique normals 

satisfying g±(ζ±, ν±)|
N ± = 1 for a pair of riggings ζ± satisfying the matching 

conditions, ∇(γ) is the Levi-Civita connection of γ and J± are the pull-back to the 

boundaries of the components Ein±
g ±  (ν±, ·). 

A similar argument can be followed to derive the Israel equations for the timelike 

case. The null case, on the other hand, is intrinsically different. However, Claude 

Barrabés and Israel [63] derived the shell equations by means of a limiting pro- 

cedure in which the null hypersurface is approximated by a series of spacelike 

hypersurfaces. Later on [64] the distribution formalism was exploited to study the 
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matching across hypersurfaces with arbitrary causal character. One of the core res- 

ults in [64] is the explicit expression for the singular part of the Einstein tensor of 

the matched spacetime (M, g). For both the Riemann and the Einstein tensors of 

(M, g), the singular part is given by a tensor field multiplied by a Dirac delta dis- 

tribution with support on the matching hypersurface (which we denote by N ). The 

second (distributional) Bianchi identity as well as its contracted version ∇µGµν = 0 

can be used to derive the Israel equations for thin shells of arbitrary causal char- 

acter by means of the distributional formalism. This program has been carried our 

recently by Senovilla [84]. Prior to that, the Israel equations for the case of arbitrary 

causal character had been obtained in [58] as one of the first applications of the 

formalism of hypersurface data. Later on we will have more to comment on this 

result. 

We conclude the first part of the introduction by discussing another procedure to 

construct spacetimes containing null thin shells, namely the so-called cut-and-paste 

method. This different approach was introduced by Penrose [3], [85], [86], [87] in 

the sixties. 

The cut-and-paste method describes the shell by means of a metric with a Dirac 

delta distribution with support on the shell. In these coordinates, the metric is 

therefore very singular, and standard tensor distributional calculus is not suffi- 

cient to study its geometry. However, by a suitable change of coordinates the met- 

ric becomes continuous and the method can be reinterpreted as follows. Given a 

spacetime (M, g) containing an embedded null hypersurface N , the cut-and-paste 

procedure uses lightlike coordinates adapted to N . Then, N is removed by a cut, 

which leaves two separated manifolds (M±, g±) corresponding to both sides of N . 

Finally, those regions are reattached by identifying their boundaries so that there 

exists a jump on the coordinates when crossing the matching null hypersurface. 

This jump is responsible for the appearance of the Dirac delta term in the metric, 

which is interpreted as a concentration of matter and energy located on the match- 

ing hypersurface. By means of this useful geometrical approach, Penrose was able 

to study certain classes of impulsive plane-fronted and spherically-fronted waves 

propagating in a Minkowski background. Later works of Jirˇí Podolskỳ et al. e.g. in 

[88], [89], [90], [91], [92], [4], [5], [6], [7] (and references therein) apply the cut-and- 

paste procedure to generate spacetimes whose metric again contains a Dirac delta 

function with support on the null hypersurface. The most general construction 

so far describes pp-waves with additional gyratonic terms [5]. The cut-and-paste 

method is, by construction, strongly linked to the use of appropriate coordinate 

systems adapted both to the spacetime and to the null hypersurface where the cut 

is performed. 
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1.2 aim of this thesis 

 
The purpose of this thesis is two-fold. As already mentioned, we are firstly inter- 

ested in the geometry of null hypersurfaces (see Chapters 3, 4, 5, 6). In this context 

the formalism of hypersurface data becomes a powerful mathematical framework. 

Our second aim (and actually the starting point of the thesis) is the study of the 

problem of matching two completely general spacetimes across a null hypersur- 

face, which we address in Chapters 7, 8, 9. 

Concerning the part of the thesis where we expand the formalism of hypersurface 

data, the motivations described above have lead us to study how to characterize 

curvature information at the abstract level (see Chapter 4). Also, they have allowed 

us to understand how the data is affected by the existence of a privileged vector 

field (Chapter 5). In particular, this has permitted that we construct abstract notions 

of Killing horizons of order zero and one which do not require of any ambient 

space and which generalize the concepts of non-expanding, (weakly) isolated and 

Killing horizons. Finally, we have been able to derive an equation, called generalized 

master equation, that governs the geometry of null hypersurfaces with an extra null 

tangent vector field (Chapter 6). The analysis of this equation reveals properties 

about the surface gravity of such vector and about homothetic Killing horizons 

and Killing horizons of order zero and one. Moreover, it allows us to recover, as 

particular cases, the well-known near horizon equation of isolated horizons as well 

as the so-called master equation of multiple Killing horizons. 

The problem of matching two spacetimes across a null hypersurface constitutes 

the second part of the thesis. In a spacetime context and by requiring a simple 

topology of the boundaries, we have been able to encode the whole matching 

information in a function and a diffeomorphism between the set of null generators 

of both matching hypersurfaces. We have also derived explicit expressions for the 

matter-energy content of the shell. Finally, we have exploited the formalism of 

hypersurface data to address the problem of matching in a completely abstract 

context and without requiring topological restrictions upon the boundaries. This 

approach, as we will see, has many advantages that will be discussed later. 

 
 

1.3 contents 

 
This thesis is divided in three parts. In the first one, corresponding to Chapter 2, we 

discuss the mathematical definitions, tools and results from the literature that are 

required later throughout the thesis. We start by establishing our notational con- 
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ventions in Section 2.1. In Section 2.2 we introduce the formalism of hypersurface 

data as it is presented in [58], [59], including the definitions of (metric) hypersur- 

face data, the construction of the covariant derivatives  
◦ 

, ∇ already mentioned 

and several useful results within the formalism. Then, in Sections 2.3 and 2.4, we 

revisit some key aspects of the geometry of submanifolds, in particular concerning 

the geometry of embedded null hypersurfaces. In Sections 2.5 and 2.6, we review 

the definitions and geometric properties of several types of null hypersurfaces that 

play an essential role later in the thesis, namely non-expanding, weakly isolated, 

isolated and (multiple) Killing horizons. Finally, in Section 2.7 we include some 

prior considerations concerning the matching of two given spacetimes across a 

hypersurface. 

The rest of the thesis presents the new results that have been obtained in this work. 

The second part is devoted to the development of the formalism of hypersurface 

data. This is done in Chapters 3, 4, 5, 6, whose contents we describe next. 

The structure of Chapter 3 is as follows. In Section 3.1, we start by providing several 

new results within he framework of the formalism of hypersurface data. In partic- 

ular, in Section 3.1.1 we introduce the tensor field "Lie derivative of a connection" 

along a privileged vector field Z (denoted by ΣZ). We define ΣZ in a completely 

general context, derive various identities involving it and then focus our analysis 

on the tensor field "Lie derivative of 
◦ 

" along a vector field n which can be defined 

from any metric hypersurface data set. In Section 3.2 we study null hypersurface 

data, i.e. data describing (abstractly) an everywhere null hypersurface. Therein we 

include gauge-fixing results, new identities involving  
◦

 as well as its associated 

curvature and Ricci tensors and a detailed discussion on geometric aspects of non- 

degenerate smooth submanifolds within the abstract null hypersurface. Finally, in 

Section 3.3 we analyze the case when a null hypersurface data set is equipped with 

an extra null gauge-invariant vector field. 

Chapter 4 is devoted to the so-called constraint tensor R. The constraint tensor is 

defined for any abstract hypersurface and, when the data happens to be embedded 

in a semi-Riemannian manifold, it captures a certain combination of components 

of the Riemann curvature tensor of the ambient space. In Section 4.1, we motivate 

its abstract definition and derive some of its properties. In Section 4.2, we particu- 

larize our analysis to the null case, finding the contractions of R with a null gen- 

erator and providing its pull-back to any non-degenerate submanifold within the 

abstract hypersurface. In particular, we compute its relation with the Ricci tensor 

of the induced metric on such Riemannian submanifold. The chapter concludes 

with Section 4.3, where we introduce several quantities that are either invariant 
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under gauge transformations or have a simple gauge behaviour. The results in this 

chapter are of use in other parts of the thesis. 

Chapter 5 constitutes one of the core parts of this thesis. Its main concern is to 

study the case when a hypersurface admits a privileged vector field. The chapter 

is divided in four sections. In Section 5.1, we consider completely general hyper- 

surface data embedded in a semi-Riemannian manifold equipped with a special 

vector field y. Initially, we allow y to be completely arbitrary, in particular not ne- 

cessarily tangent to the hypersurface. In this context we derive explicit expressions 

for the Lie bracket of y with any extension of a rigging vector field. Then, we focus 

on the case when y is tangent and obtain the Lie derivative of the data tensor Y 

along y (recall that Y encodes the extrinsic geometric information of the hypersur- 

face, as we mentioned above). All results in Section 5.1 involve the deformation 

tensor of y. In Section 5.2 we focus on the case when the hypersurface is null and y 

is null and tangent to the hypersurface. In this context, we derive several identities 

to be used later in the thesis. Section 5.3 is devoted to the tensor "Lie derivative 

along y of the Levi-Civita connection", namely Σy. We compute the explicit form 

of Σy in terms of the data plus an additional tensor field הy 
which happens to 

play a crucial role in the analysis of the so-called abstract Killing horizons of order 

zero and one. These are new abstract notions of horizons which we motivate and 

present in Section 5.4, where we also compare them with other definitions of ho- 

rizons at the embedded level, including Killing horizons, non-expanding horizons 

and isolated horizons. 

With Chapter 6 we conclude our development of the formalism of hypersurface 

data. This chapter focuses on the derivation and consequences of the so-called gen- 

eralized master equation (see (6.61)). The generalized master equation is an identity 

that holds for any null hypersurface admitting a privileged null, tangent vector 

field y. It involves the proportionality function between y and a null generator of 

the hypersurface, the constraint tensor R, the tensor הy 
mentioned above and vari- 

ous tensor fields of the data. The generalized master equation, together with its 

contractions with a null generator, are included in Section 6.1. In Section 6.2 we 

particularize the analysis to the case when the deformation tensor of y is propor- 

tional to the metric. In this context, we obtain several interesting results concerning 

the fixed points set of y, the regularity of the Ricci tensor of the ambient space and 

the constancy of the surface gravity κ of y. In Section 6.3, we particularize the pre- 

vious results for abstract Killing horizons of order zero and one. This allows us 

to identify some consequences of κ not being constant. In Section 6.4 we provide 

another key result of this thesis, namely the restriction of the generalized master 

equation to any non-degenerate submanifold within a null hypersurface. As par- 
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ticular case, we recover the so-called master equation of multiple Killing horizons 

(see e.g. [2], [93], [94]) as well as the so-called near horizon equation of isolated 

horizons (see e.g. [95], [96], [97], [1], [98], [99]). Finally, in Section 6.5 we apply the 

prior results to the case of a vacuum degenerate Killing horizon. 

The third part of this thesis, corresponding to Chapters 7, 8 and 9, is devoted to the 

problem of matching two completely general spacetimes across a null hypersurface. 

The summary of the contents of these chapters is as follows. 

In Chapter 7 we address the matching problem from a spacetime viewpoint, 

namely without considering the boundaries of the spacetimes to be matched in 

a detached way. Throughout the chapter, we assume that the boundaries can be 

foliated by a family of spacelike cross-sections. In Section 7.1 we provide some 

preliminary results and identities for its later use. Section 7.2 offers a brief discus- 

sion on the problem of matching in the general case, i.e. when the boundaries of 

the spacetimes have any causality. Section 7.3 focuses on the null case and con- 

stitutes the main part of the chapter. We start by writing the junction conditions 

in terms of a basis of vector fields. This allows us to determine the necessary and 

sufficient conditions for the matching to be possible. In Section 7.3.1, we prove that 

the whole matching information can be codified in the so-called step function and 

a diffeomorphism between the set of null generators of each boundary. We also 

analyze a scenario in which an infinite number of matchings are feasible, namely 

when the boundaries are totally geodesic. We obtain explicit expressions for the 

matter-energy content of the most general null shell resulting from the matching 

(Section 7.3.2). We conclude the chapter by applying the results to the case of the 

matching of two regions of the spacetime of Minkowski across a null hyperplane 

(see Section 7.3.3), connecting our results with those from the cut-and-paste con- 

structions in the literature. 

In Chapter 8, we study a particular case of the above, namely when the boundaries 

of the spacetimes to be matched are embedded abstract Killing horizons of order 

zero (this notion has been introduced in Chapter 5). The idea is to analyze the 

situation in which the matching procedure identifies the zero order "Killing" vector 

fields. In Sections 8.1, 8.2 and 8.3, we address the matching problem for three 

different scenarios: both boundaries being non-degenerate, both being degenerate 

and one being degenerate and the other being non-degenerate. In Section 8.4, we 

particularize the results for the case of Killing horizons with bifurcation surfaces. 

We conclude with Section 8.5, where we examine the case of the spacetimes to be 

matched being spherical, plane or hyperbolic symmetric. 
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Chapter 9 concludes our discussion on the matching problem. This chapter con- 

stitutes another core part of the thesis for several reasons. First, because we study 

the problem of matching from a purely abstract viewpoint (i.e. without requiring 

the matching hypersurfaces to be embedded) and secondly because the results are 

completely general (in the sense that we do not enforce any topological restrictions, 

nor any other condition whatsoever on the null hypersurfaces and the spacetimes). 

In Section 9.1, we first provide a theorem for boundaries of any causality that es- 

tablishes the abstract construction of the matching. We then focus on the null case 

(see Section 9.1.1), obtaining the necessary and sufficient conditions that allow 

for the matching and obtaining explicit expressions for the gravitational/matter- 

energy content of the resulting null shell. We also analyze the multiple matchings 

scenario (cf. Section 9.1.2). In Section 9.2, we recover the results from Chapter 7 

whenever the boundaries have product topology. Finally, we conclude with an ex- 

ample of matching across a totally geodesic null hypersurface in the spacetimes of 

(anti-)de Sitter, see Section 9.3. 

The last chapter of the thesis, namely Chapter 10, is devoted to collect the conclu- 

sions of our work as well as some future prospects. 

Finally, this thesis includes four appendices. In Appendix A, we prove various 

general identities concerning the curvature tensor of a torsion-free connection. Ap- 

pendix B is devoted to the derivation of a generalized form of the Gauss identity. 

In Appendix C, we offer a consistency check on the gauge behaviour of a tensor 

field introduced in Chapter 4. The thesis concludes with Appendix D, where we 

present a new geometric construction of coordinates near any null hypersurface. 

The essential point of such construction is that it allows one to recover the so- 

called Gaussian null coordinates (see e.g. [100]) and Rácz-Wald coordinates [101] 

in a neighbourhood of a null hypersurface and a bifurcation surface respectively. 



 

 



 

 

p 
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P R E L I M I N A R I E S 

 

 

 
As we have mentioned in the Introduction, this chapter includes all mathematical 

tools and results that have already been obtained in the literature. The contents of 

this chapter will be of use later elsewhere in the thesis. 

 
 

2.1 notation and conventions 

 

All manifolds are smooth, connected and, unless otherwise indicated, without 

boundary. Given a manifold M and a point p ∈ M, the tangent and cotan- 

gent spaces at p are denoted by TpM, T⋆M respectively. As usual, TM refers 

to the corresponding tangent bundle and Γ (TM) to its sections. Given a differen- 

tiable map ϕ between manifolds, we use the standard notation of ϕ⋆ and ϕ⋆ for 
its pullback and push-forward respectively. We also let F (M) = C∞ (M, R) and 

def 

F ⋆ (M) ⊂ F (M) its subset of no-where zero functions. We use the symbols £, 

d to denote Lie derivative and exterior derivative respectively. Both tensorial and 

abstract index notation will be henceforth employed at our convenience. To help 

distinguishing objects, we will often use boldface to define covariant tensors in 

index-free notation. When indices are used, we shall use standard font, not bold- 

face, for them. We will use Greek, lower case Latin and capital Latin indices for 

(n + 1)-dimensional, n-dimensional and (n − 1)-dimensional manifolds as follows 

α, β, ... = 0, 1, 2, ..., n; a, b, ... = 1, 2, ..., n; A, B, ... = 2, ..., n, (2.1) 

 

where n ≥ 1 (or n ≥ 2 whenever indices A, B, ... are involved) will always be 

assumed. Parenthesis (resp. brackets) will denote symmetrization (resp. antisym- 

metrization) of indices, e.g. for a given two-covariant tensor field A we write 

 

A ab 

 

=
def 

1 
(Aab − Aba), A ab 

 

=
def 

1 
(Aab + Aba). (2.2) 
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Given two tensors A and B, we let A ⊗s B ≡ 1 (A ⊗ B + B ⊗ A) and denote the 

trace of A with respect to B as trB A. For any semi-Riemannian manifold (M, g), 

we use the symbol ♯ for the corresponding contravariant metric, i.e. g♯. We let ∇ 

denote the Levi-Civita covariant derivative of g and g(X, Y) (also ⟨X, Y⟩g) will be 

the scalar product of two vector fields X, Y ∈ Γ (TM). For any connection D on 

a manifold M, our notation and convention for its associated curvature operator 

are 

RD(X, W)Z =
def

 

(
DXDW − DW DX − D 

 

[X,W] 

) 
Z, ∀X, W, Z ∈ Γ(TM), (2.3) 

except if D = ∇, in which case we simply write R for the curvature operator. Our 

signature convention for Lorentzian manifolds (M, g) is (−, +, ..., +). 

 

 
2.2 formalism of hypersurface data 

 
In this section we introduce the main formalism exploited throughout this thesis, 

called formalism of hypersurface data. Originally presented in [58], [59] (with pre- 

cursor [64]), it has proven useful in the study of first order perturbations of a 

general hypersurface [102], in the study of the characteristic problem in General 

Relativity [60], [61] and in the context of matching spacetimes across null boundar- 

ies [103], [104], which constitutes a core part of this thesis (see Chapters 7, 8 and 9). 

The key advantages of this formalism are firstly that it allows one to describe hy- 

persurfaces of arbitrary causal character at a purely abstract level, namely without 

making any reference to an ambient space where they may be embedded; and 

secondly that it can be adapted to many different situations of interest by means 

of an inherent gauge freedom. We discuss all the details below. 

 

2.2.1 Metric hypersurface data 

 

The formalism of hypersurface data relies upon the two core notions of metric 

hypersurface data and hypersurface data, which conceptually involve different levels 

of geometric information. Specifically, a metric hypersurface data set encodes all 

information concerning the intrinsic geometry of an abstract hypersurface N while 

a hypersurface data set codifies, in addition, the extrinsic geometry of N . 

It is convenient to start with the intrinsic part. The underlying idea behind the 

notion of metric hypersurface data is that, whenever N is embedded in a semi- 
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p 

p 

c 

def 

 
Riemannian manifold, we are able to recover all the information about the ambient 

geometry along the hypersurface. 

 
Definition 2.2.1. (Metric hypersurface data) Let N be an n-dimensional manifold en- 

dowed with a 2-covariant symmetric tensor γ, a covector ℓ and a scalar function ℓ(2). The 

four-tuple {N , γ, ℓ, ℓ(2)} defines metric hypersurface data provided that the symmetric 

2-covariant tensor A|p on TpN × R given by 
 

A|p ((W, a) , (Z, b)) =
def 

γ|p (W, Z) + a ℓ|p (Z) + b ℓ|p (W) + abℓ(2)|p,  
(2.4) 

W, Z ∈ TpN , a, b ∈ R 

is non-degenerate at every p ∈ N . 

Since A|p is non-degenerate there exists a unique inverse contravariant tensor A|p 

on T⋆N × R. Splitting its action as 

 

A|p ((α, a) , (β, b)) =
def 

P|p (α, β) + a n|p (β) + b n|p (α) + abn(2)|p,  
(2.5) 

α, β ∈ T⋆N , a, b ∈ R 

 

defines a symmetric 2-contravariant tensor P, a vector n and a scalar n(2) in N . By 

definition, they are smooth fields satisfying [58]: 

γabnb + n(2)ℓa = 0, (2.6) 

ℓana + n(2)ℓ(2) = 1, (2.7) 

Pabℓb + ℓ(2)na = 0, (2.8) 

Pabγbc + naℓc = δa. (2.9) 

Observe that we have imposed no conditions on the signature of the tensor A. 

This will be relevant later when we introduce the concept of embedded (metric) 

hypersurface data. It is also worth stressing that there are no restrictions upon 

γ besides being a symmetric 2-covariant tensor field. In particular, γ can be de- 

generate. In any case, for arbitrary metric hypersurface data (irrespective of the 

signature of A), one can prove that the radical of γ at a point p ∈ N (i.e. the set 

Radγ|p = {X ∈ TpN | γ(X, ·) = 0} of vectors anhihilated by γ) is [59] either zero- 

or one-dimensional. Moreover, the latter case occurs if and only if n(2)|p = 0, which 

together with (2.6) means that Radγ|p = ⟨n|p⟩. Thus, n|p is non-zero (by (2.7)) and 

defines the degenerate direction of γ|p. This property suggests introducing the 

following definitions of null and non-null points. 
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q 

 

Definition  2.2.2.  (Null  and  non-null  point)  Let  {N , γ, ℓ, ℓ(2)}  be 

metric hypersurface data. A point p is called null if dim(Radγ)|p = 1 and non-null 

otherwise. 

Thus, at a non-null (resp. null) point p ∈ N , it holds n(2)|p ̸= 0 (resp. n(2)|p = 0). 

Given metric hypersurface data {N , γ, ℓ, ℓ(2)}, it is useful to define the tensors 

 

F =
d e f  

1 
dℓ, (2.10) 

2 

s =
d e f  

F(n, ·), (2.11) 

U =
d e f  1 

£nγ + ℓ ⊗s dn(2). (2.12) 

 

Observe that U is symmetric and F is a 2-form. These tensor fields satisfy the 

following identities [59]: 

£nℓ = 2s − d(n(2)ℓ(2)), (2.13) 

U(n, ·) = −n(2)s + 
1 

dn(2) + 
1 

(n(2))2dℓ(2). (2.14) 
2 

It is also worth mentioning that one can construct a volume form on the abstract 

manifold N provided it is oriented. The corresponding definition is as follows. 

Definition 2.2.3. (Volume form) Consider metric hypersurface data {N , γ, ℓ, ℓ(2)} and 

assume N to be oriented. Then the following local expression in any chart {xa} defines a 

volume form on N :  
(ℓ) 

vol 
= e 

 
 

|detA|E, (2.15) 

where e = +1(−1) if the chart is positively (negatively) oriented, E is the Levi-Civita 

totally antisymmetric symbol and | · | denotes the absolute value. 

 

In general, N is not a semi-Riemannian manifold because it is not endowed with 

a metric tensor. This means that generically (in particular when there exist null 

points in N ) we cannot define a Levi-Civita covariant derivative on N . As we shall 

see next, in spite of this fact it turns out that there exists a canonical notion of 

covariant derivative on N . This fundamental property makes the whole formalism 

relevant both mathematically and physically, as the possibility of doing calculus 

with tensor fields is key in any differential geometric theory. 

This canonical covariant derivative, denoted by 
◦ 

, can be defined from its action 

on some tensor fields constructed from the metric hypersurface data {N , γ, ℓ, ℓ(2)} 

[59, Prop. 4.3]. 

W 
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∇Z 

∇ 

∇ 

∇a 

∇ 

∇X 

∇X 

γ 

ℓ 

∇b 

∇a 

 

Theorem 2.2.4. For any given metric hypersurface data {N , γ, ℓ, ℓ(2)}, the conditions 

◦ γ)(Z, W) = −U(X, Z)ℓ(W) − U(X, W)ℓ(Z), (2.16) 

◦ ℓ)(Z) + ( 
◦ 

ℓ)(X) = −2ℓ(2)U(X, Z), ∀X, Z, W ∈ Γ(TN )  (2.17) 
 

define a unique torsion-free connection 
◦

 on N . 

We call the connection 
◦ 

metric hypersurface connection, as it is constructed solely 
◦ 

from the metric hypersurface data. The following identities [59] for ∇-derivatives 

of the tensor fields γ, ℓ, n and P will be used later: 
 

◦ 

∇a  bc = −ℓb Uac − ℓcUab , (2.18) 
◦ 
∇a  b = Fab − ℓ(2)Uab

 , (2.19) 

◦ 
nc = nc 

(
sb − n(2)(dℓ(2))b

 

) 
+ Pac 

(
Uba − n(2)Fba

 
) 

, (2.20) 

◦ 
Pbc = − 

(
nb Pc f + nc Pb f 

) 
Fa f 

− nbnc 
◦

 ℓ(2). (2.21) 

An interesting particular case occurs when ℓ = 0. Then, A being non-degenerate 

requires γ to be non-degenerate and ℓ(2) ̸= 0 everywhere on N . This means that 

(N , γ) is a semi-Riemannian manifold to which one can associate a Levi-Civita 

connection ∇(γ). Moreover, (2.8) entails that n = 0, and hence U and F all van- 
ish identically. This transforms (2.16)-(2.17) into ( 

◦ 
γ)(Z, W) = 0, from where 

◦ 
∇X 

we conclude that ∇ = ∇(γ). Thus, the formalism recovers the usual definition of 

metric connection whenever N has no null points and ℓ = 0. We emphasize, how- 

ever, that the definition of 
◦ 

works in general and that one can treat not only the 

case when N includes null points (or when all of them are null) but also when N 

consists of non-null points only but one wants to use ℓ ̸= 0. 

As already mentioned, the purpose of the formalism of hypersurface data is 

to study general hypersurfaces independently of any ambient manifold where 

they may be embedded. However, at some point it will become necessary to 

connect the abstract formalism with the geometry of embedded hypersurfaces. 

The relationship between them, which relies upon the notion of embedded 

metric hypersurface data, also allows one to understand how the abstract data is 

affected by the freedom in the choice of an everywhere transversal vector field 

along the hypersurface. 

 
Definition 2.2.5. (Rigging, embedded metric hypersurface data) A metric hypersurface 

data {N , γ, ℓ, ℓ(2)} is said to be embedded in a semi-Riemannian manifold (M, g) of 

( 

( 
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def 

 

dimension n + 1 provided there exists an embedding ϕ : N '−  M and a rigging vector 

field ζ (i.e. a vector field along ϕ (N ), everywhere transversal to it) satisfying 

ϕ⋆ (g) = γ, ϕ⋆ (g (ζ, ·)) = ℓ, ϕ⋆ (g (ζ, ζ)) = ℓ(2). (2.22) 

 
Notation 2.2.6. In the following, whenever it does not lead to misunderstandings we shall 

identify scalar functions on N and on ϕ(N ) as well as vector fields on N with their 

corresponding images through ϕ⋆. 

In view of (2.22), in the embedded case the tensors {γ, ℓ, ℓ(2)} coincide respectively 

with the first fundamental form of the hypersurface, the tangent part of the rigging 

covector g(ζ, ·) and the norm of the rigging. Observe that any metric hypersurface 

data with ℓ = 0 is related, when one embeds it, to the case when the rigging is 

normal to ϕ(N ) (which of course requires that ϕ(N ) has no null points, as the 

normal would not be everywhere transverse otherwise). 

It is also worth stressing that from any metric hypersurface data set one can re- 

construct the full metric g along ϕ(N ) (this is the reason behind the terminology 

"metric hypersurface data"), as it holds that 

A|p ((W, a), (Z, b)) = g|ϕ(p)(ϕ∗W + aζ, ϕ∗Z + bζ). (2.23) 

 

Thus, A completely encodes the metric g at points on ϕ (N ). This justifies referring 

to A as ambient metric and provides its geometrical interpretation. 

In order to relate the quantities {n, n(2)} with geometric objects in the ambient 

space, we now consider the following setup. 

 

Setup 2.2.7. We let {N , γ, ℓ, ℓ(2)} be metric hypersurface data embedded in a semi- 

Riemannian manifold (M, g) with embedding ϕ and rigging vector ζ. We select any local 

basis {eˆa} of Γ(TN ) and define ea = ϕ⋆(eˆa). By transversality of the rigging, {ζ, ea} 

constitutes a (local) basis of Γ(TM)|ϕ(N ). The hypersurface ϕ(N ) admits a unique nor- 

mal covector ν satisfying ν(ζ) = 1. By construction, this covector belongs to the dual 

basis of {ζ, ea}, which we denote by {ν, θa}. We define the vector fields ν =
d e f  

g♯(ν, ·), 

θa =
d e f  

g♯(θa, ·). 

In these circumstances, {ν, θa} satisfy, by definition of dual basis, 

 

g(ν, ζ) = 1, g(ν, ea) = 0, g(θa, ζ) = 0, g(θa, eb) = δa, (2.24) 



2.2 formalism of hypersurface data 25 
 

 

ϕ(N )  ♯ ϕ(N )  (2) 

= c c c d 

= c 

 

and can be decomposed in the basis {ζ, ea} as 

 

ν = n(2)ζ + naea, (2.25) 

θa = Pabeb + naζ. (2.26) 

 
This can be proven by taking (2.25)-(2.26) as an ansatz and checking (2.24): 

 
g(ν, ea) = n(2)ℓa + γabn

b (2.6) 
0, g(θa, ζ) = Pabℓb + naℓ(2) (2.8) 

0, 

 
g(ν, ζ) = n(2)ℓ(2) + na

 

= 
a 

(2.7) 
1, g(θa, eb) = Pacγbc + na

 

= 

b 
(2.9) 

δa.
 

ℓ = ℓ = b 

Since in the embedded case the components of A in the basis {(eˆa, 0), (0, 1)} are 

the same (by (2.22)) as the components of g in the basis {ea, ζ}, it follows directly 

from (2.5) that the contravariant metric g♯ can be expressed in the basis {ζ, ea} as 

gµν ϕ(N ) 
n(2)ζµζν + nc ζµeν + ζνe

µ 
+ Pcde

µ
eν

 

⇐⇒ gµν 
ϕ(N ) 

eµθcν + ζµνν, (2.27) 

where the equivalence is a consequence of (2.25)-(2.26). Observe that this implies 

 

g(ν, ν) = g (ν, ν) = n . (2.28) 

Thus, in the embedded case n(2) is just the square norm of the normal ν along 

ϕ(N ), while ϕ⋆n = ν − n(2)ζ (cf. (2.25)). In particular, at null points ν coincides 

with ϕ⋆n. 

We conclude the section of metric hypersurface data by quoting Lemma 3 in [58]. 

This result, which will be key later in many situations, establishes under which 

conditions it is possible to construct a vector field from a given pair consisting of 

a covector and a scalar function. 

Lemma 2.2.8. Let {N , γ, ℓ, ℓ(2)} be metric hypersurface data. Given a covector field ϱ ∈ 

Γ(T⋆N ) and a scalar function u0 ∈ F(N ), there exists a vector field W ∈ Γ(TN ) 

satisfying γ(W, ·) = ϱ, ℓ(W) = u0 if and only if ϱ(n) + n(2)u0 = 0. Such W is unique 

and reads W = P(ϱ, ·) + u0n. 

 

2.2.1.1 Gauge structure 

 
As the reader may have noticed, the choice of a rigging vector field along an embed- 

ded hypersurface is highly non-unique. This fact is captured within the formalism 
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of hypersurface data by means of a built-in gauge freedom, whose main properties 

are summarized next [59]. 

Let {N , γ, ℓ, ℓ(2)} be metric hypersurface data, z ∈ F ⋆ (N ) and V ∈ Γ (TN ). We 

define the gauge-transformed metric data 

G z,V ({N , γ, ℓ, ℓ(2)}) =
def

 

  
N , G z,V 

 

(γ) , G z,V (ℓ) , G z,V
  

ℓ(2)

 
(2.29) 

 
as 

 

G(z,V) (γ) = γ, (2.30) 

G(z,V) (ℓ) = z (ℓ + γ (V, ·)) , (2.31) 

G z,V
 
ℓ(2)

 
=
d e f  

z2
 
ℓ(2) + 2ℓ (V) + γ (V, V)

 
. (2.32) 

The induced transformations of P, n, n(2) are 

 

G(z,V) (P) = P + n(2)V ⊗ V − 2V ⊗s n, (2.33) 

G(z,V) (n) = z−1(n − n(2)V), (2.34) 

G(z,V)

 
n(2)  = z−2n(2), (2.35) 

while the gauge behaviour of the metric hypersurface data connection 
◦  

is given 

by the following proposition [59, Prop. 4.6]. 

 

Proposition 2.2.9. Let {N , γ, ℓ, ℓ(2)} be metric hypersurface data, z ∈ F ⋆ (N ) and 

V ∈ Γ (TN ). Then, the difference tensor between the connection 
◦ 

and G(z,V)( 
◦ 

) is 

G ( 
◦ 

) − ◦ = 
 1 

V ⊗ 
(
£  

γ − n(2)£ 
 

γ + 2zℓ ⊗ dn(2)
)
 

(z,V) ∇ ∇ 
2z zn uV s 

1 
+ 

2z
n ⊗ (£zVγ + 2ℓ ⊗s dz). (2.36) 

 

As proven in [59, Lem. 3.3], the set of all possible transformations {G(z,V)} consti- 

tutes a group with the following properties. 

 

Proposition 2.2.10. The set of transformations {G(z,V)} forms a group 

G = F(N ) × Γ(TN ) 
 

with composition law G z ,V ◦ G z ,V = G 1 , identity element G 
=
d ef  

G 1,0
 

( 2 

and inverse element G−1
 

2) 

=
def 

G
 

( 1  1) 
1 . 

(z1 z2,V2+z2
− V1 ) I ( ) 

(z,V) (z− ,−zV) 

) ) 



2.2 formalism of hypersurface data 27 
 

 

def 

 

This justifies the terminology of calling G gauge group, each element G(z,V) gauge 

transformation (also gauge group element) and the quantities {z, V} gauge parameters. 

Observe that the gauge freedom associated to any metric hypersurface data is 

an intrinsic property of the data, independently of whether it is embedded in an 

ambient space. When the data is embedded, the connection between the freedom 

in the choice of a rigging vector field and the gauge structure can be established 

as follows [59, Prop. 3.4]. 

Proposition 2.2.11. Let {N , γ, ℓ, ℓ(2)} be metric hypersurface data embedded in a 

semi-Riemannian manifold (M, g) with embedding ϕ and rigging vector field ζ. Then 

G(z,V)({N , γ, ℓ, ℓ(2)}) is also embedded in the same space with the same embedding ϕ but 

with a different rigging G(z,V)(ζ) defined by 

G(z,V)(ζ) = z(ζ + ϕ⋆V). (2.37) 

 
Since the normal vector ν is fixed for any choice of rigging according to the condi- 

tion ζ(ν) = 1, Proposition 2.2.11 forces 

 

G(z,V)(ν) = 
1 

z
ν. (2.38) 

The highly non-uniqueness of the rigging could seem a priori to be a drawback of 

the formalism. However, the possibility of fixing the gauge at will when studying 

hypersurfaces at the abstract level actually constitutes a huge advantage in many 

situations because one can adjust the gauge freedom to the specific problem one 

wants to solve. 

As proved in [59, Lemma 3.6], given metric hypersurface data {N , γ, ℓ, ℓ(2)} and 

a point p ∈ N , the only elements of the gauge group G leaving {N , γ, ℓ, ℓ(2)} in- 

variant at p are (i) G(1,0)|p if p is null and (ii) {G(1,0)|p, G(−1,−2ℓ)|p} if p is non-null 

(here the vector ℓ|p is defined as ℓ|p =
d e f  

γ♯(ℓ, ·)|p, where γ♯|p is the inverse of the 

metric γ|p). Since the gauge parameters {z, V} are smooth by definition, it follows 

that when N contains a null point, only the identity element of G leaves the whole 

metric hypersurface data invariant. On the contrary, when N consists exclusively 

of non-null points there exist two gauge elements which do not transform the met- 

ric data. In this last case, the rigging G(−1,−2ℓ)(ζ) corresponds [59] to the reflection 

of ζ with respect to the tangent plane Tqϕ(N ) at each point q ∈ ϕ(N ). 
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2.2.2 Hypersurface data 

 
We have already introduced the notion of metric hypersurface data, which codifies 

all the intrinsic geometric information of a hypersurface. The next natural step is 

to encode the extrinsic geometry within the formalism. As mentioned before, this 

leads us to the concept of hypersurface data. 

Definition 2.2.12. (Hypersurface data) A five-tuple {N , γ, ℓ, ℓ(2), Y} defines hypersur- 

face data if {N , γ, ℓ, ℓ(2)} is metric hypersurface data and N is equipped with an extra 

symmetric 2-covariant tensor Y. 

We will frequently use the notation D ≡ {N , γ, ℓ, ℓ(2), Y}. As happened before 

for the metric hypersurface data, the geometric interpretation of the tensor field Y 

comes from the definition of embedded hypersurface data, which we give next. 

 

Definition 2.2.13. (Embedded hypersurface data) A hypersurface data {N , γ, ℓ, ℓ(2), Y} 

is said to be embedded in a semi-Riemannian manifold (M, g) with embedding ϕ and 

rigging vector field ζ if its metric part {N , γ, ℓ, ℓ(2)} is embedded in (M, g) with same 

embedding and rigging and, in addition, 

 

2 
ϕ⋆ 

£ζ g
 

= Y. (2.39) 

 

Definition 2.2.13 directly relates the tensor Y with transverse derivatives of the am- 

bient metric g on ϕ(N ), which automatically guarantees that Y encodes extrinsic 

information of the hypersurface ϕ(N ) in the embedded case. The gauge trans- 

formation (2.37) of ζ determines the behaviour of Y (and hence of the whole hy- 

persurface data {N , γ, ℓ, ℓ(2), Y}) under the action of a gauge group element. This 

transformation must be introduced at the abstract level as a definition, namely 
 

def 1 z 
G(z,V) (Y) = zY + ℓ ⊗s dz + 

2 
£zVγ = zY + (ℓ + γ(V, ·)) ⊗s dz + 

2 
£Vγ, (2.40) 

and it is straightforward to prove [59] that (2.40) guarantees that G(z2,V2) ◦ 

G(z1,V1) (Y) = G(z2,V2)◦(z1,V1)(Y). 

One can obtain the tangent covariant derivative of the rigging for given embedded 

hypersurface data {N , γ, ℓ, ℓ(2), Y}. We perform this calculation in a given basis, 

namely by assuming Setup 2.2.7 (where the vector fields ν and θa are given by 
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1 1 

 

(2.25)-(2.26) in terms of the basis {ζ, ea}). By defining ζ =
d e f  

g(ζ, ·) and using (2.10), 

(2.22), (2.39) and the fact that d commutes with the pull-back, one gets 

1 1 

⟨∇ea ζ, eb⟩g = 
2

  
⟨∇ea ζ, eb⟩g + ⟨∇eb ζ, ea⟩g

 
+ 

2

  
⟨∇ea ζ, eb⟩g − ⟨∇eb ζ, ea⟩g

 
 

= 
2 

(£ζ g)(ea, eb) + 
2 

dζ(ea, eb) = Yab + Fab, (2.41) 

⟨∇ea ζ, ζ⟩g 
1 

= 
2 

∇ea ⟨ζ, ζ⟩g =
N

 
1 ◦ 

2 
∇a ℓ(2). (2.42) 

The combination of (2.41) and (2.42) yields 
 

 

∇ea 
1 ◦ 

2 
∇a ℓ

(2)ν + (Yab + Fab ) θb. (2.43) 

This identity will be of use in Section 5.1. 

Given hypersurface data D = {N , γ, ℓ, ℓ(2), Y}, it is useful to define the objects 

r =
d e f  

Y(n, ·), κn =
d e f  

− Y(n, n), (2.44) 

K =
d e f  

n(2)Y + U. (2.45) 

 

Observe that K is symmetric by construction. Moreover, under the action of a 

gauge group element, it transforms as [59, Lemma 3.5] 

1 

G(z,V)

 
K

  
= z 

K. (2.46) 

The simple gauge behaviour (2.46) can be easily understood in the embedded case. 

When D is embedded in an ambient space with embedding ϕ and rigging ζ, the 

tensor K defined in (2.45) coincides [59] with the second fundamental form of 

ϕ(N ) with respect to the unique normal ν satisfying ν(ζ) = 1, i.e. 

 

K = ϕ⋆(∇ν). (2.47) 

This, together with the fact that ϕ⋆ν = 0, explains the transformation behaviour of 

K at the abstract level. Expression (2.46), however, holds independently of whether 

the data is embedded or not, and it is a consequence of definition (2.45). Observe 

that K|p = U|p for null points p ∈ N . In such case, all extrinsic information drops 

from K and therefore we recover the well-known property that the second fun- 

damental form only codifies extrinsic geometric information for non-null points. 

This also means that at a null point p, U|p is the second fundamental form of 

ϕ(N ) with respect to ν, which will be relevant later, as many of our results will 

depend strongly on this tensor. 

ζ = 
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∇ 

Y = 

(2 

∇ 

∇ 

∇ 

Z = 

∇ 

◦ 

◦ 

 

Another remarkable result is that, for given hypersurface data embedded in a 

semi-Riemannian manifold (M, g), the relation between the metric hypersurface 

connection 
◦ 

and the ambient Levi-Civita connection ∇ of (M, g) is [58] 
 

∇X ∇X Y − Y(X, Y)ν − U(X, Y)ζ, (2.48) 

where X, Y ∈ Γ(TN ) and ν = n(2)ζ + ϕ⋆n (recall (2.25)). 

The behaviour of the tensor field Y under the action of the gauge elements 

G(1,0), G(−1,−2ℓ) also deserves a brief comment. Of course, for the former we find 

G(1,0)(Y) = Y (cf. (2.40)) and hence {N , γ, ℓ, ℓ(2), Y} still remains invariant un- 

der the identity element. For the latter, on non-null points one can prove that 

G(−1,−2ℓ)(Y) = Y − 
n

2 
) K and hence the whole hypersurface data is not invariant 

unless K = 0. Observe that, in the case when K = 0, one can determine Y in 

terms of the metric hypersurface data (by means of (2.45)). Thus, the invariance of 

Y when K = 0 is a direct consequence of {N , γ, ℓ, ℓ(2)} being invariant itself. Any- 

way, in general Y does not remain invariant under the transformation G(−1,−2ℓ). 

This is consistent with the fact that a reflection of the rigging affects the transverse 

Lie derivative of g unless the normal transversal derivative vanishes (and hence so 

does K). 

 
 

 

2.2.2.1 Hypersurface connection ∇ 

The metric hypersurface connection 
◦

 

 
 
 
is not the only useful covariant derivative 

that can be constructed from given hypersurface data. In fact, from {N , γ, ℓ, ℓ(2), Y} 

one can define another torsion free connection ∇, which is called hypersurface con- 

nection or rigging connection. The simplest form of defining it is by providing its 

relation with 
◦ 

. 

 

Definition 2.2.14. (Hypersurface connection ∇) Let {N , γ, ℓ, ℓ(2), Y} be hypersurface 

data and 
◦ 

the corresponding metric hypersurface connection defined in Theorem 2.2.4. 
 

For any X, Z ∈ Γ(TN ), ∇ is uniquely defined by 

 
 

∇X ∇X 
Z − Y(X, Z)n. (2.49) 

 
Unlike  

◦ 
, the rigging connection depends on both the metric hypersurface data 

∇ 
◦

 

and the extrinsic part Y. Depending on the situation it is advantageous to use ∇ 

or ∇, so it is useful to keep both connections in mind. However, for the purposes 

of this thesis 
◦ 

will definitely be of more use. The only situation in which ∇ is 



2.2 formalism of hypersurface data 31 
 

 

∇ 

∇ 

2 

∇ 

 

independent of Y occurs when n vanishes identically. In such case, (2.6) entails 

that either n(2) or ℓ has to be zero. The requirement of A being non-degenerate 

excludes the former, which means that ℓ = 0. We have already discussed that 

this only happens when (i) γ is a metric (which only holds for non-null points) 

and (ii) the rigging is normal to N . The importance of the covariant derivative ∇ 

relies on the fact that it coincides with the connection induced from the Levi-Civita 

covariant derivative of the ambient space in the embedded case. In fact, combining 

(2.25), (2.45) and (2.48)-(2.49) yields 

 

∇XY = ∇XY − K(X, Y)ζ, ∀X, Y ∈ Γ(TN ). (2.50) 

In the embedded case, this connection was first introduced by Schouten [62] and 

studied in detail in [64]. 

 

2.2.2.2 Curvature of the metric hypersurface connection 
◦

 

 
We conclude this section with some results involving the curvature and Ricci 

tensors Ri
◦

em, R
◦

ic (or R
◦ 

d
abc and R

◦ 

ab in abstract index notation) of the metric hyper- 

surface connection 
◦ 

. The first proposition is a general identity for R
◦

ic [59, Prop. 

5.1], while the second provides all the components of the curvature tensor Rαβγδ 

of (M, g) that are computable in terms of the hypersurface data [64] (see also [58, 

Prop. 6]). 

 

Proposition 2.2.15. Given metric hypersurface data {N , γ, ℓ, ℓ(2)}, the curvature tensor 

R
◦

ic verifies 

R
◦

ic(X, Z) − R
◦

ic(Z, X) = 

(

ds − 
1 

dn(2) ∧ dℓ(2)

1 

(X, Z), X, Z ∈ Γ(TN ). (2.51) 

 

Proposition 2.2.16. Let {N , γ, ℓ, ℓ(2), Y} be hypersurface data embedded in a semi- 

Riemannian manifold (M, g) with embedding ϕ and rigging ζ. Let {eˆa} be a (local) basis 

of Γ(TN ) and ea =
d e f  

ϕ⋆(eˆa). Then, the Riemann tensor R αβγδ of g satisfies 
 

R ζαe
β
eγeδ ϕ(N )

 
R
◦ a + 2 

◦ 
Y + 2ℓ(2) ◦ 

U + U ◦ 
ℓ(2) 

αβγδ b c d = ℓa bcd ∇[d c]b ∇[d c]b b[c∇d] 

+ Yb[d 

(

2 
(

Fc] f + Yc] f 

) 
n f + n(2) ◦ 

c]ℓ
(2)

1 

, (2.52) 

R eαeβeγeδ 
ϕ(N ) 

γ R
◦ f 

+ 2ℓ 
◦ 

U + 2Y U + 2U Y 
αβγδ a b c  d = a f bcd a∇[d c]b b[c d]a b[c d]a 

+ 2n(2)Yb[cYd]a + 2Ub[cFd]a. (2.53) 
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def 

N- 

- 

- 

- 

 

2.2.3 Matter-hypersurface data and constraint equations 

 
We have presented the formalism of hypersurface data, firstly by introducing the 

metric data and secondly by studying the extrinsic component of the data. How- 

ever, the information concerning the matter content of the would-be ambient space 

cannot be extracted from neither of these two data sets. For instance, in the stand- 

ard Cauchy problem of General Relativity (where one prescribes data on a space- 

like hypersurface), the matter data corresponds to the energy density ρ and the 

energy current J. These quantities are defined by 

 
def 

ρ = T(ν, ν) |
N- and J(X) = − T(ν, X)|  , 

where T is the energy-momentum tensor of the spacetime, N- is the spacelike 

hypersurface of initial data, ν is the observer orthogonal to N at all of its points 

and X ∈ Γ(TN ). At the abstract level, one should prescribe a function ρ and a 

covector J so that a posteriori (i.e. once the initial value problem has been solved 

and a spacetime and a spacelike hypersurface N have been constructed) they get 

their corresponding physical meaning. In fact, in order to be able to accommodate 

other geometric theories of gravity, it is advantageous to define ρ and J not by 

means of the energy-momentum tensor but in terms of the ambient Einstein tensor. 

Note that even in General Relativity the two definitions are not the same when the 

spacetime has a non-zero cosmological constant. We keep using the term “matter" 

to refer to these quantities due to its close relationship with the energy-momentum 

tensor in General Relativity, but we always work with purely geometric objects 

independent of any field equations. 

In order for ρ, J to become the suitable physical/geometrical quantities at the 

spacetime level, we need to impose a set of restrictions to them, usually known 

as constraint equations. Apart from ρ, J themselves, the constraint equations involve 

the first and second fundamental forms. These equations are well-known in the 

spacelike case (see e.g. [105]), and have been generalized for hypersurfaces of ar- 

bitrary causal character in [58]. 

The constraint equations are closely related to the concept of matter-hypersurface 

data [58], which we present next. As usual, we first introduce the corresponding 

definitions at the abstract level and then we endow them with a physical and 

geometrical interpretation through the notion of embedded data. 

 

Definition 2.2.17. (Matter-Hypersurface data) A tuple {N , γ, ℓ, ℓ(2), Y, ρℓ, J} formed by 

hypersurface data {N , γ, ℓ, ℓ(2), Y}, a scalar ρℓ ∈ F(N ) and a one-form J ∈ Γ(T⋆N ) 
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2 bcd ∇d 

∇d 

∇ 

∇ 

⋆ 

∇ 

c a bcd ∇ f b[c d] ∇[c 

ℓ 

 

defines matter-hypersurface data if, under the action of the gauge group element G(z,V), 

{ρℓ, J} transform as 
 

G(z,V)(ρℓ) = ρℓ + J(V), G(z,V)(J) = z−1J (2.54) 

 

and the following identities, called constraint equations, hold: 
 

ρ = 
1 

R
◦ c

bcd P
bd 

1 
+ 

2 
ℓa 

 

R
◦ a Pbdnc + 

◦
 

(
(Pbdnc − Pbcnd)Ybc

)
 

+ n(2) Pbd PacY  

b[c 

1 
Yd]a + 

2 
( Pbdnc − Pbcnd)

(
ℓ(2) 

◦
 Ubc 

+ (Ubc + n(2)Ybc) 
◦ 

dℓ
(2) + 2Ybc(Fd f − Yd f )n

f 
)

, (2.55) 

J = ℓ R
◦ a nbnd − 2 

◦ (
(n(2) Pbd − nbnd)Y δ 

f 
) 

+ 2(Pbd − ℓ(2)nbnd) 
◦ 

U 

− (n(2) Pbd − nbnd) 

(

(Ub[c + n(2)Yb[c) 
◦ 

d]ℓ
(2) + 2Yb[cFd] f n f 

1

 

− (Pbdnf − Pb f nd)YbdUc f − 2Pbdnf Ub[cFd] f . (2.56) 

 

The next theorem, which constitutes one of the main results in [58], justifies both 

condition (2.54) on the gauge behaviour of {ρℓ, J} as well as the explicit form of 

(2.55) and (2.56). 

 

Theorem 2.2.18. Let {N , γ, ℓ, ℓ(2), Y, ρℓ, J} be matter-hypersurface data and assume 

that the hypersurface data {N , γ, ℓ, ℓ(2), Y} is embedded in a semi-Riemannian manifold 

(M, g) with embedding ϕ and rigging ζ. Then, 

−ρℓ = ϕ⋆ Eing(ζ, ν)
 

, (2.57) 

−J = ϕ (Eing(·, ν)), (2.58) 

 

where Eing is the (2-covariant) Einstein tensor of (M, g) and ν the (unique) normal vector 

field along ϕ(N ) satisfying g(ζ, ν) = 1. 

 
Definition 2.2.17 generalizes the notion of abstract spacelike initial data by includ- 

ing some matter-content information in addition to the hypersurface data. On the 

other hand, Theorem 2.2.18 provides the constraint equations for the case of fully 

general hypersurfaces in semi-Riemannian spaces. We emphasize that the con- 

straint equations have been written in terms of the metric hypersurface connection 

◦ , which means that the dependence on the extrinsic part of the data Y is fully 

explicit. This turns out to be highly useful in certain contexts, as we shall see later. 

d]b 
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def - 

- 

 
2.3 geometry of submanifolds 

 
The geometry and properties of embedded null hypersurfaces, which constitute 

the main object of this thesis, will be analyzed in detail in the next section. However, 

prior to this discussion it is convenient to revisit some fundamental aspects on sub- 

manifolds of arbitrary codimension. The underlying reason why this is helpful is 

that in sufficiently local domains within any null hypersurface there always exists 

a Riemannian submanifold embedded in the hypersurface itself, so the geometry 

of submanifolds will therefore play a fundamental role also. General references on 

this topic are e.g. [106], [107]. 

Consider a semi-Riemannian manifold (M, g) and a manifold X of codimension 

greater or equal than one. Let ι : X '−---- M be the embedding of X in M and 

define X = ι(X ) ⊂ M. It is a general fact (see e.g. [108]) that the Lie bracket of 

two vectors tangent to a submanifold is also tangent, namely 

X, Y ∈ Γ
 

T X-
 

=⇒ [X, Y] ∈ Γ
 
T X-

 
. (2.59) 

 

The first fundamental form of X is the tensor field γ defined by 

 

γ =
de f  

ι⋆g, (2.60) 

 
and X is called degenerate whenever the radical of γ has dimension greater or 

equal to one, otherwise it is referred to as non-degenerate or Riemannian because 

γ defines a metric. 

A fundamental concept in the context of submanifolds is the notion of normal 

vector field. Any vector field N along X- is said to be normal to X- if it satisfies 

g(N, X) =
X- 

0 ∀X ∈ Γ(TX ). (2.61) 

 
Observe that the combination of (2.59) and (2.61) entails that 

 

g(N, [X, Y]) =
X- 

0. (2.62) 

 

Given a vector field N normal to a submanifold, one can define (see e.g. [106]) the 

so-called second fundamental form KN of X with respect to N as 

KN =
d e f  

ι⋆(∇N), (2.63) 
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X 
- - 

def 

- 
   

N - 

N 

- 

N 

N 

 
a fact that was already used in (2.47). We have defined the second fundamental 

form as a tensor intrinsic to . However, a closely related definition can also be 
N 

made on its image X . We therefore define the second fundamental form K 

as the tensor field 

of X- 

K- N (X, Y) = g(∇X N, Y) ∀X, Y ∈ Γ(TX- ), (2.64) 

which of course satisfies that KN = ι ⋆ K-  N . By virtue of (2.61)-(2.62), it is immediate 
N 

to prove that K- (and hence K  ) is symmetric, since 

 

KN(X, Y) = X g(N, Y) − g(N, ∇XY) = −g(N, [X, Y]) − g(N, ∇YX) 

= − g(N, ∇YX) = −Y
 

g(N, X)
 

+ g(∇Y N, X) = K- N (Y, X). 
 

Moreover, K- N is directly related to the Lie derivative of the metric g along N 

according to 

(£N g)(X, Y) = 2K-  (X, Y) ∀X, Y ∈ Γ(TX- ). (2.65) 

To prove this fact explicitly we need to extend X, Y off X- , although the final result 

(2.65) obviously does not depend on the extension. Using that K is symmetric, 

we find 

(£N g)(X, Y) =
X- 

£N(g(X, Y)) − g(£NX, Y) − g(X, £NY) 

=
X- 

g(∇X N, Y) + g(X, ∇Y N) =
X- 

2K- N (X, Y). 

Observe that rescaling N in (2.64) by a non-zero function f ∈ F ⋆ (X- ) (i.e. perform- 

ing the change N −----  f N) simply multiplies K- by f . Up to transformations of 

this type, one can define as many second fundamental forms as directions normal 

to X happen to exist. 

For the rest of this section, we make the harmless abuse of notation of identifying 

vector fields on Γ(TX ) with their counterparts along X- . 

A particular case of the above occurs when X , X- are Riemannian. Then, as we 

have already mentioned, the first fundamental form γ constitutes a metric and 

hence one can define its corresponding Levi-Civita connection, which we denote 

by ∇(γ). In these circumstances, it is a general fact that the tangent space TpM at 

a point p ∈ X- decomposes as 

TpM = Tp X- ⊕ (Tp X-)⊥,  where (Tp X-)⊥ =
d e f  

{X ∈ TpM | g(X, Y) = 0 ∀Y ∈ Tp X-}. 
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- 

def 

(γ) - 

- 

        

(γ) 

= ∇X
 
∇

(γ) 
Z − K (Y, Z)

 
− ∇Y

 
∇

(γ) 
Z − K (X, Z)

 
 

 

An immediate consequence of the above is that the covariant derivative ∇XY with 

X, Y ∈ Γ(TX- ) can be split in a tangent and an orthogonal part, namely 

∇XY = DXY − K (X, Y), (2.66) 

where DXY ∈ Γ(TX ) and K (X, Y) is a normal vector field, i.e. it satisfies 

g(K (X, Y), Z) = 0 ∀Z ∈ Γ(TX ). (2.67) 

N 

Observe that the vector field K (X, Y) verifies g(K (X, Y), N) = K-  (X, Y) because 
 

g(K (X, Y), N) = g(DXY − ∇XY, N) = −g(∇XY, N) = g(∇X N, Y) = K- 

It is well-known that D defines a covariant derivative on X . Even more, 

 

(DXγ)(Y, Z) = X(γ(Y, Z)) − γ(DXY, Z) − γ(Y, DXZ) 

N (X, Y). 

= X(g(Y, Z)) − g(∇XY, Z) − g(Y, ∇XZ) = (∇Xg)(Y, Z) = 0, 

so D actually coincides with the Levi-Civita covariant derivative ∇(γ) of γ and 

therefore (2.66) can be rewritten as 

∇XY = ∇X  Y − K (X, Y) ∀X, Y ∈ Γ(TX ). (2.68) 

 
One of the main results of non-degenerate submanifolds is the so-called Gauss 

equation or Gauss identity, which we derive next. We then apply this result to 

prove an identity relating the pull-back to X- of the Ricci tensor of M with the 

Ricci tensor of X . This latter result will be required in Section 2.5. 

Lemma 2.3.1. Consider a semi-Riemannian manifold (M, g) and a non-degenerate sub- 

manifold X- ⊂ M. Let R, R(γ) be the curvature operators of the Levi-Civita covariant 

derivatives ∇, ∇(γ) of M and X 

holds 

respectively. Then, for any X, Y, Z, W ∈ Γ(TX-), it 

g W, R(X, Y)Z  = g W, R(γ)(X, Y)Z 

− g
 

K (X, W), K (Y, Z)
 

+ g
 

K (Y, W), K (X, Z)
 

. (2.69) 

 

Proof. By direct computation one obtains 

 

R(X, Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z 

Y X 

− ∇
[X,Y] 

Z + K ([X, Y], Z) 

- 
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N1 

- - 

(
- - 

) 
∀ ∈ X- 

µ 

def 

- - - - - - 

- - 

⊂ M ∈ 

- 
(γ) - - 

X Y Y Y X 

X [X,Y] 

= R(γ)(X, Y)Z − K
  

X, ∇
(γ) 

Z
 

+ K
  

Y, ∇
(γ) 

Z
 
 

X- is Riemannian and has codimension two. In these circumstances, we can always 

fundamental forms K- 2 according to (2.64). Let {vA} be a basis of Γ(TX- ), RAB the 

µ 1 2 µαβν A B A B 

X- 

Y X 

 

= ∇
(γ)

∇
(γ) 

Z − K
  

X, ∇
(γ) 

Z
 

− ∇X
 

K (Y, Z)
 

− ∇
(γ)

∇
(γ) 

Z 

+ K
 

Y, ∇
(γ) 

Z
 
+ ∇Y

 
K (X, Z)

 
− ∇

(γ)  
Z + K ([X, Y], Z) 

 

+ K ([X, Y], Z) − ∇X
 

K (Y, Z)
 

+ ∇Y
 

K (X, Z)
 

. (2.70) 

Computing the scalar product g(W, R(X, Y)Z) then yields (recall (2.67)) 

g
 
W, R(X, Y)Z

 
= g

 
W, R(γ)(X, Y)Z

 
+ g

 
∇XW, K (Y, Z)

 
− g

 
∇YW, K (X, Z)

 
. 

 
from where equation (2.69) follows at once after using (2.67) and (2.68). 

 

We can particularize the setup above to the case when (M, g) is Lorentzian and 

 

select two linearly independent vector fields N1, N2 ∈ Γ(TM)|X- satisfying (2.61) 
N2 

and define the corresponding second fundamental forms K- , K- , one with re- 

spect to each normal vector. If in addition N1, N2 both happen to be null, then 

µ = g(N1, N2) ̸= 0 and 

K (X, Y) = 
1 

KN2 (X, Y)N1 + KN1 (X, Y)N2 X, Y Γ(T ). (2.71) 
µ 

 
This transforms (2.69) into 

g
 
W, R(X, Y)Z

 
= g

 
W, R(γ)(X, Y)Z

 
+ 

1 ( 
− KN1 (Y, Z)KN2 (X, W) 

− KN1 (X, W)KN2 (Y, Z) + KN1 (X, Z)KN2 (Y, W) + KN1 (Y, W)KN2 (X, Z)
)

. (2.72) 

 
The next identity is a consequence of the Gauss equation as written in (2.72). It 

relates the Ricci tensor of X , the pull-back to X of the Ricci tensor of M and ad- 

ditional normal-tangent-normal-tangential components of the ambient curvature 

tensor. 

Lemma 2.3.2. Consider a Lorentzian manifold (M, g), a non-degenerate submanifold 

of codimension two and two linearly independent null vector fields N1, N2 
def 

Γ(TM)|X- which are normal to X- . Define the scalar µ = g(N1, N2) ̸= 0 and the second 

pull-back to X of the Ricci tensor of (M, g), γ the first fundamental form of X and RAB 

the Ricci tensor of X- . Then, 

1 
Nµ NνR 

(
vα vβ + vβ vα 

) 
= 

N N1 , K 
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N1 N2 N1 N2 N1 N2 

- 

AB − BA J I JA BI JA 

µ 1 2 A B A B AB 

1 2 1 2 I J 

A B µανβ A B I J µ 1 2 1 2 µανβ A B 

µανβ I A J B µ 1 2 µαβν A B A B 

µανβ I A J B IAJB µ BA J I J I BA JA BI BI JA 

N 

 

R(γ) R γIJ ( 
 

 

 

 
 

K- K- K- K- K- K- K- N1 K- N2 

) 
. (2.73) 

 

In particular, if any of the second fundamental forms K- 1 , K- 2 is identically zero, it holds 

1 
Nµ NνR

 (
vα vβ + vβ vα 

) 
= R(γ) − RAB. (2.74) 

 

Proof. Clearly {N1, N2, vA} constitutes a basis of Γ(TM)|X , so we can decompose 

the contravariant metric gµν as 

1 

gµν =  
Nµ Nµ + Nν Nµ

 
+ γIJvµvν, (2.75) 

 

where γIJ are the components of the contravariant metric γ♯ of X- . Thus, 
 

 

RAB =
d e f  

R
 

vα vβ = gµνR vα vβ = 

(

γIJvµvν + 
1  

Nµ Nν + Nν Nµ
 
1 

R vα vβ 

= γIJ R vµvα vνvβ − 
1 

Nµ NνR 
(
vα vβ + vβ vα 

) 
. (2.76) 

 
Now, equation (2.72) in index notation reads 

R vµvα vνvβ = R(γ) + 
1 (

− K-  N1 K- N2 − K- N1 K- N2 + K- N1 K- N2 + K- N1 K- N2 

) 
.  (2.77) 

 
Combining (2.76) and (2.77), the result (2.73) follows at once after noticing that 

R(γ) =
d e f  

γIJ R(γ) . The second part of the lemma is immediate from (2.73). 
AB IAJB 

The existence of two null normal vector fields also allows us to define, at any point 

p ∈ X- , the so-called torsion one-form s|p : Tp X- − ---R by 
 

s(X)|p =
d e f

 − 
g(∇X N1, N2) 1 ∀X ∈ Tp X- . (2.78) 

g(N1, N2) 1
p 

Clearly the torsion one-form depends on the two normal vector fields N1 and N2. 

However, for notational simplicity we refrain ourselves from explicitly showing 

this dependence on the notation. Observe that definition (2.78) is insensitive to 

the rescaling of N2 by a non-zero function, while the change N1 −----  f N1 with 

 

s(X) −---- s(X) − X(ln f ). (2.79) 

As we shall see next, the notions of second fundamental form and torsion one- 

form can be generalized to tensor fields constructed from everywhere transverse 

µ AB + − J I − BA + BI + 

µαβν 

µ 

αβ 

f ∈ F ⋆ (X- ) induces 

N 
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N-
 

N- 

� � - 

 
N-

  
N-

 
⊂ N-

 

� - - - - 

- 

- 
 
-
  

    LJ 

2 

surface is a subset N- ⊂ M satisfying that there exists an embedding ϕ : N '−--- M 

 
(instead of normal) vector fields. In any case, they together with the first funda- 

mental form codify the essential geometric information about a submanifold. 

 
 

2.4 geometry of null hypersurfaces 

 
As anticipated before, we devote this section to study the geometry of null hyper- 

surfaces. We provide several definitions and results to be used later on. General 

references for the topic are [109], [98], [110]. 

Our starting point is the notion of embedded null hypersurface. 

 

Definition 2.4.1. (Embedded null hypersurface) Let (M, g) be an (n + 1)-dimensional 

semi-Riemannian manifold and N a manifold of dimension n. An embedded null hyper- 

 

such that ϕ (N ) = N and that the first fundamental form γ of N , defined by γ = ϕ⋆g, 

is degenerate. 

We let TpN ⊥ denote the space of vectors at p ∈ N that are orthogonal to N . It is 

well-known (see e.g. [98], [110]) that there exists only one degenerate direction in 

N . This means that at any point p ∈ N there exist a normal, non-zero vector field 

�k|p ∈ T p N-, i.e. satisfying 

 

k|p ̸= 0, ⟨k, X⟩g|p = 0 ∀ X|p ∈ TpN . (2.80) 

 

Thus, k p   Tp Tp  ⊥. Since ϕ⋆ is of maximal rank, the dimension of Tp 

is n so the dimension of  Tp  ⊥ is 1. It follows that  Tp  ⊥   Tp  and hence 

⟨k|p⟩ = TpN ⊥ and all the vectors in TpN ⊥ are null. We let TN ⊥ =  p(TpN )⊥, 

and it is clear that this constitutes a subbundle to TN . 

A null generator k of N is defined to be a nowhere zero section k ∈ Γ TN ⊥ . Since 

they are by construction non-zero, their integral curves are likewise referred to as 

null generators of N-. 

All null generators are necessarily proportional to each other. Moreover, they are 

geodesic (not necessarily affinely parametrized) vector fields (see e.g. equation 

(2.21) in [98]). In fact, any vector field η which is null and everywhere tangent to 

N- is necessarily geodesic, since for any X ∈ Γ ( T N-) it holds 

 

g(X, ∇ηη) =
N- 

∇η (g (X, η)) − g(∇η X, η) =
N- 

−g(£η X, η) − g (∇Xη, η) 

=
N- 

−g(£η X, η) − 
1 

X (g (η, η)) =
N- 

−g(£η X, η) =
N- 

0, 
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where in the last step we particularized (2.59) for Y = η and X- = N-. Thus, 

∇ηη ∈ Γ TN ⊥ , hence it is proportional to η itself, i.e. geodesic. Denoting the 

subset of zeroes of η on N by S, we can define a function κ ∈ F(N \ S) (usually 

referred to as the surface gravity of η) as the proportionality function between ∇ηη 

and η, i.e. 
 

∇ηη = κ-η N- \ S. (2.81) 

 
In particular, for a null generator k of N (which by definition is such that S = ∅), 

we define its surface gravity κ-k on the whole N- as 

 

∇kk = κkk. (2.82) 
 

Any two null generators k, k′ with respective surface gravities κ , κ are related by 
-k -k′ 

k′ = αk where α ∈ F ⋆ ( N- ). Therefore, their surface gravities verify 

k k′ = ∇k k′ = (k(α) + ακk)k′ =⇒ κk = k(α) + ακk. (2.83) 
κ- ′ ′ - - ′ - 

 
It is natural to ask whether one can prescribe κk  freely, i.e. if it is possible to find 

a k′ with a specific surface gravity κk of our choice. Given any smooth function κk 

and having fixed k (and hence also κ ) equation (2.83) is a linear inhomogeneous 

ODE for α along each generator. This equation can be solved globally along any 

generator. However, the resulting function α need not be smooth on N . One pos- 

sible reason is that generators can come very close to themselves (or even be dense 

in N ). Then, there is no reason why the value of α integrated along the curve at 

the infinitely close point should stay close to the value of α that we started with. 

Thus, generically equation (2.83) does not admit a globally well-defined smooth 

solution α unless some global hypotheses are made on N . We shall have more to 

say on this later on. 

An embedded null hypersurface N is a codimension-one degenerate submanifold 

of   to which any null generator k is normal. Therefore, one can define the second 
k 

fundamental form K- of N with respect to k according to (2.64), i.e. 

 
k def 

K- = g(∇Xk, Y) ∀X, Y ∈ Γ ( T N-). (2.84) 

 
Then, equation (2.65) transforms into 

 

(£kg)(X, Y) =
N- 

2K- k (X, Y) ∀X, Y ∈ Γ ( T N-). (2.85) 
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fundamental form of N-. 

- - 

- - 

- 

- 

- 

k 

 
Although we have seen that equation (2.85) is satisfied for general submanifolds ad- 

mitting a normal vector field, in the context of null hypersurfaces this fact becomes 

even more relevant. The underlying reason is that null generators are tangent to 

the hypersurface everywhere, which makes (2.85) intrinsic to N . More concretely, 

using the well-known property 

ϕ⋆ £ϕ ZT
 

= £Z(ϕ⋆T), (2.86) 

valid for any vector field Z ∈ Γ(TN ) and any covariant tensor field T along N , 

one can compute the pull-back of (2.85) to N and obtain 
 

N k def k def ⋆ 

£nγ = 2K , where ϕ⋆n = k, and K  = ϕ K- . (2.87) 

 

Remark 2.4.2. In what follows, given an (n + 1)-dimensional semi-Riemannian manifold 

(M, g) and a vector field X ∈ Γ(TM), we shall use the notation X 

instance, we let k =
d e f  

g(k, ·). 

=
d e f  

g(X, ·). For 

Observe that Kk = ϕ⋆(∇k). More details on the second fundamental form K- will 

be provided later in Section 2.4.1. However, for the time being it is worth stressing 

that (2.87) is a well-known relation (see e.g. [98]) between the rate of change of 

the first fundamental form of N- along the degenerate direction and the second 

 

One of the main purposes of this thesis is to address the problem of matching two 

spacetimes across a null hypesurface. In this context N will be two-sided and M 

will be oriented and Lorentzian, so for simplicity we take this assumptions for the 

rest of this section. In these circumstances, γ is semi-positive definite (which in 

particular means that all non-null directions of N are spacelike) and N always ad- 

mits (see Lemma 1 in [58]) an everywhere transversal vector field L0, i.e. satisfying 

L0 ∈/ TpN ∀p ∈ N . 

We now introduce the notions of transverse submanifold, cross-section and foli- 

ation of a null hypersurface. 

Definition 2.4.3. (Transverse submanifold, cross-section) Let N- be an embedded null 

hypersurface and k a choice of null generator. A transverse submanifold of N is any sub- 

manifold S ⊂ N to which k is everywhere transverse. If, in addition, each integral curve 

of k crosses S exactly once then S is a cross-section. 

 
Definition 2.4.4. (Foliation of a null hypersurface) Let N be an embedded null hypersur- 

face and k a choice of null generator. Assume further that there exists a function λ ∈ F ( N- ), 
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=
def 
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- - 
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- - 

-k 

- 

- - 

- 

- - 

Remark 2.4.8. If N- admits a cross-section then any null vector field η which is tangent 

of N \ S, then the general solution of (2.89) is -α = f + κ-v, where the integration function 

- 

 

called foliation function, such that each subset Sλ0 {p ∈ N- | λ(p) = λ0 ∈ R} defines 

a cross-section of N . Then, the family of cross-sections {Sλ} define a foliation of N . 

 

Remark 2.4.5. Any null generator is not only transverse to a given a transverse submani- 

fold S ⊂ N but also normal to it. This means that one can define the corresponding second 

fundamental form of S with respect to k according to (2.64). This tensor field is simply a 

restriction to S (and to vector fields tangent to S) of (2.84), so in the following we denote 
k 

the second fundamental forms of N- and S with the same symbol, namely K- . 

 

Remark 2.4.6. The existence of a cross-section on N is a non-trivial global assumption 

on the hypersurface. 

Remark 2.4.7. In what follows, we shall use the names cross-section and section indis- 

tinctly. 

A remarkable property of null hypersurfaces admitting a section is that one can 

always find an affine null generator (see e.g. [98]). Indeed, given a choice of null 

generator k, one can always construct another null generator k′ = αk by solving the 

first-order differential equation k(ln |α|) = −κk for α ∈ F ⋆(N ) along the integral 

curves of k. For that it suffices to provide nowhere vanishing initial data α|S on S. 

In this case, there are no obstructions in solving globally this infinite collection of 

ODEs. In particular, note that now no generator can come close to itself because of 

the presence of a section. Once α and k′ have been constructed, it follows at once 

that κ′ = 0 as a direct consequence of (2.83). 
 

 

to N- can be written as  

η =
N-

 

 

αk, (2.88) 
def 

for an affine null generator k of N- and a function -α ∈ F ( N-). Defining S = {p ∈ 

N- | -α(p) = 0} and particularizing (2.83) for k′ = η, κ-k = 0, one obtains 
 

κ- 
N-
=

\ S  
k (α) , (2.89) 

 

where κ is the surface gravity of η. If, in addition, κ is constant along the null generators 

 

f ∈ F(N \ S) satisfies k ( f ) = 0 and v is any scalar function on 

k(v) = 1. Summarizing, in these circumstances η will be given by 

N- \ S verifying 

 

η 
N-
=
\S 

( f + κv) k, where k ( f ) = 0, k(v) = 1, ∇kk = 0, k(κ) = 0.  (2.90) 
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- - 

- - - 

- 
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⇐⇒ 

- - 

def 

k 

� 

- 

 

Observe that in the case when N \ S is dense in N , both η and k being well defined along 

N means that η = ( f + κv) k everywhere on N . 

Whenever N can be foliated by spacelike sections {Sλ}, the fact that k is transverse 

to any leaf Sλ implies that k(λ) ̸= 0 everywhere on N . Observe that in general the 

global existence of λ in Definition 2.4.4 entails a strong topological restriction upon 

N . We emphasize, however, that the existence of a foliation function can always be 

granted in sufficiently local domains of N-. 
 

 

2.4.1 Quotient space in a null hypersurface 

 
As already mentioned, the fact that the first fundamental form of a null hyper- 

surface is degenerate represents a geometric difficulty, as one can define neither a 

metric on N nor its inverse tensor. Therefore, there is no natural way of raising and 

lowering indices of tensors on N . The standard way of dealing with this difficulty 

is to introduce a quotient structure (see e.g. [109]) by defining for any Z, W ∈ TpN 

the equivalence relation ∼ as 
 

 

 

where a ∈ R. 

Z ∼ W 
def 

Z − W = ak, (2.91) 

 
Definition 2.4.9. Let N be an embedded null hypersurface and p ∈ N . Then the quotient 

vector space T p N-/k is defined as 

T p N-/k =
  

Z : Z ∈ T p N-
 

, (2.92) 

 

where Z =
def 

spaces 

 
X ∈ T p N- : X ∼ Z

 
. The fiber bundle on N- is the collection of all quotient 

TN-/k = 

p

L 

∈N- 

T p N-/k. (2.93) 

This quotient structure of T p N- allows to construct a metric �h and a symmetric 

2-covariant tensor K� (closely related to the second fundamental form of N-) on 

the quotient bundle. The metric, denoted by h, is the symmetric 2-covariant tensor 

defined by 
�h

 
Z, W

 
|p =

d e f   
g(Z, W)| , (2.94) 

p 
 

where Z, W ∈ TpN /k. The tensor is well-defined because the right-hand side is 

independent of the representatives Z ∈ Z, W ∈ W. Besides, for any non-zero Y ∈ 

- 

def 
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TpN /k (i.e. classes associated to spacelike directions Y), it holds that h  Y, Y  |p = 

⟨Y, Y⟩g|p > 0. Thus, h is a positive definite metric. 

At any transverse hypersurface S ⊂ N (in particular if S were a cross section), h 

is isometric to the induced metric h of S at any point p0 ∈ S. Indeed, the map 
 

 

Tp0 S −--- Tp0 N /k defined by X −--- X is an isomorphism 

Z, W ∈ Tp0 S it holds 

and for any two vectors 

 
  

h
 

Z, W
 

|p0 = ⟨Z + ak, W + bk⟩g|p0 = ⟨Z, W⟩g|p0 ≡ h (Z, W) |p0. (2.95) 

Thus, h is also positive definite and we denote by h♯ its associated contravari- 

ant metric. Their components in a basis {vI|p0 } of Tp0 S0 and its corresponding 

dual {θI|p0 } will be denoted by hIJ and hIJ respectively. We will use these tensors 

to lower and raise capital indices, irrespectively of whether they are tensorial or 

identify elements in a basis. 

As already mentioned, one can also define the so-called quotient second fundamental 
k 

form with respect to k, denoted by K� , as the 2-covariant tensor on T p N-/k given by 

 

Kk
 

Z, W
 

|p =
d e f  

g(∇Zk, W)|p, Z, W ∈ TpN /k. (2.96) 

As before, this tensor is well-defined in the sense that it is independent of the 

choice of representatives. In fact, given a, b ∈ R it holds 

K� k 
(
Z + ak, W + bk

) 
|p = ⟨∇Z akk, W + bk⟩g|p 

= ⟨∇Zk, W⟩g + b⟨∇Zk, k⟩g + a⟨∇kk, W⟩g + ab⟨∇kk, k⟩g p 

= ⟨∇Zk, W⟩g = K� k
 

Z, W
 

|p, 

where we have used that 2⟨∇Zk, k⟩g = Z(⟨k, k⟩g) = 0 and (2.82). 

It is immediate from definitions (2.84) and (2.96) that K� k
 

Z, W
 

|p =
d e f  

K- k (Z, W)|p. 

Besides, it is straightforward to conclude that the quotient tensor K and the 
k 

second fundamental form K- of S with respect to the normal k (recall the nota- 

tional considerations in Remark 2.4.5) obey the relation 

K� k
 

Z, W
 

|p = K- k (Z, W) |p ∀Z, W ∈ Tp S. (2.97) 
 
 
 
 
 

 
1Both spaces have the same dimension and the kernel is obviously {0}. 
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- 

= 

- 

exists a suitable neighbourhood O of N- which can be foliated by null hypersur- 

 
Observe that, as a direct consequence of (2.65), when there exists a transverse 

hypersurface S of N , any two vector fields Z, W ∈ Γ(TS) which are extended off 

S by requiring [k, Z] = [k, W] = 0 satisfy 

k (g (Z, W)) 
S0 2Kk (Z, W) . (2.98) 

As exposed in Section 2.3, the fact that S ⊂ M is a codimension-two transverse 

submanifold allows us to select another linearly independent normal direction 

and define their corresponding second fundamental form and torsion one-form. 

We also mentioned that these two tensors could in fact be generalized for arbitrary 

transverse (non-necessarily normal) directions. This is more convenient for the 

purposes of this thesis, so we define, for any choice of vector field L everywhere 

transverse to N- (which always exists, as we already discussed), the 2-covariant 

tensor ΘL and the covector σL at p ∈ S by 

 

ΘL (Z, W) |p =
d e f  

⟨∇ZL, W⟩g|p, σL (Z) |p =
def

 

 
 1  

− 
g(L, k)

⟨∇Zk, L⟩g|p. (2.99) 

 

Had we chosen L to be null and orthogonal to S then ΘL and σL would be the 

second fundamental form of S with respect to L and the torsion one-form accord- 

ing to (2.64) and (2.78). However, for our purposes on this thesis it is convenient 

to allow L to be unrelated to the sections. In the general case σL and ΘL are gen- 

eralizations of those tensors and still encode extrinsic information of the sections. 

However, we emphasize that ΘL is not symmetric in general. 

 

2.4.2 Raychaudhuri equation on a null hypersurface 

 
A fundamental result of null hypersurfaces is the so-called Raychaudhuri equation 

(see e.g. [98], [111]). In Chapter 4, we shall prove that for abstract hypersurfaces it 

is possible to define a tensor field (which we call constraint tensor) which in the null, 

embedded case coincides with the pull-back of the ambient Ricci tensor. Among 

many other results, we will recover the Raychaudhuri equation at a purely abstract 

level. In order to compare such abstract identity with the standard Raychaudhuri 

equation, we recall the latter here. 

Let (M, g) be a semi-Riemannian manifold endowed with a metric g of Lorentzian 

signature. Consider an embedded null hypersurface N  ⊂ M. Then, there always 

 

faces {N-u}. We take a null generator k of N- and extend it to O so that it is a 

null generator of all leaves {N-u}. This vector field k hence verifies ∇kk = κ-kk on 
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− κ-k 
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µ 

 
each Nu (cf. (2.82)). It also defines a null congruence on O and, since k = g(k, ·) is 

normal to all leaves {N-u}, it satisfies the irrotationality condition 
 

k[µ∇νkα] = 0 (2.100) 

 

on O. Now we let L ∈ Γ(TO) be a null vector satisfying g(L, k) = 1. We define 

the projector Π = g − 2L ⊗s k to each leaf Nu. Observe that Π is symmetric and 

satisfies Π(k, ·) = 0, Π(L, ·) = 0 everywhere on O. In these circumstances, it is a 

general fact that the derivative ∇µkν can be decomposed as [111] 

 

∇µkν = qµν + Fµkν + kµaν, where (2.101) 

qµν =
d e f  

Π α 
∇αk β, Fµ =

def 
Π

 α Lβ∇αkβ + κk Lµ, aµ =
def 

Lβ(∇βkµ − Lµ kα∇βkα). 

Note that kµ Fµ = κk and kµaµ = kµ Lβ(∇βkµ − Lµkα∇βkα) = 0 because k is null 

everywhere on O. 

-

We can decompose the tensor field qµν into its symmetric and 

antisymmetric parts ςµν and ωµν , i.e. qµν ς�µν 
+ ωµν . Inserting this decomposi- 

tion into (2.100) yields kµωνα + kνωαµ + kαωµν = 0, which upon contracting with 

Lµ gives ωνα = 0 as a consequence of 2ωµνLµ = (qµν − qνµ)Lµ = 0. Thus, qµν is 

symmetric. This property is just a manifestation of the fact that the second funda- 

mental forms of the leaves Nu are all symmetric. 

The (now symmetric) tensor qµν can also be separated into a trace part and a trace- 

less part with respect to Πµ
ν as 

 

qµν = ςµν + 
θ 

n − 1 
Πµν , (2.102) 

 

where θ =
def 

Πµνq
 

or, more explicitly, θ = Παβ∇αkβ = ∇α kα , where we again 

used that g(k, k)|O = 0. Now the Ricci identity for k yields 

∇λ∇µkν − ∇µ∇λkν = R νµλkα =⇒ ∇λ∇µk − ∇µ∇λk = R αλµk = Rαµk . 

Contracting with kµ and using (2.101) twice and Πµνςµν = 0, one gets 

Rαµkαkµ = kµ∇λ∇µkλ − kµ∇µ∇λk
λ
 

= ∇λ(kµ∇µkλ) − (∇λkµ)(∇µkλ) − kµ∇µ∇λkλ 

= ∇λ 

(
kµFµ kλ

) 
− (∇λ kµ) 

(

ςµ 
λ 

+ 
θ 

n − 1 

 

Πµ
λ + Fµ 

 

kλ + kµ aλ

1 

− k(θ + κ-k) 

= κk(θ + κk) − (

ς2

 θ2 
λ
 

+ 
(n − 1)2 

Πµ
 

 
Πλ

µ + κ2

1

 − k(θ) 

- -

2 θ2 

- 
= κkθ − ς − 

(n − 1) 
− k(θ), 

β 

α λ λ λ α α 

k 

Π ν µ 

= 

µν 
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- - 

µν 

uniquely defined. One can always add a multiple of the normal one-form, i.e. 

 

where we have defined ς2 =
d e f  

ςµνς and used that ΠαβΠ 
αβ = n − 1, ςαβΠαβ = 0. 

This gives the well-known Raychaudhuri equation 
 

θ2 
2

 

k(θ) − κkθ + 
(n − 1) 

+ ς + R(k, k) = 0, (2.103) 

where θ, ςµν are the so-called expansion scalar and shear tensor respectively. In 

particular, this equation holds on N . It is worth stressing that, although θ and ς 

have been defined by means of an extension of k off N , these objects are in fact 

intrinsic to the null hypersurface. 

 

2.4.3 Totally geodesic null hypersurfaces 

 
For later use in the thesis and specially for the discussion on Killing and non- 

expanding horizons that we perform in the next two sections, it is convenient to 

revisit briefly some aspects of totally geodesic null hypersurfaces. We first provide 

the precise definition. 

 

Definition 2.4.10. (Totally geodesic null hypersurface) Let (M, g) be a semi-Riemannian 

manifold. An embedded null hypersurface N ⊂ M with vanishing second fundamental 

form with respect to a null generator k of N- is a totally geodesic null hypersurface. 

 

By Definition 2.4.10, a totally geodesic null hypersurface N satisfies (recall (2.84)) 

 
k def 

K- = g(∇Xk, Y) = 0 ∀X, Y ∈ Γ ( T N-). (2.104) 

 
Even more, any null (not necessarily everywhere non-zero) vector field η which is 

tangent to N- verifies 
 

g(∇Xη, Y) = 0 ∀X, Y ∈ Γ ( T N-) (2.105) 

as an immediate consequence of (2.104) and η being proportional to k on N . Thus, 

the vector field ∇Xη|
N 

is null and tangent to N . Denoting again by S the set of 

points of N- where η vanishes, we can define a one-form ϖ on N- \ S by 
 

∇Xη 
N-
=
\S 

ϖ(X)η ∀X ∈ Γ ( T N- \ S). (2.106) 

 

Observe that ϖ is only univocally defined when acting on tangential vectors to 

N- \ S. This means that, as a spacetime one-form defined along N- \ S it is not 
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∇ 

 

ϖ′ = ϖ + f η, f ∈ F(N \ S), which also verifies (2.106). Imposing X = η in 

(2.106) yields 

ϖ(η) 
N-
=
\S 

, (2.107) 

so the surface gravity of η is directly related to ϖ. 

In particular, S = ∅ in the case of a null generator k of N , so its corresponding 

one-form ϖ is defined by (2.106) on the whole N , while its surface gravity is given 

by (2.107). 

The formalism of hypersurface data can be applied, in particular, to the study 

of totally geodesic null hypersurfaces. Since clearly the one-form ϖ constitutes a 

fundamental object in such context, it is convenient to provide the connection of 

ϖ with the tensor fields of the hypersurface data. This is done in the next remark. 

Remark 2.4.11. Let us define hypersurface data {N , γ, ℓ, ℓ(2), Y} embedded in (M, g) 

with embedding ϕ and rigging ζ (see (2.22), (2.39)) so that ϕ(N ) = N-. Then, the fact 

that is everywhere null means that consists of null points exclusively. Therefore, ϕ⋆n (2) 

is a null generator of N- and n = 0 on the whole N (recall (2.6)-(2.9)). 

In these circumstances, any null vector field η which is tangent to N can be written as 

η = αϕ⋆n for a function α ∈ F(N ) that vanishes only at the zero set S of η. It turns out 

that the pull-back ϕ⋆ϖ can be expressed in terms of the one-forms s, r (defined by (2.11), 

(2.44) respectively) and dα. Indeed, combining (2.20), (2.25), (2.48) and (2.106) it follows 
 

ϖ(X)η 
N-
=

\ S  
∇X η 

N-
=

\ S  
ϕ⋆

 ◦ 

X (αn) − αr(X)n
) 

N-
=

\ S  
(
X(α) + α (s(X) − r(X)) 

)
ϕ⋆n 

 

because N (or N ) is totally geodesic, which means that the second fundamental form K, 

defined by (2.45), vanishes (and hence so does U). Thus, 

ϕ⋆ϖ = 
dα 

+ s − r = d(ln |α|) + s − r (2.108) 

 
at those points of N where α ̸= 0. Observe that, although ϖ is not univocally defined, its 

pull-back to N is unique, as ϕ⋆η = 0. 

The reason why the one-form ϖ cannot defined everywhere on N is because at 

points where η vanishes the right part of (2.106) vanishes while the derivative ∇Xη 

does not need to be zero in general. In fact, from (2.108) it follows that ϖ must 

diverge at points where α = 0. 

Another remarkable property of the one-form ϖ associated to a null generator k 

of N- is that it is related to the tensor field σL defined in (2.99). In fact, given a 

( 
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- 

 

transverse submanifold S ⊂ N and a vector field L along N which is everywhere 

transverse to it, (2.106) entails 
 

S 1 def 

ϖ(X) = 
g(L, k) 

g(∇Xk, L) = − σL(X) ∀X ∈ Γ(TS). (2.109) 

We conclude the section with a fundamental result of totally geodesic null hyper- 

surfaces, namely that it is possible to define a covariant derivative operator ∇ on 

 

∇XY = ∇XY, ∀X, Y ∈ Γ(TN ). (2.110) 
 

The derivative ∇ is the induced connection on N and it is obviously torsion-free 

and intrinsic to the horizon. Observe that it is automatically compatible with the 

(degenerate) first fundamental form γ of N-, i.e. ∇Xγ = 0 for all X ∈ Γ ( T N-). 

 

Remark 2.4.12. It is consistent to use the same symbol for the derivative ∇ introduced in 

(2.110) and for the hypersurface connection (recall (2.49)-(2.50)). Indeed, as we have seen 

in Remark 2.4.11, the embedded hypersurface data corresponding to a totally geodesic null 

hypersurface is such that the tensors U and K defined in (2.12) and (2.45) are both zero. In 

these circumstances, (2.50) becomes (2.110). 

One of the most common examples of totally geodesic null hypersurfaces are non- 

expanding, (weakly) isolated and Killing horizons. All these sort of horizons will 

be studied in detail in the next sections, so that the results above will become 

helpful by then. 

 
 

2.5 non-expanding, weakly isolated and isolated horizons 

 
Among all types of horizons that have been studied in the literature, isolated ho- 

rizons have been proven to be of great use in many interesting physical situations. 

These horizons are introduced in General Relativity with the idea of being able 

to mimic some properties of an event horizon of a black hole but without requir- 

ing the existence of a Killing vector field in a neighbourhood of the hypersurface. 

Since the concept of isolated horizon is less restrictive than that of Killing hori- 

zon, it makes sense to construct the former by successively adding conditions to 

a minimally restricted notion of horizon. This process gives rise to non-expanding 

horizons and weakly isolated horizons. 

In this section, we revisit several properties of all these horizons. We also obtain 

the so-called master equation, i.e. an identity involving a second fundamental form, 

curvature terms and the torsion one-form of a section. This equation is known 

N- by 
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to hold for isolated horizons and for multiple Killing horizons (we discuss this 

in Section 2.6.1). In Chapter 6, we will generalize this equation to any null hy- 

persurface admitting an extra null and tangent vector field. For further details on 

non-expanding and (weakly) isolated horizons, we refer to [95], [96], [97], [1], [98], 

[99] and references therein. 

We start with the concept of non-expanding horizon as originally presented in [1]. 

 
Definition 2.5.1. (Non-expanding horizon) Let N be a null hypersurface embedded on an 

(n + 1)-dimensional spacetime (M, g). Then, N- is a non-expanding horizon if 

(i) N is diffeomorphic to Sn−1 × R, where Sn−1 is the (n − 1)-sphere and the null 

generators of N- are along R. 

(ii) The expansion of any null generator of N- vanishes. 

(iii) The Einstein field equations hold on N- and −Tα
βkβ, where Tαβ is the energy- 

momentum tensor of (M, g), is causal and future on 

future null generator k of N-. 

N- for whatever choice of 

 
Observe that Definition 2.5.1 does not depend on the choice of future null gener- 

ator k. 

We next summarize some implications of Definition 2.5.1. The first three are presen- 

ted in separate remarks, for which we also provide proof. 

 

Remark 2.5.2. A non-expanding horizon N is shear-free. 

 

Proof. For any future null generator k, the Raychaudhuri equation (2.103) for a null 

congruence without twist (and with no expansion, cf. (ii)) reads ςαβςαβ + T(k, k) = 

0 after using the Einstein equations (note that the cosmological constant is allowed 

to take any value). Now, T(k, k) ≥ 0 necessarily because of (iii), while ςαβςαβ ≥ 0 

because the induced metric on the sections is positive-definite. Thus, both terms in 

the Raychaudhuri equation must vanish and hence ς = 0. 

 

Remark 2.5.3. A non-expanding horizon N is totally geodesic. 

 

Proof. The shear ς, the twist ω and the expansion θ are zero in the present case, so 

the tensor field qµν defined by (2.101) is identically zero. This immediately proves 

the claim. 

 
Remark 2.5.4. There exists a function G ∈ F(N ) such that Ric(k, ·) = Gk on N . In 

particular, Ric(k, X ) |
N- = 0 for any X ∈ Γ ( T N-). 
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- 

- 

- 

- 

def 

- 

- 

allows one to define its associated surface gravity κ- ∈ F ( N- ) according to (2.81). 

 

Proof. By the Einstein equations Ric(k, ·) and T(k, ·) differ by a vector proportional 

to k. Since by hypothesis −T(k, ·) is causal future and perpendicular to k (because 

T(k, k) = 0, as already shown in the previous remark), the only possibility is that 

T(k, ·) is proportional to k and the result follows. 

 
Observe that N being totally geodesic means that all results in Section 2.4.3 apply, 

as we anticipated therein. In particular, for each null generator k there exists a one- 

form ϖ along N defined by (2.106) and the surface gravity of k is given by (2.107). 

