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Characterization of ultrashort vector pulses
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Abstract: Ultrashort vector pulses exhibit time- and frequency-dependent polarization, sparking
significant interest across various fields. Simple, robust, and versatile characterization techniques
are crucial to meet this rising demand. Our study showcases how complete polarization
dynamics are encoded within a single amplitude swing trace, demonstrated both theoretically
and experimentally. We have developed a reconstruction strategy to effectively extract all this
information. The amplitude swing technique’s sensitivity to vector pulses offers a robust, compact
in-line setup adaptable across diverse pulse bandwidths, durations, and spectral ranges. This
self-referenced method offers effective measurement of ultrashort vector pulses, addressing the
growing interest in these complex pulses.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Laser pulses with time-varying polarization, i.e., vector pulses, are becoming more and more
essential in applications due to allowing an enhanced understanding and control of diverse
physics phenomena, including coherent control of certain light-matter interactions [1,2], post-
compression of pulses [3,4], polarization dynamics of dissipative solitons in fiber lasers [5,6],
ultrafast structured light [7,8], or high-order harmonic generation [9]. In these applications, the
characterization of those complex pulses is fundamental for their optimization.

Several techniques have been developed for measuring constant linearly polarized pulses, such
as FROG [10], SPIDER [11], d-scan [12], or, more recently, amplitude swing (a-swing) [13] and
frequency-resolved optical switching (FROSt) [14]. In a more general case, the polarization state
of a vector pulse depends on the relative amplitude and phase between their two pulse projections.
In general, these techniques are not sensitive to the zero- and first-order terms of the spectral
phase (related to the carrier-envelope phase and the arrival time of the pulse), so it is not enough
to independently measure two orthogonal polarization projections to characterize a vector pulse,
since the relative phase among the two polarization components is missed.

Consequently, other strategies have emerged. POLLIWOG [15] is based on dual-channel
spectral interferometry (SI). Both polarization projections are split and interfere with