We also have the derivative operator ∇ introduced in (2.110) at hand. We continue 

with the definition of weakly isolated horizon. 

 
Definition 2.5.5. (Weakly isolated horizon) A weakly isolated horizon is a non-expanding 

horizon N- endowed with a null generator η such that 

(£ηϖ)(X) =
N- 

0, ∀X ∈ Γ ( T N-), (2.111) 

where ϖ is a one-form field along N- satisfying (2.106). 

 

Given a non-expanding horizon N , the fact that η is null and normal along H 

 

We also let ι : N '−--- M be the embedding of N into M such that ι(N ) = N-. 

Condition (i) in Definition 2.5.1 means that any non-expanding horizon admits a 

foliation by spacelike cross-sections. Thus, one can always select one such cross- 

section S ⊂ N- and let ψ, h be the corresponding embedding ψ : S '−--- N- of S 

into N and the induced metric on S respectively. For simplicity, we identify S, X ∈ 

Γ(TS) with their counterparts ψ(S), ψ⋆X. We also construct a foliation function 

v by fixing v|S and solving the equation η (v) |
N- = 1. In these circumstances, the 

leaves {Sv} of the foliation are defined by Sv0 = {p ∈ N- | v(p) = v0 ∈ R}. 

Any given vector field X ∈ Γ(TS) can be extended uniquely to N by solving the 

evolution equation £η X = 0. Moreover, the extension X ∈ Γ(TN ) is everywhere 

tangent to the foliation (i.e. such that X(v) = 0), since 

0 =
N- 

(£η X)(v) =
N- 

η(X(v)) − X(η(v)) =
N- 

η(X(v)) 

=⇒ X(v) |
N- = X(v)|S = 0. 

This allows us to define L ∈ Γ(TM) |
N- as the unique vector field satisfying 

 

g(L, η) = 1, g(L, L) = 0, g(L, X) = 0, 

∀X ∈ Γ ( T N-) satisfying £η X = 0, X(v) = 0. 
(2.112) 
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def 
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Sv 

h 

- 

- 

- 

 
Observe that (2.112) immediately entails (recall the notational considerations of 

Remark 2.4.2) 

ℓ =
d e f  

ι⋆ L = dv and ψ⋆ℓ = 0. (2.113) 

Given any two vector fields X, Y ∈ Γ(TN ) tangent to the foliation and commuting 

with η, one can also construct a covariant derivative on each leaf Sv by means of 

the second fundamental form K- L(X, Y) =
d e f  

g(∇XL, Y) of Sv along the transverse 

 

 
L 

DXY = ∇XY + K- (X, Y)η (2.114) 

 

defines a torsion-free connection on the leaves {Sv}. Moreover, it is immediate to 

prove that DXY is tangent to the foliation, as (recall (2.112)) 

(DXY)(v) =
N- 

g(dv, ∇XY) + KL(X, Y) =
N- 

g(dv, ∇XY) − g(L, ∇XY) =
N- 

0, 

and that D coincides with the Levi-Civita connection ∇h corresponding to the 

induced metric h of each leaf Sv, because 
 

(DVh)(W, Z ) = DV(g(W, Z)) − h(DVW, Z) − h(W, DV Z) 
Sv Sv 

= ∇V(g(W, Z)) − g(∇VW, Z) − g(W, ∇VZ) = 0 ∀V, W, Z ∈ Γ(TSv). 
 

In particular, the considerations above apply for the section S, so we can write 

 
L 

∇XW = ∇XW = ∇XW − K-  (X, W)η ∀X, W ∈ Γ(TS), (2.115) 

 

where ∇ is the induced connection on N (recall (2.110)). 

 
L 

Remark 2.5.6. In index notation, the tensor K  reads 

L 

K- ab = ∇aℓb (2.116) 

because, given any local basis {ea} of Γ(TN ), one gets 

L 

K- (ea, eb) = g(∇ea L, eb) = ea(g(L, eb)) − g(∇ea eb, L) = ea(ℓb) − g(∇ea eb, L) = ∇aℓb. 

 
To derive the master equation for isolated horizons, one of the key steps is to know 

L 

the explicit form of the Lie derivative of K- along η, which we compute next. 

 

Lemma 2.5.7. Consider a spacetime (M, g) and an embedded weakly isolated horizon 

N- ⊂ M with respect to a null generator η. Let S ⊂ N- be a cross-section and ψ, h be 

normal L (recall (2.64)). Indeed, the derivative D given by 
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- - 

=
def 

L 

⋆ L S L 

N- − { } 
def - 

L 

- - 

αβγρ b c bc b ac 

αβγρ b c bc b ac 

 

the corresponding embedding ψ : S '−--- N- of S into N- and the induced metric on S 

respectively. Denote by ∇h, Rh the Levi-Civita covariant derivative and the Ricci tensor of 

S. Construct a function v ∈ F(N ) by solving η(v)|
N 

= 1 with v|S = 0, so that {Sv} 

with 

Sv0 {p ∈ N- | v(p) = v0 ∈ R} 

constitutes a foliation of N- by spacelike cross-sections. Then, the Lie derivative of the tensor 

field K- defined in (2.116) along η is given by 

ψ (£ηK- )BC −κ-K- − ∇ ϖC  − ϖBϖC − 
(
RBC − Rh  

) 
, (2.117) 

h 1 
   

  

where RBC, ϖA are the pull-back to S of the Ricci tensor of (M, g) and the one-form ϖ 

defined by (2.106) respectively. 

Proof. Consider a local basis {eA} of Γ(TS) and extend its vectors off S by requiring 

£ηeA = 0 on . Then, 0 = (£ηeA)(v) = η(eA(v)) eA(η(v)) = η(eA(v)), so eA 

are tangent to the leaves {v = const.}. We let {e1 = η, eA} be a basis of Γ(TN ), 

and construct a unique vector field L by enforcing (2.112). Observe that £ηea = 0 

and g(L, ea) = const. by construction. 

In these circumstances, we find 
 

eαeβeγ∇α∇ β γ Lγ = eα∇ (e e ∇ L ) − (∇ L )eγeα∇ eβ − (∇  L )eβeα∇αeγ 
a b c β a α b c β γ β γ c  a α b 

L γ β 
β γ b a c 

β γ L 

= e a (K- bc) − (∇βLγ)ec (∇ea eb) − (∇βLγ)eb (∇ea ec)  = ∇ a K- bc, 

which, together with the Ricci identity Rαβγρ Lρ = ∇α∇βLγ − ∇β∇α Lγ for L, entails 

R eβeγLρ =
N- 

∇ a K-  L − ∇ K- . (2.118) 

 

The multiplication of (2.118) with ηα gives2
 

R ηαeβeγLρ =
N- 

ηa 
(

∇ a K- L − ∇ K- L 
) 

. (2.119) 

 

Now by (2.106) we know that for any X ∈ Γ(TN ) it holds ∇Xη = ϖ(X)η on N . 

Particularizing this for X = ea allows us to conclude that 

∇aηb =
N- 
ϖaηb. (2.120) 

 
 
 

 

2As usual, we are making the harmless abuse of notation of calling ι⋆η still as η. 

BC (B ) 2 BC = 
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L 

L L L L 

L 

κ- 

-- 

bc ac ac ba 

= ηa 
(

∇ a K- L − ∇ b K-  L 
) 

− ∇bϖc − ϖcϖb. (2.122) 

a 

a a a 

1 

bc ac 

 

Moreover, the tensor K- and the one-form ϖ are related by 
 

 

 
because 

K- abη  = −ϖb (2.121) 

KL(η, ea) =
N- 

g(∇η L, ea) =
N- 

∇η (g(L, ea)) − g(L, ∇ηea) =
N- 

−g(L, ∇ηea) 

=
N- 

−g(L, £ηea + ∇ea η) =
N- 

−ϖ(ea)g(L, η) =
N- 

−ϖ(ea). 

Taking into account (2.120)-(2.121), the derivative £ η K- bc can be expressed as 

 

£η K- bc = η ∇
( 

a K- bc + (∇bη )K- ac + (∇cη ) K- ba 

= ηa ∇ a K-  − ∇ b K- L 
) 

+ ∇b(η aK- L ) + (∇cη a)K- L 
 

 

Thus, upon inserting (2.122) into (2.119) one gets 
 

 R ηα(eβeγ + eβeγ)Lρ =
N- 

£ η K-  L + ∇  ϖ + ϖ ϖc. (2.123) 

2  αβγρ b c c b bc (b c) b 

 L 

Equation (2.123) already provides the Lie derivative of K- along η in terms of ϖ 

and a curvature term. We are interested in deriving an equation on the section S, so 

we need to compute the pull-back of (2.123) to such section. The whole calculation 

is based on the two identities (we identify vector fields on N with their images on 

N-) 

 
Rαβγρηα(eβ eγ + eβ eγ)Lρ S Rh − RBC, (2.124) 

B C C B 
a  b 

= BC 
S a b 

 
a b S h L 

eAeB∇aϖb = eA∇a(eBϖb) − ϖbeA∇aeB = ∇AϖB + κKAB. (2.125) 

Equation (2.124) can be obtained by particularizing (2.74) for N1 = η, N2 = L and 

R(γ) = Rh, while (2.125) is a direct consequence of (2.115) together with (ι⋆ϖ)(η) = 

. By (2.124)-(2.125), it is immediate to check that the pull-back of (2.123) to S is 

given by (2.117). 

 
With (2.117) at hand, we can now present the definition of isolated horizon and 

obtain its corresponding master equation. 

L 
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L 

S L 

= (B ) 2 BC 

 

Definition 2.5.8. (Isolated horizon) An isolated horizon is a non-expanding horizon N 

endowed with a null generator η such that 

[£η, ∇a] =
N- 

0. (2.126) 

 L 

An important consequence of this definition is that £ η K-  = 0. Indeed, 
 

£ηK- 
ab =

N- 
£η ∇aℓb =

N- 
∇a(£ηℓb) =

N- 
∇a

  
ηc∇c∇bv + (∇bη

c)(∇cv)
 

 

=
N- 

∇a
  

ηc∇c∇bv + ∇b(η
c∇cv) − ηc∇b∇cv

  
=
N- 

∇a∇b(η
c∇cv) =

N- 
0, (2.127) 

 

where we have used (2.126), η(v) = 1 and ℓ = dv. Observe that the combination 

of (2.121) and (2.127) automatically implies £ηϖ = 0, so any isolated horizon is also a 
L 

weakly isolated horizon. Setting £ η K-  = 0 into (2.117) yields 

0 κ-K- + ∇ ϖC  + ϖBϖC + 
(
RBC − Rh  

) 
, (2.128) 

h 1 
   

  

which is the master equation for isolated horizons. In particular, the so-called ex- 

tremal case that takes place whenever κ = 0 transforms (2.128) into 

0 S ∇h ϖC  + ϖ

-

BϖC + 
1 (

RBC − Rh  
) 

. (2.129) 

Equation (2.129), valid for isolated horizons with respect to a generator η with 

vanishing surface gravity, is known as the near horizon equation. 

 
2.6 killing horizons 

 
Killing horizons are a special type of null hypersurface and constitute one of the 

main objects of this thesis. In particular, in Chapter 5 we introduce the notions of 

Killing horizons of order zero and one; in Chapter 6, as we already mentioned, we 

obtain a generalized master equation which relates properties of the generator of the 

horizon with the intrinsic and extrinsic geometry of such hypersurface; and finally 

in Chapter 7 we study the matching of two given spacetimes whose boundaries 

are Killing horizons (of order zero). It is therefore convenient to provide several 

definitions and fundamental properties of these sort of hypersurfaces. For further 

details on the topic see e.g. [112], [113]. 

We start with the basic notions of Killing horizon, bifurcation surface and bifurcate 

Killing horizon. 

BC (B ) 2 BC 

- 

= 
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H 

 

Definition 2.6.1. (Killing horizon) Let η be a Killing vector in a spacetime (M, g). An 

embedded null hypersurface H where η is null, nowhere zero and to which η is tangent 

defines a Killing horizon of η. 

Definition 2.6.2. (Bifurcation surface, bifurcate Killing horizon) Let η be a non-trivial 

Killing vector in a spacetime (M, g). A bifurcation surface is a connected spacelike 

codimension-two submanifold S of fixed points, i.e. where η|S = 0. The set of points 

along all null geodesics orthogonal to S comprises a bifurcate Killing horizon with respect 

to η. 

A Killing horizon H may have one or several connected components. It would 

therefore be natural to restrict ourselves to one of them. However, it turns out to 

be more advantageous to select those connected components that share a common 

topological boundary. More precisely, we can always restrict H so that its topo- 

logical closure H is a smooth connected (necessarily null) hypersurface without 

boundary. When dealing with Killing horizons, this shall be always assumed. We 

will denote by   the (possibly empty) set of fixed points of η within H , i.e. 
def 

S = {p ∈ H | η|p = 0}. The set of fixed points of a Killing vector η is either 

the empty set or the union of connected totally geodesic closed submanifolds of 

even codimension (this is proven in [114], [106] for the Riemannian and pseudo- 

Riemannian cases respectively). Therefore, the Killing vector η cannot vanish on 

open subsets of H . 

As we did in Section 2.5, we define the surface gravity κ ∈ F (H ) of η according 

to (2.81) (this can always be done because η is null and normal along H , see the 

discussion in Section 2.4). We emphasize that κ can only be defined on H , as at 

those points of H where η = 0 both sides of (2.81) vanish. For the rest of the 

thesis, we use the standard terminology of calling H , H non-degenerate if κ is not 

identically zero on H , and degenerate otherwise. 

-

 
A fundamental property of Killing horizons is that they are totally geodesic null 

hypersurfaces (see Definition 2.4.10). This is a consequence of (2.65), which in the 

present case yields g(∇Xη, Y) = 0 for any two vector fields X, Y ∈ Γ(TH ). This, 

as we know from Section 2.4.3, means that there exists a one-form ϖ along H 

defined by (2.106), and that the surface gravity of η is directly related to ϖ by 

(2.107). In the case of Killing horizons, the two-form ∇µην at points in H also 

adopts a simple form in terms of ϖ [112], as we prove next. 

Lemma 2.6.3. Consider a spacetime (M, g) admitting a non-trivial Killing vector field 

η which defines a Killing horizon H . Let ϖ be a one-form along H satisfying (2.106). 

Then, 

∇µην = ϖµην − ϖνηµ. (2.130) 
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A A B 

µ 

 

Proof. We start by taking a basis {L, η, XA} of Γ(TM)|H , where {XA} are tangent 

vector fields and L is everywhere transverse to H and satisfies g(L, XA) = 0 and 

g(L, η) = 1. Now, we define the two-forms Fµν =
def 

1 (∇µην − ∇νηµ ) = ∇µην and 

Ωµν 
=
d e f  

ϖ η
 − ϖν ηµ, the latter only along H . We want to show that both tensors 

are the same. We prove this by showing that all their contractions with the basis 

vectors are the same. We start with Fµν. 
µ 

H  being totally geodesic entails g(∇X η, XB)|H  = 0, hence FµνX Xν |H  = 0. Moreover, g(∇ηη, XA)|H  = κg(η, XA)|H  = 0, so FµνηµXν |H  = 0 also. On the 
other hand, Fµν being antisym

-

metric means FµνLµ L 0 and F 0. 
A 

ν|H  = µνηµην|H  = 

Finally, for any Y ∈ Γ(TH ) it holds that FµνYµ Lν = ϖµYµ on H . Therefore, the 

only non-zero contractions are 
 

Fµνη
µ Lν H

= ϖµηµ, Fµν X
µ 

Lν H= ϖµ X
µ 

. 
A A 

It is immediate to prove that the only non-zero contractions of Ω with the basis 

vectors {L, η, XA} are 

Ωµνη
µ Lν H= ϖµηµ and Ωµν X

µ 
Lν H= ϖµ X

µ 
, 

A A 

 

so necessarily Ωµν = Fµν = ∇µην on H , and (2.130) follows. 

Remark 2.6.4. The freedom in the definition of ϖ is compatible with (2.130) as this com- 

bination is insensitive to terms of the form f η. 

We now provide a well-known identity involving the Riemann tensor of (M, g), 

the Killing vector η and the one-form ϖ (see e.g. [2]). 

Proposition 2.6.5. Let (M, g) be a spacetime admitting a non-trivial Killing vector field 

η which defines a Killing horizon H . Consider a vector field X ∈ Γ(TH ) and let ϖ be a 

one-form along H satisfying (2.106). Then, 

Rν
σρµηνXσ H= ηµ

 
Xσ∇σϖρ + ϖρϖσXσ

 
− ηρ

 
Xσ∇σϖµ + ϖµϖσXσ

 
. (2.131) 

Proof. Any Killing vector field satisfies ∇σ∇ρηµ = Rν
σρµην. Combining this with 

(2.130) yields (note that X is tangential to H so we are allowed to take the derivat- 

ive of (2.130) along this vector) 

Rν
σρµην X

σ H= Xσ ∇σ ∇ρηµ 
H
= Xσ ∇σ

 
ϖρηµ − ϖµηρ

 
 

H
= ηµ

 
Xσ∇σϖρ + ϖρϖσXσ

 
− ηρ

 
Xσ∇σϖµ + ϖµϖσXσ

 
 

after using that Xσησ = 0 on H . 

ν 
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- 

- 

- 

 

In particular, setting X = η in (2.131) and taking into account (2.107) as well as the 

symmetries of the Riemann tensor, one obtains 

 

0 H= ηµ

 
ησ∇σϖρ + κϖρ

 
− ηρ

 
ησ∇σϖµ + κϖµ

 
, (2.132) 

from where it follows that there exists a function G ∈ F(H ) such that 

Gη. (2.133) 
∇ηϖ + κ-ϖ = 

Equation (2.133) have several consequences. First, for any vector field X ∈ Γ(TH ) 

one finds (recall (2.106)) 

 

(£ηϖ)(X) = (∇ηϖ)(X) + ϖ(∇Xη) = (∇ηϖ)(X) + κϖ(X) = Gη(X) = 0,  (2.134) 

which means that the property (2.111) also holds in full Killing horizons. Secondly, 

(2.133) implies the well-known property (see e.g. [112]) that κ is constant along the 

null generators of H . Indeed, its contraction with η gives 

-

 
0 H= (∇ηϖ)(η) + κ2 

H
= ∇ηκ − ϖ(∇ηη) + κ2 

H
= η(κ). (2.135) 

- -  - - 

As we discussed before (see Section 2.4), when H admits a cross-section it is 
 

possible to find an affine null generator k (i.e. with κk = 0) of H . Combining 
- 

(2.90), (2.135) and the fact that η does not vanish on open subsets of H , it follows 

that 

η 
H
= ( f + κv) k, (2.136) 

where f , v ∈ F(H ) are functions satisfying k ( f ) = 0, k(v) = 1. Observe that if 

happens to vanish at some point p along a null generator, the surface gravity κ 
-α  - 
could in principle be a different constant before and after the fixed point p. This, 

however, is impossible because η and k are well defined on H and k vanishes 

nowhere, which implies that α is smooth along the curve, and since f is constant 

on the generator, κ- must be the same constant on each side of the point p. 

 
 

2.6.1 Multiple Killing horizons 

 

An interesting particular case happens when the same null hypersurface H ad- 

mits more than one null, tangent Killing vector field. Such hypersurface is named 

multiple Killing horizon (see e.g. [2], [93], [94]) and it is defined as follows. 

H 
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- 

r 

H 

- 

- 

H 

H 

H 

    

- 
deg 

 

Definition 2.6.6. (Multiple Killing horizon) Assume that an (n + 1)-dimensional space- 

time (M, g) admits m ≥ 2 non-trivial Killing vector fields {ηr} (r = 1, ..., m) which 

define respective Killing horizons {Hr}. A null hypersurface H embedded in (M, g) is a 

multiple Killing horizon of order m if 

 

H = H 1 = ... = H m. (2.137) 

 
A fundamental property of multiple Killing horizons [2, Prop. 4.3] is that the sur- 

face gravities {κr} of the Killing vectors {ηr} are all constant everywhere on their 

respective horizons {Hr}. This, in particular, allows one to extend each them trivi- 

ally to the whole closure H . 
def 

One can also prove that the set LH = span{η , r = 1, ..., m} of Killing vectors null 

and tangent to the multiple Killing horizon is an m-dimensional Lie subalgebra of 

the Killing Lie algebra of (M, g) [2, Thm. 2]. Moreover, there always exists [2, Thm. 

3] an Abelian subalgebra L deg of LH with at least dimension m − 1 and composed 

only by Killing vectors for which the multiple Killing horizon is degenerate. For 

the rest of this section we let {η2, ..., ηm} be degenerate Killing vector fields (i.e. 
with κ2 = ... = κm = 0) and consider η1 as a Killing vector field with arbitrary 

- 

surface gravity κ1. Observe that in this notation {η1, η2, ..., ηm} is a basis of LH 

such that {η2, ..., ηm} commute with each other. We also let r = 2, ..., m from now 

on, e.g. by writing {η1, ηr} or {H1, Hr}. 

A multiple Killing horizon H is called fully degenerate if LH = L deg, i.e. when 

LH is Abelian and all Killing vectors are degenerate. Otherwise, H is called non- 

fully degenerate and it has a unique non-degenerate Killing vector. The subalgebra 

L deg can be at most n-dimensional [2, Cor. 1], and hence the maximum possible 

order of a multiple Killing horizon is m = n (resp. m = n + 1) for fully (resp. 

non-fully) degenerate horizons. When dim L deg = m − 1, the remaining non- 

degenerate independent Killing vector η1 verifies 
 

[η1, ηr] = −κ1ηr ∀ηr ∈ LH  . (2.138) 

Since all Killing vectors are null and tangent everywhere along H , they are all 

necessarily proportional to each other therein. In particular, there exists a set of 

functions {αr} ∈ F(H1) defined as the proportionality functions between any 

Killing vector field ηr and η1, i.e. 

 

ηr = αrη1. (2.139) 
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- - 

1,r 1 r 

= ϖ (X )η 
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= - 

- 

= - - - 

r r = 

= ρ ρ σ σ ρ 

- 

σ 

 
In these circumstances, it holds (see equation (8) in [2]) 

 
v 

αr = -αe−κ-1 , (2.140) 
 

where α, v ∈ F(H1) are functions satisfying η1(v) = 1 and η1(α) = 0 and v is 

not univocally defined, as any other choice v′ = v + h with h ∈ F (H1) satisfying 

η1(h) = 0 also verifies η1(v′) = 1. 
 

For the rest of the section we let H1,r be the subset of H where both η1 and ηr are 

everywhere non-zero, i.e. H  =
d e f  

H ∩ H . 

We have seen before that it is possible to define a one-form ϖ along any Killing 

horizon (recall (2.106)). This applies, in particular, to the case of multiple Killing 

horizons. More concretely, there exist m one-forms3 {ϖ, ϖr}, respectively defined 

on the horizons {H1, Hr} and satisfying (2.106) for its corresponding Killing vec- 

tors {η1, ηr}. Observe that on H1,r, both ϖ and ϖr exist and are well-defined. This, 

together with (2.139), means that for any vector field X ∈ Γ(TH1,r) it holds 
 

ϖr(X)αrη1 
H1,r r 

H 

r = ∇Xηr 

H1,r 

= αr∇Xη1 + (αr)η1 

H1,r 

= (αrϖ( ) + (αr)) η1 

⇐⇒ dα + α
  
ϖ − ϖr

 H1,r 
0, (2.141) 

 

where d should be understood as the exterior derivative on H1,r as manifold. In- 

serting (2.140) into (2.141) yields 

d(ln |α|) + ϖ − ϖr − κ1dv 
H1,r 

0 (2.142) 
 

after using that α vanishes no-where on H 1,r. 

The identity (2.131), which was obtained for a general Killing horizon, is also true 

in this context for all Killing vectors {η1, ηr}. Particularizing (2.131) for η1 and ηr 

gives two equations that hold on H1 and Hr respectively. Since on H1,r these two 

identities are valid, one can subtract one from the other to find 

0 
H1,r 

XσYρ 
(

∇ 

 

ϖr + ϖr ϖr − ∇ ϖ 

 

− ϖ ϖ 
) 

∀X, Y ∈ Γ(TH 

 

). (2.143) 

 

Substituting ϖr in terms of ϖ by means of (2.142) gives 

0
H1,r 

XσYρ

(

∇ ∇ 

 

ln |α| + (∇ρ 

 

ln |α|)(∇σ 

 

ln |α|) + 2(∇(ρ ln |-α|) 
(
ϖσ) 

 

− κ-1∇σ) 

 

 
 

3For shortness, instead of using ϖ1 to denote the one-form associated to η1, we simply write 

ϖ. 

σ ρ σ 1,r 

ρ v
) 
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- 

- 

- 

- 

X 
ρ L 

− κ-1 
(

∇σ∇ρv + 2ϖ(ρ∇σ)v − κ-1(∇ρv)(∇σv)
) 1 

(2.144) 

 

after using that κ1 is constant on H 1,r. 

Equation (2.144) (already obtained in [2]) is usually called master equation. It con- 

stitutes a fully covariant identity for multiple Killing horizons, and it relates deriv- 

atives of the functions α and v (cf. (2.140)) with the one-form ϖ and the surface 

gravity κ1. Observe that since the terms inside the parenthesis are contracted with 

vector fields X, Y which are everywhere tangent to the horizon, (2.144) can be un- 

derstood as an identity of abstract nature (i.e. as an equation on H1,r as a manifold). 

By combining (2.106)-(2.107) (recall that here κr = 0) and (2.133), it is straightfor- 

ward to prove that the right hand side of (2.143) vanishes whenever X = η1 or 

Y = η1. The same occurs in (2.144), so it makes sense to study the case when both 

X and Y are tangent to H1,r but non-null everywhere. In [2], this is done by assum- 

ing that H1,r admits a cross-section S and that it can be foliated by diffeomorphic 

spacelike surfaces. In these circumstances, one can construct a (unique) foliation 

function v ∈ F(H1,r) by fixing it at S, i.e. by choosing v|S, and solving η1(v) = 1. 

Then, the set of spacelike submanifolds Sv =
d e f  

{p ∈ H1, | v(p) = v0 ∈ R} define a 

foliation of H1,r. 

As discussed in Section 2.5, we can construct vector fields everywhere tangent 

to the leaves {Sv} by extending any vector field X ∈ Γ(TS) uniquely to H1,r ac- 

cording to £η1 X = 0. For the rest of this section, we let X, Y ∈ Γ(TH1,r) be any 

two vector fields tangent to the foliation and commuting with η1. We also define 

L ∈ Γ(TM)|H1,r as the unique vector field verifying (2.112) for η = η1. In these 

circumstances, if we denote by ι the embedding of H1,r into M, we know by (2.113) 

that ℓ =
d e f  

ι⋆ L = dv. We can also define the Levi-civita covariant derivative on each 

leaf Sv by particularizing (2.115) for S = Sv. 

Using that 

 

XσYρ∇σ∇ρv = Xσ∇σ(Yρ∇ρv) − (Xσ∇σYρ)(∇ρv) = −(Xσ∇σYρ)(∇ρv) 

= −((∇h Y)ρ − K-  (X, Y)η1 )(∇ρv) = K- L(X, Y), (2.145) 

 
together with all considerations above, one can rewrite (2.144) as 

 H1,r h h h h h L 

0 = ∇A∇B ln |-α| + (∇A ln |-α|)(∇B ln |-α|) + 2(∇(A ln |-α|)ϖB) − κ-1 K-  
AB, (2.146) 
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L - 

L - 

1 

- - -- - 

1 1 

- 

£  (K- ) = 0, (2.151) 

- 

1 1 1 1 

1 1 1 

1 1 1 1 

1 1 1 1 

1 1 

1 1 

 

where we have chosen a basis {eA} of vector fields tangent to the leaves of the foli- 

ation and commuting with η1 and we have enforced X = eA, Y = eB. In particular, 

(2.146) holds at S, and can be rewritten in terms of derivatives of α as 

S h h h L 

-

 

0 = ∇A∇Bα + 2(∇(Aα)ϖB) − ακ1KAB. (2.147) 

 
We want to rewrite this equation in a way that does not involve KAB. The strategy 

will be to use (2.117) together with the fact that the components KAB are constant 

along the null generators. We start by proving this last claim. First, we use the 

well-known identities [∇µ, ∇α]Lβ = RµαβλLλ and ∇α∇βη1λ = ηµRµαβλ to obtain 

£η (∇α Lβ) = ηµ∇µ∇α Lβ + (∇αηµ)(∇µLβ) + (∇βηµ)(∇α Lµ) 

= ηµ[∇µ, ∇α]Lβ + ∇α(ηµ∇µLβ) + (∇βηµ)(∇α Lµ) 

= η
µ 

Rµαβλ L
λ + ∇α(£η  Lβ) − ∇α(Lµ∇βη

µ
) + (∇βη

µ
)(∇α Lµ) 

= Lµ∇α∇βηµ + ∇α(£η Lβ) − Lµ∇α∇βηµ = ∇α(£η Lβ). (2.148) 

 

Next we show that the pull-back of £η1 Lβ to H1,r vanishes identically. It is clear 

that this quantity does not depend on how we extend Lβ off H1,r, so we extend the 

function v arbitrarily and define Lbeta = ∇βv. Then, for any arbitrary vector Wβ 

tangent to H1,r, 

 

Wβ£η 

 

Lβ = Wβ
 
ηµ∇µLβ + (∇βηµ)Lµ

  
= Wβ

 
ηµ∇µ∇βv + (∇βηµ)(∇µv)

 
 

= Wβ
 

ηµ∇µ∇βv + ∇β(η1(v)) − ηµ∇β∇µv
  

= W(η1(v)) = 0. (2.149) 

This together with (2.115) (particularized for η = η1) gives 
 

α β α β L β h β 

eAeB∇α(£η1 Lβ) = −eA(∇αeB)(£η1 Lβ) = (K- (eA, eB)η1 − (∇e
A 

eB) )(£η1 Lβ) = 0. 

(2.150) 

 

The combination of (2.148) and (2.150) (recall that {eA, eB} commute with η1) yields 

 
L 

η1 AB 

 

which proves the claim. At this point we note that the proof of (2.117) only requires 

that N can be foliated by spacelike sections and that (£ηϖ)(X) = 0 holds for any 

X ∈ Γ(TN ). Since in the present case this is also true (recall (2.134)), enforcing 

(2.151) in (2.117) leads to 
 S h h L 

0 = RAB − RAB + 2∇(AϖB) + 2ϖAϖB + 2 κ- 1 K-  
AB, (2.152) 

1 
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AB 

∇  ∇ -α + -α 

AB 

- 

- 

- 

= A B (A ) 2 (A ) AB 

 

where, as before, RAB and Rh are the pull-back to S of the Ricci tensor of M and 

the Ricci tensor of the induced metric h on S respectively. Equation (2.152) can be 

inserted into (2.147) to obtain [2, Eq. (60)] 

0 S h h 2(∇h )ϖB + 
-α (

2∇h ϖB + 2ϖAϖB + RAB − Rh  
) 

. (2.153) 

 

Since L is null and normal to S, we know from (2.78) and (2.109) that the pull-back 

ϖA of ϖ to S coincides (up to a sign) with the so-called torsion one-form σL of 
S. Consequently, (2.153) is an identity relating derivatives of the function α at S, 

curvature terms (namely RAB and Rh  ) and the torsion one-form of S. 

-

 

 

2.6.2 Constancy of the surface gravity 

 
The constancy of the surface gravity is not guaranteed everywhere on a Killing ho- 

rizon H . However, it holds in many situations of physical interest, namely when 

(i) the Einstein tensor of the spacetime (M, g) satisfies the dominant energy condi- 

tion [115], [113]; (ii) the Killing vector field η is integrable, i.e. it verifies η ∧ dη = 0 

[101]; (iii) for any bifurcate Killing horizon [116], [101], [112]; and, as we have 

already mentioned, (iv) for multiple Killing horizons [2], [93], [94]. Nevertheless, 

we emphasize that the constancy of the surface gravity restricts the class of ho- 

rizons under consideration (see e.g. [117] for a situation where a non-constant 

surface gravity implies a rather different behaviour of the properties of the hori- 

zon). 

When the surface gravity κ is everywhere constant (e.g. in any of the situations 

above) and H admits a cross-section (which, as we have discussed, allows us to 

take an affine null generator k), one can trivially extend κ to the whole closure H 

as the same constant (again because η = ( f + κv)k everywhere on H and η, k 

and f are smooth, see (2.90)). This will be used later in Chapter 7 when studying 

matching across Killing horizons of order zero. 
 

 
2.7 matching of spacetimes 

 
In the Introduction, we have seen that the problem of matching two spacetimes 

across a hypersurface plays a fundamental role in any theory of gravity. We have 

also mentioned that the standard way of approaching the problem of matching is 

to consider two spacetimes with boundary and then construct a resulting differ- 

entiable spacetime by establishing an identification between the boundary points 
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- 

- 

 
and between the full tangent spaces at the boundaries (this must be done in such 

a way that a rigging vector field pointing inwards (resp. outwards) on one side is 

identified with a rigging pointing outwards (resp. inwards) on the other side). 

Of course, the matching between two whatever given spacetimes will be impossible 

in general. The complete set of necessary and sufficient conditions that allow for 

the matching has never been presented in terms of abstract metric hypersurface 

data (this notion was introduced later in [58]). However, the results of [67], [64], 

[65] can be collected in the following result. 

 

Theorem 2.7.1. Let (M±, g±) be two spacetimes with boundaries N-±. Assume that 

the dimension of (M±, g±) is n + 1 ≥ 2. Then, (M±, g±) can be matched across N ± 

and give rise to a resulting spacetime (M, g) with continuous metric g (in a suitable 

differentiable atlas) if and only if 

(i) There exist metric hypersurface data {N , γ, ℓ, ℓ(2)} that can be embedded in both 

spacetimes (M±, g±) with embeddings ϕ± such that ϕ±(N ) = N ± and riggings 

ζ±. 

(ii) One rigging vector field must point inwards with respect to their corresponding 

boundary while the other must point outwards. 

 
We have also explained before that if the boundaries are everywhere non-null and 

(i) is fulfilled, then (ii) can always be satisfied provided that one chooses the rig- 

gings to be unit, normal and with suitable orientation (observe that in this case 

ℓ = 0, |ℓ(2)| = 1 and therefore the whole metric data is easily identified). This, as 

we know, is not so when the boundaries contain a null point. In such case, finding 

embeddings and riggings for which a metric hypersurface data {N , γ, ℓ, ℓ(2)} is 

embedded in (M±, g±) is not sufficient to guarantee the matching [65], and con- 

dition (ii) needs to be included. The underlying reason why one needs the extra 

condition (ii) on null points is that the only gauge transformation which leaves a 

metric data with null points invariant is the identity, i.e. one cannot adjust the ori- 

entations of the two riggings at will. Observe that, in the language of the formalism 

of hypersurface data, (i)-(ii) mean that both boundaries must define hypersurface 

data {N , γ, ℓ, ℓ(2), Y±} with the same metric part and (possibly) different extrinsic 

part. 

Another point that has been stressed in the Introduction is that, when there exists 

a jump in the second fundamental forms of each boundary, then it appears a sin- 

gular part in the Einstein tensor of the resulting spacetime. This singular part is 

interpreted as the energy-momentum tensor of the thin shell (cf. (1.2)), and must 

satisfy the Israel equations (which in the non-null case are (1.3)). 
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The Israel equations, however, can be obtained more directly for the case with ar- 

bitrary causal character as an application of the formalism of hypersurface data. 

It suffices to take the difference between the constraint equations (2.55)-(2.56) at 

each side of the matching hypersurface. Since the constraint equations have been 

introduced at the abstract level, the argument is valid for any pair of hypersur- 

face data (in any gauge), independently of whether they contain null points or not. 

This procedure is more convenient for several reasons. First, the derivation of the 

Israel equations is conceptually easier as there is no need to make use of the dis- 

tributional theory. Secondly, one can obtain the shell equations without using the 

subatlas where the metric g is continuous (this choice is essential within the context 

of distributional calculus). Even more, the computations are much more general in 

the sense that the two hypersurface data {N , γ, ℓ, ℓ(2), Y±} corresponding to the 

thin shell do not need to be embedded at all. This may seem superfluous but in 

fact it is not because while the spacelike initial value problem defines a well-posed 

Cauchy problem, in completely general circumstances it is not to be expected that 

a hypersurface data gives rise to a spacetime (specially if the data contains a point 

where γ has Lorentzian signature). Even in situations where one could expect, for 

physical or geometric reasons, that the initial value problem is well-posed (e.g. 

whenever all points are null or spacelike) it could well happen that the result has 

not been proven yet. 

Anyway, the set of all possible abstract hypersurface data is, a priori, more general 

than the set of spacetimes satisfying the Einstein equations and with matter content 

prescribed by the data. It is therefore convenient to find the Israel equations for thin 

shells at a fully abstract level. This problem was addressed in [58] as one of the 

first applications of the formalism of hypersurface data. The outcome was the first 

derivation of the Israel equations for general spacetimes containing thin shells of 

arbitrary causal character. We describe these results next. 

 

2.7.1 Thin shells: formalism of hypersurface data 

 
Let us now explore the physics and geometry of thin shells from a completely 

abstract viewpoint, i.e. by means of the formalism of hypersurface data. We start 

with the abstract notion of thin shell. 

Definition 2.7.2. (Thin shell) A thin shell is a pair of matter-hypersurface data with same 

metric hypersurface data, i.e. of the form {N , γ, ℓ, ℓ(2), Y±, ρℓ
±, J±, ϵ}, where ϵ is a sign 

with gauge behaviour: 
 z  

G(z,V)(ϵ) = 
|z| 

ϵ. (2.154) 
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ℓ ∇ f 2 ∇d 

c ∇ f c c 2 ∇ f 

 

Given a hypersurface data set {γ, ℓ, ℓ(2), Y±}, we write Q± to refer to any geomet- 

ric quantity constructed from it. We also use the notation [Q] =
d e f  

Q+ − Q−. 

One of the main properties of thin shells is that one can define an energy- 

momentum tensor encoding their matter-energy content. In the spacelike case, as 

we have seen, the singular part of the Einstein tensor of the matched spacetime 

is given by (1.2). In that situation it is therefore to be expected that the energy- 

momentum tensor coincides with T . In a completely general case, the energy- 

momentum tensor is defined as follows. 

Definition  2.7.3. (Energy-momentum  tensor  of  a  thin  shell)  For  a  thin  shell 

{N , γ, ℓ, ℓ(2), Y±, ρℓ
±, J±, ϵ} the energy-momentum tensor is the symmetric 2-covariant 

tensor τ defined by 

 

τd f 
 

=
def ϵ

(
(Pa f nd + Padnf )nb

 

− (n(2) Pa f Pbd + Pd f nanb) + Pab(n(2) Pd f − ndnf )
)
[Yab]. (2.155) 

 

Remark 2.7.4. The sign ϵ in Definitions 2.7.2 and 2.7.3 is necessary for the energy- 

momentum tensor τ to be well-defined. This is so because a change in the orientation 

of the one-form ℓ (or of rigging in the embedded picture) introduces a sign in [Y] (recall 

(2.40)), and τ must be invariant under this type of transformations. 

Concretely, when embedding a thin shell data {N , γ, ℓ, ℓ(2), Y±, ρℓ
±, J±} in two semi- 

Riemannian manifolds (M±, g±) with embeddings ϕ± and riggings ζ± respectively, the 

sign ϵ must be chosen positive if ζ− points outwards with respect to (M−, g−) and neg- 

ative otherwise. 

When evaluating the difference between the constraint equations (2.55)-(2.56) for 

the plus and the minus matter-hypersurface data, all purely metric terms cancel 

out (recall that 
◦

 only depends on the metric part of the data). As proven in [58]4, 

the result of this operation is 

 

ϵ[ρ ] = 
◦

 T f + Td 

( 
1 

n(2) 
◦

 

 

ℓ(2) + F n f 

1 

− τd f Y 
 

, (2.156) 

ϵ[J ] = 
◦

 τ 
f 
+ τ 

f 
( 

1 
n(2) ◦

 

 

ℓ(2) + F na

1 

+ T f U 
 

, (2.157) 

 
where we have defined the tensor fields 

 

 

Y =
d e f  

1 
(Y+ + Y−), τ f =

d e f  
τ f aγac, T f =

d e f  
τ f aℓa. (2.158) 

2 c  

4Observe that in [58] the sign ϵ has not been considered in the definition of τ. However, intro- 
ducing ϵ in Definitions 2.7.2 and 2.7.3 is necessary for the reasons explained above. 

d f d f 

f a c f 
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- - 

a b 

i j 

 

Under the action of a gauge group element G(z,V), the tensor field [Y] transforms 

as G(z,V)([Y]) = z[Y] [58] and, as a consequence, 

 

G(z,V)(τ) = 
|z| 

. (2.159) 

Moreover, the tensor τ coincides with the energy-momentum tensor T of (1.2) 

when γ is non-degenerate and the hypersurface data is expressed in the normal 

gauge, i.e. with ℓ = 0 and ℓ(2) = ±1 [58]. Consequently, the tensor field τ, which 

has the symmetries of an energy-momentum tensor, coincides with the energy- 

momentum tensor of the shell whenever it does not contain null points. Moreover, 

for null thin shells, it is straightforward to check that the definition of energy- 

momentum tensor provided in [63, Eq. (31)] by Barrabés and Israel yields precisely 

τ. Given a basis {ea} of Γ(TN ) (recall that N is the matching hypersurface of the 

resulting spacetime (M, g)), one can also check that the quantity τabeµeν gives the 

singular part of the Einstein tensor of (M, g), as it is written in [64, Eq. (71)]. The 

gauge behaviour of τ turns out to be essential in the embedded case, as it ensures 

that the singular part of the Einstein tensor of the matched spacetime remains 

invariant under rescaling the normal vector ν. 

All the reasons above justify the Definition 2.7.3 for the energy-momentum tensor 

on a thin shell [58], irrespectively of whether data is embedded in any space. 

Observe that the dependence on τ on the surface layer equations (2.156)-(2.157) 

is linear. This supports the interpretation of τ as the energy-momentum tensor of 

the shell, and also implies that τ = 0 is always a solution of the shell equations 

with {[ρℓ] = 0, [J] = 0}. It is also worth stressing that at null points (and only 

there), τ = 0 does not necessarily imply [Y] = 0. Indeed, in order to get τ = 0 

when n(2) = 0, it suffices to require [Y](n, ·) = 0 and trP[Y] = 0, which does not 

mean that the whole tensor [Y] vanishes identically. It is precisely this property 

that allows us to conclude that the solution {[ρℓ] = 0, [J] = 0, τ = 0} does not 

necessarily correspond to the situation in which both matter-hypersurface data 

defining the shell are identical, but to scenarios in which a gravitational field with 

no contribution to the energy-momentum tensor and with support on the thin shell 

appears. Physically this type of thin shells describe pure impulsive gravitational 

waves and they can only exist on null points, as at non-null points we would 

require, in addition, that Pa f Pbd[Y]ab = 0 for τ to be zero, and this would entail 

that 0 = γ f iγdjPa f Pbd[Y]ab = (δa − naℓi)(δb − nbℓj)[Y]ab = [Y]ij (cf. (2.9)). This 

eventually means that non-trivial thin shells with vanishing energy-momentum 

tensor can only exist on null points. 
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∇ 

J ] = 
2 

ℓ 
|detA| 2 ab ab 

 

We have already mentioned that the gauge behaviour of τ, [ρℓ] and [J] is remark- 

ably simple. This, however, does not occur for the metric hypersurface connection 

◦ . A natural question is whether one can rewrite the shell equations in such a 

way that the gauge-dependence is explicit. For that it is convenient to express the 

surface layer equations (2.156)-(2.157) in an arbitrary coordinate frame, obtaining 

[58] 

1 
ϵ[ρ ] = ✓ ∂a 

(j
|detA|τabℓ 

1 

− 
1 

τab(Y+ + Y− ), (2.160) 

 

ϵ[ a ✓ 
1 

|detA| 
∂b 

(j
|detA|τbcγca

1 

− 
1 

τbd∂aγbd, (2.161) 

where we recall that A is defined in terms of the metric hypersurface data as 

in (2.4). Under the action of a gauge group element G(z,V), |detA| behaves as 

G(z,V)(detA) = z2detA [58]. Using this it is straightforward to show that the shell 

equations satisfy the gauge-covariance properties described above. 

For later purposes, we conclude this section by providing the definition of null 

thin shell. 

 

Definition  2.7.5.  (Null  thin  shell)  A  null  thin  shell  is  a  thin  shell 

{N , γ, ℓ, ℓ(2), Y±, ρℓ
±, J±, ϵ} such that N consists of null points exclusively. 

 

2.7.2 Cut-and-paste method 

 
Thin shells have been traditionally constructed à là Darmois, i.e. by using the 

previously described distributional formalism defined on a spacetime endowed 

with a metric g which is globally continuous and differentiable (away from the 

thin shell hypersurface). In this framework, one defines a distribution associated 

to the metric and, since the metric is continuous, one can introduce a Riemann 

tensor in distributional form. 

As we anticipated in the Introduction, Penrose [3], [85], [86], [87] presented an al- 

ternative procedure to construct explicit examples of null thin shells. This method 

relies on a distributional metric with a Dirac delta with support on a null hypersur- 

face. The distributional Einstein field equations formally still make sense because 

the coordinates are selected so that the Einstein tensor depends linearly on the 

metric coefficients. 

This so-called cut-and-paste construction method works for very specific spacetimes. 

Given one such special spacetime (M, g) and an embedded null hypersurface N-, 

b 
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one first chooses appropriate lightlike coordinates adapted to N . Then one "cuts" 

the spacetime, obtaining two separated regions that are later "pasted" again after 

some reorganization of points on one of the sides. The resulting spacetime contains 

a null thin shell (generically with no pressure and no energy flux) located on the 

hypersurface where the cut of the initial spacetime has taken place. In the original 

coordinates, the resulting spacetime presents a Dirac delta with support on the 

thin shell. 

In their seminal works, Penrose introduced this idea in the spacetime of 

Minkowski, proposing a specific reorganization of points. With his construction, he 

could generate impulsive gravitational waves (or shells of null dust, as we shall see 

in Section 7.3.3) with plane and spherical topology propagating in the Minkowski 

spacetime. More complicated spacetimes have been successfully studied in later 

works. Among the many contributions in this regard, we stress [88], [89], [90], [91], 

[92], [4], [5], [6], [7] and references therein. 

A natural question that arises is what is the relation between the cut-and-paste con- 

structions and the matching conditions prescribed by the formalism of matching 

introduced before. Before the work that has lead to this thesis, there did not exist 

any systematic analysis of the connection between them. This problem, which we 

address in Chapters 7, 8, 9, constitutes the starting point of this thesis. 

In the language of the formalism of hypersurface data, the matching conditions 

rely on the metric hypersurface data from both boundaries being the same. These 

metric hypersurface data depend on the spacetime geometry and on the embed- 

ding of the hypersurface on such spacetime. In the cut-and-paste construction, the 

ambient spacetime and the hypersurface (understood as a set of points) are the 

same on both regions. On the other hand, the redistribution of points that takes 

place on one of the spacetime regions forces the embeddings from both sides to be 

different. The requirement of the new embedding defining the same metric data 

restricts the set of all possible redistributions of points. Thus, the cut-and-paste 

formalism will be compatible with the matching procedure à là Darmois if and 

only if the redistribution of points leaves the metric hypersurface data invariant. 

As we shall see in Chapter 7, this is in fact the case in all cut-and-paste construc- 

tions. In that chapter, both formalisms will be connected, and later in Chapter 9 

the matching à là cut-and-paste will be even described at a fully abstract level. 

For its later use, it is convenient that we now examine the cut-and-paste construc- 

tion of the plane-fronted wave in the 4-dimensional spacetime of Minkowski. We 

start by writing down the metric of any plane-fronted wave (see e.g. [118], [119]): 

ds2 = −2 (dV + P (U, x, z) dU) dU + dx2 + dz2. (2.162) 
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dU 

dU 

∂x2 
+ 

∂z2 

 
The spacetimes describing purely gravitational waves, i.e. solutions of the vacuum 

Einstein field equations, are those for which the function P verifies the condition 

( ∂2 ∂2 ) 

 

In [86], Penrose addresses the impulsive case of (2.162) by setting P (U, x, z) to 

zero except on the hypersurface defined by U = 0, i.e. by enforcing 

P (U, x, z) = δ (U) H (x, z) , (2.164) 

where δ denotes Dirac delta distribution and H (x, z) is any real function. Under 

these circumstances, the metric becomes 

 

ds2 = −2 (dV + δ (U) H (x, z) dU) dU + dx2 + dz2. (2.165) 

The possibility to perform a coordinate change which turns (2.165) into a C0-form 

is already mentioned by Penrose in [86], [87]. In fact, by writing (2.165) in the 

coordinates 
def  1   def  1  

 

 
which yields 

U, V, η = √
2 

(x + iz) , η = √
2 

(x − iz) , (2.166) 

ds2 = −2 (dV + δ (U) H (η, η) dU) dU + 2dηdη, (2.167) 

Podolsý et al. [88], [5] found the suitable coordinate transformation, namely 

U = U, V = V + Θ(U)h + U+(U)h,Z h,Z , η = Z + U+(U)h,Z , (2.168) 

where the comma denotes partial derivative, Θ(U) is the Heaviside step function, 
 

U+ =
d e f  

UΘ(U) is the so-called kink function and h
 
Z, Z

 
=
d e f  

H (η, η) | is a real- 
U =0 

valued function. Inserting (2.168) into (2.167), one obtains the following continuous 
metric5: 

ds2 = 2 1dZ + U+(U)
 

h,ZZ dZ + h,ZZ dZ
 
1 − 2dUdV. (2.169) 

2 

 
The transformation (2.168) immediately shows that the lightlike coordinate V is dis- 

continuous across the hypersurface U = 0 and that the presence of the δ-function 

on (2.165) is due to this jump. More precisely, the discontinuous coordinates 

{U, V, η, η}, chosen to preserve the Minkowski form of (2.165) on U ≷ 0, produce 

discontinuities on the metric, while with the continuous coordinates {U, V, Z, Z} 

the metric tensor becomes C0 but loses the Minkowski form for U > 0. Never- 

 
 

5As pointed out in [5], to obtain (2.169) one needs to use the distributional identities dΘ = δ, 

d(UΘ) = Θ, Θ2 = Θ, which in general may lead to mathematical inconsistencies. 

P = 0. (2.163) 
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theless, the coordinates {U, V, η, η} are useful to understand this spacetime as the 

outcome of the disjoint union of U > 0 and U < 0 with a jump on V when crossing 

the hypersurface U = 0. 

When applying the cut-and-paste method to the case of a plane-fronted impulsive 

wave in Minkowski, Penrose proposes a jump on the lightlike coordinate V of the 

form 

V+|U+=0 = V− + H (x−, z−) |U−=0, (2.170) 

where {V±, x±, z±} refer to the coordinates {V, x, z} on the regions U ≷ 0 of (2.165) 

respectively. This jump follows directly from the coordinate transformation (2.168). 

It is also worth mentioning that the jump (2.170) is not exclusive of this specific cut- 

and-paste construction. A jump of this type also gives rise to null thin shells in the 

cut-and-paste construction corresponding non-expanding impulsive gravitational 

waves propagating in the spacetimes of (anti-)de Sitter (see e.g. [6]). 



 

 



 

 

∇ 

∇ 

3 
N E W R E S U LT S O N T H E F O R M A L I S M O F 

H Y P E R S U R FA C E D ATA 
 

 

 
Once we have presented the preliminary results that we shall need throughout 

this thesis, we can start with its actual developments. Concretely, in this chapter 

we concentrate on developing the formalism of hypersurface data itself. 

The chapter is divided in three sections. In Section 3.1, we work with completely 

general metric hypersurface data {N , γ, ℓ, ℓ(2)}. We start by providing the rela- 

tion between the signatures of the ambient metric A and γ, by proving a result 

analogous to Lemma 2.2.8 taylored to the embedded case and by deriving useful 

identities concerning the metric hypersurface connection 
◦

 and the Lie derivative 

of the data tensor γ. Then, we introduce the tensor "Lie derivative of a connection 

D along a vector field Z", and examine its properties in detail. Finally, we conclude 

with several results concerning the curvature tensor R
◦ 

a bcd of 
◦ 

. 

In Section 3.2 we restrict ourselves to null hypersurface data. We first introduce the 

notion of null (metric) hypersurface data together with the explicit decomposition 

of γ, P and the energy-momentum tensor τ defined in (2.7.3) in a given basis. Then, 

we include several gauge-fixing results as well as several useful identities concern- 

ing the curvature tensors R
◦ 

a
bcd and R

◦ 

ab. Afterwards, we study the particular case 

when the manifold N admits a submanifold S to which n is everywhere trans- 

verse. Under this assumption, we again provide gauge-fixing results and explore 
the relation between the metric hypersurface connection 

◦
 and a general torsion- 

free connection ∇S on S 

∇ 

. This allows us to identify under which circumstances ∇S 

coincides with the Levi-Civita connection of S. We also give a Gauss-type identity 

on S and derive explicit expressions for the pull-back to S of covariant and Lie 

derivatives of tensor fields. We conclude the section by analyzing what occurs if 

N admits a cross-section (i.e. a submanifold S which is intersected for each integ- 

ral curve of n exactly once). In this context, the flexibility associated to the gauge 

freedom turns out to be a great advantage. We also recall the definition of char- 
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A 

− ∈ N 

−  0 − 
def 

def def 

 
acteristic hypersurface data, originally presented in [60], and compare it with the 

concept of null (metric) hypersurface data. 

The final part of the chapter is devoted to analyzing some consequences of having 

a gauge-invariant vector field along the degenerate direction of N . 

 
 

3.1 general hypersurface data 

 

As anticipated, we start by studying the relation between the signatures of the 

tensor fields A (cf. (2.4)) and γ. For non-null points, this aspect was discussed 

in [59, Lem. 2.7]. Here we give the corresponding result for null points. As in 

that reference, we view the signature of a quadratic form q as the (unordered) set 

sign(q) = {0, ..., 0, −1, ..., −1, +1, ..., +1} of diagonal entries corresponding to the 

canonical form of q. 

 

Lemma 3.1.1. Let {N , γ, ℓ, ℓ(2)} be metric hypersurface data and p ∈ N a null point, 

i.e. Rad(γ)|p ̸= {0}. Then the signatures of γ|p and A|p are related by 

sign(A|p) = {−1, 1} ⊔ (sign(γ|p) \ {0}). (3.1) 

where ⊔ is the disjoint union. In particular, A|p has Lorentzian signature if and only if 

γ|p is semi-positive definite. 

Proof. Assume n =
d e f  

dim(N ) ≥ 2 (if n = 1 the proof is the same with small changes 

of notation). Since Rad(γ)|p ̸= {0}, it must be one-dimensional. Let {ea} be a 

canonical basis of γ|p with e1 ∈ Rad(γ)|p and define ϵa = γ|p(ea, ea), sA = ℓ|p(eA). 

Observe that ϵ1 = 0 and ϵ2 = 1. Then, the vectors 
 

E0 =
d e f  

(V, 1), Ea =
d e f  

(ea, 0), with V =
def

 

n 

∑ ϵBsBeB Tp (3.2) 
B=2 

 

form a basis of TpN × R. From (2.4) we get  

A|p(E0, E0) = γ|p (V, V) + 2ℓ|p (V) + ℓ(2) =
def 

C, A|p(E0, E1) = ℓ|p (e1) , (3.3) 

A|p(E0, EA) = γ|p (V, eA) + ℓ|p (eA) , A|p(E1, E1) = 0, (3.4) 

A|p(EA, EB) = γ|p (eA, eB) = δABϵA, A|p(E1, EA) = 0. (3.5) 

Since A|p is non-degenerate, ℓ|p (e1) ̸= 0 and we can introduce the vectors 
 

def 1 + C 

E�0  = E0 − 
2(ℓ|p (e1)) 

E1, E�1  = E 
1 − C 

2(ℓ|p (e1)) 
E1, E�A = EA. (3.6) 

def 
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� � 

� � � � � � 

∇ 

∇ 

 
A simple computation yields 

 

A|p(E0, E0) = −1, A|p(E0, E1) = 0, A|p(E0, EA) = 0, (3.7) 

A|p(E�1, E�1 ) = 1, A|p(E�1, E�A ) = 0, A|p(E�A, E�B ) = δABϵA. (3.8) 

Thus, {E0, Ea} is a canonical basis of A|p and sign(A|p) = {−1, 1, ϵ2, ..., ϵn}, which 

proves (3.1). The last claim is immediate. 

 
In the previous chapter we have recalled Lemma 2.2.8, which finds a unique vector 

field from a covector and a scalar function on N satisfying suitable restrictions. 

This result will be of much use in this thesis. In addition we will also require a 

related result which applies to the embedded case. This analogous statement and 

its proof are as follows. 

Lemma 3.1.2. Let {N , γ, ℓ, ℓ(2)} be hypersurface data embedded on a semi-riemannian 

manifold (M, g) with embedding ϕ and rigging ζ. Given a covector β along N and a scalar 

function v0 ∈ F(N ), only the vector field V = (β(n) + n(2)v0)ζ + ϕ⋆ (P(β, ·) + v0n) ∈ 

Γ(TM)|ϕ(N ) solves the equations β = ϕ⋆(g(V, ·)) and v0 = ϕ⋆(g(ζ, V)). 

Proof. Consider a local basis {eˆa} of Γ(TN ) and its image basis {ea} of Γ(Tϕ(N )). 

Then {ζ, ea} form a basis of Γ(TM)|ϕ(N ) so that any V ∈ Γ(TM)|ϕ(N ) can be 

decomposed as V = αζ + Waea for suitable scalar functions α, Wa  ∈ F(ϕ(N )). 

Thus, by defining V =
d e f  

g(V, ·), it follows 

(ϕ⋆(V ))b = αℓb + γabWa, ϕ⋆(V (ζ)) = αℓ(2) + Waℓa. (3.9) 

 

Therefore, V is a solution of the equations β = ϕ⋆(V ), v0 = ϕ⋆(g(ζ, V)) if and only 

if γabWa = βb − αℓb and ℓaWa = v0 − αℓ(2). By Lemma 2.2.8, there exists a unique 

solution Wa = Pab(βb − αℓb) + (v0 − αℓ(2))na if and only if (βb − αℓb)nb + n(2)(v0 − α

ℓ(2)) vanishes identically. This is equivalent to 

0 = βbn
b − α(1 − n(2)ℓ(2)) + n(2)v0 − n(2)ℓ(2)α = βbn

b − α + n(2)v0, 

 

and hence α = βbnb + n(2)v0. Using (2.8), it follows Wa = Pabβb − αPabℓb + (v0 − 

αℓ(2))na = Pabβb + v0na. 

There will be somewhat heavy computations below involving the connection  
◦

 

defined in Theorem 2.2.4. The derivations will be aided by several identities that 

will be used repeatedly. We start by linking the  
◦

 derivatives of one-forms or 

symmetric and antisymmetric tensor fields with Lie derivatives and exterior deriv- 

atives. 
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∇b 

∇b 

∇ 

∇d 
1 

=

 

∇d 

= 3 

∇ 

i=1 

∇d 

∇b ∇b 

∇d ∇d 

∇d ∇c ∇(b d) c(b∇d) 2 2 
∇c 

∇d cb ∇c db 2 ∇d cb ∇b cd ∇d cb ∇b cd ∇c ∇c db 

2 
∇ ∇ ∇ ∇ 

θ 

θ 

∇d 

∇d 

S (S 
◦ 

A a 
◦ 

θ 
◦ 

θ ∇d ∇d 

S 
◦ 

(S 
◦ 

 

Lemma 3.1.3. Let {N , γ, ℓ, ℓ(2)} be metric hypersurface data and θa, Sab, Aab tensor 

fields on N with the symmetries Sab = S(ab) and Aab = A[ab]. Then, 

nb 

( 
◦ 

θd 

nb 

( 
◦ 

θd 

 
◦ 

∇d  b 

◦ 

∇d  b 

1 

= £nθd 

1 

= £nθd 

 

◦ (θ(n)), (3.10) 

◦ (θ(n)) 

− 2 

(

θ(n) 

(

sd − n(2) 
◦ 

dℓ(2)

1 

+ Pabθb 
(

Uda − n(2)Fda

)1 

, (3.11) 

nc 

( ◦  
Scb 

◦  

∇c  db 

◦ 

∇d bc 

 

nc) − £n 

 

Sbd 

 

+ Scd∇b nc (3.12) 

nc 

( 
◦  

A 
 

− ◦ A 
1 

= 
◦

  

a − A ◦ nc + 
1 

nc(dA) − 
1 

nc 
◦  

A (3.13) 

nc 

( ◦  
Acb 

◦  

∇c db 

1 

= nc(dA) 
 

dcb 

◦  

∇b  d 

 

− Acd∇b nc (3.14) 

 

where dA 
 

abc 

def ◦ 

∇[a Abc] and aa =
d e f  

nc Aca. 
 

Proof. Since the connection 
◦

 has no torsion, the Lie derivative of any covariant 

tensor Ta1···ap along any direction V is 

b ◦ p ◦ b 

(£VT)a1···ap = V ∇b Ta1···ap + ∑ Ta1···ai−1 bai+1···ap ∇ai V . (3.15) 

 
We will use this repeatedly. Equation (3.10) follows from nb( 

◦ 

bθd − ◦ dθb) = 

◦ 

∇b  d 

 

+ θb∇d 

 

nb − ◦ 

∇ ∇ 

(θ(n)). Moreover, 

nb 

( 
◦ 

θd 

 
◦  

∇d  b 

1 

= nb 
◦  

θd 

 

◦ (θ(n)) − θ 

 
◦ 

b∇d 

 

nb = £nθd 

 

◦ (θ(n)) − 2θ 

 
◦ 

b∇d 

 

nb, 

 

which yields (3.11) after using (2.20). For the symmetric tensor S, (3.15) gives 

nc 

( ◦  
Scb 

 
◦  

∇c  db 

1 

= nc 
◦

 

 

Scb 

 

+ Scb∇d 

 

nc + S 

 
◦ 

dc∇b 

 

nc − £n 
 

Sbd 

◦ 

∇d bc nc) − £n Sdb + Scd∇b nc, 
 

which is (3.12). For the antisymmetric tensor A, we use (dA) =
def 

3 
◦ 

A = 

◦ ◦ ◦ 
dcb ∇[d cb] 

∇d Acb − ∇b Acd − ∇c Adb and find 

nc 

( 
◦  

A − ◦ A  

1 

= 
1 

nc 

( 
◦  

A + 
◦ 

A + 
◦ 

A − ◦ A − ◦ A − ◦ A  

1

 

= 
1 ( ◦ 

d(Acbnc) + 
◦ 

b(Acdnc) − Acb 

◦ 

dnc − Acd 

◦ 

bn
c
 

− 

+ 

− 

+ 

− 

− + 

nb 

+ + + 

− 

= 

cb db dcb db 

db 
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∇c 

∇d ∇d 

∇ 

∇c − − 

∇c 

∇(a 

∇c ∇a ∇b ∇a 
ˇ 

b ∇b 
ˇ 

a ∇(a ˇ b) 

2 ŵ ab ab ∇(a b) b) 

A A A A 

γ γ ∇ 

◦ ◦ 

◦ 

 

+ nc(dA) 
 

dcb − nc 
◦

 Adb

)

 

= 
◦ 

a − A ◦ nc + 
1 

nc(dA) − 
1 

nc 
◦  

A  , 
∇(b  d) c(b∇d) 2 dcb 

2 
∇c db 

which is (3.13). Moreover, we also find 

nc 

( ◦ 

Acb 

◦  

∇c db 

1 

= nc 

( ◦ 

Acb 

◦  

∇c bd 

◦  

∇b dc 

◦  

∇b cd 

= nc(dA)dcb + 
◦ 

b (n
c Acd) − Acd 

◦ 

bn
c, 

∇ ∇ 

which is the alternative form (3.14). 

Next we provide the relation between the Lie derivative of the "metric" tensor γ 

along a general direction V and 
◦

 covariant derivatives of a covector geometrically 

constructed from V. 

 

Lemma 3.1.4. Let {N , γ, ℓ, ℓ(2)} be metric hypersurface data, Va any vector field and 
wa any covector field. Define Va =

d e f  
γabVb and ŵ a =

d e f  
Pabwb. Then the following identities 

hold 
 ̌

 1 
£ γ = ℓ(V)U + 

◦
 

 

 V , (3.16) 

2 V  ab ab ∇(a ˇ b) 1 
£ γ = 

◦ 
w − ℓ 

◦ 
w(n). (3.17) 

2 ŵ  ab ∇(a  b) (a∇b) 

Proof. We first note that 
◦

 

 

γab 

◦  

∇a  bc 

◦ 

b  ac

 
= 2ℓcUab as a direct consequence 

of (2.18). Applying (3.15) to T = γ we get 
 

£Vγab = Vc 
◦

 γab + γbc∇a Vc + γ ac∇bV
c
 

= Vc 

( 
◦ 

γ 

 

− ◦ γ 
 

− ◦ γ 
1 

+ 
◦

 

V + 
◦

 V = 2ℓ(V)U + 2 
◦ 

V 

which is (3.16). To prove the second identity we apply (3.16) to V = ŵ . Since by 

(2.9) we have γabPbcwc = wa − w(n)ℓa, identity (3.16) gives 

1 
£ γ = ℓ(ŵ )U + 

◦
 

(
w − w(n)ℓ 

) 
. 

 

From (2.8), we find ℓ ( ŵ ) = −ℓ(2)w(n). Inserting above yields 
 

1 

2 
£ŵ 

 

γab = −ℓ(2)w(n)Uab 
◦ 

∇(a wb) − ℓ(a∇b) w(n) − w(n) 
◦

 ℓb), 

which simplifies to (3.17) after taking into account (2.19). 

− + + + 

+ 

ab bc ac ab 

1 
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∇ 

∇ 

∇ 

Z 

 

We stress that all the results so far in this section are valid for general metric 

hypersurface data. Note also that the extrinsic part Y of the data has played no 

role in any of them. This of course is a consequence of the fact that 
◦ 

is completely 

independent of Y. 

 

3.1.1 The Lie derivative of the connection 
◦

 along n 

 
As anticipated, we now introduce the tensor field "Lie derivative of a connection". 

This tensor carries useful information on the curvature and, as we will see in 

Chapters 5 and 6, plays a key role in the study of the geometry of horizons. We 

first provide some basic general results and then we derive its explicit form in the 

case when the connection is precisely the metric hypersurface connection 
◦ 

. For 

general properties of this tensor we refer to [120]. 

Given any smooth manifold M endowed with an affine connection D and a vector 

field Z, the tensor field Lie derivative of D along Z, denoted by ΣZ, is defined by 

ΣZ(X, W) =
d e f  

£ZDXW − DX£ZW − D£ XW (3.18) 

for any pair of vector fields X, W ∈ Γ(TM). This tensor only depends on the 

vector field Z and on the connection D, so we will use the notation ΣZ = £ZD in 

the following. 

When D is torsion-free, this tensor is symmetric. Indeed, using £X1 X2 = DX1 X2 − 

DX2 X1 a few times, one gets 

ΣZ(X, W) − ΣZ(W, X) = £Z£XW − DX£ZW + DW£ZX − D£ZXW + D£ZW X 

= £Z£XW + £X£W Z + £W£ZX = 0, 

 
the last equality being a consequence of the Jacobi identity. 

The tensor field ΣZ plays an important role whenever the Lie derivative £Z of a 

covariant derivative of a tensor field needs to be computed. In the case of one- 

forms θ, the fact that 

£ZDX (θ(W)) − DX£Z (θ(W)) − D£ZX (θ(W)) = (£ZX) (θ(W)) + (£XZ) (θ(W)) = 0 

 
combined with (3.18) gives 

 

0 = £Z ((DXθ) (W) + θ (DXW)) − DX (θ(£ZW) + (£Zθ) (W)) − D£ZX (θ(W)) 

= £Z (DXθ) (W) − DX (£Zθ) (W) −
 

D£ZX θ
 
(W) + θ(ΣZ(X, W)) 
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∇ 

- 

Z Z 

1 

λν 2 αµν µνα ναµ 

 

⇐⇒ (£ZDXθ) (W) = (DX£Zθ) (W) +
 

D£ZX θ
 

(W) − θ (ΣZ(X, W)) ,  (3.19) 

 
or, in abstract index notation, 

 

£Z

 
Dαθβ

 
= Dα

 
£Zθβ

 
− (ΣZ)µ

αβθµ. (3.20) 

This identity can be extended to any p-covariant tensor field T. Specifically, it holds 

£ZDα Tβ ···β = Dα£ZTβ ···β 
p 

− ∑(ΣZ )
µ

αβ Tβ ···β  µβ ···β . (3.21) 
1 p 1 p 

i=1 
i 1 i−1 i+1 p 

Let us now study several properties of the tensor ΣZ, first for general manifolds 

equipped with a torsion-free connection and then for general hypersurface data 

and for the metric hypersurface connection 
◦ 

. These results will be helpful later. 

 

Lemma 3.1.5. [120] Let M be a manifold endowed with a torsion-free connection D. Then, 

for any X, W, Z ∈ Γ(TM), it holds 

ΣZ(X, W) = DXDW Z − DDXW Z + RD(Z, X)W or, in index notation, 

(ΣZ )
µ
αβ = Dα Dβ Z

µ + RD µ
βνα Z

ν. (3.22) 

 

Proof. We will use £XY = DXY − DYX throughout, in particular we expand 

each Lie bracket of (3.18). Combining (3.18) with the definition RD (Z, X)W = 

DZDXW − DXDZW − D£ZXW for the curvature tensor RD of D yields 

ΣZ(X, W) = DZDXW − DDXW Z − DXDZW + DXDW Z − D£ZXW 

= DXDW Z − DDXW Z + RD(Z, X)W, 

 
which is (3.22). Now from the fact that 

 

(DXDW Z)µ = (Xα DαWβ)(Dβ Z
µ) + XαWβ Dα Dβ Z

µ = (DDXW Z)µ + XαWβ Dα Dβ Z
µ
 

 

the second equation in (3.22) follows at once. 

Lemma 3.1.6. Let M be a manifold, D a torsion-free connection, Z ∈ Γ(TM) a vector 
Z def 

field and Sαβ a symmetric 2-covariant tensor field. Define Qαµν = Dα£ZSµν − £ZDαSµν. 
Then, 

(ΣZ)λ
αµS = 

1 (
Q-Z + Q- − Q- 

) 
. (3.23) 

In particular, if Sαβ verifies DµSαβ = 0, it holds 

 

(ΣZ)λ
αµSλν = 

2

  
Dα£ZSµν + Dµ£ZSνα − Dν£ZSαµ

  
. (3.24) 
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αβ 

0 = Q-µνα − (ΣZ) 

0 = Q- − (Σ  ) 

Z 

αβ 

- 

Z Z 

1 
♯ 

W − n 

∇ 

2 ♯ αµν µνα ναµ 

∇(a b) ∇a∇b ∇(a ∇b) 

∇ 

£ ∇ 

∇ 

 

Proof. Since D is torsion free, (ΣZ)µ is symmetric in α, β. Particularizing (3.21) for 

Sαβ yields 
 

Z λ 
αµν Z 

Z λ 

0 = Q-ναµ − (ΣZ )
λ
 

αµSλν − (ΣZ )
λ 

µνSλα − (ΣZ )
λ 

ναSλµ − (ΣZ )
λ
 

ανSµλ, (3.25) 

µαSνλ, (3.26) 

νµSαλ. (3.27) 

where (3.26)-(3.27) arise from the cyclic permutation of the indices α, µ, ν. Substract- 

ing (3.27) to the sum of (3.25)-(3.26) gives (3.23) because (ΣZ)µ , Sαβ are symmetric 
Z def 

in α, β. When Sαβ is covariantly constant we have Qαµν = Dα£ZSµν and equation 

(3.24) follows at once. 

Corollary 3.1.7. If Sαβ is non-degenerate everywhere on M, then we can define its inverse 

tensor Sαβ by SαµSµβ = δα and it follows that 
♯ ♯ β 

(ΣZ)λ
αµ = 

1 
Sνλ 

(
Q- Z + Q- − Q- 

) 
. (3.28) 

In particular, when Sαβ verifies DµSαβ = 0 then 

 

(ΣZ)λ
αµ = 

2 
Sνλ

 
Dα£ZSµν + Dµ£ZSνα − Dν£ZSαµ

 
. (3.29) 

A metric hypersurface data set gives rise to a privileged vector field n on N . In the 

null case, this vector is even more privileged, as the direction (but not the scale) of 

n remains unchanged by arbitrary gauge transformations. It therefore makes sense 

to study the properties of the tensor Σ
◦

 

{N , γ, ℓ, ℓ(2)}, is defined by 

=
d e f  

£n 
◦ 

which, for completely general data 

 

Σ
◦ 

(X, W) =
d e f  

£ 
◦ 

n∇X 
◦ 

X n
 ◦  

∇£ X W. (3.30) 

Our next aim is to provide the explicit form of Σ
◦ 

, for which we shall use the fact 

that 
◦  

is uniquely determined by the properties (2.18)-(2.19). For simplicity, for 
◦ 

calculations at the abstract level we no longer reflect the fact that the tensors Σ and 

Q- depend on n. 
 

Lemma 3.1.8. Let {N , γ, ℓ, ℓ(2)} be metric hypersurface data and define Σ
◦

 

(3.30). Then, Σ
◦ 

is explicitly given by 

=
d e f  

£n 
◦ 

by 

 

Σ
◦ d 

= nd 

(

2 
◦

 

 

s − n(2) 
◦

 

 
◦ 

ℓ(2) − 2 
◦

 

 

n(2) 
◦

 

 

ℓ(2) + n(ℓ(2))U 

1 

(3.31) 

W − 

ab ab 
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∇ 

= 

2 

◦ 

- 

∇a  bc b ac c ab 

) 

∇c 

∇a ∇b ∇c ∇c c(a∇b) 

ℓ = 2s − d(n(2)ℓ(2)) and 
◦

 ℓ = F − ℓ(2)U 

ab ∇a n b n∇a b ∇a b ∇a∇b n ab 

∇a b ∇b a ∇a∇b n 

Q-abc = 2∇aUbc − 2Fa(b∇c)n 

∇ ∇a ∇ 

c f ∇a ∇b ∇c ab c n ∇a∇b 

£ ∇ 
◦ 

∇a 

U 

 

+ Pdc 

( 
◦ 

U 

 

+ 
◦ 

U 
 

− ◦ U + 

(

2s 

 

− n(2) 
◦

 ℓ(2)

1 

U 
 

+ 2F 
◦ 

n(2)

1 

.
 

 

Proof. Particularizing (3.21) and (3.23) for D = 
◦ 

, T = ℓ, S = γ and Z = n gives 
 

ℓ f Σ
◦ f 

ab ◦ a nℓb − £n∇aℓb 
 

=
def 

Qab
 , (3.32) 

γc f Σ
◦ f 

ab = 
1 (

Q- abc + Q-bca − Q-cab

) 
, (3.33) 

 
def  ◦ ◦ 

where Qabc = ∇a£nγbc − £n∇aγbc. From these we will retrieve the explicit form of 

the tensor Σ. We start by computing Qab and Q-abc explicitly. For the first we recall 

n 
◦ ◦ 

∇a  b ab ab 
£nF = 1 £ndℓ = 1 d£nℓ = ds, i.e. £nFab = ∇asb − ∇bsa. Then 

2 
 

Q = 
◦

 

2 

 

£ ℓ − £ 

 

◦ ℓ = 2 
◦

 

 

 

s − ◦ 

 

◦ (
n(2)ℓ(2)

) 
− £  

(
F

 

 

− ℓ(2)U 
)
 

= 
◦  

s + 
◦

 s − ◦ ◦ (
n(2)ℓ(2)

) 
+ n(ℓ(2))U

 + ℓ(2)£ U . (3.34) 
 

For the second we recall (2.12) and (2.18), namely £n 

◦ γ = −ℓ U − ℓ U  , so 

γbc = 2Ubc − 2ℓ 
◦  

(b∇c) n
(2) and 

 

Q-abc 

◦ 
(

2Ubc

 
− 2ℓ 

◦  

(b∇c) n
(2)

1 

+ £n
 (ℓb 

 

Uac 

 

+ ℓcUab) 

◦ 

∇a bc + 2 
(

−F 
 

a(b + ℓ(2)U  
a(b 

◦  

∇c) n
(2) 

− 2ℓ(b 

◦ 

c) 

◦

 n(2) + 2(£ ℓ(b)Uc)a + 2ℓ(b£ Uc)a, 
∇  ∇a n n 

where in the second equality we inserted (2.19). Using the expression (2.13) for £nℓ 

(recalled just before (3.34)) yields, after simple cancellations, 
 

◦ ◦ 
(2) 

+ 2ℓ(b 

(

£ Uc)a − 
◦ 

c) 

◦

 n(2)

1 

+ 2 

(

2s(b − n(2) ◦ 

(bℓ
(2)

1 

Uc)a. (3.35) 

 

Now, any (0, 3)-tensor of the form tabc = 2u(bSc)a with Sca symmetric satisfies 

tabc + tbca − tcab = 2ucSab. If tabc = 2Aa(buc) with Aca antisymmetric then tabc + 

tbca − tcab = −4Ac(aub). Inserting (3.35) into (3.33) and using these properties gives 

 

γ  Σ
◦ f 

 

= 
◦ 

U 

 

+ 
◦ 

U 

 
 

− ◦ U + ℓ 

(

£ U 

 

− 
◦ ◦ 

n(2)

1
 

+ 

(

2sc − n(2) 
◦

 
ℓ(2)

1 

Uab
 + 2F 

◦ 

c(a∇b) n
(2). (3.36) 

= 

= 2 

bc ca ab c ab 

(2.13) and (2.19), namely £ , and use 

ab 

ab ab 

n 

ab bc ca ab 
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∇ 

n 

∇ 

∇ 

f = 

∇ 

 
To conclude the proof we use 

Σ
◦ d

ab = δ d Σ
◦  f 

ab 
(2.9) 

(
Pdcγc f + ndℓf 

) 
Σ
◦ f 

ab = Pdc 
(
γc f Σ

◦ f 
ab

) 
+ nd Qab. 

 

Replacing here (3.36) and (3.34) yields (3.31) after using 
 

◦ ◦  
(n(2)ℓ(2)) = n(2) 

◦ ◦ 
ℓ(2) + 2 

◦
 n(2) 

◦
 ℓ(2) + ℓ(2) 

◦ ◦ 
n(2) 

∇a∇b ∇a∇b 
 

as well as Pdcℓc = −ℓ(2)nd. 

∇(a ∇b) ∇a∇b 

 

 

 

In this thesis we will mostly use the metric hypersurface connection 
◦

 rather than 
 

 

the hypersurface connection ∇ (see Definition 2.2.14). However, in a later section 

we will need the tensor Σ =
d e f  

£n∇ associated to ∇, so it is convenient to provide 

the corresponding relation between Σ and Σ
◦ 

. This is done in the following lemma. 
 

Lemma 3.1.9. Let {N , γ, ℓ, ℓ(2), Y} be hypersurface data, Σ
◦

 =
d e f  

£n 
◦ 

 
 

and Σ =
d e f  

£n 

 
 

∇. Then, 

Σ = Σ
◦ 

−n ⊗ £nY. (3.37) 

Proof. Consider two vector fields X, W ∈ Γ(TN ). Then, the combination of (2.49) 

and (3.30) yields 

 

Σ(X, W) =
d e f  

£n(∇XW) − ∇X(£nW) − ∇£ XW 
= £ ( 

◦ 
W − Y(X, W)n) − ◦ (£ W) + Y(X, £ W)n − ◦ n W + Y(£ X, W)n 

n ∇X ∇X n n ∇£ X n 

= Σ
◦  

(X, W) − (£nY)(X, W)n, 

 
which proves (3.37). 

 

3.1.2 Curvature of the metric hypersurface connection 
◦

 

 
We conclude Section 3.1 by analyzing various properties of the curvature tensor of 

◦ . On a smooth manifold M endowed with a connection D, the curvature tensor 

is the 3-covariant, 1-contravariant tensor defined by 

RiemD(α, Z, X, W)) =
d e f  

α 
(
RD(X, W)Z

) 
, (3.38) 

where α ∈ Γ(T⋆M) and Z, X, W ∈ Γ(TM). The Ricci tensor RicD is the contraction 

of this tensor in the first and third indices. We recall two notational conventions 

that we already presented. First, when M is equipped with a metric g, we write 
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∇ 

∇a ∇b 

∇a ∇b 

∇b 

∇a∇b ∇a b a a f bc 

∇b ∇a 

 
simply R to refer to the curvature operator of the Levi-Civita connection ∇ of g 
(see Section 2.1). Secondly, for the metric hypersurface connection 

◦ 
, we denote 

the curvature and Ricci tensors by Ri
◦

em, R
◦
ic 

notation where we just write R
◦ 

a
bcd, R

◦ 

ab. 

∇ 

except when using abstract index 

The contractions of R
◦ 

d
cab with ℓd and with nc have already been derived in [59] by 

simply applying the Ricci identity to ℓd and to nd respectively. Later in this thesis, 

it will be of relevance to have an explicit expression for the contraction R
◦ 

a
bcdnc. 

This quantity cannot be computed by means of the Ricci identity. For this reason, 

we follow a different path based on the Lie derivative of 
◦

 that we just computed 

in the previous section. 

From (3.22), we know that the calculation of R
◦ 

a
bcdnc only requires the explicit 

expression of the tensors Σ
◦ 

d and 
◦ ◦  

nd. The former has already been computed 
ab ∇a∇b 

in Section 3.1.1 (see (3.31)). In the next lemma we calculate the latter. 

 

Lemma 3.1.10. Let {N , γ, ℓ, ℓ(2)} be metric hypersurface data. Then 

◦ ◦  
nd = nd

I 
◦ 

 

s + s s 

 

− Pc f F (U 

 

− n(2)F ) 

− n(2) 
◦ ◦ 

ℓ(2) − 
1 ◦

 ℓ(2) 
◦

 n(2) − 
◦ 

n(2) 
◦

 
 

ℓ(2) 

∇a∇b 2 
∇a ∇b ∇a ∇b 

 

− 2n(2)s 
◦  

(a∇b) ℓ
(2) 

1 
+ 

2 
( n

(2))2 
◦

 ℓ(2) 
◦

 
ℓ(2)

l
 

+ Pdc

I 
◦

 

(
Ucb − n(2)Fcb

 
) 

+ Uac 
(

sb

 
+ n(2) 

◦
 

ℓ(2)

1
 

+ Fac 
(

−n(2)sb
 

1 ◦ 

2 
∇b n

(2) 
1 

+ 
2 
( n

(2))2 
◦

 
ℓ(2)

1 l

. (3.39) 

Proof. The proof is a direct computation based on the derivatives (2.20) and (2.21). 

However, since the expressions are rather involved, it is advantageous to define 
 

 

t =
d e f  

s
 − n(2) 

◦
 ℓ(2), T  

=
def 

U
 − n(2)F  

Gc  =
def − Pc f F − 

1 
nc 

◦
 ℓ(2). 

b b ∇b bc bc bc a a f 2 
∇a 

and write (2.20)-(2.21) as 
 

 
 
 

Thus, 

◦ nd = ndtb + PdcTbc 
◦ 

Pdc = 2n(dGc)
a. 

 

◦ ◦  
nd = t 

◦ nd + nd ◦  
t + 2n(dGc) T + Pdc 

◦ 
T 

∇a∇b b∇a ∇a b a  bc ∇a  bc 

− 

, 

b bc 
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2 ℓ 

∇b ∇b 

 
d

,
ef

,.   

∇a 

( 

∇b 

d

,
ef

,.   

∇a ∇b 

∇a ∇b 

∇a ∇b 

∇a b a b a ac b ∇a a 

a 2 
∇a 

∇a∇b ∇a b a b a f 
4 

∇a ∇b 4 ∇b 

∇a ac b 2 ∇b ∇b 2 
∇a 

∇a b a b a f 
2 

∇a ∇b 2 ∇b 

∇b 

∇b 

s 

 

= nd 

( 
◦

 

 

t + t t + Gc T 

1 

+ Pdc 

(

T t + 
◦ 

T 

1 

+ ncT 

 

Gd . (3.40) 

 

Now, (2.11) and (2.14) imply 

 

ncTbc 

 

 

1 ◦ 

2 
∇b 

 

 

 

n(2) 

 
1 

+ 
2 
(n 

 

 

(2))  
◦

 

 
 

 

(2) 

 

 

, (3.41) 

which in turn gives 

 

Gc T = 

(

−Pc f F 

 

− 
1 

nc 
◦

 ℓ(2)

1 

T 

 

= −Pc f Fa f 

 

Tbc 

1 ◦ 

4 
∇a ℓ(2) 

( 
◦

 n(2) + (n(2))2 
◦

 
ℓ(2)

1 

. 

Inserting this and (3.41) into (3.40) we can write 

◦ ◦  
nd = nd 

( 
◦ 

 

t + t t 

 

− Pc f F  T 

 

− 
1 ◦ 

 

ℓ(2) 
◦

 

 

n(2) − 
1 

(n(2))2∇ 
 

ℓ(2) 
◦

 ℓ(2)

1
 

+Pdc 

( 
◦ 

T + T  t 
1 

− 
1 
( ◦ 

n(2) + (n(2))2 
◦

 
ℓ(2)

1 (

PdcF + 
1 

nd 
◦

 ℓ(2)

1
 

= nd 

( 
◦

 t + t t − Pc f F  T − 
1 ◦ 

ℓ(2) 
◦

 n(2) − 
1 

(n(2))2∇ ℓ(2) 
◦

 
ℓ(2)

1
 

      
= I 

+ Pdc 

( 
◦

 

 

Tbc + Tactb 

1 
− 

2 
Fac 

◦ 
n(2) + (n(2))2 

◦ 
ℓ(2)

11 

. 

   

= I I 

To conclude we just need to elaborate each parenthesis. For the first one we note 
 

◦ t + t t = 
◦  

s − n(2) 
◦ ◦ 

ℓ(2) − 
◦

 n(2) 
◦

 ℓ(2) 

∇a b a b ∇a  b ∇a∇b ∇a ∇b 
 

 
from where it follows 

+ sasb − 2n(2)s 
◦ 

(a∇b) ℓ
(2) + (n(2))2 

◦
 ℓ(2) 

◦
 ℓ(2), 

 

◦ 

∇a  b + sasb − Pc f Fa f (Ubc − n(2)Fbc) 

− n(2) 
◦ ◦ 

ℓ(2) − 
1 ◦

 ℓ(2) 
◦

 n(2) − 
◦ 

n(2) 
◦

 ℓ(2) 

∇a∇b 
2 

∇a ∇b ∇a ∇b 

− 2n(2)s 
◦ 

(a∇b) ℓ
(2) 

1 
+ 

2 
( n

(2))2 
◦

 ℓ(2) 
◦

 ℓ(2). 

From the definition of Tbc and tb one gets 

I I = 
◦

 

(
Ucb 

 

− n(2)Fcb
 
) 

+ Uac 

(

sb

  

+ n(2) 
◦

 ℓ(2)

1
 

= 

− 

I = 

bc bc bc 

bc a f bc 

bc a 

bc ac 

bc a 
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∇b 

∇b 

∇b 

bc 
2 

∇b ∇a 
2 ∇b ∇a 

U 

 

 

+ Fac 

(

−n(2)sb
 1 ◦ 

2 
∇b 

 

n(2) 
1 

+ 
2 
( n

(2))2 
◦

 ℓ(2)

1 

, 

 
and the validity of (3.39) is proved. 

We can now find the components Ri
◦

em(·, ·, n, ·) of the curvature tensor. 

Proposition 3.1.11. Let {N , γ, ℓ, ℓ(2)} be metric hypersurface data. Then the curvature 

tensor Ri
◦

em satisfies the following identity 
 

R
◦ d 

 

 

bca n
c = nd

I 
◦

 

 

sa − sasb 

 

+ 2n(2)s 

 
◦ 

(b∇a) 

 

ℓ(2) + n(ℓ(2))Uba 

 

+ Pc f F 
(

U − n(2)F 
) 

− 
1 ◦ 

n(2) 
◦

 ℓ(2) − 
1 

(n(2))2 
◦

 ℓ(2) 
◦

 
ℓ(2)

l
 

+ Pdc

I 
◦

 

 

Uca 

◦ 

∇c ba 

 

+ 2scUba 

 

− sb 
 

Uac + 2F 
◦ 

cb∇a n
(2) + 

1 
F 

2 

◦ 

ca∇b n
(2) 

+ n(2)

( 
− U ◦ 

ℓ(2) − U ◦ 
ℓ(2) + 

◦ 
F + F

  
s − 

1 
n(2) 

◦
 ℓ(2)

 )
l

. 
ba∇c ac∇b ∇a  cb ac b 2 

∇b 
 

(3.42) 
 

Proof. The result follows immediately after inserting Lemmas 3.1.8 and 3.1.10 into 
the identity R

◦ 
d nc = Σ

◦ 
d 

− 
◦ ◦ nd (cf. (3.22)). 

bca ab ∇a∇b 

Again, observe that the extrinsic part Y of the data has played no role so far in this 

chapter. 

 

 
3.2 null hypersurface data 

 
The foundations of the formalism of hypersurface data were fully established in 

[58], [59]. In these two works, most of the results therein apply for completely 

general hypersurface data, so the existence of null and/or non-null points in the 

hypersurface is always allowed. In general, this actually constitutes a great advant- 

age. However, for the purposes of this thesis it becomes necessary to expand the 

formalism of hypersurface data in the case when the abstract hypersurface is null. 

For this reason, in this section we collect all results of abstract null hypersurfaces 

that will be helpful afterwards. 

We start with the notions of "null (metric) hypersurface data". 

Definition 3.2.1. (Null metric hypersurface data) A metric hypersurface data set 

{N , γ, ℓ, ℓ(2)} is called null if the scalar field n(2) defined by (2.6)-(2.9) is everywhere 

zero on N . 

− 

− 

a f bc 
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2 

n 

∇b 

 

Definition 3.2.2. (Null hypersurface data) A hypersurface data set {N , γ, ℓ, ℓ(2), Y} is 

called null if {N , γ, ℓ, ℓ(2)} defines null metric hypersurface data. 

 
The notion of null metric hypersurface data can also be constructed purely in terms 

of the data {γ, ℓ, ℓ(2)}, i.e. without making any reference to the scalar field n(2). 

Lemma 3.2.3. Let N be a smooth manifold. The collection {γ, ℓ, ℓ(2)} where γ is a sym- 

metric (0, 2)-tensor, ℓ a covector and ℓ(2) a scalar field defines null metric hypersurface 

data if and only if 

(i) The radical Radγ|p of γ|p is one-dimensional at every point p ∈ N . 

(ii) For all p ∈ N and any non-zero vector e1 ∈ Radγ|p the contraction ℓ|p(e1) ̸= 0. 

Proof. It is clear that condition (ii) is independent of the element e1 ∈ Radγ one 

chooses. If {N , γ, ℓ, ℓ(2)} is null metric hypersurface data, we may take e1|p = n|p 

and conditions (i) and (ii) are satisfied (recall (2.6)-(2.7)). To prove the converse, 

we only need to make sure that the symmetric 2-covariant tensor A|p on TpN ⊕ R 

defined in (3.1.1) is non-degenerate (observe that (i) together with (2.6) already im- 

ply that n(2) = 0). The proof of Lemma 3.1.1 only uses that γ|p has one-dimensional 

radical, that span{e1} = Radγ|p and that ℓ|p(e1) ̸= 0. Thus, under conditions (i) 

and (ii) the signature of A|p is given by (3.1), hence A|p is non-degenerate.     

 

Remark 3.2.4. Note that condition (ii) needs to be added only because the tensors 

{γ, ℓ, ℓ(2)} considered in Lemma 3.2.3 are completely general (i.e. they do not define met- 

ric hypersurface data a priori). Had we let {N , γ, ℓ, ℓ(2)} define metric hypersurface data, 

then only (i) would be necessary, as the ambient tensor A would be non-degenerate by 

definition and hence (ii) would be automatic. 

Let us study some direct consequences of n(2) = 0. Firstly, as already mentioned, 

Radγ = ⟨n⟩ and hence γ(n, ·) = 0. On the other hand, the tensor U introduced in 

(2.12) acquires a particularly prominent role. It is given by U = 1 £nγ (see (2.12)), 

hence it satisfies U(n, ·) = 0 (by (2.14)). Moreover, when {N , γ, ℓ, ℓ(2)} is embedded 

on an ambient space (M, g) with embedding ϕ and rigging ζ, it coincides with 

the second fundamental form K (cf. (2.45)) with respect to the null normal ν ∈ 

Γ(Tϕ(N )) satisfying g(ζ, ν)|ϕ(N ) = 1. 

For later use, we particularize (2.13) and (2.20) for n(2) = 0, which gives 

s = 
1 

£ ℓ, (3.43) 
2 

◦ nc = ncsb + PacUab, (3.44) 
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B 

ν = ∇n = ⋆ 

∇n 

 ◦ 

 

 
 

and we stress that any vector field η ∈ Radγ satisfies 

£ηℓ = 2αs + dα, (3.45) 

where α ∈ F(N ) is defined by η = αn and we have used (3.43). It is also worth 

mentioning that the combination of U(n, ·) = 0, s(n) = F(n, n) = 0 and (3.44) 

entails 

 

◦ n = 0, (3.46) 

which together with (2.44) and ν = ϕ⋆n (recall (2.25)) yields 
 

(2.48) 
∇ ν ϕ n − Y(n, n)n

 (3.46) 
κ ϕ n = κ ν. (3.47) 

 

Consequently, κn can be interpreted as the surface gravity of the null normal vector 

ν on ϕ(N ). 

We have already discussed that the vector field n is privileged in any null hypersur- 

face data. This often makes it convenient to decompose tensors on N in terms of a 

basis {n, eA} of Γ(TN ) and its corresponding dual basis. The next lemma provides 

such a decomposition for the tensors γ and P. 

Lemma 3.2.5. Consider null metric hypersurface data {N , γ, ℓ, ℓ(2)}. Let {n, eA} be a 

basis of Γ(TN ) and {q, θA} be its corresponding dual, i.e. 

q(n) = 1, q(eA) = 0, θA(n) = 0, θA(eB) = δA. (3.48) 

Define the functions ψA ∈ F(N ) as ψA =
d e f  

ℓ(eA). Then, the tensor fields γ and P decom- 

pose as 

γ = hABθA ⊗ θB, (3.49) 

P = hABeA ⊗ eB − hABψB (n ⊗ eA + eA ⊗ n) − 
(
ℓ(2) − hABψAψB

) 
n ⊗ n, (3.50) 

 

where hAB =
d e f  

γ(eA, eB) is a metric and hAB denotes its inverse. 

Proof. First, we notice that ℓ decomposes in the basis {q, θA} as ℓ = q + ψAθA 

because ℓ(n) = 1 (cf. (2.7)) and ψA =
d e f  

ℓ(eA). Equation (3.49) is an immediate con- 

sequence of γ(n, ·) = 0. This, together with the fact that Radγ is one-dimensional, 

means that hAB defines a metric. On the other hand, since P is symmetric it decom- 

poses in the basis {n, eA} as 

 

P = P(θA, θB)eA ⊗ eB + P(q, θA)(n ⊗ eA + eA ⊗ n) + P(q, q)n ⊗ n. (3.51) 

⋆ n n 
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(2.8) (2) A 

B B A B 

 

The fact that P(θA, θB) = hAB follows from 
 

δB = δbθBea (2.9) b f 
f a

 b 
a 

B a b f 
f a

 
B a (3.49) B C 

AC 
A a b A = (P γ + n ℓ )θb eA = P γ θb eA  = h P(θ , θ ), (3.52) 

while for P(q, ·) one finds 

P(q, ·) = P(ℓ − ψAθA, ·) = −ℓ n − ψAP(θ , ·) 

= − 
(
ℓ(2) + ψAP(θA, q)

) 
n − hABψAeB 

and hence P(q, θC) = −hACψA and P(q, q) = − 
(
ℓ(2) − hABψAψB

)
. 

 
The concept of null thin shell follows immediately from Definitions 2.7.2 and 3.2.1. 

A thin shell {N , γ, ℓ, ℓ(2), Y±, ρℓ
±, J±} is said to be null if {N , γ, ℓ, ℓ(2)} defines null 

metric hypersurface data. As anticipated, the energy-momentum tensor τ of a null 

thin shell can be decomposed in the basis {q, θA} as well, and it turns out that the 

components of τ take a very simple form, as we see next. 

 

Corollary 3.2.6. In the setup of Lemma 3.2.5, let {N , γ, ℓ, ℓ(2), Y±, ρℓ
±, J±} be a null 

thin shell. Then, the components of the energy-momentum tensor τ in the basis {q, θA} 

read 

τ(q, q) = −ϵhAB[Y](eA, eB), (3.53) 

τ(q, θA) = ϵhAB[Y](n, eB), (3.54) 

τ(θA, θB) = −ϵhAB[Y](n, n). (3.55) 

 

Proof. Inserting the decomposition (3.50) into Definition 2.7.3 yields 

τd f = −ϵhAB 
(
[Y](eA, eB)ndn f − [Y](n, eA)(nde f + ed n f ) + [Y](n, n)ed e f 

)
 

 
after a simple but somewhat long computation in which many terms cancel out. 

Contracting with {q, θA} it is immediate to get (3.53)-(3.55). 

 

3.2.1 Gauge-fixing results 

 

Later on, we shall introduce several geometric quantities that are invariant under 

the gauge transformations with gauge parameters {z = 1, V}. In particular, these 

quantities will play a fundamental role in the study of abstract Killing horizons. In 

order to motivate their definitions, we first need to know the gauge behaviour of 

various tensor fields defined before. We devote this section to this task. 
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z− n 

( 
z z 

2 2 2 2 2 

2 2z 2z 

 

For arbitrary gauge parameters {z, V} we introduce 
 

w =
d e f  

γ(V, ·), f =
def 

ℓ(V), (3.56) 

 
from where it immediately follows that (recall Lemma 2.2.8) 

 

Va = f na + Pabwb. (3.57) 

 

In terms of {w, f }, the gauge transformations (2.31)-(2.32) take the form 

 

G(z,V) (ℓ) = z (ℓ + w) , (3.58) 

G(z,V)

 
ℓ(2)

 
= z2

 
ℓ(2) + 2 f + P(w, w)

 
. (3.59) 

 

In the next lemma, we obtain the gauge behaviour of U, F, s, r and κn. 

 

Lemma 3.2.7. Let {N , γ, ℓ, ℓ(2), Y} be null hypersurface data. Consider arbitrary gauge 

parameters {z, V} and define the covector w and the function f according to (3.56). Then, 

the following gauge transformations hold: 

1 
G(z,V) (U) = 

z 
U, (3.60) 

 G z,V (F) = z 

(

F + 
1 

dw

1 

+ 
1 

dz ∧ (ℓ + w) , (3.61) 
( ) 2 2 

1 n(z) 1 
G(z,V) (s) = s + 

2 
£nw +  

2z  
(ℓ + w) − 

2z
dz, (3.62) 

1 n(z) 1 
G(z,V) (r) = r + 

2z
dz +  

2z  
(ℓ + w) + 

2 
£nw − U(V, ·), (3.63) 

G z,V (κn) = 
1 

(

κn − 
n(z) 

1 

. (3.64) 

Proof. For notational simplicity we write a prime to denote a gauge transformed 

quantity. The first three expressions are obtained as follows (recall (2.30), (2.31), 

(2.34)) 

U′ = 
1 

£n′ γ = 
1 

£ 1 γ = 
 1 

£nγ = z−1U. 
2 2 2z 

F′ = 
1 

dℓ′ = 
z 

(dℓ + dw) + 
1 

dz ∧ (ℓ + w) = z 

(

F + 
1 

dw

1 

+ 
1 

dz ∧ (ℓ + w) , 

s′ = in′ F′ = z−1inF′ = s + 
1 

indw + 
n(z) 

(ℓ + w) − 
 1 

dz, 

where in denotes interior contraction in the first index and in the last equality we 

used w(n) = 0. Using Cartan’s formula £nw = indw + dinw = indw yields (3.62). 

) 
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1 n(z) 1 1 

 

For the transformation of r we contract the first equality in (2.40) with z−1n to get 

1 n(z) 1 1 n(z) 1 

r′ = r + 
2z

dz + 
2z 

ℓ − 
2z

γ
 
£zVn, ·

 
= r + 

2z
dz + 

2z 
ℓ + 

2z
γ
 
£n(zV), ·

 
 

= r + 
2z

dz +  
2z  

ℓ + 
2z

£n (γ(zV, ·)) − 
2z 

(£nγ) (zV, ·) 

where we used the antisymmetry of the Lie bracket and "integrated by parts". 

Expression (3.63) follows after using γ(V, ·) = w. The last transformation follows 

at once from the previous one and the definition κn = −r(n). 

 
Lemma 3.2.7 admits the following immediate corollary. 

 

Corollary 3.2.8. The covector s − r has the following simple gauge behaviour 

1 
G(z,V) (s − r) = s − r + U(V, ·) − 

z
dz. 

 

One of the main results in the context of null metric data {N , γ, ℓ, ℓ(2)} is that 

by means of a gauge transformation one can always adapt the one-form ℓ and 

the scalar ℓ(2) to whatever pair {u ∈ F(N ), ϑ ∈ Γ(T⋆N )} as long as ϑ(n) ̸= 0 

everywhere on N . We prove this in the following lemma. 

 

Lemma 3.2.9. Let {N , γ, ℓ, ℓ(2)} be null metric hypersurface data. Let u be a function on 

N and ϑ ∈ Γ(T⋆N ) be a covector satisfying ϑ(n) ̸= 0 everywhere. Then there exists a 

unique gauge transformation G(z,V) satisfying 

G(z,V)(ℓ) = ϑ, G(z,V)(ℓ
(2)) = u. (3.65) 

 

Moreover, the gauge group element G(z,V) is given by 

z = ϑ(n), V = 
  1   

P(ϑ, ·) + 
u − P(ϑ, ϑ) 

n. (3.66) 

ϑ(n) 2 (ϑ(n))2 

 

Remark 3.2.10. The condition ϑ(n) ̸= 0 is necessary. Observe that if at any point p it 

occurs that ϑ(n)|p = 0, then ϑ cannot correspond to ℓ in any gauge, as 

1 =
  

G(z,V)(ℓ)
  

G(z,V)(n)
 

|p = z−1(G(z,V)(ℓ))(n)|p. 

 

Thus, (G(z,V)(ℓ))(n) ̸= 0 must hold for all possible gauge parameters. 

Proof. We first assume that the gauge transformation exists and restrict its form up 

to a function yet to be determined. We then restrict to group elements of such a 
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a 

− · 

γ · ϑ − 

ϑ(n) 

 ( 
ϑ

 

ϑ(n) ϑ(n)2 

 
form and show that there exists one and only one them that satisfies (3.65), namely 

(3.66). This will prove both the existence and uniqueness claims of the lemma. For 

the first part we impose (3.65): 

z (ℓ + γ(V, ·)) = ϑ, z2 
(
ℓ(2) + 2ℓ(V) + γ(V, V)

) 
= u. (3.67) 

Contracting the first with n gives z = ϑ(n), so 

w =
d e f  

(V, ) = 
  1   

ℓ. 
ϑ(n) 

Observe that w(n) = 0. Moreover, the vector V  P(w, ) lies in the kernel of γ 

because γab

 
Vb − Pbcwc

 
= wa − (δc − ncℓa) wc = 0. Therefore, there exists f ∈ 

F(N ) such that 

Va = Pabwb + f nb = 
  1  

Pabϑb + 
(
ℓ(2) + f 

) 
na. 

 
Thus, it suffices to restrict oneself to gauge parameters in the class 

 

z = (n), V = 
1

 
ϑ(n) 

P(ϑ, ·) + qn
)

, q ∈ F(N )

  

. (3.68) 

We now start anew and prove that there is precisely one function q such that the 

corresponding (z, V) in (3.68) fulfills conditions (3.65). For V as in (3.68) we get 

1 

ϑ(V) = 
ϑ(n) P(ϑ, ϑ) + qϑ(n), 

ℓ(V) = −ℓ(2) + q, 
1 1 

γ(V, ·) = 
ϑ(n) 

γ(P(ϑ, ·), ·) = 
ϑ(n) 

ϑ − ℓ, 

γ(V, V) = 
  1   

ϑ(V) − ℓ(V) = 
P(ϑ, ϑ) 

+ ℓ(2). 

 

The first condition in (3.67) is satisfied for all q. The second is satisfied if and only 

if 

ϑ(n)2 

(

2q + 
P(ϑ, ϑ) 

1 

= u ⇐⇒ q = 
u − P(ϑ, ϑ)

.
 

 
which ends the proof. 

ϑ(n)2 2ϑ(n)2 

 

 
In particular, Lemma 3.2.9 means that two given null metric hypersurface data sets 

are related by a gauge transformation if and only if they both have the same data 

tensor γ. We prove this in the following corollary. 
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∇ 

∇b 

∇b U 

U ∇ U 

s a − s 
◦ 

 

Corollary 3.2.11. Let D =
d e f  

{N , γ, ℓ, ℓ(2)}, D =
d e f  

{N , γ, ℓ, ℓ(2)} be two null metric hy- 

persurface data. Then there is a gauge group element G(z,V) ∈ F ⋆(N ) × Γ(T⋆N ) such 

that G(z,V)(D) = D if and only if γ = γ. This gauge element is given by 
 

z = ℓ(n ), V 
  1  

= P 
ℓ(n) 

(ℓ, ·) + 
ℓ(2) − P(ℓ, ℓ) 

n. (3.69) 
2 (ℓ(n))2 

Proof. The necessity is obvious from the fact that γ remains unchanged by a gauge 

transformation. Sufficiency is a direct application of Lemma 3.2.9 to ϑ = ℓ and 

u = ℓ(2). 

Lemma 3.2.9 and Corollary 3.2.11 are remarkable because they suggest that in the 

null case one can codify all the metric hypersurface data information exclusively 

in the tensor γ, and that ℓ and ℓ(2) are pure gauge. This fact will become spe- 

cially important in Chapter 9 when studying the matching of spacetimes with null 

boundaries from an abstract point of view (i.e. in a detached way from the actual 

two spacetimes to be matched). As we will see then, apart from a condition upon 

the orientation of the rigging vector fields that are identified in the matching pro- 

cess, the matching will be possible if the tensors γ, γ of two given null metric 

hypersurface data sets satisfy φ⋆γ = γ for a diffeomorphism φ : N −--- N . 

 

3.2.2 Curvature of the metric hypersurface connection 
◦ 

: null case 

 
In this section we compute several contractions involving the curvature tensor 

R
◦ 

d
bca and the Ricci tensor R

◦ 

ab. These identities will be necessary later on. 

We start with the contractions with ℓd and with γ f d. Both of them will follow from 

the general identity obtained in Proposition 3.1.11 for any hypersurface data. 

 

Proposition 3.2.12. Any null metric hypersurface data {N , γ, ℓ, ℓ(2)} satisfies 
 

ℓd R
◦ d  

bca nc = 
◦

 sa − sbsa + n(ℓ(2))Uba + ℓ(2)(£n U)ba + (Fa f − ℓ(2)Ua f
 )Pc f Ubc , (3.70) 

γf d R
◦ d 

bca nc = 
◦

 U f a 

◦ 

∇ f ba + 2s f Uba − sb Ua f + ℓ f (£n U)ba − ℓ f PcdUbc
 Uad . (3.71) 

Proof. Setting n(2) = 0 in (3.42) simplifies the expression to 
 

R
◦ d  

bca nc = ndHba + PdcL 
 

bca , with L 
 

bca 

 

=
def ◦ 

b ca 

◦ 

∇c ba + 2scUba − sb Uac 

and Hba =
def 

∇b bsa + n(ℓ(2))Uba + Pc f Ucb Fa f . (3.72) 

− 

− 
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∇b 

∇c 

∇c 

∇ ∇ 

U 

◦ 

∇b 

n ∇b 

∇ 

 
Hence, from (2.6)-(2.9), 

ℓd R
◦ d

bcan
c = Hba − ℓ(2)nc Lbca, γf d R

◦ d
bcan

c = Lb f a − ℓ f n
c Lbca. 

 

The proof will be complete once we establish that nc Lbca = −£nUba + Pc f U f aUcb. 

This expression holds true because, from (3.12) together with U(n, ·) = 0 and 

s(n) = 0, 

 

ncL 

 

 

bca = nc 

( 
◦

 

 

Uca 

 
◦ 

∇c ba 

 

+ 2scUba 
 

− sb Uac

1

 

= −£n 
 

Uba + Ucb∇a nc = −£n 
 

Uba + Pc f UcbU f a 

where in the last equality we inserted (3.44). 

We also need an expression for R
◦ 

d
acbn

a. This was computed for general hypersur- 

face data in [59] by using the Ricci identity applied to na. With the expressions 

above the result can be obtained as a simple consequence of the first Bianchi iden- 

tity. The method of proof is valid for general data, but we restrict ourselves to the 

null case. 

Lemma 3.2.13. Let {N , γ, ℓ, ℓ(2)} be null metric hypersurface data. Then 

R
◦ d

acbn
a = 2nd 

( 
◦ 

[csb] + Pa f Ua[c Fb] f 

1 

+ 2Pd f 

( 
◦ 

[cUb] f − s[cUb] f 

1 

. (3.73) 

 

Proof. Since  
◦

 
◦ ◦ 

has no torsion, the first Bianchi identity takes the form R
◦ 

d
acb + 

Rd
cba + Rd

bac  =  0. Contracting with na  and using the antisymmetry of the 

curvature tensor on the last two indices one gets 

R
◦ d

acbn
a = na 

(
R

◦  d
cab − R

◦ d
bac

) 
= 2nd H[cb] + Pd f (Lc f b − Lb f c), 

 

which gives (3.73) upon inserting the expressions for Hbc and Lc f b provided in 

(3.72). 

Finally, we compute some contractions of R
◦

ic with n. 

 

Lemma 3.2.14. Let {N , γ, ℓ, ℓ(2)} be null metric hypersurface data. The following iden- 

tities hold: 
 

R
◦ 

ab na = £nsb − 2Pa f Uabsf + Pc f ◦
 Ub f ◦ (trP U) + (trP U)sb , (3.74) 

R
◦ 

(ab) 
na = 

1 
£ s 

2 
− 2Pa f Uabsf + Pc f ◦

 Ub f ◦ (trP U) + (trP U)sb , (3.75) 

− 

− 

− b 
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∇c ∇b 

cd U = 

∇c 

∇ 

∇b c f ∇b P ∇b c f 

 

R
◦ 

(ab)nanb = −PabPcdUacUbd − n(trPU). (3.76) 

Proof. To prove (3.74) we contract the indices d and c in (3.73). Identity (3.10) (for 

θ = s together with s(n) = 0) gives 
 

 
 

 
and hence 

◦ 

∇[c sb] = £nsb (3.77) 

 

R
◦ 

abn
a =

d e f  
R
◦ c

acbn
a = £nsb − Pa f Uabsf 

+ Pc f 

( 
◦

 

 

Ub f 

 

− scUb f 
1 

− Pc f 

( ◦  
Uc f 

 

− sb Uc f 

1 

. 

 

The validity of (3.74) follows because Pc f 
◦  

U 
◦ 

= 
◦ 

(tr U) − ( 
◦  

Pc f )U = 

∇b (trPU), the last equality being a consequence of (2.21). Imposing (2.51) in 
n(2) = 0 it follows R

◦ 

(ab) = R
◦ 

ab − ◦ [a s b]. Contracting with na and using (3.77) 
∇ 

and (3.74) gives (3.75). To obtain (3.76), it suffices to notice that nb P 
◦ 
∇c bd 

−Ubd Pcd 
◦

 nb = −Pab PcdUac Ubd. 

 

3.2.3 Transverse submanifolds 

 
In Sections 2.3 and 2.4, we have discussed several fundamental notions and results 

concerning the geometry of submanifolds. In particular, we have defined trans- 

verse submanifold of a null hypersurface embedded on a Lorentzian manifold 

(see Definition 2.4.3), and we have seen that these submanifolds are of relevance to 

understand the geometry of null hypersurfaces. It is therefore natural to introduce 

and study this notion in the context of hypersurface data. In this subsection we 

analyze the geometric properties of a given null metric hypersurface data set with 

a transverse submanifold S. 

By definition a transverse submanifold is a codimension one embedded submanifold of 

N to which n is everywhere transverse. Existence of such S is always guaranteed in 

sufficiently local domains of any null metric hypersurface data. Note that we are 

not assuming that S is a global section of N , i.e. there can be generators of N that 

do not cross S. What we actually enforce is that generators intersecting S do it only 

once. 

We have several purposes in mind. First, we will derive an explicit relation between 

the covariant derivative 
◦

 and its induced covariant derivative ∇S on S. Secondly, 

2nc 
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∥ 

∥ 

J I I J 

C D 

 

we will find an identity between ∇S and the Levi-Civita covariant derivative on S. 

Then, we shall obtain a version of the Gauss identity (see e.g. [106]) by particular- 

izing the results from Appendix B (see Theorem B.0.1 and equation (B.7)). Finally, 

we conclude with several lemmas to be used later. 

In the following, whenever we consider null metric hypersurface data plus a trans- 

verse submanifold S, our setup will be the following. 

Setup 3.2.15. We let D = {N , γ, ℓ, ℓ(2), Y} be null hypersurface data and S an (n − 1)- 

dimensional smooth submanifold of N , everywhere transversal to n. We denote by ψ the 
def 

corresponding embedding ψ : S '−--- N of S in N . We define ℓ∥ = ψ⋆ℓ (with compon- 
ents ℓA), ℓ(2) =

d e f  
h♯(ℓ 

∥ ∥ , ℓ∥ ) and let q be the only normal covector along ψ(S) satisfying 

q(n) = 1. We take a basis {vˆA} of Γ(TS) and construct the basis {n, vA =
d e f  

ψ⋆(vˆA)} of 

Γ(TN )|ψ(S). 

In the present setup, Lemmas 3.2.5 and 3.2.9 admit the following two corollaries 

respectively. 

Corollary 3.2.16. Assume Setup 3.2.15. Then, 

Pc f U f a = hIJv
f  
(vc − ℓIn

c)U f a, PcdUacUbd = hIJvcvdUacUbd, (3.78) 

trPY = trhY∥ − 2ℓArA + κn(ℓ(2) − ℓ(2)), trPU = trhU∥. (3.79) 

Proof. Recall that U(n, ·) = 0. By adapting Lemma 3.2.5 to the basis {n, vA} intro- 

duced in Setup 3.2.15, it follows at once that the tensor field P decomposes as 
 

Pc f = hABvc v 
f − hABℓB(ncv

f
 + n f vc ) + (ℓ

(2) 
− ℓ(2))ncnf (3.80) 

A B A A ∥ 

because hAB = hAB and ψA = ℓA. Equations (3.78) automatically follow from the 

decomposition (3.80). Expressions (3.79) can be computed by inserting (3.80) into 

trPY and trPU. For the former we find 

trPY = PcdYcd = (hCDvc vd − ℓD (ncvd + ndvc ) − (ℓ(2) − ℓ
(2)

)ncnd)Ycd 

C D D D ∥ 

= trhY∥ − 2ℓDrD + κn(ℓ
(2) − ℓ

(2)
), 

 

while the latter is given by trPU = PcdUcd = hCDvc vd Ucd = trhU∥. 

Corollary 3.2.17. Consider null metric hypersurface data {N , γ, ℓ, ℓ(2)} and let S be an 

embedded hypersurface of N everywhere transversal to n, ψ : S '−--- N the corresponding 

embedding and uS ∈ F(S) be arbitrary. Then, there exists a choice of gauge such that 

ψ⋆ℓ = 0, ℓ(2)|S = uS. (3.81) 
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1 

∇X 

X 

∇X Y + 

X 

X 

∥ 

∇X 

∇ 

∇Y 

 
Proof. Let ϑ0 be a normal covector to S. By transversality of S and n it follows 

ϑ0(n)|p ̸= 0 for all p ∈ ψ(S). Extend smoothly ϑ0 to a covector ϑ ∈ Γ(T⋆N ) 

satisfying ϑ(n) ̸= 0 everywhere. Extend uS to a smooth function u ∈ F(N ). The 

result follows immediately from Lemma 3.2.9. 

 

Remark 3.2.18. Note that in this case, the family of gauges satisfying (3.81) is highly 

non-unique. 

In Setup 3.2.15, the induced metric h =
d e f  

ψ⋆γ is non-degenerate everywhere on S. 

Indeed, a vector X ∈ TpS which is h-orthogonal to all TpS satisfies also that ψ⋆|p(X) 

is γ-orthogonal to all TpN (here we use that TpN = TpS ⊕ ⟨n|p⟩ and γ(n|p, ·) = 0). 

Thus, ψ⋆|p(X) ∈ Rad(γ|p) and hence it must be proportional to n|p. This can only 

occur if X = 0. 

The contravariant metric of h will be denoted by h♯, and we will simplify notation 

by identifying S, X ∈ Γ(TS), f ∈ F(ψ(S)) with their respective counterparts ψ(S), 

ψ⋆X and ψ⋆ f . Moreover, for any general p-covariant tensor T along S, we define 

T =
d e f  

ψ⋆T and write TA ...A 
=
def 

T
 ∥(vˆA1 , . . . , v̂ Ap ) (without the parallel symbol) for 

its components. 

Given vector fields X, Y ∈ Γ(TS), the derivative  
◦

 

 

Y can be decomposed on S as 

 

◦ Y = ∇S Y + Ω(X, Y)n, (3.82) 

with ∇S Y ∈ Γ(TS). It is well-known that 
◦  

being torsion-free entails that the two- 
X S 

covariant tensor field Ω is symmetric and that ∇ 

S. Specifically, the tensor Ω is given by 

is a torsion-free connection on 

2Ω(X, Y)n = 
◦ 

Y − ∇S Y + 
◦ 

X − ∇S X 
∇X X ∇Y Y 

=⇒ 2Ω(X, Y) = q
  ◦ ◦ 

X
 

. (3.83) 
 

We can elaborate this in terms of U∥ 

first note that 

=
d e f  

ψ⋆U and derivatives of ℓ 
∥ . To do this, we 

ℓ = ℓ∥ + q (3.84) 

everywhere on S (because both sides agree when acting on the vector n as well as 

on a tangential vector X). Taking into account (2.19) we compute 

q( 
◦ 

Y) = ℓ( 
◦ 

Y) − ℓ (∇S Y) = X (ℓ (Y)) − ( 
◦ 

ℓ)(Y) − ℓ (∇S Y) 
∇X ∇X ∥ X ∇X ∥ X 

= X(ℓ∥(Y)) − F(X, Y) + ℓ(2)U∥(X, Y) − ℓ∥(∇
S Y) 

= (∇S ℓ∥) (Y) − F(X, Y) + ℓ(2)U∥(X, Y). (3.85) 

p 
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X 

X 

1 

X 

∇X 

2 X Y 

2 X ∥ Y ∥ ∥ ∥ 

BC 2 B C D 

∇X 

= 

 

Inserting this into (3.83) and using that F is antisymmetric yields 

Ω(X, Y) = 
1 (

(∇S ℓ 

 

) (Y) + (∇S ℓ ) (X)
) 

+ ℓ(2)U 

 

(X, Y). (3.86) 

 
We now obtain the explicit relation between the connections 

◦ 
, ∇S and the Levi- 

∇ 

Civita covariant derivative ∇h on S. 

 

Lemma 3.2.19. In the Setup 3.2.15, let ∇S and ∇h be the torsion-free connection given 

by (3.82) and the Levi-Civita covariant derivative on S respectively. Then, 

∇h = ∇S − h♯(ℓ∥, ·) ⊗ U∥, (3.87) 

◦ Y = ∇h Y + h♯(ℓ∥, ·)U∥(X, Y) + Ω(X, Y)n ∀X, Y ∈ Γ(TS), (3.88) 

 

where Ω is given by 

Ω(X, Y) = 
1 ( 

∇h ℓ
  

(Y) +
 

∇h ℓ
  

(X)
) 

+
 
ℓ(2) − ℓ(2)

 
U (X, Y). (3.89) 

 

Proof. It is well-known that any torsion-free connection D on S relates to ∇h ac- 

cording to 

DXY = ∇h Y − Ξ(X, Y), where 

A def 

BC 2 
hAJ

  
DBhCJ + DChBJ − DJhBC

 
. (3.90) 

In order to apply this for ∇S we compute (∇S h)(Y, W) as follows: 

(∇S h)(Y, W) = ∇S (h(Y, W)) − h(∇S Y, W) − h(∇S W, Y) 
X X X X 

= 
◦ 

(γ(Y, W)) − γ( 
◦ 

Y, W) − γ( 
◦ 

W, Y) 
∇X 

= ψ⋆( 
◦

 

∇X 

γ)(Y, W) = −ℓ∥ 

 

(Y)U∥ 

∇X 

(X, W) − ℓ∥ 

 

(W)U∥ 

 

(X, Y), (3.91) 

 

where in the second equality we used γ(n, ·) = 0 and in the last step we inserted 

(2.18). The tensor Ξ corresponding to D = ∇S is therefore 
 

 

ΞA  =
d e f  1 

hAD 
(

∇S hCD + ∇S hBD − ∇S hBC 

) 
= −hADℓDUBC, 

 
which establishes (3.87). Equation (3.89) follows at once by combining (3.86) and 

(3.87). Equation (3.88) is an immediate consequence of inserting (3.87) into (3.82). 
 

Ξ 

∥ ∥ ∥ 
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∇ 

, ∇ � 

(A ∥ 

∥ 

(B 

∥ (B ) 

AhCAB = ℓCUAB and ΩAB = ∇h + (ℓ(2) − ℓ(2))UAB. The only term that needs 

◦ 
� 

C 

D  A ∇d  a f BC D  A d f F 

ℓB ) 

 

Equation (3.87) means that ∇S coincides with ∇h if either (i) ℓ∥ = 0 or (ii) U∥ = 0. 

Moreover, (ii) is equivalent to U = 0 because U(n, ·) = 0 (cf. (2.14)). Observe that 

∇h is a gauge independent quantity, but ∇S is not. In fact, as proven in Corollary 

3.2.17, the one-form ℓ∥ can be made zero by an appropriate choice of gauge. The 

tensor U is a property of the data and in general it is non-zero (this is a gauge 

invariant statement, as in the null case G(z,V)(U) = z−1U, see (3.60)). Therefore, 

generically ∇S will coincide with ∇h only in case (i). 

Our next aim is to relate the tangential components of the curvature tensor of 
◦ 

to 

the curvature tensor of the induced metric h. The key ingredient that allows us to 

do this is a generalized Gauss identity that we derive in Appendix B. Recall that on 

a semi-Riemannian ambient manifold, the Gauss identity is an equation relating 

the curvature tensor of the Levi-Civita connection along tangential directions of 

a non-degenerate hypersurface with the curvature tensor of the induced metric 

and the second fundamental form. In Appendix B, we have extended this result to 

the more general case when the connection of the space and of the hypersurface 

are completely general, except for the condition that they are both torsion-free. By 

particularizing Theorem B.0.1 (more specifically the abstract index notation form 

(B.7)) to the case of null hypersurface data, we get to the following result. 

Lemma 3.2.20. Consider null metric hypersurface data {N , γ, ℓ, ℓ(2)} and assume Setup 

3.2.15. Let Rh the Riemann tensor of S. Then, 
 

va γa f R
◦ f 

bcdvb vc vd = Rh + 2∇h
 (ℓAUB|D]) + ℓAℓF (UBDUCF − UBCUDF ) 

A B C D ABCD [C| 

+ UAC 

(
(ℓ(2) − ℓ

(2)
)UBD + ∇h ℓD 

)
 

− UAD 

(
(ℓ(2) − ℓ

(2)
)UBC + ∇h ℓC 

) 
. (3.92) 

∥ (B ) 

 

Proof. We particularize Theorem B.0.1 for M = N , ∇� = ∇ D = 

 
h, γ 

C 

 

= γ. 

In such case, �h = h and (3.88)-(3.89) hold, which means that A AB = ℓ UAB, 

further evaluation is vd va ( 
◦  

γ )P f . This is straightforward from (2.7) and 
 

(2.18), namely 
D A ∇d  a f BC 

 

vd va ( 
◦ 

γ )P f = − vd va (ℓaU + ℓ f Uda )(v
f 
AF

BC + n f ΩBC ) 

= − ℓAℓFUDFUBC − ℓ
(2)

UDAUBC − UDAΩBC 

= − ℓAℓFUDFUBC − UDA(∇h ℓC) + ℓ(2)UBC ). (3.93) 
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∇ 

i=1 

∥ 

(A ∥ 

B (A ) ∥ 

C B A 

A B A A 

p 

− 

 

Equation (3.92) follows at once after inserting (3.93) into (B.7) and using γ(n, n) = 

0. 
 

We conclude this section by providing the pull-back to S of the  
◦

 derivative of 

any p-covariant tensor field T  and of the Lie derivative of a general symmetric 

(0, 2)-tensor T satisfying T (n, ·) = 0. 

Lemma 3.2.21. Consider null metric hypersurface data {N , γ, ℓ, ℓ(2)} and assume Setup 

3.2.15. Any p-covariant tensor field T along S verifies 

 
va1  . . . vap vb 

◦ h J U 

A1 Ap B∇bTa1···ap  = ∇BTA1···Ap − ∑ ℓ TA1···Ai−1 JAi+1···Ap Ai B 

p − ∑ Ta ···a 

 

va1 

 
. . . va 

 

i−1 naiva 
 
i+1 

 
. . . vap 

(
∇h

 
ℓB) + (ℓ 

 

(2) (2) ℓ 
 
)UA B 

) 
, (3.94) 

i=1 
1 p A1 Ai−1 Ai+1 Ap (Ai ∥ i 

where T =
d e f  

ψ⋆T . 

Proof. We prove it for covectors. The case of covariant tensors with more indices is 

analogous. From (3.88)-(3.89), we obtain 
 

va vb 
◦  

T  = v (T  ) − T 
vb ◦ va = v (T ) − T (∇h vJ + ℓJU ) − T naΩ 

A  B∇b  a B A a  B∇b  A B A J vB A AB a AB 

= ∇h TA − ℓJ TJ UAB − Tan
a 
(

∇h ℓB + (ℓ(2) − ℓ
(2)

)UAB

) 
, 

 

where in the last step we used that ΩAB = ∇h ℓB) + (ℓ(2) − ℓ(2))UAB (cf. (3.89)). 

 
Lemma 3.2.22. Assume Setup 3.2.15 and let T be a symmetric (0, 2)-tensor on N satis- 

fying T(n, ·) = 0. Consider a smooth function q and a covector field β ∈ Γ(T⋆N )|ψ(S) 

satisfying β(n) = 0 and define ta =
d e f  

qna + Pabβb. Then, 
 

(£tT) = (q − ℓCβC )|S(£n T)AB + βC ∇h TAB + TAC ∇
h βC + TCB∇h βC. (3.95) 

Proof. Using the decomposition (3.80) of Pab and the fact that βana = 0 we write 

ta = qna + hABva vb βb − hABℓBnavb βb = (q − ℓAβA)na + βAva . 

For any function f we have £f nT = f £nT because T(n, ·) = T(·, n) = 0. On the 

other hand, for any vector field W tangent to S (i.e. such that there exists W ∈ 

Γ(TS) such that W|S = ψ⋆W) it holds ψ⋆ (£WT) = £W (ψ
⋆T). Thus, 

ψ⋆ (£tT) = ψ⋆(£(q−ℓCβC )n
T) + £β♯ (ψ⋆T) = (q − ℓCβC )|Sψ⋆ (£nT) + £β♯ (ψ⋆T) , 

AB 
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2 z2 z 

2 z2 

def 

 

where β♯ is the vector field in S with abstract index components βA. Since ∇h is 

torsion-free the last term can be expanded in terms of the covariant derivative and 

(3.95) follows. 

 

3.2.4 Null metric hypersurface data admitting a cross-section 

 
In the same spirit as in the case of embedded null hypersurfaces, it is nat- 

ural to define a cross-section S (or simply a section) of a metric hypersurface data 

{N , γ, ℓ, ℓ(2)} to be a codimension-one embedded hypersurface in N which is intersected 

precisely once by each integral curve of n. Although the existence of a cross-section 

clearly imposes global topological restrictions on the data, these submanifolds are 

present in many situations of physical interest. Thus, it makes sense to pay special 

attention to this case. 

A cross-section is by definition a transverse submanifold, so all the results from 

the previous section apply in this context. As we shall see, one of the most import- 

ant consequences of having a section is that one can obtain stronger gauge-fixing 

results. Specifically, it is possible to select the one-form s and the scalar ℓ(2) at will. 

 

Proposition 3.2.23. Consider null hypersurface data {N , γ, ℓ, ℓ(2), Y} and assume Setup 

3.2.15 with the additional condition that S is intersected precisely once by each integral 

curve of n. Let u ∈ F(N ) and σ ∈ Γ(T⋆N ) be arbitrary, with the only restriction that 

σ verifies σ(n) = 0 everywhere. Then, for any choice of gauge parameter z on N , there 

exists a gauge parameter V, unique up to the choice of γ(V, ·) on S, such that 

G(z,V)(s) = σ, G(z,V)(ℓ
(2)) = u. (3.96) 

 

Proof. For notational simplicity we denote G(z,V)-transformed quantities with a 

prime. Consider any gauge parameters {z, V} and define w = γ(V, ·). Then, 

V − P(w, ·) lies in the kernel of γ (this is a consequence of (2.9) together with 

w(n) = 0). Thus, there exists a function f ∈ F(N ) such that V = P(w, ·) + f n. 

This decomposition combined with (2.6)-(2.9) implies γ(V, V) = w(V) = P(w, w) 

and ℓ(V) = f . In these circumstances, (2.32) and (3.62) give 

f = 
1 

( 
 1 

ℓ′(2) − ℓ(2) − P(w, w)

1 

,    £nw = 2(s′ − s) + 
1 

(dz − n(z)(ℓ + w)) . 

 

Thus, (3.96) holds if and only if 

V = P(w, ·) + 
1 (  u

 

 

− ℓ(2) − P(w, w)
) 

n and (3.97) 
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z 

z 

( ) = 

 

£nw = 2(σ − s) + 
1 

(dz − n(z)(ℓ + w)) . (3.98) 

 

Since S is a cross-section, (3.98) gives a unique solution w on N for given initial 

data w|S. However, we still need to prove that the solution satisfies w(n) = 0, as 

this has been assumed in the derivation of the equation. Contracting (3.98) with n 

yields £n(w(n)) = − n(z) w(n). This is a linear homogeneous ODE and by unique- 

ness of the solution it follows that w(n) = 0 on N if and only of w(n)|S = 0. We 

therefore conclude that (3.96) is satisfied if and only if V is of the form (3.97) and 

w is any covector along S satisfying w(n)|S = 0 and extended (uniquely) off S by 

means of (3.98). Observe that the gauge parameter z can be prescribed freely and 

that w is fixed up to its value at S, hence V is unique up to the choice γ(V, ·)|S.   

We now prove that one can always select z|N and γ(V, ·)|S in Proposition 3.2.23 so 

that G(z,V)(κn) = 0 and G(z,V)(ℓ∥) is any covector of our choice. 

Lemma 3.2.24. Assume the hypotheses and setup of Proposition 3.2.23 and let κn be given 

by (2.44). Then, the scalar ODE 

£nx − xκn = 0 (3.99) 

admits a unique global solution for x provided initial data x|S. Moreover, if x|S ̸= 0 then 

the solution is everywhere non-zero. In particular, if x|S ̸= 0 and z = x then 

G(z,V)(κn) = 0 (3.100) 

and the remaining freedom in the choice of {z|N , γ(V, ·)|S} reduces to selecting z and 

γ(V, ·) at S. 

Proof. Equation (3.99) is a linear homogeneous ODE, hence it admits a global 

unique solution for x for given initial data x|S. The fact that x ̸= 0 whenever 

x|S ̸= 0 can be argued as follows. Suppose that x|S ̸= 0 and that there exists a 

point p ∈ N where x|p = 0. Then n(x)|p = 0 and hence x = 0 on the whole integ- 

ral curve Cp of n containing p, in particular at Cp ∩ S. Since by hypothesis x|S ̸= 0, 

this means that x ̸= 0 everywhere. 

Setting z = x, (3.64) yields G(z,V)(κn) = 0. The remaining freedom in the choice of 

{z, V} follows from Proposition 3.2.23 and the fact that z needs to satisfy (3.99), so 

it is fixed up to its value at S. 

Lemma 3.2.25. Assume the hypotheses and setup of Proposition 3.2.23 and let ϱ be any 

covector on S. Then, 

G z,V

  
ℓ∥

  S
 ϱ if and only if (3.101) 
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= 
2 z2 z 

V S P(w, ·) + 
1 (  u 

− ℓ(2) − P(w, w)
) 

n, where w = 
1 

ϱ + q − ℓ. 

Moreover, the freedom in the choice of {z|N , γ(V, ·)|S} reduces to selecting z|N at will. 

Proof. First, recall that q is the unique covector normal to S and such that q(n) = 1. 

Under a change of gauge we have n′ = z−1n, so q′ = zq is forced. We now use the 

decomposition (3.84) and write 
S 

ℓ∥ = ℓ − q. Then, 

 
′  S S 

ℓ∥ = z(ℓ + w − q) = z(ℓ∥ + w). 

 
Thus, condition ′ S ϱ is satisfied if and only if w = z−1ϱ + q − ℓ on S. This, 

ℓ∥ = 

together with (3.97)-(3.98), forces V to be given by (3.101) at S. Note that we can 

fulfill (3.96) and (3.101) for any choice of gauge parameter function z. 

 

Remark 3.2.26. We have presented the results in a way that will allow us to apply Pro- 

position 3.2.23 either on its own, or in any combination with Lemmas 3.2.24 and 3.2.25. 

Remark 3.2.27. As a particular case, the function u and the covectors σ, ϱ can be set to 

zero. 

Analogously as in the case of null hypersurfaces, whenever there exists a section 

S of N one can always build a foliation of N by a family of sections. This follows 

directly from the fact that one can always construct a foliation function λ by solving 

the first-order ODE n(λ) = µ ∈ F ⋆(N ) for some initial data λ ∈ F(S). It is 

convenient to introduce a different name when the null metric hypersurface data 

is restricted to satisfy such a global topological restriction. The terminology was 

introduced in [60] with the aim of studying the characteristic initial value problem. 

We adopt the same name and identical definition here. 

 

Definition 3.2.28. [60], [61] (Characteristic hypersurface data) A hypersurface data set 

D =
d e f  

{N , γ, ℓ, ℓ(2), Y} is called characteristic hypersurface data if 

(i) {N , γ, ℓ, ℓ(2)} is NMD and γ is semi-positive definite. 

(ii) There exists a "foliation function", i.e. a function λ ∈ F(N ) satisfying n(λ)|p ̸= 

0 ∀p ∈ N . 

(iii) The leaves Sλ =
d e f  

{p ∈ N : λ(p) = λ} are all diffeomorphic. 

 
It is worth discussing the differences between Definitions 3.2.2 and 3.2.28. In the 

former imposing n(2) = 0 means that Rad(γ) = ⟨n⟩, while the notion of charac- 

teristic hypersurface data requires, in addition, that (i) γ is semi-positive definite 
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def 

 

(which by Lemma 3.1.1 means that A has Lorentzian signature), (ii) that there 

exist a so-called foliation function everywhere on N and (iii) the topological re- 

striction of all leaves {λ = const.} being diffeomorphic. In particular, the absence 

of the topological conditions (ii) and (iii) makes the notion of null hypersurface 

data far more general. An example of a null hypersurface data which is not char- 

acteristic hypersurface data is a null hypersurface with topology S3 embedded in 

a spacetime. It is clear that S3 cannot be globally foliated by two-dimensional sur- 

faces of identical topology. In more generality, closed (i.e. compact and without 

boundary) null metric hypersurface data will typically not be charateristic hyper- 

surface data. Such hypersurfaces play a key role e.g. when discussing spacetimes 

admitting compact Cauchy horizons (see e.g. [121], [122], [123]). 
 

 
3.3 gauge-invariant vector along the degenerate direction 

 

As already mentioned, Killing horizons of order zero and one are studied later in 

this thesis by means of the formalism of hypersurface data. Much in the same way 

as standard Killing horizons, they also involve a privileged vector field which is 

null and tangent to the hypersurface. This vector field, in addition, is a property 

of the hypersurface (or of the ambient space where it is embedded) and hence it is 

gauge-invariant. Therefore, we conclude this chapter by discussing the case when 

a completely general null hypersurface data set {N , γ, ℓ, ℓ(2), Y} admits an extra 

gauge-invariant vector field η in the radical of γ. 

In these circumstances, η is proportional to n and hence there exists a function 

α ∈ F(N ) given by η = αn. We denote by S the submanifold of N where η 
def 

vanishes, i.e. S = {p ∈ N | α(p) = 0}. In the following lemma we prove that one 

can define an associated gauge-invariant scalar function κ on N for each given 

gauge-invariant vector η ∈ Radγ . 

Lemma 3.3.1. Consider null hypersurface data {N , γ, ℓ, ℓ(2), Y} equipped with a gauge- 

invariant vector field η ∈ Radγ and let α ∈ F(N ) be given by η = αn. Then, the 

function κ ∈ F(N ) defined by 
 

 

 

is gauge-invariant. 

κ = dα (n) − αY (n, n) (3.102) 
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α ( ) α
( 

⊗s  zVγ
)  

 

2 

- 

- 

- 

η - ∇η 

 

Proof. By hypothesis η = G(z,V)(η) for any pair {z ∈ F ⋆(N ), V ∈ Γ(TN )}. This, 

together with (2.34), implies that the proportionality function α transforms as 

 

G(z,V)(α) = zα. (3.103) 

To check that αY (n, n) − dα (n) is gauge-invariant we start with the first term: 
 

 

G(z,V) 
( Y n, n ) = z zY + ℓ dz + 

1 
£ z−1n, z−1n 

2 

= αY(n, n) + z−1αℓ(n)dz(n) + 
1 

z−1α(£zVγ)(n, n) 

= αY(n, n) + z−1αdz(n), (3.104) 

where in the last step we used ℓ(n) = 1 (cf. (2.7)) and (£zVγ)(n, n) = £zV(γ(n, n)) − 

2γ(£zVn, n) = 0. Now, the term dα(n) transforms as 
 

 

G(z,V)(dα(n)) = d
 

G(z,V)α
  

z−1n
  

= 
1 

z 
(αdz + zdα)(n) = 

α
dz(n) + dα(n).  (3.105) 

z 

From (3.104) and (3.105), the gauge invariance of κ follows at once. 

 

In later sections, we shall use that (3.102) can be rewritten as n(α) = κ − ακn by 

means of (2.44). 

Whenever {N , γ, ℓ, ℓ(2), Y} happens to be embedded on a semi-Riemannian space 

(M, g) with embedding ϕ and rigging ζ, we can define a vector field η ∈ Γ(Tϕ(N )) 

by η =
d e f  

ϕ⋆η. By (2.25) and (2.28), the vector field η is null on ϕ(N ). This, as men- 

tioned in Section 2.6, allows one to define on ϕ(N \ S) the so-called surface gravity 

of η according to (2.81). The pullback of this function to N is precisely the func- κ 

tion κ introduced in Lemma 3.3.1, as we show next. The interesting fact is that 

expression (3.102) does not require α to be non-zero. By construction κ is smooth 

and well-defined everyhere on N . It is not obvious a priori that the spacetime 

function κ, which in general is defined only on an open subset of ϕ(N ), extends 

smoothly to all the hypersurface. This is an interesting corollary of the following 

result. 

 
Proposition 3.3.2. In the setup of Lemma 3.3.1, define η =

d e f  
ϕ⋆η ∈ Γ(Tϕ(N )) and let κ 

be the function defined by (2.81) on ϕ(N \ S). Then, κ ◦ ϕ = κ on N \ S. 

-

 

Proof. As usual we identify scalars on N with their counterparts on ϕ(N ). The 

combination of (2.48), (2.81), (3.46) and and the fact that U(η, η) = 0 yields 
 

κ-ϕ⋆ = κη = ∇η η = ϕ⋆ 
◦ 

η − Y(η, η)n
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(

α

 
∇ 

 

= αϕ⋆ 
◦ 

nn + (dα(n) − αY(n, n)) n

1 

= ακϕ⋆ n = κϕ⋆η 
 

⇐⇒ κ- on N \ S, (3.106) 

 
where we inserted the definition of κ. 

 

This result justifies calling the abstract function κ surface gravity also. This function 

is always well-defined everywhere on N and in the embedded case it agrees with 

the usual definition in the domain where the latter is defined. 

= κ 



 

 



 

 

4 
T H E C O N S T R A I N T T E N S O R 

 

 

 
A natural question that arises when exploiting the formalism of hypersurface data 

is whether it is possible to capture some curvature information of the ambient 

manifold at the abstract level. We have already mentioned (see Proposition 2.2.16) 

that for any embedded hypersurface data one can determine some components of 

the ambient Riemann tensor purely in terms of the data. One may also wonder 

whether it is also possible to codify some components of the ambient Ricci tensor 

at the abstract level. If this turns out to be possible, then it will make sense to 

introduce new abstract definitions that encode precisely this information, so that 

one can work with them without requiring the existence of any ambient space. 

It is in this context where the so-called constraint tensor plays a crucial role. 

This tensor, that can be defined at the abstract level, captures information about 

a certain combination of the pull-back to the hypersurface of the ambient Ricci 

tensor and the transverse-tangent-transverse-tangent components of the ambient 

Riemann tensor. Moreover, in the null and embedded case, it coincides with the 

pull-back to the hypersurface of the ambient Ricci tensor. 

In this chapter, we motivate the definition of the constraint tensor for general hy- 

persurface data. Then, we focus on the null case, where we study its properties 

and derive some important identities. Since the ambient Ricci tensor is gauge- 

independent, it is to be expected that the constraint tensor in the null case is 

gauge-invariant. This is precisely the case, as proven in [60]. The gauge-invariant 

character of the constraint tensor in the null case allows us to construct several 

new gauge-invariant quantities. These quantities will play a fundamental role in 

the description of horizons and their properties that we shall make in Chapters 5 

and 6. 
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= n b e 

N 

b d 

b c d d c b c b d d 

d 

 
4.1 definition and first properties 

 
In this section, we will motivate the (purely abstract) definition of the constraint 

tensor. First, we show that a certain linear combination of the tangential com- 

ponents of the ambient Ricci tensor and of the transverse-tangential-transverse- 

tangential components of the ambient Riemann tensor can be computed exclus- 

ively in terms of the hypersurface data (whenever it is embedded). This will lead 

naturally to the definition, on any hypersurface data, of a symmetric 2-covariant 

tensor that encodes at the purely abstract level this combination of the ambient 

Riemann tensor. This construction is done for general data, although, as we shall 

see next, the most interesting case arises at null points because then this tensor en- 

codes precisely the information of the tangential components of the ambient Ricci 

tensor. 

Consider hypersurface data {N , γ, ℓ, ℓ(2), Y} embedded on an ambient space 

(M, g) with embedding ϕ and rigging vector ζ and assume Setup 2.2.7. The first 

decomposition in (2.27) can be used to compute the ambient Ricci tensor along 

tangential directions to ϕ(N ), i.e. R eαeβ. From R =
d e f  

gµν R
 

, it follows 

 

R eαe
β ϕ(N ) 

(
n(2)ζµζν + nc

  
ζµeν + ζνeµ

  
+ Pcdeµeν

) 
R  eαeβ 

αβ b d = 

ϕ(N ) 
 

(2) 

 

Rµανβζ 

c c 

µeαζν β 

c d µανβ b d 

+ nc 
(
R ζµeαeνeβ + R ζνeβeµeα

) 
+ PcdR eµeαeνeβ. 

 

By Proposition 2.2.16 we know that the contractions Rµανβζµeαeνeβ and 
b c d 

R eµeαeνeβ can be written in terms of the hypersurface data. However, in gen- 
µανβ c b d d 

eral this is not true for the components Rµανβζµeαζνeβ. We thus write the previous 
b d 

identity as (recall (2.28)) 
 

Ric(eb, ed )−g(ν, ν)Riem(ζ, eb, ζ, ed) 
ϕ(  ) 

= 

2ncRiem(ζ, e(b|, ec, e|d)) + PcdRiem(ec, eb, ed, ed), (4.1) 

where Ric and Riem are respectively the Ricci and Riemann tensors of (M, g). 

Note that at null points (where n(2) = g(ν, ν) = 0) the left-hand side simplifies 

and reduces to the tangential components of the ambient Ricci tensor alone. At 

non-null points, it is precisely that combination of tangential Ricci and tangential- 

transverse Riemann tensor that can be computed in terms of the hypersurface data. 

It therefore makes sense to obtain the explicit expressions in the right-hand side of 

(4.1) in terms of {N , γ, ℓ, ℓ(2), Y}. To do that there is no need to assume any longer 

αβ αβ µανβ 

µανβ νβµα µανβ 
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+ − 

∇d 

1 

( 

− 

∇ 

∇(b ∇d) 

bd c f 
2 

∇c 

− Ybc 

(
 
Fd f + Yd f

 
n f + 

1 
n(2) 

◦ 

dℓ(2)

1 

, (4.2) 

2 
∇(b 2 ∇(b ∇d) 

Y Y 

U 

U U ∇c 

 
that the data is embedded. We work at the abstract level by introducing two tensors 

Abcd and Babcd on N , which correspond to the hypersurface data counterparts of 
R ζµeαeνeβ and R eµeαeνeβ respectively (as given in Proposition 2.2.16). The 

µανβ b c d µανβ a b c d 

right-hand side of (4.1) can then be elaborated at the abstract level by computing 

the contractions nc(Abcd + Adcd) and Pac Babcd. As already mentioned, we start with 

the definitions of the tensors Abcd and Babcd as dictated by Proposition 2.2.16. 

Definition 4.1.1. (Tensors A and B) Given hypersurface data {N , γ, ℓ, ℓ(2), Y}, the 

tensors A and B are defined as 
 

Abcd 

 

=
def ℓa R

◦ 
a
 
 
bcd 

◦ 
∇d  cb 

◦ 
∇c  db 

+ ℓ(2) 

( 
◦

 

 

Ucb 

◦ 

∇c db 

1 

+ 
1 

(

U

 ◦ 

cb∇d ℓ
(2) − U 

◦ 

db∇c ℓ(2)

1
 

+ Y 

(
 

F + Y
  

n f + n(2) ◦
 ℓ(2)

1
 

 

 

 

Babcd 

 

 

 

 

=
d e f  

γa f
 

 

 

R
◦ f 

 

 

 

bcd 

 

+ ℓa 

 

 
◦ 

∇d cb 

2 
∇ 

◦ 

db

1 

+ Ybc 

 

 

Uda 

 

 

− Ybd 

 

 

Uca 

 

 

+ Ubc 

 

 

Yda 

 

 

− Ubd 

 

 

Yca+ 

+ n(2) (YbcYda − YbdYca) + UbcFda − UbdFca. (4.3) 

 

We proceed with the evaluation of nc(Abcd + Adcd) and Pac Babcd. Our guiding prin- 

ciple for the computation is to let as many derivatives of Y as possible appear in 

the form of £nY, i.e. as evolution terms along the direction n. This will be particu- 

larly useful in the null case, where n is the degeneration direction of γ. The result, 

however, holds in full generality. 

 

Proposition 4.1.2. Let {N , γ, ℓ, ℓ(2), Y} be hypersurface data and r, κn be given by (2.44). 

Then, the tensors A and B introduced in Definition 4.1.1 satisfy the following identities: 

Pac Babcd = R
◦ 

(bd) − 
◦ 

(bsd) + sbsd − Ubdn(ℓ(2)) 

+ 

(

−2n(2)s(b 

1 ◦ 

2 
∇(b n(2) 

1 
+ 

2 
( n(2))2 

◦
 

ℓ(2)

1 
◦

 ℓ(2) 

+ Pac
(
n(2)FbaFdc + UbaYdc + UdaYbc − UbdYac − YbdUac 

+ n(2)YbaYdc − n(2)YbdYac

)
, (4.4) 

nc (A 
 
bcd + Adcb ) = − 2£n Ybd 

◦ 
∇(b 

(
sd) + rd) 

) 
− 2κn Ybd − 2 (rb − sb ) (rd − sd) 

+ 

(

3n(2)s 

 

− 3n(2)r − 
1 ◦ 

n(2) − 
1 

(n(2))2 
◦

 
ℓ(2)

1 
◦

 ℓ(2) 

− 
2 

+ 

+ 2 

c f 

(b (b 
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∇ 

∇ 

2 

b ∇d] 

∇[d 

+ (n ) 

f ∇d∇c b ∇c∇d b = ∇d ∇c 

Fcd 

◦ 

bn
c + ncUcb 

◦ 

dℓ
(2) = − 2n(2)s(b 

◦ 

d)ℓ
(2) + Pac 

(
n(2)FbaFdc − UbaFdc

)
 

∇ 

(4.5) 

+ 
(

Ubd + n(2)Ybd

) 
n(ℓ(2)) + 2Pac 

(
Yc(b − Fc(b

) (
Ud)a − n(2)Fd)a

) 
. 

Moreover, it also holds 

nc (Abcd + Adcb) + Pac Babcd = R
◦ 

(bd) − 2£nYbd 

− 
(

2κn + trPU − n(2) 
(
n(ℓ(2)) − trPY

)) 
Ybd 

◦ 
∇(b 

(
sd) + 2rd) 

) 
− 2rbrd + 4r(b sd) − sbsd − (trP Y) Ubd 

 

 

 

 

Proof. Since the connection 
◦

 

+ 2PacUa(b 

(
2Yd)c + Fd)c

) 
+ n(2)

( (
s(b − 3r(b

) ◦ 

d)ℓ
(2)

 

+ Pac (Yab + Fab) (Ycd + Fcd) 
)

. (4.6) 

 
has vanishing torsion, we can write the Ricci identity 

for ℓ in the usual form 
 

ℓ R
◦ f = 

◦ ◦ 
 

ℓ − ◦ 
◦ 

ℓ 
(2.19) ◦ (

F
 

 

− ℓ(2)U 
) 

− 
◦  (

F
  

− ℓ(2)U 
) 

.  (4.7) 

We now contract this with nc and use (3.14) applied to A −--- F and a −--- s. Using 

that dF = 0 (which follows from F = 1 dℓ), we get 

ℓ f R
◦ f 

bcdnc = 
◦ 

bsd − Fcd 

◦ 

bn
c − 2ℓ(2)nc ◦ 

[dUc]b + Ubdn(ℓ(2)) − ncUcb 

◦ 

dℓ
(2). (4.8) 

∇ ∇ ∇ ∇ 

By Proposition 2.2.15 the Ricci tensor R
◦ 

ab can be written as 
 

R
◦ 

bd = R
◦  

(bd) + R
◦ 

[bd] = R
◦  

(bd) 

◦ 

[bsd]

 1 ◦ 

2 
∇[ n(2) ◦ 

ℓ(2). (4.9) 

Recalling (2.8)-(2.9) we then obtain, from (4.7) and (4.9), 

Pac 

(

γa f
 

 

R
◦ f 

 

 

bcd 

 

+ 2ℓ 

 
◦ 

a∇[d Uc]b

1 

= 

 

R
◦ 

bd 

 

− ncℓ f 

 

R
◦ f 

 

 

bcd 

 

− 2ℓ(2)nc ◦
 

 

 

Uc]b 

= R
◦ 

bd − ◦  bsd 
− 

1 ◦ bn
(2) ◦ 

d ℓ
(2) − Ubdn(ℓ(2)) + Fcd 

◦ 

bn
c + ncUcb 

◦ 

dℓ
(2), 

(  ) ∇( ) 2 
∇[ ∇ ] ∇ ∇ 

(4.10) 

 
We elaborate the last two terms by taking into account (2.14) and (2.20). This yields 

 

∇ ∇ 

+ s s 

∇ 

+ 
1 ◦ 

 

 

n(2) 
◦

 

 

 

ℓ(2) 1 (2) 2 
◦

 

 

 

ℓ(2) 
◦

 
 
ℓ(2).  (4.11) 

b d 2 
∇b ∇d 2 ∇b ∇d 

+ 

+ − 

bcd cb cb db db 



4.1 definition and first properties 111 
 

 

− 
2 

) 

( ) 

∇ 

∇ 

∇ 

2 
∇ 

2 

∇ ∇ 

F F Y Y ∇d 

2 
∇c 

= s − F ( ∇ ) 2 
∇c + r ∇ 

 

We have all the ingredients to compute Pac Babcd. Contracting the right hand side of 

(4.3) with Pac and replacing (4.10) and (4.11), expression (4.4) follows after simple 

manipulations. 

For (4.5) we start by substituting (4.7) in (4.2), which gives 
 

 

Abcd 

◦  

∇d  cb 

◦  

∇c  db 

◦  

∇d  cb 

◦  

∇c  db − 
1 (

Ucb 

 

+ n(2)Ycb
 ◦ 

ℓ(2) 

+ 
1 

Udb + n(2)Ydb
 ◦ 

ℓ(2) + Ybd
 

 
Fc f + Yc f 

 
n f − Ybc 

 
Fd f + Yd f 

 
n f .  (4.12) 

We now contract with nc and use (3.12) with S --- Y and (3.13) with A --- F to get 
 

nc A 
 

bcd 

◦ 

∇(b  d) c b 

◦ 

d n
c − 

1 
nc ◦ 

Fdb 

◦ 

∇d  b − £nYbd + Y cd 

◦ 

bn
c
 

− 
1 

nc 
(

Ucb + n(2)Ycb

) ◦ 

dℓ
(2) + 

1 (
Udb + n(2)Ydb

) 
n(ℓ(2)) 

− κnYbd + rbsd − rbrd, (4.13) 

 
where we have taken into account the definitions (2.44). Taking the symmetric part 

one obtains 

nc (Abcd + Adcb) = 2 
◦ 

(b 

(
sd) + rb)

) 
+ 2 

(
Yc(b − Fc(b

) ◦ 

d)n
c
 

− 2£nYbd − 2κnYbd + 2r(bsd) − 2rbrd 

− 
(
ncUc(b + n(2)r(b

) ◦ 

d)ℓ
(2) + 

(
Ubd + n(2)Ybd

) 
n(ℓ(2)). (4.14) 

By virtue of (2.20), we finally find 

2(Ycb − Fcb) 
◦ 

dnc = 2Pac (Ycb − Fcb) 
(

Uda − n(2)Fda

)
 

+ 2 (rb − sb) 

(

−n(2) 
◦ 

dℓ
(2) + sd

1 

, 

 

which together with (2.14) yields (4.5) when inserted into (4.14). Finally, equation 

(4.6) follows at once after simple index manipulations. 

Note that the right hand side of (4.4) is explicitly symmetric in the indices b, d. This 

property is consistent with the fact that, in the embedded case, the left-hand side 

of (2.53) is symmetric under the interchange of the first and second pair of indices. 

This provides a non-trivial consistency check for (4.4). 

As explained above, expression (4.6) motivates introducing a symmetric tensor R 

on N that we call constraint tensor. 

= + − 
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R = 

∇ 

∇ 

∇( 

 

Definition 4.1.3. (Constraint tensor R) Given hypersurface data {N , γ, ℓ, ℓ(2), Y}, the 

constraint tensor R tensor is the symmetric 2-covariant tensor 
 

 
def 

bd 

 

R
◦ 

(bd) − 2£nYbd − 
(

2κn + trPU − n(2) 
(
n(ℓ(2)) − trPY

)) 
Ybd 

◦ 

b 

(
sd) + 2rd)

) 
− 2rbrd + 4r(bsd) − sbsd 

− (trPY)Ubd + 2PacUa(b 

(
2Yd)c + Fd)c

)
 

+ n(2)
( (

s(b − 3r(b

) ◦ 

d)ℓ
(2) + Pac (Yab + Fab) (Ycd + Fcd) 

)
. (4.15) 

where κn and ra are defined by (2.44). 

 
The whole construction has been performed so that the following result holds. 

 

Proposition 4.1.4. Let {N , γ, ℓ, ℓ(2), Y} be hypersurface data embedded in (M, g) with 

embedding ϕ and rigging ζ. Let ν be the unique normal covector along ϕ(N ) satisfying 
def def 

ν(ζ) = 1 and define ν = g(ν, ·). Consider the symmetric 2-covariant tensor R = Ric − 

g(ν, ν)Riem(ζ, ·, ζ, ·) along ϕ(N ). Then 

ϕ⋆R = R. (4.16) 

In particular at any point p where the hypersurface ϕ(N ) is null, it holds 

ϕ⋆Ric|p = R|p. (4.17) 

 

At null points the expression for the constraint tensor simplifies, as one has n(2) = 

0. It is worth stressing that the expression for the tangential components of the 

ambient Ricci tensor in the null case has been obtained in a fully covariant way. 

In the case n(2) = 0, the conditions R = 0 can be thought of as the vacuum con- 

straint equations (with vanishing cosmological constant) on a null hypersurface. 

Such constraints have always appeared in the literature in a decomposed form 

adapted to a foliation by spacelike slices. To the best of our knowledge, the only 

exception to this is [60, Eq. (50)] (see also [61, Eq. (34)]), where the tensors Aabc, 

Babcd and Rab = nc (Abcd + Adcb) + PacBabcd were defined (only in the null case) in 

terms of the hypersurface connection ∇ introduced in Section 2.2.2.1 before. Recall 

that the torsion-free derivative ∇ coincides in the embedded case with the connec- 

tion induced from the Levi-Civita covariant derivative of the ambient space. In [60], 

the expression of R is not fully explicit in the tensor Y, as the connection ∇ and R 

depend on it. Definition (4.15), on the other hand, shows the full dependence on Y 

(in the terms involving Y, r and κn), as both 
◦  

and R
◦ 

depend only on the metric 

+ 
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∇ 

 
part of the data. Moreover, the tensor R on [60] was not expanded in terms of 

the data, as we have done here in expression (4.15). Instead, it was decomposed in 

terms of a foliation by spacelike hypersurfaces, in analogy with other forms of the 

constraint equations that have appeared in the literature. The result above involves 

no decomposition with respect to any foliation. In fact, it makes no assumption 

on whether such foliation exists. The result is fully covariant on N , even though 

this manifold admits no metric. It is by use of the hypersurface data formalism 

(in particular thanks to the existence of the connection 
◦ 

) that such compact and 

unified form of the vacuum constraint equations in the null case becomes possible. 

Given its interpretation in the embedded case, it is to be expected that the con- 

straint tensor is gauge invariant at a null point. This was already proven in [60, 

Theorem 4.6] in the case of characteristic hypersurface data which (recall Defini- 

tion 3.2.2 in the previous chapter) is null hypersurface data that can be foliated by 

diffeomorphic sections with positive definite induced metric. However, the proof 

of Theorem 4.6 in [60] does not rely on these global restrictions, so the gauge in- 

variance of the constraint tensor R holds for general null hypersurface data1. In 

particular, this means that in the null case we can compute R in any gauge, which 

gives a lot of flexibility to adjust the gauge to the problem at hand. At non-null 

points gauge invariance does not hold since the spacetime tensor R depends on 

the rigging vector ζ. 

At non-null points, Propositions 2.2.16 and 4.1.4 admit the following immediate 

corollary. 

Corollary 4.1.5. Let {N , γ, ℓ, ℓ(2), Y} be hypersurface data embedded in (M, g) with 

embedding ϕ and rigging ζ. Assume that the tangential components of the Ricci tensor 

Ric along ϕ(N ) are known, then the whole Riemann tensor Riem at any non-null point 

p ∈ N can be determined explicitly in terms of the hypersurface data. 

 
4.2 constraint tensor: null case 

 

For the rest of the chapter, we shall focus on the null case, so we assume that 

n(2) = 0 everywhere on N . Since the definition (4.15) of the constraint tensor 

R simplifies remarkably in this context, it is convenient to write it down as a 

definition. 
 
 

 
1It should actually be true that gauge invariance holds even at isolated null points. We do not 

attempt proving this fact here. 
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+ 

∇b 

) − ∇c 

∇c 

∇b 

κ n ∇b 

 

Definition 4.2.1. Let {N , γ, ℓ, ℓ(2), Y} be null hypersurface data. The constraint tensor 

R is the symnmetric tensor defined by 

 

Rab 

 

 

=
def 

 

R
◦ 

(ab) − 2£n 
 

Yab 

 

− (2κn 

 

+ trP 

 

U) Yab 

 
◦ 
∇(a 

(
sb) + 2rb)

)
 

− 2rarb + 4r(asb) − sasb − (trPY)Uab + 2PcdUd(a 
(

2Yb)c + Fb)c

) 
. (4.18) 

 
In the next section we will evaluate the contraction of R with the null direction 

n. After that, in Section 4.2.2 we will obtain contractions of the constraint tensor 

along directions tangent to a given transverse submanifold S (non-necessarily a 

cross-section) of N . 

 
 

4.2.1 Constraint tensor along the null direction n 

 

As already mentioned several times before, the degeneration vector n defines a 

privileged direction on any null hypersurface data. It therefore makes sense to com- 

pute explicitly all the independent contractions of the constraint tensor with this 

vector. We emphasize that the result does not require any topological assumption 

whatsoever. In particular, the null hypersurface data does not need to be foliated 

by sections. 

Theorem 4.2.2. Consider null hypersurface data D = {N , γ, ℓ, ℓ(2), Y} and let R be the 

constraint tensor. Then, 
 

Rab n
a = − 

◦  
κn − £n (rb − sb) 

− (trP U) (rb − sb ◦ (trP U) + Pcd 
◦

 Ubd − 2PcdUbd sc, (4.19) 

Rabnanb = − n(trPU) + (trPU)κn − PabPcdUacUbd. (4.20) 

Proof. Recall the facts U(n, ·) = 0, s(n) = 0, Y(n, ·) = r, Y(n, n) = r(n) = −κn, 

F(n, ·) = s. Particularizing (3.11) for n(2) = 0 and θ = s + 2r we get 
 

◦ 

∇(a (sb) + 2rb) 
1 

) = 
2 

£nsb + £nrb ◦ + 2κnsb − PacUbc (sa + 2ra ). (4.21) 

The contraction of (4.18) with na gives (4.19) after inserting (3.75), (4.21) and £nrb = 

na£n Yab . Contracting (4.19) with nb and using that nb Pcd 
◦

 Ubd = −PcdU 
◦ 

bd∇c nb = 

−Pab PcdUacUbd as well as nb£n(sb − rb) = n(κn) yields (4.20). 

 
Observe that the identity (4.20) corresponds to the Raychaudhuri equation (2.103) 

that we derived before in the context of null hypersurfaces. From the comparison 

na − 
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∥ 

∥ 

− U 

f A B A B 

C D D A B 

D A C B D A B 

D A B A B∇a b A B D 

D A B∇ 

D A B∇[a A − ∇  U 

 
between (4.20) and (2.103), it is straightforward to conclude that at the abstract 

level trPU plays the role of the expansion θ while Pab PcdUacUbd stands for the term 

(n − 1)−1θ2 + ς2. 

 

4.2.2 Constraint tensor on a transverse submanifold S 

 

Let us now assume Setup 3.2.15 and analyze the case when we have selected a 

codimension one submanifold S of N to which n is everywhere transverse. In 

particular, all results from Section 3.2.3 will apply here. Our main aim is to de- 

rive an explicit expression for the pull-back to S of the constraint tensor, i.e. ψ⋆R, 

in terms of the Ricci tensor of the Levi-Civita connection ∇h (see Section 3.2.3). 

By (4.18), this task requires relating the pull-back ψ⋆R
◦

ic with the Ricci tensor of 
∇h. Now, computing the pull-back ψ⋆R

◦
ic amounts to calculating R

◦ 
AB =

d e f  
R
◦ 

c
acbv

a vb . 
A B 

This trace can be obtained by means of (2.9) and (3.80) as follows: 
 

R
◦ 

AB = δc R
◦ f 

acbv
a vb

 = 
(
Pcdγd f + ncℓ f 

) 
R
◦ f 

acbv
a vb

 

= 
(
hCDvc vd γd f + nc(ℓf − hCDℓCvd γd f )

) 
R
◦ f 

acbv
a vb . (4.22) 

 

Thus, we need to evaluate both 

hCDvd γd f R
◦ f 

acbv
a vc vb 

 

 

and nc(ℓf − hCDℓCvd γd f ) R
◦  f 

acbv
a vb . 

The first one is obtained by contracting (3.92) with hCD. For the second one, substi- 

tuting (3.78)-(3.79) into (3.70) and (3.71) yields 

nc 
(
ℓ − hCDℓ vd γ 

) 
R
◦ 

f
  

va vb = va vb 
◦ 

s − s s + 
(
n(ℓ(2)) − 2ℓDs 

) 
U 

+ (ℓ(2) − ℓ
(2)

)(£nU)AB 

+ 2ℓD 

(

s(AUB)D − vd va vb
 

 

◦ 

[aUd]b

1
 

− hCDUAC 

(
FDB + (ℓ(2) − ℓ

(2)
)UBD 

) 
. (4.23) 

We elaborate (4.23) by particularizing (3.94) for T = s, T = U and T = ℓ. Since 

s(n) = U(n, ·) = 0 they give, respectively, 
 

va vb ◦  
s = ∇h s − ℓCs U , (4.24) 

A  B∇a  b A B C AB 

2vd va vb 
◦ 

U 
 

d]b = ∇h UBD 
h 
D AB − ℓCUCDUAB + ℓCU ACUBD, (4.25) 

va vb 
◦  

ℓ = ∇h ℓ (2) ℓ =⇒ F = va vb 
◦ 

ℓ = ∇h ℓ ,  (4.26) 
A  B∇a  b A B ∥ AB AB A B∇[a  b] [A B] 

f C d f acb AB 
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∥ C 

+ 2ℓ 
(

∇ UAB + s − ∇ 
) 

−  
( 

−
 

(A (B 

A 

AB + ∇ C 

+ 2ℓ 
(

∇ UAB + s − ∇ 
) 

−  
( 

−
 

(A (B 

AB 

AB (A 

D A B A 

A ∥ 

2 D B 

AB A C 

A B 

∥ (A 

(A 

U 

(A 

U 

 

with which (4.23) becomes 

nc 
(
ℓf − hCDℓCvd γd f 

)
R

◦  f 
acbv

a vb = ∇h sB − sAsB 

+ 
(
n(ℓ(2)) + ℓCℓDUCD − 3ℓCsC 

) 
UAB 

+ (ℓ(2) − ℓ
(2)

)(£nU)AB + 2ℓCs UB)C + ℓC∇h UAB 

− ℓC ∇h UCB − 
(
hCD (ℓ(2) − ℓ

(2)
) + ℓCℓD 

) 
UACUBD 

− 
1 

hCD(∇h ℓB − ∇h ℓD)UAC. (4.27) 

 

The Ricci tensor R
◦ 

AB follows by substituting (4.27) and (3.92) (contracted with hCD) 

into (4.22): 

R
◦ 

AB = Rh + ∇h sB − sAsB + 
(
n(ℓ(2)) + 2ℓCℓDUCD − 3ℓCsC + ∇h ℓC

 

+ (trhU∥)(ℓ
(2) − ℓ

(2)
)
)

UAB + (ℓ(2) − ℓ
(2)

)(£nU)AB + (trhU∥)∇
h  ℓB 

∥ 

C h 
C (A 

 

UB)C 

 
h 
(A B)C 

∥ (A ) 

2 hCD (ℓ(2) ℓ
(2)

) 
∥ 

+ ℓCℓD 
)

UACUBD − hCD 
(

UDB∇h
 ℓC) + UDA∇h

 ℓC)

) 
. (4.28) 

Observe that all terms in (4.28) except from ∇h sB are symmetric. This implies 

that R
◦ 

AB − R
◦ 

BA = ∇h sB − ∇h sA, which is in agreement with equation (2.51) and 

provides a consistency check to (4.28). The symmetrized tensor is 
 

R
◦ 

(AB) = Rh
 

h sB) − sAsB + 
(
n(ℓ(2)) + 2ℓCℓDUCD − 3ℓCsC + ∇h ℓC

 

+ (trhU∥)(ℓ
(2) − ℓ

(2)
)
)

UAB + (ℓ(2) − ℓ
(2)

)(£nU)AB + (trhU∥)∇
h  ℓB 

∥ 

C h 
C (A 

 

UB)C 

 
h 
(A B)C 

∥ (A ) 

2 hCD (ℓ(2) ℓ
(2)

) 
∥ 

+ ℓCℓD 
)

UACUBD − hCD 
(

UDB∇h
 ℓC) + UDA∇h

 ℓC)

) 
. (4.29) 

Having obtained (4.29), we can now write down the relation between the pull-back 

to S of the constraint tensor and the Ricci tensor of the induced metric h. 

Theorem 4.2.3. Consider null hypersurface data {N , γ, ℓ, ℓ(2), Y} and assume the Setup 

3.2.15. Let Rh be the Ricci tensor of the Levi-Civita connection ∇h on S. Then, the 

pull-back to S of the constraint tensor R defined by (4.15) is given by 

RAB = Rh + 2∇h  
(
sB) + rB)

) 
− 2(rA − sA)(rB − sB) 

+ (ℓ(2) − ℓ
(2)

)(£nU)AB − 2(£nY)AB − 
(

2κn + trhU∥

) (
YAB − ∇h

 ℓB 

) 
) 
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∥ 

∥ 

[A 

R = 

AB 

+ 
(
n(ℓ(2)) + 2ℓCℓDUCD − 4ℓCsC + 

(
trhU∥ + κn

) 
(ℓ(2) − ℓ

(2)
) − trhY∥ + ∇h ℓC 

) 
UAB 

C (A 

( D ( ∥ ( ) 

A B∇ (A n (A 

( ) ∥ (A ) ) (A 

( ) ) 2 B) C | ) 

 

 

+ 2ℓC 
(

∇h UAB − ∇h
 

C 

UB)C − 
(

2 
(
r(A − s(A

) 
+ ℓDUD(A

) 
UB)C 

)

 

+ 2hCD 
(

2YD A − ∇h ℓ A − (ℓ(2) − ℓ
(2)

)UD A

) 
UB C. (4.30) 

 
Proof. We need to multiply (4.18) by va vb . We come across a term va vb 

◦ 
(s + 

A B A B∇(a b) 

2rb)) which we elaborate by using (3.94) for T = s and T = r (recall that s(n) = 0, 

r(n) = −κn), thus obtaining 

 

va vb 
◦ 

(a 

(
sb) + 2rb)

) 
= ∇h (

sB) + 2rB)

) 
+ 2κ ∇h

 

 

ℓB) 

− 
(
ℓJ (sJ + 2rJ ) − 2κn(ℓ(2) − ℓ

(2)
)
) 

UAB. 
 

Since FBcnc = −sB and FAB = ∇h ℓB] (by (4.26)), inserting (3.78)-(3.79) into (4.18) 

yields 

 
def 

AB 

 

 

R
◦ 

AB 

 

− 2(£nY)AB − 
(

2κn + trhU 

 

) 
YAB + ∇h

 

 

(
sB

 

 

+ 2rB 
) 

+ 2κn∇h  ℓB 

− 2rArB + 4r(AsB) − sAsB − 
(

trhY∥ − κn(ℓ
(2) − ℓ ) + ℓJsJ 

) 
UAB 

(2) 

+ 2hCDUD A 

(

2YB C + ℓC 

(
sB − 2rB 

) 
+ 

1 (
∇h

 ℓC − ∇h ℓ B 

)1 

. (4.31) 

 

Substituting expression (4.29) for R
◦ 

(AB) and reorganizing terms, one easily arrives 

at (4.30). 
 

 

4.3 gauge invariant quantities on a transverse submanifold S 

 
Equation (4.30) is rather complicated. The main reason behind this is that it has 

been written in a completely arbitrary gauge. This is clearly advantageous since 

the gauge can be adjusted to the problem at hand. However, the equation involves 

several quantities that are gauge invariant, namely the constraint tensor R and the 

metric hAB together with all its derived objects, such as the Levi-Civita covariant 

derivative ∇h and the Ricci tensor Rh  . A natural question arises as to whether 

one can find additional objects with simple gauge behaviour so that one can write 

down (4.30) fully in terms of gauge invariant quantities. There is an obvious answer 

to this, namely that the sum of all terms in the right-hand side of (4.30) except 

for the first one must necessarily be a gauge invariant quantity. While this must 

be true, it is clearly not very helpful. However, the idea behind it is useful. If 

we can find simple gauge invariant quantities that can then be substituted in the 

∥ 

) 

) 
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∥ 

        

∥ ∥ 2 ∥ ∥ 2 ℓ♯ 
∥ 

∥ 

 
equation, then the reminder must also be gauge invariant. This procedure can lead 

to the determination of gauge invariant objects that would have been very hard to 

guess otherwise. Furthermore, showing explicitly that such object is indeed gauge 

invariant would provide a highly non-trivial independent test on the validity of 

equation (4.30). This is the task we set up to do in the present section. 

To study this issue, we will rely on the following previous results. First, we will 

require the expressions for the gauge transformations of U, F, s, r and κn that 

were derived in Lemma 3.2.7 and Corollary 3.2.8. Secondly, we will use the ad- 

ditional structure that comes from the existence of the transverse submanifold S. 

In particular, we will exploit the results and notation introduced in Section 3.2.3. 

Finally, we will need Lemma 3.2.22, which allows us to compute the pull-back of 

Lie derivatives of γ and U along arbitrary directions. 

In the next lemma we write down two quantities on S with very simple gauge 

behaviour. The underlying reason why such objects behave in this way comes from 

the notion of normal pair and the associated geometric quantities on S defined and 

studied in [61]. However, for the purposes of this thesis we simply put forward the 

definitions and find explicitly how they transform under an arbitrary gauge. 

 

Lemma 4.3.1. Assume Setup 3.2.15 and define on S the covector ω∥ and the symmetric 

(0, 2)-tensor P∥ by 

 

ω =
d e f  

ψ⋆(s − r) − U (ℓ♯ , ·), P =
d e f  

ψ⋆Y + 
1 (

ℓ(2) − ℓ(2)|S

) 
U − 

1 
£ h. 

 

Under an arbitrary gauge transformation with gauge parameters {z, V} they transform as 
 

G z,V (ω ) = ω − 
1 

dzˆ, G z,V (P ) = zˆP , (4.32) 

 

where ẑ  =
d e f  

ψ⋆z. 

( ) ∥ ∥ ẑ ( ) ∥ ∥ 

 

Proof. From (3.58) and (3.60) we have the transformations (we again use prime to 

denote a gauge transformed object) 

ℓ′ = zˆ(ℓ∥ + w∥), U′ = zˆ−1U∥. (4.33) 

Thus ℓA′ = zˆ(ℓA + wA) and UABℓB 
′ 
= UAB ℓB + wB . The transformation law of 

ω∥ follows at once from this and Corollary 3.2.8 (recall that U(n, ·) = 0, γ(n, ·) = 0). 

∥ ∥ 
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def 

AB (A 

∥ ∥ 

(
(ℓ

(2) 
− ℓ(2)|S)U∥

)′ 
= zˆ(ℓ

(2) 
− ℓ(2)|S)U∥ + 2zˆ 

(
ℓCwC − f |S

) 
U∥. 

 

Concerning P∥ we use the decomposition Va = f n + Pabwb (cf. (3.57)) and apply 

Lemma 3.2.22 to the transformation law (2.40) of Y. This gives 
 
 

 
Since 

 

ψ⋆Y′ = zˆψ⋆Y + ℓ∥ ⊗s dz  ̂+ z  ̂
( 

f |S 

 

− ℓCwC 
) 

U∥

 1 
+ 

2 
£ 

 

ẑw♯ h. 

ℓ
(2)′ = zˆ2 

(
ℓ

(2) 
+ 2ℓCwC + wCwC 

) 
, ℓ(2)′|S = zˆ2 

(
ℓ(2)|S + 2 f |S + wCwC 

) 
, (4.34) 

 

the first because of definition ℓ(2) =
d e f  

h♯(ℓ 
∥ ∥ 

of (3.59) together with (3.80), one finds 

, ℓ∥ ) and the second being a consequence 

 

 
∥ ∥ 

 

Given that (ℓ♯ )′ = zˆℓ♯ + zˆw♯ and £ ♯ h = zˆ£ ♯ h + 2ℓ∥ ⊗s dzˆ all terms involving w♯
 

∥ ∥ zˆℓ∥ ℓ∥ 

and dz  ̂in P′ 
∥ 

cancel out and the transformation law P′ 
∥ = zˆP∥ follows. 

The result states in particular that ω∥ and P∥ are nearly gauge invariant and, in 

fact, that they are exactly gauge invariant under the subgroup 

G1 = {1, V} ⊂ G = F ⋆(N ) × Γ(TN ). 

 
The fact that G1 is a subgroup of G is immediate from the composition law of 

Proposition 2.2.10. 

As already indicated, it makes sense to write the constraint tensor R on the sub- 

manifold S in terms of these quantities. We still need to decide which objects are 

to be replaced. For P∥ there is only one natural choice, namely ψ⋆Y. For ω∥, we 

could replace either s or r, but the second choice is preferable because ω∥ is not 

at the level of metric hypersurface data since it involves some components of the 

tensor Y as well. 

The following result is obtained by a simple computation whereby r and ψ⋆Y are 

replaced in terms of ω∥ and P∥ respectively in (4.30). 

 

Proposition 4.3.2. Assume Setup 3.2.15. The pull-back to S of the constraint tensor R 

reads 

RAB = Rh − 2∇h  ωB) − 2ωAωB − 
(

2κn + trhU∥

) 
PAB 

− (trhP)UAB + 4PC
(AUB)C − 2SAB, (4.35) 
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S = 

2 

C (A 

(z,V) ẑ A B − 
ẑ 2 

∇A B ẑ B) ẑ 

 

where 
 

 

 

 
def AB 

 

 

(£nY)AB − 
1 

(ℓ(2) − ℓ
(2)

)(£nU)AB − 2∇h  sB 

2 ∥ (A ) 

+ 

(

− 
1 

n(ℓ(2)) − ℓCℓDUCD + 2ℓCsC 

1 

UAB 

+ ℓC 
(

−∇h UAB + 2∇h  UB)C

) 
. (4.36) 

 

The definition of the symmetric (0, 2)-tensor S∥ is not artificial. As mentioned 

above, the fact that the tensors ψ⋆R and Rich are gauge invariant, together with 

the simple gauge behaviour of ω∥, P∥, U∥ and κn, imply that S∥ must also have 

a simple gauge behaviour. To conclude this section, we determine the gauge trans- 

formation of S∥ as a simple consequence of expression (4.35). However, in Ap- 

pendix C we provide a direct and completely independent proof of this property. 

This serves as a stringent consistency test for the various expressions above. 

We emphasize that while the existence and explicit form of the G1-gauge invari- 

ant quantities ω∥ and P∥ can be justified by the use of normal pairs and their 

associated geometric objects [61], the existence of the G1-gauge invariant quantity 

S∥ could not be anticipated and comes as an interesting by-product of the con- 

straint tensor. The tensor S∥ contains information on the first order variation of 

the extrinsic curvature Y along the null direction n. 

This quantity has several interesting features that would deserve further investiga- 

tion. Here we shall only mention that this object is not only G1-gauge invariant and 

it has a simple full G-gauge behaviour (which makes it computable in any gauge) 

but it is also intrinsic to the submanifold S. By "intrinsic" we mean that it encodes 

geometric information of S as a submanifold of N (or of the ambient space (M, g) 

in case the data is embedded), independently of S belonging or not to any foliation 

of N . This information is at the level of second derivatives (curvature) unlike ω∥ 

or P∥ which involve only first derivatives (extrinsic curvature). 

The gauge behaviour of S∥ is obtained next as a consequence of Proposition 4.3.2. 

 

Corollary 4.3.3. Under a gauge transformation with gauge parameters {z, V} the tensor 

S∥ transforms as 
 

G (S) = SAB + 
1 

∇h ∇h ẑ 
2 h z∇h zˆ + 

2 
ω ∇h z  ̂+ 

 z n̂ 
PAB, 

 

where zˆ =
d e f  

z|S and zˆn =
d e f  

n(z)|S. In particular S∥ is invariant under the subgroup G1. 

AB (A 
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(A 

∥ 

2 ∥ ∥ ∥ ∥ 

A B C ∇a ∇b ∇c c A BC B AC C 

= 

va vb vc U A 

 

Proof. We apply a gauge transformation with gauge parameters {z, V} to (4.35) and 

subtract the equation itself. Using, as usual, a prime to denote gauge transformed 

objects one has 

0 = −2∇h 
(
ω′

B) − ωB)

) 
− 2ω′

Aω′
B + 2ωAωB − 2

 
κ n

′  zˆ − κn

 
PAB − 2S′

AB + 2SAB, 

where we used the gauge invariance of ψ⋆R, h, ∇h and Rich, as well as the fact 

that U∥ scales with zˆ−1 while P∥ scales with zˆ, so their product is gauge invariant. 
Using the definition zˆn =

d e f  
n(z)|S and inserting ω′ = ω − zˆ−1dzˆ, as well as (3.64), 

the result follows after simple cancellations. 
∥ ∥

 

 

As we shall see in Section 5.4.2, the quantity S∥ is of particular relevance in the 

study of Killing horizons of order one containing a submanifold S. The underlying 

reason is that S∥ is related to the pull-back to S of the tensor field Σ
◦  

−n ⊗ £nY, 

which vanishes at a horizon in the gauge where the Killing vector coincides with n 

(recall that S∥ is only G1-invariant). The next lemma provides the corresponding 

relation between S∥ and Σ
◦ 

−n ⊗ £nY. 

 

Lemma 4.3.4. Assume Setup 3.2.15, where q is the unique normal covector field to ψ(S) 

satisfying q(n) = 1 and ℓ♯ 
∥ 

verify the following identity: 

=
def 

h♯(ℓ 
∥ , ·). Then, S∥ and the tensor Σ

◦
 defined by (3.31) 

 
S 

S∥ = − ψ⋆ 
(

q(Σ
◦  

−n ⊗ £nY)
)
 

1 
+ 

2 
(ℓ 

 

(2) − ℓ
(2)

)(£nU)∥ 

+ 

( 
1 

n(ℓ(2)) + U (ℓ♯ , ℓ♯ ) − 2s (ℓ♯ )

1 

U . (4.37) 

 

In particular, if U = 0 everywhere on N , it follows 

∥ 
S  

− ψ⋆ 
(

q(Σ
◦  

−n ⊗ £nY)
) 

. (4.38) 

 
Proof. We first use (3.94) to obtain the contraction va vb vc 

◦  
U  : 

A B C∇a bc 
 

◦ 

A B C ∇a bc = ∇h UBC − ℓDUCDUBA − ℓDUBDUCA . (4.39) 

 
This, in turn, allows us to conclude 

va vb vc 

( 
◦ 

U 

 

+ 
◦ 

U 
 

− ◦ U 

 

+ 2s U 

1 

= ∇h U + ∇h U − ∇h U 

− 2ℓDUCDUAB + 2sCUAB (4.40) 

S 

∥ ∥ 

bc ca ab ab AB 
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∇a ∇c 

C D 

∇(a ∇a 

(A C 

A B ∇a ∇b ∇c c n 

A B ∇a ∇b ∇c c ab 

A B C D ∇a ∇b ∇c c ab 

A B ∥ D ∇a ∇b ∇c c 

A B (A ) ∥ 

D (A C 

U ∇ U 
◦ 

U ∇ U 

 
after using (4.39) thrice. On the other hand, one finds 

nc 

( ◦ 
 

 

Ubc 

 
◦ 

b ca

 

 
◦  

∇c ab 

 

+ 2scUab 

1 

= − 

(

nc 
◦

 

 

 

Uab 

 

+ Ubc∇a 

 

nc + U 

 
◦ 

ca∇b n
c

1 

 

 

 
and hence 

= − (£nU)ab, 

va vb nc 

( 
◦ 

U 

 

+ 
◦ 

U 
 

− ◦ U 

 

+ 2s U 

1 

= −(£ U) 

 

. (4.41) 
 

Now, by (3.80) the tensor P can be decomposed as Pdc = vc
 
 
hCDvd − ℓCnd

 
+ 

nc((ℓ
(2) 

− ℓ(2))nd − ℓDvd ). Thus, 
∥ 

va vb Pdc 

( 
◦ 

U 

D 

 

+ 
◦ 

U 

 
 

 

− ◦ U 

 

+ 2s U  

1 

= 

va vb vc 
(
hCDvd − ℓCnd

) ( ◦  
U + 

◦ 
U 

 

− ◦ U + 2s U  
)
 

+ va vb nc 
(
(ℓ

(2) 
− ℓ(2))nd − ℓDvd 

) ( ◦ 
U + 

◦ 
U − ◦ U + 2s U 

)
. (4.42) 

 
This means that (4.42) can be elaborated by inserting (4.40)-(4.41). Since the tensor 

Σ
◦ 

in the null case reads (recall (3.31)): 

 

Σ
◦ d

ab = nd 

(

2 
◦

 

 

sb) 

 

+ n(ℓ(2))Uab 

1 

+ Pdc 

( ◦  
Ubc 

 
◦ 

b ca

 

 
◦  

∇c ab + 2scUab

1 

, 

 

 
it is straightforward to conclude that its contraction with va vb is 

(4.43) 

A B 

 

Σ
◦ d

abv
a vb = nd

(

2∇h sB − 2ℓCsCUAB + n(ℓ(2))UAB + (ℓ(2) − ℓ
(2)

)(£nU)AB 

− ℓC 
(

2∇h  UB)C − ∇h UAB − 2ℓDUCDUAB + 2sCUAB

) 1

 

+ vd 

(

hCD 
(

2∇h  UB)C − ∇h UAB − 2ℓDUCDUAB + 2sCUAB

)
 

+ ℓD(£nU)AB

1 

(4.44) 
 

after using va vb 
◦ 

s = ∇h  s − ℓCs U (cf. (3.94)). Equation (4.37) follows 
A B∇(a b) (A B) C AB 

from (4.44) after taking into account q(vD) = 0, q(n) = 1, definition (4.36) and the 

fact that ψ⋆ (q(n ⊗ £nY)) = (£nY)∥. 

+ − 

+ − 

bc ca ab ab AB 

bc ca ab 

bc ca ab 

bc ca ab ab 



 

 

- 

- - 

- 

5 
E M B E D D E D H Y P E R S U R FA C E D ATA A N D 

A M B I E N T V E C T O R F I E L D S 
 

 

 

In many interesting situations a spacetime has a privileged vector field. One simple 

(although important) example occurs when the spacetime admits a Killing vector, 

but there are many more indeed. Besides the natural generalization of (M, g) ad- 

mitting a less restrictive type of symmetry such as a homothety or a conformal 

Killing vector, it can also happen that there is one observer (modelled, as usual, by 

a unit future timelike Killing vector) that is physically or geometrically privileged 

e.g by being geodesic, or shear-free, or irrotational or any combination thereof. 

Privileged null vector fields are also commonplace, e.g. when a spacetime is algeb- 

raically special so that the Weyl tensor admits a multiple principle null direction, 

or when the spacetime admits a Kerr-Schild decomposition. The examples are end- 

less. 

In principle, we do not want to restrict ourselves to any particular situation (at least 

from the beginning). Thus, we will start by assuming that the spacetime admits a 

privileged vector field y in a neighbourhood O of a general hypersurface N . Given 

such vector field, we can always define a symmetric 2-covariant tensor field that 

encodes the relationship between the metric g and the vector itself. This is the so- 

called deformation tensor. Our first aim is to compute the explicit expression for 

the Lie bracket [y, ζ]|
N 

of y with any extension to O of a rigging ζ of N . With this 

result at hand, we shall be able to obtain an identity on N for the Lie derivative 

of the data tensor Y along y in terms of the deformation tensor, its first transversal 

derivative and the metric part of the data. This identity will be essential in Chapter 

6 when we derive a fully general form of master equation. 

The rest of the chapter is devoted to the case when the hypersurface N- is null 

and y is null and tangent to it. In such case we use the symbol η (instead of y) to 

refer to the privileged vector field. We have several purposes in mind. First, we 

derive another identity for the Lie derivative of Y along η, but now in terms of the 

proportionality function between η and a null generator of the hypersurface, the 
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- 

def 

 
deformation tensor and the tangent components of its first transversal derivative. 

Secondly, we study in depth the tensor field Ση =
def 

£
 

∇ introduced in Section 3.1.1. 

This tensor field plays a basic role in the geometry of Killing horizons of order zero 

and one, so it becomes necessary to codify it at the abstract level. With this goal in 

mind, we derive the pull-back to the abstract hypersurface of the contraction Ση 

with a general covector. This leads us to a natural definition of a tensor field, called 

 ηה
, that encodes geometric properties of Ση at the abstract level. The analysis of its 

gauge behaviour reveals that its contraction with the null generator n of the data is 

gauge-invariant, and this allows us to detect another G1-invariant quantity related 

to the second fundamental form U and its Lie derivative £nU. We also obtain a 

general expression for the vector field Ση(X, Y), X, Y ∈ Γ(TN ). 

We emphasize that the results of this chapter hold in full generality, as we are 

not imposing any a priori condition of the deformation tensor of η. We expect 

that the results obtained here will have many different uses besides the ones we 

concentrate on later in this thesis. To mention just one, conformal infinity is a null 

hypersurface in the case of vanishing cosmological constant, and the conformal 

compactification introduces a privileged vector field, namely the gradient of the 

conformal factor. It is quite certain that the result here will be of relevance in that 

context. 

We conclude the chapter by motivating and presenting the definitions of Killing 

horizons of order zero and one, as well as connecting them with the notions of 

non-expanding and (weakly) isolated horizons introduced in Section 2.5. 

 

5.1 lie derivative of Y 

 
As mentioned above, this section is divided in two parts. First, we consider a 

general vector field y and compute the Lie bracket [y, ζ] on a (non-necessarily null) 

hypersurface. As a prior step, this requires that we know the transverse covariant 

derivative of y at the hypersurface and the pull-back to the hypersurface of the 

deformation tensor of y. We then focus on the case when y is tangent to such 

hypersurface and compute the Lie derivative of Y along y. We emphasize that all 

results here are valid for hypersurfaces of arbitrary causal character. 

Consider completely general hypersurface data {N , γ, ℓ, ℓ(2), Y} embedded on 

a semi-Riemannian manifold (M, g) with embedding ϕ and rigging ζ. Define 

ζ = g(ζ, ·)|ϕ(N ) and assume the notation introduced in Setup 2.2.7. In these cir- 

cumstances, the vector fields ν and θa are given by (2.25)-(2.26) in terms of the 

η 
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y 

y 
ϕ(N ) 

2 
∇a 

⋆ ⋆ 

◦ 

ζ 

∇a a  a 

 

basis {ζ, ea}. As elsewhere in this thesis, we make no distinction between scalar 

functions on ϕ(N ) and their pullbacks to N . 

Given a vector field y in a neighbourhood of ϕ(N ), one can define the so-called 

deformation tensor Ky of (M, g) by 

Ky =
d e f  

£ g. (5.1) 

 

The next proposition finds identities that relate Ky along ϕ(N ) with the hypersur- 

face data and the transversal covariant derivative of y on ϕ(N ). 

 

Proposition 5.1.1. Consider hypersurface data {N , γ, ℓ, ℓ(2), Y} embedded in a semi- 

Riemannian manifold (M, g) with embedding ϕ and rigging ζ and assume the nota- 

tion in Setup 2.2.7. Let y be any vector field in a neighbourhood of ϕ(N ) and define 

β ∈ F(N ), y ∈ Γ(TN ) by 

= βζ + ϕ⋆(y). (5.2) 

Then, the deformation tensor Ky of y satisfies the following identities on ϕ(N ): 
 

ϕ⋆(Ky)ab = 2βYab + ℓa∇b β + ℓ 
◦ 

b∇a β + £y γab , (5.3) 

∇ y = 
1 

Ky(ζ, ζ)ν + 
(

Ky(ζ, ea ) − ℓ(2) 
◦ 

β 

β ◦ 

2 
∇a ℓ

(2) − ℓ 
◦ 

b∇a yb + (Yab + ℓ(2)Uab
 
)yb

)
θa. (5.4) 

Proof. First we observe that 
 

⟨∇ea ζ, y⟩g =
N 

β⟨∇ ea ζ, ζ⟩g + ⟨∇ ea ζ, y⟩g 
 

  

=
N 1 

β 
◦ 

ℓ(2) + Y(eˆ , y) + F(eˆ , y) (5.5) 
2 

where we used (2.41)-(2.42). Identity (5.3) is based of the fact that for any embed- 

ding ϕ : N '−--- M, vector field X ∈ Γ(TN ) and covariant tensor field T on M, 

the Lie derivative satisfies (2.86). Therefore 

ϕ⋆(Ky) = ϕ⋆(£yg) = ϕ⋆ 
(
£βζ g + £ϕ (y)g

) 
= ϕ⋆ 

(
β£ζ g + dβ ⊗ ζ + ζ ⊗ dβ + £ϕ (y)g

)
 

= 2βY + ℓ ⊗ dβ + dβ ⊗ ℓ + £yγ, (5.6) 

 
where in the last equality we applied identity (2.86) and (2.22)-(2.39), and in the 

previous identity we used the simple property 

£ f XS = f £XS + d f ⊗ iXS + iXS ⊗ d f , iXS =
d e f  

S(X, ·), 

− 
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c 

a 

1 
a 

1 

αβ 

∇a b 2 
∇a ab 

∇a 
2 

∇a b∇a 

y ∇a 
2 

∇a 

= βaζ + 
2 

y(ℓ )ν + y ∇bℓ Uab θ 

µ 

 

valid for any symmetric 2-covariant tensor S. To show (5.4) we recall that gµν = 

eµθcν + ζµνν on ϕ(N ) (see (2.27)) and compute ∇ζ 

ities take place at ϕ(N )) 

y on ϕ(N ) as follows (all equal- 

 

∇ζy = gαβζ ∇µyα 

= 
(

eαθaβ + ζανβ
) 

ζµ∇µyα 

= θaβeαζµ∇µyα + 
2 

ζαζµ
 

∇µyα + ∇αyµ

 
νβ

 

= θaβ
  

Ky(ζ, ea) − ⟨ζ, ∇eay⟩g
  

+ 
2 

Ky(ζ, ζ)νβ, (5.7) 

where in the last equality we used Ky = ∇αyβ + ∇βyα twice. We elaborate the 

second term using (5.5) and the fact that ⟨ζ, y⟩g =
N

 

yields 

βℓ(2) + ℓ(y) (cf. (5.2)), which 

 

⟨ζ, ∇eay⟩g = ∇ea ⟨ζ, y⟩ − ⟨∇ea ζ, y⟩ 

= 
◦  (

βℓ(2) + ℓ yb
) 

− 
1 

β 
◦

 ℓ(2) − (Y + F  ) yb 

= ℓ(2) 
◦

 β + 
1 

β 
◦

 ℓ(2) + ℓ 
◦ 

yb − 
(

Y
 

+ ℓ(2)U 
) 

yb, 

 
where in the last step we inserted (2.19). Substituting into (5.7) yields (5.4). 

 

Proposition 5.1.1 allows us to find a general identity for the commutator [y, ζ]. 

 
Lemma 5.1.2. In the setup of Proposition 5.1.1, let ζ be any extension of the rigging off 

ϕ(N ). Define aζ =
def  

∇ζ

 
ζ
 

| 
 

ϕ(N ) . Then, 

[y, ζ 
ϕ(N ) 

βa + 
1 (

y(ℓ(2)) − Ky(ζ, ζ)
) 

ν 
] = ζ 

2
 

+ 

(

(£ ℓ) 

 

 

+ ℓ(2) 
◦

 

 

β + 
1 

β 
◦

 

 

 

ℓ(2) − Ky(ζ, e )

1 

θa. (5.8) 

Proof. We compute ∇yζ by means of the decomposition (5.2). One obtains 
 

∇ ζ 
ϕ(N ) 

β∇
 ζ + ∇ 

ζ 
ϕ(N ) 

βa
 + yb∇e ζ 

ϕ(N ) 
βa + 

1 
y(ℓ(2))ν + yb (Y + F  ) θa 

y = 

ϕ(N ) 

ζ ϕ⋆ (y) 

1  (2) 

= ζ 

b 

( ◦ 

a

 

b = ζ 
2

 

(2) 

1 
a 

 
 

ba ba 

 
where in the second equality we inserted (2.43) and in the final step we used (2.19). 

Combining this with (5.4) yields 

 

[y, ζ] = ∇yζ − ∇ζy 

ab 

ab ab 

a a 

+ Yba + ℓ , (5.9) 

β 
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2 

2 

2 

2 

∇b a b∇a ∇a 
2 

∇a 

y 2 2 y a 

y 2 2 y a 

2 2 

a 

= βaζ + 
(
y(ℓ(2)) − Ky(ζ, ζ)

) 
ν 

1 

+ 

(

yb 
◦

 

 

ℓ + ℓ 

 

◦ 
yb + ℓ(2) 

◦ 

 

β + 
1 

β 
◦

 

 

ℓ(2) − Ky(ζ, e )

1 

θa, 

 
which can be written as (5.8) after using (3.15). 

 

A case of particular interest occurs when the vector field y is tangent to ϕ(N ), 

i.e. when β = 0 and y = ϕ⋆y. In these circumstances, one can find an explicit 

expression for £yY in terms of the deformation tensor of y. 

 
Proposition 5.1.3. In the setup of Proposition 5.1.1, let ζ be any extension of the rigging 

off ϕ(N ). Assume that y is tangent to ϕ(N ), i.e. such that β = 0 and y = ϕ⋆(y) for some 

y ∈ Γ(TN ). Define the scalar Ay ∈ F(M) and the vector Xy ∈ Γ(TN ) by 
 

 

A  =
d e f  

1 
Ky(ζ, n(2)ζ − 2ν) + 

1 
n(2)y(ℓ(2)) + na(£ ℓ) , (5.10) 

 

X  =
d e f  

( 
1 

Ky (ζ, naζ − 2θa) + 
1 

nay(ℓ(2)) + Pab(£ ℓ) 

1 

e  ̂. (5.11) 

 

Then the derivative £yY is given by 

1 1 
⋆ y  

£yY = AyY + ℓ ⊗s dAy + 
2 

£Xy γ + 
2 

ϕ £ζ K . (5.12) 

Proof. The identity is based on the commutation property [£X, £W] = £[X,W]. Ap- 

plying this to the ambient metric g and to the vectors y and ζ, one obtains 

 

£y£ζ g = £[y,ζ]g + £ζ Ky. (5.13) 

Note that this expression requires that the rigging is extended off ϕ(N ), but the 

final result is independent of the extension, as one can easily check from (5.12). By 

Lemma 5.1.2 with β = 0, the commutator [y, ζ] is (all equalities are on ϕ(N )) 

[y, ζ] = 
1 (

y(ℓ(2)) − Ky(ζ, ζ)
) 

ν +
  

(£yℓ) − Ky(ζ, ea)
 
θa 

=  

( 
1 

n(2) 
(
y(ℓ(2)) − Ky(ζ, ζ)

) 
+ na(£yℓ)a − naKy(ζ, ea)

1 

ζ 

+ 

( 
1 

na 
(
y(ℓ(2)) − Ky(ζ, ζ)

) 
+ Pab(£yℓ)b − PabKy(ζ, eb)

1 

ea, 

 
where in the second step we inserted (2.25)-(2.26). Using again (2.25)-(2.26) in the 

entries of Ky yields 

[y, ζ]  = 

( 
1 

Ky 
(
ζ, n(2)ζ − 2ν

) 
+ 

1 
n(2)y(ℓ(2)) + na(£yℓ)a

1 

ζ 

a 

b 
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1 

2 2 

def 

+ 

( 
1 

Ky (ζ, naζ − 2θa) + 
1 

nay(ℓ(2)) + Pab(£yℓ)b

1 

ea 

= Ayζ + ϕ⋆(Xy), (5.14) 

We now take the pullback of (5.13) on N . For the left-hand side we use identity 

(2.86) and the definition of Y. For the first term in the right-hand side we apply 

identity (5.3) with y replaced by the commutator [y, ζ], so that β and y get replaced 

by Ay and Xy respectively. Identity (5.12) follows at once. 
 

 
5.2 vector field along the degenerate direction 

 

For the rest of the chapter we consider null hypersurface data {N , γ, ℓ, ℓ(2), Y} 

embedded on a semi-Riemannian manifold (M, g) with embedding ϕ and rigging 

ζ and we let y not only be tangent to ϕ(N ) but also null therein. Following our 

previous notation, we use η (instead of y) to denote such null, tangent to ϕ(N ) 

vector field and η for its counterpart on N , i.e. η = ϕ⋆η. In these circumstances, η 

is not only gauge-invariant1 (because η is a fixed spacetime vector field) but also 

belongs to the radical of γ, which in particular means that all results from Section 

3.3 apply. As we did there, we let α ∈ F(N ) be defined by η =
d e f  

αn. 

In the context above, it is helpful to introduce the functions ק ,ש, the covector field 

i and the symmetric 2-covariant tensor field ℸ defined by2
 

= ש
d e f  

ϕ⋆(Kη (ζ, ν)), ק =
d e f  

ϕ⋆(Kη (ζ, ζ)), i =
d e f  

ϕ⋆(Kη (ζ, ·)), (5.15) 

ℸ =
d e f  

2 
ϕ⋆ £ζ Kη

 
. (5.16) 

Although these objects depend on η, for simplicity we do not reflect this depend- 

ence in the notation. 

Definitions (5.15) only involve transverse components of the deformation tensor 

Kη . This is because there is no need to introduce symbols for the tangential com- 

ponents, as they are given by (recall (2.86)) 

ϕ⋆Kη = £ηγ. (5.17) 

 
Observe that (5.17) is consistent with (5.3), since here η is tangent to ϕ(N ). The 

pullback ϕ⋆Kη can actually be related to the tensor U by (cf. (2.12)) 

 
1The gauge invariance of η is true even if η was not along the degeneration direction. 
2The letters ש (/Jin/), ק (/kuf/, /kof/), i (/fe sofit/, /fej sofit/) and ℸ (/’dalεt/, /’dalεd/) are 

respectively the twenty-first, the nineteenth, the seventeenth and the fourth of the Hebrew alphabet. 



 

 

2 
∇ 
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where we have used that 

 
 

 

because γ(n, ·) = 0. 

 

 

ϕ⋆Kη = £αnγ = α£nγ = 2αU, (5.18) 

 

 

£ϱnγ = 2ϱU ∀ϱ ∈ F(N ) (5.19) 

From definitions (5.15), it is also immediate to check that i(n) = ש (recall (2.25)). 

The function ש, in addition, turns out to be gauge-invariant. 

Lemma 5.2.1. For null hypersurface data {N , γ, ℓ, ℓ(2), Y}, the function ש is gauge- 

invariant. 

 

Proof. As usual, we use a prime to denote gauge-transformed quantities. Using 

(2.37), (5.18) and the fact that ν′ = ϕ⋆(n′) = z−1ϕ⋆(n) = z−1ν, we get 

 

= ′ש
d e f  

ϕ⋆
 

Kη (ζ′, ν′)
 

= ϕ⋆ (Kη (ζ + ϕ⋆V, ν)) 

 

as claimed. 

 ,ש = 2αU(V, n) + ש = (V, n)( ϕ⋆Kη) + ש =

 

 

In the following lemma we derive completely general identities that relate the vari- 

ation of the tensor Y along the degenerate direction defined by η and the deforma- 

tion tensor of η. This gives a kind of evolution equation of Y along the generators, 

sourced by the ambient properties of η (and the proportionality function α). These 

identities have many potential applications. For instance, they will play a key role 

later in Chapter 6 when we derive a generalized form of the master equations 

(2.144), (2.153)) and (2.128). 

 

Lemma 5.2.2. Consider null hypersurface data {N , γ, ℓ, ℓ(2), Y} embedded on a semi- 

Riemannian manifold (M, g) with embedding ϕ and rigging ζ. Assume further that N 

admits a gauge-invariant vector field η ∈ Radγ and let κ ∈ F(N ) be its surface gravity 

according to Lemma 3.3.1 and α ∈ F(N ) be the function given by η = αn. Extend ϕ⋆η 

to a vector field η on a neighbourhood O of ϕ(N ) and define its deformation tensor Kη, ש, 

 ,i and ℸ as in (5.1), (5.15)-(5.16) respectively. Then ,ק
 

£ Y = 
◦ ◦ 

α + 2α 
◦

 s + 2s ( 
◦ 

α) + (n(α) − ש)Y 
η  bd ∇b∇d ∇(b  d) (b ∇d) bd 

◦ 

(bid) + 
1 (

η(ℓ(2)) − ק
) 

Ubd + ℸbd, (5.20) − 
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 ק

2 

∇d) 

2 2 η 2 2 2 

η 

2 

◦ 

◦ 

 

α£ r  = nb

( 
◦ ◦ 

α + 2α 
◦

 s + 2s  ( 
◦

 
 

α) − שY − ◦ i + ℸ 

1 

+ κ  ◦ α. 
n d ∇b∇d ∇(b  d) (b ∇d) bd ∇(b  d) bd n∇d 

(5.21) 
 

Proof. The proof relies on two preliminary expressions that will be established first. 
def 

Define the vectors V = P(£ ℓ, ·) and W =
def 

− P(i, ·) − 2 n in N . We want to prove 

that the following two expressions hold: 
 

1 
(£ γ) 

= 
◦ ◦ α + 2α 

◦ 
s + 2s 

◦
 α − ℓ 

◦
 n(α), (5.22) 

2 V bd ∇b∇d ∇(b  d) (b∇d) (b∇d) 

1 
(£W γ)bd 

◦ 

∇(b id) + ℓ(b∇d) ש − 
ק

Ubd . (5.23) 

To establish (5.22) we particularize (3.17) for w = £ηℓ and use (3.45) to compute 
 

◦ (£ ℓ) 
= 

◦ ◦ α + 2α 
◦ 

s + 2s 
◦

 α and (£ ℓ)(n) = n(α). (5.24) 
∇(b η d) ∇b∇d ∇(b  d) (b∇d) η 

 
For (5.23), we use (5.19) and find 

 

(£W γ)cd = −
 
£P(i,·)γ

 
cd − קUcd. (5.25) 

Expression (5.23) follows by particularizing (3.17) to w = i and using i(n) = ש. 

Once we have (5.23) and (5.24), the identity (5.20) and its corollary (5.21) will be a 

consequence of Proposition 5.1.3. Therefore we need to compute the function Aη 

and the vector Xη. First, the second expression in (5.24) entails 
 

Aη = n(α) − ש =⇒ (ℓ ⊗s dAη )bd = ℓ(b∇d) n(α) − ◦ (5.26) .ש 

Secondly, substituting (2.26) into Kη (ζ, naζ − 2θa) leads to 

1 
Kη (ζ, naζ − 2θa) eˆa = 

(

−Pabib − 
 ק

na

1 

eˆa = W. (5.27) 

2 2 

Consequently, 

Xη = W + 
1 

η(ℓ(2))n + V =⇒ 
1 

£X γ = 
1 

£W γ + 
1 

η(ℓ(2))U + 
1 

£V γ, (5.28) 

 
where the implication is a consequence of (5.19). Inserting (5.26) and (5.28) into 

(5.12) gives (5.20) after using (5.22)-(5.23). Finally, (5.21) follows by contracting the 

decomposition (recall the definitions (2.44)) 

£ηY = dα ⊗ r + r ⊗ dα + α£nY (5.29) 

= − 
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η η 

- 

- 

- 

⋆   

    

2 βµ β 

 

with n. This yields nb£η 
 

Ybd = −κ 
◦  

n∇d α + n(α)rd + α£nrd and hence (5.21) after 

inserting (5.20) and using Uabna = 0. 

 

5.3 the tensor Σ 
d
=

e f 
£ ∇ 

 
In the context of embedded null hypersurfaces admitting a null and tangent vector 

field η with surface gravity κ, the tensor Ση =
def 

£
 

∇ (defined according to (3.18) for 

the Levi-Civita connection of the ambient space) plays a fundamental role. As we 

shall see, at the ambient level Ση is closely related to first derivatives of the de- 

formation tensor Kη of η, which automatically endows it with a great geometrical 

importance. Its influence at the abstract level is also remarkable for the following 

reasons. First, one can compute explicitly the pull-back of Ση (contracted with a 

general one-form) to the abstract hypersurface, and this reveals a new abstract 

tensor field that takes a fundamental part in (a) determining the constancy κ on 

the whole hypersurface and (b) determining whether κ is constant along the null 

generators (see Theorem 6.1.1 in Chapter 6). Secondly, the analysis of Ση rises, in 

addition, another tensor field with significantly simple gauge behaviour. Finally, 

the tensor Ση is also of great use in the context of Killing horizons of order one, 

and in fact it is precisely its study that will allow us to introduce an abstract notion 

of these sort of horizons (see Section 5.4). Consequently, we devote this section to 

study the properties of Ση. 

Our first aim is to derive an explicit expression for the pull-back ϕ⋆ g(W, Ση) , 

where W is any vector field along ϕ(N ) (not necessarily tangential). This will 

allow us to define a new tensor on N which encodes information about the de- 

formation tensor Kη and its first transversal derivative on ϕ(N ). Then, we shall 

obtain the gauge transformation of the pull-back ϕ ζ(Ση) , first for general null 

hypersurface data and then for the case when U = 0. This process will reveal a 

new G1-invariant tensor field on N and a full gauge-invariant covector on N in the 

case with U = 0. Finally, we compute the explicit form of the vector Ση(ϕ⋆Y, ϕ⋆Z) 

for any pair of vector fields Y, Z ∈ Γ(TN ). 

In the present context, an explicit form of Ση in terms of the deformation tensor of 

η can be obtained by particularizing Corollary 3.1.7 for D = ∇ (recall that ∇ is the 

Levi-Civita derivative of g), Z = η and Sαβ = gαβ. This gives 

 

(Ση)λ = 
1 

gµλ 
(

∇αK
η

 

 

+ ∇ K 
 

− ∇µK 
) 

. (5.30) η η 
αβ µα αβ 

η 
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K 

∇(a ∇a 

∇a 

ac bc 

∇c ∇c 

λ a b 2 a b c βµ β 

λ a b 2 a b βµ β 

a b c αβ 

a b c αβ c a b αβ αβ b c a αβ a c b 

∇b 

∇c U ∇ U 

 

The following lemma provides the explicit form of the pull-back ϕ⋆ g(W, Ση) in 

terms of the corresponding hypersurface data and the various components of Kη , 

£ζ Kη introduced in (5.15)-(5.16). 

 

Lemma 5.3.1. Consider null hypersurface data {N , γ, ℓ, ℓ(2), Y} embedded on a semi- 

Riemannian manifold (M, g) with embedding ϕ and rigging ζ. Let ∇ be the Levi-Civita 

connection of g and assume that we have selected a vector field η on a neighbourhood 

O ⊂ M of ϕ(N ) with the properties of being null and tangent to ϕ(N ) everywhere. 

Define α ∈ F(N ) by η| ϕ(N ) = αϕ⋆n. Let η
 

def =
def 

£
 g be the deformation tensor of η, 

 be given by (5.15)-(5.16) and Ση = £η∇. Take any vector field W defined {i, ℸ ,ק ,ש}

along ϕ(N ) (not-necessarily tangent) and decompose it as 

W = βζ + ϕ⋆W, (5.31) 

 

where β ∈ Γ(TN ) and W ∈ Γ(TN ). Then, 

ϕ⋆ 
W (Ση )

 
ab = β 

( 
◦

 

 

ib) + שYab 

 

 Uabק +

 

− ℸab 

1 

+ Wc

(
( 

◦
 

 

α)Ubc 

 

◦ α)Uac 

+ Uab (ic ◦ α) + α( 
◦

 Ubc 

◦ 

b ca

 ◦  

∇c ab )
)

. (5.32) 

Proof. We shall use the notation introduced in Setup 2.2.7. From the decomposition 

(5.31), we have 

ϕ⋆(W (Ση ))ab = βζλ(Ση )
λ
αβeαe

β 
+ Wc(ec)λ(Ση )

λ
αβeαe

β
. (5.33) 

a b a b 

Therefore, to prove the lemma it suffices to compute the contractions (recall (5.30)) 
 

(ec) (Ση)λ eαe
β 

= 
1 

eαe
β
e
µ 

(
∇αK

η
 + ∇ K 

 
− ∇µK 

) 
, (5.34) 

ζ (Ση)λ eαe
β 

= 
1 

eαe
β
ζµ 

(
∇αK

η
 + ∇ K − ∇µK 

) 
. (5.35) 

 

The first only requires the calculation of eαeβeµ∇µKη , which is obtained as follows: 
 

eαe
β
e

µ
∇µK

η
 = eµ∇µ(eαeβKη ) − Kη e

β
e
µ
∇µeα − K

η  
eαe

µ
∇µe

β
 

= eˆc(2αUab) − 2αUdb Γ
◦  d

 + Uacib − 2αUdaΓ
◦ d

 + Ubcia 

= 2( 
◦

 α)Uab + 2α 
◦

 Uab + Uacib + Ubc ia, 

+ ( 

− + − 

η η 

η η 

αβ µα αβ 

αβ µα αβ 

η 
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− ∇a 

αβ 

η η 
µα 

η 

η 

∇(a 

∇( 

    

λ a b 2 a βµ b βµ a b 

b β µα a µα b β a a b ζ αβ 

λ a b 2 b βµ ba d ab ab 

b µα ab d ab ab a b ζ αβ 

∇c U ∇ U 

∇( 

= ∇ 

 
where  we  have  used  (2.48),  definitions  (5.15),  (5.18)  and  the  fact  that 

Kη (ϕ⋆n, ϕ⋆X) = U(n, X) = 0 for any X ∈ Γ(TN ). Replacing this in (5.34) and 

cancelling terms gives 
 

(e ) (Σ )λ eαeβ = ( 
◦  

α)U + ( 
◦ 

α)U 
c λ η αβ a b ∇a bc ∇b ac 

+ Uab(ic 
◦  

α) + α( 
◦

 Ubc 

◦ 

b ca

 ◦  

∇c ab ). (5.36) 
 

For (5.35), we first use (2.48) and ζµ∇µKη = £ζ Kαβ − Kµβ ∇αζµ − Kη ∇βζµ, which 

allows us to rewrite 

 

ζ (Ση)λ eαe
β 

= 
1 (

eα∇α(K
η
 

 

eβζµ) − Kη 

 

ζµeα∇αeβ 

+ eβ∇ (Kη eαζµ) − Kη ζµeβ∇ eα − eαeβ£ K 
)

. 

 
Inserting now the decomposition (2.48) and using (5.15)-(5.16) gives 

 

 

ζ (Ση)λ eαeβ = 
1 (

eˆa(i ) − Kη ζµ(Γ
◦ d e

β 
− Y 

 
νβ − U 

 

ζβ) 

+ eˆ (ia) − Kη ζµ (Γ
◦  d eα − Y  να − U  ζα) − eαeβ£ K 

)
 

◦ aib) + שYab + קUab − ℸab. (5.37) 

 
Equation (5.32) follows from substituting (5.36) and (5.37) into (5.33). 

 

We can particularize (5.32) to the case when the vector W is chosen to be the rigging. 

In such case β = 1 and W = 0, so (5.32) simplifies to (recall that ζ := g(ζ, ·)) 

ϕ⋆ 
ζ(Ση )

 
ab = 

◦
 

 

ib) 

 

 Yabש +

 

 Uabק +

 

− ℸab 
 
. (5.38) 

We therefore find that the combination 
◦ 

aib) + שYab + קUab − ℸab appears natur- 

ally. One can expect this quantity to be of relevance, so we give it a name for it, 

namely3
 

 

 
 

 
so that 

η  def 

ab 

◦ 

(aib) + שYab + קUab − ℸab, (5.39) 

 η = ϕ⋆ ζ(Ση) . (5.40)ה

We now provide the gauge transformations of הη 
and its contraction with n, first 

for arbitrary U and then for U = 0. In the latter case, we prove that הη is G1- 

invariant and hence that הη (n, ·) is fully gauge-invariant. 

3The letter ה (/he/, /hej/) is the fifth of the Hebrew alphabet. 

+ − 

= 

 ה

αβ 

αβ 
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− ∇a − 

ab ∇b 

ab 

(z,V) ab ab ∇a bc ∇b 

ab ab 

(z,V) ab ab ∇a bc ca∇b ab∇c 

∇c U ∇ U 

 

Lemma 5.3.2. Under the action of a gauge group element G(z,V), the tensor fields הη 
and 

 η (n, ·) transform asה

G 
 
  ηה

= zהη 
+ zVc

(
( 

◦
 α)U + ( 

◦
 

 

α)U 

+ Uab (ic ◦ α) + α( 
◦

 

 

Ubc 

◦ 

b ca

 ◦  

∇c ab )
)

, (5.41) 

G(z,V)

 
 ηה

na
  

 ηה =
na + Vc

(
n(α)Ubc + α

 
(£nU)bc − 2PadUacUbd

 )
. (5.42) 

In particular, if U = 0 then 

G(z,V)

 
ηה

 
= zהη , G(z,V)

 
η (n, ·)ה

  
 η (n, ·). (5.43)ה =

 

Proof. The proof relies on (2.37), which implies G 
 

(z,V) (ζ) =
d e f  

z(ζ + g(ϕ∗V, ·)). Since 

the tensor field Ση is gauge-invariant (because it depends only on η and the Levi- 

Civita connection of g), it holds 

G(z,V)

(
ϕ⋆ 

ζ(Ση)
 ) 

= ϕ⋆ 
(

G(z,V)(ζ)(Ση)
) 

= zϕ⋆
(
ζ(Ση) + g(ϕ∗V, Ση)

)
. 

Particularizing (5.32) for β = z and W = zV and using (5.39), equation (5.41) 

follows at once. In order to obtain (5.42), it suffices to contract (5.41) with 
G (na) = z−1na  (cf. (2.34)). Using U(n, ·) = 0, the fact that na 

◦  
U = 

(z,V) 
◦ ◦ 

∇a bc 

(£nU)bc − (∇bn
a)Uac − (∇cn

a)Uab and (3.44), one gets 
 

G 
 
 ηה

na
 

 ηה =
na + Vc

(
n(α)U + α(na 

◦ 
U − U 

 

◦ na + U 
◦ 

na)
) 

 ηה =
na + Vc

(
n(α)Ubc + α

 
(£nU)bc − 2( 

◦  
na)Uac

 )
 

 ηה =
na + Vc

(
n(α)Ubc + α

 
(£nU)bc − 2PadUacUbd

 )
, 

which is (5.42). Expressions (5.43) are immediate from (5.41)-(5.42). 

 
The gauge transformation (5.42) introduces in a natural way a symmetric 2- 

covariant tensor. It is worth exploring its gauge behaviour. 

 

Lemma 5.3.3. The tensor field Ψ, defined by 

Ψbc =
d e f  

n(α)Ubc + α
 
(£nU)bc − 2PadUacUbd

 
, (5.44) 

+ 

ac 

bc 
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( 
z2 

( 
z2 z3 

( z z2 z2 z3 z2 

2 2 

◦ 

 ∇ α + αℓ = ה

transforms under the action of a gauge group element G(z,V) according to 

1 
G(z,V) (Ψ) = z 

Ψ. (5.45) 

Proof. The  gauge  transformations  (2.33)-(2.34)  and  (3.60)  entail  (recall  that 

U(n, ·) = 0) 

 

G z,V 

(
PadUacUbd

) 
= 

 1 
PadUacUbd and G z,V (£nU) = 

 1 
£nU − 

n(z) 
U, 

 

while from G(z,V)(α) = zα (see (3.103)) it follows 

 

G(z,V)(n(α)) = n(α) + 

 

αn(z)
.
 

z 

Thus, 

 
G z,V 

 

(Ψbc) = 
1 

n(α)Ubc + 
αn(z) 

Ubc + zα 

( 
 1 

(£nU)bc − 
n(z) 

Ubc − 
 2 

PadUacUbd

1 

, 

 
which yields (5.45) after simple cancellations. 

The following lemma finds the remarkable result that הη 
can be written solely in 

terms of ק and hypersurface data quantities. In particular, all dependence on the 

transverse derivatives of the deformation tensor drop off. This result is one of the 

several interesting applications of the identities in Lemma 5.2.2. 

 

Lemma 5.3.4. Assume the definitions and hypotheses in Lemma 5.3.1 and let η =
d e f  

αn. 

The tensor הη 
defined in (5.39) admits the alternative expression 

 

η ◦ ◦ 

ab ∇a∇b f Σ
◦ f 

ab − α(£nY)ab + 2(s (a − r(a) 
◦ 

b)α + n(α)Yab 

− 
α

n(ℓ(2))Uab − αℓ(2)£nUab + 
1 

 Uab. (5.46)ק

 

Proof. We first particularize (3.34) for n(2) = 0. This gives 
 

◦ 

∇(a sb) = ℓ f Σ
◦ f 

ab − n(ℓ(2))Uab − ℓ(2)£n
 Uab . (5.47) 

 
Inserting (5.47) and the identity (5.20) into the definition (5.39), the alternative 

expression (5.46) follows easily after using (£η Y)ab = α(£n Y) ab + 2r (a∇b)α. 

2 

) ) 

) 
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2 

∇ 

∇c 

∇a∇b n ab ab (a∇b) + 
2 
( ab 

 

To conclude the section, we obtain a completely general expression for Ση(ϕ⋆

Y, ϕ⋆Z), Y, Z ∈ Γ(TN ) under the only condition that the ambient vector field η 

is null and tangent to the hypersurface. 

 
Lemma 5.3.5. Under the same hypotheses as in Lemma 5.3.1, consider any two vector 

fields Y, Z ∈ Γ(TN ). Then Ση(ϕ⋆Y, ϕ⋆Z) is given by 

Ση(ϕ⋆Y, ϕ⋆Z) = 
(
U(Y, Z) − α(£nU)(Y, Z)(n(α) − ש)

)
ζ 

+ ϕ⋆

  

α Σ
◦  

(Y, Z) + 
(

He
◦
ss(α) − α£nY + n(α)Y + 2(s − r) ⊗s dα

)
(Y, Z) n 

+ 
(
P(i − dα − 2αs, ·) + 

1 
αn(ℓ(2)) − ק

 
n
)
U(Y, Z) 

+ P(U(Z, ·), ·)Y(α) + P(U(Y, ·), ·)Z(α)

\

. (5.48) 

 

where He
◦
ss is the Hessian of 

◦ 
. In particular, if U = 0 then 

Ση(ϕ⋆Y, ϕ⋆Z) = ϕ⋆

(

αΣ
◦  
(Y, Z) + 

(
He

◦
ss(α) − α£nY 

+ n(α)Y + 2(s − r) ⊗s dα
)
(Y, Z) n

1 

(5.49) 

 

or, equivalently,  

 

Ση(ϕ⋆Y, ϕ⋆Z) = הη 
(Y, Z)ν (5.50) 

 

Remark 5.3.6. The expressions in Lemma 5.3.5 look rather complicated, mainly for the 

notation that we have used. In index notation and assuming Setup 2.2.7, (5.48) can be 

written in a somewhat simpler form 

Ση(ea, eb) = 
(
Uab − α£nUab(n(α) − ש)

)
ζ + αϕ⋆

(
Σ

◦  
(eˆa, eˆb)

)
 

+ 

( 
◦ ◦ 

α − α£ Y + n(α)Y + 2(s − r) 
◦ 

α 
1 

  αn(ℓ(2)))U − ק

1 

ν 

+ Pcd 

(

(ic − 
◦

 α − 2αsc)Uab + 2U 
◦ 

c(a∇b) 
α

1 

ϕ⋆ eˆd. (5.51) 

Proof. We will identify vector fields on N with their push-forwards through ϕ⋆ 

and let the context determine the meaning. The proof relies on Lemma 3.1.2 and 
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ab 

∇a 

∇a − 

∇a 

f 

∇a − 

∇a 

n ∇a∇b (a ∇b) 

η η 

∇b 

∇b 

∇c U ∇ U 
◦ ) 

∇b ∇c 

∇b ∇c 

equations (5.32) and (5.46) Let us define the function v0 ∈ F(N ) and the covector 

µ on N as 

 

v0 =
d e f  

ϕ⋆ 
g(ζ, Σ (Y, Z))

 
, µ(X) =

d e f  
ϕ⋆ 

g(X, Σ (Y, Z))
 

(5.52) 

 

for any X, Y, Z ∈ Γ(TN ). Obviously v0 and µ depend on Y, Z but for simplicity 

we do not reflect this dependence. Particularizing (5.32) first for W = ζ and then 

for W = ec leads to 

v0 = הη 
YaZb, (5.53) 

µc = Ya Zb
(
( 

◦
 

= YaZb

(
( 

◦
 

α)Ubc 

α)Ubc 

◦ α)Uac 

◦ α)Uac 

+ Uab 

+ Uab 

(ic 

(ic 

◦ α) + α( 
◦

 

◦ 

∇c 

 

Ubc 

◦ 

b ca

 
∇c ab) 

+ α(γc f Σ
◦ f 

ab − ℓc£nUab − 2scUab)
)

. (5.54) 

where in the last equality we inserted (3.36). Since Ση(Y, Z) is a vector field along 

ϕ(N ), by Lemma 3.1.2 and (5.52) it must hold 

Ση(Y, Z) = µ(n)ζ + ϕ⋆ (P(µ, ·) + v0n) . (5.55) 

 

Thus, to complete the proof it suffices to compute the scalar µ(n) and the vector 

P(µ, ·) + v0n. To obtain µ(n) we contract (5.54) with nc and use ℓ(n) = 1, γ(n, ·) = 

0, U(n, ·) = 0, s(n) = 0 and i(n) = ש to get 

µ(n) = (ש − n(α))U(Y, Z) − α(£nU)(Y, Z). (5.56) 

For the vector P(µ, ·) + v0n, we first contract (5.54) with Pcd and use Pcdℓc = 

−ℓ(2)nd and Pcdγc f = δd − ndℓf , so that 

 

Pcdµc
 = Ya Zb

(
Pcd ( 

◦
 

 

α)Ubc 

 

◦ α)Uac 

 

+ Uab 

 

(ic 
◦ 

α)
  

+ α Σ
◦  d

ab − αndℓf Σ
◦ f 

ab + αℓ(2)nd£nUab − 2αPcdscUab

)
. (5.57) 

 

Combining (5.46), (5.53) and (5.57) it is now straightforward to conclude that 
 

 

Pcdµc
 

 

 

+ v0 nd = Ya Zb

  

Pcd 

(

( 
◦

 

 

 

α)Ubc 

 

 

◦ α)Uac 

 

 

+ Uab 

 

 

(ic 
◦ 

α − 2αsc)

1
 

+ α 
(

Σ
◦  d

 − nd(£ Y) 
) 

+ nd
( ◦  

◦ α + 2(s − r  ) 
◦

 

 

α + n(α)Y 

+ ( 

+ ( 

− + − 

+ ( 

+ ( − 

ab ab (a ab 

α) 
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∇ 

 

 
1 

+ 
2 

 αn(ℓ − ק)

 

(2) 

 

))U ab

)
\

 

 
. (5.58) 

Equation (5.48) is obtained by inserting (5.56) and (5.58) into (5.55). The particular- 

ization (5.49) to the case U = 0 is immediate. To prove that this can be written in the 

equivalent form (5.50), we note that when U = 0 the tensor Σ
◦ 

is proportional to n 

(by (3.31) with n(2) = 0, U = 0), so it satisfies the relation Σ
◦ 

(Y, Z) = ℓ (Σ
◦  

(Y, Z))n. 

From this and identity (5.46) particularized to U = 0, the equivalence between 

(5.49) and (5.50) follows. 

 
Remark 5.3.7. An interesting consequence of this lemma is that whenever U = 0, the 

vector field Ση(ϕ⋆Y, ϕ⋆Z), Y, Z ∈ Γ(TN ) can be codified entirely by the function α and 

the abstract objects n, s, 
◦ 

, Σ
◦ 

and Y, as expression (5.49) immediately shows. This means 

in particular that the vector field Ση(ϕ⋆Y, ϕ⋆Z) is completely independent of how η behaves 

off ϕ(N ). 

 
5.4 abstract killing horizons of order zero and one 

 
As mentioned in Section 2.6, Killing horizons have played a fundamental role in 

General Relativity, mainly because its close relation with black holes in equilibrium 

through Hawking’s rigidity theorem (see e.g. [124]). They are characterized, as we 

already know, by a Killing vector field η which becomes null and tangent at the 

hypersurface (a typical situation is when the Killing changes its causal character 

from timelike to spacelike across the hypersurface, but this is by no means the 

only possibility). The deformation tensor Kη of η is identically zero everywhere, 

so in particular it vanishes together with all its derivatives on the hypersurface. 

However, it turns out that some of the most relevant properties of Killing horizons 

can be fully recovered by only requiring that a few derivatives of Kη vanish on the 

horizon. It is in these circumstances that the notions of Killing horizons of order 

zero/one arise naturally. 

By definition, a Killing horizon of order m (embedded on a semi-Riemannian mani- 

fold) corresponds to a null hypersurface together with a vector field η, defined in a 

neighbourhood thereof, that has the properties of (i) being null and tangent to the 

hypersurface and (ii) the transverse derivatives up to order m of the deformation 

tensor Kη vanish on the hypersurface. The purpose of this section is to provide 

abstract definitions of Killing horizons of order zero and one. The idea is to be 

able to describe these sort of null hypersurfaces in a detached way from any space 

where they may be embedded. 
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It is to be expected that the abstract notions of Killing horizons of order zero and 

one rely on hypersurface data {N , γ, ℓ, ℓ(2), Y} satisfying certain extra conditions. 

However, this already raises the question of how much geometric information 

from the embedded picture can be codified only in terms of {γ, ℓ, ℓ(2), Y}. For the 

order zero, ideally one would like the definition to enforce Kη = 0 everywhere 

on the hypersurface. However, as we already know, only the pull-back of Kη can 

be expressed solely in terms of the data, namely by means of U (see (5.17)). The 

remaining components of Kη are given by i, ק (cf. (5.15)) and cannot be encoded 

in the tensor fields {γ, ℓ, ℓ(2), Y}. 

For this reason, we split the definition in two different levels. We start with a 

weaker definition which only restricts the metric hypersurface data and which is 

truly at the abstract level, in the sense that no embedding into an ambient space 

is required. In a second stage we assume the data to be embedded and add extra 

restrictions so as to enforce also that the remaining components of the deformation 

tensor vanish on the hypersurface. 

Obviously, to define abstractly the notion of Killing horizon of order zero we need 

a privileged vector field η on the data {N , γ, ℓ, ℓ(2), Y}. This field can and will 

be restricted to be along the degeneration direction of γ. Since in general Killing 

vectors can have zeroes, we want to allow for the possibility that η vanishes some- 

where on the abstract hypersurface. However, we are definitely not interested in 

the case when η vanishes on open subsets of N , so we need to make sure that 

this situation is excluded. In these circumstances, the following definition arises 

naturally. 

 
Definition 5.4.1. (Abstract Killing horizon of order zero, AKH0) Consider null hyper- 

surface data D =
d e f  

{N , γ, ℓ, ℓ(2), Y} admitting a gauge-invariant vector field η ∈ Radγ. 
def 

Define S = {p ∈ N | η|p = 0}. Then D is an abstract Killing horizon of order zero if 

(i) S is a finite union of smooth connected closed submanifolds of dimension n − 1, 

(ii) £ηγ = 0. 

Condition (i) in Definition 5.4.1 certainly ensures that N \ S is dense in N (hence 

that η does not vanish on open subsets of N ). Moreover, it mimics the possible 

behaviour of the zeros of a Killing vector, so the definition is indeed justified. 

Combining this with the fact that η is proportional to n, it follows that (ii) is 

equivalent to U = 0 everywhere on N , as (cf. (2.12)) 

 

η = αn =⇒ 0 = £ηγ = α£nγ = 2αU ⇐⇒ U = 0. 
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For a better understanding of Definition 5.4.1, it is convenient to consider the em- 

bedded picture, so we embed D on a semi-Riemannian manifold (M, g) with em- 

bedding ϕ and rigging ζ. As we already know, in these circumstances the tensor U 

coincides with the second fundamental form with respect to the null normal vector 

field ϕ⋆n. Thus, condition (ii) means that ϕ(N ) is totally geodesic. In other words, 

embedding an abstract Killing horizon of order zero D yields a totally geodesic 

null hypersurface equipped with an extra vector field η| ϕ(N ) =
d e f  

ϕ⋆η with a restric- 

tion on its set of zeroes. For the rest of the thesis, we call the vector fields η, η|ϕ(N ) 

and the submanifolds S, ϕ(S) symmetry generators and fixed points sets respectively. 

As already discussed, neither the abstract nor the embedded levels of Definition 

5.4.1 restrict the components i and ק of the deformation tensor. In this sense, D 

does not correspond to a full Killing horizon of order zero. To capture the full 

notion we are forced to restrict ourselves to the embedded case. The corresponding 

concept is naturally called Killing horizon of order zero. 

 
Definition 5.4.2. (Killing horizon of order zero, KH0) Consider an abstract Killing horizon 

of order zero D =
d e f  

{N , γ, ℓ, ℓ(2), Y} with symmetry generator η ∈ Radγ and assume that 

D is embedded in a semi-Riemannian manifold (M, g) with embedding ϕ and rigging ζ. 

Then, H0 =
d e f  

ϕ(N ) is a Killing horizon of order zero if there exists at least one extension 

η of ϕ⋆η to a neighbourhood O ⊂ M of ϕ(N ) such that 
 

ϕ⋆(g(£ζ 
1 

η, ζ)) = − 
2 

£η ℓ
(2), ϕ⋆(g(£ζ η, ·)) = −£η ℓ on N . (5.59) 

 

Remark 5.4.3. The Lie derivative £ζ η|ϕ(N ) is given by £ζ η|ϕ(N ) = ∇ζ η − ∇ηζ|ϕ(N ). 

Since there are no transverse derivatives of the rigging (because η|ϕ(N ) is tangent to ϕ(N )), 

there is no need to extend the rigging vector field ζ off ϕ(N ) in Definition 5.4.2. 

Let us prove that Definition 5.4.2 indeed guarantees that Kη = 0 on ϕ(N ). 

 

Proposition 5.4.4. The deformation tensor Kη is everywhere zero on any KH0. 

 

Proof. Firstly, since an AKH0 satisfies that £ηγ = 0 and by (5.17) we know that ϕ⋆

Kη = £ηγ, the tangent-tangent components of Kη are automatically zero. Con- 

cerning Kη (ζ, ζ), we find 

Kη (ζ, ζ) = 2g(∇ζ η, ζ) = 2g(£ζ η + ∇ηζ, ζ) = 2g(£ζ η, ζ) + η(g(ζ, ζ)). (5.60) 

Using now Definition 5.4.2, we obtain ϕ⋆(Kη (ζ, ζ)) = −£ηℓ(2) + η(ℓ(2)) = 0 and 

hence Kη (ζ, ζ) = 0. Now let X be a vector field tangent to ϕ(N ). Combining U = 0 
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η 

= ϕ⋆ g(£ζ η, X)
 

+ 2αs(X) + X(α) 

    

ℓ 

 

and Fab 
◦ 

∇a  b (cf. (2.19)) with (5.9) (here β = 0 and ν is normal to ϕ(N )), one 

obtains  

ϕ⋆(∇  ζ) = F(X, ·) + Y(X, ·), where ζ =
d e f  

g(ζ, ·). (5.61) 

Then, from the fact that Kη (ζ, X) = g(∇ζ η, X) + g(∇Xη, ζ) it follows 

ϕ⋆ (Kη (ζ, X)) = ϕ⋆  g(£ζ η, X) + (∇ηζ)(X) + X(α) − (∇Xζ)(η) 

= ϕ⋆ g(£ζ η, X)
 

+ α(s(X) + r(X)) + X(α) − α(F(X, n) + r(X)) 

 

= ϕ⋆ g(£ζ η, ·)
 
(X) + (£Tℓ)(X) = 0, 

where in the first line we noticed that g(ζ, η)|ϕ(N ) = αg(ζ, ν)|ϕ(N ) = α, in the 

second line we have inserted (5.61) and in the third and fourth lines we used (3.43), 

(3.45), the fact that F is antisymmetric and Definition 5.4.2. 

 
Definitions 5.4.1 and 5.4.2 establish both the abstract and the embedded levels of 

a Killing horizon of order zero. Concerning the characterization of the first order, 

there is one object that is particularly useful, namely the tensor Ση 
=
def 

£
 ∇. Its rel- 

evance comes from the fact that it encodes both extrinsic and intrinsic properties 

of the hypersurface. Specifically, on (5.48) we have proven that for any two vector 

fields X, W ∈ Γ(TN ), Ση(ϕ⋆X, ϕ⋆W) can be entirely constructed (on the hypersur- 

face) from the data tensors {γ, ℓ, ℓ(2), Y} (recall that Σ
◦ 

can be fully built from the 

metric part of the data), the quantities i, ק (note that i(n) = ש), the function α and 

the rigging ζ. Even more, when it comes to defining an abstract Killing horizon 

of first order, one would want that all conditions from the order zero (in partic- 

ular that U = 0) are fulfilled, and this means that (5.48) simplifies to (5.49), so 

Ση(ϕ⋆X, ϕ⋆W) can be written in terms of {γ, ℓ, ℓ(2), Y} and α exclusively. On the 

other hand, by (5.40)-(5.39) we know that the pull-back ϕ⋆(ζ(Ση)) contains inform- 

ation about the zeroth and the first order derivatives (because of the presence of 

the tensor ℸ) of Kη . These two ingredients can be combined to set up a sensible 

definition of abstract Killing horizon of order one. 

There is yet another reason that justifies the importance of the tensor Ση in charac- 

terizing Killing horizons of first order, namely the identity (3.22). A Killing vector 

on a semi-Riemannian manifold (M, g) equipped with the Levi-Civita connection 

∇ satisfies the well-known property 0 = ∇α∇βηµ + Rµ
βναην. This, together with 

(3.22), suggest that the first order can be codified by requiring that some compon- 

ents of Ση vanish on the hypersurface. All the above considerations, combined 

with Lemma 5.3.5, naturally leads us to the following definition for an abstract 

Killing horizon of order one. 

= 

η 
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Definition 5.4.5. (Abstract Killing horizon of order one, AKH1) Consider null hypersur- 

face data D =
d e f  

{N , γ, ℓ, ℓ(2), Y} admitting a gauge-invariant vector field η ∈ Radγ. Let 

α ∈ F(N ) be given by η = αn and r, Σ
◦ 

be defined by (2.44), (3.30) respectively. Then, D 

defines an abstract Killing horizon of order one if it is an abstract Killing horizon of order 

zero and for any two vector fields X, W ∈ Γ(TN ) it holds 

0 = α
( 

Σ
◦ 

(X, W) − (£nY)(X, W)n
) 

+ 
(
X(W(α)) − ( 

◦ 
W)(α) 

+ Y(X, W)n(α) + W(α)(s(X) − r(X)) + X(α)(s(W) − r(W))
)
n. (5.62) 

 

Remark 5.4.6. An abstract Killing horizon of order one embedded on a semi-Riemannian 

manifold (M, g) with embedding ϕ and rigging ζ does not need to satisfy (5.59), so in 

general it does not define a Killing horizon of order zero according to Definition 5.4.2. 

This may be confusing at first sight, but the key to understand the terminology is the 

word "abstract". Whenever it appears, the related notion must be fully insensitive to the 

data being embedded and hence to any kind of extension of η. Since a Killing horizon of 

order zero is embedded and requires an extension of η it makes sense that abstract Killing 

horizons of order one need not be Killing horizons of order zero. 

Definition 5.4.5 establishes two restrictions on the hypersurface data (namely 

U = 0 and (5.62)), so at this point the reader may wonder how these two con- 

ditions are related to the first transverse derivative of the deformation tensor Kη , 

which in the end is what it is expected to vanish on a Killing horizon of order 

one. The answer to this question of course requires assuming embeddedness of 

the data, and should be addressed in various separate stages. First, we need to 

prove that when an AKH1 D is embedded on a semi-Riemannian manifold (M, g) 

with embedding ϕ and rigging ζ, the vector field Ση(ϕ⋆X, ϕ⋆W), X, W ∈ Γ(TN ) 

vanishes everywhere on ϕ(N ). With this result at hand and using (5.50) (which 

holds in this context because U = 0), we will be able to find an identity involving 

the objects {i, ש, ℸ} defined in (5.15)-(5.16). The tensor ℸ encodes precisely the 

pull-back to N of the first transverse derivative of Kη , which is therefore restricted 

by such identity. Finally, we will see that enforcing i = 0 implies ℸ = 0. This extra 

restriction of i being zero will be connected with the notion of KH0 introduced 

above and will allow us to introduce the new notion of Killing horizon of order ½ to 

refer to a KH0 which also satisfies (5.62). 

In the following lemma we address the first two stages of the procedure above. 

 

Lemma 5.4.7. Consider a Killing horizon of order one D = {N , γ, ℓ, ℓ(2), Y} embedded 

on a semi-Riemannian manifold (M, g) with embedding ϕ and rigging ζ. Let η be an 
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= 

 

extension of ϕ⋆T off ϕ(N ) and Ση 

to (5.15)-(5.16). Then, 

=
def 

£
 

∇ be given by (3.18). Define {i, ש, ℸ} according 

 

 

 

and 

Ση(ϕ⋆X, ϕ⋆W) = 0, ∀X, W ∈ Γ(TN ). (5.63) 

 

η ◦ 

ab ∇( aib) + שYab − ℸab = 0. (5.64) 

 
Proof. Imposing U = 0 and (5.62) in (5.48) immediately proves (5.63), while (5.64) 

follows from combining (5.50) (which gives הη 
= 0) and (5.39). 

 

Remark 5.4.8. It is precisely the fact that U = 0 that allows for an abstract notion of 

Killing horizon of order one because, in such case, the vector field Σ(ϕ⋆Y, ϕ⋆Z), Y, Z ∈ 

Γ(TN ) can be entirely codified abstractly, as we have discussed in Remark 5.3.7. If in 

the right hand side of (5.49) appeared any combination of the tensor fields {i, ק ,ש, ℸ} 

depending on the behaviour of η off ϕ(N ), then it would be impossible to establish a 

condition on the data {N , γ, ℓ, ℓ(2), Y} so that in the embedded picture Σ(ϕ⋆Y, ϕ⋆Z) = 0. 

Equation (5.64) relates the abstract Definitions 5.4.1 and 5.4.5 with (the pull-back 

to N of) the first transverse Lie derivative of the deformation tensor. It is now 

immediate to see that whenever i = 0 everywhere on N (and hence ש = i(n) = 0), 

then ℸ = 0. We capture this fact in the following corollary. 

 

Corollary 5.4.9. Under the hypotheses of Lemma 5.4.7, whenever i = 0 it holds 

ϕ⋆(£ζ Kη ) = 0. (5.65) 

 

In particular, if an embedded AKH1 D happens to be in addition a Killing hori- 

zon of order zero (i.e. it satisfies (5.59) for at least one extension η of ϕ⋆η), then 

Kη |ϕ(N ) = 0 (by Proposition 5.4.4), hence i = 0 and the pull-back ϕ⋆(£ζ Kη ) van- 

ishes everywhere on N . Note that, as in the case of order zero (where only ϕ⋆Kη 

was restricted), here the transverse components of £ζ Kη are totally unfixed. This 

fact suggests that we introduce the notion of Killing horizon of order ½ as follows. 

 
Definition 5.4.10. (Killing horizon of order ½, KH½) Consider an abstract Killing horizon 

of order one D =
d e f  

{N , γ, ℓ, ℓ(2), Y} with symmetry generator η ∈ Radγ and assume that 

D is embedded in a semi-Riemannian manifold (M, g) with embedding ϕ and rigging ζ. 

Then, H½ =
d e f  

ϕ(N ) is a Killing horizon of order ½ if, in addition, it is Killing horizon of 

order zero. 

 ה

η 
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Summarizing, in this section we have introduced the two fully abstract notions 

of Killing horizons of order zero and one (Definitions 5.4.1 and 5.4.5) as well as 

the concepts of Killing horizons of order zero and ½ (Definitions 5.4.2 and 5.4.10), 

which apply at the embedded level. The whole construction has been performed 

so that 

(a) ϕ⋆Kη = 0 for an embedded AKH0 (which does not necessarily define a KH0), 

(b) Kη |ϕ(N ) = 0 for a KH0, 

(c) Kη |ϕ(N ) = 0 and ϕ⋆(£ζ Kη )|ϕ(N ) = 0 for a KH½. 

 
 

5.4.1 Some aspects of abstract Killing horizons of order zero 

 
In this section, we consider an abstract Killing horizon of order zero and obtain a 

result concerning the causal nature of the set of fixed points S of the symmetry 

generator η whenever its surface gravity κ is constant along the null generators. 

This is done in the following lemma. 

Lemma 5.4.11. Let {N , γ, ℓ, ℓ(2), Y} be an abstract Killing horizon of order zero with 

symmetry generator η and fixed points set S. Assume further that N admits a cross- 

section and that the surface gravity κ of η is constant along the null generators of N . 

Then, there exists a choice of gauge for which 

η = ( f + κλ)n, (5.66) 

where f , λ ∈ F(N ) are functions satisfying k(λ) = 1, k( f ) = 0. Also in that gauge, 
(i) if κ ̸= 0 and S ̸= ∅, then S is defined by the implicit equation λ = −κ−1 f and it 

is a non-degenerate submanifold. 

-

 

(ii) if κ = 0, S is either empty or is the union of smooth connected codimension-two 

degenerate submanifolds of N given by the zeros of f . 

Proof. Since N admits a cross-section, we know by Lemma 3.2.24 that one can 

always select the gauge so that κn = 0, which we enforce for the rest of the proof. 

This, together with (2.44) and (3.102) means that 

 

n(α) = κ. (5.67) 

 
Since κ is constant along the null generators of N , the general solution of (5.67) 

for α is α = f + κλ, where λ, f are functions satisfying n(λ) = 1, n( f ) = 0. This 

proves (5.66). 
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Now let {λ, uI } be coordinates on N . Then n = ∂λ, f (uI ) and κ(uI ). By definition 

of AKH0, α cannot vanish on open subsets of N . Moreover, from (5.66) it follows 

that the symmetry generator vanishes at points where κλ = − f . When κ ̸= 0 

this implies (i) at once. When κ = 0, η = f n and either f vanishes no-where 

on N (hence S = ∅) or there exist several smooth connected codimension-two 

subsets {F(i)} ⊂ N (i = 1, 2, ...) where f vanishes (hence S ≡  i F(i)). The fact 

that each connected component F(i) is a degenerate submanifold is a consequence 

of f depending only on {uI } and not on λ. 

 
Lemma 5.4.11 will play an important role later in Chapter 7 when we study the 

matching of spacetimes across Killing horizons of order zero. In that context we 

shall assume constancy of the surface gravity everywhere in the horizon, and this 

result will allow us to obtain all possible matchings explicitly in a simple way. 

 

5.4.2 Some aspects of abstract Killing horizons of order one 

 

In this section, we discuss briefly some aspects of abstract Killing horizons of order 

one for which the symmetry generator η is everywhere non-zero. For that purpose, 

we consider null hypersurface data {N , γ, ℓ, ℓ(2), Y} defining an AKH1 according 

to Definition 5.4.5. Since η is no-where zero on N , it is convenient to fix the gauge 

so that the null generator n of the data coincides with η, so we enforce η = n. In 

these circumstances, N cannot contain fixed points and the proportionality func- 

tion α is equal to one. By Definition 5.4.5 and because in the present case α = 1, it 

follows 

Σ
◦ 

−n ⊗ £nY = 0, (5.68) 

 
which after inserting (3.31) takes the form 

 

£nYab 

◦ 

∇(a sb) = 0. (5.69) 

Observe that while condition U = 0 is fully-gauge invariant (U simply rescales 

under the action of a gauge group element, see (3.60)), condition (5.69) is not. 

Actually, the tensor £n Yab 

◦ 

∇(a sb) itself turns out to be gauge invariant under 

the action of the subgroup G1. 

 

Lemma 5.4.12. For any null hypersurface data {N , γ, ℓ, ℓ(2), Y} with U = 0, the quant- 

ity Σ
◦ 

−n ⊗ £n Y or, what is the same £n Yab 

◦ 

∇(a sb) , is invariant under the action of the 

subgroup G1. 

− 2 

− 2 
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2 

∇c 

∇a 

4 

2 ′ 

2 

∇a b ∇a ∇a b 2 
∇a 

2 

 

Proof. Let us denote G1-transformed quantities with a prime symbol. Particulariz- 

ing expressions (2.34), (2.40), (3.62) as well as Proposition 2.2.9 for z = 1, n(2) = 0 

and U = 0 yields 
 

n′ = n, Y′ = Y + 
1 

£ γ, s′ = s + 
1 

γ(£ V, ·), 
◦ ′ − ◦ 1 = n ⊗ £ γ. 

2 V 2 n ∇ ∇ 
2 

V 

Firstly, the gauge behaviour of n and Y entails 
 

 (£n′ Y′)ab = (£nY′)ab = (£nY ab 
1 

£n£Vγ)ab = (£nY ab 
1 

£ n,V γ)ab 
) + 

2 
( ) + 

2 
( [ ] 

= (£n Y)ab + 
1 

(

γ 

◦ 

bc∇a [n, V]c + γ 
◦ 

ac∇b [n, V]c

1 

(5.70) 
 

after using that  
◦

 γab = 0 (cf. (2.18)) and the well-known property £ 
◦ 

[X,W] T = 

£X£W T − £W£XT. Secondly, the gauge transformations of s and ∇ imply 

 

◦ ′ s′ − ◦ s = 
◦ ′ 

(
s + 

1 
γ [n, V]c

) 
− ◦  s 

1 
= − 

2 
(£V γ)ab ncsc + 

1 ◦ 
′ (γbc [n, V]c) 

1 ◦ 

2 
∇a (γbc [n, V]c) − 

1 
(£V γ)ab ncγcd [n, V]d 

= 
1 ◦  

(γ [n, V]c) 
(2.18) 1 

γ ◦ ([n, V]c) , (5.71) 

 

 
from where it follows 

2 
∇a bc = 

2  bc∇a 

◦ 

∇(a 

 

s′
b) 

◦ 

∇(a 

 

sb) + 
1 

(

γ 

 
◦  

bc∇a 

 

[n, V]c + γ 

 
◦  

ac∇b [n, V]c

1 

. (5.72) 

 

The combination of (5.70) and (5.72) ensures that (£n 

and hence so it is Σ
◦ 

−n ⊗ £nY (recall (3.31)). 

Y)ab 
◦ 

∇(a sb) is G1 -invariant, 
 

 

Remark 5.4.13. Any AKH1 {N , γ, ℓ, ℓ(2), Y} admits a submanifold S to which n is every- 

where transverse. If, in addition, η is everywhere non-zero and one selects the gauge so 

that η = n, the combination of Lemma 5.4.12 with (5.68) ensures that the gauge-invariant 

quantity S∥, defined by (4.36), is identically zero on S (because of (4.38)). 

 

5.4.3 Connection with non-expanding and isolated horizons 

 
From the considerations above, it is immediate to check that a full Killing horizon 

is by definition a KH½. A natural question that arises now is how the previous 

= 

= 2 

− 2 

b bc b 
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definitions are connected to the notions of non-expanding horizons, weakly isol- 

ated horizons and isolated horizons introduced in Section 2.5 (see Definitions 2.5.1, 

2.5.5 and 2.5.8). We devote this section to address this matter. 

We start by stressing two important differences between Killing horizons of order 

zero/one and non-expanding and (weakly) isolated horizons. Firstly, Definitions 

5.4.1 and 5.4.5 are purely abstract, and do not assume any spacetime nor any 

embedding. Secondly, and perhaps more important, these definitions do not make 

any global assumptions on N , while the non-expanding and (weakly) isolated 

horizons require (at least in most cases) that N has a product topology N = S × R, 

where R is along the null generators. 

Having pointed out this fact, we now connect the notion of non-expanding horizon 

with Definitions 5.4.1 and 5.4.5. As discussed in Remark 2.5.3, a non-expanding ho- 

rizon N is a totally geodesic null hypersurface. This means that N constitutes an 

embedded Killing horizon of order zero, since condition (i) in Definition 5.4.1 is 

always verified by null generators of N . A weakly isolated horizon is then an em- 

bedded Killing horizon of order zero with symmetry generator η, satisfying the ad- 

ditional restriction (2.111) for the one-form ϖ defined by (2.106). Finally, condition 

(2.111) can be written in the language of the present section as Ση(ϕ⋆Y, ϕ⋆Z) = 0, 

Y, Z ∈ Γ(TN ) (recall (3.21)). Thus, an isolated horizon constitutes an embedded 

Killing horizon of order ½. 



 

 



 

 

6 
G E N E R A L I Z E D M A S T E R E Q U AT I O N 

 

 

 
In Chapter 2, we have presented the so-called master equation and near horizon 

equation in the contexts of multiple Killing horizons ((2.144) and (2.153)) and isol- 

ated horizons ((2.128) and (2.129)) respectively. These identities relate second de- 

rivatives of the proportionality function between the generator η of the horizon 

and one of its null generators, the one-form ϖ associated to η (cf. (2.106)) and 

curvature terms. 

These master equations, however, hold under very specific conditions. For multiple 

Killing horizons, one needs that two Killing vectors share the same Killing horizon 

and that the horizon can be foliated by spacelike cross-sections, and even in these 

circumstances the master equation is only valid at points when both Killing vectors 

are non-zero. Isolated horizons, on the other hand, are totally geodesic null hyper- 

surfaces with product topology Sn−1 × R (see Definition 2.5.1), without expansion 

and satisfying an energy condition as well as Einstein field equations. Moreover, 

both the one-form ϖ and the second fundamental form of the horizon with respect 

to a null, transverse vector field L must be constant along the null generators, and 

again the master equation applies wherever η is non-zero. 

A natural question that arises is whether these equations can be generalized. For 

instance, one may be interested in horizons with much more general topologies, 

in null hypersurfaces containing points where the generator η vanishes, or even in 

less restrictive notions of horizons. 

In this chapter, we exploit the formalism of hypersurface data and prove that the 

master equation can indeed be generalized for any null hypersurface N equipped 

with an extra vector field η which is everywhere null and tangent on N . We will 

obtain a new, fully covariant equation (called generalized master equation) which 

is valid on the whole N and that generalizes (2.144). The contractions of such 

equation with the data vector field n will provide useful information concerning 

the constancy of the surface gravity of η, as we shall see. 
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∇d ∇d 

 

We will also particularize these results to the case when the deformation tensor Kη 

of η is proportional to the metric. In these circumstances, if in addition Kη ̸= 0 on 

N , we shall be able to provide several identities relating the surface gravity of η, 

the deformation tensor and the constraint tensor (see Chapter 4). 

The generalized master equation will also be analyzed for abstract Killing horizons 

of order zero and one, for which we will prove that if the surface gravity is non- 

constant at some point of N , then N cannot be geodesically complete. 

The last part of the chapter is devoted to computing the generalized master equa- 

tion on a transverse submanifold S of N and to recover the master equations (2.153) 

and (2.128) from the generalized master equation. 

We conclude with an application in the case of vacuum degenerate Killing horizons 

of order one. 

 
 

6.1 covariant master equation on a general null hypersurface 

 
We start by deriving a generalized form of the master equation (2.144), valid for a 

completely general null hypersurface endowed with an extra null, tangent, gauge- 

invariant vector field η. We do this in the following theorem, in which we also 

provide the contractions of such generalized master equation with the vector field 

n. 

Theorem 6.1.1. Consider null hypersurface data {N , γ, ℓ, ℓ(2), Y} embedded on a semi- 

Riemannian manifold (M, g) with embedding ϕ and rigging ζ. Assume further that N 

admits a gauge-invariant vector field η ∈ Radγ and let κ ∈ F(N ) be its surface gravity 

(cf. Lemma 3.3.1) and α ∈ F(N ) be the function given by η = αn. Extend ϕ⋆η to a vector 

field η on a neighbourhood O of ϕ(N ) and define its deformation tensor Kη, ק and הη 
as 

in (5.1), (5.15) and (5.40) respectively. Using the notation ω =
d e f  

s − r, it holds 

0 = 
◦ 

b 

◦ 

dα + 2ω b 

◦ 

d α + 
α 

(

2 
◦

 

 
 

bωd 

 

+ 2ωbωd + Rbd − R
◦

 bd 

1 

+ κYbd 

+ 
α 

( ◦  

bsd − sbsd

1 

+ 
1 

η(ℓ(2))Ubd − αWbd − הη
 + 

ק
Ubd, (6.1) 

◦ κ − Pb f 
◦

 

 

(αUd f ) + α 

(

−(trP U) ωd 
 

◦ (trP 

 

U) + nbRbd 

1 

 ηה −
nb, (6.2) 

0 = £nκ − הη 
nbnd, (6.3) 

0 = + 

) ( 

) 
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W = 

∇ 

∇c 

2 2 ( ) ) 

η bd (b∇d) 2 ∇(b d) n bd b b d d 

∇( 2 ∇( ( ∇ ) ∇ ∇ bd 2 

∇b∇d (b ∇d) ∇(b d) 2 n 

) 2 ∇( bd 

∇c 

◦ 

 

where Wbd is defined by 
 

 
def 

bd − 
1 

(trPU)Ybd − 
1 

(trPY)Ubd + PacUa b 
(

2Yd c + Fd c

) 
. (6.4) 

 

Remark 6.1.2. Observe that the notation for the covector ω defined above is consistent 

with the one introduced in Lemma 4.3.1 because clearly ψ⋆ω = ω∥ whenever Setup 3.2.15 

holds. 

 

Proof. Expression (4.18) in Definition 4.2.1 can be rewritten in terms of Wbd as 
 

£nYbd 

◦  

∇(b rd) − κn Ybd − (rb − sb ) (rd − sd) 

+ 
1 ◦ 1 1 ◦ 1 

2 
R(bd) − 

2 
Rbd + 

2 
∇(bsd) + 

2 
sbsd + Wbd. (6.5) 

Inserting (6.5) into (5.29) yields 

£ Y = 2r 
◦ 

α + 
α 

(

2 
◦ 

r − 2κ Y − 2 (r − s ) (r − s ) 

+ R
◦ 

(bd) − Rbd + 
◦ 

(bsd) + sbsd + 2Wbd

1

. (6.6) 

By comparison with (5.20) one easily obtains (6.1) after reorganizing some of 

the terms and using (5.39), (6.4) and n(α) = κ − ακn. To demonstrate (6.2)-(6.3), 

we firstly note that (2.20)-(2.21) give 
◦

 nc = trP 
◦ 

◦ 
Pc f  = −Pf bsb

 
− n f n(ℓ(2)). 

Moreover, by (2.44) and (3.11), we write −nb∇(brd) as 
 

◦ 

∇(b rd) 

1 
= − 

2 
£nrd 

1 ◦ 

2 
∇dκn 

− κnsd + Pb f Ud f rb. (6.7) 

Multiplying (6.7) by α and inserting (5.21) gives (recall that U(n, ·) = 0) 

 

−αnb 
◦

 

 

brd = − 
1 

nb

(

2α 
◦

 

 

bsd 

 

+ 2s b( 
◦ 

d α) + 
◦ 

b 

◦ 

dα + n(α)Ybd − הη
 + 

ק
Ubd

1

 

κn ◦ 

2 
∇d 

1 
α + 

2 
n(α)rd 

α 

2 
∇dκn 

− ακnsd 

 

+ αPb f Ud f rb. (6.8) 

Now, contracting (6.1) with nb and inserting (6.8) yields 
 

0 = nb 
◦

 ◦ α − 2nb(r − s  ) 
◦

 α − αnb 
◦

 r + 
α (

2κ s 

+ nbRbd − nb R
◦

 bd 
) 

+ n(α)rd + 
3α

nb 
◦

 

 

bsd − αnbWbd − nbהη
 

= 
1 

nb 
◦

 ◦ 
α + 

κn ◦ 1 α + s n(α) + 
α ◦  

κ + αPb f U r 

2 
∇b∇d 

2 
∇d 2 d 2 

∇d  n d f b 

= 

U, 

−nb + 

− + 

) ) 

(b d 

( ) 
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= ∇d 

∇c ∇c 

2 ) 2 ∇( 2 bd 

∇(b 2 ∇b d ∇d b = 
2 n b 

2 2 

∇d 
◦ 

∇d 

 

+ 
α (

nbRbd − nb R
◦

 bd 
) 

+ 
α

nb 
◦

 

 

bsd − αnbWbd − 
1 

nbהη 
. (6.9) 

Finally, using the identities (recall (2.20), (6.4), n(α) = κ − ακn and s(n) = 0) 

nb ◦ 

b 

◦ 

dα = nb ◦ 

d 

◦ 

bα = 
◦ 

d(n
b ◦ 

bα) − ( 
◦ 

dnb) 
◦ 

bα 
∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ 

= 
◦ 

d(n(α)) − n(α)sd − Pb f Ud f 

◦ 

bα 
∇ 

◦ (κ − ακn 

 

) − (κ − ακn 

 

)sd 

∇ 

− Pb f U 

 
 

d f ∇bα 

◦ κ − α 
◦

 κn − κ 
◦ 

n∇d α − (κ − ακn )sd − Pb f U 
◦ 

d f ∇b α, (6.10) 

nb 
◦ 

s = 
1 

nb 

( 
◦

 s + 
◦

 s 

1 
(3.11) 1 

£ s
 
 

− Pb f U s , (6.11) 

nbWbd = − 
1 

(trPU)rd + Pc f Ud f rc + 
1 

Pc f Ud f sc, (6.12) 

 

equation (6.9) becomes (6.2). Contracting (6.2) with nd immediately yields (6.3) 

after using (4.20) and nd Pc f 
◦

 Ud f = −Ud f Pc f 
◦

 nd = −Pc f PdbUd f Ucb. 

 
Equation (6.1) is a new, fully covariant identity that involves hypesurface data, 

derivatives of the function α, curvature terms (i.e. R and R
◦ 

), the surface gravity κ 

of η and the ambient objects {ה ,קη 
}. Although in fact the appearance of {ה ,קη 

} in 

(6.1) makes the whole identity non-purely abstract, it is however remarkable that 

its whole non-abstract part can be entirely codified only by the tensor הη 
and a 

term in קU. Observe that precisely the tensor fields U and הη 
are those vanishing 

for abstract Killing horizons of order zero and one (see Section 5.4). 

As claimed before, (6.1) generalizes in several directions the already known forms 

of near horizon and master equations (see (2.128), (2.144) and (2.153)) that have 

been previously obtained in the literature. First, (6.1) holds everywhere on the 

hypersurface and not only on a specific section (in fact, here such a section does 

not even need to exist). 

Secondly, (6.1) does not require any topological assumption on the hypersurface 

apart from the existence of an everywhere non-zero, smooth vector field n. This 

also makes a significant difference with respect to the works on isolated and mul- 

tiple Killing horizons cited in Sections 2.6.1 and 2.5 before. In all those works, the 

topology of the hypersurface is assumed to be a product of the form S × R, where 

S is a cross-section and the null generators are along R. The result (6.1), however, 

is fully general in this sense and applies for any topology of ϕ(N ). 

Regarding the vector field η we have also kept maximum generality. We have 

allowed η to vanish anywhere on N and we have enforced neither any specific 

extension of η off ϕ(N ) nor any specific form of the deformation tensor of Kη (or 

= 

( ) 

d) d d f 
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bd 

 

of its pull-back to N , given by U). We have neither restricted the one-form ω or the 

tensor Y to satisfy any restriction (observe that in Section 2.5 the Lie derivatives of 
L 

ϖ and K- along η had to vanish). 

Finally, note that (6.1) has been obtained for a general ambient semi-Riemannian 

manifold (M, g), so the constrain tensor R (and hence the pull-back to N of the 

ambient Ricci tensor) is fully arbitrary. We have imposed neither energy conditions 

nor field equations. Moreover, equation (6.1) is valid in any gauge. Later on we will 

particularize (6.1) for the case of abstract Killing horizons of order zero and one 

and we will have more to say concerning the comparison of (6.1) with the master 

equations from Sections 2.6.1 and 2.5. 

Equations (6.2)-(6.3) also reinforce the geometric relevance of (6.1), as we shall 

see next. Specifically, (6.3) allows us to know under which conditions the surface 

gravity κ remains constant along the null generators of N . This is the content of 

the following corollary. 
 

Corollary 6.1.3. Assume the hypotheses of Theorem 6.1.1 and let Ση =
def 

£
 

∇ and ש and 

ℸ be defined according to (5.15) and (5.16) respectively. Then, the surface gravity κ is 

constant along the integral curves of n if and only if any of the three equivalent conditions 

hold true: 

Ση(ϕ⋆n, ϕ⋆n) = 0, (6.13) 

 ηה
(n, n) = 0, (6.14) 

£nש − κnש − ℸ(n, n) = 0. (6.15) 

 
Proof. In view of (6.3), it is obvious that κ is constant along the null generators of 

N if and only if הη 
(n, n) = 0, so it suffices to check whether the three conditions 

(6.13)-(6.15) are indeed equivalent. We first prove this for the last two. Combining 

(3.11) with the fact that i(n) = ש, it follows 

◦ 

∇(b 

 

id) 

1 
= 

2 
£nid 

1 ◦ 

2 
∇d ש − שsd 

 

− Pb f Ud f ib, (6.16) 

which together with (5.39) allows us to write 
 

 ηה
nb = 

1 
£ i − Pb f U i + 

1 ◦
 ω − ℸ nb and (6.17)ש − ש 

bd 2 n d d f  b 2 
∇d d bd 

 ηה
nbnd = £nש + שκn − ℸbdnbnd, (6.18) 

nb + 

η 
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∇b bd 

∇b 

∇d 

n 2 

∇d 

 

after using U(n, ·) = 0. Finally, for any vector field W along ϕ(N ) decomposed as 

in (5.31) we can define, as usual, a covector W 

of (5.32) and (5.39) gives 

=
d e f  

g(W, ·). Then, the combination 

 

W (Ση(ϕ⋆n, ϕ⋆n)) = ϕ⋆ 
W (Ση)

 
(n, n) = βהη 

(n, n), 

 

since the terms in Wc vanish because U(n, ·) = 0 and (3.46). Since W is a completely 

general vector field, הη 
(n, n) = 0 is equivalent to Ση(ϕ⋆n, ϕ⋆n) = 0, as claimed.  

The behaviour of the surface gravity κ along the null generators is therefore gov- 

erned by the tensor Ση. In particular, for an abstract Killing horizon of order one 

according to Definition 5.4.5, £nκ is automatically zero. Observe also that, when 

the source term ℸ(n, n) is known, (6.15) constitutes a first-order ODE for ש along 

the integral curves of n. Concretely, if N admits a cross-section S then there exists 

a (unique) solution ש of (6.15) provided initial data ש|S. Later on we shall obtain 

the explicit form of this equation in the specific case when the deformation tensor 

of η is proportional to the metric. 

So far we have considered only constancy of the surface gravity along the gener- 

ators. It is natural to enquire about its constancy everywhere on the manifold. In 

that context, the geometric relevance of (6.2) is clear. It allows one to determine 

precisely under which conditions the surface gravity κ is not only constant along 

the null generators but everywhere on the hypersurface. In Section 6.3 we will 

study this identity in detail for the case of abstract Killing horizons of order zero 

and one. However, for the moment we just include the following general result. 

Corollary 6.1.4. Under the hypotheses of Theorem 6.1.1, the surface gravity κ is constant 

everywhere on N if and only if any of the two equivalent equations are satisfied: 

 

0 = Pb f 
◦

 (αUd f ) + α 

(

(trP 

 

U) ωd 

 

◦ (trP 

 

U) − Rbd nb

1 

 ηה +
nb, (6.19) 

0 = 
1 

£ id 
1 ◦ 

2 
∇d ש − שωd 

 

− ℸbdnb 

+ Pb f 

( 
◦

 

 

(αUd f 

 

) − Ud f ib

1 

+ α 

(

(trP U) ωd 
 

◦ (trP U) − Rbd nb

1 

. (6.20) 

Proof. Equation (6.19) follows at once from (6.2), while (6.20) is a consequence of 

combining (6.17) and (6.19). 

 
Equations (6.1)-(6.2) can be rewritten in such a way that Lie derivatives of the 

tensors Y and r =
d e f  

Y(n, ·) appear explicitly. We include the corresponding result 

below, together with a comment on its usefulness. 

− 

+ 

− 



6.2 deformation tensor proportional to the metric 155 K η 
 

 

) − 
  

bd 

∇b∇d (b ∇d) n bd n 

∇( 2 bd 

∇d κ n ∇d ∇b 

 

Lemma 6.1.5. Equations (6.1)-(6.2) are respectively equivalent to the following two iden- 

tities: 

0 = 
◦ ◦ 

α + 2 
(
s − r  

) ◦ 
α − α£ Y + (κ − ακ ) Y 

+ 2α 
◦

 

 

bsd + 
1 (

η(ℓ(2)) + ק
) 

Ubd − הη 
, (6.21) 

◦ 
κ + α

 
£n(sd − rd 

◦  
− PbcUcd  

◦  
α + 2αsb

 
 ηה −

nb, (6.22) 

Proof. Combining (6.1)-(6.2) with (4.18)-(4.19) and (6.4), one gets (6.21)-(6.22) after 

using that ω =
d e f  

s − r. 

In the regions of N where α ̸= 0, equations (6.21)-(6.22) are evolution equations 

for all components of the tensor Y except Y(n, n). At first one could think that this 

term also appears in (6.21) (or in (6.22)). However, this is not the case. Contracting 

(6.22) with n yields 

 

0 = n(κ) − הη 
(n, n) (6.23) 

after using U(n, ·) = 0, s(n) = 0, r(n) = −κn. Equation (6.23) is just (6.1) and does 

not involve the component Y(n, n), which therefore cannot be determined. 

Equations (6.21)-(6.22) are useful in many situations. The problem of matching 

two spacetimes across null hypersurfaces offers a clear example of this. As we 

have discussed in Chapter 2, when the matching between two given spacetimes 

across their null boundaries is possible, the matter content of the null shell of 

the resulting spacetime happens to be given by the jump of the tensor fields Y 

from each side, so it becomes helpful to be able to compute these tensors. Even 

more, as we shall discuss later, sometimes more than one matching is allowed (e.g. 

when the boundaries are totally geodesic) and in that case (6.21)-(6.22) allow one 

to determine all possible matchings (i.e. all possible matter-contents) at once. 

 

6.2 deformation tensor Kη proportional to the metric 

 

We now particularize to the case when the deformation tensor Kη of η is propor- 

tional to the ambient metric. In the setup of Theorem 6.1.1, this means that in a 

neighbourhood O of the null hypersurface ϕ(N ) it holds 

Kη = 2χg, where 2χ ∈ F(O). (6.24) 

0 = 

(b bd 

) 
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gK 

def 

 
In these circumstances, η is a conformal Killing vector on O (in particular a ho- 

mothetic vector field or a Killing vector field if χ = const. ̸= 0 and χ = 0 respect- 

ively). The function χ necessarily takes the form 

tr η
 

χ = 
2(n + 1)

, (6.25) 

which follows immediately from taking the trace in (6.24). When evaluating (6.24) 

on ϕ(N ) one obtains (cf. (5.15), (5.18)) 

 2χg(ζ, ν) = 2χ, (6.26) = ש

 2χℓ(2), (6.27) = ק

i = 2χℓ, (6.28) 

αU = χγ. (6.29) 

Some important aspects of (6.26)-(6.29) are worth mentioning. First, observe that 

(6.26) is consistent with the fact that ש is a gauge-invariant function (recall Lemma 

5.2.1). Secondly, ק, i are proportional to ℓ(2) and ℓ respectively, which means that 

the choice of gauge plays a fundamental role in the study of the geometry of these 

sort of hypersurfaces. In particular, we know by Lemma 3.2.9 that in the null case 

{ℓ(2), ℓ(2)} can be chosen freely (one can for instance enforce ℓ(2) = 0). Finally, the 

combination of (6.29) with the fact that both γ and U are well-defined and regular 

tensor fields on N bring us to the following proposition. 

 

Proposition 6.2.1. Under the hypotheses of Theorem 6.1.1, assume further that Kη
 

def 

satisfies (6.24) for a function χ ∈ F(O) and define S = {p ∈ N | α(p) = 0}, 

Zχ = {p ∈ N | χ(p) = 0}. Then, the following two compatibility conditions must hold: 

(i) S ⊆ Zχ, and (ii) χ has a zero of at least order α on the whole S (6.30) 

 

In particular, if χ ∈ R − {0} then S = ∅ is forced. 

Proof. The manifold N and the data tensor fields {γ, ℓ, ℓ(2), Y} are assumed to be 

everywhere smooth, so the tensor field U, which is constructed from the data, is 

necessarily smooth as well. The proof relies on the fact that (6.29) can be rewritten 

as 

U = 
χ

γ (6.31) 
α 

(again because both γ and U are regular). Equation (6.31) implies that U becomes 

non-smooth at any point p ∈ N where α(p) = 0 and χ(p) ̸= 0 (i.e. where (i) does 
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χ(p) 

η 

∇d ∇d 

- 

∇d 

 

not hold) or where α(p) = 0 (hence where (ii) is not satisfied). When χ is constant 

and non-zero everywhere on N then Zχ = ∅, from where the second part of the 

lemma follows at once. 

 

Remark 6.2.2. Proposition 6.2.1 entails that the function χα−1 must be smooth every- 

where on N . Thus, we define 
 

 

χ =
d e f  

χ 
. (6.32) 

α 

Remark 6.2.3. In the null, embedded case, we know that the constraint tensor R coincides 

with the pull-back to N of the ambient Ricci tensor (recall (4.17)). On the other hand, in 

the abstract definition of the constraint tensor R for the null case (namely (4.18)), the 

tensor U appears on the terms 

(trPU)Yab, (trPY)Uab, Ud(a 
(

2Yb)c + Fb)c

) 
. (6.33) 

 

Consequently, if the data tensors Y and F are non-zero on N and any of the compatibility 

conditions from Proposition 6.2.1 is not satisfied, then R would become non-smooth at 

some point on N , and hence there would exist a singularity in the ambient manifold itself. 

Remark 6.2.4. From Proposition 6.2.1 means, it follows that a (smooth) homothetic Killing 

horizon cannot admit fixed points (i.e. points where the homothetic Killing vector vanishes). 

Our next aim is to particularize the expressions of Theorem 6.1.1 for the present 

case. For that purpose, we first compute the explicit form of some basic quantities. 

We start by deriving ℸ explicitly, for which we extend the rigging ζ arbitrarily to 

O and compute the derivative £ζ Kη |O as 
 

1 

2 
£ζ K  = ζ(χ)g + χ£ζ g. (6.34) 

Note that the pull back of this quantity to N is independent of the extension of 

ζ off ϕ(N ). Defining1 א =
d e f  

ϕ⋆(ζ(χ)) and computing the pull-back to N of (6.34) 

yields 

ℸ = אγ + 2χY,   =⇒   ℸ(n, ·) = 2χr   =⇒   ℸ(n, n) = −2χκn.  (6.35) 

after using (2.39) and (5.16). Now, the combination of (6.29) and (2.8)-(2.9) yields 

α(trPU) = χ(trPγ) = χ(n − 1). This, in turn, implies 
 

αtrP U = χ(n − 1) =⇒ α 
◦

 (trP U) = (n − 1) 
◦

 χ − (trP ◦ α. (6.36) 

 
 

1The letter א (/alεf/) is the first of the Hebrew alphabet. 

U) 
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∇b ∇d 

2 ( ) ( ) 

2 ( ) ) 

2 (b ( ) ) 

2 ( ) ( ) 

2 ( ) ( ) 

−Pb f ◦ 

b(αUd f ) = −Pb f 

(

γd f 

◦ 

bχ + χ(−ℓdUb f − ℓ f Ubd)

1

 

∇ ∇ ( ∇ ) 2 ∇( ) 

2 2 
) + 

2 
( 

α 

2 ∇( ( ( ∇( ) 

∇d 

 
The following lemma provides three more expressions valid in this context. 

 

Lemma 6.2.5. In the setup above, the following identities are satisfied: 

αn(trPU) = (n − 1)n(χ) − κ(trPU) + κnχ(n − 1), (6.37) 

αWbd = − 
χ (

(n − 5)Ybd + (trPY)γbd + 2ℓ bsd − 4ℓ bωd 

) 
, (6.38) 

−Pb f  ◦
 (αUd f ) = − ◦ χ + ℓd (n(χ) + χtrPU) . (6.39) 

Proof. Equation (6.37) follows automatically from (6.36) when using that n(α) = 

κ − ακn. To obtain (6.38), we start from (6.4) and insert (6.29) and (6.36). This yields 

αWbd = − 
χ (

(n − 1)Ybd + (trPY)γbd − 2Pacγa b 

(
2Yd c + Fd c

))
 

= − 
χ (

(n − 1)Ybd + (trPY)γbd − 2(δc − ncℓ b) 
(

2Yd c + Fd c

))
 

= − 
χ (

(n − 5)Ybd + (trPY)γbd + 4ℓ brd − 2ℓ bsd 
) 

, 

= − 
χ (

(n − 5)Ybd + (trPY)γbd + 2ℓ bsd − 4ℓ bωd 

) 
, (6.40) 

where we used (2.9) and ω =
d e f  

s − r in the second and fourth steps respectively. To 

demonstrate (6.39), we first note that −Pb f 
◦ 

b(αUd f ) = −Pb f (γd f 
◦ 

bχ + χ 
◦ 

bγd f ) ∇ ∇ ∇ 
because of (6.29). Now we use (2.8)-(2.9), (2.18) and the fact that U(n, ·) = 0 and 

find 

 

∇ 
 
 

 
which is (6.39). 

∇ 

◦ χ + n(χ)ℓd 

 

+ χ(trP 

 

U)ℓd 
 
, (6.41) 

 

 
With the identities above at hand, it is straightforward to particularize (6.1)-(6.3) 

for the present case. 

Lemma 6.2.6. Under the hypotheses of Theorem 6.1.1, assume further that, on the neigh- 

bourhood O of ϕ(N ), it holds Kη = 2χg with χ ∈ F(O). Then, equations (6.1)-(6.3) 

read 

0 = 
◦ 

b 

◦ 

dα + 2ω b 

◦ 

d α + 
α 

(

2 
◦

 

 

bωd + 2ωbωd + Rbd − R
◦

 bd 

1

 

+ 

(

κ + 
(n − 5)χ 

1 

Ybd + 

(

 χ + א

( 
1 

n(ℓ(2) 
1 

trPY) + 
χ
ℓ(2)

11 

γbd 

+ 
α 
( ◦  

bsd − sbsd

1 

+ 

(

χ 
(

2r b − s b

) 
− 2 

◦
 bχ

1 

ℓd , (6.42) 

= − 

) ( 

) 
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∇( 

- 

- 

- 

∇ ∇ 
α 

∇ 

∇ ∇ 

0 = 
◦ 

dκ − χ(n − 1)ωd + (n − 3) 
◦ 

dχ + 
χ 

(

χℓd − ◦ dα

1 

(n − 1) + αnbRbd,  (6.43) 

0 = n (κ − 2χ) . (6.44) 
 

Proof. By (2.19) we know that 
◦

 bℓd) = −ℓ(2)Ubd, which together with (6.28) gives 

◦ 

(bid) = 2
(
( 

◦ 

(bχ)ℓd) − χℓ(2)Ubd

)
. (6.45) 

 
Taking into account (6.26), (6.27), (6.31) and (6.35), the combination of (6.45) and 

(5.39) yields 

 
 ηה

= 2( 
◦ 

bχ)ℓd − אγbd, הη 
nb = n(χ)ℓd + 

◦ 

dχ, הη 
nbnd = 2n(χ).  (6.46) 

bd ∇( ) bd ∇ bd 

Thus, (6.42) follows from inserting (6.38), (6.46) into (6.1) and using again (6.27), 

(6.31); equation (6.43) is obtained after substituting (6.36), (6.39) and (6.46) into 

(6.2); and (6.44) is immediate from (6.3) and (6.46). 

 

Observe that in the present case £nκ = 0 if and only if (cf. (6.44)) 

n(χ) =
N 

0, (6.47) 

 
i.e. on a conformal Killing horizon the surface gravity κ remains constant along 

the null generators if and only if χ is also constant along the generators. 

Another remarkable consequence of (6.43)-(6.44) is the following algebraic equa- 

tion for the surface gravity κ. 

Proposition 6.2.7. Assume the hypotheses of Theorem 6.1.1 and suppose further that on 

a suitable neighbourhood O of ϕ(N ) it holds Kη = 2χg for a function χ ∈ F(O). Define 
=
d e f  

χα−1. Then, 
χ 

χ-κ 
  α  

= n(χ) + χχ + 
n − 1 

R(n, n). (6.48) 

In particular, if R(n, n) = 0 and n(χ) = 0, then κ = χ at any point p ∈ N where χ(p) 

takes a non-zero value, and hence κ is everywhere constant on N \ Zχ if and only if χ is 

also constant therein. 

Proof. Contracting (6.43) with nd and using n(α) = κ − ακn and (6.44) gives 

0 = (n − 1)n(χ) + (n − 1)χ(χ − κ) + αRbdnbnd 

which upon dividing by (n − 1) becomes (6.48). The second part of the proposition 

is immediate. 

- 
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- 
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2 

 

Observe that if χ = 0 everywhere on N then (6.48) gives R(n, n) = 0. Since in this 

case U = 0 (by (6.31)), we simply recover the Raychaudhuri equation (4.20). 

An interesting case occurs when χ vanishes no-where on N . Then, by Proposition 

6.2.1 we know that α ̸= 0 everywhere, which allows us to rewrite (6.48) as 
 

αn(χ) α2R(n, n) η(χ) R(η, η) 
κ = + χ + 

χ (n − 1)χ 
⇐⇒ κ =

 
+ χ + . (6.49) 

χ (n − 1)χ 

Note how the gauge behaviour of the surface gravity κ, the constraint tensor and 

the function ש (which in this case coincides with χ, cf. (6.26)) is consistent in (6.49). 

Actually, every term in (6.49) is gauge-invariant separately (recall that η is gauge- 

invariant by hypothesis). 

It is also worth stressing that (6.49) entails that the surface gravity κ of a homothetic 

vector field η is everywhere constant on the horizon if and only if R(η, η) is also constant 

therein. 

For a better understanding of Proposition 6.2.7 and (6.49), next we include an 

example of a situation where they apply. 

 

Example 6.2.8. Consider the four dimensional spacetime of Minkowski (M, gMk), 

with metric g = −dt2 + dx2 + dy2 + dz2 (and hence vanishing Ricci tensor Ric). In 

this flat coordinates, the null cone of the origin {t = 0, x = 0, y = 0, z = 0} is the 

null hypersurface N- defined by 

 
2 2 2 

N- ≡ {0 = −t + x + y + z } \ {t = 0, x = 0, y = 0, z = 0}. 

It is straightforward to prove that the vector field η = t∂t + x∂x + y∂y + z∂z satisfies 

£η g = 2g everywhere on M (in particular at N ) and that η is non-zero, null and 

tangent to N at any of its points. The constant χ takes the value χ = 1 so we know 

(without doing any computation) that the surface gravity is κ = 1. Indeed, it is 

straightforward to check that in the present case ∇ηη = η holds everywhere on 

M (in particular on ϕ(N )). Thus, η is a null generator of N with surface gravity 
= 1. ■ 

κ- 
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bd 

∇ ∇ ( ∇ ) 2 ∇( ) bd 

2 ∇( 

 
6.3 abstract killing horizons of order zero and one 

 
A particular case, yet of physical and mathematical interest, happens when N 

defines an abstract Killing horizon of order zero or one according to Definitions 

5.4.1 and 5.4.5. An AKH0 satisfies that U = 0, which simplifies (6.1)-(6.2) to 

0 = 
◦ 

b 

◦ 

dα + 2ω b 

◦ 

d α + 
α 

(

2 
◦

 

 
 

bωd 

 

+ 2ωbωd + Rbd − R
◦

 bd 

1 

+ κYbd − הη
 

+ 
α 

( ◦  

bsd 
− sbsd

1 

, (6.50) 

0 = (dκ)d + αRbdnb − הη 
nb. (6.51) 

 
Observe that (6.51) gives an alternative proof for the property proved Lemma 5.3.2 

that הη 
(n, ·) is gauge-invariant whenever U = 0 because κ and R are gauge invari- 

ant and α, n change according to α′ = zα, n′ = z−1n (see (2.34) and (3.103)). The 

simple form of (6.51) is remarkable and leads us to the following result. 

 

Proposition 6.3.1. Under the hypotheses of Theorem 6.1.1, assume that N defines an 
def 

abstract Killing horizon of order zero (cf. Definition 5.4.1) and let S = {p ∈ N | η|p = 

0}. Then, the surface gravity κ of η, given by (3.102), is everywhere constant on N if and 

only if 

0 =
N 

αR(n, ·) − הη 
(n, ·). (6.52) 

If, in addition, N is an abstract Killing horizon of order one (cf. Definition 5.4.5), then κ 

is everywhere constant on N if and only if 

0 = R(n, ·) on N \ S. (6.53) 

 
Proof. The first part of the lemma is immediate from (6.51). For the second, it 

suffices to notice that הη 
vanishes on an abstract Killing horizon of order one, as 

we proved in Lemma 5.4.7. 

 
Observe that although (6.53) constitutes a strong restriction, it holds in several 

situations of physical interest, e.g. in vacuum or for non-expanding horizons (see 

Remark 2.5.4). Our statement on constancy of the surface gravity whenever (6.53) 

holds extends to the much more general case of Killing horizons of order zero a 

well-known property of (full) Killing horizons (see e.g. equation (12.5.30) in [113]). 

In the next lemma we prove that whenever N admits a cross-section, if dκ ̸= 0 at 

some point of N then N cannot be geodesically complete. 

) ( 

) 
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Proposition 6.3.2. Under the hypotheses of Theorem 6.1.1, assume that {N , γ, ℓ, ℓ(2), Y} 

defines an abstract Killing horizon of order one according to Definition 5.4.5 and that N 

admits a cross-section S ⊂ N , i.e. a codimension-one embedded hypersurface intersected 

precisely once by each integral curve of n. Then, if dκ|p ̸= 0 at some point p ∈ N , the 

horizon N cannot be geodesically complete. 

Proof. Recall that the constraint tensor R(n, ·) is smooth everywhere on N (cf. 

(4.18)). For an abstract Killing horizon of order one, (6.51) becomes (recall that 

 ηה
= 0) 

0 = dκ + αR(n, ·). (6.54) 

 
On the other hand, since N admits a cross-section, we know by Proposition 3.2.23 

and Lemma 3.2.24 that there always exists a gauge where κn = 0. We therefore 

make this choice of gauge and prove the statement by contradiction. 

Assume that N is geodesically complete and that there exists a point p ∈ N where 

dκ|p ̸= 0. We call Cp the null generator (i.e. the integral curve of n) containing p. 

Since n(κ) = 0 (by (6.3)), the value of κ at a null generator is given by its value 

at one of its points. This, in turn, entails that £n(dκ) = d(£nκ) = 0, so dκ is also 

constant along the null generators. Now κn = 0 together with (2.44) and (3.102) 

yield n(α) = κ, which is an ODE for α along the null generators of N . The general 

solution to this equation is 

 

α = κλ + α0, where λ, α0 ∈ F(N ) satisfy n(λ) = 1, n(α0) = 0. 

 

We split the analysis in two cases, namely κ|p ̸= 0 and κ|p = 0. If κ|p ̸= 0, because 

N is geodesically complete there exists a point q ∈ Cp where α|q = 0 (namely 

the point q where λ|q = −κ−1α0|q). This means that dκ|q ̸= 0 and α|q = 0, which 

contradicts (6.54). If, on the contrary, κ|p = 0 while dκ|p ̸= 0, then there exists a 

point p′ ∈ N (sufficiently close to p) where κ|p′ ̸= 0 while dκ|p′ ̸= 0, so we can 

apply the reasoning above and arrive at the same contradiction. 

 
Several aspects of Proposition 6.3.2 are worth mentioning. First, although the ex- 

istence of a cross-section constitutes a global topological restriction (as discussed 

in Section 2.4), it still allows for physically interesting situations. Secondly, the 

hypesurface N does not need to be a "full" Killing horizon but only an abstract 

Killing horizon of order one, and the symmetry generator η is allowed to vanish 

anywhere on N . These are in fact two relevant advantages of Proposition 6.3.2, 

compared with similar results in the literature. For instance, in [101] it was proven 

that, given a spacetime with a Killing vector η which defines a Killing horizon H , 



6.4 generalized master equation on a transverse submanifold S 163 
 

 

- - 

C 

A B B) 2 (A B) (AB) 

(A ) 2 (A ) AB 2 

2 2 C ∥ 

A A 

 

if H contains a null geodesic C ⊂ H where κ|C ̸= 0 and dκ|C ̸= 0 then necessarily 

C terminates in a curvature singularity. However, the proof requires that H has 

topology S × R and that η is no-where zero on H . These two requirements are 

dropped in Proposition 6.3.2. 

 
 

6.4 generalized master equation on a transverse submanifold S 

 
One of the main results of this chapter is a generalized form of the master equation 

on a codimension one smooth submanifold S ⊂ N to which n is everywhere 

transverse. We devote this section to derive this equation and to compare it with 

the master equations described in Chapter 2 (see (2.153) and (2.128)). 

Our starting point is Setup 3.2.15 (where S does not need to be a cross-section) 

and we use the notation and results of Section 3.2.3. In particular, we identify S, 

X ∈ Γ(TS) with their respective images ψ(S), ψ⋆X and denote by T∥ the pull-back 

to S of any general p-covariant tensor T along S and by TA1...Ap its components. 

As before, we let h be a metric on S, ∇h be its corresponding Levi-Civita covariant 

derivative and Rh its Riemann tensor. 

The process of deriving the generalized master equation is divided in two parts. 

In the first one, we compute the pull-back to S of (6.1)-(6.2). However, since (6.1) is 

written in terms of the curvature tensor R
◦ 

ab, we will still need to rewrite its pull- 

back equation in terms of the Riemann tensor Rh of h. This constitutes the second 

step. The following lemma collects the results for the first part. 

Lemma 6.4.1. Under the hypotheses of Theorem 6.1.1, let S ⊂ N be a codimension one 

embedded hypersurface to which n is everywhere transverse. Then, the pull-backs to S of 

(6.1)-(6.2) read 

 

0 = ∇h ∇h α + 2ω ∇h α + 
α (

2∇h  ω + 2ωAωB + RAB − R
◦ )

 

+ κ(YAB − ∇h  ℓB ) + 
α (

∇h  sB  − sAsB

) 
− αWAB − הη 

+ 
ק

UAB 

+ 
( α

n(ℓ(2)) − ℓC 
( α

sC + αωC + ∇h α
) 

− (ℓ(2) − ℓ(2))κ
) 

UAB, (6.55) 

0 = ∇h κ + α 
(
(£nω)A − ∇h κn

)
 

+ 
(

2αsC + ℓB(κ − ακn) − hBC∇h α
)

UAB − ψ⋆(הη 
(n, ·))A. (6.56) 

(A 
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Proof. We recall that r(n) = −

◦ 
κn, U(n, ·) = 0, s(n) = 0 and n(α) = κ − ακn. 

Particularizing (3.94) for Ta = ∇aα, Ta = ra and Ta = sa gives 
 

va vb ◦
 

 

◦ α = ∇h ∇h α − n(α)∇h ℓ − 
(
(ℓ(2) − ℓ(2))n(α) + ℓC∇h α

) 
U 

 
,  (6.57) 

va vb 
◦ 

r = ∇h  r + κ ∇h  ℓ + 
(
(ℓ(2) − ℓ(2))κ − ℓCr 

) 
U , (6.58) 

va vb 
◦ 

s = ∇h  s − ℓCs U , (6.59) 
A  B∇(a b) (A B) C AB 

while the combination of (6.58)-(6.59) entails, in turn, 
 

va vb 
◦ 

ω 

 

= ∇h  ω 

 

− κ ∇h  ℓ − 
(
(ℓ(2) − ℓ

(2)
)κ + ℓCω 

) 
U 

 
. (6.60) 

Inserting (6.57) and (6.59)-(6.60) into (6.1) yields (6.55). The proof of (6.56) is based 

on computing the pull-back of (6.22) to S. The only non-trivial term in (6.22) is 

PbcUcd
 ◦ α + 2αsb ), so it suffices to elaborate its pull-back. This is done by means 

of the decomposition (3.50) of P (here h = h and ψA = ℓA), from where one obtains 

vd PbcUcd

( ◦ 

bα + 2αsb

) 
= vd vc Ucd

(
hCBvb − ℓBnb

)( ◦ 

bα + 2αsb

)
 

= UAB

(
hBC∇h α − 2αsC − ℓBn(α)

)
. 

 
With the identity above, it is straightforward to get (6.56) from (6.22). 

 
Equation (6.55) already constitutes a generalized form of master equation on the 

transverse submanifold S. We now write (6.55) in terms of the Ricci tensor Rh of 

the metric h on S. 

 

Theorem 6.4.2. Under the hypotheses of Theorem 6.1.1, let S ⊂ N be a codimension one 

embedded hypersurface to which n is everywhere transverse. Then, (6.55) can be written in 

terms of the curvature tensor Rh of ∇h as 
 

0 = ∇h ∇h α + 2ω ∇h α + 
α (

2∇h  ω + 2ωAωB + RAB − Rh  
)
 

+ 
(
κ 

α 
trhU )

) (
YAB − ∇h  ℓB 

) 
 ηה −

+ 
ק

UAB −

  

α
(
ℓCℓDUCD + 

1 
∇h ℓC

)
 

+ ℓC∇h α + 
(
κ + 

α 
trhU  − 

α
κn

)(
ℓ(2) − ℓ(2)

) 
− 

α 
trhY 

\

UAB (6.61) 

− 
α 

(ℓ(2) − ℓ
(2)

)(£nU)AB − αℓC 
(

∇h UAB + 2ω U − ∇h  U 
)
 

+ α
(

hCD (ℓ(2) − ℓ
(2)

) + ℓCℓD 
)

UACUBD + 
α

hCD 
(

2(∇h ℓ )U − 4U Y 
) 

. 

( 

B) AB 

b) B) B) 

b) B) B) n AB 

B) 

D(A 
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Proof. The proof of (6.61) is based on two ingredients, namely the substitution of 

(4.29) into (6.55) and the computation of WAB. Inserting (3.78)-(3.79) into (6.4), we 

get 
 

1 
WAB = − 

2 
(trhU∥ 

1 
)YAB − 

2 
(trhY∥ − 2ℓCrC + κn(ℓ

(2) − ℓ
(2)

))UAB 

+ hCDUD(A 
(

2YB)C + FB)C + (sB) − 2rB))ℓC

) 
. (6.62) 

 
Moreover, the combination of (2.19) and Lemma 3.2.21 one obtains 

 

F = va vb F = va vb ◦ 
ℓ + ℓ(2)U = ∇h ℓ . 

AB A B  ab A  B∇a  b AB [A B] 

Using the results above in the process of substituting (4.29) into (6.55) yields (6.61) 

after a cumbersome but straightforward calculation. 

We emphasize that the derivation of (6.61) does not require S to be a cross-section 

(in fact, such cross-section does not need to exist in this context). This, together 

with the reasons exposed in Section 6.1, already makes equation (6.61) a remark- 

able generalization of the master equations (2.153) and (2.128). 

Our next aim is to establish a comparison between (6.61) and the previous forms of 

master equations valid for isolated horizons and multiple Killing horizons. Since 

both cases give rise, at the abstract level, to abstract Killing horizons of order one 

(see the discussion in Section 5.4.3), it is convenient to particularize (6.61) to this 

case by enforcing U = 0 and הη 
= 0. This yields 

0 S ∇h ∇h α + 2ω ∇h α + 
α (

2∇h  ω + 2ωAωB + RAB − Rh  
)
 

+ κ 
(

YAB − ∇h  ℓB)

) 
. (6.63) 

The corresponding comparison of (6.63) with (2.153) and (2.128) is collected in the 

following two remarks. 

 

Remark 6.4.3. In Section 2.6.1, the derivation of the master equation (2.153) requires two 

Killing vector fields η1, ηr which are null, non-zero and tangent to the horizon H1,r, i.e. 

they are null generators of H1,r. These vector fields, in addition, have constant surface 

gravities κ1 , κr = 0 and are related by ηr = αrη1 on H 1,r (see (2.139)-(2.140)). 

Equation (2.153) is presented in terms of (i) the one-form ϖ associated to η1 (cf. (2.106)) 

and (ii) the scalar function α given by (2.140). Thus, in order to recover (2.153) from (6.63) 

we need to find the explicit expression of ϖ and α in terms of tensor fields and functions 

at the abstract level. 
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null generator η of the horizon N-, with surface gravity κ-. As before, the embedding ϕ 

= (A ) 2 AB 

 

In the present case the embedding ϕ and the abstract hypersurface N need to satisfy 

ϕ(N ) = H1,r, and it turns out that the pull-back of ϖ to N coincides precisely with 

the one-form ω. Indeed, the choice of transverse vector field L made in (2.112) corresponds, 

in the formalism of hypersurface data, to select the gauge so that η1 = ϕ⋆n and ℓA = 0. 

This, together with Remark 2.4.11 (note that the function α in that remark is the propor- 

tionality function between ϕ⋆n and η1, so it is equal to one), means that the one-form ϖ 

associated to η1 satisfies 

ϕ⋆ϖ = s − r =
d e f  

ω. (6.64) 

The function α, on the other hand, must be the proportionality function between ηr and ϕ⋆n 
v 

(which in this case is just η1). Thus, α = -αe−κ-1  (cf. (2.140)), and since the derivatives of 
e−κ-1 along directions tangent to S are zero, one can write (6.63) as 

S h -α (
2∇h 2ωAωB + RAB − Rh  

) 
, (6.65) 

∇  ∇ -α + ∇ -α + ω + 

where we have taken into account the fact that ηr is degenerate which, together with Pro- 

position 3.3.2 means that κ = ϕ⋆κr = 0. Equation (6.65) is precisely (2.153) since the 

constraint tensor in the null case is simply the pull-back to N of the ambient Ricci tensor. 

Remark 6.4.4. The master equation (2.128) from Section 2.5 only requires a privileged 

 

and the abstract hypersurface N need to satisfy ϕ(N ) = N-, and the pull-back of ϖ to 

N coincides precisely with the one-form ω. This, again, is a consequence of the choice of 

transverse vector field L made in (2.112), which amounts to enforce η = ϕ⋆n and ℓA = 0. 

Since in this case the master equation is for the generator η, here the function α of (6.63) 

is equal to one, so it does not appear in the master equation. Finally, the restriction of 
L 

K- to S gives the second fundamental form of S with respect to L (recall (2.64)). This, in 

combination  with  (2.65),  means  that  K 

(6.63) as 

L|S is just the pull-back ψ⋆ Y, so we can rewrite 

 

0 S κYAB + ∇h
 ωB + ωAωB + 

1 (
RAB − Rh

 

) 
. (6.66) 

 

after reorganizing some terms. Equation (6.66) coincides with (2.128), again because R is 

the pull-back to N of the ambient Ricci tensor. 

For its use in Chapter 8, we now obtain the explicit form of the components of Y in 

the case when {N , γ, ℓ, ℓ(2), Y} defines a non-degenerate abstract Killing horizon 

of order one with constant surface gravity κ. 
 

 
def 

Proposition 6.4.5. Assume the hypotheses and setup of Theorem 6.1.1 and let S = {p ∈ 

N such that η|p = 0}. Suppose further that {N , γ, ℓ, ℓ(2), Y} defines an abstract Killing 

v 

AB 0 
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horizon of order one with non-zero constant surface gravity κ, and that N can be foliated 

by a family of diffeomorphic cross-sections. Take one such cross-section S and construct a 

basis {n, vA} of Γ(TN ) by taking a basis {vA} of Γ(TS) and requiring £nvA = 0. If, in 

addition, κn = 0, s = 0 and ℓA =
d e f  

ℓ(vA) = 0, the components of the tensor Y in the basis 

{n, vA} are given by 

Y(n, n) = 0, (6.67) 

Y(n, vA) = Y(n, vA)|S, (6.68) 

Y(vA, vB) = 
1 ( h h α − 2r ∇h  α

)
 

+ 
 α  (

Rh − RAB + 2∇h  rB − 2rArB

) 
. (6.69) 

 

Remark 6.4.6. We know from Proposition 3.2.23, Lemmas 3.2.24 and 3.2.25 and Remark 

3.2.26 that one can select the gauge so that s = 0, κn = 0 and ℓA|S = 0. Moreover, since 

the basis {n, vA} is constructed so that £nvA = 0, it holds that £nℓA = (£nℓ)(vA) = 

2s(vA) = 0 (cf. (3.43)), so in these circumstances we can find a gauge where {s = 0, κn = 

0, ℓA = 0} everywhere on N . 

Proof. Let λ ∈ F(N ) be the unique foliation function satisfying λ|S = 0, n(λ) = 1. 
def 

Then, the vector fields {vA} are tangent to the leaves Sλ = {λ = const.}, since 

0 = (£nvA)(λ) = n(vA(λ)) − vA(n(λ)) = n(vA(λ))  =⇒ vA(λ) = vA(λ)|S = 0. 

 
Equation (6.67) follows at once because κn = 0 (recall (2.44)). On the other hand, 

from (6.22) and using that κ = const., U = 0 and הη 
= 0, it follows 

α£nr = 0   =⇒   £nr = 0, (6.70) 

where the implication is a consequence of the fact that N \ S is dense in N . Since 

£nvA = 0, it is immediate that (6.70) implies r(vA) = r(vA)|S, which proves (6.68) 

after again taking into account (2.44). Finally, in the present case equation (6.63) 

must hold for all leaves {Sλ}, hence everywhere on N . Particularizing it for ℓA = 0 

and constant non-zero κ gives (6.69) (recall that ωA =
d e f  

sA − rA = −rA). 

 

 
6.5 vacuum degenerate killing horizons of order one 

 
As an application of the results of Chapters 5 and 6, we consider the particular case 

of N defining a vacuum degenerate abstract Killing horizon of order one without 

) 
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assuming that the horizon can be foliated by spacelike sections. The analysis will 

reveal a version of the near horizon equation in a quotient space. 

Our setup is the following. We consider an abstract Killing horizon of order one 

{N , γ, ℓ, ℓ(2), Y} with everywhere non-zero symmetry generator η (cf. Definition 

5.4.5). We assume that {N , γ, ℓ, ℓ(2), Y} is embedded in a spacetime (M, g) with 

embedding ϕ and rigging ζ, and we let η be an extension of η =
d e f  

ϕ⋆η to a neigh- 

bourhood O of ϕ(N ). The fact that η vanishes no-where on N means that N 

cannot contain fixed points and that the proportionality function between η and n, 

which we have called α before, is equal to one. Moreover, it allows us to select the 

gauge so that η = n, which automatically forces the rigging ζ to satisfy g(η, ζ) = 1. 

Observe that since N is an AKH1 it holds that U = 0 and that the tensor Ση =
def 

£ ∇
 

satisfies Ση(ϕ⋆X, ϕ⋆W) = 0, X, W ∈ Γ(TN ). 

We let (M, g) be a spacetime admitting a Killing vector field η which defines a 

Killing horizon H ⊂ M according to Definition 2.6.1. 

As indicated elsewhere in this thesis, one can define the surface gravity κ of η|ϕ(N ) 

according to (2.81). Moreover, from Proposition 3.3.2 we know that the (abstract) 

surface gravity κ of η coincides with the pull-back of κ to N , i.e. κ = ϕ⋆κ. Since in 

the present case η = n, from (3.102) it also holds (reca

-

ll that α = 1) 

-

 

κ = −Y(n, n) = κn. 

 
When no assumptions on the topology of N are made, it is not possible in general 

to select a global cross-section. However, one can can always introduce a quotient 

space N / ∼ of equivalent classes under the equivalence relation 

p, q ∈ N ,   p ∼ q  ⇐⇒   q and p belong to the same integral curve of n. (6.71) 

 

In general N / ∼ is not a smooth manifold. Nevertheless, the case when N / ∼ is 

smooth is of special interest because, while still allowing for a simple treatment, 

it includes not only all cases where a global section exists but also topologically 

non-trivial cases. Since our aim in this section is to provide an example where 

our previous results apply, it makes sense to restrict ourselves to this situation. We 

therefore assume from now that {N , γ, ℓ, ℓ(2), Y} constitutes a degenerate2 abstract 

Killing horizon of order one such that N / ∼ is a smooth manifold. We moreover 

assume that the data is vacuum, i.e. that the constraint tensor Rab vanishes identically. 
 
 

 
2Recall the terminology introduced in Section 2.6 according to which degenerate Killing hori- 

zons are those for which κ (and hence κ) vanishes identically. 



6.5 vacuum degenerate killing horizons of order one 169 
 

 

� 

� 

� 

def 
π� p 

∥ � 

of order one and assume that the quotient N / ∼ is a smooth manifold. Then the metric �h 

A B 

AB A B 

Applying (π−1)⋆ to this equation gives (6.72) on U p�.  Since the point p is arbitrary, 

� 

 

It is well-known that covariant tensor fields in the quotient are in one to one- 

correspondence with covariant tensor fields on N that are completely orthogonal 

to n and are Lie constant along n. For a tensor Ta1···ap satisfying T(· · · , n, · · · ) = 0 

and £nT = 0, we shall denote with a hat the corresponding tensor in the quotient. 

The only exception in this notation is γ which indeed satisfies γ(n, ·) = 0 and 

£nγ = 0 (because U = 0), but for which the corresponding tensor on N / ∼ will 

be denoted with h. A reasoning analogous to that of Section 2.4.1 allows one to 

prove that h is a positive definite metric on N / ∼, so we also define its associated 

covariant derivative ∇�h and Ricci tensor R�h .  

By Lemma 3.2.7 the tensor ω =
d e f  

s − r is gauge invariant under the subgroup G1. 

This tensor satisfies ω(n) = 0 (because ω(n) = κn). By (4.19) together with Rab = 0 

and κn = κ = 0 we also have £nω = 0. Thus, this tensor descends to the quotient. 

The following result determines the field equations that �h and ω need to satisfy. 

 

Proposition 6.5.1. Let {N , γ, ℓ, ℓ(2), Y} be a vacuum degenerate abstract Killing horizon 

 

and the covector ω̂ satisfy the near horizon equation, namely 

R�hAB − ∇�h ω� B  − ∇�h ω� A − 2ω�  Aω�B = 0. (6.72) 

 

Proof. The projection π : N  −--- N / ∼ is a submersion. Consider any point 
p ∈ N / ∼ and select a point p ∈ N satisfying π(p) = p. There always exists 

a

� 

local section Sp of N near p (i.e. a non-degenerate emb

�

edded hypersurface S 

containing p). We let ψ : Sp '−--- N denote the corresponding embedding. Define 
def 

U p� = π(Sp) and = π ◦ ψ. This map is a diffeomorphism between Sp and U  and 

satisfies π� ⋆ �h  = h. Moreover, π�⋆ω� = ω , which follows at once from π⋆ω = ω and 

ψ⋆ω = ω∥. Moreover, the tensor S∥ vanishes identically as a consequence of (4.37) 

together with (5.62) (recall that α = 1). Proposition 4.3.2 in the present context 

yields the equation 

 

Rh − ∇h ωB − ∇h ωA − 2ωAωB = 0. (6.73) 

 

the equation

� 

holds everywhere on N / ∼. 

�

 



 

 



 

 

7 
M AT C H I N G F R O M A S PA C E T I M E 

V I E W P O I N T 
 

 

 
In this chapter, we start addressing the problem of matching two completely gen- 

eral spacetimes across a null hypersurface. The analyisis of this problem consists 

of two distinct parts. In the first (corresponding to Chapters 7 and 8) we approach 

the problem from a spacetime perspective, i.e. without considering the matching 

hypersurfaces in a detached way from the ambient spaces. The main assumption 

that we shall require is that the boundaries of the spacetimes to be matched can be 

foliated by a family of spacelike cross-sections. Chapter 7 focuses on the matching 

problem across null hypersurfaces in a general context while Chapter 8 is devoted 

to the problem of matching across embedded abstract Killing horizons of order 

zero. 

In the second part (namely Chapter 9), we adopt a fully abstract approach in order 

to provide a completely abstract formulation of the matching problem. We do this 

in a much more general framework, e.g. by refraining ourselves from making any 

topological assumption on the boundaries. This abstract viewpoint, as we shall see, 

is advantageous for various reasons. 

The structure of the chapter is as follows. In Section 7.1 we obtain some prior 

results that are needed later in the chapter. In Section 7.2, we include a brief dis- 

cussion on the problem of matching in the general case, namely for boundaries 

of arbitrary causal character. Section 7.3 constitutes the main part of the chapter 

and focuses on the null case. We first rewrite the standard matching conditions 

in terms of a basis of vector fields. Then we identify the necessary and sufficient 

conditions that allow for the matching. In Section 7.3.1, we demonstrate that all the 

information about the matching is encoded in a scalar function called step function 

and in a diffeomorphism between the set of null generators of each side. We also 

study the circumstances in which an infinite number of matchings are feasible, 

which occurs in particular whenever the boundaries are totally geodesic. In Sec- 

tion 7.3.2 we obtain explicit expressions for the matter-energy content of the most 
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general null shell resulting from the matching. We conclude the chapter by partic- 

ularizing the results to the matching of two regions of the spacetime of Minkowski 

across a null hyperplane. This allows us to connect the matching formalism with 

the cut-and-paste constructions (see e.g. [3], [85], [86], [87], [5]). 

 
 

7.1 prior considerations and setup 

 

So far, all the results we have presented in Chapters 3, 4, 5 and 6 (except those 

in Section 6.5) apply to arbitrary signature either of the tensor A in the purely 

abstract setting or of the semi-Riemannian ambient manifold (M, g) in the embed- 

ded case. The only restriction of course is that this signature cannot be positive 

or negative definite whenever we deal with null (metric) hypersurface data (cf. 

Lemma 3.1.1). 

From now on we shall concentrate on the matching problem of two spacetimes 

across null hypersurfaces. Thus, for the purposes of this chapter we shall assume 

that (M, g) is a spacetime with a null boundary N . As discussed in Section 2.4, 

in such case N is two-sided. We follow the notation in Definition 2.4.1 and let ϕ : 

N '−--- M be the embedding of the corresponding abstract hypersurface N in M 

(i.e. ϕ(N ) = N-) and γ be the first fundamental form (i.e. γ = ϕ⋆g). By construction, 

γ is semi-positive definite (non-null directions tangent to N- are all spacelike) and 

N always admits an everywhere transversal vector field L0 ∈ Γ(TM)|
N 

. 

The vector field L0 defines a rigging of N , and it can always be taken to be null 

everywhere. Indeed, given a null generator k of N , L0 being transversal means that 

g(L0, k) ̸= 0 everywhere. Thus, 
 

 

L =
d e f  L 

g(L0, L0) k (7.1) 

2g(L0, k) 

is both transversal (because g(L, k)|p ̸= 0 at every point p ∈ N ) and null (which fol- 

lows from squaring (7.1)). We emphasize, however, that the choice of a transversal 

vector field is non-unique, even when we fix it to be null. 

As mentioned above, in this chapter we shall assume that the boundaries of the 

spacetimes to be matched have product topology S × R with the null generators 

along R. This implies that they can be foliated by diffeomorphic spacelike sections 

(see Section 2.4). In these circumstances, it becomes helpful to introduce a basis 

of Γ(TM)|
N 

adapted to the foliation. Given a spacelike cross-section S ⊂ N , we 
 

1Of course this is in agreement with Lemma 3.1.1 because in the present case g has Lorentzian 
signature, and hence so does the ambient metric A. 
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-k 

- 

= 

- 

- 

- - 

- 

N- | v(p) = v0 ∈ R}. Although the topology of N- allows us to take k affine (see the 

 

construct a foliation function v ∈ F(N ) (see Definition 2.4.4) and a basis {L, k, vI} 

of Γ (TM) | N-  adapted to the foliation as follows: 

 

(A) k is a future null generator with surface gravity κ . 

(B) v ∈ F ( N- ) is the only foliation function satisfying v S 0, k(v) =
N- 

1. 

(C) Each vector field vI is tangent to the foliation, i.e. vI(v) = 0. 

(D) The basis vectors {k, vI} are such that [k, vI] = 0 and [vI, vJ] = 0. 

(E) L is a past null vector field everywhere transversal to N-. 

(7.2) 

 
Remark 7.1.1. The basis vector fields {k, vI} can always be constructed. Indeed, given a 

cross-section S ⊂ N and a choice of null generator k, one can take a basis {vI} of Γ(TS) 

and extend its vector fields uniquely to N- by enforcing £kvI = 0. Then 

0 = (£kvI)(v) = k(vI(v)) − vI(k(v)) = k(vI(v))  =⇒   v I (v)|
N- = vI(v)|S = 0, 

hence the vector fields {vI} are tangent to the foliation and satisfy [k, vI] = 0. If, in 

addition, we take {vI} on S so that [vI, vJ]|S = 0, it follows that 

£k(£vI vJ) = £vI (£kvJ) + £[k,vI ]vJ = 0, (7.3) 

so [vI, vJ] = 0 holds everywhere on N-. 

 
def 

As usual, we denote the leaves of the foliation by {Sv}, i.e. we let Sv0 = {p ∈ 

 

discussion in Section 2.4), for the moment we refrain ourselves from enforcing κk = 

0. Observe that all vector fields {vA} are by costruction spacelike and that {k, vI} 

constitutes a basis of Γ(TN ). The fact that k is future, together with k(v)|
N 

= 1, 

means that the foliation function v increases towards the future of N . 

Following the notation of 2.4, we let h be the induced metric on the leaves {Sv}, 

and denote its components in the basis {vI} by hIJ, i.e. 
 

hIJ =
d e f  

g(vI, vJ). (7.4) 

The components of the inverse metric h♯ of h in the dual basis {θI} of {vI} are 

hIJ and, just as before, we use hIJ , hIJ to lower and raise Capital Latin indices. We 

also define the second fundamental form K- k of N- with respect to the normal k 
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σL (vI) + 
µ1 

K k + K (vI, v )vJ, (7.8) 

 

according to (2.84). By the property [k, vI] = 0 satisfied by the basis vectors {vI}, 

(2.85) can be rewritten in the present case as 

k
 
h(vI, vJ)

 
=
N- 

2Kk(vI, vJ). (7.5) 

As we did in (2.99), we introduce the tensor field ΘL and the one-form σL on the 

leaves {Sv} (recall that ΘL is not symmetric in general because L does not need 

to be normal to the leaves {Sv}). For any basis {L, k, vI} verifying (7.2), we also 

define n scalar functions {µa} ⊂ F ( N- ) as 

µ1 (p) =
d e f  

g(L, k)|p, µI (p) g(L, vI)|p ∀p ∈ N-. (7.6) 

 

Although clearly the functions {µa} depend on the choice of the basis vectors 

{L, k, vI}, for the sake of simplicity we do not reflect this dependence in the nota- 

tion. Observe that necessarily µ1 ̸= 0 everywhere on N (in fact, since L is past and 

k is future µ1 > 0 is forced, recall (A), (E) in (7.2)). 

It may seem strange not to restrict L to satisfy µI = 0, i.e. to be orthogonal to 

the leaves of the foliation. The reason is that there are many cases where the most 

convenient choice of L (e.g. to simplify the computations) does not verify µI = 0. 

An explicit example where choosing L non-orthogonal to the leaves turned out to 

be useful appears in [5]. The functions µI in that paper happen to be the currents 

J (U, η, η̄ ) and J¯ (U, η, η̄ ) ,  which play a fundamental role in the physical description 

of the impulsive gravitational wave associated to the matching. 

For later purposes, it is convenient to provide the explicit form of several covariant 

derivatives with respect to the vector fields k and vI. Since ∇kk is given by (2.82) 

and ∇kvI = ∇vI k (cf. (7.2)), we only require ∇vI vJ, ∇vI k, ∇kk, ∇vI L and ∇kL. 

When L is normal to the sections, the corresponding expressions can be found 

e.g. in [125]. The general form when L need not be orthogonal to the leaves was 

obtained for the first time in our paper [103]. These expressions can be regarded 

as an expanded form of equations (19) and (21) in [64]. 

Lemma 7.1.2. Let N be an embedded null hypersurface admitting a foliation {Sv} given 

by v ∈ F(N ). Consider a basis {L, k, vI} of Γ (TM) |N satisfying conditions (7.2). Then, 

the tangential derivatives of the basis vectors read: 

1 1 ∇v vJ = − K- (vI, vJ) L + 

(
vI (µJ) − ΘL (vI, vJ) − ΞK µK

) 
k + ΞK vK, (7.7) 

 
 

I µ1
 

( 
 

 
 

 
 

µ1 

µJ 
k
 

- 

J I J I 

1 
- J

 

∇kk = κk k (7.9) 

∇kvI = ∇vI k = − (vI, vJ) 
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µ ( 

µ1 

µ1  
− 

J I 

( 1 

µ1 

J I 

J I 

J I 

I 

I 

I J I J I I 

I J I µ1 I J I 

µ1 I J I µ1 J I 

= 

I 

 

J 

∇vI L = ηI L − 
µ1

 ΘL(vI, vJ) − ηIµJ

) 
k + 

(
ΘL

 

(vI, vJ) − ηIµJ

)
 vJ, (7.10) 

∇kL = 
( 

k (µ1) 
− κ-k

 
1 (

L +

 µIµI 
k
 

µ1 
− µIvI

1

 

− 
(
k (µI) + µ1σL (vI) 

) ( µI 

k vI 

1 
, (7.11) 

 

where ΞK and ηI are defined by 
 

 

 

K def 
J I 

µK 
1 (

g(vK, ∇vI vJ) + K- k (vI, vJ) , (7.12) 
µ1 

ηI =
d e f  

vI (µ1) + σL (vI) . (7.13) 
µ1 

Remark 7.1.3. The vector field L + µ
IµI k − µIv is orthogonal to both v and L, whereas 

J 

µI 

k − vI is orthogonal to L. 

Proof. We start with ∇vI vJ. For suitable scalar functions αIJ, β IJ and ΞK , this de- 

rivative can be expressed as ∇vI vJ = αIJ L + β I Jk + ΞK vK. Using (7.6), it follows 

that 

1 
⟨k, ∇vI vJ ⟩g = αIJµ1, ⇐⇒ αIJ = 

µ1 
⟨k, ∇vI vJ ⟩g, 

⟨vL, ∇v vJ⟩g = αIJµL + ΞK hKL, ⇐⇒ ΞK = ⟨vK, ∇v vJ⟩g − αIJµK, (7.14) 

⟨L, ∇v vJ⟩g = βIJµ1 + ΞK µK, ⇐⇒ βIJ = 
 1  (

⟨L, ∇v vJ⟩g − ΞK µK

) 
, 

which, together with (2.97) and (2.99), gives 

1 1 k 

αIJ = − 
µ1 

⟨vJ, ∇vI k⟩g = − 
µ1 

K- (vI, vJ) , 

ΞK = ⟨vK 
µK 

k
 

, ∇vI vJ⟩g + 
µ1 

K- (vI, vJ) , (7.15) 

βIJ = 
 1  (

vI (µJ) − ⟨∇v L, vJ⟩g − ΞK µK

) 
= 

 1  (
vI (µJ) − ΘL (vI, vJ) − ΞK µK

)
 

and hence (7.7). We can repeat the process for the derivative ∇vI k and decompose 

it as ∇vI k = αI L + βIk + εLvL. Then, 

1 
αI = 

µ1 
⟨k, ∇vI k⟩g = 0, 

εL = ⟨vL , ∇vI k⟩g = K- k (vI, vL ), (7.16) 

Ξ 

µ1 
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µ1 

µ1 

(
- 

)    

1 k 

µ k 

1
 

J I 

 

1 
βI = 

µ1
 

(
⟨L, ∇v k⟩g − εKµK

)
 = − 

(

 
J 

σL (vI) + 
µ1 

K- (vI, vJ) . 

Substituting in ∇vI k gives (7.8). Equation (7.9) is simply (2.82). On the other hand, 

decomposing ∇vI L = ϑI L + νIk + ρLvL one obtains 

1 1 v (µ ) 
ϑI = ⟨k, ∇v L⟩g = 

 
vI (µ1) − ⟨∇v k, L⟩g

 
=  I 1  + σL(vI), 

  

µ1 
I
 

L L 

µ1 I µ1 
L L L µL 

L 

ρI = ⟨v , ∇vI L⟩g − µ ϑI = Θ (vI, v ) − 
µ1 

vI (µ1) − µ σL(vI), (7.17) 

νI = 
1 

⟨L, ∇v L⟩g − 
ρIµJ

 
  

J 

= − 
ρIµJ 

= − 
µ

 
 

ΘL(vI, vJ) − 
µJ 

vI (µ1) − µJσL(vI)

1 

. 

µ1 
I
 µ1 µ1 µ1 µ1 

Using the definitions (2.99) and (7.13) and inserting the results into ∇vI L proves 

(7.10). Finally, writing ∇kL = aL + bk + cIvI yields 

aµ1 = ⟨k, ∇kL⟩g = k (µ1) − κkµ1, (7.18) 

bµ1 + cIµI = ⟨L, ∇kL⟩g = 0, 

-

 

 
(7.19) 

aµJ + cJ = ⟨vJ, ∇kL⟩g = k (µJ) − ⟨L, ∇kvJ⟩g = k (µJ) + µ1σL (vJ) . (7.20) 

Equation (7.18) immediately provides a, while from (7.19) one gets b = − cIµI . 

Multiplying (7.20) by hJK gives cI =  κk − 
k(µ1)  

µI + hIJk (µJ) + µ1σL vI , and 

the substitution of a, b, cI on ∇kL proves (7.11). 

 

Remark 7.1.4. A straightforward calculation yields 
 

K = 
2 

hKA
 

vI

 
hAJ

 
+ vJ (hAI ) − vA (hIJ )

 
+ 

µK 

µ1 
K- (vI, vJ) . (7.21) 

Proof. The proof is based on the fact that [vI, vJ] = 0. A direct computation gives 

2g(vA, ∇vI vJ) = g(vA, ∇vI vJ) + g(vA, ∇vJ vI) 

= vI(hAJ) − g(vJ, ∇vI vA) + vJ(hAI) − g(vI, ∇vJ vA) 

= vI(hAJ) + vJ(hAI) − g(vJ, ∇vA vI) − g(vI, ∇vA vJ) 

= vI (hAJ ) + vJ (hAI ) − vA(hIJ ) 

 

from where (7.21) follows at once after using (7.12). 

Ξ 

J 
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Consider two given spacetimes (M±, g±) with boundaries N-± of any causal char- 

 
7.2 matching of spacetimes with boundaries of any causality 

 
We devote the rest of the chapter to the problem of matching two spacetimes with 

boundary. In particular, in this section we discuss briefly the general case (namely 

when the boundaries have any causal character) while in later sections we focus 

on the matching across null boundaries, which constitutes the core topic of the 

second part of this thesis. 

 

acter. As we mentioned in Section 2.7, the matching of (M±, g±) across N-± is 

possible if and only if the so-called junction conditions or matching conditions are 

satisfied. In the language of the formalism of hypersurface data, we already know 

from Theorem 2.7.1 that the junction conditions require that there exists a metric 

hypersurface data set that can be embedded in both spacetimes so that the riggings 

ζ± to be identified in the matching process satisfy an orientation condition. 

It should be emphasized however, that this formulation of the matching condi- 

tions in terms of metric hypersurface data is a reformulation of the traditional 

one, which can be called "standard" or "à là Darmois" matching conditions. In the 

standard à là Darmois matching procedure, the junction conditions constitute a set 

of equalities that provide information about the identification between points of 

the boundaries   ± and between the tangent spaces T    ±, together with the 
N 

mentioned restriction upon the orientation of two transverse vector fields that are 

identified in the matching process. Specifically, the junction conditions in the tra- 

ditional way are formulated as follows (see e.g. [64]). 

Standard Junction Conditions. The matching of two given spacetimes (M±, g±) with 

boundaries N ± can be performed if and only if 

(i) There exist two riggings ζ± along N ± and a diffeomorphism Φ : N − −--- N + such 

that 

Φ⋆(g+) = g−, 

Φ⋆(g+(ζ+, ·)) = g−(ζ−, ·), (7.22) 

Φ⋆(g+(ζ+, ζ+)) = g−(ζ−, ζ−). 

 

(ii) One rigging must point inwards with respect to its boundary and the other outwards. 

In the following, two riggings ζ± satisfying (7.22) for a diffeomorphism Φ will be 

called matching riggings. The diffeomorphism Φ, on the other hand, will be referred 

to as matching map. 
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Observe that if (7.22) holds for one pair of riggings ζ± then, for any other choice 

of rigging on one of the sides, conditions (7.22) are also fulfilled. Indeed, one can 

take a function z ∈ F ⋆(N −) and a vector V ∈ Γ(TN −) and construct another 

rigging ζ′− = z(ζ− + V) on the minus side, and it is straightforward to check that 

the rigging ζ′+ =
d e f  

z(ζ+ + V) with z =
d e f  

(Φ−1)⋆z and V =
d e f  

Φ⋆V also verifies (7.22). 

Since the same logic obviously applies if one decides to change the rigging on the 

plus side, it follows that the rigging can always be selected at will on one of the 

sides (although of course different choices of rigging on one side will correspond 

to different riggings on the other side). For the rest of the chapter, we shall make 

use of this freedom to fix ζ− at our convenience. This entails no loss of generality, 

as one can always switch the names of the spacetimes to be matched. 

As proven e.g. in Lemmas 2 and 3 of [65], given a rigging on one side (say ζ−) 

and a diffeomorphism Φ : N − −--- N + satisfying Φ⋆g+ = g−, at non-null points 

the second and third equations of (7.22) yield either no solution for ζ+ (hence the 

matching is not possible) or two solutions for ζ+ with opposite orientation. At null 

points, on the other hand, if there exists a solution ζ+ then it is unique. This means 

that at non-null points one can always make a suitable choice of rigging ζ+ so that 

the junction condition (ii) is fulfilled (as long as (7.22) provide a solution). In the 

null case, however, this is not so. Since both riggings must be identified in the 

matching process (which in particular force them to point into the same side of the 

matching hypersurface on the resulting spacetime), it could well happen that there 

exists a solution ζ+ of (7.22) with unsuitable orientation, and then the matching 

could not be performed. Thus, at null points conditions (7.22) are necessary but 

not sufficient to guarantee that the matching can be performed. As we mentioned 

in Section 2.7, this can also be understood within the framework of the formalism 

of hypersurface data, and has to do with the fact that there exist two gauge group 

elements leaving a fully non-null metric hypersurface data set invariant, and only 

one when the data contains a null point. 

When a matching of two spacetimes (M±, g±) is possible, the associated matching 

map Φ turns out to be the key object upon which the whole matching depends. 

This is so because once the point-to-point identification of the boundaries N-± 

(ruled by Φ) is known, one matching rigging can be selected at will (as we have 

seen) and the other is simply the unique solution that arises from enforcing both 

(7.22) and (ii). This fact is relevant, since it implies that all the information about 

the resulting thin shell (e.g. the matter-energy or the purely gravitational content) 

is fully codified in Φ (in fact, this is the underlying reason why e.g. in all cut-and- 

paste constructions the whole matching information is codified in a specific jump 

in the coordinates that takes place at the matching hypersurface). 
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We have stated that the standard junction conditions can also be rewritten in the 

language of the formalism of hypersurface data according to Theorem 2.7.1. For 

the sake of self-consistency, we now justify how Theorem 2.7.1 follows from the 

standard junction conditions. 

For one of the boundaries, say N −, we can consider an abstract manifold N and 

an embedding ϕ− : N '−--- M− such that ϕ−(N ) = N −. We can also take any rig- 

ging ζ− along N − and define embedded metric hypersurface data {N , γ, ℓ, ℓ(2)} 

according to (2.22). Should the matching be possible, there must exist a matching 

map Φ. In that case, one can define yet another embedding ϕ+ : N '−--- N + by 

Φ ◦ ϕ− =
d e f  

ϕ+. The condition on the existence of a matching map Φ is therefore equi- 

valent to requiring existence of such extra embedding ϕ+ of N in M+. For a (still 

unknown) rigging vector field ζ+ along N +, conditions (7.22) can be expressed in 

terms of ϕ+ as 

(ϕ+)⋆(g+) = γ, (ϕ+)⋆(g+(ζ+, ·)) = ℓ, (ϕ+)⋆(g+(ζ+, ζ+)) = ℓ(2) (7.23) 

after applying the pull-back (ϕ−)⋆ to (7.22) and using that {N , γ, ℓ, ℓ(2)} is embed- 

ded in (M−, g−) with embedding ϕ− and rigging ζ−. Thus, the matching requires 

{N , γ, ℓ, ℓ(2)} to be embedded also in (M+, g+) with embedding ϕ+ and rigging 

ζ+, as was claimed in Theorem 2.7.1. For the reasons explained above, one must 

require in addition that one matching rigging points inwards and the other out- 

wards, with completes the justification of Theorem 2.7.1. For later purposes, we 

write (7.23) in terms of both ϕ− and ϕ+: 

γ = (ϕ−)⋆(g−) = (ϕ+)⋆(g+), 

ℓ = (ϕ−)⋆(g−(ζ−, ·)) = (ϕ+)⋆(g+(ζ+, ·)), (7.24) 

ℓ(2) = (ϕ−)⋆(g−(ζ−, ζ−)) = (ϕ+)⋆(g+(ζ+, ζ+)). 

 

The same way as one of the riggings (in our case ζ−) can always be chosen at will, 

it is always possible to select one of the embeddings freely. It suffices to adapt the 

abstract manifold N to one of the boundaries. In the following we shall make use 

of this freedom by fixing ϕ− at our convenience. Thus, all the information about 

the matching (which was encoded in the matching map Φ in the spacetime picture) 

will be codified in the (unknown) embedding ϕ+, which becomes the core object 

upon which the matching depends. 

To summarize, given two spacetimes with boundary, determining whether they 

can be matched amounts to finding two embeddings of an abstract manifold N 

onto their respective boundaries, in such a way that the matching conditions are 
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Figure 7.1: Matching of two spacetimes ( ±, g±) with boundaries ± of any causality, 

where is an abstract hypersurface embedded in ( ±, g±) with embeddings 
ϕ±, ζ± are matching riggings and Φ is the corresponding matching map. 

 
fulfilled (i.e. that the corresponding metric hypersurface data agree). We include 

Figure 7.1 for a schematic picture of the construction. The embeddings and the 

rigging vectors are not known or given a priori (although they can be freely chosen 

on one of the sides). In many circumstances such embeddings do not exist, and 

then the two spacetimes simply cannot be matched. In other cases, there exists 

several (even infinite) possible embeddings, giving rise to a certain number of 

joined spacetimes, which in general are different from each other (we discuss this 

later in Section 7.3.1 and in Chapters 8 and 9). 

When the junction conditions are satisfied, the geometry of the shell is determined 

by the jump of the transverse tensors Y± defined as (cf. (2.39)) 
 

 

Y± =
d e f  

2 
(ϕ±)⋆ 

 
£ζ± g±

 
, namely [Y] =

d e f  
Y+ − Y−. (7.25) 

 

ζ+ 

φ+ 
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), and introduce the tensor fields respect to the normals k± (cf. (2.84) ΘL 
± and the one- 

 
7.3 matching of spacetimes across a null hypersurface 

 
For the rest of the chapter we concentrate on the null case, i.e. we assume that the 

boundaries N ± consist of null points exclusively. 

Later we shall make use of the freedom of selecting one of the matching riggings 

ζ± by enforcing that ζ− is null and past. We will also need to compute the explicit 

expression for ζ± in terms of a basis of vector fields adapted to the boundaries. 

In order to avoid complications with the signs of the components of ζ± in the ad- 

apted basis, we take the following precaution. If the null past rigging ζ− points 

inwards (resp. outwards) with respect to (M−, g−) and the null riggings along 

N + which point outwards (resp. inwards) with respect to (M+, g+) happen to be 

future, we change the time-orientation of (M+, g+) before doing the matching. If 

this change of orientation was not done a priori, then it would have to be done 

a posteriori after the matching was performed. Otherwise the resulting spacetime 

would not have a well-defined notion of past and future at points on the matching 

hypersurface. In the already matched spacetime, we would be allowed to change 

the orientation to either the M− or to the M− side, so it may seem that the 

choice we make of changing the orientation of M+ before matching entails some 

loss of generality. However, this is not so because after we have performed the 

matching it is always possible to change the orientation everywhere. In summary, 

the choice we make is able to recover all matchings, and removes some spurious 

signs that would complicate unnecessarily the presentation. This change, in the 

end, is equivalent to assuming that one of the boundaries lies in the future of its cor- 

responding spacetime while the other lies in its spacetime past. Diagrams (a)-(d) in the 

left part of Figure 7.2 depict all scenarios where a null past rigging ζ− pointing 

inwards (resp. outwards) is identified with a null future rigging ζ+ pointing out- 

wards (resp. inwards). Diagrams (a)-(d) in the right part of Figure 7.2, on the other 

hand, show the corresponding matchings once the time-orientation of (M+, g+) 

has been changed. 

For the rest of the section, our setup will be the following. 

 

Setup 7.3.1. We let (M±, g±) be two spacetimes with null boundaries N-± that can 

be foliated by a family of diffeomorphic spacelike cross-sections. We construct respective 

foliation functions v± ∈ F(N ±) and basis {L±, k±, v ±
I  } of Γ(TM±)|

N ± according to 

(7.2). The leaves of the foliations, as usual, are denoted by {Sv
± }, while their corresponding 

induced metrics are h±. We also let K- k be the second fundamental forms of N-± with 
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Figure 7.2: Left part: (a)-(d) depict the possible scenarios in which a null past rigging 

ζ− along N-− points inwards (resp. outwards) and a null rigging ζ+ along 
+ pointing outwards (resp. inwards) happens to be future. Right part: (a)-(d) 

are the corresponding matchings after having changed the time-orientation of 

(M+, g+). 

 

forms σ ±
L  on the leaves {Sv

± } (cf. (2.99)). The scalar functions { µ±
a  } ⊂ F ( N-±) are 

 
 

We have seen that the matching requires being able to embed a single metric hy- 

persurface data set in both spacetimes, and that this metric hypersurface data can 

always be adapted to one of the boundaries, namely that the embedding and rig- 

ging on one side (in this case the (M−, g−) side) can always be selected at will. 

On the other hand, in Setup 7.3.1 we have already taken a basis {L−, k−, v −
I  } of 

Γ(TM−)| −. We codify the freedom in the choice of {ϕ−, ζ−} as follows. We first 

consider an abstract null hypersurface N and define coordinates {y1 = λ, yA} 

therein. Then, we construct null embedded metric hypersurface data by enforcing 

 

 

 

 

ζ+ 
 

 

 ζ+ 

 + 

defined by (7.6) {L±, k±, v ±
I  }. 
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that (a) the push-forwards of the vector fields {∂ya } coincide with the basis vectors 

{k−, v −
I  } (since we have full freedom in the choice of {k−, v −

I  }, with this procedure 

we ensure that the embedding ϕ− is built at our convenience) and (b) that the 

rigging ζ− coincides with the basis vector L− (with which we ensure that ζ− is 

selected freely). This amounts to impose 

 
e− = k−, e− = v−, ζ− = L−, where e −a  =

d e f  
ϕ−(∂ya ). (7.26) 

1 I I ⋆ 

Observe that an immediate consequence of (7.26) is that γ(∂λ, ·) = 0, i.e. λ is a 

coordinate along the degenerate direction of N . 

For the matching of (M±, g±) to be possible, there must exist another pair 

{ϕ+, ζ+} so that (7.24) hold (and the orientations of ζ± are suitable). If that is 
+ def + + 

the case, we can build another basis {ea 

matching conditions (7.24) as2
 

= ϕ⋆ (∂ya )} of Γ ( T N- ) and rewrite the 

 
γij = g−(ei

−, e −
j  ) = g+(e+, e+), (7.27) 

i j 

ℓi = g−(ei
−, ζ−) = g+(e+, ζ+), (7.28) 

ℓ(2) = g−(ζ−, ζ−) = g+(ζ+, ζ+). (7.29) 

In these circumstances, determining the matching amounts to finding the explicit 

form of the vector fields {e+}, since they fully codify the embedding ϕ+ and, as 

we have seen, it is precisely this map that encodes all the information about the 

matching. 

One way of obtaining the vectors {ζ+, e+} explicitly is to derive their components 

in the basis {L+, k+, v+}. As one can expect, the vector field e+ takes a simple form. 

Indeed, particularizing (7.27)-(7.28) for i = 1 and using (7.26) yields 

g+(e+, e+) = 0, 0 ̸= ℓ1 = g+(e+, ζ+), 

which means that e1 must be a null generator of N-, hence proportional to k+. The 

vector fields {ζ+, e+} (still to be determined) can therefore be decomposed as 

e+ = fk+, e+ = aIk+ + bJv+, ζ+ = 
 1 

L+ + Bk+ + CKv+, (7.30) 
1 I I  J A K 

J K + 

for suitable scalar functions f, aI, bI , A, B, C ∈ F ( N- ). Note that in (7.30) we have 

written 1/A. This has been done for later convenience and to emphasize that this 

coefficient cannot vanish because the rigging ζ+ is, by definition, transversal to 
 

2Although the data tensor fields and the scalar products are evaluated on different points, 
whenever it is clear from the context we do not reflect this in the notation. 
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N +. Combining (7.2), condition (7.29) and the choice (7.26), it follows that both 

riggings ζ± must be null. The sign of A, which cannot change because this would 

mean that A vanishes at some point, must be such that L− and A−1 L+ have the 

same causal character. Since L± are both past vector fields, A > 0 is required for 

the matching to be possible. 

The basis vectors k± have been taken future in (7.2). This, together with the choice 

(7.26) and with the fact that the vector fields e1± are to be identified in the matching 

process means that e1± are also future. Concretely, this means that the coordinate 

λ must increase to the future along the null generators on both sides. Since by 

construction the foliation functions v± also increase to the future along the null 

generators, it follows that v± must grow with λ. More on the relation between the 

foliation functions v± and λ is discussed in the next section. 

Equations  (7.27)-(7.29)  can  also  be  written  in  terms  of  the  components 

f, aI, bJ, A, B, CK and the induced metrics h±. Indeed, inserting (7.30) into (7.27)- 
(7.29) and defining f =

d e f  
(µ− ◦ Φ−1)/µ+ leads us to 

1 

 

h− |p = bLbKh+
 

1 

 

|Φ(p) , (7.31) 

µ1
− | p = 

fµ+ 

A 
 

Φ(p) 
=⇒ e+ = f Ak+ , (7.32) 

µ−|p = 
1 

(aIµ+ + bJµ+) + CKbJh+ 1 , (7.33) 
 

0 = 2Bµ+ + 2CJµ+ + ACICJh+ , (7.34) 

 

where p is any point of N-−. We recall that the spacetimes (M±, g±) and the 

basis L±, k±, v ±
I   are known, and hence so are the quantities { µ ±

a  } and h ±
I  J . In 

these circumstances, equations (7.33)-(7.34) provide a unique solution for B and 

CK in terms of the quantities A, aI and bK, yet to be determined. Consequently, by 

expressing the matching conditions as (7.31)-(7.34), we are reducing the problem 

of matching to finding explicit expressions for the functions aI, bJ, A which, as we 

shall see in the next section, are given by a set of n scalar functions (namely the 

components of ϕ+). 

In order to simplify the notation from now on we make the slight abuse of notation 

of identifying functions on N with their counterparts in N-±. 

Φ(p) 

Φ(p) 
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7.3.1 The step function 

 

The fact that the quantities A, aI and bK can be (locally) written in terms of a set 

of n scalar functions will be proved by studying the properties of the vector fields 

{ei
±}. From the standard property ϕ⋆

± [X, Y] = [ϕ⋆
± X, ϕ⋆

±Y], X, Y ∈ Γ(TN ) and 

given that ei
± are the push-forward of a coordinate basis, it must hold 

 

[ei
±, e ±

j  ] = 0. (7.35) 

For ei
− these conditions are not helpful because {k−, v −

I  } verify item (D) in (7.2). 

On the other hand, the vectors {e+} are still unknown, so (7.35) provide useful 

information. Inserting (7.30) one easily finds 

0 = [e+, e+] = 
(

e+(aJ) − e+(aI)
)
k+ + 

(
e+(bK) − e+(bK)

)
v+, (7.36) 

0 = [e+, e+] = 
(

e+(aJ) − e+(f)
)
k+ + e+(bI)v+. (7.37) 

Setting each component to zero and using that ϕ+(X)(u) = X(u ◦ ϕ+), we get 
 

∂aJ ∂a  ∂bK ∂bK 
e+(aJ) = e+(aI), e+(bK) = e+(bK), ⇐⇒ = I ,  J  =  I , (7.38) 

I J I J J I 

 + + + K 

∂yI ∂yJ 

∂aJ ∂f 
∂yI ∂yJ 
∂bK 

e1 (aJ) = eJ (f), e1 (bJ ) = 0, ⇐⇒ 
∂λ 

= 
∂yJ 

,
 

 J  = 0. (7.39) 
∂λ 

It follows that, locally on N , there exist functions H(λ, yA) and hI (λ, yA) such that 
 

 

aI = 
∂H(λ, yA)

,
 

∂yI 

 ∂f  

∂yJ 
=

 

∂aJ 
=

 

∂λ 

∂2 H(λ, yA)
, (7.40)

 

∂λ∂yJ 

bK ∂hK (λ, yA) K K A 

I = 
∂yI , bI = bI (y ). (7.41) 

From (7.41) we conclude that hI (λ, yA) must decompose as 

hI(λ, yA) = hI (λ) + hI (yA). (7.42) 
λ y 

The integration "constant" hI (λ) is irrelevant because it does not change bK or aI, 
λ I 

hence it affects neither e+ nor the embedding ϕ+. Thus we may set hI (λ) = 0 

without loss of generality and conclude hI = hI (yA) and 
 

 

bK = 
∂hK (yA)

. (7.43) 
∂yI 
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I 

- 

 
On the other hand, substituting (7.32) into (7.40) yields 

 
 ∂  

f A
 

∂yJ 

∂H
 

λ, yA
 \

 
 

 

 

 

∂H  λ, yA 
= 

∂λ 

 

f A + β (λ) 

 

, (7.44) 

 

where β(λ) is an arbitrary function of λ. Since the function β(λ) does not affect e+ 

(by (7.30)), with a suitable redefinition of H(λ, yA) we ensure 
 

∂H(λ, yA) 
= f A = f, 

∂λ 
 

Now combining (7.2) and (7.30), it follows 

∂H(λ, yA) 

∂yI = aI. (7.45) 

 

e+ v f Ak+ v f A 
∂H(λ, yA)

, e−  v
 k− v 1, (7.46) 

1 ( +) = ( +) = = 
∂λ

 1 ( −) = ( −) = 

e+ v a k+ v a 
∂H(λ, yA)

, e−  v
 v− v 0, (7.47) 

I ( +) = I ( +) =  I = 
∂yI 

I ( −) = I ( −) = 

from where one concludes that the foliation functions v± verify 

v− ◦ ϕ− = λ + const., v+ ◦ ϕ+ = H(λ, yA) + const. (7.48) 

on N . The constants are again irrelevant and can be absorbed in the coordinate λ 

and in H respectively, so we may set them to zero without loss of generality and 

write 

v− ◦ ϕ− = λ, v+ ◦ ϕ+ = H(λ, yA). (7.49) 

Given a point p± ∈ N ±, the value v±(p±) indicates at what height (as measured 

by λ) the point p± is located along the null generator that contains it. In view 

of (7.49), the function H(λ, yA) measures the step on the null coordinate when 

crossing from M− to M+. For this reason, we call H(λ, yA) step function. 

The existence of the step function immediately connects the cut-and-paste construc- 

tions with the matching formalism developed above. In the seminal construction 

by Penrose [86], [87], plane-fronted impulsive gravitational waves propagating in 

the Minkowski spacetime are constructed by cutting out Minkowski across a null 

hyperplane and reattaching the two regions after shifting the null coordinate of 

one of the regions. To be specific, using double null coordinates where the four- 

dimensional Minkowski metric is gMink = −2dudv + dx2 + dy2 and the impulsive 

wave is located at u = 0, the reattachment is performed after shifting v in u = 0+ 

by v --- v + h(x, y), where h(x, y) is an arbitrary function. This jump is precisely 

of the form (7.49) with H = v + h(x, y), provided we use {v = λ, x, y} also as 

coordinates intrinsic to the null hyperplane, so that the embedding ϕ− becomes 

∂λ 
− = 
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⊂ N- 

 

the identity. Another example of the direct connection between the step function 

H and the cut-and-paste construction appears in [5], where expression (7.49) is 

equivalent to H = V − H(η, η̄ ) .  More details about the connection between the 

matching formalism and the cut-and-paste construction are given in Section 7.3.3 

below. 

At this point, it is convenient to pause for a moment and summarize what we 

have found. Assuming that one matching rigging points inwards and the other 

outwards, the matching is possible if and only if the junction conditions (7.31)- 

(7.34) are satisfied. The last two are always solvable and determine uniquely the 

coefficients B and CI (i.e. the tangential components of the rigging ζ+) in terms 

of A, aI and bJ, which in turn are given by {H(λ, yJ ), hI (yJ )} according to (7.43) 

and (7.45). The functions H(λ, yJ ), hI (yJ ) ∈ F(N ) verify that ∂λH > 0 (because 

of (7.49), recall that v± and λ increase towards the future) and that the Jacobian 

matrix 
∂(h2, ..., hn+1) 

∂(y2, ..., yn+1) 

has non-zero determinant (because { e ±
I  } must be spacelike necessarily). 

Equation (7.32), on the other hand, allows us to conclude that the null generator 

e1− must be identified with another null generator e+ in the process of matching. 

This equation also establishes the explicit form of e+ in terms of k+ and (the first 

derivative of) the step function H(λ, yA). 

Finally, we come to equation (7.31), whose solvability constitutes the core problem 

for the existence of the matching. In order to understand the geometric meaning of 

this condition, we argue as follows. Firstly, note that for any p ∈ N −, the section 

S−   = v  = v (p)    − is mapped via Φ to the (necessarily) spacelike sub- 
− 

manifold Φ(S−  )  +. In these circumstances, the combination of (7.31) and 

(7.43) implies t h
−  

at there exists an isometry between these two submanifolds. Even 

more, since the functions {hB} depend only on {yA}, this isometry must be uni- 

versal in the sense of being independent of the value v−(p). This fact was already 

observed in [126] (see equations (2.9)-(2.10)) and later in [127] when studying the 

coordinate changes leaving the first fundamental form γ invariant. 

In order to describe this more explicitly, we transfer the coordinates {λ, yI } from 

N to N-− so that the embedding ϕ− takes the simple form 

 

ϕ− : N '−--- N-− ⊂ M−
 

(7.50) 
(λ, yI ) −--- ϕ−(λ, yI ) = v− = λ, yI , 
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morphism Ψ between the set of null generators of N-− and the set of null generat- 

0 + 
− 

1 I J λ I J − I J 1 I J λ I J λ + I J 

− I J I J + A B 

 I + + 

and construct coordinates {v+, u } on N- such that vI  = ∂uI (in particular, they 
 

 

ϕ+ : N '−--- N-+ ⊂ M+
 (7.51) 

(λ, yI ) −--- ϕ+(λ, yI ) =
 

v+ = H(λ, yI ), uI = hI (yJ )
 

. 

 
0 J I J 

and the section S
v

−
0 in N-− is mapped to Φ(S

v
−

0 ) = {v+ = H(λ = v , y ), u (y )}. 

A point p ∈ N-− can be identified uniquely by specifying the null generator to 

which it belongs together with its height v−(p) along the generator, and the same 

happens on N +. Thus, the matching is feasible if and only if there exists a diffeo- 

 

ors of N- (defined locally by u (y )) such that, for each possible value of v−, the 

map that takes each point at height v0 along a generator σ in N-− to the point at 

height H|σ(v−) in N- along the generator Ψ(σ), happens to be an isometry. This is 

of course a very strong restriction and generically it will not be possible to find H 

and Ψ verifying it (which simply means that the matching cannot be done). How- 

ever, as we see next, there are situations where the matching is not only feasible 

but it even allows for an infinite number of possibilities, and other cases where 

there is at most one possible step function H for each admissible choice of Ψ. 

 

7.3.1.1 Second fundamental forms and multiple matchings 

We conclude this section on the step function by showing that, in any feasible 

matching, the second fundamental forms K± are related to each other and to the 

step function. To prove this, we first recall that e1
− = k− and e+ = (∂λH)k+. Com- 

bining this with (7.5) one obtains 
 

k 

e−(h− ) = ∂ h− = 2K-  (v−, v−), e+(h+ ) = ∂ h+ = 2(∂ H ) K-  (v , v ). (7.52) 

 
On the other hand, the partial derivative of (7.31) with respect to λ gives 

 

∂λh− = ∂λ(b
AbB)h+  + bAbB∂λh+  = bAbB∂λh+

 (7.53) 
I J I J AB I J AB I J AB 

 

after using that the coefficients bJ do not depend on λ (cf. (7.39)). Putting (7.52)- 

(7.53) together yields  

 

K- k 
(v−, v−) = (∂ 

 

 

H)b b K- (v , v ). (7.54) 

are constant along the null generators). Then, the embedding ϕ+ takes the form 

λ 
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Since we are assuming the geometry of N ± to be known and the basis {k±, v ±
I  } 

have been chosen, this expression determines, for each possible choice of Ψ (i.e. 

of bA fulfilling (7.31)), a unique value for ∂λH unless the two second fundamental 

forms vanish simultaneously. If, on the other hand, there exist open sets O± ⊂ N ± 

related by O+ = Φ(O−) and such that 

K- k 
(v±, v±)|  ± = 0, (7.55) 

 
then (7.54) is identically satisfied. Whenever (7.55) holds, all the spacelike sections 

in O± are isometric to each other, and the same happens in O+. This is a con- 

sequence of (7.5) and the equality (2.95) between the quotient metric at any point 

p ∈ N-± and the metric h± of any spacelike section passing through this point. 

Thus, the set of null generators can be endowed with a positive definite metric. If 

there is an isometry Ψ between these two spaces, then any step function H(λ, yI ) 

satisfying ∂λH > 0 defines a feasible matching. This means that a point p ∈ N − 

lying on a null generator σ− can be shifted arbitrarily along the null generator 

σ+ =
d e f  

Ψ(σ−) in N + with the only condition that if q is to the future of p along 

σ− then their images have the same causal relation along σ+. The matching in 

these circumstances exhibits a large freedom. Two examples of this are the fol- 

lowing cut-and-paste constructions: the plane-fronted impulsive wave [85], [86], 

[87] by Penrose and both the non-expanding impulsive wave in constant-curvature 

backgrounds [88], [6] and the impulsive wave with gyratons [5] by Podolskỳ 

collaborators. 

 

7.3.2 Energy-momentum tensor of the shell 

and 

 

As mentioned in Chapter 2, the fundamental properties of the matter and energy 

content of a shell are encoded in its associated energy-momentum tensor, which 

we denote by τ. This tensor can be suitably defined within the formalism of hyper- 

surface data (see Definition 2.7.3), so a natural question is whether one can find a 

more explicit form for it, now that we have been able to codify all the information 

about the matching in the set of functions {H(λ, yA), hB(yA)}. 

In this section, we assume that the two spacetimes (M±, g±) can be matched 

and derive the energy-momentum tensor τ explicitly in terms of the functions 

{H(λ, yA), hB(yA)} and all the (known) geometric objects defined on the boundar- 

ies N-±. 
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Our starting point is Definition 2.7.3 and Corollary 3.2.6. In terms of the basis 

{∂λ, ∂yA } and its dual {dλ, dyA}, it is straightforward to conclude from (7.26)-(7.29) 

that the data tensors {γ, ℓ, ℓ(2)} are given by 

γ = h−
ABdyA ⊗ dyB, ℓ = µ1

−dλ + µ−
A dyA, ℓ(2) = 0. (7.56) 

Observe that the components γIJ coincide with those of the induced metric h −
I  J on 

the leaves {λ = const.}. So, to simplify the notation, from now on we shall use γIJ 

instead of h −
I  J . We shall also use γIJ with the understanding that this just means 

hIJ (the tensor γ is degenerate and cannot be inverted). 
− 

The vector field n defined by (2.6) must be proportional to ∂λ and such that ℓ(n) = 

1, and hence it is given by n = (µ1
−)−1∂λ. Moreover, particularizing Lemma 3.2.5 

for the basis {n, vA = ∂yA }, we get the following form for the tensor P: 
 

 

P = γAB 
 

∂yA ⊗ ∂yB − 
2γABµ−

B 

µ1
− 

 

∂λ ⊗s ∂yA + 
γABµ−

A µ
−
B

 

(µ−)2 
∂λ ⊗ ∂λ. (7.57) 

 

Combining (2.155) with the explicit form of the tensors {P, n, n(2)} above (or simply 

using Corollary 3.2.6 for q = µ1
− dλ and θA = dyA), one gets 

γIJ[Y](∂yI , ∂yJ ) 
τ(dλ, dλ) = −ϵ 

(µ−)2 
, (7.58) 

τ(dλ, dyI) = ϵ 
γIJ[Y](∂λ, ∂yJ ) 

(µ−)2 
, (7.59) 

I J γIJ [Y](∂λ, ∂λ) 
τ(dy , dy ) = −ϵ 

(µ−)2 
. (7.60) 

In view of (7.58)-(7.60), once we have derived the specific form of the components 

of the tensor [Y], the calculation of the energy-momentum tensor follows at once. 

For this reason, from now on we focus on the calculation of [Y]. As we will see, 

the fact that the rigging had been adapted to the basis vector L− in the minus 

side makes the computation of Y− considerably less involved than that of Y+. It is 

therefore convenient to compute Y+ and obtain Y− as a particular case. 

We start the calculations with some lemmas and results that will aid us along the 

way. In the first one, we provide the explicit form of the one-form g+(L+, ·). 

Lemma 7.3.2. The one-form L+ =
d e f  

g+ (L+, ·) satisfies 

(ϕ+)⋆ L+ = −ϑ where ϑ =
d e f   

− µ+dH − µ+dhJ ∈ Γ (T⋆N ) . (7.61) 
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  I J 

( ) 

1 A 

1 A J 

1 J 

2µ1
− A I J 

a A a A 

i.e. 

 

Proof. For any vector field Z ∈ Γ (TN ), it holds 

 
(ϕ+)⋆ L+

  
Za∂ya

  
= L+

 
(ϕ+)⋆

 
Za∂ya

  
= ⟨L+, Zae+⟩g+ 

= Z1⟨L+, e+⟩g+ + ZA⟨L+, e+⟩g+ 

= Z1⟨L+, f Ak+⟩g+ + ZA⟨L+, aAk+ + bJ v+⟩g+ 
A  J 

= µ+ 
( 

f AZ1 + ZAaA

) 
+ ZAbJ µ+ 

= µ+dH (Z) + µ+dhJ (Z) = −ϑ (Z) , (7.62) 

 
where we have used (7.32), (7.30) in the third equality, (7.6) in the fourth one and 

(7.41), (7.45) for the last step. 

Our next aim is to compute the explicit form of the matching rigging ζ+ in the basis 

{L+, k+, v+}, given in terms of the metric h+ and the functions {H(λ, yA), hB(yA)} 

and { µ ±
a  }. For that it is convenient to introduce a vector field X ∈ Γ(TN ) which 

encodes the tangent part of ζ+ in (7.30), namely 

1 

ζ+ = 
A

  
L+ + ϕ+X

 
. (7.63) 

It is also helpful to define the functions Xa ∈ F ( N-+) by the decomposition 

ϕ+X = X1e+ + XAe+. (7.64) 
⋆ 1 A 

In the next lemma, we provide explicit expressions for the one-form γ(X, ·) and 

the components {Xa}. 

 

Lemma 7.3.3. The vector field X = Xa∂ya satisfies 

γ (X, ·) = ϑ + A µ −
I  dyI + µ+(∂λH)dλ (7.65) 

Moreover, its components Xa are given by 

XA = γIA
 
ϑI + A µ −

I

  
, (7.66) 

X1 = 
γ  

ϑI + Aµ−
  

ϑJ − Aµ−
 

. (7.67) 

 

Proof. Recall that ℓ1 = µ1
− ,  ℓA = µ −

A  , cf. (7.56). Combining (7.28), (7.63) and Lemma 

7.3.2 it follows that ℓa = ⟨ζ+, e+⟩g+ = 1 ⟨L+, e+⟩g+ + Xbγab = 1 
 

−ϑa + Xbγab

 
, 

Xbγab = ϑa + Aℓa. (7.68) 
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Corollary 7.3.4. In the basis {L+, k+, v+} of Γ
 
TM+

 
|-+ , the matching rigging ζ+ 

I 2 B µ1
− J µ+ B B 

C − BC − B C I J K − B IK 

1 1 

 

This proves (7.65)-(7.66) after using that γ1a = 0, that γIJ is non-degenerate and 
 

 − + + µ+ µ+ 
µ1 A = µ1 f A = µ1 ∂λH ⇐⇒ A =  1  f A =  1  ∂λH. (7.69) 

µ1
− µ1

− 

On the other hand, condition (7.29) together with ζ− and L+ being null entails 

0 = ⟨ζ+, ζ+⟩g = 
 1  (

2Xa⟨L+, e+⟩g  + XaXbγab

) 
=⇒ −2Xaϑa + XaXbγab = 0. 

Combining this with (7.68) and using Xaℓa = X 1µ1
−  + X A µ−

A yields 

Xaϑa = A
 
X1µ1

−  + X A µ−
A

 
=⇒ 2X1µ+∂λH = XA

 
ϑA − A µ −

A

 
, 

 
which gives (7.67) after using again (7.69). 

 

We can now obtain the matching rigging ζ+ as a corollary of the results above. 

 

 

reads 

ζ+ = 
µ1

−

 

 
 

  
 1  

L+ − hAB

  

(b−1)I 

I 

 

 
 

∂ I H − 
 1  

(∂ 

N 

 

H)µ−

\ 

+ 
 1  

µ+

\ 

ZB

\ 

,  (7.70) 

∂λH + +
 

A y µ1
− λ I +  A 

 

where (b−1)J 

 

 

=
def 

∂
 
 

I yJ and Z 

 

 

=
def 1 

(
(b−1)J 

(
∂ 

 

J H −  1  (∂ H)µ−

) 
−  1  µ+

) 
k+ + v+. 

 
Proof. The coefficients (b−1)J are of course inverse to bJ. From (7.31) one obtains 

 

 

δA = hABh− 

I 

=hABbI bJ h+
 

I 

=⇒ (b−1)A = hABbI h+
 

=⇒ hKL(b−1)A = hABbL =⇒ hKL(b−1)A(b−1)J  = hAJ ≡ γAJ . (7.71) 
+ K − B + K L − 

 
The result (7.70) follows from (7.63) after inserting (7.66)-(7.67) and using (7.69), 

the definition (7.61) of ϑ and (7.71). 

 
Remark 7.3.5. The result (7.70) is relevant for various reasons. First, it proves that indeed 

all the information about the matching can be fully codified in the embedding ϕ+, since ζ+ 

is given by the functions {H(λ, yA), hB(yA)}, which are actually the "components" of ϕ+ 

if one selects suitable coordinates on N + (see the discussion in Section 7.3.1). 

Secondly, when the matching of (M±, g±) is possible, (7.70) provides the explicit form of 

the matching rigging ζ+ for whatever choice of null matching rigging ζ−. In other words, 

in the spacetime (M, g) resulting from the matching of (M±, g±), a C1 curve C that 

h B y λ 
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- 

1 

+ + + + + + 
e 

J + + 

1 J 

I 
- 

+ 

1 

I 

a b 

+ 
1 

1 λ 1 1 k+ 

+ 2µ+σ+ (WJ) + ∂yJ µ+

1 

+ ∂yJ H∂λµ+, (7.75) 

1 L L 

A 
= 

A
∂ya = 

H 
− 

f 
, 

 

crosses the matching hypersurface N ⊂ M with (arbitrary) direction ζ− continues with 

direction ζ+ given by (7.70) after passing through the shell. 

Finally, (7.70) allows one to compute (for each choice of ζ−) the matching riggings ζ+ 

associated to each different matching by simply substituting the corresponding functions 

{H(λ, yA), hB(yA)} in (7.70). 

 
It is useful to define the quantities 

 
µ+ =

d e f  
bKµ+, WI =

d e f  
bKv+, (7.72) 

I I K I  K 

which will appear in several expressions below. 

Now that we know the explicit form of the matching rigging ζ+, we can focus on 

the computation of the components [Y](∂λ, ∂λ), [Y](∂λ, ∂yA ) and [Y](∂yA , ∂yB ), for 

which we need the pull-backs (ϕ±)⋆(£ζ± g±) (cf. (2.39)). As a previous step, it is 

convenient to calculate the derivative ∂ya A as well as several identities involving 

scalar products of the form g+(∇e+ L+, e+). This is done in the following lemma. 

 

Lemma 7.3.6. The following identities hold: 
 

∂ya A 

A 
= 

∂ya ∂λH 
+ 

∂λH 

∂ya µ+ 
 

 

+ 
1 

∂ya µ1
− 

, (7.73) 

µ1
− 

⟨∇ L , e ⟩ + = ∂ H
 

∂ µ − µ κ- ∂ H
 

, (7.74) 

 + L+, e+⟩ + 
+ L+, e+⟩  

+ = ∂ 
( 

∂λµ+ − 2µ κ ∂yJ H 
⟨∇

e+ J  g  + ⟨∇
e+ 1  g 

∂λH 1 -k+ 

1 L 1 1 

∂yI H∂λµ+ 
 J  + L+, e+⟩g+ 

+ +  
yI H∂yJ H + + ∂yJ H∂yI µ+

 
⟨∇

e+ J = − µ1 κk+ ∂ ∂λH 1 

+ µ+ 
(
∂yI Hσ+ (WJ) + ∂yJ Hσ+ (WI)

)
 

+ ΘL (WI, WJ) . (7.76) 

Proof. Throughout the proof, we shall use repeatedly the decompositions e+ = 

(∂λH)k+, e+ = (∂yI H)k+ + WI which follow directly from (7.30)-(7.32) and (7.45). 

By direct computation, we get 

∂ya A 
 

 

1 
( 

f A 
1 

1 
  

  

∂ya ∂λH 
 

 

 

  

∂ya f 
 

 

f f A ∂ λ 

µ 

g λ λ 

∂ya ∂λH − A∂ya f = 

− 

H λ 
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+ + + 
e 

1 

+ + + 

+ + + 

I 

+ + + 
e 

+ + + 

+ + + 

e 

+ + + + + + 
e 

WI WI 

⋆ 

    

    

+ 
1 

1 g λ k+ g λ 1 1 k+ 

y λ 1 1 k+ J 1 L+ J 

y λ 1 1 k+ λ λ J 1 λ L+ J 

+ 
J 

1 g y k+ WJ g 

y 1 1 k+ λ J 1 1 L J 

yJ λ 1 1 k+ λ J ∂ λ H 1 1 1 L J 

λ 1 k+ y y 1 1 L J 

+ 
I 

J 

+ 
I 

J ∂ H 1 1 k+ J 1 L J 

+ ∂yJ H ⟨∇+
 L+, k+⟩g+ + ⟨∇+

 L+, WJ⟩g+ 

∂ λ H 1 k+ yJ λ λ J 1 λ L J 

y y 1 1 L + 

 
which leads to (7.73) by simply inserting f =

d e f  
µ−/µ+. By (7.11), one gets (7.74) as 
1 1 

an immediate consequence of 

 

⟨∇ L , e  ⟩ + = (∂ H)2 ⟨∇+ L+, k+⟩ + = (∂ H)2
 

k+
 

µ+
 

− µ + κ-+
  

. (7.77) 

 
In order to prove (7.75), we compute each term in the left-hand side separately. In 

both cases we use the covariant derivatives of L± given in Lemma 7.1.2. Firstly, 

 
+ + + + + + 

⟨∇
e+ L  , eJ ⟩g+ = ∂λH⟨∇k+ L  , ∂yJ H k + WJ⟩g+ 

= ∂ J H
 

∂ µ − µ κ- ∂ H
 
+ ∂ H 

(
k+

 
µ+

 
+ µ+σ+ (W )

)
 

= ∂ J H
 

∂ µ − µ  κ- ∂ H
 

+ ∂ µ+ + µ+∂ H σ+ (W ) , (7.78) 

where in the second equality we used k+(bJ) = 0. Secondly, 

⟨∇ L , e ⟩ + = ∂ H 
(
∂ J H⟨∇+ L+, k+⟩ + + ⟨∇+ L+, k+⟩ + 

)
 

= ∂ J H
 

∂ µ − µ κ- ∂ H
 
+ ∂ H

 
W

  
µ+

 
+ µ+σ+ (W )

 
 

 

= ∂ H
 

∂ µ − µ κ- ∂ H
 
+ ∂ H

   

e+ − 
∂yJ H 

e+

\
 

µ+
 
+ µ+σ+ (W )

\

 

= ∂ H
( 

− µ + κ-+ ∂ J H + ∂ J µ+ + µ+σ+ (W ) 
)

. (7.79) 

 
From  (7.78)-(7.79)  equation  (7.75)  follows  at  once. Finally,  for  the  term 

⟨∇+ L+, e+⟩ + one obtains 
 

 

⟨∇ L , e ⟩ = 
∂yI H (

∂
  

H
 

∂ 

 

µ − µ κ- ∂ H
 
+ ∂ µ+ + µ+∂ H σ+ (W )

)
 

 

= 
∂yI H (

−µ+ κ-+ ∂  H ∂ H + ∂ µ+ + µ+∂ H σ+ (W )
)
 

+ ∂ J H 
(
∂ I µ+ + µ+σ+ (WI)

) 
+ ΘL (WI, WJ) , 

from where one easily obtains (7.76). 
 

We are now ready to compute the pull-backs (ϕ±)⋆ £ζ± g± . As before, we derive 

the expression on the plus side (which is considerably more involved) and then 

we get (ϕ−)⋆ £ζ− g− as a suitable specialization. The computation relies on the 

well-known fundamental property 
 

(ϕ+)⋆
 

£f ϕ+ Zg+
  

= f £Zγ + 2d f ⊗s γ (Z, ·) (7.80) 

λ λ 

λ g 

λ λ 

λ 

g 

g+ 

λ 
yJ λ λ λ λ 
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A ⋆ 

I 

a b 

A L A I 1 λ 

A I 1 

λ λ λ J − J L 

− I J I J 

I I J I 1 J J J 

I 1 J 1 I J I J I J J I 

 

satisfied by any function f ∈ F(N ) and any vector field Z ∈ Γ(TN ). At some 

point in the calculations, we shall also need to use that 

(ϕ±)⋆
 
£L± g±

 
= 

(

⟨∇
e
±

± L±, eb
±⟩g+ + ⟨∇

e
±

± L±, e ±a  ⟩g+ 

1 

dya ⊗ dyb. (7.81) 

 
From the decomposition (7.63) we get (recall (7.65)) 

(ϕ+)⋆
 

£ζ+ g+
 

= (ϕ+)⋆ 
(
£ 1 ( 

 

L++ 

 

ϕ+(X)) g+
) 

= (ϕ+)⋆ 

( 
1 

£ + g+ − 2 
dA 

⊗s g+
 

L+ + ϕ+ (X) , ·
 
1

 

A (L++ϕ⋆ (X)) A2 ⋆ 
1 1 dA 

= 
A 

(ϕ+)⋆
 

£L+ g+
 

+ 
A

£Xγ − 2 
A2 ⊗s

 
(ϕ+)⋆

 
L+

 
+ γ (X, ·)

 
 

= 
1 

(

(ϕ+)⋆
 

£ + g+
 

+ £Xγ − 2 
dA 

⊗s 
(
Aµ−dyI + µ+(∂ H)dλ

)1

 

= 
1 (

(ϕ+)⋆
 

£L+ g+
 

+ £Xγ − 2dA ⊗s µ−dyI − 2µ−dA ⊗s dλ
) 

, (7.82) 

 
where we used (7.80) in the third line, Lemma 7.3.2 and (7.65) in the fourth and 

(7.69) in the last one. Next we elaborate the term £Xγ. The first fundamental form 

γ is degenerate (i.e. γ1A = 0), so in index notation £Xγ reads 

(£Xγ)ab = Xc∂yc γab + γaI∂yb XI + γIb∂ya XI. (7.83) 

The induced metric γIJ on the leaves {λ = const.} (understanding γIJ as h −
I  J , as 

mentioned before) is positive definite. In the following we denote this metric by h 

(i.e. hIJ =
d e f  

γIJ) so that we can define the corresponding Levi-Civita connection ∇h 

on each leaf. Now, inserting (7.66)-(7.67) into (7.83) and using (7.5) yields 

 

(£Xγ)11 = 0, (7.84) 
k 

(£Xγ)1J = ∂ (γJLXL) − XL∂ γJL = ∂ (ϑJ + Aµ−) − 2 X L K- (v−, v−), (7.85) 

(£Xγ)IJ = X1∂λγIJ + XL∂yL γIJ + γIL∂yJ XL + γLJ∂yI XL
 

= 2 X 1 K- k 
(v−, v−) + ∇h XJ + ∇h XI, (7.86) 

 

where XI =
d e f  

γILXL. By (7.61) and (7.66), the derivative ∇h XJ can be expanded to 

∇h XJ = ∇h 
(
ϑJ + Aµ−

) 
= ∇h 

(
−µ+∇h H − µ+ + Aµ−

)
 

= −∇hµ+∇h H − µ+∇h∇h H − ∇hµ+ + A∇hµ− + µ−∇h A. (7.87) 
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1 

1 

1 1 1 

1 1 

1 1 

+ 
 − J L  

−
 

1 

λ 1 k+ λ 
∂ H µ1

− 

λ 1 k+ J L J 
∂ H 

+ 
 − J L  −   J  1  − 

 λ  J  

, ∂ ) = −µ− 
k+ I J   (I J)  (I L  

− − 

+ (I J) − 
 − I J  +   I J  + 

  (I J) 
− 

  (I J) 

J 1 J 

k+ I J −   I J  −  I L J  −   + I J  

− 
 − I J  +   I J  +  I  J  −   I  J  + 

  − I J  

(dy , dy ) = ϵ κ + ∂λH − κ − + 
µ1

− -k -k 

 

We have now all the ingredients to compute Y± and the energy-momentum tensor 

on the shell. The result is given in the next proposition (where brackets, as usual, 

denote symmetrization). 

 

Proposition 7.3.7. The tensor Y+ has the following components: 

 

Y+(∂ , ∂ ) = −µ−

  

κ-+ ∂ H + 
∂λ∂λ H 

− 
∂λµ1

−  
\ 

, (7.88) 

 

Y+(∂ , ∂ ) = −µ−

 

κ-+ ∇h H − σ+(W ) + 
∂λ∂yJ H

 

X L K- k 
(v−, v−) ∇hµ− ∂ µ− 

\
 

 
  

κ-+ ∇h H ∇h H 

   
   

 

∇h H ∂λµ+ 
 

  

2∇h H σ+(WJ)) 

   
 

ΘL (W  , W  ) 
 

 

X 1 K- k 
(v−, v−) ∇h∇h H ∇h µ+ ∇h µ− 

\
 

µ+∂λH 

while those of Y− are 

µ+∂λH ∂λH µ+∂λH µ1
− 

 
Y−(∂ , ∂ ) = −µ−

  

κ-−
 − 

∂λµ1
− 

\ 

,
 

λ λ 1 k− 

  

 
 

µ1
− 

∇hµ− 
 

 

∂λµ− 
\

 
 

 

 
Y−(∂ 

 
I , ∂ J ) = ΘL (v− , v− ). 

2µ1
−

 2µ1
−

 

y y − (I J) 

Consequently, the components of the energy-momentum tensor of the shell are given by 

γIJ
  

κ-+ ∇h H ∇h H ∇h H ∂λµ+ 
 

   

2∇h H σ+(W ) 

 
 

ΘL (W , W ) 

 

X 1 K- k 
(v−, v−) ∇h∇h H ∇hµ+

 ∇hµ− ΘL (v−, v−)
\

 

µ+∂λH 

I 

 

γIJ
 
 

∂λH 

+ h 

µ+∂λH 

∂λ∂yJ H 

µ1
− µ1

− 

τ(dλ, dy ) = −ϵ 
µ1

− κ-k+ ∇J 
∂λH 

X L K- k 
(v−, v−) 

(
σ+(WJ) − σ−(v−) 

) 
\

, (7.93) 

µ+∂λH L L J 

I J γIJ ( 
+ − ∂λ∂λH 

1
 

 

   

µ+∂λH 

yI yJ 1 ∂ λ H µ+ (∂λH) 
2 ∂ λ H 

µ1
− ∂λH µ+(∂λH)2 ∂λH µ+∂λH 

∂ λ H 

H + 

λ 
λ 

yJ 

λ 

, (7.89) 
2µ1

−
 2µ1

−
 

Y+(∂ 

− , (7.90) 

Y−(∂λ, ∂yJ ) = µ1
−

 σ −
L (v−

J ) + + , (7.91) 

τ(dλ, dλ) = ϵ 

, (7.92) 

. (7.94) τ 
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y 

11 

κ- ∂ 

1J 

+ 

I J 

e 

e 

∂λµ 

2A I 1 

Y11 = 
2A

 (ϕ ) £L+ g 11 − 2µ1 ∂λ A = −µ1 k+ λ H − 
1 

+ 
1 

2A 1 k+ J 1 L J J 1 

1 λ y λ J − J L 1 J 

I J 2A I J I J 

A 
+ 
(I 

J) − I J (I J) (J I) 

A 
+ 
(I 

J) − I J (I 1 J) 

1 (I J) (I J) (I 

− I J 1 (I J) (I J) (I J) 

(I J) I J 

 

Proof. Throughout the proof, we use the notation Y±
a b  =

d e f  
Y±(∂ya , ∂ b ). Using (7.82) 

and the definition of Y+ one finds 

Y+ =  
1  (

(ϕ+)⋆
 

£L+ g+
 

+ £Xγ − 2dA ⊗s µ−dyI − 2µ−dA ⊗s dλ
) 

, (7.95) 

 

For the Y+ component, combining (7.74), (7.81) and (7.84) yields 

 

+ 1 + ⋆
 

+
 

− 

 

−

  

+ ∂λµ+ 
 

 
 

µ1
− ∂λ A 

\
 

    
 

which is (7.88) after replacing ∂λ A as given in (7.73). The components Y+ can be 

obtained from (7.95) by using (7.75), (7.81) to obtain (ϕ+)⋆ (£L+ g+) (∂λ, ∂yJ ) as well 

as the definition (7.61) of ϑ and (7.85) to get (£Xγ)1J. This yields 

+ 1 
1J = 

2A 

(
(ϕ+)⋆

  
£ 

 

L+ g+
 

1J 

 

+ (£Xγ)1J 

 

− µ−
J  ∂λ 

 

A − µ1
−∂y J A

)
 

= 
1
  

∂ H

( 

− 2µ+ κ-+ ∇h H + 2µ+σ+ (W ) + ∇hµ+

1

 

− µ ∂ ∂ J H + A∂ µ− − 2 X L K- k 
(v−, v−) − µ−∇h A

\

, (7.96) 

 
after some cancelling of terms occurs. Inserting (7.73) into (7.96) proves (7.89). Fi- 

nally, for the components Y+ we combine (7.76), (7.81), (7.86), (7.87) and (7.95) to 

obtain 

Y+ =  
1  (

(ϕ+)⋆
 

£L+ g+
 
 

 

+ (£Xγ)IJ − µ−∂yJ A − µ−∂yI A
)
 

= 
1 

(

⟨∇+
 L+, e+ ⟩ 

+ + X 1 K- k 
(v−, v−) + ∇h X − µ− ∇h  A

1

 

= 
1 

(

⟨∇+
 

L+, e+ ⟩ + + X 1 K-  k 
(v−, v−) − ∇h µ+∇h H 

− µ+∇h ∇h
 H − ∇h

 µ+ + A∇h
 
µ− 

1 

= 
 1 

(
  + + h H 

 h H + h H + (I J) 
+ 2µ+∇h

 
 
Hσ+(WJ ) + ΘL (W I , WJ ) 

A 
− µ1 κ-k+ ∇(I ∇ J) ∂λH 1 (I L ) + ( ) 

+ X 1 K-  k 
(v−, v−) − µ+∇h ∇h H − ∇h µ+ + A∇h µ− 

1

, 

which becomes (7.90) upon using (7.45) and ∇h ∇h H = ∇h∇h H. To get Y− it 
suffices to particularize (7.88)-(7.90) for bJ = δJ, Xa = 0 and H(λ, yA) = λ, as well 

I I 

µ µ + 
1 

∂λ H 

Y 

∇ 

+ , 

λ 

g 

g 

J) 
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def 

are hidden in the coefficients bJ, which are present in WJ and µ+ ). This result is fully 

 

as replacing all + superscripts by −. The components of the energy-momentum 

tensor are obtained from (7.58)-(7.60). 

 

Remark 7.3.8. Proposition 7.3.7 provides explicit expressions for the tensor fields Y± and 

τ arising from the matching of any two spacetimes in terms of known geometric objects 
k L A B A B A 

(e.g. K- 
±, Θ±) plus the functions {H(λ, y ), h (y )} (note that the functions {h (y )} 

 

 

  

general except by the restriction on the topology of the boundaries of the spacetimes to be 

matched. 

The relevance of Proposition 7.3.7 relies on the fact that, given two (matchable) spacetimes 

with null boundaries and once we know how the points of the boundaries are to be identified 

(i.e. given the step function H(λ, yA) and the map Ψ which sends null generators to null 

generators), Proposition 7.3.7 automatically yields the gravitational and matter-energy 

content of the resulting null thin shell. 

Remark 7.3.9. In the literature, the different components of the energy-momentum tensor 

are interpreted physically as an energy density ρ, an energy-flux j and a pressure p (see 

e.g. [128]). However, this is usually done in a context where the matching riggings are null 

and orthogonal to the leaves of the foliation (i.e. where µ −
A  = 0 and ℓ(2) = 0). We propose 

the following geometric definitions for the physical quantities {ρ, p, j}: 

ρ − ϵtrP[Y], p = − ϵ[Y](n, n), j = ϵ 
(
P ([Y](n, ·), ·) − ϵℓ(2) pn

) 
. (7.97) 

def def 

 

The underlying reason that justifies (7.97) is that the energy-momentum tensor (2.155) of 

a null thin shell {N , γ, ℓ, ℓ(2), Y±, ρℓ
±, J±, ϵ} can be written in terms of {ρ, p, j} as 

τ = ρn ⊗ n + p 
(
P + 2ℓ(2)n ⊗ n

) 
+ 2j ⊗s n. (7.98) 

 

As mentioned in Remark 2.7.4, the sign ϵ must be taken positive when ζ− points outwards 

with respect to (M−, g−) and vice versa. Here the necessity of introducing ϵ becomes 

clear, since it makes the definitions 7.97 invariant under a change in the orientation of 

the matching riggings (recall that [Y] changes its sign under a transformation of the form 

ζ± −--- −ζ±). 

The vector field j satisfies γ(j, ·) = ϵ[Y](n, ·) + pℓ and ℓ(j) = 0, which makes the defini- 

tions (7.97) consistent since the one-form j =
d e f  

γ(j, ·) verifies j(n) = 0. Moreover, a direct 

calculation that relies on (2.44) and (3.64) proves the following gauge behaviour for the 

pressure p: 
 p  

G(z,V)(p) = 
|z| 

. (7.99) 

I J) 

= 
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- - 

- 
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(ℓ) (ℓ) 

1 I h− h− I J 

 

Whenever {µ1
− = 1, µ −

A  = 0}, ℓ(2) = 0, it is straightforward to check that (7.97) becomes 

ρ = τ(dλ, dλ), pγAB = τ(dyA, dyB), ja = δa τ(dλ, dyA), (7.100) 

after using (7.57)-(7.60) and the fact that n = (µ1
−)−1∂λ . The combination of (7.58)-(7.60) 

and (7.100) allows one to recover the standard definitions for {ρ, p, j} introduced e.g. in 

[128], namely3 

ρ = −ϵγAB[Y](∂yA , ∂yB ), p = −ϵ[Y](∂λ, ∂λ), ja = ϵδa γAB[Y](∂λ, ∂yB ). (7.101) 

 

7.3.2.1 Gauge behaviour of the energy-momentum tensor 

 
As mentioned in Section 2.7.1 (recall (2.159)), the energy-momentum tensor on the 

shell depends on the choice of rigging solely by scale. Specifically, two energy- 

momentum tensors τ ab, ab 
associated to two different choices of rigging ζ, ζ- = 

zζ + V, where z is a function on the matching hypersurface and V is a vector field 

tangent to it, are related by τab = |z|−1τab. This is a consequence of the fact that the 

volume form (recall Definition 2.2.3) is also gauge dependent and transforms as 

G(z,V)(Wvol ) = |z|Wvol [59]. Under orientation preserving gauge transformations, 

the suitable gauge-invariant object is actually τabη, which is consistent because in 

physical terms τab is energy-momentum per unit volume. This fact can be used 

to perform a non-trivial consistency check on the expressions (7.92)-(7.94), as we 

show next. 

Let us suppose that a matching of two spacetimes (M±, g±) has been performed 

and that the rigging has been fixed by (7.26) after we have selected a null trans- 

verse vector field L−. We may repeat the matching process using a different null 

transverse vector 

L− = aL− + bk− + c I v−
I  (7.102) 

while still enforcing (7.26), i.e. ζ− = L−. Let us use tilde for all objects constructed 

with -L. Then, definitions (7.6) imply 

 − = aµ−, µ− = aµ− + c , (7.103) 
µ-1 1 -I I I 

 

while the null character of L− imposes 

−2a 
(
bµ− + cIµ−

) 
= |q|2 where |q|2

 

 

 

=
def 

cIcJh−. (7.104) 
 

 
 

3Expressions (7.101) coincide with the definitions proposed by Poisson whenever ϵ = −1 (i.e. 
when the rigging ζ− points inwards with respect to (M−, g−)). 
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-- 

- 

µ 

a 
a 

ϵ - 

h − 

−(v−) + 
 − J B 

 

1 

B B 

γIJ − 
− 

+ 
I 

H 

J 
− 

I 

µ− 
J 

+ 
− I 

µ− 
J 

 in τ(dλ, dλ), (7.108) 

v−
B

 (I J) B(J I)A µ1
− (I − J) B 

+ 

2 

tion conditions (7.28)-(7.29)) and using (7.103)-(7.104) yields 

 

Changing the rigging on the (M−, g−) side keeps the vector fields e ±a  invariant, 

as they only depend on the embeddings ϕ±. This means that the functions f, aI 

and bJ in (7.31)-(7.34) do not change either. On the other hand, the identification of 

the riggings of both sides implies that the rigging in the (M+, g+) side also gets 

modified. Let us decompose it in terms of L+ and a vector field X 

ζ-+ = (1/ A-)
 
L+ + X-ae+

 
. The shell junction condition (7.32) forces 

∈ Γ ( T N-+) as 

 

f = 
Aµ1

−
 

1 
 

which together with (7.103) gives 

as well as f = 
Aµ1

− 

,
 

µ+ 

 

f = 
Aaµ1

−
 

1 

⇐⇒ A-a = A. (7.105) 

 + + a + + 

Since ζ = (1/A) (L + X ea ) (recall (7.63)), it follows that the two riggings ζ- 

and ζ+ are related by 

ζ-+ = aζ+ + 
A

 
X-a − Xa

 
e+. (7.106) 

Inserting (7.106) into ⟨ζ-+, e+⟩g+ = µ-−, ⟨ζ-+, ζ-+⟩g+ = 0 (which are simply the junc- 

 

X-B = XB + 
A

cB, 
a 

X-1 = X1 + 
Ab 

. (7.107) 
a 

Each component of the energy-momentum tensor (cf. (7.92)-(7.94)) is multiplied 
by ϵ(µ −)−1, and ϵ = sign(a)ϵ because of (2.154) and (7.102). Thus, ϵ(µ −)−1  = 

- -1 - - -1 

|a|−1 (µ1−)−1 and therefore the transformation law of the energy-momentum 

tensor will be guaranteed provided each bracket in (7.92)-(7.94) turns out to be 

invariant. The only parts that are not trivially invariant are 

 

X-1K- k 
(v−, v−) ∇ µ- Θ- 

-L 
(v−, v−)  

   

 

µ1 ∂λ -1 -1 

X-B K-  k 
(v−, v−) 

 

 
in τ(dλ, dyI). (7.109) 

σ--L J 
µ+∂λH 

Combining (7.12), (7.26) and the definition h− =
d e f  

g−(v−, v−), one finds 
I J I J 

 

∂yB h−
I  J = e−

B (h−
I J ) = ∇

v
−

−
B  
(h−

I J ) 

A k 

= 2g−(∇− v , v ) = 2Ξ− h− − µ− K- (v− , v−). 
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BI 

− 

µ-1 J 

- 
1 

a 

JA BI 2 I J BJ y BI BI JA µ1
− J − I B 

− I J 

− I J v−
I
 J g 

I I I 

J y − I J − I J BJ y 

BI AJ µ1
− J − I B 

J y − I J − I J I 

− I J − I J I J − I J I J 

1 

1 

 

Therefore, the Christoffel symbols Γh A of the Levi-Civita covariant derivative ∇h 

of the metric h −
I  J are given by 

 

h− Γh A = 
1 (

∂ 

 

B h− + ∂ 

 

 

I h− − ∂ J h− 
) 

= Ξ−A h− − µ − K-  k
− 

v−, v−
 
. (7.110) 

 

Now computing Θ- 
-L 

(v−, v−) gives 

Θ- 
-L 

(v−, v−) = ⟨∇− -L−, v−⟩ − 

= ⟨v−
I (a) L

− + a∇
v
−

− L
− + b∇

v
−

− k
− + v −

I  (c
B)v−

B + cB∇
v
−

− v
−
B  , v

−
J  ⟩g− 

k 
= µ−∂ I a + aΘL (v−, v−) + bK- (v−, v−) + h− ∂ I cB 

+ cB

  

Ξ−A h− − µ − K-  k
 

v−, v−
 
\ 

, 

k 

= µ−∂ I a + aΘL (v−, v−) + bK- (v−, v−) + ∇hcJ, 

 
where in the third line we used Lemma 7.1.2. It follows directly from (7.103) that 

h − − yI a + a∇h  − hcJ. Thus, we conclude 
∇I µ-J  = µJ ∂ I µJ + ∇I 

Θ- 
-L 

(v−, v−) = a 
(
ΘL (v−, v−) − ∇hµ−

) 
+ bK- k 

(v−, v−) + ∇ h µ-−, (7.111) 

and the invariance of (7.108) follows from this expression and the second in (7.107). 

Concerning σ−(v−), we easily find 
--L J 

σ (v−) = 
1

 − k−, -L−⟩g− = −  
1

  ⟨∇− k−, aL− + cBv−⟩g− 

-L− − − ⟨∇
v− 

aµ1
−

 
v −

J  
B 

− − cB 
k− 

− − 

= σL− (vJ ) − 
aµ− K− (vJ , vB ). (7.112) 

Given that µ+∂λH = µ− A (cf. (7.45)), one obtains the invariance of (7.109) by 
1 1 means of the first expression in (7.107). This eventually proves that indeed τab = 

1 τab holds, and hence establishes a consistency check of (7.92)-(7.94). 

-

 

 

7.3.3 Matching of two Minkowski regions across a null hyperplane 

 

As we have discussed, one of the main benefits of using the previous formalism is 

that multiple sorts of matchings can be analysed at once. For instance, one may be 

interested in considering a family of energy-momentum tensors verifying the sur- 

face layer equations (2.160)-(2.161), or a set of step functions H(λ, yA) with certain 

y y 

- J 
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F N- { V± I x } 

- 

- 

± ± 

 
properties. In the general case, this task is out of reach by means of the cut-and- 

paste method because these constructions only allow to match two regions of the 

same spacetime and, even if one is interested on macthings of this type, more com- 

plex shells will require more involved forms of the corresponding distributional 

metric. 

In this section, we will exploit the matching formalism introduced before to ana- 

lyse the most general matching of two regions of the spacetime of Minkowski 

across a null hyperplane. This was the first matching addressed with the cut-and- 

paste procedure [3], [85], [86], [87]. In these seminal works, Penrose was able to con- 

struct plane-fronted impulsive waves propagating in the spacetime of Minkowski 

by considering a metric with a Dirac delta distribution with support on the match- 

ing hypersurface. More recent research on the topic of plane-fronted impulsive 

gravitational waves in the spacetime of Minkowski can be found e.g. in [88], [90], 

[91], [92], [5], [6], [7] and references therein. In these latter publications, Penrose’s 

construction has been generalized to a variety of more complex scenarios, e.g. to 

the de Sitter and anti-de Sitter spacetimes or to spacetimes with impulsive metrics 

containing so-called gyratonic terms. 

Our aim in this section is two-fold. First, we will recover the results from cut-and- 

paste across a hyperplane in Minkowski within our matching formalism, establish- 

ing a connection between these two formalisms. Secondly, we will obtain the most 

general shell that can be generated by matching two regions of Minkowski across 

a null hypersplane. This will prove that one can produce more general shells with 

different values of energy, energy flux or pressure. 

Consider the (n + 1)-dimensional Minkowski spacetimes 

 
M±, g±

  
, with g± = −2dU±dV± + δABdxAdxB and U± ⋛ 0. (7.113) 

The boundaries of (M±, g±) are the null hypersurfaces defined by 

N ± =
d e f  

{U± = 0}, (7.114) 

 
which clearly satisfy the topology condition that they can be foliated by diffeo- 

morphic spacelike cross-sections. 

The first step in order to apply the matching formalism presented above is to 

construct two basis {L±, k±, v ±
I  } of Γ(TM±)|

N ± and two foliation functions v± ∈ 

( ±) according to (7.2). For simplicity, we take k± = ∂ , v± = ∂ I as a basis 
± 

of Γ(TN ±) and v± = V± as the foliation functions. These objects obviously verify 

the requirements in (7.2). As transverse null vector fields we select L± = −∂U± 
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+ 

I 
+ 

- 

1 

y y 

1 I k L I ± I J 

ΘL (v±, v±) all vanish. Observe that (7.113) together with the choice of L− (which 

U− = 0, V− = λ, xI 

(λ, yI ) −--- ϕ+(λ, yI ) =
 

U+ = 0, V+ = H(λ, yI ), xI 

∂λH A 2 B B 

− 

 
(note that L± are past vector fields while k± are future). These choices satisfy 

- 
  k 

µ± = 1, µ± = 0 and it is straightforward to check that κ±, σ± v± , K- (v±, v±), 

± I J 
−

 

points inwards with respect to M ) requires that we take ϵ = −1 when computing 

the energy-momentum tensor (recall that with (7.26) we take L− as a matching 

rigging). 

Now, to construct  null  metric hypersurface  data  {N , γ, ℓ, ℓ(2)} embedded  in 

(M−, g−), we consider an embedding ϕ− of the form 
 

ϕ− : N '−--- N-− ⊂ M−
 

(7.115) 
 

In these circumstances, the data {N , γ, ℓ, ℓ(2)} being embedded in (M−, g−) with 

embedding ϕ− and rigging ζ− = L− means (by (2.22)) 

γ = δABdyA ⊗ dyB, ℓ = dλ, ℓ(2) = 0. (7.116) 

For the present case, equation (7.48) yields V+ = H(λ, yA), while the vector fields 

{eI } are given by 

e+ = (∂yI H)∂V + (∂yI hJ )∂xJ (7.117) 

as an immediate consequence of combining (7.30) and (7.40)-(7.41). It is straight- 

forward to conclude that for the matching of (M±, g±) across N ± to be possible 

the embedding ϕ+ corresponding to the plus side must be necessarily of the form 

 

ϕ+ : N '−--- N-+ ⊂ M−
 

(7.118) 
 

 

As we discussed in Section 7.3.1, the viability of the matching relies on the solv- 

ability of the isometry condition (7.31) because (7.32) only provides the form of 

the vector field e+ (and hence of the function A which fixes the transverse part 

of the matching rigging ζ+) while (7.33)-(7.34) determine the tangent part of ζ+. 

Concretely, when the matching is possible the rigging ζ+ will read (see (7.70) in 

Corollary 7.3.4) 

ζ+ = 
  1   

(

L+ − δAB(b−1)I (∂ I H) 

( 
1 

(b−1)J (∂ J H)k+ + v+

11 

. (7.119) 

+ 

(λ, yI ) −--- ϕ−(λ, yI ) = = yI . 

= hI (yJ )
 

. 

+ 
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I I 

I 

y 

ab 
λ 

τ − 

+ + I I 

Yab = 
(∂ 

(∂yI ∂yJ H) (∂λ∂λH) − (∂λ∂yI H) (∂λ∂yJ H) 

λ λ 

λ λ λ 

 
Let us therefore check whether condition (7.31) can indeed be satisfied by the 

boundaries N-±. Particularizing it to the present case yields 
 

 
L K I def ∂hI 

δIJ = bI bJ δLK, bJ = 
∂yJ , (7.120) 

which  constitutes  an  isometry  condition  between  the  spatial  cross-sections 

S =
d e f  

{λ = const.} of N and their images ϕ+(S ) through the embedding ϕ+. 

In particular, this isometry condition forces {Sλ} and {ϕ+(Sλ)} to be euclidean 

planes. The corresponding isometries are obviously translations and rotations, and 

it turns out that the symmetry properties of (M+, g+) allow one to perform the 

necessary combinations of rotations and translations so that the initial coordinates 

{U+, V+, xI } transform into new coordinates { U +
′  , V +

′  , x′A} verifying bJ = δJ. In 

other words, there always exists an isometry of M+ which turns (8.31) into an 

identically satisfied equation. Thus, the matching of (M±, g±) is always possible 

and in fact, since N-± are totally geodesic null hypersurfaces (recall that K- k = 0), 

an infinite number of matchings can be performed (see the discussion in Section 

7.3.1.1). Observe that the reasoning above allows one to set bJ = δJ whenever it 

is convenient. However, the results that follow are insensitive to bJ so we refrain 

ourselves from doing this. 

Now that we know that the matching is feasible, we can compute the matter-energy 

content of the resulting null shells. For that it suffices to particularize the results of 

Proposition 7.3.7. Using the notation Y±
a b  =

d e f  
Y±(∂ya , ∂ b ), τab =

d e f  
τ(dya, dyb), for the 

tensor fields Y± one finds  
 

 

Y−
ab 

 

 

= 0, Y+ 

 

∂ya ∂yb H 
= − 

∂ H 
, (7.121) 

whereas the energy-momentum tensor of the shell in the present case reads 
 

11 
δIJ∂yI ∂yJ H 

1I 
δIJ∂λ∂yJ H I J δIJ∂λ∂λ H 

τ = − 
∂ H 

, τ = 
∂ H 

, τ = − 
∂ H 

. (7.122) 

From (7.122) it is immediate to get 
 

 

δIJ 
IJ 

= 
(n − 1) ∂λ∂λH 

∂λH 
and δIJ τ

1I = 
∂λ∂yJ H 

, (7.123) 
∂λH 

which can be combined with (7.121)-(7.122) to obtain 
 

 

ab  + 2δIJ ( ) 
 

  λ H)2 
τ 
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c 

+ 
- 

 

 

= 2δIJ 
τ11τIJ 

1I
 

n − 1 
− τ

 
τ1J 

1
 
 
. (7.124) 

This, together with Y− = 0, | det A| = 1, τabℓb = τ1a, τbaγac = δBγABτbA and 

the vanishing of the Einstein tensor in Minkowski, brings the shell field equations 

(2.160)-(2.161) into the following form 

 

0 = ∂λτ11 

 

+ ∂yA τ1A 

 

− δIJ 

 

τ11τIJ 
1I

 

n − 1 
− τ

 
τ1J

1 

, 0 

 

= ∂λτ1A 

 

+ ∂yB τ 

 
AB. (7.125) 

A direct calculation shows that the expressions (7.122) indeed fulfil the surface 

layer equations (7.125). 

Our next aim is to study different shells that can be generated from the matching 

of (M±, g±). As we shall see, for certain type of matchings we will recover the 

jump (2.170) proposed by Penrose, which corresponds to a step function of the 

form 

H(λ, yA) = λ + H(yA), H ∈ F(N ). (7.126) 

The matching of two Minkowski regions with the step function (7.126) will cor- 

respond to spacetimes describing plane-fronted impulsive waves (purely gravita- 

tional when H(yA) is harmonic in the coordinates yA). The framework introduced 

throughout Section 7.3, however, must provide all the possible matchings of two 

Minkowski regions and hence a more general set of step functions. This general 

matching, together with some interesting particular cases, are discussed below. 

 

No-shell case 

Let us start by considering no shell, i.e. [Y] = 0. The results for this case should be 

viewed as a consistency check, since the absence of shell must give rise to the whole 

Minkowski spacetime. Since by (7.121), condition [Y] = 0 is equivalent to Y+ = 0, 

we can integrate the right part of (7.121) and obtain H(λ, yA) = aλ + cJyJ + d, 

where a, cJ, d ∈ R and a > 0. In view of (7.115) and (7.118) this step function 

corresponds to the jump V+ = aV− + cJyJ + d when crossing the hypersurface 

U± = 0. This means that the only possible isometries between the boundaries 

N ± are (besides the translations and rotations in the {xI } coordinates already 

discussed) null translations and null rotations in the (M+, g+) side . Since all of 

them are isometries of the Minkowski metric, the matching indeed recovers the 

global Minkowski spacetime. 

( 

( 
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Vacuum case 

 

We next consider the vacuum case, i.e. τab = 0. Integrating (7.122) with the l.h.s. 

equal to zero gives the step function 
 

τ1J = τIJ = 0 ⇐⇒ H(λ, yA) = aλ + H(yA), where 0 < a ∈ R (7.127) 
11 n ∂2H 

τ = 0 ⇐⇒ ∑ 
(∂yI )2 

= 0. (7.128) 

The freedom in a corresponds to a boost in the (M+, g+) spacetime so we may 

set a = 1 without loss of generality and hence recover Penrose’s step (7.126). Note 

that setting τab = 0 automatically forces H(yA) to be harmonic, which is consistent 

with the Dirac delta limit of P (U, x, z) when the vacuum equations for (2.162) are 

imposed (see the discussion in Section 2.7.2). This type of matching also constitutes 

an example of the fact that τab = 0 does not necessarily mean [Y] = 0, as we 

mentioned in Section 2.7.1. The non-vanishing jump [Y] encodes, in this case, the 

purely gravitational content of the shell. 

 

Non-vanishing energy density 

As a simple generalization of the previous example, one can consider non-zero 

energy, i.e. τ11 ̸= 0, while keeping τ1J = τIJ = 0. This does not change the form 

of the step function, which is still given by (7.127). It follows that the step function 

(7.126) from Penrose’s cases corresponds to absence of pressure and energy flux. 

Therefore, it describes either purely gravitational waves (when τ = 0 but [Y] ̸= 0) 

or shells of null dust (when τ11 ̸= 0, τ1J = τIJ = 0). The latter corresponds to 

a pressureless fluid of massless particles moving at the speed of light. Observe 

that (7.125) implies that τ11 must be λ-independent. By writing τ11 = ρ(yA) (recall 

(7.100)) and using (7.122), one gets 
 n ∂2H A 

∑ 
(∂yI )2 

= −aρ(y ). (7.129) 

Again, the constant a can be set to one by applying a boost in (M+, g+). Observe 

that the energy condition ρ(yA) ≥ 0 is equivalent to H(λ, yA) being a superhar- 

monic function. 
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General null shell in the spacetime of Minkowski 

 
Finally, let us keep both the energy and the energy flux of the shell completely 

free and consider a non-zero pressure p λ, yA (recall Remark 7.3.9). This case has 

not been covered in any of the cut-and-paste works cited above. Since ∂λH > 0, 

the pressure can be expressed as p = −∂λ (ln (∂λH)), whose integration gives 

∂λH = β(y ) exp −  p λ, y  dλ , where β(y ) > 0 is the integration "constant". 

Therefore, 

H(λ, yA) = β(yA) 
r 

exp 

(

− 
r 

p(λ, yA)dλ

1 

dλ + H(yA), (7.130) 

where H(yA) is a second integration function. 

In order to discuss the effect of the pressure in the matching, we start by noting 

the following simple consequences of e1
−

 = k− and e+ = (∂λH)k+. Since in the 

present case k± are geodesic and affinely parametrized, it follows 
 

e1
− (v−) = 1, 

e+ (v+) = ∂ H, 

∇
e
−

− e1
− (v−) = 0, 

∇ e (v+) = ∂ ∂ H. 

 
(7.131) 

 

Consider two null generators σ− ⊂ N-−, σ+ = Φ (σ−) ⊂ N-+. Both foliation 

functions v± have been built so that their rate of change measured by k± is equal 

to one, cf. (7.2). We call "velocity" the rate of change of v± along a null vector along 

N ± and "acceleration" the rate of change of the velocity. The matching, however, 

does not identify the vectors k± but the vectors e1±. Therefore, when moving along 

σ± ⊂ N-±, the velocity and acceleration associated to e1
± (i.e. as measured by λ) 

can be different, as shows (7.131). 

Let us hence take λ as the measure parameter for both sides. This allows us to intro- 

duce the concepts of self-compression and self-stretching of points along any null 

generator σ±. There will exist self-compression (resp. self-stretching) whenever the accel- 

eration measured by λ is strictly negative (resp. positive). Accordingly, this effect will 

not take place on N − due to its identification with N , but it may certainly occur in 

N +. Equations (7.131) show that the velocity and the acceleration are respectively 

given by the first and second derivatives of H(λ, yA). Consequently, this effect is 

ruled by the pressure, as it essentially determines ∂λ∂λH at each point q ∈ N . 

Note that vanishing pressure entails constant velocity, which obviously gives no 

self-compression nor self-stretching. However, the velocity along the curves σ± can 



208 matching from a spacetime viewpoint 
 

1 

    

q′ 

        

✓ 

about the effect of self-compression or self-stretching on the N-+ boundary. 

 
still be different (this is why we are not using the terms "stretching" or "compress- 

ing", which would still be occurring in this situation). 

From the definition of the pressure, it follows that sign  p  λ, yA = 

−sign (∂λ∂λH). Consequently, if the pressure is positive (resp. negative) (cf. 

(7.131)), then the acceleration along e+ is negative (resp. positive) and there exists 

self-compression (resp. self-stretching) of points towards the future. Alternatively, 

one can conclude that positive pressure pushes points towards lower values of H λ, yA 

(or s+) and vice versa. 

For a better understanding of this behaviour, let us consider a pressure depending 

only on λ and write p (λ) = − 
q′′ 

, where ′ denotes derivative with respect to λ and 

q (λ) is any regular function with q′ (λ) > 0 ∀λ. From (7.130), it follows that ∂λH = 

β(yA)q′ (λ) > 0 and H(λ, yA) = β(yA)q (λ) + H(yA), after simple redefinitions of 

β(yA) and H(yA). Note that necessary and sufficient conditions for the range of the 
A 

embedding ϕ+ to be the whole of N-+ is that β(y ) > 0and that limλ-±∞ q (λ) = 

±∞ (recall that q(λ) is monotonically increasing). The components of the energy- 

momentum tensor are 
 

 

τ11 δIJ 

= − 
βq′ 

(
q∂yI ∂yJ β + ∂yI ∂yJ H

)
 

 

, τ1I = 
δIJ ∂yJ β 

, τIJ 

β 

 

= −δ 
I J q

′′ 

. (7.132) 

q′ 

Observe that this setup is still fairly general in the sense that it allows for energy- 

momentum tensors with all components different from zero. The specific beha- 

viour of the energy-momentum tensor is obviously ruled by q (λ) and the partic- 

ular form of the functions β(yA), H(yA). It is now clear that fixing the pressure 

amounts to setting the form of H(λ, yA), which in turn contains the information 

 

As an example, let us define the function q (λ) =
d e f  

✓
(a + 2)λ2 + b2 and consider 

q (λ) 

 

=
def 

(a + 1) λ − 
√

aq (λ) (7.133) 

 
 

with a > 0 and b real constants. As the inequality a + 1 −  a(a + 2) > 0 holds for 

all positive a, this function satisfies limλ-±∞ q (λ) = ±∞. The previous expressions 

yield 

 

q′ (λ) = a + 1 − 

√
a(a + 2)λ 

q (λ) 
>

 0, q′′ 

 

(λ) = − 

√
a(a + 2)b2

 

q3 (λ) 
≤

 

 
0 (7.134) 

p (λ) = 

√
a(a + 2)b2

 

q2 (λ)
 

(a + 1) q (λ) − 
√

 
 
a(a + 2)λ

 
 

≥ 0, (7.135) 

H(λ, yA) = β(yA)
  

(a + 1) λ − 
√

aq (λ)
  

+ H(yA), (7.136) 
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Figure 7.3: Matching of two regions of the spacetime of Minkowski: plot of the pressure 

p, step function H and energy density ρ given by (7.135)-(7.137) along the null 
generator {yA = 0} for the particular values a = 1, b = 1, β(yA ) = 1 and 

H(yA ) = 2( 
1 

1) δIJyIyJ . 

 
and energy density of the shell is given by 

A q
 

(a + 1) λ − 
√

aq
 

δIJ∂yI ∂yJ β + δIJ∂y I  ∂yJ H 

ρ(λ, y ) = − 
β
 

(a + 1) q − 
√

a (a + 2) λ 
. (7.137)

 

This density diverges asymptotically at infinity (i.e. for λ --- ±∞) unless β(yA) is 

harmonic. If b vanishes we have zero pressure and we fall into a previous case 

(H linear in λ). When b ̸= 0, the pressure is everywhere regular, positive and 

vanishes asymptotically at infinity. Under the restriction that β(yI ) is harmonic, 

a plot of p (λ), H(λ, yA) and ρ λ, yA  along a null generator of N + is depicted 

in Figure 7.3. For large negative values of λ, the step function exhibits a straight 

line behaviour which is a consequence of the fact that the pressure is negligibly 

small at past infinity. When p (λ) starts increasing, the self-compression of points 

starts taking place and this forces the slope of H(λ, yA) to decrease until it reaches 

again an almost constant value in the late future, once the pressure becomes again 

negligible. The growth of the energy begins when the self-compression occurs and 

ends when the pressure approaches next-to-zero values. It tends to a finite pos- 

itive value when the pressure vanishes, which suggests that it only increases (resp. 

decreases) on regions where there exists self-compression (resp. self-stretching), showing 

an accumulative behaviour. 

To illustrate that not all the choices for the pressure result in successful match- 

ings, we consider one last case: positive constant pressure p (the negative case 

is completely analogous). In these circumstances, the integrals in (7.130) yield 
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p 

- 

- 

- - 

p
∂yI ∂yJ β − e ∂yI ∂yJ H = δ . (7.138) 

β 

 

H(λ, yA) = H(yA) − 1 β(yA)e−pλ and hence ∂λ∂λH = −pβ(yA)e−pλ < 0. Com- 

bining (7.122) with Remark 7.3.9, it follows that the energy and energy flux of the 

shell are 

δIJ ( 1 
 

 

 

 

pλ 

1
 I I J ∂J β 

In this situation, one finds that limλ-+∞ H(λ, yA) = H(yA). The positive pressure 

produces sustained and systematic self-compression of points for all values of λ, 

which eventually results in a positive upper bound for the step function. This 
A 

spoils the matching, as all the points p+ ∈ N-+ with v+ (p+) > H(y ) cannot 

be identified with any point of N-− or, in other words, the hypersurface N-− is 

mapped onto the proper subset {v+ < H} ⊂ N − via Φ. 

This last example suggests that finding possible matchings with non-zero pressure 

may be a significantly complicated task, specially in non-flat spacetimes. In any 

case, the influence of the pressure producing a kind of self-compression/self-stretching 

of points along the matching and its associated energy storage is an interesting 

effect that, in our opinion, deserves further investigation. 

 

7.3.3.1 C0-form of the metric on the resulting spacetime 

Now that we have analyzed the most general matching of the two Minkowski 

regions (M±, g±) defined in (7.113) and that we have proven that its correspond- 

ing step function H(λ, yA) is given by (7.130) for an arbitrary pressure p(λ, yA), a 

natural question that arises is how to construct a C0 metric in the spacetime res- 

ulting from the matching. We devote this section to such matter. In particular, we 

shall construct coordinates in a neighbourhood of the matching hypersurface and 

prove that in such coordinates the metric in the resulting spacetime is Lipschitz- 

continuous. 

The results exposed in this section are part of a bigger ongoing project in collabora- 

tion with Argam Ohanyan and Roland Steinbauer (University of Vienna), in which 

besides finding a C0 form of the metric we intend to derive an associated distribu- 

tional metric form for the most general matching of two Minkowski regions across 

a null hyperplane. 

Let us call N the matching hypersurface embedded in the spacetime (M, g) result- 

ing from the from the matching of (M±, g±) across N ±. Then, (M+ ∪ M − ) / N 

where the quotient indicates that we are identifying the boundaries and this iden- 

tification gives rise to a single null hypersurface, namely N-. The null shell is 

therefore located on N-. In these circumstances, there already exist two coordin- 

β 
ρ = , j 
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N- ≡ {U± = 0}. 

± 

a 

+ 

I I 

− 

− 

a 

  
-

 

1 I x 

∂λH U 2 + 

1 I x 

− 

+ + 

 
ate systems, namely the coordinates {U±, V±, xA} which cover the (M±, g±) re- 

gions respectively. In such coordinates, the matching hypersurface N- is defined by 

 

Our aim is to build a new coordinate system4 {u, v, zA} in a neighbourhood 

O ⊂ M such that the metric g|O takes a C0 form. We shall perform this task in 

several separate steps. We will start by identifying {u, v, zA} with the coordinates 
{U−, V−, xA } on the (M−, g−) side. This will allow us to write the vector fields 

{ζ−, e −
a  } 

− 

in terms of the coordinate vectors {∂u , ∂v, ∂zA }. Combining these expres- 

sions with the explicit form of {ζ+, e+} (which we know from previous sections), 

we will be able to provide the relations between the coordinate sets {U+, V+, xA } 

and {u, v, zA} on (M±, g±). The next step will be to write g± in the coordinates 

{u, v, zA}, with which we will eventually find a C0-form of the metric of the space- 

time resulting from the matching. For the rest of the section, we enforce bJ = δJ 

(which can always be done because of the symmetries of (M±, g±), see the discus- 

sion above). 

To simplify the construction of {u, v, zA}, it is convenient to enforce a trivial iden- 

tification between them and {U−, V−, xA } on the region M−, i.e. to set 

 

{U− = u, V− = v, xA = zA} on M−. (7.139) 

Then, (7.26) together with the choice {L− = −∂U− , k− = ∂V− , v −
I  = ∂xI } that we 

made before force the vector fields {ζ−, e −
a  } to be given by 

e1
− = ∂v, e −

I  = ∂zI , ζ− = −∂u, (7.140) 

in the basis {∂u, ∂v, ∂zA } of Γ TM |
N 

. The matching identifies the vector fields 

{ e ±
a  , ζ±}, so the rigging ζ+ and the vector fields {e+} must verify (recall (7.30), 

(7.40)-(7.41) and (7.119)) 
 

e+ = (∂λH)∂V = ∂v, e+ = (∂yI H)∂V + ∂ I + 
= ∂zI , (7.141) 

ζ+ = − 
 1   

(

∂ + δAB(∂yA H) 

( 
1 

(∂yB H)∂V + ∂xB 

11 

= −∂u, (7.142) 

Since only tangential derivatives of H(λ, yA) appear on (7.141)-(7.142) and {λ = 

V− = v, yA = xA = zA 
− } on N- (cf. (7.115)), one can rewrite these equations as 

 

e+ = (∂vH)∂V = ∂v, e+ = (∂zI H)∂V + ∂ I 

+ 
= ∂zI , (7.143) 

 
 

4The coordinate v should not be confused with the foliation functions v± defined on the bound- 

aries N-±. 

+ + 

+ + 
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+ 

        

1 

        

+ 1 

2 

α α β 

+ + 

α β α β α β 

+ 0 1 

0 1 

fact, together with bJ = δJ and (7.118), forces U0 = 0, V0 = H
 

v, zA
 
, xA 

+ 1 

+ 1 1 

1 z 

 

ζ+ = − 
 1  

(

∂ + δAB(∂zA H) 

( 
1 

(∂zB H)∂V + ∂xB 

11 

= −∂u. (7.144) 

 

The one-forms dU+, dV+ and dxA are covariantly constant on the (M+, g+) side 

(e.g. for dU+ one finds ∇+(dU+)β = ∇+∇+U+ = ∂α∂βU+ = 0, and the same 

argument applies to dV+ and dxA ). If we let d+ denote any of U+, V+ or xA and 

require that ξ =
d e f  

∂u is null and affinely geodesic everywhere on M, it follows that 

ξα∇+ 
ξβ∇+d+

  
=

  
ξα∇+ξβ

  
∇+d+

 
+ ξαξβ∇+∇+d+ = 0 ⇐⇒ d+ = a + ub, 

where a v, zA and b v, zA are scalar functions. Accordingly, the coordinate trans- 

formation on the (M+, g+) must be of the form 

U+ = U0 + uU1, V+ = V0 + uV1, xA = xA + uxA, (7.145) 

where U0, U1, V0, V1, xA, xA only depend on the coordinates {v, zA}. Moreover, 

the trivial identification on the (M−, g−) side entails that N- ≡ {u = 0}. This 

    
Therefore, 

 

U+ = uU1, V+ = H + uV1, xA = zA + uxA, (7.146) 

dU+ = U1du + udU1, dV+ = dH + V1du + udV1, dxA = dzA + xAdu + udxA. 

In the following, we extend any scalar function f ∈ F(N ) to M+ ⊂ M by requir- 

ing that f is independent of the coordinate u. This, in particular, allows us to write 

f |N as f  λ, yA  and f |M+ as f  v, zA . 

The scalar functions U1, V1, xA can be derived from (7.144) by decomposing ∂u as 
 

 

∂u = 
∂U+ 

∂u 

 

∂U+ + 
∂V+ 

∂u 

 

∂V+ + 
∂xA 

+ ∂ 

∂u 

 

xA = U1∂U+ + V1∂V+ + xA∂ 

 
A . (7.147) 
+ 

Inserting (7.147) into (7.144), one obtains 

U1 = 
 1  

, V1 = MU1, xA = qAU1 
∂vH 1 (7.148) 

where M := 
1 

δAB∂zA H∂zB H, qA := δAB∂zB H. 

 

Observe that the quantities qA and U1 verify 

dqA = δAB 
(
∂v∂zB Hdv + ∂zC ∂zB HdzC

) 
, (7.149) 

dU1 = −U 2 
(
∂v∂vHdv + ∂ B ∂vHdzB

) 
. (7.150) 

I I 0 = zA. 

x 

+ + 
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The final coordinate transformation is therefore given by 

 

U+ = uU1, V+ = H + uMU1, xA = zA + uqAU1. (7.151) 

We are now ready to compute the metric g+ in the coordinates {u, v, zA}. From 

(7.146) it follows 
 

ds2 = − 2dU+dV+ + δABdxAdxB 

= − 2 (U1du + udU1) (dH + V1du + udV1) 

+ δAB 
(
dzA + xAdu + udxA

) (
dzB + xBdu + udxB

)
 

= du2 
(

−2U1V1 + δABxAxB

)
 

+ 2du 
(
u 

(
−V1dU1 − U1dV1 + δABxBdxA

) 
− U1dH + δABxAdzB

)
 

− 2udU1dH − 2u2dU1dV1 + δAB 
(
dzA + udxA

) (
dzB + udxB

) 
. (7.152) 

The vector field ∂u being null everywhere forces (this also follows directly from 

(7.148)) 

−2U1V1 + δABxAxB = 0 =⇒ 0 = −V1dU1 − U1dV1 + δABxAdxB. (7.153) 

 
Besides, since we have selected the rigging ζ− to be orthogonal to the spacelike 

sections {V− = const.} of N-−, the combination of (7.139) (where we imposed 

V− = v) and (7.140) entails that ∂u is orthogonal to the spacelike sections of {v = 

const.} of N as well. In particular, this implies that (again this also follows from 

(7.148) by means of a straightforward calculation) 

−U1∂ A H + δABxB = 0 ⇐⇒ −∂ A H + δABδBJ∂ J H = 0. (7.154) 

Since dH = ∂vHdv + ∂zA HdzA, it follows that 

−U1dH + δABxAdzB = U1(−dH + δABqAdzB) 

= U1(−∂vHdv − ∂zA HdzA + δABδBJ∂zJ HdzA) = −dv,  (7.155) 

 
where we have used (7.154) to cancel the last to terms and (7.148) to introduce the 

coefficient U1. Inserting (7.153) and (7.155) into (7.152) yields 

ds2  = − 2dudv − 2udU1dH − 2u2dU1dV1 + δAB 
(
dzA + udxA

) (
dzB + udxB

)
 

+ 1 1 

= − 2dudv + δABdzAdzB + 2u 
(

−dU1dH + δABdzAdxB

)
 

+ u2 
(

−2dU1dV1 + δABdxAdxB

)
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+ U1 

1 
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A 

2 

,  A 

A 

2 

- 

= − 2dudv + δABdzAdzB + 2u 
(

−dU1dH + δABdzA 
(

U1dqB + qBdU1

))
 

+ u2 
(

−2dU1 (MdU1 + U1dM) + δAB 
(

U1dqA + qAdU1

) (
U1dqB + qBdU1

)) 
. 

Using (7.155), as well as the equalities −2M + δABqAqB = 0, −dM + δABqAdqB = 0 

that follow from (7.148), one gets 

 

ds2 = − 2dudv + δABdzAdzB + 2u 

(

− 
 1  

dvdU1 + U1δABdzAdqB

1

 

+ u2 
(
dU1 

(
−2U1dM + 2U1δABqAdqB

) 
+ U 2δABdqAdqB

)
 

= − 2dudv + δABdzAdzB + 2u 

(

− 
 1  

dvdU1 + U1δABdzAdqB

1 

+ u2U 2δABdqAdqB. 

U1 
1

 

Finally, inserting (7.149)-(7.150) and using (7.121) and the definition of the pressure 

(see Remark 7.3.9), it is straightforward to obtain the metric 

ds2 = − 2dudv + δABdzAdzB + udv2 
(
uδAB[Y1A][Y1B] − 2p

)
 

+ 2u[Y1I]dvdzA 
(

−2δI  + uδBI[YAB]
)
 

Given that ds2
 

− 2udzAdzB 
(
[YAB] − 

u
δIJ[YIA][YJB]

) 
, (7.156) 

= −2dudv + δABdzAdzB because of the identification of {u, v, zA} 

and {U− , V− 
− 

x−} on the minus side, it follows that the metric g of M can be 

written in a C0 form in terms of {u, v, zA} as 

g = − 2dudv + δABdzAdzB + uΘ(u)dv2 
(
uδAB[Y1A][Y1B] − 2p

)
 

+ 2uΘ(u)[Y1I]dvdzA 
(

−2δI + uδBI[YAB]
)
 

− 2uΘ(u)dzAdzB 
(
[YAB] − 

u
δIJ[YIA][YJB]

) 
, (7.157) 

where Θ (u) is the Heaviside step function. We can summarize the results of this 

section in the following lemma. 

 

Lemma 7.3.10. Let (M±, g±) be two regions of the spacetime of Minkowski and suppose 

that their boundaries N ± are null hyperplanes. Assume that all the required conditions 

for the matching of (M±, g±) are satisfied and denote by (M, g) the resulting spacetime 

containing a null thin shell located on a null hyperplane N-. Then, there exists a set of 

continuous coordinates {u, v, z 

properties: 

} on a neighbourhood O ⊂ M of N- with the following A 
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(i) {u, v, zA} are Gaussian null coordinates5 on both sides of N-. Moreover, the vector 

∂v|
N 

is a null generator of N while the vector ∂u|
N 

is a rigging of N with the 

properties of being future-directed, null, orthogonal to the spacelike planes N ∩ {v = 

const.} and satisfying g(∂u, ∂v)|
N 

= −1. 

(ii) In the coordinates {u, v, zA}, the metric g|O takes a C0-form and it is given by 

g = − 2dudv + δABdzAdzB + uΘ(u)dv2 
(
uδAB[Y1A][Y1B] − 2p

)
 

+ 2uΘ(u)[Y1I]dvdzA 
(

−2δI + uδBI[YAB]
)
 

− 2uΘ(u)dzAdzB 
(
[YAB] − 

u
δIJ[YIA][YJB]

) 
, (7.158) 

where Θ (u) is the Heaviside step function. 

In particular, in the gravitational wave case (i.e. there is no energy density, no energy flux 

and no pressure on the shell) the step function H(λ, yA) is given by (7.127) and hence the 

metric g|O becomes (cf. (7.121)) 

g = −2dudv + δABdzAdzB + 
2uΘ(u)

(∂zJ ∂zB H) 
(
δ

J  + δIJ∂ I ∂ A H
) 

dzAdzB, 
u 

a A 2a  

(7.159) 

 

where a is a positive real constant and H(zA) is an arbitrary function. 

Remark 7.3.11. The function uΘ(u) is Lipschitz continuous, so the metric (7.158) is 

Lipschitz in the variable u, even across the null hypersurface N ≡ {u = 0}. 

Remark 7.3.12. When (M±, g±) are 4-dimensional, one can define spatial complex co- 

ordinates 

Z =
d e f  

z2 + iz3
 

√
2 

, Z =
def 

z2 − iz3 

, (7.160) 
2 

where i denotes the imaginary unit, and then a straightforward calculation shows that the 

one-form 

Ω =
d e f  

dZ + 
uΘ(u)(

(∂ ∂ 
 

satisfies (we let Ω be the conjugate of Ω) 

H)dZ + (∂Z ∂Z H)dZ
) 

(7.161) 

2Ω ⊗s Ω = (dz2)2 + (dz3)2 + 
2uΘ(u)

(∂zJ ∂zB H) 
(
δ

J + δIJ∂ I ∂ A H
) 

dzAdzB. 
u 

    

Thus, the metric (7.159) can be expressed in terms of Ω as 

 

g = −2dudv + 2Ω ⊗s Ω, (7.162) 
 

5See e.g. [129], [100] or Appendix D for details on the construction of Gaussian null coordinates. 

z z 

a A 2a z z 

Z 
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which is the standard form of writing the Lipschitz-continuous metric g when studying the 

matching of two regions of Minwkoski across a null hyperplane by means of the cut-and- 

paste method (note that (7.162) becomes (2.169) when enforcing a = 1, H = h). Recall 

that in these cut-and-paste constructions there is neither energy flux nor pressure, and that 

the constant a is usually set to one. 



 

 

8 
M AT C H I N G A C R O S S A B S T R A C T K I L L I N G 

H O R I Z O N S O F O R D E R Z E R O 
 

 

 
In the previous chapter, we have seen that sometimes two spacetimes can be 

matched in more than one way, and we have provided an explicit situation in 

which this occurs, namely when the boundaries are totally geodesic null hyper- 

surfaces. Although this is by no means the only scenario allowing for more than 

one matching, it is of particular geometric and physical interest because it applies 

whenever the boundaries of the spacetimes are horizons of the types we have in- 

troduced throughout this thesis, i.e. non-expanding horizons, (weakly) isolated 

horizons, (multiple) Killing horizons, abstract Killing horizons of order zero and 

one (as well as their embedded versions). In these circumstances, the enormous 

matching freedom can be exploited to consider a great amount of possibilities. For 

instance, one may match a non-expanding and a multiple Killing horizon, or a 

totally geodesic null hypersurface with a Killing horizon of order ½. The combin- 

ations are endless, and this facilitates the task of finding examples of matchable 

spacetimes. 

Now, the problem of matching two spacetimes with boundary can involve sev- 

eral levels. For instance, one may be interested in finding the most general pos- 

sible matching between them, in restricting the energy-momentum tensor type 

and study only those, or in preserving some additional geometric property that 

the two spacetimes might share. In this chapter we explore in detail a relevant 

example of the latter. All notions of horizons presented in this thesis (with the 

exception of non-expanding horizons) are defined in terms of a privileged vector 

field that we have denoted by η. On the horizon, this vector field has the proper- 

ties of being null, non-zero almost everywhere (or everywhere) and tangent, and 

it defines a symmetry (up to whatever order) of the hypersurface under consider- 

ation. Since this vector field defines a certain kind of symmetry on each spacetime, 

it is of interest to study matchings for which the resulting spacetime is also en- 

dowed with a special vector field so that the final spacetime also possesses certain 
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kind of symmetry. For this to happen it is necessary to restrict the matchings in 

such a way that the two vectors fields on each side are identified. By doing this, 

the matched spacetime will be equipped with a privileged continuous vector field. 

Note that in general we cannot expect more smoothness for this vector field, since 

the metric itself is only continuous across the shell. 

Thus, in this chapter we study in detail the problem of matching when the sym- 

metry generators from both spacetimes are identified in the process of matching. 

This, as we will see, restricts the set of all possible step functions and even the type 

of matching. 

In order to keep as much generality as possible, we need to work with the weakest 

notion of horizon, so that our results are applicable to a variety of situations. Since 

abstract Killing horizons of order zero constitute the less restrictive horizons intro- 

duced in this thesis, it is sensible to consider the case when the boundaries of the 

spacetimes to be matched are embedded versions of this abstract horizons. Note 

the subtle difference between an embedded AKH0 and a KH0. As we discussed in 

Section 5.4, these two objects do not need to share the same properties. In partic- 

ular, in an embedded AKH0 the transverse components of the deformation tensor 

Kη do not need to vanish. 

In this chapter, our setup will be the following. We consider two spacetimes 

(M±, g±) with boundaries N-± which are embedded AKH0. As we did in the 

previous section, we assume that N ± can be foliated by a family of diffeomorphic 

spacelike cross-sections, and that one boundary lies in the future of its respective 

spacetime while the other lies in its spacetime past. We also suppose that (M±, g±) 

verify all matching conditions. Since AKH0 are totally geodesic null hypersurfaces, 

this means that an infinite number of matchings of (M±, g±) across N ± can be 

performed. Each of these possible matchings corresponds to a different step func- 

tion H(λ, yA), and they all share the same identification between the set of null 

generators of both sides (ruled by the diffeomorphism Ψ). For each feasible match- 

ing, one can find metric hypersurface data {N , γ, ℓ, ℓ(2)} that can be embedded 

in both spacetimes. As usual, we let {ϕ±, ζ±} denote the corresponding matching 

embeddings and riggings, and we define the matching map Φ : N − −--- N + by 

Φ ◦ ϕ− =
d e f  

ϕ+. In these circumstances, the hypersurface data sets 

{N , γ, ℓ, ℓ(2), Y±} with Y± =
d e f  1 

(ϕ±)⋆(£ ± g±) (cf. (2.39)) (8.1) 

 
define abstract Killing horizons of order zero according to Definition 5.4.1. As 

already stressed, in this chapter we are interested in the case when the symmetry 

generators from the two sides are identified in the matching process. In the lan- 
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k
± 

- - 

section (see the discussion in Section 2.4). The fact that N 

then means that the second fundamental forms K- 
± vanish everywhere on N-±. k 

 

guage of the formalism of hypersurface data, this means that {N , γ, ℓ, ℓ(2), Y±} 

are AKH0 with the same symmetry generator, which we denote by η. We use S 

to refer to the fixed point set of η. The symmetry generators η± on (M±, g±) are 

given by 

η− =
d e f  

ϕ⋆η, aη+ =
d e f  

ϕ±η, a ∈ R − {0}. (8.2) 

and we let S± =
d e f  

ϕ±(S). We include the constant a in (8.2) in order to account for 

the freedom of rescaling the symmetry generators η± by a non-zero real constant. 
Finally, we assume that the surface gravities κ± of η± are everywhere constant 

on N \ S±, and extend them trivially to N ± (

-

this in turn means that the surface 

gravity κ of η, defined in Lemma 3.3.1, is also constant on N , see Proposition 

3.3.2). In order to simplify later discussions and results, if it happens that κ± ̸= 0 

then we select η± so that κ± > 0. Since κ± are constant, this entails no loss of 

generality, as one can always take −η± as the Killing vector field whenever κ± < 0 

(cf. (2.81)). As elsewhere in the thesis, here we also identify functions on N

-

 

their counterparts on N-±. 

with 

In the previous chapter we have seen that each matching can be codified in a pair 

{H(λ, yA), Ψ}, where H(λ, yA) is the step function of the matching and Ψ is a dif- 

feomorphism between the set of null generators on both sides. An important aspect 

to bear in mind is that all the matching freedom that appears when the boundaries 

are totally geodesic is fully encoded in the step function. For this reason, we shall 

focus on this object, treating the diffeomorphism Ψ as known and concentrating 

our effort on finding the set of possible step functions. This is not problematic at all, 

since we are assuming that (M±, g±) are always matchable, which automatically 

guarantees the existence of such a map Ψ. 

In order to exploit the matching formalism introduced before, we need to construct 

two foliation functions v± and two basis {L±, k±, v ±
I  } of Γ (TM±) |N ± according 

to (7.2). We recall that in (7.2) the basis vector k± is a choice of future null generator. 

For the purposes of this chapter, it is convenient that we select k± affine, i.e. such 

that κ- ± = 0. This can always be done because both boundaries admit a cross- 

-± 
 

The results (2.88)-(2.90) are fully valid in the present case because η± are null and 

tangent to N-± everywhere therein and κ-k
±

± = 0, κ-± ∈ R. Thus, we can write 

 
 

η± 
H
= α±k±, 

± 
=
def 

f ± + κ±v± (8.3) -α 

are totally geodesic 
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- 

= 

1 

= 
- 

- 

- 

1 

∂λH 

= ∗ = ∗ = ∗ 1 = 1 

∗ 

 

where v± is the foliation function constructed according to (7.2) (in particular 

k±(v±) = 1) and f ± ∈ F(N ±) satisfy k±( f ±) = 0. 

At the spacetime level, the identification of {η−, aη+} is guaranteed if and only if 

Φ η− 
N-+ 

aη+ (8.4) 

holds. On the other hand, using e1
− = k− (cf. (7.26)), e+ = ∂λHk+ (which follows 

from (7.30) and (7.45)) and e+ = Φ⋆e−, one obtains 
1 1 

+ + a +e+ 

aη+ 
N-
= a-α+k+ N

-
= 

-α 1 , (8.5) 

aη+ 
N-+ 

Φ η− 
N-+ 

-α−Φ k− N
-+ 

-α−Φ e− N
-+ 

-α−e+. (8.6) 

 
The combination of (8.5) and (8.6) hence yields 

 

-α− 
N-+

 aα+ . (8.7) 
∂λH 

Observe that equation (8.7) is consistent with the fact that the fixed point sets S± 

(given by those points where α± vanish) must be identified in the matching process. 

This, of course, was obvious from the abstract viewpoint, since there exists one 

unique symmetry generator η and by definition S± =
d e f  

ϕ±(S). 

Equation (8.7) is of relevance in the sense that it constitutes an extra matching 

condition, namely that matchings across embedded AKH0s in which the symmetry gen- 

erators are to be identified cannot be performed unless the corresponding fixed point sets 

can be mapped to each other. This restriction is important since, as we proved in 

Lemma 5.4.11, the causality of the fixed point set of an AKH0 strongly depends 

on the geometric properties of the symmetry generator (and the matching map 

sends null generators on one side to null generators on the other side, recall that 

Φ⋆ e1
−  = e+). Thus, it could well happen that all matching conditions were satisfied 

but (8.7) was not, and hence the matching would be possible but not under the 

condition that the symmetry generators are identified in the matching process. 

In Section 7.3, we proved that a general matching across totally geodesic null 

boundaries (without a priori identifying any pair of generators) allowed for 

an infinite set of possible step functions. This was a consequence of all leaves 

{v± = const.} being isometric to each other (recall (7.5)). Because of condition 

(8.7), this is no longer true here. Away from the zeroes of α±, the integration of 

(8.7) determines the step function H(λ, yA) up to an integration function. This 

solution, however, may be difficult to find in general. The problem becomes sim- 
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- 

- 
- 

- - 

- 
-

 

f −(yA ) 

- 

- 

λ 

 

pler under the assumptions of k± being affine (which implies no loss of generality) 

and κ± being constant (which is indeed a restriction that we are making). In fact, 

combining (7.49), (8.3) and (8.7) gives 

 
f − − N  a

 
f + + κ-+ H

 
 
 

H 
N \S a

 
f + + κ-+ H

 
  0, (8.8) 

+ κ λ = 
∂ H 

=⇒ ∂λ = 
f − + κ−λ 

>
 

where we have used that ∂λH > 0. The functions f ± are constant along the null 

generators, so they are λ-independent. This makes it easier to integrate (8.8) in 

order to obtain the explicit form of H(λ, yA). Note that the second expression in 

(8.8) only holds away from the fixed points. The value of H(λ, yA) on S must be 

determined by continuity (recall that N \ S is dense in N according to Definition 

5.4.1). The right part of (8.8) can also be expressed as 

 

sign (a) sign
 

f + + κ+ H
  

= sign
 

f − + κ−λ
 

, (8.9) 

which geometrically means that both symmetry generators {η−, aη+} must be sim- 

ultaneously either future or past. This of course is consistent with the fact that 

{η−, aη+} are to be identified. We now study separately the matching for the cases 
(a) κ± = 0, (b) κ± ̸= 0 and (c) κ− = 0, κ+ ̸= 0 or κ− ̸= 0, κ+ = 0. 

- - - - - - 
 

 
8.1 case of η ± degenerate 

 

When κ± vanish, we know by Lemma 5.4.11 that S± are either empty or the union 

of smooth connected codimension-two null submanifolds of N ±. The fact that the 

map Φ is a diffeomorphism forces both boundaries to have the same number of 

these connected components. On the other hand, enforcing κ± = 0 in (8.8) yields 

the condition a f 
+(yA ) > 0 as well as the explicit form of the step function, namely 

 

H(λ, yA) = 
a f +(yA) A 

f −(yA) 
λ + H(y ), (8.10) 

where H(yA) is an integration function. 

Once we select the tuple {a, η−, η+}, the only remaining matching freedom is en- 

coded in the function H(yA) (the scalar functions f ± are known beforehand as 

the spacetimes to be matched are assumed to be known, cf. (2.90)). In order to 

understand this freedom, recall that we have called "velocity" the rate of change 

of the foliation function v± along a null generator of N ±. The velocity along the 

null generators of N-± is totally determined (outside of S±) by the identification of 
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- 

f 

∈ N- | - ±| 

- - 

-

 

- 

+ 

- - 

− 

− 

Thus, a = κ−(κ+)−1 > 0 and equation (8.8) becomes 

- 

 

{η−, aη+}. However, there still exist a freedom to select any pair of sections, one 

on each side, and force their identification via Φ. This is the freedom encoded in 

the arbitrary function H(yA). Note that the step function (8.10) is linear in λ. This 

means, in particular, that the most general shell that can be generated under these 

circumstances has vanishing pressure (recall (7.94) and Remark 7.3.9). 
 

 
8.2 case of η ± non-degenerate 

 
We now study the case when κ± ̸= 0. Again by Lemma 5.4.11, we know that 

S± are either empty or spacelik

-

e cross-sections defined by S± =
d e f  

{p ∈ N ± | f ± + 

κ-±v±|p = 0}. We define the submanifolds N-p
±, N-f

± by 

 

N-p
± =

def 

N-± =
def 

 
p ± f ± + κ±v p < 0

 
, 

 
p ∈ N-± | f ± + κ-±v±|p > 0

 
, 

 
(8.11) 

so that N-± ≡ N-p
± ∪ S± ∪ N-f

±. Since we are assuming nothing on the geodesic 

completeness of N-±, we do not exclude the cases when any of N-p
±, N-f

± and 

S± are empty. Note that, when N-p
±, N-f

± are non-empty they are by definition 

embedded AKH0s. For later purposes, we also introduce the non-zero constant 

κ =
d e f  

aκ+(κ−)−1. Note that sign(κ) = sign(a) because we have chosen the orienta- 

tions of η± such that κ± > 0. 

We start by considering the case S± ̸= ∅ and show that in such case (8.8) forces κ 

to be equal to one. We apply the l’Hôpital rule to (8.8) and get 
 

lim 
f −  − 

∂λH = lim 
f − 

κ ∂λH 
− − = κ lim 

f − − 
∂λH ⇐⇒ κ = 1. (8.12) 

λ-−  /κ λ-−  /κ κ- λ-−  /κ 

 

- - 

 

∂λH = 

 

 

f + 
 

+ + H 
κ- 

 

1 ( 
f − 

+ λ 
κ- 

 

 

1−1 

 

 

> 0, (8.13) 

 

whose integration yields 

f +(yA) 
ln 1 

 

 
+ H(λ 

 

 
, yA)1 

 

= ln 

(

 

 

 
β(yA) 

 

 

f −(yA) 
1 

 

+ λ1
1 

, (8.14) 
1 κ- 1 1 κ- 1 

( 

+ 

a 
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- 
- - 

- - 

- 

- 

1 - 1 1 - 1 

+ + 

f 

+ - 

p 

p 

+ 

κ 

κ- λ 

p 

p 

+ 

κ 

- 

 

where β(yA) is a positive integration function. Putting (8.14), (8.9) and the fact that 

a > 0 together gives 

 

H(λ 

 

, yA 

 

) = β(yA) 

(

λ + 
f −(yA) 

1
 

 

κ- 

f +(yA)
,
 

κ- 

 

β(yA) > 

 

0. (8.15) 

 

In combination with the results in Section 8.1 we conclude that whenever N ± are 

degenerate or contain non-empty fixed point sets any matching of (M±, g±) across 

N ± in which the symmetry generators {η−|
N − , aη+|

N + } are identified requires 

the surface gravities {κ−, aκ+} to coincide. Moreover, the step function must be 

linear in the coordinate λ, which excludes matchings giving rise to shells with 

non-vanishing pressure. 

It is also physically interesting to study the matchings when no null generator of 

N ± crosses a fixed point set, i.e. when S± are both empty. Integrating (8.8) now 

leads to 

f +(yA) + κ+ H(λ, yA)  = β(yA) f −(yA) + κ−λ 
κ
, (8.16) 

where β(yA) is a non-zero positive integration function. We analyse the cases a > 0 

(i.e. κ > 0) and a < 0 (i.e. κ < 0) separately. For the former, condition (8.9) gives 

sign( f + + κ+ H) = sign( f − + κ−λ), which only allows for the matchings (see (a), 

(b) in Figur

-

e 8.1) 

-

 

 Boundaries: N-− = N-f
−, N- = N-f  , 

(a) 
 
Matching map: Φ(N-f

−) = N-+, 

 Step function: H (λ, yA) = β(yA) 1 f −
 (yA ) + κ−λ1 

f +(yA) − + 

 
Boundaries: 

 

N-− = N-p
−, 

κ κ 

N-+ = N-+, 

(b) 
 
Matching map: Φ(N-p

−) = N-+, 

 Step function: H (λ, yA ) = − β(yA) 1 f −
  (yA ) + κ−λ1 f +(yA) − + 

κ- 
- 

κ- 

On the other hand, a < 0 together with (8.9) entail sign( f + + κ+ H) = −sign( f − + 

−  ), whence (see (c), (d) in Figure 8.1) 

-

 

 
Boundaries: N-− = N-f

−, N-+ = N-+, 

(c) 
 
Matching map: Φ(N-f

−) = N-+, 
 Step function: H (λ, yA ) = − β(yA) 1 f −

 (yA ) + κ−λ1 f +(yA) − + 

κ- 
- 

κ- 

− + 

κ 
, 

. 

, 

− 

- 
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+ + 

f 

+ 

κ 

- 

+ 

- 

- 
κ- 

κ- 

- - 

- 

- 

µ− f −(yA) + κ−λ 

The function H can be written in a form that covers all cases at once by defining 

 Boundaries: N-− = N-p
−, N- = N-f  , 

(d) 
 
Matching map: Φ(N-p

−) = N-+, 

 Step function: H (λ, yA) = β(yA) 1 f −
  (yA ) + κ−λ1 f +(yA) − + 

κ- 
- 

κ- 
 

 

 

 

 
and writing 

H(λ, yA) =  
1

 
κ- 

ϵ =
d e f  

sign (κ) sign( f − + κ−λ) (8.17) 

 

 
(
-ϵβ(yA) 1 f −(yA) + κ-−λ1

κ 
− f +(yA)

) 
, β(yA) > 0. (8.18) 

We emphasize that the expression (8.18) for the step function H(λ, yA) is only part 

of the matching, as the boundaries N ± must correspond to any of the situations 

(a)-(d). Observe that in the present case the matchings (a)-(d) allow for shells with 

pressure, as the derivatives of (8.18) are given by 
 

∂λH = β(yA)|a|| f −(yA) + κ−λ|κ−1 > 0, ∂λ∂λH = 
− (κ − 1) 

f −(yA) + κ−λ ∂λH 

which, together with (7.94) and Remark 7.3.9, implies 

-

 

 

p(λ, yA) = 
ϵ
 

− (κ − 1) . (8.19) 
1 - 

As discussed in Section 7.3.3, the pressure accounts for the compression/stretching 

of points when crossing the matching hypersurface. This means, in particular, that 

this effect takes place whenever κ ̸= 1. 

The positive function β(yA) introduces a freedom in the matching that we analyse 

next. When S± = ∅, it corresponds to the freedom of selecting a section on each 

side and impose their identification via Φ (this is the same that happened in the 

case with vanishing surface gravity of Section 8.1). The interpretation of this free- 

dom is less obvious when S± ̸= ∅, because in such case the sections S± are forced 

to be mapped to each other. In order to understand this, we again call "velocity" 

the rate of change of v± along a null generator of N ±. Both when N ± are degen- 

erate and when N ± are non-degenerate with S± = ∅, identifying two sections 

not only provides a mapping between their points, but also of the velocity along 

the null generators of N ± at those sections. This latter information is encoded in 

the symmetry generators to be identified. However, for non-degenerate N-± con- 

. 

- 
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N- 

 

 + 

 

 

 

 
 

(d) 

 

 
 
 
 
 
 
 

 
Figure 8.1: Possible matchings of two spacetimes (M±, g±) across their respective bound- 

aries ± in the case when these are non-degenerate embedded AKH0s without 
a fixed points set. Here boundaries directly in front of each other are to be iden- 
tified and the dot represents the point at which the fixed points set would be 
located if the horizons extended further. 

 

taining fixed point sets S± ̸= ∅, the map between the subsets S± only provides 

information on the identification of their points. The velocity along the null gener- 

ators remains unfixed, as both symmetry generators vanish on S±. The function 

β(yA) encodes precisely the freedom of selecting the initial velocities at S+ that 

rule the identifications off the fixed points set. Once we are off S±, the velocity is 

determined by the identification of the symmetry generators themselves, just as in 

the previous cases. 
 

 

8.3 case of η − degenerate, η + non-degenerate 

 
Now we address the case when one boundary is degenerate and the other is not. 

Since one symmetry generator is degenerate and the other is not, by Lemma 5.4.11 

it follows that the matching (identifying {η−, aη+}) is only possible if η± are every- 

(a) 

 

  + 
 

 

 

(b) 

 

  
 
+ 

 

 

(c) 

 

  
 
+ 
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- 

a + 

( 
-
 

- 

( 

− 

- 

- 

- 

- 

+ + + + 

Summarizing, when a > 0 (resp. a < 0), a degenerate horizon N-− can be matched 

( 

A 

1 

 
where non-zero (again this is because Φ cannot send spacelike cross-sections to 

null submanifolds and vice versa). We therefore analyze the case S± = ∅. 

Without loss of generality, we take the degenerate symmetry generator to be future. 

First, we let N − be the degenerate boundary. In that case, the causal character of − requires f − > 0. Then (8.8) forces a( f + + κ+ H) > 0 and can be integrated to 
η 

get 

 
 

 

H(λ 

 
 

 

, yA) = 

 

 
1 

β(yA) 
κ- 

 

 

exp 
aκ+λ 

f −(y  ) 

- 
 

 

− a f + 

 

 

 

(yA 

 

 

)

1 

, 

 
 

 

β(yA) > 

 

 

0. (8.20) 

The alternative case when N + is the degenerate boundary is analogous. Now f + > 
0 so sign(a) = sign( f − + κ−λ) and integrating (8.8) yields 

 

 
H(λ 

 

 
, yA) = a f +(yA

-

) 
ln

 
κ 

 

 
β(yA)| 

 
 

 f −(yA 
 
) + κ− 

 

λ|
) 

, 

 

 
β(yA) >  0, (8.21) 

for whatever sign of a

-

. 

-

 

with a non-degenerate horizon N- ≡ N-f (resp. N- ≡ N-p ) with step function 

given by (8.20). On the other hand, a non-degenerate horizon N-− ≡ N-f
− (resp. 

N-− ≡ N-p
−) can be matched with a degenerate horizon N-+ with step function 

(8.21) and a > 0 (resp. a < 0). It is worth stressing that the step functions (8.20)- 

(8.21) are not linear, so the shell has non-zero pressure. Matchings of this type are 

allowed irrespectively of the extension of the degenerate horizon (which can even 

be geodesically complete) while the non-degenerate horizon is always limited by 

the fact that the would-be fixed point set must be absent. As before, from a physical 

point of view it is the presence of pressure, and its associated compression/stretch- 

ing effect, that makes a matching of this type possible. 

We collect the results from Sections 8.1, 8.2 and 8.3 in the following theorem. 

 

Theorem 8.3.1. The matching of (M±, g±) across the embedded AKH0s N ± in which the 

symmetry generators {η−, aη+}, a ∈ R \ {0} are to be identified is possible if the matching 

conditions are satisfied and the fixed points sets S± are identified via Φ. Moreover, 

(i) if N ± are degenerate, the matching is possible with step function (8.10); 

(ii) if N ± are non-degenerate and S± ̸= ∅, the matching requires the surface gravities −, aκ+} to coincide and the step function is given by (8.15); 
{ κ- - 

(iii)  if N ± are non-degenerate and S± = ∅, the only possible matchings are (a)-(d) in 

Section 8.2 with step function (8.18); 
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- - - 

- - - 

- 
- 

± 

Consider two spacetimes (M±, g±) with smooth connected null boundaries N-±
 

 

(iv) if N − (resp. N +) is degenerate with future symmetry generator η−|
N − ̸= 0 (resp. 

η+|
N + ̸= 0) and N + (resp. N −) is non-degenerate and with S+ = ∅ (resp. S− = 

∅), the matching can be performed with step function (8.20) (resp. (8.21)); 

(v) the matching between a degenerate and a non-degenerate boundaries is impossible 

when any of them contains fixed points. 

The resulting null shell has vanishing pressure in cases (i) and (ii) exclusively. Finally, 

the matching allows for the freedom of selecting a section on each side and imposing their 

identification via Φ in (i), (iii) and (iv); and the freedom of setting the initial velocities at 

S± in (ii). 

 
8.4 killing horizons with bifurcation surfaces 

 
From a physical point of view, perhaps one of the most interesting situations cor- 

responds to non-degenerate Killing horizons with a bifurcation surface. This covers 

all black hole spacetimes with non-zero constant temperature and whose boundar- 

ies are geodesically complete Killing horizons, so it is sensible to analyze this case 

in more detail. 

A Killing horizon (cf. Definition 2.6.1) satisfying the assumptions in Section 2.6 

(in particular that its closure constitutes a smooth connected hypersurface without 

boundary) is also an embedded AKH0. Thus, the matching across geodesically 

complete non-degenerate Killing horizons containing bifurcation surfaces falls into 

item (ii) in Theorem 8.3.1. However, since now we have much stronger conditions, 

namely the existence of a Killing vector on each side, we can restrict the matching 

far more, as we shall see next. 

 

containing bifurcation surfaces S± ⊂ N-± so that N-± \ S± are non-degenerate 

Killing horizons. As usual, we denote the corresponding Killing vectors by η±. 

Our aim is to determine the matter content of the null shell arising from the match- 

ing of (M±, g±) whenever it happens to be possible. For that purpose and given 

the fact that the surface gravities κ± of η± are constant (see the discussion in Sec- 

tion 2.6.2) and non-zero on N ± \ S±, it is convenient to take so-called Rácz-Wald 

coordinates {u±, v±, xA } (see Appendix D for details on the construction of this 

coordinates), which can be constructed so that 

N-± = {u± = 0}, S± = {u± = 0, v± = 0} (8.22) 
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� 

- 

± 

- 

± 

G± 

- 

- 

�IJ 

- 

- - 

- 

� 

du± + u±m±dxA + γ± dxAdxB , (8.24) 

vv v 
G 

v 
G 

± 

 

and the Killing vectors η± and the spacetime metrics g± are given by 

 ± = κ±(−u±∂u± + v±∂v± ), (8.23) 
η 

( ) 

A ± �AB ± ± 

where as before we have extended κ± to S± trivially as the same constants and 

G±, m ±
A  , γ

±
A B  ∈ F (M) only depend on the product u±v± and on the spatial co- 

ordinates {xC }. The Rácz-Wald coordinates have a residual freedom that allows 

one to set G±|
N ± = const. ̸= 0, which we enforce from now on. The non-zero 

components of the inverse metric are 

guv = − 
 1  

, guu = u2 γABm±m±, guA = −u  γABm±, (8.25) 

± G± ± ± �± A B ± �± B 

where γAB is the inverse of γ , i.e. γABγ±  = δA. 
�± �AB �± �BC C 

In order to study the matching, we need to construct basis {L±, k±, v ±
I  } of 

Γ(TM± )|
N-± according to (7.2). Our choice is 

 

L± = − 
 1  

∂u , k± = ∂v , v± = ∂ I

  

, (8.26) 
± I x 

 

and it is straightforward to check that k± are affine1 (i.e. with κ± = 0). We let 

the coordinates v 
k± 

± be the corresponding foliation functions satisfying k±( v±) = 1. 

Note that the choice (8.26) forces the functions {µ1
± , µ ±

I  } defined in (7.6) to be given 

by µ1
± = 1, µ ±

I  = 0. However, we still cannot fix the sign ϵ of the energy-momentum 

tensor, as we do not know whether the boundaries N ± lie in the future or in the 

past with respect to (M±, g±). The induced metrics on the sections {v± = const.} 

are h ±
I  J =

def 
γ±|u

 ±=0. 

We are interested in matchings for which the vector fields η± are identified. In the 

language of the previous section, this means that a = 1, hence κ+ = κ− is forced 

(see item (ii) in Theorem 8.3.1). Since κ± must coincide, in the following we simply 

write κ to refer to both of them. Observe that the combination of (8.23) and (2.90) 

implies that f ± = 0. 
 
 
 
 

 
1Indeed, one gets (we drop ± to ease the notation) 

 

kα ∇αkβ =
N- 

Γ
β

 

 

=
N- 

gβu∂vguv =
N- 

δ
β 1 

∂v G =
N- 

δ
β u 

∂ G =
N- 

0, where 

 

w d=
ef 

uv. 

± 

w 

g± = − 2G±dv± 

� 

- 
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± 

γ�AB|u±=0 

I J + 

u− = 0, v− = λ, xI 

(λ, yI ) −--- ϕ+(λ, yI ) =
 

u+ = 0, v+ = H(λ, yI ), xI 

AB A B I J 

where R�±
AB are the Ricci tensors of the leaves {v± = const.}. Obviously the tensors 

coordinates v±, i.e. they are constant along the null generators of N-±. The scalars 

I AB A B 

± 

J 

− 

 

We construct null metric hypersurface data {N , γ, ℓ, ℓ(2)} embedded in (M−, g−) 

by considering an embedding ϕ− of the form 

 

ϕ− : N '−--- N-− ⊂ M−
 

(8.27) 
 

In these circumstances, for the metric data {N , γ, ℓ, ℓ(2)} to be embedded in 

(M−, g−) with embedding ϕ− and rigging ζ− = L− (recall (2.22)), it must hold 

= γ−
ABdyA ⊗ dyB, ℓ = dλ, ℓ(2) = 0. (8.28) 

γ � 

 

As happened in Section 7.3.3, the matching is possible if and only if (a) 

{N , γ, ℓ, ℓ(2)} is also embedded in (M+, g+) with embedding ϕ+ given by 
 

ϕ+ : N '−--- N-+ ⊂ M−
 

(8.29) 
 

 

and (b) the isometry condition (7.31) is satisfied. Note that η± being identified by 

the matching forces 

H(λ, yA) = β(yA)λ, (8.30) 

where β(yA) is a strictly positive arbitrary function (this follows from combining 

η |
N-± = κ- ±k± with (8.15)). In the present context condition (7.31) reads 

 −
I J u =0 bLbKγ+ |u =0. (8.31) 

γ� | − I J �LK  + 

The functions γ ±
A B  depend on {u±v± ; xA }, so condition (8.31) is λ-independent. 

� ± 
B  �

 
For the rest of the section we assume that {bA, γAB} are such that (8.31) holds. By 

Theorem 8.3.1, the bifurcation surfaces S± must be mapped to each other through 

the matching map Φ, so they must be isometric. This means that 
 

R� −  |p = bI bJ R� +  |Φ(p), ∀p ∈ S−, Φ(p) ∈ S+, (8.32) 

 

 

R� ±
A B ,  which are constructed from the metrics ± , are independent of the 

 

b on N-+ do not depend on v+ either (cf. (7.43)), so R�− and b b R� take the 

 

+ 

same value for all points of the null generators containing p ∈ S− and Φ(p) ∈ 

v 

(λ, yI ) −--- ϕ−(λ, yI ) = = yI . 

= hI (yJ )
 
 

I J 

= 
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� 

� 

- 

- 

A 

A 

AB A B I J 

S± = {u ± ± = 0} and in which η± 

± 

and the metrics g 

− 

= 0, v ± are given by (8.23)-(8.24). 

 

S+ respectively. The fact that null generators must be identified by the matching 

entails that condition (8.33) holds everywhere, i.e. 

 
I J + − -+ 

R� −  |p = b b R� |Φ(p), ∀p ∈ N- , Φ(p) ∈ N  . (8.33) 

In the following we shall remove the explicit writing of p and Φ(p) in this ex- 

pression and similar ones. The trivial identification between N − and N ensures 

that the pull-back (ϕ−)∗R− coincides with the Ricci tensor Rh on the sections 

{λ = const.} ⊂ N (with metric hAB = γAB). Consequently, it must hold that 

Rh = (ϕ±)∗(R±). 

The following theorem determines the tensor fields Y± and the energy-momentum 

tensor of the null shell arising from the matching of (M±, g±). 

Theorem 8.4.1. Consider two spacetimes (M±, g±) whose boundaries N ± are closures 

of non-degenerate Killing horizons containing bifurcation surfaces S±. Let η± be the 

corresponding Killing vector fields and assume that they have constant surface gravities 

κ-± on N-±. Construct Rácz-Wald coordinates {u±, v±, xA } so that N-± = {u± = 0}, 

Suppose that the matching of (M±, g±) across N ± is feasible and that it identifies η±, 

and let {N , γ, ℓ, ℓ(2), Y±} be the corresponding null thin shell with metric part given by 

(8.28) and matching embeddings ϕ± according to (8.27) and (8.29), where {λ, yA} are 

coordinates on N so that ∂λ ∈ Radγ and H(λ, yA) = β(yA)λ for 0 < β(yA) ∈ F(N ). 

Let S ⊂ N be the cross-section defined by ϕ±(S) =
d e f  

S± and R± =
d e f  

(ϕ±)⋆Ric± be the 

constraint tensors corresponding to the boundaries N ±. Denote by h, ∇h and Rh the in- 

duced metric, Levi-Civita connection and Ricci tensor on the leaves {λ = const.}. Then, 

the gravitational and matter-energy content of the null shell {N , γ, ℓ, ℓ(2), Y±} is given 

by 

Y±(∂λ, ∂λ) = 0, Y±(∂λ, ∂yA ) = r ±
A  , Y±(∂yA , ∂yB ) = Ξ±

A B λ ,  

(8.34) 

τ(dλ, dλ) = −ϵγAB[ΞAB]λ,   τ(dλ, dyA) = ϵγAB[rB],   τ(dyA, dyB) = 0,     (8.35) 

 

where 
 

 

r− =
d e f  

m−
A , 

2 

 
 
 

 

Ξ± def 

 

1 (
Rh

 

 

 
± 2 h r± 

 

2r±r±

) 
(8.36) 

bB m+ ∇h β AB = 
2 AB − RAB + ∇(A B) 

− A B 

r+ =d e f  A B A  , 
2 β 

and it holds that r ±
A  = r ±

A  |S and Ξ ±
A B  = Ξ±

A B |S . 
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k 

k
± 

y 

⋆ 

A 

∂yA 

L I = ∂xI 
± 

± = 
G± vI µ = vI = 

coincides with κ (by Proposition 3.3.2), we get α = κλ. In particular, this yields 

 

Remark 8.4.2. The notation r ±
A  in Theorem 8.4.1 is consistent with (2.44). 

Proof. Recall that (8.26) forces entails µ1
± = 1, µ ±

I  = 0. We start by computing the 

quantity σ ±
L

 
v ±

I

 
(cf. (2.99)), for which we use (8.24)-(8.25) and the fact that G± is 

constant on N-±: 
 

σ± v± N-± 
 

g±
 
∇± ∂v , ∂u 

 N-± 1 
Γ±µ 

g±
u 

N-± 

−Γ±v N-± m±
I . (8.37) 

 
The more direct way of proving the first and second results in (8.34) is by means 
of (7.88)-(7.89) and (7.91). In the present case K- = 0 (because N-± are Killing 

horizons), ∂λ∂λ H = 0 (since H(λ, yA) = β(yA)λ 

± 

) and κ- ± = 0. Consequently, (7.88) 

 
 

Y+(∂ , ∂ ) = bB σ+(v+) − 
∂λ∂yA H 

, Y−(∂ , ∂ ) = σ−(v−). (8.38) 
λ yA A  L B ∂λH λ yA L A 

Inserting (8.37) into (8.38) proves the second equations in (8.34). 

To obtain an expression for Y±(∂yA , ∂yB ) we use an argument based on Proposition 

6.4.5. First, from (8.28) we know that ℓ = dλ, which forces n = ∂λ. Moreover, 

it holds that ℓA =
d e f  

ℓ(∂ A ) = 0 and that s = 0 (because 2s = £nℓ = ιn(d2λ) + 

d(ιnℓ) = 0, cf. (3.43)). The matching is assumed to be possible and such that η± 

are identified. Thus, there exists a vector field η verifying ϕ±η =
d e f  

η±. As we know, 
the surface gravities κ± of η± are forced to be the same, so we write κ = κ±. From 

(8.27), it follows that

- 

η = αn for α = κ-λ, and since the surface g

-

ravit

-

y κ of η 

∇h α = 0 and 

- 
 

 
(∂yA )a(∂yB )b 

◦ 
a 

◦ 

bα = ∂yA ∂yB α − ( 
◦ 

∂ A 
∂yB )b 

◦ 

bα 
∇ ∇ ∇ 

y 
∇ 

= ∂yA ∂yB α − (∇h ∂yB )(α) = 0, (8.39) 

 

where in the next-to-last step we have used (3.88)-(3.89) for ℓ∥ = 0 and U = 

0. Taking into account the considerations above and noticing that here κ n
±  = 0 

(because Y±(∂λ, ∂λ) = 0), on both sides we can particularize Proposition 6.4.5 for 

the basis {n = ∂λ, ∂yA } and then the third equation in (8.34) follows at once. The 

expressions (8.35) are an immediate consequence of (7.58)-(7.60). 

The fact that r ±
A  are constant along the null generators follows either from their 

definitions (8.36) (where nothing depends on λ or v±) or from Proposition 6.4.5 

and (7.91) give Y±(∂λ, ∂λ) = 0, while (7.89) and (7.91) yield (recall (7.72)) 

G± 
± 2 

1 
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± 

A 

� � 

AB 

n ∇b∇d ∇d) n 

A B (A B) AB AB AB 

 
(see (6.68)). To prove that Ξ ±

A B  are also λ-independent, we first particularize (6.21) 

for s = 0, κ n
±  = 0, U = 0 and הη 

= 0, obtaining 
 

0 = 
◦ ◦ 

α − 2r
(
±

b 

◦
 α − α£ Yb

±
d + κYb

±
d. (8.40) 

∇b∇d ∇d) n 

Taking the Lie derivative along n and using (6.3) as well as κ =
d e f  

n(α) (recall (3.102)), 

one gets 

0 = £ 

( 
◦

 

 

◦ α − 2r
(
±

b 

◦
 α

1 

− α£ 

 

£ Yb
±

d, (8.41) 

 

which upon contracting with {(∂yA )b, (∂yB )d} and using that £n∂yA = 0 and (8.39) 

gives 

0 = £n 
(

∇h ∇h α − 2r± ∇h
 α

) 
− α£n£nY± 

 

= −α£n£nY± 

 

=⇒ £n£nY± 

 

= 0, 

 

where we used ∇h α = 0 and the implication is a consequence of the fact that 

N \ S is dense in N . From this last result together with the last expression in 

(8.34) it is immediate that Ξ ±
A B  are independent of λ, i.e. constant along the null 

generators. 

 

Remark 8.4.3. Note the intrinsic curvature term Rh drops out from the jump [ΞAB]. The 

underlying reason is the already mentioned isometry condition (ϕ+)∗R+ = (ϕ−)∗R−. 

The results (8.34)-(8.35) allow us to conclude that the matter-content of the shell, 

given by the tensor fields Y± and τ, exclusively depends on the choice of β(yA), 

on the intrinsic and extrinsic geometry of the bifurcation surfaces S± (we have just 

proved that r ±
A  and Ξ ±

A B  are constant along the null generators, so they are given 

by their values at S), on the curvature tensor Rh of S and on the pull-back to S 

of the constraint tensors R ±
A B  of each side. 

It is worth mentioning that the energy density of the shell (ruled by τ(dλ, dλ)) is 

either identically zero or unavoidably changes its sign at the bifurcation surface 

(i.e. where λ = 0). Moreover, the energy current jI is independent of λ, which 

means that the flux of energy is insensitive to the change of sign on the energy of 

the shell. This raises some questions concerning the physical interpretation of the 

quantities {ρ, jA, p} introduced in Remark 7.3.9. We include below some comments 

in this regard. 

n 
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1 

+ + 
e 

- 

- - 

- 

- 

1 + 
1 

1 λ 

 
As we did in Section 7.3.3, let us call velocity the rate of change of the foliation 

functions v± along the null generators e1± and acceleration to the rate of change of 

the velocity. In the present context we have 

 

e1
− (v−) = 1, 

e+ (v+) = ∂ 

 
 

H = β(yA), 

∇
e
−

− e1
− (v−) = 0, 

∇ e (v+) = ∂ ∂ 

 

 

H = 0. 

 
(8.42) 

We have already discussed that the pressure p accounts for the effect of self- 

compression or self-stretching of points when crossing from N − to N +. The trivial 

mapping between N − and N always gives velocity equal to one on this side. For 

this reason, the effect of self-compression/self-stretching only appears when there 

exists non-constant acceleration along the generators of N +. As also shown in Sec- 

tion 7.3.3, the energy density of the shell increases when points are compressed 

and vice versa. Nevertheless, despite the fact that here the shell has vanishing 

pressure, some effect of compression or stretching of points is still taking place 

because the velocity along the null generators of N + 

is different for each generator. 

, ruled by the function β(yA), 

We find the change of sign on the energy density of the shell ρ across the bifurc- 

ation surface really puzzling, and we do not know yet how to interpret this. The 

result suggests that the causality change of the Killing fields from future to past 

across the bifurcation surface somehow affects the energy density of the shell. We 

emphasize however, that this behaviour is fully compatible with the shell field 

equations obtained by Barrabés and Israel [63] for the case of null hypersurfaces. 

This of course had to be the case and we include an explicit proof in next section 

because this yields a non-trivial consistency check of our results. 

 

8.4.1 Surface layer equations 

 

As we have discussed in Chapter 2, the tensors Y± and energy-momentum tensor 

τ of a shell satisfy the so-called Israel equations (also known as shell equations 

or surface layer equations). In the framework of hypersurface data, these equations 

are given by (2.160)-(2.161), where the bulk energy and momentum quantities ρℓ
±, 

J ±
a  are defined by (2.57)-(2.58). In the present case the unique normal vector field 

ν± along N-± satisfying g±(ζ±, ν±) = 1 is ν± = e1
±. Moreover, Ein±(e1

±, e ±
a  ) = 

Ric±(e1
± , e ±a  ) = R±(n, ∂yA ) = 0, where we have used (4.17) first and then (4.19) 

(recall that U = 0, s = 0, £nr± = 0 and κ n
±  = 0). This immediately entails that J± = 

0. On the other hand, in terms of the basis {ζ±, e1
± = ν±, e ±

A  } we can decompose 

λ λ 
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y 

BI 

a 

1 1 2 

1 2 1 d 

2 cd 2 AB 

ℓ 2 AB 

 

the inverse metrics g± according to (2.27). By means of this decomposition, one 

obtains 

Ein±(ζ±, e±) = Ric±(ζ±, e±) − 
R±

 

= Ric±(ζ±, e±) − 
1 (

2Ric±(ζ±, e±) + PcdRic±(ec±, e±)
)
 

= − 
1 

PcdR±  = − 
1 

γABR±  , (8.43) 

 

where in the last two steps we have used (4.17), R±(n, ·) = 0 and the decomposi- 

tion (3.80) for Pcd. Combining the definition (2.57) with equation (8.43) yields 
 

ρ± = 
1 

γABR± . (8.44) 

 

To prove that the shell equations hold for the tensor fields Y± and τ of Theorem 

8.4.1, we compute each term of the right hand side of (2.160)-(2.161) separately. We 

start with (2.160). The tensor A (cf. (2.4)) is given in this case by 

A =  

 
0 0 1 

0 γ 0 

1 0 0 

 
, (8.45) 

because ℓ = dλ. Consequently, | det γ| = | det A|. On the other hand, the fact that 

N ± are totally geodesic entails k± (h±
I  J ) = 0 (see (7.5)), from where it follows that 

0 = e 1
− ( h −

I  J ) = ∂λγIJ. For spatial derivatives of | det γ|, we use the well-known 

identity  1  
∂ I (| det γ|) = ΓhA , (8.46) 

2| det γ| AI
 

where Γh A  are the Christoffel symbols of ∇h. The following expressions are imme- 

diate consequences of (8.34)-(8.35) together with la = δ1 and γ1a = 0: 

τabℓb = τ1a (8.47) 

τabY±
ab = τ11Y1

±
1 + 2τ1I Y1

±
I + τIJ Y ±

I  J = 2τ1I Y1
±

I (8.48) 

τab(Y+ + Y− ) = 2ϵγIJ[rJ](r+ + r−) = 2ϵγIJ[rIrJ]. (8.49) 
ab ab I I 

τbcγca = τbJγaJ = δbδIτ1JγIJ (8.50) 
1 a 

τbd∂ya γbd = τ11∂ya γ11 + 2τ1I∂ya γ1I + τIJ∂ya γIJ = 0. (8.51) 
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11 

I 

2 

✓ 

A 

� 

2 I J 

| det γ| y 1 a 
| det γ| 

λ a 

 
By (8.46) and (8.47), it follows 

 
1 

✓ 
| det A| ∂ya 

(j
| det A|τabℓb

1 

= ✓ 
1 

| det γ| 
∂ya 

(j
| det γ|τ1a

1

 

 

= ∂λ τ + ✓ 
1 

| det γ| 
∂yI 

(j
| det γ|τ1I

1

 

= −ϵγIJ [ΞIJ ] + ∇hτ1I
 

= −ϵγIJ[ΞIJ] + 
ϵ
γIJ(∇h[rJ] + ∇h[rI]), 

= 
ϵ
γ I J[R I J] + ϵγIJ[rIrJ], (8.52) 

 
where in the last equality we inserted (8.36) and (8.35). Combining (8.44), (8.49) 

and (8.52), the shell equation (2.160) follows immediately. 

Checking the validity of equation (2.161) is almost direct. Since J± are zero, it 

suffices to substitute (8.50)-(8.51) into (2.161) to obtain 

0 = 
1 

∂ b 

(j
| det γ|δbδIτ1JγIJ

1 

= ✓ 
1 

∂  

(j
| det γ|δIτ1JγIJ

1 

, 

 
which is automatically satisfied as nothing inside the parenthesis depends on λ. 

 

 
8.5 spherical,  plane or hyperbolic symmetric spacetimes 

 
To conclude this chapter, we apply the formalism above to study particular match- 

ings of interest. We start by determining the necessary and sufficient conditions 

that allow for the matching of two arbitrary spherical, plane or hyperbolic sym- 

metric spacetimes admitting a Killing horizon with a bifurcation surface. We then 

particularize the results for the cases of two Schwarzschild spacetimes and two 

Schwarzschild-de Sitter spacetimes. We avoid ± notation until the actual matching 

is performed. 

Let (M, g) be a spherical, plane or hyperbolic symmetric spacetime and Λ be its 

corresponding cosmological constant. Assume that it admits a Killing vector field 

η defining a bifurcation surface S ⊂ M. Any spacetime of this kind is by definition 
 

a warped product of a 2-dimensional Lorentzian manifold (N , g) and an (n − 1)- 

dimensional Riemannian space (W, hk) of constant curvature k ∈ {1, 0, −1} [130], 

[131]. We let r ∈ F (N ) be the warping function and use Rácz-Wald coordinates 

{u, v, x } constructed as in Section 8.4. We again scale a priori the Killing vectors 
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where g = −2G (w) dudv, G ∈ F∗  (M) (note that G | N- is constant). 

+ 

0 0 

Since N-± are totally geodesic, equation (7.31) constitutes an isometry condition 

r+ = − 
A 

β 
= 

2
 A 

β 
B 

� 

0 � 

 
defining the horizons of each spacetime so that they have the same surface gravity. 

In terms of w =
d e f  

uv, the warped metric is 

g = g + r2 (w) h (xA), (8.53) 
� � k 

 

The induced metr

�

ic on the bifurcation surfaces S± = {u± = 0, v± = 0} is g±|S± = 
r2 h±| ± = (r±)2h±, where r± =

d e f  
r±| ̸= 0. The matching map Φ : S− −--- S+

 
�± k S 0 k N-± 

must be an isometry so the Ricci scalars of g±|S± , which in this case are given by 

 

(n − 1)(n − 2)k±(r0
±)−2, (8.54) 

 
must be preserved by Φ. Therefore 

 

k− k+ 

(r−)2 
= 

(r+)2 
, (8.55) 

0 0 

and we conclude that k± must coincide (recall that k± ∈ {1, 0, −1}). From now 

on we simplify the notation and write k instead of k±. An immediate consequence 

of (8.55) is that the jump [r0] =
d e f  

r+ − r− is zero whenever k ̸= 0, and can take 

whatever value in the plane case with k = 0. 

 

between the leaves {v± = const.} ⊂ N-±. These sections are euclidean planes, 

spheres of radius r0
± and hyperbolic planes of curvature −r0

−2 when k = 0, k = 1 

and k = −1 respectively. The corresponding isometries are respectively euclidean 

motions, rotations and hyperbolic rotations. In each case they are also isometries 

of the ambient spacetimes, so the freedom in the matching, encoded in Φ, can be 

absorbed (with full generality) in the coordinates {u+, v+, xA } in such a way that 

the coefficients bJ take the simple form bJ = δJ. This will be assumed from now on. 
I I I 

Thus (cf. (2.22)) 
γIJ =

d e f  
g±(e±, e±) = (r±)2h±IJ. (8.56) 

I J 0 k 

The metric (8.53) is of the form (8.24) with m± = 0 and γ± = r2 h±. The tensor 
± ± 

A ±  k
 

fields {rA , ΞAB} in this case read (cf. (8.36)) 

1 
r− = 0, Ξ−  = 

2

 
Rh − R−  , 

A 

∇h β 
 

  

AB  AB 

1
  

AB 

2∇h ∇h β 
\

 
 

 

(8.57) 
 

 A . , Ξ R + + 
AB 

h 
AB − RAB − 
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R = γAB ⇒ 

0 

  A  

∇ β 
,
 

 Y+(∂yA , ∂yB ) = 
2  

γAB − R+
 − A 

β 
B 

 τ(dλ, dλ) = ϵ 
2 

A 

β 
B 

A 

β 
B 

= −ϵγ 
B 

β 

 

 

The fact that the metric (8.56) is of constant curvature kr0
−2

 means that its Ricci 

tensor is (recall that h, also called γIJ when indices are used, is the induced metric 

at the bifurcation surface) 

Ξ−  = 
1
  

(n − 2)k
γAB − R− 

\ 

,
 

h (n − 2)k 
=
 

AB (r±)2 

AB 2 (r0
−)2 AB 

h h 
(8.58) 

0 Ξ+ 

= 
1
  

(n − 2)k
γAB − R+ 

− 
2∇A∇Bβ 

\ 

.
 

AB 2 (r+)2 AB β 

Substituting this in the expressions of Theorem 8.4.1 and using (8.55), we obtain 

 

Y−(∂λ, ∂λ) = 0, Y−(∂λ, ∂yA ) = 0, 
 \ 

Y−(∂yA , ∂yB 
) = 

λ
 

2 

(n − 2)k
γAB

 

(r0
−)2 

− R−
AB 

(8.59) 
, 

 
Y+(∂λ, ∂λ) = 0, Y+ (∂λ, ∂yA ) = − 

∇h β 
,
 

β 

 λ
  

(n − 2)k 2∇h ∇h β 
\

 
 

  

 

(8.60) 
 

 
 

 
τ(dy A, dyB) = 0, τ(d λ, dyA ) = −ϵγ 

h 
AB   B  

β 

 λγAB
 
 2∇h ∇h β 

\
 

 
 

(8.61) 
 

 

 

The resulting shells have therefore energy density ρ and energy flux jJ given by 

 

λγAB
 
 

 

 

2∇h ∇h β 
\

 
 

 

 

A AB ∇
h β 

 

 

An interesting particular case occurs when the spacetimes (M±, g±) to be matched 

are, in addition, solutions to the Λ±-vacuum Einstein field equations 

R±  = 
2Λ± 

g± . (8.63) 
 

αβ n − 1 αβ 

In these circumstances, the constraint tensors R ±
A B  are given by (cf. (4.17)) 

 

 

R ±
A B  

= 
2Λ± 

γAB. (8.64) 
n − 1 

AB , 

. 

2 

0 
2 (r+) 

[RAB] + 

ρ = ϵ [RAB] + , j . (8.62) 
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2 

A 

B 

γ ∇ ∇ β 
\ 

.
 

2r2 

A 

0 

B 

 Y+(∂yA , ∂yB ) = 2 
A 

β 
B 

 Y+(∂yA , ∂yB ) = 
2r2 

A B 

 
Inserting this into (8.59)-(8.61) yields 

  

Y−(∂λ, ∂λ) = 0, Y−(∂λ, ∂yA ) = 0, 

Y−(∂yA , ∂yB ) = 
ε−λ

γAB, 

 
Y+(∂λ, ∂λ) = 0, Y+(∂λ, ∂yA ) = − 

∇h β 
,
 

β 

 λ
  

2∇h ∇h β 
\

 
 

 

 

(8.65) 
 

 
 

  

τ(dy A, dyB) = 0, 
  

 

τ(d λ, dyA ) = −ϵγAB 
∇h β 

,
 

β 

 τ(d λ, d λ) = ϵλ [Λ] + 
AB h h 

 A B  

β 
 

where we have defined 
 
 

 

ε± =
def 

 
(n − 2)k 

− 
2Λ± 

. (8.66)
 

 

(r0
±)2 n − 1 

It is worth stressing that the constant curvature parameter k does not appear expli- 

citly in (8.65). It however appears implicitly in the metric γIJ and in the correspond- 

ing covariant derivative ∇h. In the next subsections we particularize further to (the 

maximally extended) Schwarzschild and Schwarzschild-de Sitter spacetimes. 
 

 

8.5.1 Schwarzschild spacetime 

 

If the metrics on both sides are Schwarzschild we have Λ± = 0 and k = 1. By (8.55), 

the radii r0± must coincide, so the Schwarzschild mass of both sides is necessarily 

the same. We write r0 instead of r0
± from now on. Thus, (8.65) reduces to 

 

 

Y−(∂λ, ∂λ) = 0, Y−(∂λ, ∂yA ) = 0, 

Y−(∂yA , ∂yB ) = 
(n − 2)λ

γAB, 
0 

 
Y+(∂λ, ∂λ) = 0, Y+(∂λ, ∂yA ) = − 

∇h β 
,
 

β 

 

 
(n − 2) ∇h ∇h β 

\
 

 
 

 

 

(8.67) 
 

 
 

 
τ(dyA , dy B) = 0, τ(d λ, dy 

 

A) = −ϵγAB 
∇h β 

,
 

β AB h h 

 τ(dλ, dλ) = ϵ 
∇A∇Bβ

λ.
 

β 

, 

β 
λ, 

 

ε+γAB − 

γAB − 

γ 
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π 

π 

l l−1 

l= 

 

The tensor γ is the round metric of radius r0 so its Laplace-Beltrami operator is 

r0
−2∆Sn−1 where ∆Sn−1 is the Laplacian of the unit (n − 1)-sphere. 

For each natural number l we let {Yl,m}, m = 0, ..., N(n, l) − 1 be a collection of 

linearly independent solutions of 

∆Sn−1 Yl,m = −l(l + n − 2)Yl,m (8.68) 

which, as usual we call spherical harmonics. The number N(n, l) is (see e.g. [132]) 

  

N(n, l) = 1 if l = 0, 

N(n, l) = (l+n−2) + (l+n−3) otherwise. 

 
(8.69) 

Since {Yl,m} form a complete set of functions over Sn−1, any (sufficiently regular) 

function β can be decomposed in this basis. Observe that β can be ensured to be 

positive by selecting the coefficient of Y0,0 suitably positive and large. By expressing 

β as 
∞ 

β = ∑ 
l=0 

N(n,l)−1 

∑ 
m=0 

al,mYl,m, where al,m ∈ R, (8.70) 

the energy density of the shell is given by (cf. (8.67), Remark 7.3.9) 
 
 ∆  −1 β ∑∞ 

0 l(l + n − 2) ∑
N(n,l)−1 

a Y 

ρ = ϵ Sn 
r2 β λ = −ϵ 

r2 ∞
 m=0 

N(n,l)−1 a 
l,m 

Y l,m λ. (8.71) 
0 0 ∑l=0 ∑m=0 l,m l,m 

The simplest case occurs when β is a positive constant. Then [Y] = 0 and we 

have complete absence of shell. The step function H = βλ can be absorbed in 

the coordinates of the (M+, g+) side. This coordinate freedom is a consequence 

precisely of the fact that Schwarzschild admits a one-parameter isometry group 

leaving the Killing horizon, and its generators, invariant. This ensures that, in the 

absence of shell, we recover the global Schwarzschild spacetime, as we must. 

We conclude with a simple but not trivial example in dimension four (i.e. n = 3). 

Take 

 

β(θ) = 3
√

 

 

 

πY0,0 + 
2

√
π √
5

 
 
Y2,0(θ) = 1 + 

 
3 

cos2 θ, 2 

  

Y0,0 = 
2

√1  , 
√ 

 

 
(8.72) 

 Y2,0 = 
2

√5 P2(cos θ), 
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 β(θ) 
 ρ(1, θ) 

 jθ (θ) 

 β(θ) 
 ρ(0, θ) 

 jθ (θ) 

 

 

 

 

 β(θ) 
 ρ( 1, θ) 

 jθ (θ) 

 

 

 

Figure 8.2: For r0 = 1 and β (θ) given by (8.72), the up-left, up-right and bottom plots 

show β(θ), jθ (θ) and the energy density ρ(λ, θ) for λ = 1, λ = 0 and λ = −1 

respectively. The figure corresponds to the case when N − lies in the future of 
M− so that the past rigging ζ− points inwards, hence ϵ = −1. 

 

where Pl(x) denote Legendre polynomials of degree l. This yields energy density 

and energy fluxes 

 
3
 

3 cos2 θ − 1
 

λ θ 

  
    

 
3 sin θ cos θ ϕ 

    

In Figure 8.2 we plot the functions β(θ), jθ (θ) and the energy density ρ(λ, θ) for 

λ = 1, λ = 0 and λ = −1 in units where r0 = 1. As already discussed, the energy 

density changes sign at the bifurcation surface, despite the fact that the energy flux 

is constant along each null generator, including at the crossing of the bifurcation 

surface. The figure shows clearly how the energy flux component jθ is positive 

(resp. negative) whenever the function β decreases (resp. increases), i.e. the energy 

flows towards those null generators with higher values of β. 
 

 

8.5.2 Schwarzschild-de Sitter spacetime 

 
Our final example in this chapter is the matching of two Schwarzschild-de Sitter 

spacetimes. As before, k = 1 and the horizon radii r0± in both sides are forced to be 

the same so we can simply write r0. A Schwarzschild-de Sitter spacetime of mass 

1 + 3 
2 cos 2 θ r 2 

0 r 2 
0 

3 
2 

cos 2 
ρ = −ϵ = −ϵ = 0. (8.73) 



8.5 spherical, plane or hyperbolic symmetric spacetimes 241 
 

 

�i 

� � 
�i 

m=0 

0 

- 

i i 
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n 0 

 

M and cosmological constant Λ > 0 may have several, one or none Killing horizons 

located at rH depending on the number of (positive) roots of the polynomial 
 

0 = P(rH) = (rH)n−2 − 
2Λ(rH )n 

− 
2M 

. (8.74) 

 
Since we do the matching on a preselected horizon we change the point of view, 

namely we take any positive value r0 and use this expression to determine M in 

terms of r0 and Λ. The cosmological constants Λ± on both sides are allowed to 

be different. However, once they are selected, the corresponding masses M± must 

have jump 

[M] = −
(n − 2)

[Λ]rn. (8.75) 

Thus, a priori one can match across a horizon two Schwarzschild-de Sitter space- 

times with different masses and cosmological constants but only if the parameters 

are related by (8.75). 

The matter content of the shell is in this case given by (8.65). As in the previous 

section we may decompose the function β in terms of spherical harmonics. The 

corresponding expression for the energy density is now 

 
ρ = −ϵ 

 
∞ 
l=0 l(l + n − 2) ∑

N(n,l)−1 
al,mYl,m − [Λ]

\

  λ. (8.76) 
r2 ∑∞ 

∑
N(n,l)−1 al,mYl,m

 

0 l=0 m=0 

Let us conclude with some interesting observations. The first is that it is impossible 

to construct a (non-trivial) shell with vanishing energy density. This is because in 

such case it must hold 

∆Sn−1 β = −r2 [Λ] β. (8.77) 

and all solutions of these equation must necessarily have zeroes, which is not 

allowed for the matching function β. 

An interesting example is when the shell is composed on null dust, i.e. with identic- 

ally zero energy-flux. By (8.65), this requires β to be a (positive) constant and then 

the energy density of the null dust is 

ρ = ϵ[Λ]λ. (8.78) 

The behaviour of this null dust is striking. Assume that N − lies in the future of 

(M−, g−) so that ζ− (which has been chosen past-directed) points inwards. Then 

we need to enforce ϵ = −1. For definiteness suppose also that [Λ] > 0. In these 

circumstances, the energy density is ρ = −[Λ]λ, hence it is everywhere positive 

in the past of the bifurcation surface (i.e. for λ < 0) so the system starts being 

  
∑

 

n(n − 1) 
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perfectly reasonable from a physical point of view. The shell then evolves on its 

own in a manner dictated by the field equations and ends up in a state in which 

the energy density is everywhere negative. This negative energy density cannot 

be considered as unphysical, since it has evolved from a physically reasonable 

initial state, the system itself is physically reasonable (a collection of incoherent 

massless particles) and its evolution is dictated by the gravitational shell equations 

that follow from the Einstein field equations. This is a rather surprising behaviour. 

Furthermore, this behaviour is not exclusive of null dust. In fact, this occurs for 

more general functions β. Provided that we select β to be an everywhere positive 

function on Sn−1, it holds that the energy density ρ is always positive for λ < 0 

as long as the jump [Λ] is suitably positive and large. Then, we have a shell with 

initial positive energy density and non-zero energy flux which unavoidably evolves 

into a state of negative energy density with no change along the evolution of the 

energy flux, which by (8.65) is independent of λ. 



 

 

9 
M AT C H I N G F R O M A N A B S T R A C T 

V I E W P O I N T 
 

 

 
In Chapter 7, we have studied the matching of two general spacetimes with null 

boundaries that admit a foliation by diffeomorphic spacelike sections. The neces- 

sary and sufficient conditions that allow for the matching have been identified, and 

we have determined the geometrical objects upon which the matching depends. 

We have also provided explicit expressions for the gravitational and matter-energy 

content of the resulting shells (ruled by the tensors Y± and the energy-momentum 

tensor), and particularized the corresponding results for the matching of two re- 

gions of Minkowski across a null hyperplane (see Section 7.3.3) and for the case 

when the boundaries are embedded AKH0 (see Chapter 8). At this stage, at least 

two questions arise naturally. The first one is whether one can obtain analogous 

results without the topological assumptions on the boundaries and the second is 

whether there is a way of formulating the matching problem in a fully abstract 

manner, namely without making any reference to the actual spacetimes to be 

matched. Addressing these questions constitutes the aim of the last chapter of 

this thesis. 

More concretely, we have seen that the matching of two given spacetimes is pos- 

sible if the junction conditions are satisfied. These requirements are well under- 

stood from the point of view of the spacetimes, and even in the picture of embed- 

ded (metric) hypersurface data (recall Theorem 2.7.1), but it is not obvious how 

to write them in a purely abstract (in the sense of detached from the spacetimes 

to be matched) way. The specific purposes of this chapter are the following. First, 

we will provide a suitable abstract formulation of the junction conditions for the 

case of boundaries of any topology and any causal character. Then, we will study 

the actual problem of matching two spacetimes with null boundaries, analyzing 

(at the abstract level) the objects upon which the matching depends and includ- 

ing explicit expressions for the riggings identified in the matching process and the 

gravitational/matter-energy content of the (completely general) null shell. We will 
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also address the problem of multiple matchings, relating the matter content and 

the energy-momentum tensor of two different shells arising from different match- 

ings of the same two spacetimes. The particular case when one of the multiple 

matchings corresponds to having no shell will be studied in detail. These results 

apply to the context of the cut-and-paste procedure for the matching, and will al- 

low us to describe this matching method in an abstract manner. Finally, assuming 

boundaries with product topology S × R (where S is a spacelike section and the 

null generators are along R) we will recover the results from Chapters 7 in the 

present setup, in particular the existence of a step function and the explicit form 

of the enegy-momentum tensor of the shell. 

 

 
9.1 abstract matching without topological assumptions 

 

Let us start with the abstract formulation of the junction conditions. As mentioned 

above, we first consider that the boundaries N ± of the spacetimes (M±, g±) to 

be matched have any topology and any causal character. Since N − is embedded, 

there exists an abstract manifold N and an embedding ι− : N '−--- M− such that 

ι−(N ) = N −. From the embedding ι−, one can construct an infinite number of em- 

beddings simply by applying additional diffeomorphisms within N . To elude this 

unavoidable redundancy, we henceforth let ι− be one specific choice among all pos- 

sible. This allows us to build embedded hypersurface data D =
d e f  

{N , γ, ℓ, ℓ(2), Y} 

by requiring (2.22), (2.39), i.e. by defining 

 
γ =

def 
(ι−)∗(g−), ℓ =

d e f  
(ι−)∗(g−(ζ−, ·)), ℓ(2) =

d e f  
(ι−)∗(g−(ζ−, ζ−)), 

 

Y− =
d e f  1 (ι−)∗(£ − g−). 

(9.1) 

 

As discussed in Chapter 7 and in Theorem 2.7.1, two spacetimes (M±, g±) can 

be matched if there exists a pair of embeddings ϕ± : N '−--- M± related to a 

matching map Φ by ϕ+ = Φ ◦ ϕ−. Moreover, the embedding and the rigging on 

one of the sides (say the minus side) can always be chosen freely. Suppose we 

enforce ϕ− = ι− and take a specific rigging ζ−. Then all the information about 

the matching (codified by Φ at the spacetime level) is encoded in ϕ+, and the 

junction conditions can be written in terms of ϕ+ according to (7.23). The rigging 

ζ+ is uniquely determined by (7.23) from ϕ+ and the data {γ, ℓ, ℓ(2)}, and the 

gravitational/matter content of the shell is ruled by the tensor field [Y] (recall 

(7.25)). 
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γ� 

def 

Y� 

= G−
 

(z,V) z 

�ℓ = G− (ℓ 

⋆ 

1 (ι−)⋆(£L 1 (ι+)⋆(£L 

⋆ 

2 − g+). 

 

The junction conditions (7.23), despite being of a more abstract nature than (7.22), 

still codify the matching information in the pair {ϕ+, ζ+}, which are not of abstract 

nature. In order to provide the matching information in terms of objects defined 

at the abstract level, we must take one step further. The following theorem, based 

on the existence of a diffeomorphism φ of the abstract manifold N onto itself, sets 

up the corresponding construction. 

 

Theorem 9.1.1. Consider  two  hypersurface  data  D =
d e f  

{N , γ, ℓ, ℓ(2), Y−}, 

D =
d e f  

{N , γ, ℓ, ℓ(2), Y+} embedded in two spacetimes (M−, g−), (M+, g+) with 

embeddings ι−, ι+ and riggings L−, L+ respectively. Assume that ι±(N ) =
d e f  

N ± are 

boundaries of (M±, g±) and let ϵ+ = +1 (resp. ϵ+ = −1) if L+ points outwards (resp. 

inwards) from M+. Define ϵ− in the same way (i.e. ϵ− = +1 if L− points outwards, 

ϵ− = −1 if inwards). The matching of (M±, g±) across N ± is possible if and only if 

(i) There exist a gauge group element G(z,V) and a diffeomorphism φ of N onto itself 

such that 
 

G(z,V)(φ ) = γ, G(z,V)(φ
⋆

 �ℓ) = ℓ, G(z,V)(φ⋆�ℓ 
(2) ) = ℓ (2) ; (9.2) 

 

(ii) sign(z) = −sign(ϵ+)sign(ϵ−). 

Proof. The fact that D, D� are embedded on (M±, g±) respectively means that 

γ =
def 

(ι−)⋆(g−), ℓ =
d e f  

(ι−)⋆(g−(L−, ·)), ℓ(2) =
d e f  

(ι−)⋆(g−(L−, L−)), 

=
def 

(ι+
 
)⋆(g+

 ), �ℓ = (ι+ 
 

)⋆(g+
 

 

(L+
 , ·)), �ℓ 

  

(2) =
d e f  

(ι+ )⋆(g+
 

 

(L+
 , L+

 )), (9.3) 

Since the spacetimes (M±, g±), the embeddings ι± and the riggings L± are all 

given, the tensor fields in (9.3) are known. To prove the first part of the theorem, 

we start by assuming (i)-(ii). Thus, there exist a pair {z ∈ F ⋆(N ), V ∈ Γ(TN )} 

and a diffeomorphism φ : N −--- N so that (9.2) holds. These conditions can be 

rewritten as (cf. (2.30)-(2.32), Proposition 2.2.10) 
 

φ γ� 
1 

(z,V) 
(γ) = G(z−1,−zV)(γ) = γ, (9.4) 

φ⋆�ℓ = G−1
 (ℓ) = G 

 

(z−1,−zV) (ℓ) = 
ℓ 

− γ (V, ·) , (9.5) 

φ⋆ (2) 1 

(z,V) 

(2) ) = G(z−1,−zV)(ℓ 
(2)) = ℓ(2) 

z2 
− 

2ℓ (V) 

z 
+ γ (V, V) . (9.6) 

Let us define the map ϕ+ =
d e f  

ι+ ◦ φ, the vector field V′ =
d e f  

ι+(φ⋆V), the function z′ ∈ 

F ⋆ ( N-+) given by φ⋆((ι+)⋆z′) =
d e f  

z and the rigging ζ+ =
d e f  

z′(L+ + V′) along N-+. 

+ def 

= 2 

γ� 

Y− =
def g−), + 

⋆ 
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By definition of z′, it holds that sign(z) = sign(z′). On the other hand, combining 

(9.4)-(9.6) with the fact that D is embedded with embedding ι+ and rigging L+, it 

follows 
 

γ = φ⋆γ = φ⋆((ι+)⋆(g+)) = (ϕ+)⋆(g+), (9.7) 

ℓ = z φ⋆ℓ + (φ⋆γ)(V, ·) 

= zφ⋆  (ι+)⋆  g+(L+, ) + g+(V′, ) = (ϕ+)⋆(g+(ζ+, )), (9.8) 

ℓ(2) = z2 φ⋆ℓ(2) + 2(φ⋆ℓ)(V) + (φ⋆γ)(V, V) 

= z2 φ⋆  (ι+)⋆  g+(L+, L+) + 2g+(L+, V′) + g+(V′, V′) 

= (ϕ+)⋆(g+(ζ+, ζ+)). (9.9) 

The data D is therefore embedded in (M+, g+) with embedding ϕ+ and rigging 

ζ+. Thus, conditions (7.24) are satisfied for ϕ− = ι−, ϕ+ = ι+ ◦ φ and for the 

riggings ζ− = L−, ζ+. Moreover, combining (ii) (which holds by assumption), the 

definition of ζ+ and sign(z′) = sign(z), it follows 

 

ζ+ = −sign(ϵ+)sign(ϵ−)|z′|
  

L+ + V ′
  

. (9.10) 

It is straightforward to check that (9.10) implies that whenever L− points inwards 

(resp. outwards) then ζ+ points outwards (resp. inwards) irrespectively of the 

orientation of L+. Thus, D is embedded in (M±, g±) and L−, ζ+ are such that 

one points inwards and the other outwards, which means that the matching of 

(M±, g±) is possible. 

To prove the converse, we assume that the matching is possible for two pairs 

{ϕ±, ζ±}. We have already discussed the flexibility of selecting at will the em- 

bedding and the rigging on one side (say the minus side). Let us therefore set 

ϕ− = ι−, ζ− = L−. Since both L+ and ζ+ are riggings along N-+, there exists 

a pair {z′  ∈ F ⋆(N +), V′  ∈ Γ(TN +)} such that ζ+ = z′(L+ + V′). Moreover, 

one can define a diffeomorphism φ : N −--- N by ϕ+ =
d e f  

ι+ ◦ φ. But then one 

can follow the arguments of (9.7)-(9.9) backwards and prove (9.2) for a function 

z ∈ F ⋆(N ) defined by z =
d e f  

φ⋆((ι+)⋆z′). As before, sign(z) = sign(z′) so both 

ζ+ = z′(L+ + V′) and z′ L+ = sign(z)|z′|L+ have the same orientation (because V′
 

is tangent to N +). By assumption the matching is possible, hence L−, ζ+ are such 

that one points inwards and the other outwards. If L− points inwards (resp. out- 

wards) then sign(z)L+ must point outwards (resp. inwards), so sign(z) = sign(ϵ+) 

(sign(z) = −sign(ϵ+)) is forced. This means that (i)-(ii) are both fulfilled.  
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Remark 9.1.2. Theorem 9.1.1 does not impose any conditions on the topology of the ab- 

stract manifold N , except for the very mild one that hypersurface data sets can be defined 

on N . 

Remark 9.1.3. Observe that we have not restricted the gauges of the data sets D, D (we let 

the two riggings L± be given, but no conditions have been imposed on them). Each specific 

choice of L± will fix a particular gauge on D, D. Moreover, Theorem 9.1.1 holds for data 

sets D, D of any causal nature. In particular, D, D are not required to contain non-null 

or null points exclusively. 

Remark 9.1.4. When there are no null points on N , condition (ii) can always be fulfilled 

because there exist two gauge group elements which leave the hypersurface data invariant, 

namely {G (1,0) , G(−1,−2ℓ) }, where ℓ =
d e f  

γ♯(ℓ, ·) and γ♯ is the inverse of γ (see Section 

2.2.1.1). This means that when (i) is satisfied for a gauge group element G(z,V), it also 

holds for G(−1,−2ℓ) ◦ G(z,V) = G(−z,−2ℓ−V) (recall Proposition 2.2.10). This ensures that 

there always exists a suitable choice of gauge parameter z for which (i) and (ii) hold. 

On the contrary, when N contains null points only the gauge element G(1,0) leaves the hy- 

persurface data invariant, which means that (i) can be fulfilled for a gauge group element 

G(z,V) but z may have the wrong sign. This is the underlying reason why the spacetime con- 

ditions (7.22) provide one unique solution for ζ+ for given {ζ−, Φ} (see the corresponding 

discussion in Section 7.2). 

Remark 9.1.5. In Theorem 9.1.1, we have expressed the junction conditions as a restriction 

over two data sets and a requirement on the sign of a gauge parameter. Theorem 9.1.1 there- 

fore constitutes an abstract formulation of the standard matching conditions. In particular, 

a remarkable advantage of Theorem 9.1.1 is that it allows us to study different matchings 

in two different levels. At the first level one takes whatever hypersurface data sets D, D 

satisfying (i) and studies its properties from a fully detached point if view. At this level, the 

spacetimes need not even exist. The problem can then move on and study whether or not 

one can construct spacetimes in which such data can be embedded, and such that condition 

(ii) holds. In other words, by Theorem 9.1.1 one can produce a thin shell of any causality 

with full freedom to prescribe the gravitational and matter-energy content, and then study 

the problem of constructing the resulting spacetime (M, g) which contains it. This is of 

great use, as it provides a framework to build examples of spacetimes with thin shells of 

any type. 

In the setup of Theorem 9.1.1, the matching riggings are {L−, ζ+}, where ζ+ is of 

the form (9.10). This means that the sign ϵ− coincides with the sign ϵ introduced in 

the abstract notion of thin shell within Definitions 2.7.2 and 2.7.3. It is convenient 

not to fix the signs ϵ± (or the riggings L±) a priori because it may well occur 
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that transverse vectors L± on each spacetime are already privileged or have been 

chosen for whatever other reason. The main point of the construction in Theorem 

9.1.1 is firstly that it provides a fully abstract description of the matching and 

secondly that it keeps maximum flexibility so that one can adapt Theorem 9.1.1 to 

any particular scenario. 

 

9.1.1 Null boundaries 

 
Our main interest in this thesis is on null matching. Thus, for the remainder of 

the chapter, we focus on the case when both D and D are null hypersurface data. 

Under these circumstances, by Lemma 3.2.9 we know that there exists a pair {z, V} 

ensuring the second and third equations in (9.2). It follows that the only restrictions 

are therefore condition (ii) in Theorem 9.1.1 and the first equality in (9.2), namely 

= γ. (9.11) 
φ γ� 

 

Consequently, given two spacetimes (M±, g±) with null boundaries N ±, either 

there exists (at least) one diffeomorphism φ satisfying (9.11) or not. In the former 

case the matching is possible (provided (ii) holds) and, as we shall see next, all 

information about the matching is codified by φ. 

For the rest of the chapter and without loss of generality, we again make the harm- 

less assumption that one of the boundaries lies in the future of its corresponding 

spacetime while the other lies in its spacetime past (see the discussion in Section 

7.3). The following lemma provides the explicit form of the gauge parameters 

{z, V} and of the matching rigging ζ+ in terms of the diffeomorphism φ. 

 
Lemma 9.1.6. Assume that conditions (i)-(ii) in Theorem 9.1.1 hold for a pair of embed- 

ded null hypersurface data D, D� .  Then, the gauge parameters {z, V} are given by 
 

z = 
1

 , V = −P(φ �ℓ ,  ·) + ⋆�ℓ, φ⋆ �ℓ) − φ⋆�ℓ 
(2) 

n. (9.12) 

(φ⋆�ℓ)(n) 2(φ⋆�ℓ)(n) 

Moreover, the matching identifies the rigging vector field L− in the minus side with the 

rigging in the plus side 

ζ+ = z′ 
(
L+ − ι+

(
φ⋆

 
P(φ⋆�ℓ, ·)

 ) 
+ µι+(φ⋆n)

) 
, (9.13) 

⋆ 
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z 

\ 

� � 

� 

⋆ 

� � � 

(A) 

n 

z 
+ 

2 
ℓ, φ ℓ) − φ ℓ 

 

where z′ ∈ F ⋆ ( N-+), µ ∈ F ( N-+) are scalar functions defined by 
 

φ⋆((ι+)⋆(z′)) = 
 1  

, φ⋆((ι+)⋆(µ)) = 
P(φ

 �ℓ, φ⋆ �ℓ) − φ⋆�ℓ 
(2) 

. (9.14) 

(φ⋆�ℓ)(n) 2(φ⋆�ℓ)(n) 

Proof. The explicit form (9.12) for the function z follows from contracting (9.5) with 

n and using (2.7). The vector field V can be partially obtained also from (9.5) by 

particularizing Lemma 2.2.8 for W = V, ϱ = z−1ℓ − φ⋆�ℓ .  This gives 

V = P 

( 
ℓ 

− φ ⋆�ℓ , ·

1 

+ u0 

 
(2.8) 

= − 

 

P(φ 

 

⋆�ℓ, 

 

·) + 

  

u0 − 
ℓ(2) 

n, (9.15) 
z 

 
where u0 =

d e f  
ℓ(V) is a function yet to be determined. This is done by substituting 

(9.15) into (9.6). First, γ(V, V) = ϱ(V) = z−2ℓ(2) + P(φ⋆ℓ, φ⋆ℓ) because of (2.7)-(2.8) 

and z−1 = (φ⋆�ℓ)(n). Thus, 

 
⋆ (2) 2

  
ℓ(2) 

\
  ⋆� ⋆� 

φ ℓ = 
z
 

z 
− u0 

ℓ(2) 
 

+ P(φ 

z ( 
 

 

ℓ, φ ℓ) 

⋆� ⋆� 

 

 

⋆�(2)
)
 

 
so that substituting this into (9.15) proves (9.12). Equation (9.13) is a direct con- 

sequence of (9.12) and the fact that ζ+ = z′(L+ + ι+(φ⋆V)). 

 
Whenever there exists a diffeomorphism φ solving (9.11) and given a basis {n, eA} 

of Γ(TN ), it is possible to obtain specific expressions for the pushforward vector 

fields {φ⋆n, φ⋆eA}. This is done in the next corollary. 

 

Corollary 9.1.7. Assume that conditions (i)-(ii) in Theorem 9.1.1 hold for a pair of em- 

bedded null hypersurface data D, D and consider the tensor fields {P, n}, {P, n} defined 

by particularizing (2.5) for these two data sets. Let {n, eA} be a basis of Γ(TN ) and define 

the covectors {W A} and the functions {ψA, χ(A)} along N by 

φ⋆W A =
d e f  

γ(eA, ·),   ψA =
d e f  

ℓ(eA),   χ  =
d e f  

(φ−1)⋆(z−1ψA) − W A(φ⋆V). 

 

Then, 

φ⋆n = 
(φ−

�
1)⋆z 

, (9.17) 

φ⋆eA = P�(W A, ·) + χ(A)n�, (9.18) 

Moreover, it holds that P�(W A, �ℓ )  = 0 and φ⋆χ(A) = (φ⋆�ℓ)(eA). 

n 

=⇒ u0 = P(φ (9.16) 

⋆ 
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� � 

� � � � 

� 

� 

� � � � � 

� 

� � 

ψA 

def � 

� � 

r=3 

r= r= 

(9.5) ψA ψA 

be proved by contradiction, by assuming that one can write one such vector field, e.g. W , 

� 

� 

 
Proof. Consider any point p ∈ N . From (9.4) it follows that γ(φ⋆n, ·)|φ(p) = 

(φ⋆γ)(n, ·)|p = γ(n, ·)|p = 0, so φ⋆n = bn for some function b

�

∈ F(N ). This, 

together with (9.12) and ℓ(n) = 1, entails that z−1|p = (φ⋆ℓ)(n)|p = ℓ(φ⋆n)|φ(p) = 

b|φ(p) = φ⋆b|p, which proves (9.17). On the other hand, any vector field X ∈ Γ(TN ) 

satisfies 
 

γ(φ⋆ eA, φ⋆ X)| 
 

φ(p) = (φ⋆γ)(e A, X)| 
(9.4) 

p = γ( A, X)|p = φ⋆W A (X)|p, 

ℓ(φ⋆eA)|φ(p) = (φ 

 

which means that 

�ℓ)(eA)|p = z  
− γ(eA, V)|p = 

z  
− φ W A(V)|p, 

 

γ�(φ⋆eA, ·) = W A, �ℓ(φ⋆eA) = (φ−1)⋆(z−1ψA) − W A(φ⋆V). (9.19) 

Particularizing Lemma 2.2.8 for the data D� and for W = φ⋆eA, ϱ = W A and 

u0 = (φ−1)⋆(z−1ψA) − W A(φ⋆V) yields (9.18). Finally, P(W A, ℓ) = 0 because 

P(W A, ℓ)|φ(p) = −ℓ(2)W A(n)|φ(p) = −ℓ(2)((φ−1)⋆z)W A(φ⋆n)|φ(p) 

= −ℓ(2)((φ−1)⋆z)|φ(p)(φ
⋆W A)(n)|p 

= −�ℓ(2)((φ−1)⋆z)|φ(p)γ(eA, n)|p = 0, 

while φ⋆χ(A) = (φ⋆�ℓ)(eA) follows from 

χ(A)|φ(p) = 

ψA ⋆ 

z  
− (φ W A)(V)|p = 

z  
− γ(eA, V)|p 

(9.5) 

= (φ �ℓ)(eA)|p. 

 

 

Remark 9.1.8. From (9.17) it follows that φ is a diffeormorphism which sends null gen- 

erators into null generators. Moreover, since the vector fields {WA = P(W A, ·)} verify 

ℓ(WA) = 0, it follows that WA ∈/ Radγ. This, together with the fact that φ⋆ is necessarily 

of maximal rank, forces the vector fields {WA} to be everywhere non-zero on N . In fact, 

n, WA} constitutes a basis of Γ(TN ), since {WA} are all linearly independent. This can { 

2 

as a linear combination of the remaining vector fields, i.e. W2 = ∑n crWr. By (9.18), this 

would mean that φ⋆(e2 − ∑n 3 crer) =
 
χ(2) − ∑n 3 crχ(r)

 
n� ,  which we know it cannot 

occur (because only null generators can be mapped to null generators). 

The point of introducing the objects {W A, χ(A)} will become clear later when 

analyzing the particular case when the boundaries have product topology S × R, 

where S is a spacelike cross-section and the null generators are along R. For the 

moment, let us simply anticipate that in such case the property P�(W A, �ℓ )  = 0 will 

e 

⋆ ⋆ 

⋆ 



9.1 abstract matching without topological assumptions 251 
 

 

� 

- � 

1 
2  n � f n � n � 

n� � 

� 

� 

� 

� 

any f ∈ F(N ) because n ∈ Radγ (recall (5.19)). By direct computation one gets 

⋆ 

 

allow us to conclude that the vector fields P(W A, ·) are tangent to the leaves of a 

specific foliation of N + while from φ⋆χ(A) = (φ⋆ℓ)(eA) we will conclude that the 

functions {χ(A)} are actually spatial derivatives of the step function introduced in 

Chapter 7. 

One of the most important results from Chapter 7 is the relation (7.54) between the 

second fundamental forms of each side. It turns out that in this abstract framework 

with no topological assumptions one can also recover an equation of this form. To 

obtain it, we start by noticing that U =
d e f  

£nγ, U� 
2 =

def 

1 £ γ and that £ γ = f £ γ for 
� � � 

⋆ def 1  ⋆ (9.1

�

7) z 

� 

(9.4) z  
φ ⋆ U�  

φ U� = 
2 

φ (£ γ) = 
2 

φ
  

£φ ⋆ nγ�
  

= 
2 

£nγ = zU =⇒ U = 
z  

, (9.20) 

which connects the second fundamental forms U, U� corresponding to the hyper- 

surface data sets D, D. Equation (9.20) generalizes (7.54) to the case of boundaries 

with any topology, and has several implications that we discuss below. 

In Theorem 9.1.1 we have seen that when the matching of two spacetimes 

(M±, g±) is possible there exists a diffeomorphism φ verifying (9.11). In such 

case, Lemma 9.1.6 and Corollary 9.1.7 provide explicit expressions for the gauge 

parameters {z, V}, the matching rigging ζ+ and the pushforwards {φ⋆n, φ⋆eA} of 

any basis vector fields {n, eA} in terms of the map φ still to be determined. 

However, as the reader may have noticed, condition (9.11) does not fix φ com- 

pletely, firstly because there can be more than one diffeomorphism φ satisfying 

(9.11) and secondly because the tensor fields γ and γ are both degenerate. As 

happened in Section 7.3.1.1, where the step function could not be fixed by the 

isometry condition (7.31), here one also needs an extra condition in order to fix 

φ fully. This second restriction is precisely (9.20) and, the same way as in Section 

7.3.1.1, it provides useful information as long as both U and U are non-zero. On the 

contrary, when U and U vanish simultaneously then z (and hence part of φ, recall 

(9.12)) remains completely free. This means that one can find an infinite number 

of diffeomorphisms φ verifying (9.11), with which we recover the property that 

whenever the boundaries are totally geodesic then (M±, g±) can be matched in 

an infinite number of ways. 

As anticipated before, one can obtain explicit expressions for the gravitational and 

matter-energy content of a null shell (i.e. for [Y] and τ) in terms of the diffeomorph- 

ism φ. This is done in the following theorem. 
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2 

z 

A φ 

z 

def 1 + def 1 def 1 

2 ∇(a b) ab 

[Y](eA, eB) = z(φ⋆Y�
+
)(eA, eB) − Y−(eA, eB) 

2 
P(φ ℓ, φ ℓ) − φ ℓ U(eA, eB) − zeAeB∇(a(φ ℓ)b), (9.24) 

τ(q, q) = − ϵhAB

(

z(φ⋆Y�
+
)(eA, eB) − Y−(eA, eB) 

2 
P(φ ℓ, φ ℓ) − φ ℓ U(eA, eB) − zeAeB∇(a(φ ℓ)b) 

2 2z − 
z 
(£n φ⋆�ℓ)(eB) + 

eB(z) 
+ s(eB) + zP(φ⋆�ℓ, U(eB, ·))

1

, (9.26) 

� 

 
Theorem 9.1.9. Assume that conditions (i)-(ii) in Theorem 9.1.1 hold for a pair of em- 

bedded null hypersurface data D, D� and let ϵ = ϵ−. Define 

Y− = 
2 

(ι−)⋆(£L− g−), Y� = 
2 

(ι+)⋆(£L+ g+) and Y+ = 
2 

φ⋆
 
(ι+)⋆(£ζ+ g+)

 
, 

where ζ+ is given by (9.13). Then, the tensor [Y] =
d e f  

Y+ − Y− reads 

[Yab] = z 

(

(φ⋆Y�
+
)ab + 

z (
P(φ⋆�ℓ, φ⋆�ℓ) − φ⋆�ℓ(2)

) 
Uab − ◦ (φ⋆�ℓ) 

1 

− Y− , (9.21) 

 

where z is given by (9.12). The components of [Y] in any basis {n, eA} of Γ(TN ) are 

[Y](n, n) = z(φ⋆Y�
+
)(n, n) − Y−(n, n) + 

n(z)
, (9.22) 

[Y](n, eA) = z(φ⋆Y�
+
)(n, eA) − Y−(n, eA) − 

z 
(£n φ⋆�ℓ)(eA) 

+ 
eA(z) 

+ s(e ) + zP( 
2z 

⋆�ℓ ,  U(eA, ·)), (9.23) 

 

z2 ( 
⋆� ⋆� ⋆�(2)

) 
a  b ◦ 

⋆ 

 

while the components of the energy-momentum tensor of the shell in the dual basis {q, θA} 

of {n, eA} are 

 

 

z2 ( 
⋆� ⋆� ⋆�(2)

)
 

 

a  b ◦
 ⋆� 

1 

τ(q, θA) = ϵhAB

(

z(φ⋆Y�
+
)(n, eB) − Y−(n, eB) 

 

τ(θA, θB) = − ϵhAB 

(

z(φ⋆Y�
+
)(n, n) − Y−(n, n) + 

n(z) 
1 

, (9.27) 

 

where hAB =
d e f  

γ(eA, eB). Finally, the purely gravitational content of the shell is ruled by 

YG(eA, eB) =
d e f  

[Y](eA, eB) + ϵ 
ρ 

γ(eA, eB), (9.28) 
n − 1 

where ρ =
d e f  

ρ + 2P(q, j) + p 

and {ρ, p, j} are defined as in Remark 7.3.9. 

(
2ℓ(2) + P(q, q)

)
 

+ 

+ , (9.25) 
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( 

z 

∇( − 

a (φ 
◦ 

z2 

b ac ⋆ 

 ̌

2 
P(φ ℓ, φ ℓ) − φ ℓ Uab − 

z 
(∇(az)ℓb) − z∇(a(φ ℓ)b), (9.29) 

{N , γ, ℓ, ℓ(2), Y+} are embedded in (M+, g+) with embedding ι+ ◦ φ and respect- 

1 
◦ 

z s 

∇(a 2 n 
2z2 z2 

◦ 

◦ 

 

Proof. First, we apply Lemma 3.1.4 for V =
d e f  

γ(V, ·) = z−1ℓ − φ⋆�ℓ  (recall (9.5)) and 

 
 

z 

2 
£Vγab = 

(

ℓ(2) + z
2 

P
 

2 (φ⋆�ℓ, φ⋆�ℓ) − φ 
⋆�ℓ(2)

)1 

U 
 

ab + 
◦ 

∇(a 

( 
ℓb) 

− (φ ⋆�ℓ)b)

1

 

z2 ( 
⋆� ⋆� ⋆�(2)

) 1  ◦ 
⋆� 

 

where in the last step we used that 
◦ 

aℓb) = ℓ(2)Uab (cf. (2.19)). By hypothesis 
+ 

the matching of (M±, g±) is possible, so the data sets {N , φ⋆ γ�,  φ⋆�ℓ ,  φ⋆�ℓ(2) , φ ⋆ Y�  }, 
 

+ + 

ive riggings L+, ζ+. This, together with (9.2), entails that the tensors φ ⋆ Y�  , Y are 

related by Y+ 

(9.11)) 
= G(z,V)(φ⋆Y� ), where {z, V} are given by (9.12). Thus (cf. (2.40), 

 

+ ⋆ + ⋆ z (9.5) ⋆ + dz z 

Y = zφ Y� + dz ⊗s (φ �ℓ + γ(V, ·)) + 
2 

£Vγ = zφ Y� + 
z 

⊗s ℓ + 
2 

£Vγ.  (9.30) 

Inserting (9.29) into (9.30) yields the explicit form (9.21). 

We now obtain the components of [Y] in the basis {n, eA}, for which we recall that 

U(n, ·) = 0 and s(n) = 0. Particularizing (3.11) for θ = φ ⋆�ℓ  and using (9.12) gives 
 

 

n ∇(a 

1 
⋆�ℓ)b) = 

2 
£n(φ

⋆
 

1 
�ℓ)b + 

2 
∇b((φ

⋆ �ℓ)(n)) − (φ⋆ �ℓ)(n)sb − P Ubc(φ⋆ �ℓ) a ,  

= 
2 

£n(φ⋆�ℓ)b − 
∇
2 

b  − 
z 

− P Ubc(φ �ℓ)a ,  (9.31) 

nanb ◦
 

(φ⋆�ℓ) = 
1 

£ 
(
(φ⋆�ℓ)(n)

) 
− 

n(z) 
= − 

n(z)
. (9.32) 

Combining (9.31)-(9.32) with (9.21) yields (9.22)-(9.24). The results (9.25)-(9.27) for 

the components of the energy-momentum tensor of the shell are a direct con- 

sequence of (3.53)-(3.55). 

Finally, we prove (9.28) as follows. First, we note that the one-forms j (see Remark 

7.3.9) and ℓ decompose in the basis {q, θA} as 

j = j(eA)θA, ℓ = q + ℓ(eA)θA (9.33) 

because j(n) = 0 and ℓ(n) = 1. Also by Remark 7.3.9, we know that the one-form 

j verifies [Y](n, eA) = ϵ(j(eA) − pℓ(eA)). Thus, a direct computation based on the 

decomposition (3.51) of the tensor field P yields 

 

trP[Y] = Pab[Yab] = hAB[Y](eA, eB) + 2P(q, θA)[Y](n, eA) + P(q, q)[Y](n, n) 

u0 =
d e f  

ℓ(V) (cf. (9.16)). This yields 

z 

= 

b) 

+ 

ac 
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= hAB[Y](eA, eB) + 2ϵP(q, j(eA)θA − pℓ(eA)θA) − ϵpP(q, q) 

= hAB[Y](eA, eB) + 2ϵP(q, j) + ϵp
 

2ℓ(2) + P(q, q)
 
 

where we used that P(θA, θB) = hAB (by Lemma 3.2.5), P(ℓ, ·) = −ℓ(2)n (cf. (2.8)) 

and (9.33) in this order. Taking into account the definition of the energy density ρ 

(see (7.97)), one finds 

hAB[Y](eA, eB) = −ϵ
(
ρ + 2P(q, j) + p 

(
2ℓ(2) + P(q, q)

) ) 
=
def

 

 
 

− ϵρ. (9.34) 

Now, from (3.53)-(3.55) it is clear that the only part of [Y] that does not contribute 

to the energy-momentum tensor is the h-traceless part of [Y](eA, eB). By Lemma 

3.2.5, we know that hABγ(eA, eB) = n − 1. Consequently, [Y](eA, eB) decomposes in 

a h-traceless and a h-trace part as 
 

[Y](eA, eB) = YG (eA, eB) + 
hIJ[Y](eI, eJ) 

n − 1 
γ(eA, eB), 

from where (9.28) follows at once after inserting (9.34). 

 

Remark 9.1.10. We emphasize that we have not made any assumption on the topology 

of the boundaries N ± in Theorems 9.1.1 and 9.1.9 or in Lemma 9.1.6. The results above 

therefore describe the most general matching of two spacetimes across null hypersurfaces 

and generalize the results in Chapters 7 and 8, where the existence of a foliation on the 

boundaries played an important role. 

The gravitational/matter-energy content of the resulting null shell is given by (9.22)-(9.28), 

and the associated energy density ρ, energy flux j and pressure p are given by (7.97). The 

reason why we refer to YG(eA, eB) as the purely gravitational part of the shell is that 

only the components [Y](n, n), [Y](n, eA) and the trace P(θA, θB)[Y](eA, eB) contribute 

to the energy-momentum tensor τ (cf. (3.53)-(3.55)). This means that even if τ vanishes 

identically YG(eA, eB) does not need to be zero. In fact, this case of YG(eA, eB) being the 

only non-zero contribution to the tensor [Y] corresponds to an impulsive gravitational 

wave propagating in the spacetime resulting from the matching. 

Remark 9.1.11. By Lemma 3.2.5 we know that P(q, ·) = 0 if and only if ℓ(eA) = 0 and 

ℓ(2) = 0. In such case, the scalar ρ coincides with the energy density ρ of the shell. In the 

embedded picture, this restrictions amount to impose that the matching riggings ζ± are 

null and orthogonal to the vector fields ϕ⋆
±e A . This holds, in particular, in Sections 7.3.3, 

8.4 and 8.5, where we enforced that the rigging ζ− is null and orthogonal to the leaves of 

the foliation on the minus side (recall the choice (7.26)). 
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� 

I 

def � 

� 

� � � 

� 

z z 

+ + 

+ + 

[Y](n, eA) = φ⋆ 
(

Y�
+
(n� ,  WA) + χ Y�

+
(n�, n�)

) 
− Y−(n, eA) 

2 2z − 
z (

£n φ⋆�ℓ
) 

(eA) + 
eA(z) 

+ s(eA) + zP(φ⋆�ℓ, U(eA, ·)), (9.36) 

ℓ, φ ℓ) − φ ℓ 

2 
ℓ, φ ℓ) − φ ℓ 

 

Remark 9.1.12. In Theorems 9.1.1 and 9.1.9 and Lemma 9.1.6, all expressions are fully 

explicit in terms of the diffeomorphism φ. The two data sets D, D are completely known 

(because the embeddings ι± and the spacetimes (M±, g±) are given) and the rigging ζ+ 

is determined by the pair {z, V} given by (9.12) in terms of φ. This also happened in 

Chapters 7 and 8, where the whole matching depended upon the step function H and the 

coefficients bJ which in turn determined the matching embedding ϕ+ (recall (7.43) and 

(7.51)) and the matching rigging ζ+ (according to (7.70)). 

+ 

Expressions (9.22)-(9.27) involve the pull-back φ ⋆ Y�  , whose calculation can be cum- 

bersome in general. It is more convenient to rewrite (9.22)-(9.27) in terms of pull- 

backs of scalar functions referred to the data D and objects defined with respect to 

D. We provide the corresponding expressions in the following Lemma. 

Lemma 9.1.13. Assume that conditions (i)-(ii) in Theorem 9.1.1 hold for a pair of embed- 

ded null hypersurface data D, D, let ϵ = ϵ− and consider the tensor fields {P, n}, {P, n} 

defined by particularizing (2.5) for these two data sets. Define the tensors {Y−, Y+, Y+} 

as in Theorem 9.1.9, the covectors {W A} and the functions {χ(A), ψA} along N accord- 

ing to Corollary 9.1.7 and the vector field WA = P(W A, ·). Let z be given by (9.12) and 

{n, eA} be a basis of Γ(TN ) with dual basis {q, θA}. Then, equations (9.22)-(9.27) can be 

rewritten as 

[Y](n, n) = 
1 

φ⋆ 
(

Y�
+
(n� ,  n�)

) 
− Y−(n, n) + 

n(z)
, (9.35) 

 
 

 

 
 

[Y](eA, eB) = zφ⋆

(

Y�
+
(WA, WB) + χ 

 

 

(A) Y� (n� ,  WB) + χ 

 

 

(B) Y� (n�, WA) 

+ χ χ Y�
+
(n� ,  n�)

1 

− Y−(e , e ) − zea eb 
◦

 (φ⋆�ℓ) 
(A) 

z2 ( 
 

 
 

(B) A B 

2)
)
 

⋆� ⋆� ⋆�( 

A B∇(a b) 

while the energy-momentum tensor of the shell reads 

τ(q, q) = − ϵhAB

(

zφ⋆
(

Y�
+
(WA, WB) + χ 

 

 

Y� (n� ,  WB) + χ 

 
 
 

 

(B) 

 

 

Y� (n�, WA) 

+ χ χ Y�
+
(n� ,  n�)

) 
− Y−(e , e ) − zea eb 

◦
 (φ⋆�ℓ) 

(A) 

z2 ( 
 

 

(B) A B 

2)
)
 

⋆� ⋆� ⋆�( 

A B∇(a b) 

1 
 

 
 

τ(q, θA) = ϵhAB

(

φ⋆ 
(

Y�
+

(n� ,  WB) + χ 
 

(B) Y
�+

(n�, n�)
) 

− Y−(n, eB) 

(A) 

2 

(9.38) 

(A) 

+ P(φ U(eA, eB). (9.37) 

+ P(φ U(eA, eB) 
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+ ⋆ 
φ κ�n − 

2 2z 

τ(θA, θB) = − ϵhAB 

( 
1 

φ⋆ 
(

Y�
+
(n� ,  n�)

) 
− Y−(n, n) + 

n(z) 
1 

, (9.40) 

+ 

 

 

z z 

where hAB =
d e f  

γ(eA, eB). 
 

Proof. Inserting (φ⋆Y� )(X, Y)|p = Y� (φ⋆X, φ⋆Y)|φ(p) into (9.22)-(9.27) and using 
 

 
In Section 9.2, we shall recover the results of Proposition 7.3.7 by particularizing 

Lemma 9.1.13 to the case when the boundaries N ± have product topology. Lemma 

9.1.13 therefore generalizes Proposition 7.3.7 to (null) boundaries with any topo- 

logy, and states the matter-energy content of any null thin shell arising from the 

matching of two spacetimes. 

 

9.1.1.1 Pressure of the shell 

 
In Chapters 7 and 8, we have already discussed the effect and the importance of 

a non-zero pressure in a null shell. This, however, has been done in very specific 

contexts (namely in the matching of two regions of Minkowski across a null hy- 

perplane or for matchings across embedded AKH0s) and by following a non-fully 

geometric approach (i.e. by analyzing the effect of the pressure in some specific 

coordinates). Our aim in this section is to study the pressure of a completely gen- 

eral null shell at a fully abstract level, providing its explicit expression in terms of 

well-defined geometric quantities and reinforcing the geometric interpretation of 

Chapters 7 and 8. 

In the following lemma we find explicit expressions for the pressure p in terms of 

the surface gravities of various null generators of N . 

Lemma 9.1.14. Assume that conditions (i)-(ii) in Theorem 9.1.1 hold for a pair of em- 

bedded null hypersurface data D = {N , γ, ℓ, ℓ(2), Y−}, D = {N , γ, ℓ, ℓ(2), Y }, a diffeo- 

morphism φ and a gauge group element G(z,V) (cf. (9.12)). Consider an arbitrary gauge 

parameter V ∈ Γ(TN ). Let ϵ = ϵ− and {n, n} be the null generators constructed from 

{D, D� }  respectively. Define 

�

 
def 

κn − Y−(n, n), =
d e f  

− Y� (n�, n�), φ κ 
def 

φ⋆ 

1 
( ⋆ n(z)) . (9.41) 

z 

− 
z (

£n φ⋆�ℓ
) 

(eB) + 
eB(z) 

+ s(eB) + zP(φ⋆�ℓ, U(eB, ·))

1

, (9.39) 

= κ�n 

(9.17)-(9.18), equations (9.38)-(9.40) follow at once. 

+ + 

n = 
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⋆ 

) = κ 

(z,V) 

G− 
z 

z 
) ⋆ 

z 
G− ) ⋆ 

� 

1 
n 

p = − ϵ 

(

− 
1 

φ ⋆ κ�n  + κn + 
n(z) 

1

 

⋆ z 

z z ⋆ 

 

Then, the pressure p of the corresponding null shell is given by 

p = −ϵ 
(
κn − G 

 

 

(z,V) 
(φ⋆κ�n)

) 
or, equivalently p = −ϵ

 
κn − φ⋆κφ n

 
(9.42) 

 
 

for any vector field V ∈ Γ(TN ). In particular, the pressure vanishes if and only if 
 

G(z,V)(φ κ�n  n or, equivalently φ⋆κ φ⋆n = κn . (9.43) 

Proof. Recall that G−1 = G(z−1,−zV). We start by noticing that (3.64) implies that 

1 
(z,V) 

(κn) = G 
 

(z−1 

 

,−zV) (κn) = z 
(
κn + n(z) 

)
. On the other hand, combining (7.97) 

and (9.35), it follows 
 

 
  

= − 
ϵ (

 

z 

G(z−1,−zV) 

 

(κn 

z 

− φ κ�n

) 
= − 

ϵ (  
1 

 
 

(z,V) 

 

(κn 

 

− φ κ�n 

) 
, (9.44) 

 

from where we conclude that −G−1
 (ϵp) = G−1

 (κn) − φ⋆κn (recall (2.154) and 
 (7.99)). Applying (z,V) (z,V) 

� 

G(z,V) on both sides of the equation one obtains the left part 

of (9.42). The right part of (9.42) is an immediate consequence of inserting the 

definition of φ⋆κφ⋆n into the first line of (9.44), while (9.43) is proven by setting 

p = 0 in (9.42). 

 
Remark 9.1.15. The last expression in (9.41) defines a function κφ⋆n on N . However, 

we still need to justify this terminology. It turns out that κφ⋆n coincides with the surface 

gravity of the vector field φ⋆n with respect to the hypersurface connection ∇ 

from the data D� .  To prove this, we let z =
d e f  

(φ−1)⋆z, so that (cf. (9.41)) 

constructed 

κφ n = 
1 (

κ�n − (φ−1)⋆(n(z))
) 

and (φ⋆n)(z) = (φ−1)⋆(n(z)), 

 

where the right part follows from (φ⋆n)(z)|φ(p) = (φ⋆dz)(n)|p = (dφ⋆z)(n)|p = 

n(z)|p = (φ−1)⋆(n(z))|φ(p). Then, the combination of (3.46) and (9.17) gives (recall 

(2.49)) 

� n = ∇� 
 

( 
n� 

1 

= 
1 

( 
1 

∇�
 n − 

n�(z) 
n

1 

= − 
1 
(

Y�
+
(n, n) + 

n�(z) 
1 

φ n 
∇φ⋆n φ⋆ z � z z z n�

�
 z2  

� 
z 

� � 
z 

⋆ 

= 
1 (

κ�n  − (φ⋆n)(z)
)
φ⋆n = 

1 (
κ�n  − (φ−1)⋆(n(z))

)
φ⋆n = κφ n φ⋆n. 

 

Remark 9.1.16. The gauge parameter V is completely superfluous and plays no role in 

determining the pressure, which is only influenced by the function z given by (9.12). We 

keep V in the expression to emphasize this fact. 

⋆ 
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Remark 9.1.17. In Chapters 7 and 8, we have introduced the notion of self-compression 

and self-stretching on the boundaries of the spacetimes to be matched. We have seen that 

this effect is completely ruled by the pressure, and that it has to do with the differences in 

the acceleration along the null generators of both sides. With (9.42), we recover the same 

result but for the case of boundaries with any topology. Indeed, the surface gravities κn and 

κφ⋆n verify 

∇nn = κnn, ∇� 
φ⋆n φ⋆n = κφ⋆n φ⋆n, (9.45) 

so that, when the matching rigging ζ− points inwards (hence ϵ = −1), the pressure is pos- 

itive when κn > φ⋆κφ⋆n (namely when the "acceleration" of n is greater than that of φ⋆n) 

and negative otherwise, just as happened in Section 7.3.3. The only scenario where there 

exists no pressure occurs when both surface gravities coincide, i.e. when the accelerations 

of n and φ⋆n are the same. 

 

9.1.2 Multiple matchings 

 

We have already seen that when two given spacetimes (M±, g±) can be matched, 

in general there exists at most one way of matching (i.e. only one matching map 

Φ or one single diffeomorphism φ). However, we are also aware of the fact that 

sometimes multiple (even infinite) matchings can be performed (e.g. when both 

second fundamental forms U, U� vanish). In the language of (7.24), this means 

that given a choice of embedding ϕ− and matching rigging ζ− on the minus side, 

there exist several embeddings ϕ+ for which the matching conditions hold, and 

each embedding gives rise to a unique solution for the rigging ζ+ with suitable 

orientation. 

In this section, our aim is to study the scenario of multiple matchings. The idea 

is to assume that all information about one of the matchings is known, in particu- 

lar its corresponding diffeomorphism φ and hence the gravitational/matter-energy 

content. As we shall see, in these circumstances one only needs to consider a single 

hypersurface data set D (instead of two) and it is possible to provide explicit ex- 

pressions for the jump [Y] and the energy-momentum tensor τ of any other shell 

in terms of their counterparts of the known matching. These results can be par- 

ticularized to the case when the known matching gives rise to no-shell (i.e. when 

it is such that [Y] = 0). This precisely happens in all cut-and-paste constructions, 

where (M±, g±) are two regions of the same spacetime. 

Our setup will be the following. We make a choice {ϕ−, ζ−} of embedding and 

rigging on the minus side and consider two matching embeddings ϕ+, ϕ+, each 

of them satisfying (7.24) for two riggings ζ+, ζ-+ respectively. We also assume that 
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- - 

(2) + 

- - - 

+ } - 

- - - 

+ 

ℓ 

- N 
� 

� - � 

- 

∇( 

Even more, since the pair { ϕ-+, ζ-+} is known, we can always make the choice 

2 ∇(a ab 

find two diffeomorphisms φ, φ and two pairs {z, V}, {z, V} for which (i)-(ii) hold. 

 
the information about one of the matchings is completely known, namely we let 

{ϕ+, ζ+} be given. 

From the spacetimes (M±, g±),  we  can  construct  two  data  sets D = 

{N , γ, ℓ, ℓ(2), Y−}, D� = {N , γ� ,  �ℓ ,  �ℓ , Y� } and Theorem 9.1.1 ensures that we can 

 

{ι+ = ϕ- , L+
 = ζ-+ } so that {γ�, �ℓ ,  �ℓ 

(2) } = {γ, ℓ, ℓ (2) and φ is the identity map, i.e. 

φ = IN . In these circumstances, using (2.7)-(2.8) in (9.12) yields z = 1 and V = 0. 

Making the same choice of {ι+, L+} for the matching of φ transforms (9.2) into 

G(z,V)(φ
⋆γ) = γ, G(z,V)(φ

⋆ℓ) = ℓ, G(z,V)(φ
⋆ℓ(2)) = ℓ(2), (9.46) 

 

and forces the embedding ϕ+ to be given by 
 

 

 
Equations (9.4)-(9.6) now read 

ϕ- ◦ φ ≡ ϕ +. (9.47) 

 

φ⋆γ = γ, φ⋆ℓ = 
z 

− γ (V, ·) , φ⋆ ℓ(2) = ℓ
(2) 

z2 
− 

2ℓ (V) 

z 
+ γ (V, V) , (9.48) 

while the expressions (9.12) for the gauge parameters {z, V} become 
 

 1  

z = 
(φ⋆ℓ)(n)

, V
 
= −P (φ⋆ℓ, ·) + 

P(φ⋆ℓ, φ⋆ℓ) − φ⋆ℓ(2) 
n. (9.49) 

2(φ⋆ℓ)(n) 

It is important to emphasize that whereas φ = I forces the metric parts of D, D to 

be the same, the tensors Y−, Y+ do not coincide in general. We let [Y] =
d e f  

Y+ − Y−, 

[Y] =
d e f  

Y+ − Y− be the jumps codifying the gravitational/matter-energy content of 
the null shells associated to φ and φ respectively. Then, by (9.21) we know that [Y] 

must be given by 

-

 

[Yab] = z 

(

(φ⋆Y�
+
)ab + 

z (
P(φ⋆ℓ, φ⋆ℓ) − φ⋆ℓ(2)

) 
Uab − 

◦
 

 
 

 

(φ⋆ℓ) 

 

1 

− Y− .  (9.50) 

 

The jumps [Y], [Y] can actually be related, as we shall see next. Indeed, by defining 

the tensor 

Y =
d e f  

zφ⋆Y� 
 

 
 

− Y� +, (9.51) 

z2 

[Yab] = Yab + 
2

 

 

P(φ⋆ ℓ, φ⋆ ℓ) − φ ℓ(2)
)
 

 

Uab − z 
◦  

a(φ
⋆

 ℓ)b) + [ Y- ab]. (9.52) 

expression (9.50) can be rewritten as 

( 

b) 

+ 

⋆ 
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2z 

- 

τ θ θ τ- θ θ − ϵh 

( 1

 

- 

- 

[Y](eA, eB) = Y (eA, eB) + [ Y- ](eA, eB) 

P(φ ℓ, φ ℓ U(eA, eB) − zeAeB∇(a(φ 

τ(q, q) = τ-(q, q) − ϵhAB

(

Y (eA, eB) 

2 
P(φ ℓ, φ ℓ) − φ ℓ U(eA, eB) − zeAeB∇(a(φ ℓ)b) 

2 2z 

2 
ℓ, φ ℓ) − φ 

 
Moreover, a direct calculation shows that the components (9.22)-(9.24) of [Y] in a 

basis {n, eA} of Γ(TN ) can be expressed in terms of Y as 

n(z) 
[Y](n, n) = Y (n, n) + [ Y- ](n, n) + 

z  
, (9.53) 

z 
[Y](n, eA) = Y (n, eA) + [ Y- ](n, eA) − 

2 
(£n φ ℓ)(eA) 

+ 
eA(z) 

+ s(eA) + zP(φ⋆ℓ, U(eA, ·)), (9.54) 

 

z2 ( 
⋆ ⋆ ⋆ (2)

)
 a  b ◦ 

⋆ 

 

Taking into account (9.25)-(9.27) allows us to connect the energy-momentum 
tensors τ, τ of the two shells. Specifically, for the dual basis {q, θA} of {n, eA} 

one finds (r

-

ecall that hAB =
d e f  

γ(eA, eB)) 

z2 ( 
⋆ ⋆ ⋆ (2)

) 
a  b ◦ 

⋆ 

1
 

τ(q, θA) = τ(q, θA) + ϵhAB

(

Y (n, eB) 

− 
z 

(£n φ⋆ℓ)(eB) + 
eB(z) 

+ s(eB) + zP(φ⋆ℓ, U(eB, ·))

1

, (9.57) 

( A,  B) = ( A,  B) AB Y (n, n) + 
n(z) 

. (9.58) 
z 

The results (9.53)-(9.58) turn out to be of particular interest when one of the match- 

ings of (M±, g±) gives no shell. In order to see this, let us assume that this is the 

case and take φ to be the diffeomorphism corresponding to the no-shell matching. 

Then, [ Y- ] = 0 (i.e. Y�
+  

= Y−) holds and the tensor Y is given by (cf. (9.51)) 

Y = zφ⋆Y− − Y−. (9.59) 

Setting [Y] = 0 in equations (9.53)-(9.55) yields 

n(z) 
[Y](n, n) = Y (n, n) + 

z  
, (9.60) 

[Y](n, eA) = Y (n, eA) − 
z 
(£n φ⋆ℓ)(eA) + 

eA(z) 
+ s(eA) + zP(φ⋆ℓ, U(eA, ·)),  (9.61) 

2 

z2 ( 
 

 

2z 

⋆ ⋆ ⋆ (2)
)
 

− zea eb ◦ 
(φ⋆ℓ) . (9.62) 

A B∇(a b) 

+ 
2 ℓ) − φ ℓ)b). (9.55) 

+ , (9.56) 

[Y](eA, eB) = Y (eA, eB) + P(φ ℓ U(eA, eB) 

⋆ 
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t 

t=0 

t 

2 t ζ 

 

Consequently, when a no-shell matching is possible, the jump [Y] correspond- 

ing to any other possible matching is given by (9.60)-(9.62) in terms of the data 

fields {γ, ℓ, ℓ(2), Y−} and the diffeomorphism φ. In other words, knowing the 

information about the no-shell matching automatically allows one to obtain the 

gravitational/matter-energy content of the remaining matchings by simply determ- 

ining φ. In particular, there is no need to compute the new matching rigging ζ+ or 

the tensor Y+ to determine the shell properties. One simple needs to compute the 

right-hand sides of (9.60)-(9.62) using (9.59). 

We emphasize that (9.60)-(9.62) apply, in particular, when (M±, g±) are two re- 

gions of the same spacetime (M, g) and more than one matching can be performed. 

Then, the existence of a no-shell matching is always guaranteed, as one can always 

recover the full spacetime (M, g) from the matching of (M±, g±). This in fact oc- 

curs in all cut-and-paste constructions, which means that (9.60)-(9.62) provide the 

matter content of a null shell generated by any cut-and-paste matching procedure, as long 

as the two regions (M±, g±) of (M, g) can be pasted in more than one way. 

We conclude this section by discussing a particular situation of interest, namely the 

case when a null hypersurface data D = {N , γ, ℓ, ℓ(2), Y−} can be embedded in 

two spacetimes (M±, g±) with embeddings ι± (such that ι±(N ) are boundaries of 

M±) and riggings L± with the appropriate orientation. This means that (M±, g±) 

can be matched so that the resulting spacetime contains no shell (because Y− is the 

same for both spacetimes). We assume, in addition, that D admits a vector field 

ξ ∈ Γ(TN ) with the property £ξγ = 0. The vector ξ defines a (local) one-parameter 

group of transformations {φt} of N satisfying 

 

φ⋆γ = γ. (9.63) 

 
We now prove that, for each value of t, the diffeomorphism φt gives rise to a 

matching. First, we define gauge parameters {z, V} according to (9.49) for φ = φt. 

Then, it is immediate to check that (9.46) holds for φ = φt and that z > 0 (because 

φt depends continuously on t and (φ⋆ ℓ)(n) = ℓ(n) = 1). Therefore, conditions 

(i) and (ii) in Theorem 9.1.1 are both fulfilled (notice that, since L± are matching 

riggings, one points inwards and the other outwards, so (ii) is just z > 0) and in- 
deed each φt corresponds to a different matching. The jump [Y] =

d e f  
Y+ − Y− where 

Y+ =
d e f  1 φ⋆

 
(ι+)⋆(£ + g+)

 
(and ζ+ is given by (9.13)) rules the gravitational/matter- 

energy content of the resulting shell. The vector field ξ generates a multitude of 

new shells. The construction is further simplified when, in addtion to (9.63), it 

holds 

φ⋆Y− = Y−. (9.64) 
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1 

k±(v±) = 1 with initial values v±|S
0

± = 0. Finally, the riggings L± are fixed by 

 

Then (9.59) implies  

Y = (z − 1) Y−, (9.65) 

which simplifies the expressions (9.60)-(9.62) considerably. One may wonder what 

is the final result when, in addition, ξ is the restriction to N of a Killing vector field 

ξ on M− (i.e. ι −
⋆  ξ = ξ) and £ξ L− = 0 is fulfilled (so that (9.63) and (9.64) hold). It 

is straightforward to see that 

φ⋆ℓ = ℓ, φ⋆ℓ(2) = ℓ(2), (9.66) 
t t 

which combined with (9.49) means that z = 1, and V = 0, so Y = 0 (cf. (9.65)). 

Moreover, one can easily check that the terms in the right-hand side of (9.60)- 

(9.62) cancel out. Thus, the procedure gives rise to another no-shell matching, as 

one would expect because the transformation induced by ξ does not affect in any 

geometric way the spacetime (M−, g−). This constitutes a non-trivial consistency 

check of equations (9.60)-(9.62). 
 

 

9.2 null boundaries with product topology S × R 

 
In order to connect the results in this chapter with those from Chapters 7 and 8, 

we now consider the case when the boundaries of the spacetimes to be matched 

can be foliated by a family of spacelike cross-sections. In particular, we shall find a 

step function H and provide explicit expressions for the gauge parameters {z, V} 

(cf. (9.12)) and the gravitational/matter-energy content of the shell. The results for 

the jump [Y] will be then compared with their counterparts from Chapter 7. 

Our setup for the present section is the following. We consider two spacetimes 

(M±, g±) with null boundaries N ± and assume that N ± have product topology 

S± × R, where S± are spacelike cross-sections and the null generators are along 

R. We select two future null generators k± ∈ Γ(TM±)|
N ± of N ± and two cross- 

sections S0
± ⊂ N-±. We then construct foliation functions v± ∈ F ( N-±) by solving 

the conditions of being orthogonal to the respective leaves {v± = const}, null and 

scaled to satisfy µ± =
d e f  

g±(L±, k±) = 1. 

We assume that (M±, g±) can be matched, so that conditions (i)-(ii) in Theorem 

9.1.1 are fulfilled for a diffeomorphism φ : N −--- N verifying (9.11). This allows 

us to take two embeddings ι± : N '−--- M± and construct the hypersurface data 
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(2) + 

� 

A 

A 

def � 

= 
n

 
( H ) 

∇A 
B 

2n(H) 
B 

AB 

 

sets D = {N , γ, ℓ, ℓ(2), Y−}, D 

introduce the functions 

= {N , γ� ,  �ℓ ,  �ℓ , Y� } according to (9.3). We also 

 

λ =
def 

(ι−)⋆(v−), v =
def 

(ι+)⋆(v+), and H =
def

 φ⋆v (9.67) 

on N . Since by construction ι −
⋆  (n) = k− and ι+(n) = k+ (recall (2.25)), it is imme- 

⋆ � 

diate to check that {λ, v} are foliation functions of N . Observe also that our choice 

for the riggings L± implies 
 

ℓ = dλ, ℓ (2) 
= 0, �ℓ = dv, �ℓ 

(2) = 0, (9.68) 

 
which in turn means (recall (2.10)-(2.11)) 

 

n(λ) = 1, F = 0, s = 0, n(v) = 1, F� = 0, �s = 0. (9.69) 

We now select vector fields {eA} tangent to the leaves {λ = const.} so that {n, eA} 

is a basis of Γ(TN ) satisfying [n, eA] = 0. As before, we let h be induced metric on 

{λ = const.} and ∇h for its Levi-Civita derivative. In particular hAB =
d e f  

γ(eA, eB) 

and we note that, for any f ∈ F(N ), we can write eA( f ) also as ∇h f . Since in the 

present case eA(λ) = 0, the pull-back of ℓ to the leaves of constant λ is zero, i.e. 

ℓA = ψA = 0. This, together with ℓ(2) = 0 and (3.50), means that P = hABeA ⊗ eB. 

Observe also that 
 

φ⋆�ℓ = φ⋆dv = d(φ⋆ v) = dH, φ⋆�ℓ 
(2) = 0, (9.70) 

 
which in particular means that 

 
h 

P(φ⋆�ℓ, ·) = P(dH, ·) = h (∇  H)eB. (9.71) 

 
We can now particularize (9.12) to the case of boundaries with product topology. 

For that we insert (9.70)-(9.71) into (9.12) and get 

 

z 
 1  

, V 

 

hAB h 
H

  
∇h H 

n
 

e 

\ 

. (9.72) 

 

The push-forward vector fields {φ⋆n, φ⋆eA} can also be computed in terms of the 

function H and the vector fields WA = P(W A, ·) (recall Corollary 9.1.7). In fact, 

combining (2.9) and (9.72) one finds 

 

γ(eA, V) = −γ(eA, P(dH, ·)) = −eA(H), (9.73) 

= − 

� 
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� 
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� satisfy [n, W 

� 

� � 

� 

- 

1 ⋆ A ⋆ 1 ⋆ A ⋆ 

� 

� 

� 

 
which in turn entails that 

 

−W A(φ⋆V)|φ(p) = −(φ W A)(V)|p = −γ(eA, V)|p = eA(H)|p ∀p ∈ N . (9.74) 

Using ψA = 0, (9.72) and (9.74) in the expressions of Corollary 9.1.7 yields 

n = (φ−1)⋆(n(H))n, (9.75) 
φ⋆ � 

φ⋆eA = WA + (φ−1)⋆(eA(H))n. (9.76) 

Observe that {WA} are tangent to the leaves {v = const.} (because by Corollary 

9.1.7 we know that 0 = P(W A, ℓ) = ℓ(WA) = WA(v)). Moreover, the vector fields WA} commute with the null generator n, as we prove next. 
{ 

 

Lemma 9.2.1. The vector fields n and WA A] = 0. 
 

Proof. Define the functions u =
d e f  

(φ−1)⋆(n(H)) and χ 
 

(A) =
d e f  

(φ−1)⋆(eA(H)), so that 
(9.75)-(9.76) can be written as n = u−1 φ⋆n and WA = φ⋆eA − χ(A)n. Thus, 

[n, WA] = [u−1 φ⋆n, φ⋆eA] − [n, χ(A)n] 

�

 

� 

= u−1 φ⋆([n, eA]) + u −

�

2  φ⋆eA

�

(u)φ⋆n − n(χ(A))n 

= u−2
 

φ⋆eA(u) − φ⋆n(χ(A))
 

φ⋆n, (9.77) 

where in the last equality we used [n, eA] = 0 and n = u−1 φ⋆n. To prove the claim 

we just need to show that the last parenthesis is zero. Indeed, 

 

φ⋆eA(u) − φ⋆n(χ(A)) = (du)(φ⋆eA) − (dχ(A))(φ⋆n) = φ⋆(du)(eA) − φ⋆(dχ(A))(n) 

= (dφ⋆u)(eA) − (dφ⋆χ(A))(n) = eA(n(H)) − n(eA(H)) 

= [eA, n](H) = 0. 

 

 
By Remark 9.1.8 we also know that {n, WA} constitute a basis of Γ(TN ). Therefore, 

the vector fields 

�

 

{e− =
d e f  

ι−n, e− =
d e f  

ι−eA}, {e+ =
d e f  

ι+(φ⋆n), e+ =
def 

ι+(φ⋆eA)} (9.78) 

form basis of Γ(TN ±) respectively. Inserting (9.75)-(9.76) into (9.78) and using 

again that ι+(n) = k+, one obtains 
⋆ 

e+ = n(H)k+, e+ = eA(H)k+ + ι+(WA), (9.79) 
1 A ⋆ 
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⋆ 
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a 

(H) 

- 

⋆ + 

+ B + B 
A N 

B 

= 
n

 L ∇AH eA − 
2n 

B e1 

= 
n

 
( H ) 

∇A ι⋆ ( 
B 

2 

⋆ A B 

A A A A 

metric hAB is given by hAB = hIJ(b−1)A(b−1)B (again due to ι+WA = bB v+). Thus, 

ab] = 
n

 
( H ) 

(φ 
A 

2n( H ) 
B 

ab − ∇a∇b ab 

+ I J ⋆ A B 

where for simplicity we have dropped pull-backs affecting functions. Given that 

{ι+WA} are linearly independent and tangent to the leaves {v+ = const.} ⊂ N +, 

they can be decomposed in a basis {L+, k+, v+} of Γ(TM+)|-+ satisfying (7.2) as 

ι⋆ WA = bAvB , with {bA} defining an invertible matrix. Moreover, bA are constant 

along the null generators as a consequence of Lemma 9.2.1: 
 

0 = [ι⋆(n), ι⋆(WA)] = [k+, bB v+] = k+(bB )v+ ⇐⇒ k+(bB ) = 0. 
� A A A B A 

Thus, with expressions (9.79) we recover the form of the matching vector fields 

{e+} introduced in (7.30). 

The matching rigging ζ+ can be derived as well by inserting (9.72) into (9.13) and 

using (9.75)-(9.76), (9.78)-(9.79). Specifically, one obtains 

 

+  1 
  

+ 
 

AB h 

 

+ ∇h H +

\\ 

 

  1 
 

L+ 
 

hAB 

 
h H

  

+ W ∇h H 
k+

\\ 

. (9.80) 

 

In the language of Chapter 7, we have chosen L± so that µ1
± = 1, µ ±

A  = 0, firstly 

because we have identified the vector fields { v −
A  } introduced in Section 7.3 with 

the push-forwards of {eA} (cf. (9.78)) and secondly because ι+WA = bB v+ means 

that µ+ = g+(L+, v+) = (b−1)B �ℓ(WB ) = (b−1)B WB(v) = 0. Moreover, the inverse 
 

it is immediate to check that (9.80) is equivalent to (7.70). 

Before studying the gravitational/matter-energy content of the shell, it is also 

worth mentioning that equation (7.54) can now be obtained by simply particu- 

larizing (9.20) for z−1 = n(H). In the present case one gets 

U = n(H)φ⋆U� . (9.81) 

 

The expressions for [Y] are obtained as a particular case of Theorem 9.1.9. 

 

Theorem 9.2.2. In the setup and conditions of Theorem 9.1.9 suppose further that the 

boundaries N ± can be foliated by cross-sections and define λ, v, H ∈ F(N ) as in (9.67). 

Let h be the induced metric and ∇h the corresponding Levi-Civita covariant derivative on 

the leaves {λ = const.} ⊂ N . Then, 

1 
Y Y� 

hAB(∇h H)(∇h H) 
U

 ◦ ◦ 
H

\
  

Y− . (9.82) 

ζ 
( H ) 

− h 

− A) + 

[ )ab + − 
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A 

A I 

(A B) 

� 

A 

- 

κ-k 

A B + (∇h H)(∇h H)φ⋆ 
Y�

+
( n� ,  n� )

 
− n(H)Y−(eA, eB) 

I 

2n(H) 
J U∥(eA, eB) − ∇A∇BH 

∇ 

 

Let {eA} be vector fields in N such that {n, eA} is a basis adapted to the foliation {λ = 

const.} and define WA by means of (9.76). Then the components the jump [Y] can be 

written as 
+ n(n(H)) 

[Y](n, n) = n(H)φ⋆ 
Y� (n� ,  n� )

 
− Y−(n, n) − n(H) 

, (9.83) 

[Y](n, eA) = φ⋆ 
Y�

+
(n� ,  WA)

 
+ (∇h H)φ⋆ 

Y�
+

(n� ,  n� )
 

− Y−(n, eA) 
h (n(H)) 

− 
n(H) 

+
 
hIJ ∇h H 

n(H) U∥(eA, eJ), (9.84) 

1 
[Y](eA, eB) = 

n(H)
 

 

φ⋆ 
Y�

+
(WA , WB)

 
+ 2(∇h

 H)φ⋆ Y�
+
(n� ,  W )

 
 

 

hIJ (∇h H)(∇h H) 
 

 

h h 

\

 

 
Proof. Equation (9.82) follows at once after inserting (9.70)-(9.72) into (9.21). To 

obtain (9.83)-(9.85), it suffices to particularize (9.35)-(9.37) for z−1 = n(H), φ⋆ℓ = 

dH, χ(A) = (φ−1)⋆(eA(H)), φ⋆�ℓ(2) = 0, s = 0 and P(φ⋆�ℓ, ·) = hAB(∇h H)eB and 
⋆ a  b 

◦ ◦ 
h h 

notice that £n(φ 

(3.94)). 

�ℓ )  = £ndH = d(n(H)), as well as eAeB∇a∇b H = ∇A∇BH (see 
 

 

 
Our aim now is to connect expressions (9.83)-(9.85) with those in Proposition 7.3.7. 

However, as a prior step we need to relate hypersurface data quantities with the 

tensors defined in (2.99). This is done in the following lemma. 

Lemma 9.2.3. Let {N , γ, ℓ, ℓ(2), Y} be hypersurface data embedded in a semi-Riemannian 

manifold (M, g) with embedding ϕ and rigging ζ. Define the null generator k =
d e f  

ϕ⋆n and 

denote by κk its surface gravity. Consider a transverse submanifold S ⊂ N and assume 

that the gauge is such that the rigging ζ is null and orthogonal to ϕ(S). Then, for any 

basis {eA} of Γ(TS) it holds (we identify scalars and vectors with their images on ϕ(N )) 

(a) = −Y(n, n), 

(b) σζ (eA) = Y(eA, n) + F(eA, n), 
k 

(c) K- (eA, eB) = U(eA, eB). 

(d) Θζ (e(A, eB)) = Y(eA, eB), 
ζ k 

where σζ, Θ are defined by (2.99) for L = ζ and K- 

 

is the second fundamental form of 

ϕ(N ) with respect to k (cf. (2.84)). 

+ . (9.85) 
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(2.99) 

1 
= Θ e( , e ) . 

A 

-
k+ 

+ κ− 

J B 
− J L 

− κ- (∇ )(∇ 

K- 

� � 

I J (I L k+ I J + (I J) 

( )Θ−( (I J)) + 
A 

2n(H 
B 

−( I J ) − ∇I ∇J 

∇ 

= 
2 

A 

H 
B

 B 

 

Proof. Claim (a) follows at once from (2.44) and (3.47) (note that here ν = k). To 

prove (b) we compute 

 

σζ (eA) = −g(∇eA k, ζ) = g(∇eA ζ, k) = Y(eA, n) + F(eA, n), 

where in the last step we used (5.5) for y = k (so that β = 0 and y = n). Item (c) 

has already been stated after definition (2.47) and (d) follows from 
 

Y(eA, eB) = 
2 

(£ζ g)(eA, eB) = g
 

∇e(A ζ, eB)

 
 

(2.99) ζ
  

A B

  

 
 

 

We are now in a position where the comparison can be made. Since in the present 

case µ1
± = 1, µ ±

A  = 0 and n = ∂λ (because ℓ(∂λ) = 1), the function A in equation 

(7.30) is A = n(H) (recall (7.45)) and the one-form ϑ of Lemma 7.3.2 verifies ϑA = 

−∇h H. This in turn forces the components {Xa} of (7.66)-(7.67) to be given by 
 

X1 hAB∇h H∇h H 
, XA 

n( ) 
= −hAB∇h H. (9.86) 

Thus, expressions (7.88)-(7.90) become 
 

[Y](n, n) = − n(H)κ+ 

 

-

k− 

n(n(H)) 
− 

n(H)  
, (9.87) 

[Y](n, e ) = σ+(W ) − σ−(v−) − (∇h H)κ+ 
J L J L J J -k+ 

h(n(H)) 
− 

n(H) 
+

 
hLB∇h H 

n(H) K- k 
(v−, v−), (9.88) 

1 
[Y](e , e ) = 

(

2(∇h
 H)σ+(W ) + hH hH) + ΘL (W , W  ) 

n H L v− , v− 
hAB∇h H∇h H k 

 
 

 
v−, v− 

h h H

1

.  (9.89) 

Particularizing Lemma 9.2.3 to the sections {λ = const} of D (with basis eA) and 

the sections {v = const} of D (with basis WA), and recalling that F = F = 0 (see 

(9.69)), it is straightforward to check that (9.87)-(9.89) coincide with (9.83)-(9.85). 
 

 
9.3 cut-and-paste construction: (anti-)de sitter spacetime 

 
We have already mentioned that (9.60)-(9.62) hold for the specific case when the 

two spacetimes to be matched are actually two regions of the same spacetime (with 

) 

n(H) J) 

− 
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def 

≤ 

- 

- 

denote one such hypersurface by N-. Then, one can always construct coordinates 

1 + Λ δ 
) 

12 

 
the additional requirement that more than one matching is allowed). In this sec- 

tion, our aim is to provide an example of a cut-and-paste construction, namely 

the matching of two regions of a constant-curvature spacetime across a totally 

geodesic null hypersurface. For previous works on the cut-and-paste construc- 

tion describing non-expanding impulsive gravitational waves in constant curvature 

backgrounds we refer e.g. to [88], [91], [92] [5], [6] and references therein. In these 

publications, the discontinuity in the coordinates when crossing the shell is given 

by the Penrose’s jump (2.170). Moreover, as we shall see next, this jump can only 

be recovered when the shell has neither pressure nor energy-flux, just as happened 

in the case of Minkowski described in Section 7.3.3. 

It is well-known that in any constant curvature spacetime (M, g) there exists only 

one totally geodesic null hypersurface up to isometries (see e.g. [133], [134]). Let us 

 

{U, V, x 

namely 

} adapted to N- so that the metric is conformally flat and N- = {U = 0}, 

 

g = 
gMk 

µ2 def Λ (9.90) 

where gMk = −2dU dV + δABdxAdxB, µ = 1 + 
12

 
δABxAxB − 2UV

 
. 

Here Λ stands for the cosmological constant, so Λ = 0, Λ > 0, Λ < 0 correspond to 

Minkowski, de Sitter and anti-de Sitter spacetimes respectively. When Λ 0, the 
A 

coordinates {U, V, x } cover a whole neighbourhood of N-. However, for the de 

Sitter case one needs to remove one generator of N . This is because the topology 

of N is Sn × R while stereographic coordinates only cover the sphere minus one 

point. In this section, we will analyze the three cases Λ = 0, Λ < 0 and Λ > 0 at 

once with the matching formalism introduced before. 

The induced metric on N- reads 
 

ds2 =
N- 

( 
δABdx 

 

AdxB 

, (9.91) 

and obviously the topology of N- is S × R, S being a spacelike section and the 

null generators being along R. Therefore, all results from Section 9.2 apply in the 

present context. 

Let us construct hypersurface data associated to N-.  Since N- is embedded on 
 

 
(M, g), there exists an abstract manifold N  and an embedding ι such that 

AB x
AxB 

2 

A 
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- 

N- 

µ2 

12 

6µN 

y y 6µN
 

ζ 
µ µ 6 

± = 1 + 12 δ x± x± − 2U V  

 

ι(N ) = N-. We can select ι to be as trivial as possible by constructing coordin- 

ates {λ, yA} on N so that 

 

ι : N '−--- N- 

 

 
(9.92) 

(λ, yA) −--- ι(λ, yA) ≡ (U = 0, V = λ, xA = yA). 

We also need a choice of rigging vector field ζ along N . For convenience, we set 

ζ = −µ2∂U (observe that µ2|  ̸= 0). The corresponding null metric hypersurface 

data {N , γ, ℓ, ℓ(2)} defined by (2.22) is 

γ = 
δAB dyA ⊗ dyB, ℓ = dλ, ℓ(2) = 0, (9.93) 

N 

where µN = ι⋆µ = 1 + Λ δAByAyB. Observe that ∂ ∈ Radγ and that n = ∂ 
def 

λ 

because ℓ(∂λ) = 1. Moreover, F = 0 and s = 0 (cf. (2.10)-(2.11)) and U = 0 as a 

consequence of (2.12) and (9.93). 

In order to compute the explicit form of the tensor Y, we first obtain the derivative 

£ζ g. Using that ∂U is a Killing vector of gMk, one gets 

£ g = 
2 

(∂U µ)gMk − 2dµ ⊗s gMk(∂U , ·)
 
= − 

2 
( 

ΛV 
gMk − 2dµ ⊗s dV 

1

 

= − 
3µ 

(
V gMk − 2 

(
δABx dx − V dU − U dV

) 
⊗s dV

) 
, (9.94) 

 Λ B A 

 
from where it follows (cf. (2.39)) 

Y = −
ΛδAB 

(
λdyA ⊗ dyB − 2yBdyA ⊗s dλ

) 
. (9.95) 

 

When Λ = 0 we recover Y = 0, which is in accordance with the first equation of 

(7.121). The explicit expressions for the components of Y are 
 

 

Yλλ = 0, YλyB = 
ΛδBJyJ 

 

6µN 
, Y I J = − 

 Λλ 
 

 

δIJ. (9.96) 

Cutting the spacetime across the hypersurface {U  = 0} leaves two spacetimes 

(M±, g±) defined to be the regions U ⋛ 0 endowed with the metrics 

g±  g± 

 

 

=
def 

 
− 2dU±dV± + δABdxAdxB , 

g± = 
Mk , where 

µ2 
Mk 

def 

± 

 
Λ
  

AB  
A  B 

  
±  ±

 
 

(9.97) 

Obviously, the boundaries are N-± ≡ {U± = 0}. 

± ± 

µ . 

λ 
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- 

- 

− 
+ 2 

- 

- 

12 

- 

2 ζ 

a = 

 

It is clear that one can always perform a matching of (M±, g±) and give rise to 

a resulting spacetime with no matter/gravitational content on the matching hy- 

persurface. It suffices to select the same two riggings along the boundaries and 

paste (M±, g±) across N ± with the identity matching map. With this procedure 

we simply recover the global (anti-)de Sitter spacetime. Moreover, since N ± are 

totally geodesic, by (7.54) (or (9.20)) we know that multiple matchings can be per- 

formed. 

We therefore proceed as in Section 9.1.2, i.e. we let the two embeddings ι± be 

given by ι± = ι and take ζ− = −µ2 ∂U− , ζ- = −µ+∂U+ as the riggings defining 

the no-shell matching, namely the matching for which [Y] = 0. Any other pos- 

sible matching will be ruled by a diffeomorphism φ of N onto itself and it will 

correspond to a different rigging ζ+ along N +. Specifically, the hypersurface data 

corresponding to the no-shell matching is D = {N , γ, ℓ, ℓ(2), Y}, where {γ, ℓ, ℓ(2)} 

and Y are respectively given by (9.93) and (9.95), while the matter/gravitational 

content of the shell of any other possible matching (ruled by φ) is given by the the 
jump [Y] =

d e f  
Y+ − Y with 

 

Y+ =
d e f  1 

φ⋆
(
ι⋆(£ + g+)

)
. (9.98) 

From Section 9.1.2, we know that there is no need to compute the new rigging ζ+ 

or its corresponding Y+, but the jump [Y] is explicitly given by (9.60)-(9.62). Con- 

sequently, we only need to worry about the diffeomorphism φ. The only restriction 

that φ must satisfy is φ⋆γ = γ, which in coordinates reads 

(∂ya φA)(∂yb φB)δAB δAδBδAB 

Λ 
b . (9.99) 

(1 + 12 δIJ φI φJ )2 (1 + Λ δIJyIyJ )2 

It follows that the components {φA} cannot depend on the coordinate λ. In 

particular, if we let {hA(yB)} be a set of functions such that (a) the Jac- 
∂(h2,...,hn+1) 
∂(y2,...,yn+1) 

has non-zero determinant and  (b) {hA(yB)} satisfy 
(1 + Λ δIJyIyJ)−2δCD = (1 + Λ δIJhIhJ)−2(∂yC hA)(∂yD hB)δAB, any diffeomorphism 

12 12 

φ : N −--- N of the form 

 

φ : N −--- N 

(λ, yB) −--- φ(λ, yB) ≡ (H(λ, yB), hA(yB)). 
(9.100) 

with ∂λH ̸= 0 fulfils φ⋆γ = γ. A particular simple example is {hA = yA}, but many 

more exist. In fact since the metric on any section of N is of constant curvature, it 

is also maximally symmetric (and of dimension n − 1) so hA(yB) can depend on 

n(n − 1)/2 arbitrary parameters. Once we find one such set {hA(yB)}, the gauge 

obian  matrix 
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(H 

12 

(H) 

  
B 

� 

A 

Λδ 
B = 

 h   ∂H ∂h   ∂h  ∂H 
+ − 

 H ∂h  ∂h  
+ 

δAδBλ
n(H)

 

ρ = µN δ 
A B 

 
parameters z and V are given by (9.72) for {n = ∂λ, eA = ∂yA } and for an arbitrary 

step function H(λ, yA). 

In the present case the tensor Y is given by Y = n 1 
) φ

⋆Y − Y (cf. (9.59)), so we 

now compute the pull-back φ⋆Y. Defining µN 

(9.100) it is straightforward to get 

=
d e f  

1 + Λ δABhAhB, from (9.95) and 

⋆ ⋆ ΛδIJhJ ∂hI ∂H 

(φ Y)λλ = 0, (φ Y)λyB = 6µN ∂yB ∂λ 
, (9.101) 

⋆ ΛδIJ 
( 

J 

( 
∂H ∂hI ∂hI ∂H 

1 
∂hI ∂hJ 1 

(φ Y)yAyB = 
6µ 

h 
N ∂yA ∂yB 

+ 
∂yA ∂yB 

− H 
∂yA ∂yB 

(9.102) 

 

so that, multiplying (9.101)-(9.102) by n 
1

 and subtracting Y (cf. (9.95)) yields 

 

 

Yλλ = 0, YλyB = 

 

ΛδIJ hJ 
6 

 
∂hI 

yB − δI yJ 
\

 
 

 

 

 
, (9.103) 

 

I J 
J ( 

µN ∂ µN 

I I 1 I J I J 
\

 

y y 6n(H) µN ∂yA ∂yB ∂yA ∂yB µN ∂yA ∂yB µN 

Inserting these expressions into (9.60)-(9.62) and using n = ∂λ, s = 0, U = 0 

together with the identity (£n φ⋆ℓ) (eA) = (£ndH) (eA) = d(n(H))(eA) = eA(n(H)) 

(here φ⋆ℓ = dH by (9.70) and ℓ = ℓ), one finds 

n(n(H)) 

[Yλλ] = − 

Y 
n(H) 

,
 

∇h (n(H)) 

[ λyA ] = YλyA − 

Y 

A 

n(H) 
∇h ∇h H 

, (9.104) 

[ yAyB ] = YyAyB − A B , 

n(H) 

which can be interpreted as the sum of the jump corresponding to the matching 

of two regions of Minkowski across a null hyperplane (see Section 7.3.3, equation 

(7.121)) plus the contribution of the tensor Y . Observe that Λ = 0 entails Y = 0, 

so in this way we recover expressions (7.121) for the most general shell in the 

spacetime of Minkowski. 

A direct computation that combines the definitions (7.97), (9.93) and (9.104) yields 

energy-density, energy flux and pressure (note that here we need to take ϵ = −1) 

 

2 AB

 

 ∇h ∇h H 
\

 
 

 n(H) 

Y . 

YyAyB − , 
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AB

  
∇ (n(H)) 

− 

B 

− 

− 

+ 

M 

− − − 

ρ = µN δ 
A B 

 

 
j = µ2 δ 

N 

 
h 
B 

n(H) 
− YλyB 

\

 

 

 

∂yA 

 
, (9.105) 

p = 
n(n(H))

.
 

n(H) 

Observe that only the pressure is independent of the value of the cosmological 

constant Λ (ρ and j depend on the conformal factor µN and on Y ). The pres- 

sure p takes the same value for the matchings of two regions of (anti-)de Sitter 

or Minkowski (in fact, p coincides with the pressure obtained in Section 7.3.3). In 

particular, in the case hA = yA (i.e. when the mapping between null generators of 

both sides is trivial), then YλyB = 0 (cf. (9.103)) and (9.105) simplifies to 
 

 

2 AB

 

 ∇h ∇h H 
\

 
 

 

 
j = µ2 δ 

N 

 

AB ∇h (n(H)) 

n(H) 

n(H) 

∂yA , (9.106) 

p = 
n(n(H))

.
 

n(H) 

In the cut-and-paste constructions corresponding to constant-curvature spacetimes, 

the so-called Penrose’s junction conditions impose the jump (2.170) in the coordinates 

across the shell. In the present case the matching embeddings ϕ− = ι and ϕ+ = 

ι ◦ φ are given by 

ϕ−(λ, yB) = 
(

U− = 0, V− = λ, xA = yA

)
, 

ϕ+(λ, yB) = 
(

U+ = 0, V+ = H(λ, yB), xA = hA(yB)
)

, 

 

so the step function corresponding to Penrose’s jump is H(λ, yA) = λ + H(yA), 

H ∈ F(N ). In order to recover such an H, one needs that there is no energy flux 

and no pressure on the shell. Indeed, imposing this in (9.106) and integrating for H 

yields H(λ, yA) = aλ + H(yA) with H ∈ F(N ) and a ∈ R being positive1. Thus, 

in this more general context with arbitrary cosmological constant, the Penrose’s 

jump (2.170) still describes either purely gravitational waves (when ρ, j and p are 

all zero) or shells of null dust (when j and p vanish but ρ ̸= 0), analogously to 

what happened in Section 7.3.3 for the Minkowski spacetime. 
 

 
1In the present case, ζ− point inwards with respect to ( −, g−), so ζ+ points outwards (be- 

cause the matching is possible). In these circumstances, condition (ii) in Theorem 9.1.1 imposes 

sign(z) = sign(ϵ+)sign(ϵ) = (+1)( 1) = +1. This, together with (9.72), means that n(H) > 0 
necessarily, which in turn forces the constant a to be strictly positive. 

YyAyB − , 
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10 
C O N C L U S I O N S 

 

 

 
This thesis consists of two different parts. In Chapters 3, 4, 5, 6, we have studied in 

deep detail the geometry of abstract null hypersurfaces by means of the formalism 

of hypersurface data introduced in Chapter 2. The second part of the thesis, corres- 

ponding to Chapters 7, 8, 9, is devoted to addressing the problem of matching two 

completely general spacetimes across a null hypersurface. In view of the structure 

of the thesis, we split the conclusions in two sections, one for each part. 

 
 

10.1 formalism of hypersurface data 

 

Let us start by summarizing the main results within Chapter 3. As we have seen, 

the tensor field "Lie derivative of a connection D along a vector Z", denoted by 

ΣZ =
d e f  

£ZD, plays a fundamental role in the context of hypersurfaces equipped 

with a privileged vector field. In Section 3.1, we have obtained explicit expressions 

for ΣZ whenever D is torsion-free and the manifold is endowed with a symmetric 

2-covariant tensor (Lemma 3.1.6 and Corollary 3.1.7). Precisely these last results 

allow us to relate ΣZ with the deformation tensor KZ of Z in Chapter 5. As a 

particular case, we have considered hypersurface data {N , γ, ℓ, ℓ(2), Y} and intro- 

duced the tensor "Lie derivative of the metric hypersurface connection", namely 

Σ
◦ 

=
def 

£
 

◦ . We have computed Σ
◦

 explicitly in terms of the metric part of the data 
◦ 

(Lemma 3.1.8) and we have connected Σ with the tensor "Lie derivative of the 
 

hypersurface connection" Σ =
d e f  

£n∇ (Lemma 3.1.9). 

Section 3.2 concentrates on hypersurface data in the null case. In Definitions 3.2.1 

and 3.2.2 as well as in Lemma 3.2.3, we set up the notion of null (metric) hyper- 

surface data. These concepts are based upon the fact that the tensor γ has one 

degenerate direction given by the data vector n, which must necessarily be every- 

where non-zero. The data one-form ℓ is also restricted to verify ℓ(n) ̸= 0. 
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∇ 

def 

 
In the spirit of recovering the standard notions of null hypersurfaces that are 

well-known in the embedded context, at the abstract level we have introduced 

a notion of surface gravity κn associated to n. When a null hypersurface data set 

{N , γ, ℓ, ℓ(2), Y} happens to be embedded with embedding ϕ and rigging ζ, the 

scalar function κn defined in (2.44) coincides with the surface gravity of the unique 

null normal ν along ϕ(N ) satisfying g(ν, ζ) = 1 (see (3.47)). 

Since the tensor γ is degenerate, another key point is how to codify abstractly the 

intrinsic geometry of a null hypersurface (i.e. the information about the full metric 

tensor of the would-be ambient space). Two important results in this regard are 

that one can always select the metric tensors {ℓ, ℓ(2)} at will as long as ℓ(n) ̸= 0 

everywhere on N (Lemma 3.2.9) and that two null metric hypersurface data sets 

{N , γ, ℓ, ℓ(2)}, {N , γ, ℓ, ℓ(2)} are related by a gauge transformation if and only if 

γ = γ (Corollary 3.2.11). This implies that in the null case one can codify all the 

intrinsic geometric information of the hypersurface in the tensor γ up to gauge 

freedom. 

We have also studied the geometry of any transverse submanifold S within N . The 

most important result in this context is Lemma 3.2.19, where we obtain the relation 

of the Levi-Civita covariant derivative ∇h of S with 
◦ 

. Finally, we analyze the case 

when a null hypersurface data admits a cross-section S. In this context we prove 

that the one-form s, the scalar ℓ(2) and the pull-back ℓ∥ can be selected freely while 

κn can always be set to zero (Proposition 3.2.23, Lemma 3.2.24, Lemma 3.2.25). 

The last part of Chapter 3 is Section 3.3, where we consider null hypersurface 

data {N , γ, ℓ, ℓ(2), Y} equipped with an additional gauge-invariant vector field η ∈ 

Radγ. We introduce a new gauge-invariant scalar function κ ∈ F(N ) (Lemma 

3.3.1) which in the embedded case happens to coincide with the surface gravity of 

η = ϕ⋆η (at points where η is non-zero). This makes κ a smooth extension of the 

surface gravity of η to the points of ϕ(N ) where η vanishes (see Proposition 3.3.2). 

Prior to this thesis, the formalism of hypersurface data had already succeeded in 

determining various components of the ambient Riemann tensor at the abstract 

level. Following in this direction, in this work we have been able to codify inform- 

ation about the ambient Ricci tensor by introducing the constraint tensor R, to 

which we devote Chapter 4. In Section 4.1, we provide the abstract definition of 

R purely in terms of (general) hypersurface data {N , γ, ℓ, ℓ(2), Y} (cf. (4.15)). Such 

definition is built so that the tensor Y appears explicitly. This turns out to be ad- 

vantageous in many situations, e.g. this fact allows us to obtain the generalized 

master equation in Chapter 6 (see below). The definition of R does not require 

any global topological assumption on N . Moreover, it is fully covariant on N des- 
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pite the fact that N is not equipped with a metric tensor. In the embedded case, 

the constraint tensor codifies a certain combination of components of the ambient 

Riemann and Ricci tensors (see Proposition 4.1.4) and, at null points, it coincides 

with the pull-back to N of the ambient Ricci tensor (cf. (4.17)). The rest of Chapter 

4 concentrates on the null case. In particular, in Section 4.2 we compute the contrac- 

tions Rabna, Rabnanb (Theorem 4.2.2). With the latter we obtain the equivalent to 

the Raychaudhuri equation (2.103) at the abstract level. We then study the pull-back 

of R to a transverse submanifold S ⊂ N , obtaining the explicit relation between 

RAB and the Ricci tensor of S (Theorem 4.2.3). 

Chapter 4 concludes with Section 4.3, where we find several G1-invariant quantities 

on any transverse submanifold S of N . From equation (4.30) and using the fact that 

the constraint tensor is gauge-invariant, we identify the tensors ω∥, P∥ and S∥, 

which exhibit a simple gauge behaviour (see Lemma 4.3.1 and Corollary 4.3.3) and 

in fact are invariant under the action of the subgroup G1. This in turn allows us 

to write the pull-back of R to S in terms of G1-invariant objects (Proposition 4.3.2). 

The tensor S∥ codifies information on the first order variation of the tensor field 

Y along n and its features are worth further consideration. It is intrinsic to S and 

it codifies information on the curvature. Moreover, it plays a core role in the study 

of abstract Killing horizons of order one because it is related to the pull-back to S 

of the tensor field Σ
◦  

−n ⊗ £nY, which happens to vanish in this sort of horizons 

in the gauge where the symmetry generator coincides with the null generator n 

(which of course requires that the horizon does not contain fixed points). 

Chapter 5 constitutes one of the main parts of the thesis. It is divided in 

four sections. In Section 5.1 we consider completely general hypersurface data 

{N , γ, ℓ, ℓ(2), Y} embedded in a semi-Riemannian manifold (M, g) with embed- 

ding ϕ and rigging ζ. We let (M, g) be equipped with an additional vector field 

y ∈ Γ(TM) (non-necessarily tangent to ϕ(N ) at any of its points). In this context, 

we compute the Lie bracket [y, ζ] (for any extension of the rigging off ϕ(N )) in 

terms of the deformation tensor Ky =
d e f  

£ g (Lemma 5.1.2). We then concentrate on 

the case when y is tangent to ϕ(N ) everywhere therein, and find the explicit ex- 

pression for the Lie derivative £ Y, y =
d e f  

ϕ⋆y in terms of the data, the components 

of Ky on ϕ(N ) and the pull-back ϕ⋆(£ζ Ky) (Proposition 5.1.3). 

In Section 5.2 we focus on the case when {N , γ, ℓ, ℓ(2), Y} defines null embedded 

hypersurface data. We also restrict y, y to be null and tangent to the hypersurface, 

and denote them as η, η respectively. In such circumstances, we prove that the 

components Kη (ζ, ν) (where, as usual, ν ∈ Γ(TM)|ϕ(N ) is the unique null normal 

verifying g(ζ, ν) = 1) are gauge-invariant (Lemma 5.2.1). 
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Section 5.3 is devoted to the geometric properties of the tensor field Ση = £ ∇. 

Its relation with the deformation tensor Kη of η is given by (5.30). We start with 

Lemma 5.3.1, where we obtain the pull-back ϕ⋆(W (Ση)) in terms of {ש ,ק, i, ℸ} (cf. 

(5.15)-(5.16)), the null data {N , γ, ℓ, ℓ(2), Y} and the function α defined by η = αn. 

The analysis of ϕ⋆(W (Ση)) reveals the new tensor הη 
, given by a certain combina- 

tion of {ש ,ק, i, ℸ} (cf. (5.39)). It turns out that הη 
 ηה ,

(n, ·) exhibit a simple gauge 

behaviour (Lemma 5.3.2). In particular, when U = 0 the tensor הη 
simply rescales 

under gauge transformations, while הη 
(n, ·) is gauge-invariant. Another import- 

ant result within Section 5.3 is Lemma 5.3.5, where we find explicit expressions for 

the vector field Ση(ϕ⋆Y, ϕ⋆Z), ∀Y, Z ∈ Γ(TN ). This becomes essential in the study 

of horizons at a purely abstract level, as we shall see next. 

Chapter 5 concludes with Section 5.4, where we present the notions of abstract 

Killing horizons of order zero and one (see Definitions 5.4.1 and 5.4.5). The main 

advantages of AKH0/1s are firstly that they allow us to study horizons without 

the necessity of them being embedded on any ambient space and secondly that 

they do not require any global topological assumption whatsoever. The notions 

of AKH0/1s generalize those of non-expanding, isolated and Killing horizons (of 

order zero and one). At the embedded level, we have also introduced the concepts 

of Killing horizon of order zero and ½. The former corresponds to an embedded 

null hypersurface admitting a null tangent vector field η such that all components 

of the deformation tensor vanish on the hypersurface. In the latter, in addition, the 

tangent-tangent components of £ζ Kη are zero. As anticipated above, the results of 

Section 5.3 are essential in this context because it occurs that an embedded AKH1 

verifies that Ση(ϕ⋆X, ϕ⋆W) = 0, ∀X, W ∈ Γ(TN ) and הη 
= 0 (Lemma 5.4.7). The 

tensors Ση and הη 
therefore play a crucial role in the understanding these sort of 

abstract horizons. 

Chapter 6 is another key part of the thesis. For any null hypersurface data 

{N , γ, ℓ, ℓ(2), Y} embedded in a semi-Riemannian manifold with embedding ϕ 

and rigging ζ, and assuming that the data admits a gauge-invariant vector field 

η ∈ Radγ, we derive the generalized master equation as well as its contractions 

with the data vector field n (see Theorem 6.1.1). The generalized master equation 

(6.1) is a fully covariant identity involving hypesurface data, derivatives of the 

proportionality function α between η and n, the curvature tensors R and R
◦ 

, the 

surface gravity κ of η and the ambient objects {ה ,קη 
}, where η is any extension 

of ϕ⋆η off ϕ(N ) (in particular, the deformation tensor Kη has not been restricted 

in any sense). This identity holds everywhere on the hypersurface (even at points 

where η vanishes), is valid in any gauge and it does not require any topological 

assumption besides the existence of an everywhere non-zero, smooth vector field 
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n. The contractions of (6.1) with n (namely (6.2)-(6.3)) are of interest as well. For 

a completely general null hypersurface admitting an additional vector field, these 

identities allow us to identify the necessary and sufficient conditions for the sur- 

face gravity κ to remain constant along the null generators of N (Corollary 6.1.3) 

and everywhere on N (Corollary 6.1.4). The behaviour of the surface gravity κ 

turns out to be ruled by the tensor Ση. 

In Section 6.2 we study the generalized master equation in the case when the 

deformation tensor Kη is proportional to the metric, i.e. Kη = 2χg for a suitable 

function χ. The fact that the function χα−1 must be everywhere regular on N 

imposes that χ has a zero of higher order than α at least at those points where 

α vanishes (Proposition 6.2.1), otherwise there exist singularities in the manifold 

where the data is embedded (Remark 6.2.3). In particular, this fact allows us to 

prove that a smooth homothetic Killing horizon cannot admit fixed points (Remark 

6.2.4). Particularizing (6.1)-(6.3) to the case Kη = 2χg, we obtain the identity (6.48) 

for the surface gravity κ, in which the components R(n, n) of the constraint tensor, 

the proportionality function α and the function χ are involved (Proposition 6.2.7). 

Specifically, when χ vanishes no-where on N , κ is given by (6.49) in terms of 

the quantities χ, η(χ) and R(η, η). We also conclude that the surface gravity of a 

homothetic vector field is everywhere constant if and only if R(η, η) is constant 

therein. 

In Section 6.3 we address the case of abstract Killing horizons of order zero and one. 

In such context, we have obtained the necessary and sufficient conditions under 

which κ is everywhere constant on N (Proposition 6.3.1). We have also proven that 

when N admits a cross-section, if dκ is non-zero at any point of N then N cannot 

be geodesically complete (Proposition 6.3.2). 

Section 6.4 is devoted to computing the pull-back of the generalized master equa- 

tion to any transverse submanifold S within N (see Lemma 6.4.1 and Theorem 

6.4.2). The main advantage of our approach is that S does not need to be a cross- 

section (in fact such section does not even need to exist). From this identity (namely 

(6.61)), we recover the near horizon equation for isolated horizons (cf. (2.129)) as 

well as the master equation for multiple Killing horizons (cf. (2.153)) as particular 

cases (see Remarks 6.4.3 and 6.4.4). 

Chapter 6 concludes with a section on vacuum degenerate Killing horizons of 

order one. By identifying points along the same null generator, we introduce a 

quotient structure and obtain a near horizon equation in the quotient space as 

long as this quotient has a manifold structure (Proposition 6.5.1). The fact that we 

are able to find the near horizon equation in a more general context opens up 



278 conclusions 
 

- - 

- 

(M±, g±) be two spacetimes with boundaries N-±. Our approach in this chapter 

 
the possibility to exploit all the results concerning the possible solutions of these 

equation available the literature (see e.g. [100]). These results should allow one to 

address the problem of classifying near horizon geometries without assuming that 

the manifold has a product structure. We intend to look into this problem in the 

future. 

 
 

10.2 matching of spacetimes 

 
We start addressing the problem of matching of spacetimes in Chapter 7. We let 

 

is based on considering N-± as embedded in (M±, g±) rather than at a purely 

abstract level (this is actually done in Chapter 9, see below). The main results in 

this chapter can be found in Section 7.2 and 7.3. In the former, we discuss briefly 

the matching problem for boundaries of arbitrary causal character. In particular, 

we show that the matching requires the existence of a metric hypersurface data set 

which is embeddable in both spacetimes, and that the gravitational/matter-energy 

content of the shell is ruled by the jump in the extrinsic part of the data, namely the 

tensors Y±. We also prove that all the information about the matching is encoded 

in a diffeomorphism between the boundaries, the so-called matching map Φ. 

Section 7.3 constitutes one core part of the thesis. It is entirely devoted to study 

the matching problem across null hypersurfaces. Our analysis is completely gen- 

eral except by the fact that the boundaries are assumed to admit a foliation by a 

family of spacelike cross-sections. The corresponding conclusions and results are 

as follows. 

We begin by rewriting the Standard Junction Conditions in terms of (the compon- 

ents of) two basis of vector fields that are to be identified in the matching process. 

The outcome is that the necessary and sufficient conditions for the matching to be 

possible are (7.31)-(7.34) together with the requirement that one matching rigging 

points inwards whereas the other points outwards with respect to their corres- 

ponding spacetimes. 

The solvability of (7.31) constitutes the key problem for the existence of the match- 

ing. This condition forces any section on the minus side and its image through Φ to 

be isometric. Moreover, given a point p− ∈ N −, its image point p+ = Φ(p−) ∈ N + 

and the null generators σ± ⊂ N ± containing p±, such isometry must be universal 

in the sense of being the same for all points along σ±. Condition (7.32), on the 

other hand, forces null generators on one side to be mapped to null generators 

on the other side. This, together with the fact that there must exist a one-to-one 
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correspondence between points of the boundaries, means that there must exist a 

diffeomorphism Ψ between the sets of null generators of both sides. Finally, con- 

ditions (7.33)-(7.34) determine, once we have selected one of the riggings (say ζ−), 

the tangent part of the matching rigging ζ+. 

Another important result is that the whole information about the matching is en- 

coded in a scalar function H and in the diffeomorphism Ψ. The function H, called 

step function, must necessarily be monotonic along the generators of the plus side. 

The name step function is justified by the fact that H accounts for the jump along 

the tangent null direction of the matching hypersurface when crossing from one 

side to the other. It is precisely the step function that connects the matching form- 

alism with the cut-and-paste constructions, where there exists a jump in the null 

coordinate when crossing the shell (recall (2.170)). 

Of course, in general it will be impossible to find a pair {H, Ψ} verifying the 

junction conditions, and hence the matching will be infeasible. However, we have 

seen that sometimes more than one matching can be performed. This occurs, for 

instance, when the second fundamental forms K± with respect to any two null 

generators k± of N ± vanish simultaneously. In these circumstances, the matching 

is not only feasible but it even allows for an infinite number of possibilities, since 

the step function cannot be fixed or restricted in any way (cf. (7.54)). 

Chapter 7 concludes with Sections 7.3.2 and 7.3.3. In the former, we obtain expli- 

cit expressions for the matching rigging ζ+ (Corollary 7.3.4), the tensor fields Y± 

and the energy-momentum tensor τ in terms of known tensor fields codifying the 

geometry of the boundaries and the pair {H, Ψ} (Proposition 7.3.7). We emphasize 

that throughout this process the only assumption we have made is that the bound- 

aries have product topologies. Apart from this, all the results are valid for the 

matching of any two given spacetimes with null boundaries. We also provide the 

first geometric notions of energy density, pressure and energy flux of any null thin 

shell (Remark 7.3.9). These definitions are valid for any topology of the boundaries. 

The definitions of energy density, pressure and energy flux are normally presen- 

ted in the literature (see e.g. [128]) in a specific gauge and in a concrete local basis. 

Instead, our definitions are fully covariant and valid in any gauge. In Section 7.3.3 

we study the particular case of the matching of two regions of the spacetime of 

Minkowski across a null hyperplane. We find that Penrose’s jump (2.170) corres- 

ponds to either shells of null dust or to purely gravitational waves propagating in 

the spacetime of Minkowski. We also obtain the step function corresponding to the 

most general shell that can be generated by a matching of this type. This, in turn, 

allows us to analyze the effect of the pressure, and find that a positive (resp. negat- 

ive) pressure is responsible for an effect of self-compression (resp. self-stretching) 
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of points on one of the boundaries. The last part of the chapter is devoted to 

building a coordinate system in which the metric of the spacetime resulting from 

the most general matching of two regions of Minkowski takes a C0 form (Lemma 

7.3.10). In fact, as a particular case we recover the Lipschitz-continuous metric 

(2.169) corresponding to the four-dimensional Penrose’s cut-and-paste construc- 

tion (see e.g. [5]). This result is part of an ongoing project with Argam Ohanyan 

and Roland Steinbauer at the University of Vienna. The purpose of this research 

collaboration is to find the distributional form of the metric of the spacetime res- 

ulting from the most general matching of two regions of Minkowski across a null 

hyperplane (see Section 7.3.3). 

In Chapter 8 we particularize the results above to the case when the boundaries 

N ± are embedded abstract Killing horizons of order zero with (spacetime) sym- 

metry generators η±. As we did in Chapter 7, here we also assume that N ± have 

product topology. We suppose further that the surface gravities κ± of η± are con- 

stant everywhere on N-±. 

-

 
In these circumstances the boundaries are totally geodesic, which in principle 

would mean that the step function H cannot be determined. However, we are 

interested in the case when the spacetime resulting from the matching preserves 

the symmetry associated to η±, which happens whenever the matching identifies 

the vectors η±. This introduces new conditions on the matching, namely that the 

fixed points sets S± of η± are forced to be mapped to each other and that both η± 

must be either future or past. Moreover, the identification of η± restricts the step 

function and by extension the set of feasible matchings. 

In Sections 8.1 to 8.3 we obtain all possible matchings of this type, providing the 

explicit expression of the step function for each of them and analyzing the nature 

of the remaining matching freedom. The corresponding results are collected in 

Theorem 8.3.1. A particularly interesting result is that a geodesically complete de- 

generate boundary can be matched with a geodesically incomplete non-degenerate 

boundary provided that that neither of them contain fixed points. This sort of 

matching is characterized by having a non-zero pressure that is responsible for the 

necessary self-compression of points in the non-degenerate boundary. 

The condition that S± must be mapped to each other may seem superfluous but in 

fact it is not. This is so because, according to Lemma 5.4.11, the causal character of 

S± depends on the properties of η±. Since throughout the matching process null 

generators from one side are sent to null generators on the other side, even if all 

matching conditions are fulfilled it may occur that there is no possible matching 

in which η± are identified. 
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In Section 8.4 we analyze the particular case when the boundaries are non- 

degenerate (full) Killing horizons containing a bifurcation surface. We again con- 

sider matchings in which the Killing vector fields η± are identified. As before, the 

surface gravities κ± of η± are assumed to be constant. These types of matchings 

are of physical interest because they cover all possible cases of spacetimes obtained 

from the matching of two stationary black holes glued across their event horizons 

provided they have non-zero constant temperature. 

In these circumstances, the matching freedom is encoded in a positive function β 

defined at the bifurcation surface and extended as a constant along the generators. 

In Theorem 8.4.1 we find explicit expressions for the tensor fields Y±, τ of any null 

thin shell of this type. We show that the gravitational/matter-energy content of 

the shell depends only on the function β, on the intrinsic and extrinsic geometric 

properties of the bifurcation surfaces S±, on the Ricci tensor of S± and on the 

pull-back of the constraint tensor to S±. 

In this sort of shells, the pressure is identically zero. Moreover, the energy dens- 

ity either vanishes everywhere or unavoidably changes its sign at the bifurcation 

surface. This behaviour is striking and suggests that the change in the causality 

of the Killing fields that takes place at the bifurcation surfaces affects the energy 

density. It is even more puzzling that the energy current j is constant along the 

generators, which in particular makes it insensitive to the change of sign on the 

energy density. We emphasize, however, that the behaviour of the pressure, energy 

density and energy flux is fully compatible with the shell field equations, as we 

proved in Section 8.4.1. 

The last part of Chapter 8 is Section 8.5, where we particularize the results from 

Section 8.4 to the case of spherical, plane or hyperbolic symmetric spacetimes. 

We derive explicit expressions for the gravitational/matter-energy content of the 

most general shell that can be constructed by matching two spacetimes of this 

type. We then include two examples, namely the matchings of two regions of the 

Schwarzschild and Schwarzschild-de Sitter spacetimes. 

The thesis concludes with Chapter 9, devoted to the problem of matching as well. 

There are two main differences with respect to our approach in Chapters 7 and 8. 

First, the matching problem is addressed from a completely abstract viewpoint, i.e. 

we want to provide a fully abstract formulation of the matching. The final aim is 

to be able to describe matchings in a detached way from the actual two spacetimes 

involved. The second difference is that in Chapter 9 we make no assumptions 

whatsoever on the boundaries (in particular, there are no topological restrictions). 

In this sense, the results within Chapter 9 are completely general. 
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that there exists a diffeomorphism φ : N −--- N and a gauge group element G(z,V) 

any null thin shell. Since all these results depend exclusively on D, D� and φ (and 

+ 

 

The chapter consists of three parts. In Section 9.1, we start by setting up an abstract 

formulation of the matching conditions for boundaries of arbitrary causal char- 

acter (Theorem 9.1.1). Given two hypersurface data sets D =
d e f  

{N , γ, ℓ, ℓ(2), Y−}, 
2) 

D� = {N , γ� ,  �ℓ ,  �ℓ (  , Y� }, we find that the matching of D, D� is possible provided 

 

such that the metric data {N , φ⋆γ� ⋆�ℓ, φ⋆�ℓ 
(2) } transforms into {N , γ, ℓ, ℓ (2) } un- 

der the action of G(z,V) (see (9.2)). The condition on the orientations of the riggings 

translates, at the abstract level, into a restriction upon the sign of the gauge para- 

meter z. 

Theorem 9.1.1 is of interest because it applies for any possible thin shell. It is fully 

abstract in nature given that the matching conditions are written solely as a re- 

striction over two data sets and a requirement on the sign of a gauge parameter. 

The main advantage of Theorem 9.1.1 is that it allows us to split the matching 

problem into two different levels. In the first one, we can consider a thin shell ab- 

stractly and prescribe the gravitational and matter-energy content at will. Then, on 

a second stage, we can address the problem of building a spacetime (M, g) con- 

taining such shell. This can be of use e.g. to find examples of spacetimes containing 

a certain type of shell. 

In Section 9.1.1, we particularize the construction of Theorem 9.1.1 to the null 

case. As we already know, the intrinsic geometry {N , γ, ℓ, ℓ(2)} of an abstract null 

hypersurface is entirely codified by the tensor γ (recall that {ℓ, ℓ(2)} can be selected 

at will). In the null case the matching conditions therefore reduce to γ = φ⋆γ (cf. 

(9.11)) (together with the restriction on the sign of z). Assuming that they are 

satisfied for a diffeomorphism φ, we find the gauge parameters {z, V} explicitly in 

terms of φ, D and D (cf. (9.12)). Moreover, by embedding D, D and making a choice 

of rigging on the minus side, we obtain the matching rigging ζ+ also in terms of 

φ, D and D (Lemma 9.1.6). The restriction (7.54) on the second fundamental forms 

can be generalized in this context (cf. (9.20)). In Theorem 9.1.9 and Lemma 9.1.13 

we derive explicit expressions for the gravitational and matter-energy content of 

 

the data sets D, D� are known a priori), it follows that all the information of the 

matching is encoded in φ. 

In Section 9.1 we also study the pressure of any null shell. In Lemma 9.1.14 we 

show that the pressure is given by the difference of the surface gravities of the 

null generators n and φ⋆n. This, in particular, allows us to confirm that also in this 

more general context the pressure accounts for an effect of self-compression/self- 

stretching of points. Section 9.1 concludes with a discussion on multiple matchings. 

Assuming that D, D� can be matched in more than one way and that the inform- 
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ation about one of the matchings is fully known (concretely the diffeomorphism 

and the contents of the shell), in (9.52)-(9.58) we find the matter-energy content of 

any other possible matching in terms of its corresponding diffeomorphism. 

The last two parts of Chapter 9 are Sections 9.2 and 9.3. In the former, we examine 

the case when the null boundaries can be foliated by a family of diffeomorphic 

spacelike cross-sections. We recover the results from Chapter 7, in particular the 

existence of the step function H and the expressions for the jump [Y±] of the 

shell (Theorem 9.2.2). In Section 9.3 we apply the abstract formalism to study the 

matching of two regions of the spacetime of (anti-)de Sitter across a totally geodesic 

null hypersurface. In particular, we compute the matter-energy content of the most 

general null thin shell that can be generated in a matching of this type. We prove 

that the pressure takes the same form as in the case of Minkowski (i.e. that it is 

given by second derivatives of the step function). Moreover, we find that Penrose’s 

jump (2.170) describes either shells of null dust or purely gravitational waves, with 

which we connect our results with the cut-and-paste constructions of [88], [91], [92] 

[5], [6]. In the limit of vanishing cosmological constant, we recover the results of 

Section 7.3.3. 
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We start with the proof of two identities for the curvature tensor of any completely 

general torsion-free connection. 

 

Lemma A.0.1. Let V be a smooth manifold endowed with a torsion-free connection D, 

γ� a b  
a symmetric two-covariant tensor field and Rd abc the curvature tensor of D. Define 

 
 

Rf + γ Rf = ∆ , (A.1) 
γ�a f bcd �b f acd abcd 

γ� a  f R
f  

bcd − γ� c  f R
f  

dab = 
1 (

∆abcd + ∆acbd + ∆adcb + ∆bcda + ∆bdac + ∆cdba

)
. (A.2) 

 

Proof. The Ricci identity for γab, i.e. γa f R
f  

bcd + γb f R
f  

acd  = Dd Dcγab − Dc Ddγab, 

immediately yields (A.1). To prove (A.2), we use indices {a1, a2, a3, a4} and write 

the Bianchi identity four times: 

γa4 f 

(
Rf 

a1 a2 a3 + R f  
a2 a3 a1 + Rf  

a3 a1 a2 

) 
= 0, 

γ� a 2  f 

(
Rf 

a3 a4 a1 + Rf 
a4 a1 a3 + Rf 

a1 a3 a4 

) 
= 0, 

γa1 f 

(
Rf 

a2 a3 a4 + R f  
a3 a4 a2 + Rf  

a4 a2 a3 

) 
= 0, 

γ� a 3  f 

(
Rf 

a4 a1 a2 + Rf 
a1 a2 a4 + Rf 

a2 a4 a1 

) 
= 0. 

 
Adding the first two and subtracting the second two gives 

 

0 = 2γa1 f R
f  

a2 a3 a4 − 2γa3 f R
f  

a4 a1 a2 − ∆a1 a2 a3 a4 + ∆a3 a4 a1 a2 

− ∆a1 a3 a2 a4 
+ ∆a1 a4 a2 a3 + ∆a4 a2 a3 a1 

− ∆a3 a2 a4 a1 

 

where (A.1) has been used to swap indices several times. Since by construction 

∆abcd is symmetric in the first two indices and antisymmetric in the last two, (A.2) 

follows immediately after renaming a1 = a, a2 = b, a3 = c, a4 = d. 
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∆abcd := −(DcDdγab − DdDcγab). Then, 
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tensor field γ� and a torsion-free connection ∇� . Let S be an embedded hypersurface in N 

B 
A G E N E R A L I Z E D G A U S S I D E N T I T Y 

 

 

 
In this section, we obtain a generalized form of the well-known Gauss identity 

(see e.g. [106]). On any semi-Riemannian manifold, the Gauss identity relates the 

curvature tensor of the Levi-Civita connection along tangential directions of a non- 

degenerate hypersurface with the curvature tensor of the induced metric and the 

second fundamental form. It has been generalized in a number of directions, e.g. 

when dealing with induced connections associated to a transversal (rigging) vec- 

tor [64]. Here we find an identity where the connection of the space and of the 

hypersurface are completely general, except for the condition that they are both 

torsion-free. 

Our primary interest will be in applying this identity when the space defines null 

hypersurface data and the codimension one submanifold is non-degenerate. How- 

ever, the identity is far more general and may be of independent value. We remark 

that the tensor γ in the statement of the lemma is completely arbitrary, so neither 

γ nor its pullback �h to the submanifold are assumed to be non-degenerate. 

 

Theorem B.0.1. Consider a smooth manifold N endowed with a symmetric 2-covariant 

 

and assume that S is equipped with another torsion-free connection D. Define h = ψ ⋆ γ 

(where ψ : S '−--- N is the corresponding embedding) and the tensor P by means of 

∇� XY = D� X Y + P(X, Y) ∀X, Y ∈ Γ(TS), 

and assume that there exists a transversal vector field n along S satisfying γ(n, X) = 0 for 

all X tangent to S. Define the 2-covariant tensor Ω and the 1-contravariant, 2-covariant 

tensor A on S by decomposing P(X, Y) in tangential and transverse parts as follows: 

P(X, Y) = A(X, Y) + Ω(X, Y)n. (B.1) 
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� 



 

� � � � � � 

� � 

� � � � 

� � � 

� � � � � � � � 

def 

γ� 

+ γ(n, n)Ω(X, W)Ω(Y, Z), (B.5) 

� � � � 

� � � � � � � 

� � � � � � 

� � 

� � � � 

� � � � � � 

− γ�(W , P (D�XY, Z)) − γ�(W , P(Y, D� X  Z)) 

= D h(W, A(Y, Z)) − (∇ γ)(W, P(Y, Z)) − h(D 
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Then, for all X, Y, Z, W ∈ Γ(TS) it holds 

γ(W, R ∇�  (X, Y)Z) = h(W, R D�  (X, Y)Z) + (DX Ah)(W, Y, Z) − (DY Ah)(W, X, Z) 

+ h(A(Y, W), A(X, Z)) − h(A(X, W), A(Y, Z)) 

− (∇Xγ)(W, P(Y, Z)) + (∇Yγ)(W, P(X, Z)) 
+ γ(n, n) (Ω(Y, W)Ω(X, Z) − Ω(X, W)Ω(Y, Z)) , (B.2) 

def 

�

 

where A�h(W , X, Z) = �h(W ,  A(X, Z)). 

Proof. Since the connections are torsion-free, the tensors P(X, Y), A(X, Y) and 

Ω(X, Y) are all symmetric in X, Y. First, we find 

∇X∇YZ = ∇X(DYZ + P(Y, Z)) = DXDYZ + P(X, DYZ) + ∇X(P(Y, Z)), (B.3) 

∇� 
[X,Y] Z = D� [X ,Y ] Z + P (D�XY, Z) − P (D�XY, Z). (B.4) 

The quantity (DXP)(Y, Z) = ∇X(P(Y, Z)) − P(DXY, Z) − P(Y, DXZ) is tensorial 

in X, Y, Z, and takes values in the space of vector fields (not necessarily tangent) 

along ψ(S). Inserting (B.3)-(B.4) into the definition of the curvature tensor (2.3) 

yields 

R ∇�  (X, Y)Z = R D�  (X, Y)Z + (DXP)(Y, Z) − (DYP)(X, Z). 

We  now  insert  the  decomposition  (B.1).  Using  that (n, W) = 0  and 

�h(X , Y) = γ�(X , Y) gives 

γ(∇XW, P(Y, Z)) = γ(∇XW, A(Y, Z) + Ω(Y, Z)n) 

= �h(D� X W ,  A(Y, Z)) + �h(A(X, W), A(Y, Z)) 

� 

 
from where it follows 

 

γ(W, (DXP)(Y, Z)) = γ(W, ∇X(P(Y, Z))) − γ(W, P(DXY, Z)) − γ(W, P(Y, DXZ)) 

= ∇X (γ(W, P(Y, Z))) − (∇Xγ)(W, P(Y, Z)) − γ(∇XW, P(Y, Z)) 
 

(B.5) �X 
(
� 

) 
� 

X �
 

� �X 

− h(A(X, W), A(Y, Z)) − γ(n, n)Ω(X, W)Ω(Y, Z) 

− h(W, A(DXY, Z)) − h(W, A(Y, DXZ)) 

= (DXh)(W, A(Y, Z)) − (∇Xγ)(W, P(Y, Z)) + h(W, (DX A)(Y, Z))) 

− �h(A(X , W), A(Y, Z)) − γ�(n ,  n)Ω(X, W)Ω(Y, Z). 

def 

W, A(Y, Z)) 



 

 

� 

� � � � � � 

� � � � � 

� � � � � 

� � � � � � 

� 

A 

A B C D 

d a f 

c a 

�h 
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Therefore, 

 

γ(W, R ∇�  (X, Y)Z) = h(W, R D�  (X, Y)Z) + (DXh)(W, A(Y, Z)) − (∇Xγ)(W, P(Y, Z)) 

+ h(W, (DX A)(Y, Z))) − h(A(X, W), A(Y, Z)) − (DYh)(W, A(X, Z)) 

+ (∇Yγ)(W, P(X, Z)) − h(W, (DY A)(X, Z))) + h(A(Y, W), A(X, Z)) 

+ γ(n, n) (Ω(Y, W)Ω(X, Z) − Ω(X, W)Ω(Y, Z)) . (B.6) 

 

By virtue of the definition of A , it holds 

 

(DY Ah)(W, X, Z) = (DYh)(W, A(X, Z)) + h(W, DY A(X, Z)). 

 
This allows us to rewrite (B.6) as (B.2). 

 
In abstract index notation the generalized Gauss identity (B.2) takes the form 

 

va γ� a  f (R∇�  
) f bcdv

b vc vd
 = �hFA(RD� 

)FBCD + D� C  A�h ABD − D� D A�h ABC 

+ �hFL A AD A BC − �hFL A AC A BD + vD (∇� 
d γ� a  f )vAP BC 

− vC (∇� c γ�a  f )vAP BD + γ(n, n) (ΩAD ΩBC − ΩAC ΩBD ) , 

(B.7) 
 

where the vectors va are the push forward with ψ of any basis vectors {vˆA} in S. 

L F L F 

f 



 

 



 

 

z z 

1 

(z,0) ẑ A B − 
ẑ 2 

∇A B ẑ B) ẑ 

z n z z2 z z 

− 

C 
G A U G E B E H AV I O U R O F S∥ 

 

 

 
In this appendix we provide an alternative proof of Corollary 4.3.3. This serves as 

a highly non-trivial test of the validity of the expressions obtained in Section 4.3. 

Since for any gauge group element G(z,V) it holds (cf. Proposition 2.2.10) 

G(z,V) = G(1,V) ◦ G(z,0), (C.1) 
 

it suffices to prove that S∥ behaves as claimed in Corollary 4.3.3 for the gauge 

parameters (z, 0) and that it is gauge invariant under the subgroup G1. We establish 

these two facts consecutively 

 

Lemma C.0.1. Assume Setup 3.2.15 and let z ∈ F ⋆(N ), zˆ =
d e f  

z|S and zˆn =
d e f  

n(z)|S. Then 
 

G (S )AB = SAB + 
1 

∇h ∇h ẑ 
2 h z∇h zˆ + 

2 
ω ∇h z  ̂+ 

 z n̂ 
PAB. (C.2) 

 

Proof. As usual, we denote gauge-transformed quantities with a prime. We start 

by computing the Lie derivative £n′ Y′. Using (2.34) and (2.44) we obtain 
 

£n′ Y′ = £ 1 Y′ = 
1 

£nY′ − 
2dz 

⊗s Y′(n, ·) = 
1 

£nY′ − 
2dz 

⊗s r′. 

 

By Lemma 3.2.7, we know that r′ reads 

r′ = r + 
 1 

dz + 
n(z) 

ℓ. 

2z 2z 

Since under the action of G(z,0) the tensor Y transforms as Y′ = zY + ℓ ⊗s dz (cf. 

(2.40)) and £nℓ = 2s (cf. (3.43)), we conclude that 

£n′ Y′ = £nY + 
n(z) 

Y 
1 

+ 
z 

ℓ ⊗s d (n(z)) + 
1 

dz ⊗s 

(

2s − 2r − 
dz n(z) 

ℓ .
 

z z 
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A similar, but much simpler calculation gives 

 

z2 z 

∥ 

(A 

2ẑ (A ẑ 
∇(A ) − 

2ẑ
∇A∇B 

2ẑ2 A B 

2 ∥ 
= 

2 ∥ ∥ C 

(z,0) ẑ A B − 
ẑ 2 

∇A B 

ẑ (A ) ) B) 

ẑ 
+ 

2 
(ℓ

∥
 (A 

1 

£n′ U′ = 
 1

 

(

£nU − 
n(z) 

U

1 

, 

 

while the quantities ℓ(2), ℓ(2), ℓ∥ and U∥ simply scale as (cf. (4.33)-(4.34)) 
 

ℓ(2)′ = z2ℓ(2), ℓ
(2)′ = zˆ2ℓ

(2)
, ℓ′ = zˆℓ , U = 

1 
U . 

∥ ∥ ∥ ∥ ∥ zˆ ∥ 

It only remains to determine the gauge behaviour of ∇h sB). Firstly we pull-back 
(3.62) to S and get s′ = s∥ + zˆn ℓ∥ −  1 dzˆ. Thus, the symmetrized covariant derivat- 

ive satisfies 

(
∇h

 

∥ 

 

sB 
)′ 

= ∇h
 

2zˆ 
 

 

sB + 
zˆn 

∇h
 

2zˆ 
 

 
ℓB 

(A ) (A ) 

+ 
 1 

(

∇h 

2zˆ 

ẑn 

(A ) 

 zˆn h 
zˆ

1 

ℓB 
1 h h zˆ + 

 1  
∇h zˆ∇h zˆ 

 

Note also that (recall that ℓ♯ 
∥ 

=
def 

h♯(ℓ 
∥ , ·)) 

(

− 
1 

n(ℓ(2)) + 2s (ℓ♯ )

1′ 
S 

z  ̂

(

− 
1 

n(ℓ(2)) + 2s (ℓ♯ )

1 

+ zˆn 

(
ℓ

(2) 
− ℓ(2)|S

) 
− ℓC ∇h zˆ. 

 
and (U∥(ℓ♯ , ℓ♯ ))′ = zˆU∥(ℓ♯ , ℓ♯ ). Inserting all these expressions into the definition 
(4.36) of 

∥ ∥ ∥ ∥

 

S∥ yields, after a direct computation, 
 

G (S )AB = SAB + 
1 

∇h ∇h zˆ h zˆ∇h zˆ 

+ 
1 

∇h zˆ 
(

2sB − 2rB − 2UB CℓC − ∇h
 zˆ

)
 

+ 
 zˆn 

(

YAB
 1 (2) 

− ℓ(2)|S)UAB − ∇h
 ℓB 

1 

which upon substituting the definitions of ω∥ and P∥ in Lemma 4.3.1 yields the 

transformation law (C.2). 

 

Lemma C.0.2. Assume Setup 3.2.15. The tensor S∥ defined in (4.36) is gauge invariant 

under the action of the subgroup G1. 

 

Proof. Consider the gauge parameters (0, V) and decompose V as in (3.57). We 

shall need the commutator [n, V]. Since γabVb = wa and ℓaVa = f we can write 

γab[n, V]b = £nwa − (£nγab)V
b = £nwa − 2Uab P

bcwc 

− 

∥ ∥ 

∥ 

) 

) 



 

 

= 

(A 

2 

∥ 

∇c ∇c = ∇c ∇c 

C A 

(£nY′)AB =(£nY)AB + 
( 

f |S − ℓCwC 

) 
(£nU)AB + wC 

(
∇h UAB − ∇h UBC + ∇BUAC 

)
 

(
ℓ(2) − ℓ

(2)
)′ 

= ℓ(2) − ℓ
(2) 

+ 2 
( 

f |S − ℓCwC 

) 
. (C.4) 

∥ 

gauge behaviour of s∥ 293 

 

ℓa[n, V]a = £n(ℓaV
a) − (£nℓa)V

a (3.43) 
n( f ) − 2sa P

abwb. 

 

This implies (by Lemma 2.2.8) 

[n, V]a = 
(
n( f ) − 2Pbcsbwc

) 
na + Pab 

(
£nwb − 2UbcPcdwd

) 
. 

 

We define the covector p =
d e f  

£nw and note that p(n) = 0. To compute the gauge 

transformation law of ψ⋆(£nY), we first need to determine £n£Vγ. For that purpose, 

we use 

 

£n£Vγ = £V£nγ + £[n,V]γ = 2£V U + £[n,V]γ 

 

and compute its pull-back to S by applying Lemma 3.2.22 twice, namely to t = 

V, T = U and t = [n, V], T = γ, and cancelling terms. The result is 

ψ⋆ (£n£Vγ) =2 
( 

f |S − ℓCwC 

) 
(£nU)AB + 2wC 

(
∇h UAB − ∇h UBC + ∇BUAC 

)
 

+ 2 
(
n( f )|S − 2sCwC − ℓCpC + 2ℓCUCDwD

) 
UAB + 2∇h  pB). 

Given that Y′ = Y + 1 £Vγ we conclude 

 

C 

+ 
(
n( f )|S − 2sCwC − ℓCpC + 2ℓCUCDwD 

) 
UAB + ∇h

 

A 

pB). (C.3) 
(A 

 

The transformation law of ℓ(2), ℓ(2), U∥ and ℓ∥ has already been obtained in (4.33)- 

(4.34). Setting z = 1, zˆ = 
∥ 

1 therein gives 

 

∥ ∥ 

U′ = U∥, ℓ′ 

 

= ℓ∥ + w∥. (C.5) 

 

On the other hand, pulling-back (3.62) to S yields 
 

s′ = s 
∥ 

1 
+ 

2 
p. (C.6) 

It only remains to determine how n(ℓ(2)) transforms. Given the fact that ℓ(2)′ in- 

volves Pab (see (3.59)) we need to know £nPab. Thus, we compute 

 

£nPab = nc 
◦

 

 

Pab − 2Pc(a ◦
 nb) (2.21) 

−2Pc(a 

(

nf F
 
 

f cn
b) + 

◦
 nb)

1 

− ncnanb ◦
 

 

ℓ(2) 

(3.44) 

= − 
c(a 

(
 
 

2scnb) + Pb) f Uc f 

)

 
 

− na nbn(ℓ (2)), 2P 

AB 

∥ 
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which inserted in the £n derivative of (3.59) yields 

 

 

 

 
and hence 

n(ℓ(2))′ = n(ℓ(2)) + 2n( f ) − 2Pca Pb f Uc f wawb + 2Pabwapb 

 

 

 

n(ℓ(2))′|S = n(ℓ(2))|S + 2n( f )|S − 2wAwBUAB + 2wApB. (C.7) 

 

Applying G(0,V) to the right-hand side of (4.36) and inserting (C.3)-(C.7), the gauge 

invariance of S∥ follows after a somewhat long but straightforward calculation. 
 



 

 

- - 

D 
C O O R D I N AT E S N E A R A N U L L 

H Y P E R S U R FA C E 
 

 

 

In the main body of this thesis we have made use of so-called Gaussian null co- 

ordinates and Rácz-Wald coordinates. The former ones can be built in a neighbour- 

hood of any null hypersurface, whereas the latter exist near a bifurcation surface. 

The standard procedures that raise these two coordinate sets can be found e.g. in 

[100] and [101] respectively. However, for this thesis to be self-contained, we next 

provide their construction. This derivation is original and relies on a more geomet- 

ric approach compared with those in [100], [101]. This is advantageous for at least 

two reasons. Firstly, it allows us to construct both coordinate systems as particular 

cases of a single, more general setup (the general framework is interesting in itself, 

and it is likely that other useful particular cases can be extracted). Secondly, and 

perhaps more important, it allows us to prove that Rácz-Wald-type coordinates 

exist not only near bifurcation surfaces of Killing horizons but also near any null 

hypersurface. 

This appendix has two parts. In the first one we find a very flexible coordinate 

system near a general null hypersurface, while in the second one we particularize 

the results for non-degenerate Killing horizons with constant surface gravity. 

 
 

d.1 coordinates near a null hypersurface 

 
The idea of the following construction is to introduce a function ρ from which 

we build a pair of Lie-commuting vector fields {L, k}. Then we set up coordinates 

adapted to {L, k} so that different choices of ρ give rise to different coordinate 

systems. The following lemma constitutes the keystone for the construction. 

 

Lemma D.1.1. Consider a spacetime (M, g) of dimension at least two, an embedded 

smooth connected null hypersurface N ⊂ M and a null generator k of N . Select a vec- 

tor field ξ along N- with the properties of being null, everywhere transversal to N- and 

 

 
295 



296 coordinates near a null hypersurface 
 

- - 

2 

2 

- 

1 

- 

- 

- 

    

1 1 

 

such that g(ξ, k)|
N 

= −1. Extend ξ uniquely to a neighbourhood O of N as an affinely 

parametrized geodesic vector field, i.e. enforcing ∇ξξ = 0. Let G ∈ F∗  (O) be a non-zero 

function and k be any extension of k |
N- to O. If {G, k} satisfy 

[ξ, k] = 
1 ( 

£ 

k (G) = 
1 ( 

£ 

g
 

(k, k) − ρ
)
ξ, (D.1) 

g
 

(k, k) − ρ
)
G, (D.2) 

 

for some function ρ ∈ F (O) then {L =
d e f  

Gξ, k} verify [k, L] = 0 and ξ (g (k, k)) = ρ. 

Conversely, given a function ρ ∈ F(O) that is allowed to depend on k but not on its 

derivatives, then (D.1) yields a unique solution k given initial data k|
N 

, while (D.2) gives a 

unique solution G for each value G|Ht on a hypersurface Ht ⊂ O to which k is everywhere 

transverse. If the initial data for G is nowhere zero then the solution G is also nowhere 

zero. 

Proof. First, we note that ξ is null everywhere on O because ∇ξ (g(ξ, ξ)) = 

2g(∇ξξ, ξ) = 0. To prove that [L, k] = 0, it suffices to substitute (D.2) into (D.1), 

which yields 
 

[ξ, k] = 
k (G) 

G 
ξ =⇒ 0 = G [ξ, k] − k (G) ξ = [Gξ, k] = [L, k] . 

This entails, in turn, that g(ξ, k) = −1 everywhere on O. Indeed, combining 

[k, L] = 0 with ξ being geodesic and null and L = Gξ being also null gives 

 

∇ξ (g (ξ, k)) = g
 

∇ξξ, k
 
+ g

 
ξ, ∇ξk

 
= 

G2 g (L, ∇Lk) 

= 
G2 g (L, ∇kL) = 

2G2 ∇k (g (L, L)) = 0, 

which means that g (ξ, k) = g (ξ, k) |N  = −1. Using (D.1) together with g (ξ, k) = 
−1 one also gets 

 

ξ (g (k, k)) = £ξ (g (k, k)) = £ξ g  (k, k) + 2g ([ξ, k] , k) 

=
 

£ξ g
 
(k, k) −

 
£ξ g

 
(k, k) + ρ = ρ, 

as claimed. Since ξ is transverse to N , (D.1) constitutes a system of ordinary dif- 

ferential equations along the integral curves of ξ (here we use the fact that ρ may 

depend on k, but not on its derivatives), hence admitting a unique solution for 

given initial data k|
N 

. Once the unique extension k is known, (D.2) is simply an 

ordinary differential equation along the integral curves of k. This yields a unique 

solution provided the initial data G|Ht is given on a hypersurface Ht transverse to 

ξ 

ξ 
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2 

def 

N-). 

- 

- 

- 

A 

- - 

- - 

  

defining the functions u, vˆ, x̂ A ∈ F(O) as the unique solutions of 

 

k everywhere. The claim about the solution being nowhere zero is immediate from 

the structure of the ODE (D.2). 

 
Remark D.1.2. Observe that in Lemma D.1.1 the vector field ξ is null everywhere on O, 

and that Ht is not assumed to be null. For later purposes, we define ψ =
d e f  1 (

 
£ g

 
(k, k) − 

ξ 

ρ). Although ψ depends on ρ, on ξ and on k (but not on its derivatives), for simplicity we 

do not reflect this dependence in the notation. 

From now on, we make the extra assumption that N can be foliated by a family of 

diffeomorphic spacelike cross-sections. This can always be fulfilled by restricting 

N if necessary. In these circumstances, one can introduce a foliation function v ∈ 

F(N ) as the solution of k(v)|
N 

= 1, v|S = 0, where S is one such cross-section of 

N . In the following we also restrict ξ|
N 

to be orthogonal to the leaves Sv = {v = 

const.}, which makes ξ |
N- unique (recall that g(ξ, ξ) = 0, g(ξ, k) = −1 also hold in 

 

The construction of the coordinates is as follows. In the setup of Lemma D.1.1, we 

let k be the unique extension of k|
N 

given by (D.1) for some function ρ that may 

depend on k but not on its derivatives. Given a choice G|Ht , we also let G be the 

only solution of (D.2) constructed from k. As before, we introduce the vector field 

L =
d e f  

Gξ which by Lemma D.1.1 verifies [L, k] = 0. Then, we take coordinates {xA} 

on S and transfer them to all leaves {Sv} by enforcing k(x A) |
N- = 0. It follows that 

{v, x } are coordinates on N- and that k |
N- = ∂v. We complete the construction by 

 

 

 

 

L (u) = 1 
, 

u =
N- 

0 

 

 

 

L (vˆ) = 0 
, 

v̂ =
N- 

v 

 

 

 

L
 

x̂ A
 

= 0 

x̂A =
N- 

xA 

This allows us to drop the hat in {vˆ, x̂ A } and let the context determine if we are 

referring to v, xA ∈ F (O) or v, xA ∈ F ( N-). The set {u, v, xA} constitutes a local 

coordinate system in O. Let us show that L = ∂u and k = ∂v everywhere in O. The 

former is obvious from the construction and the latter holds because [L, k − ∂v] = 0 

(which is true because both k and the coordinate vector ∂v commute with L). Since 

k |
N- = ∂v, it follows from uniqueness of this ordinary differential equation that 

k = ∂v everywhere on O. 

We can now write the metric g in the coordinates {u, v, xA}. For that we notice that 

g(∂u, ∂u) = 0 (because ξ, L are null) and that g(∂u, ∂xA ) = 0 since 

1 
∇ξ (g(ξ, ∂xA )) = g(ξ, ∇ξ∂xA ) = 

G2 g(L, ∇L∂xA ) 

. 
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− 

A ∈ F O A A
  

 

C 

- 

- 

- 

a null generator of N- implies that g (k, k) | N-  = 0, g (k, ∂xA ) | N-  = 0. Conseque
-

ntly, 

G G 

 
1 1 

= 
G2 

g(L, ∇∂
xA L) = 

2G2 
∇∂

xA (g(L, L)) = 0, 

which means that g(ξ, ∂xA ) = g(ξ, ∂xA ) | N-  = 0. The metric g therefore reads 

g = −2Gdv 
(
du + qAdxA + ĝvvdv

) 
+ γABdxAdxB, (D.3) 

 

where we have defined gˆvv =
def

 
g(∂v,∂v ) 

2G 
and qA, γAB ∈ F(O). The fact that k|

N 
is 

 

there must exists functions H, h ( ) such that q = uh u, v, xB , 

uH
 

u, v, xB
 
. Thus, 

gˆvv = 

g = −2Gdv 
(
du + uhAdxA + uHdv

) 
+ γABdxAdxB, (D.4) 

 
with G, hA, H and γAB depending on all variables. The components of the inverse 

metric g♯ are given by 

guv = − 
 1 

, guu = u2γABhAhB + 
2uH 

, guA = −uγABhB, (D.5) 

gvv = 0, gvA = 0, δA = γABγBC. (D.6) 

The freedom in the construction above is the choice of (i) a function ρ ∈ F (O), 

(ii) a null generator k|
N 

, (iii) a cross-section S and (iv) a nowhere zero function G 

on a hypersurface Ht transversal to N (in fact it must be transversal to the vector 

field k constructed by solving (D.1), but after restriction of O if necessary this will 

always be true if Ht is transversal to N-). 
 

 

d.1.1 Generalized Rácz-Wald coordinates 

 
The Rácz-Wald form of the metric is characterized by the property that the vec- 

tor field k is null everywhere on O. This can be achieved by enforcing ρ = 0. By 

Lemma D.1.1 this entails that ξ (g (k, k)) = 0, i.e. g (k, k) = g (k, k) |N  = 0. There- 

fore, in this case H = 0 and (D.4) becomes 

g = −2Gdv 
(
du + uhAdxA

) 
+ γABdxAdxB. (D.7) 

We call generalized Rácz-Wald coordinates to the coordinates constructed with 

the above setup and in which the metric takes the form (D.7). They exist in some 

neighbourhood of any point p of a null hypersurface N- (corresponding to {u = 
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- 

- 

- 
- 

- 

- 

- 

- - 

- 

k |
N- is given by its value at S and by Remark 2.4.8 it holds that η |

N- = ( f + κv)k, 

 

0} in this coordinate system). The generalized Rácz-Wald coordinates admit the 

freedom of items (ii)-(iv) above. 

 

d.1.2 Gaussian null coordinates 

 

The Gaussian null coordinates are characterized by G being everywhere constant 

(usually equal to one) and L being null and affinely geodesic. By enforcing ρ = 
 

£ξ g
 

(k, k) in the general construction above, equations (D.1)-(D.2) become 

[ξ, k] = 0, k (G) = 0. (D.8) 

As before, the former provides a unique solution for k for given initial data k |
N 

while the second entails that G = G|Ht . By simply taking G|Ht = 1, one obtains 

the metric form for Gaussian null coordinates, namely 

g = −2dv 
(
du + uhAdxA + uHdv

) 
+ γABdxAdxB, (D.9) 

and it holds that G ∈ R − {0} and hence that L = Gξ is affinely geodesic. Observe 

that in this specific construction we recover the well-known freedom associated to 

Gaussian null coordinates, namely a choice of a null generator k of N and a choice 

of a spacelike section S on N-. 

 

 
d.2 coordinates near a killing horizon 

 

We now study the case when N is a null hypersurface constructed by taking null 

geodesics starting orthogonally from a bifurcation surface S. The hypersurface N is 

therefore the closure of a non-degenerate Killing horizon H with respect to a 

Killing vector field η. Moreover, it holds that the surface gravity κ of η, defined 

according to (2.81), is constant everywhere on N . Since by construction N admits a 

cross-section (namely S), we can take k|
N 

affine, i.e. satisfying ∇kk = 0 on N . Then, 

where f ∈ F ( N- ) fulfils k( f ) |
N- = 0. If, in addition, one enforces S = S in

- 

the 

construction above, then η |
N- = κvk. 
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- - 

- 

- 

- 

0 
(D.2) 

k G G 

u u
  

A
 

u u u
  

A

-
  

- 

- 

with tangent vector field ξ|S constitutes a branch of the bifurcate Killing horizon. 

0 

must vanish and the Killing vector field η reads 
N 0 

 
In order to study the properties of the Killing vector field η off N , we decompose 

it as η = ηuL + ηvk + η A∂xA . Since ξ is geodesic, we know that ∇ξ (g (η, ξ)) = 0, so 

that g (η, ξ) = g (η, ξ) | N- . This, together with ξ = G−1L = G−1∂u and (D.4), means 

ηv = −g (η, ξ) =
N- 

−g (η, ξ) =
N- 

ηv =⇒ ηv = η v |N-, (D.10) 

Thus η = ηuL + κvk + η A∂xA , where we have extended κ to O as the same con- 

stant. We can now write down the Killing equations £η g = 0 for the metric (D.7). 

Considering that ∂uηv = 0 and gvv = 0, the non-trivial Killing equations are 

 
0 = η (G) + (∂uηu + κ) G − gvA∂uη A, (D.11) 

0 = γAB∂uη A, 

-

 

 
(D.12) 

0 = −G∂vηu + gvA∂vη A, (D.13) 

0 = η (gvB) + κgvB + γAB∂vη A − G∂xB ηu + gvA∂xB η A, (D.14) 

0 = η (γAB) + γBC∂xA ηC + γAC∂xB ηC. (D.15) 

 

Equation (D.12) entails that ∂uη A = 0 because γAB =
d e f  

g(∂ A , ∂x B ) is necessarily 

positive definite. Consequently, η A = η A|
N 

= 0 and hence (D.13) implies 0 = ∂vηu. 

Taking this into account and deriving (D.11) along k, one obtains 
 

= k (η (G)) + (∂uηu + κ) ψG (D.11) = (η ( )) − ψη ( ) 

=⇒ k (η (G)) 

-

= ψη (G) . (D.16) 

The null hypersurface N-′ constructed by taking null geodesics starting from S 

 

In particular, this means that N-′ is a hypersurface everywhere transverse to k 

and that there exists a function β- ∈ F ( N- ′) such that η = β-ξ on N-′. If we select 

Ht = N-′ and G|Ht so that ξ (G) |Ht = 0, then η (G) |Ht = 0. This, together with 

(D.16), entails that η (G) = 0 everywhere on O. The explicit form of η on O can be 

derived now by enforcing η (G) = 0 into (D.11). This turns (D.11) into ∂uηu = −κ, 

from where it follows that η = − κ-u + η  x  . Since η |- = η |{u=0} = 0, η  x 

 

η = κ (−u∂u + v∂v) , (D.17) 

 
which is the standard form for the Killing vector field in Rácz-Wald coordinates 

(see e.g. [101]). Particularizing (D.11), (D.14) and (D.15) for (D.17) yields the ODEs 
 

0 = η (G) , 0 = η (gvB ) + κgvB , 0 = η (γAB ) , (D.18) 

x 
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- 

 

whose respective solutions are (recall that gvB = uGhB) 

G = G(uv, xC), gvB = uG(uv, xC)hB(uv, xC), γAB = γAB(uv, xC). (D.19) 

 

Substituting (D.19) in (D.7) yields the well-known form of the metric g in Rácz- 

Wald coordinates, namely 

g = −2G(uv, xC)dv 
(
du + uhA(uv, xC)dxA

) 
+ γAB(uv, xC)dxAdxB. (D.20) 

Observe that η(G)|Ht = 0 means that G|Ht is given by its value at S. Therefore, 

the remaining freedom in this coordinates is the choice of G|S and k|S (recall that 

k has been selected affine, so it verifies ∇kk = 0 on N ). In particular, by enforcing 

G|S = const. one obtains G = G(uv) on O, and hence G is constant everywhere 

on N- and Ht. 
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1
I N T R O D U C C I Ó N

La teoría de la Relatividad General, formulada por Albert Einstein de manera com-
pleta en [1] por primera vez, ha demostrado ser la teoría fundamental más precisa
para describir efectos gravitacionales a grandes escalas. Desde sus primeras predic-
ciones (la precesión del perihelio de Mercurio [2], la curvatura de los rayos de luz
[3], el efecto redshift gravitacional [4], [5] y la emisión de ondas gravitacionales
[6], [7]) hasta otras más recientes (por ejemplo la existencia de agujeros negros
[8], [9] o el efecto de lente gravitatoria [10]), la teoría de la Relatividad General
ha anticipado con precisión muchos de los fenómenos naturales apoyados tiempo
después por las observaciones empíricas. Ya desde su nacimiento, la teoría de la
Relatividad General se ha mostrado inquebrantable y completamente consistente
con las observaciones experimentales, sin importar el creciente nivel de precisión
de los resultados observacionales. Su solidez la convierte hoy en la teoría de la
gravedad más aceptada por la comunidad científica.

Dependiendo del enfoque y del tipo de problemas que se estudian, la teoría de
Relatividad General se divide en varias áreas de investigación. A saber, Relatividad
Numérica [11], basada en métodos numéricos y códigos de programación; Astro-
física Relativista [12] y Cosmología [13], cuyo objetivo es proveer modelos teóricos
y computacionales así como estudiar aspectos experimentales de la teoría; o Re-
latividad Matemática [14], que aborda cuestiones fundamentales de la fśica grav-
itatoria con máximo rigor matemático. La tesis doctoral que aquí se describe se
encuadra precisamente dentro de ésta última área.

A pesar de ser una teoría centenaria, existen multitud de problemas abiertos en
Relatividad General Matemática. Por ejemplo, (las versiones débil y fuerte de) la
Conjetura de Censura Cósmica [15], [16], [17], [18] y la Conjetura del Estado Final
[19] (y problemas relacionados como la unicidad de agujeros negros y la estabil-
idad de agujeros negros de Kerr-Newman). Esto convierte a la Relatividad General
Matemática en un campo de investigación muy activo en la actualidad.

5



6 introducción

La principal disciplina matemática en la que se apoya la Relatividad General
Matemática es la geometría, cuyos objetos matemáticos principales son las var-
iedades y los tensores. Uno de los pilares fundamentales de la geometría es el
estudio de las hipersuperficies. En particular, éstas pueden ser temporales, espa-
ciales, nulas o mixtas. Precisamente las de tipo nulo desempeñan un papel funda-
mental en Relatividad General, y constituyen el objeto central de estudio de esta
tesis.

El ejemplo por excelencia de hipersuperficie nula es el cono de luz de un punto en
un espaciotiempo. Sin embargo, existen incontables escenarios en los que las hiper-
superficies nulas están involucradas. Por ejemplo, juegan un papel fundamental en
el estudio de causalidad, en el contexto de emisión de ondas gravitaciones, en el
análisis de la geometría del infinito nulo, en el problema característico, en el estu-
dio de cualquier horizontes (de Cauchy, de eventos, de Killing...). Es por ello que
entender la geometría de hipersuperficies nulas es clave para la comprensión de
los aspectos físicos y matemáticos de la teoría de la Relatividad General. De hecho,
las hipersuperficies nulas son esenciales porque describen, localmente, las trayect-
orias de rayos de luz que se emiten perpendicularmente a una superficie espacial
de codimension dos.

La tesis doctoral que aquí se resume consta de dos partes diferenciadas. En la
primera, se estudia la geometría de hipersuperficies nulas abstractas (esto es, con-
siderando a la hipersuperficie como variedad en sí misma, sin necesidad de enten-
derla como embebida en un espacio ambiente). Este análisis se lleva a cabo por
medio del llamado formalismo de dato de hipersuperficie, que permite codificar la geo-
mería intrínseca y extrínseca de una hipersuperficie de cualquier carácter causal
de manera abstracta.

La segunda parte de la tesis se centra en el problema de enlace de dos espaciotiem-
pos (véase, por ejemplo, [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30]).
Determinar las condiciones bajo las cuales dos espaciotiempos generales pueden
enlazarse y dar lugar a un espaciotiempo nuevo es un problema fundamental en
cualquier teoría métrica de la gravedad. Es importante analizar las propiedades del
espaciotiempo resultante (en particular de la hipersuperficie de enlace). Un ejem-
plo paradigmático ocurre cuando se estudian campos gravitatorios generados por
un objeto autogravitante, por ejemplo una estrella de neutrones. En ese contexto, el
contenido material en la región interna de la estrella es distinto de cero, por tanto
el campo gravitatorio debe satisfacer las ecuaciones de Einstein (o cualesquiera
ecuaciones de campo que uno quiera imponer) con un término de fuente no cero.
Por otro lado, en la región exterior no existe materia y por tanto el campo grav-
itatorio debe ser solución de las ecuaciones de campo de vacío. Las ecuaciones
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para el campo gravitatorio son distitas en las diferentes regiones, y por tanto las
soluciones también han de serlo. Sin embargo, el espaciotiempo no está separado
en dos partes, lo que hace esencial que se puedan enlazar las regiones externa e
interna, dando lugar a una única solución. En el contexto de esta tesis doctoral, se
consideraran capas de matería-energía de grosor tan fino que se puede asumir que
se localizan sobre una hipersuperficie de carácter nulo.





2
C O N T E N I D O S D E L A T E S I S D O C T O R A L

La tesis doctoral consta de tres partes. En la primera, correspondiente al Capítulo
2, se discuten las definiciones matemáticas, herramientas y resultados de la liter-
atura que se requieren más adelante a lo largo de la tesis. Se establecen nuestras
convenciones de notación y se presenta el formalismo de dato de hipersuperficie
[29], [31] (definiciones de dato (métrico) de hipersuperficie, construcciones de las

conexiones abstractas
◦
∇, ∇, etcétera). Además, se repasan algunos aspectos clave

de geometría de subvariedades, en particular de hipersuperficies nulas embebidas.
También se revisan las definiciones y propiedades geométricas de varios tipos de
hipersuperficies nulas que juegan un papel esencial más adelante en la tesis. A
saber, horizontes no expansivos, (débilmente) aislados y de Kiling. Finalmente, se
incluyen algunas consideraciones previas sobre enlace de espaciotiempos a través
de una hipersuperficie.

El resto de la disertación presenta resultados originales obtenidos en el transcurso
de la tesis doctoral. En particular, la segunda parte está dedicada al desarrollo del
formalismo de dato de hipersuperficie. Esta tarea se lleva a cabo en los Capítulos
3, 4, 5 y 6, cuyo contenido se describe a continuación.

En el Capítulo 3, se proporcionan varios resultados nuevos en el marco del formal-
ismo de dato de hipersuperficie. En particular, se estudia el tensor "derivada de Lie
de una conexión" a lo largo de un vector privilegiado Z. Se obtienen varias iden-
tidades que involucran a ΣZ y se analiza el caso particular del tensor "derivada de

Lie de
◦
∇" a lo largo de un campo vectorial n que puede definirse a partir de cu-

alquier dato métrico. También dentro del Capítulo 3 se estudia el caso de un dato
nulo (esto es, el dato que se corresponde con la abstracción de una hipersuperficie
nula). Se demuestran varios resultados de fijado de gauge, así como varias iden-

tidades nuevas que involucran a la conexión
◦
∇ y a los tensores de curvatura y de

Ricci asociados a ella. Además, se incluye un análisis detallado de la geometría de
una hipersuperficie nula abstracta que admite una subvariedad no degenerada de
codimension uno. Finalmente, se estudia el caso en que una hipersuperficie nula
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abstracta admite un campo vectorial extra que es nulo e invariante bajo transform-
aciones gauge.

El Capítulo 4 se dedica al denominado tensor de ligadura R. Dicho tensor se define
para cualquier hipersuperficie abstracta de manera que, cuando el dato está em-
bebido en una variedad semi-Riemanniana, éste captura una cierta combinación
de componentes del tensor de Riemann del espacio ambiente. En primer lugar, se
motiva su definición abstracta y se derivan algunas de sus propiedades. Posteri-
ormente, se particulariza el análisis al caso nulo, encontrando las contracciones
de R con un generador nulo y proporcionando su pull-back a cualquier subvar-
iedad no degenerada dentro de la hipersuperficie abstracta. En particular, se cal-
cula su relación con el tensor de Ricci de la métrica inducida en dicha subvariedad
Riemanniana. Finalmente, se presentan varias cantidades que son invariantes bajo
transformaciones gauge o tienen un comportamiento gauge simple. Los resultados
de este capítulo son de utilidad en otras partes de la tesis.

El Capítulo 5 constituye una de las partes fundamentales de la tesis doctoral. En
primer lugar, se considera un dato de hipersuperficie completamente general em-
bebido en una variedad semi-Riemanniana equipada con un campo vectorial priv-
ilegiado y. Inicialmente, se permite que y sea completamente arbitrario (en partic-
ular, no necesariamente tangente a la hipersuperficie). En este contexto, se derivan
expresiones explícitas para el corchete de Lie de y con cualquier extensión de un
campo vectorial de rigging (esto es, cualquier campo transverso a la hipersuperficie
en todos sus puntos). Luego, se examina el caso en el que y es tangente y se ob-
tiene la derivada de Lie del tensor de dato Y, que codifica la geometría extrínseca
de una hipersuperficie, a lo largo de y. Estos resultados involucran al tensor de
deformación de y. Posteriormente, el análisis se centra en el caso en que la hiper-
superficie es nula y y es nulo y tangente a la hipersuperficie. En este contexto, se
estudia el tensor "Derivada de Lie a lo largo de y de la conexión de Levi-Civita", es
decir, Σy. Se calcula la forma explícita de Σy en términos del dato más un campo
tensorial adicional yה que resulta desempeñar un papel crucial en la descripción
abstracta de horizontes de Killing de orden cero y uno. Éstos son nuevos conceptos
abstractos de horizontes que motivamos y presentamos también en el Capítulo 5.

El Capítulo 6 es el último dedicado al desarrollo del formalismo de dato de hiper-
superficie. En él, se obtiene la denominada ecuación maestra generalizada. Dicha ecua-
ción se cumple para toda hipersuperficie nula que admita un vector nulo tangente
privilegiado y. La ecuación maestra generalizada involucra la función de propor-
cionalidad entre y y un generador nulo de la hipersuperficie, el tensor de ligadura
R, el tensor yה mencionado anteriormente y varios tensores abstractos. En este
capítulo, se obtienen también las contracciones de la ecuación maestra generaliz-
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ada con un generador nulo. Posteriormente, se particulariza el análisis al caso en
el que el tensor de deformación de y es proporcional a la métrica. En este contexto,
se obtienen varios resultados interesantes relacionados con el conjunto de puntos
fijos de y, la regularidad del tensor de Ricci del espacio ambiente y la constancia
de la gravedad superficial κ̃ de y. También se particularizan los resultados para ho-
rizontes de Killing abstractos de orden cero y uno. Esto permite identificar algunas
consecuencias de que κ̃ no sea constante. Otro resultado clave de este capítulo es la
restricción de la ecuación maestra generalizada a cualquier subvariedad no degen-
erada dentro de una hipersuperficie nula. Como caso particular, recuperamos la
ecuación maestra de horizontes de Killing múltiples [32], [33], [34], así como la near-
horizon equation para un horizonte aislado [35], [36], [37], [38], [39], [40]. Finalmente,
se aplican los resultados previos al caso de un horizonte de Killing degenerado en
el vacío.

La tercera parte de esta tesis, correspondiente a los Capítulos 7, 8 y 9, se dedica al
problema de enlace de dos espaciotiempos completamente generales a través de
una hipersuperficie nula.

En el Capítulo 7 se aborda el problema de enlace desde un punto de vista espa-
ciotiemporal, es decir, sin considerar los bordes de los espaciotiempos a enlazar
de manera independiente. Asumiendo que los bordes pueden ser foliados por una
familia de secciones espaciales, se determinan las condiciones necesarias y sufi-
cientes para que el enlace sea posible, y éstas se escriben en términos de una
base de campos vectoriales. Además, se demuestra que toda la información de
enlace se puede codificar en la llamada función salto y en un difeomorfismo entre
el conjunto de generadores nulos de cada borde. Resulta que, cuando los bordes
son totalmente geodésicos y los espaciotiempos pueden enlazarse de una manera,
entonces infinitos enlaces son posibles. Se obtienen expresiones explícitas para el
contenido de energía-materia de la capa delgada nula más general posible result-
ante de un enlace de este tipo. Finalmente, se aplican los resultados al caso del
enlace de dos regiones del espaciotiempo de Minkowski a través de un hiperplano
nulo. Esto nos permite relacionar nuestros resultados con los de las construcciones
de corte y pegado de la literatura.

En el Capítulo 8, se estudia un caso particular de lo anterior. A saber, el escenario
en que los bordes de los espaciotiempos a enlazar son horizontes de Killing ab-
stractos de orden cero. La idea es analizar la situación en la que el enlace identifica
los campos vectoriales de "Killing" de orden cero. Se abordan los casos en que (a)
ambos bordes son no degenerados, (b) ambos son degenerados y (c) un borde
es degenerado y el otro no degenerado. También se particularizan los resultados
para el caso de horizontes de Killing con superficies de bifurcación. El capítulo
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concluye con un análisis detallado del caso en que se enlazan dos espaciotiempos
con simetría esférica, plana o hiperbólica.

El Capítulo 9 es el último dedicado al problema de enlace, y constituye otra parte
fundamental de la tesis por varias razones. Primero, porque se aborda el problema
de enlace desde un punto de vista puramente abstracto (es decir, sin requerir que
las hipersuperficies de enlace estén embebidas) y, en segundo lugar, porque los
resultados son completamente generales (en el sentido de que no imponemos re-
stricciones topológicas ni ninguna otra condición en las hipersuperficies nulas y los
espaciotiempos). Primero, se establece una formulación abstracta del problema de
enlace. Posteriormente, se analiza el caso nulo, para el que se obtienen expresiones
explícitas del contenido gravitatorio/material de la capa delgada nula resultante.
También se analiza el escenario de múltiples enlaces, se recuperan los resultados
del Capítulo 7 para el caso con bordes con topología de producto y se incluye un
ejemplo de enlace a través de una hipersuperficie nula totalmente geodésica en los
espaciotiempos de (anti-)de Sitter y Minkowski.

Finalmente, en el Capítulo 10 de la tesis doctoral se recogen las conclusiones de
nuestro trabajo, así como algunas perspectivas de trabajo futuras.

La tesis doctoral incluye cuatro apéndices. En el Apéndice A, demostramos varias
identidades generales relacionadas con el tensor de curvatura de una conexión
libre de torsión. El Apéndice B está dedicado a la derivación de una forma gener-
alizada de la identidad de Gauss. En el Apéndice C, ofrecemos una comprobación
de la consistencia del comportamiento de calibre de un campo tensorial introdu-
cido en el Capítulo 4. La tesis concluye con el Apéndice D, donde presentamos
una nueva construcción geométrica de coordenadas cerca de cualquier hipersu-
perficie nula. El punto esencial de dicha construcción es que permite recuperar
las llamadas coordenadas nulas gaussianas (ver, por ejemplo, [41]) y coordenadas
de Rácz-Wald [42] en un entorno de una hipersuperficie nula y una superficie de
bifurcación, respectivamente.



3
C O N C L U S I O N E S

Dada la estructura de la tesis doctoral, es conveniente separar las conclusiones en
dos partes. En la primera, expondremos los resultados correspondientes al estudio
de hipersuperficies nulas abstractas, mientras que en la segunda presentaremos
los avances relacionados con el problema de enlace de espaciotiempos.

hipersuperficies nulas abstractas

Hemos demostrado que, en el caso de hipersuperficies nulas abstractas, toda la
información acerca de la geometría intrínseca de la hipersuperficie puede ser codi-
ficada en un único tensor γ, que juega el papel de primera forma fundamental en el
contexto embebido. Además, cuando la hipersuperficie admite un campo privilegi-
ado que es invariante gauge y nulo, se puede definir una función invariante gauge
que, en el caso embebido, coincide con la gravedad superficial de dicho vector
privilegiado. Esta función constituye, por tanto, una extensión (a nivel abstracto)
de la gravedad superficial ambiente a los puntos donde el vector privilegiado se
anula.

Para una hipersuperficie abstracta N de cualquier carácter causal, hemos constru-
ido un tensor abstracto, el tensor de ligadura R, que, en el caso embebido, codifica
una cierta combinación de componentes de los tensores de Riemann y Ricci del
espacio ambiente y que, en puntos nulos, coincide con el pull-back a N del tensor
de Ricci ambiente. Esto se ha conseguido sin requerir ninguna suposición topoló-
gica global sobre N . Además, la definición de R es completamente covariante en
N a pesar de que N no esté equipado con un tensor métrico. Cuando N es nula,
hemos obtenido una versión abstracta de la ecuación de Raychaudhuri. Además,
hemos identificado varias cantidades con un comportamiento gauge simple. En
particular, una de ellas, el tensor S∥ (que puede definirse en una subvariedad no
degenerada de codimension uno en N ), codifica información sobre la curvatura y
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juega un papel clave en la geomertría de horizontes de Killing abstractos de orden
uno.

Otro punto fundamental de la tesis es el análisis de las propiedades del tensor Σy

para un vector y invariante gauge, nulo y tangente a una hipersuperficie nula. Esto
nos ha permitido relacionar Σy con el tensor deformación de y, así como encontrar
varios tensores que desempeñan un papel clave en la descripción abstracta de
horizontes de Killing abstractos de orden cero y uno, definidos por primera vez en
el Capítulo 5.

Precisamente el estudio del tensor Σy, junto con el cálculo de la derivada de Lie
del tensor de dato Y (que, recordemos, codifica la geometría extrínseca de N ), nos
ha permitido obtener la ecuación maestra generalizada para cualquier hipersuper-
ficie nula. Esta ecuación (y sus contracciones con un generador nulo) permiten
identificar bajo qué condiciones la gravedad superficial κ de y permanece con-
stante. Además, para un horizonte de Killing homotético, esta identidad permite
demostrar que no pueden existir puntos fijos, y que κ es constante si y solo si
R(y, y) es también constante.

Las condiciones necesarias y suficientes para que la gravedad superficial de y sea
constante en todas partes en un horizonte de Killing de orden cero o uno han
sido obtenidas. Esto nos ha permitido demostrar que, si el horizonte es tal que
la gravedad superficial no es constante en un punto, entonces éste no puede esr
geodésicamente completo.

enlace de espaciotiempos

En lo que se refiere al problema de enlace de espaciotiempos, las principales
conclusiones son las siguientes. En primer lugar, se ha conseguido formular el
problema de enlace de manera completamente abstracta, lo que permite incluso
estudiar capas delgadas de manera desligada de cualquier espacio ambiente, para
luego analizar si dicha capa es embebible o no. Tanto para bordes nulos con topo-
logía arbitraria como para bordes nulos con topología producto, se ha conseguido
determinar el contenido material de la capa delgada de manera explícita, así como
demostrar que toda la información del enlace está codificada por un difeomor-
fismo φ a nivel abstracto (que contiene exactamente la misma información que
la función salto y el difeomorfismo de enlace entre los conjuntos de generadores
nulos de ambos bordes).

Se ha estudiado ampliamente el caso de enlaces múltiples, que en particular ocurre
cuando los bordes nulos son totálmente geodésicos. En este contexto, se ha de-
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mostrado que, dado el contenido material de uno de los enlaces, se puede ob-
tener el de cualquier otro enlace simplemente determinando su difeomorfismo φ

asociado. Esto, en particular, permite conocer de manera automática el contenido
material de cualquier capa delgada nula generada mediante el procedimiento de
corte y pegado.

Hemos analizado en detalle el caso del enlace de dos regiones del espaciotiempo
de Minkowski a lo largo de un hiperplano nulo, obteniendo la forma explícita de
la métrica C0 del espaciotiempo resultante y expresiones explícitas para el con-
tenido material. El enlace de dos regiones del espaciotiempo de (anti-)de Sitter
a lo largo de una hipersuperfice nula totálmente geodésica se ha estudiado tam-
bién. En concreto, se ha obtenido que la densidad de energía y el flujo de energía
son los correspondientes al enlace de Minkowski más un término adicional. La
presión, por otra parte, es la misma en los casos de (anti-)de Sitter y Minkowski.
Estos ejemplos han permitido conectar las construcciones de corte y pegado con el
formalismo de enlace, tanto espaciotemporal como abstracto.
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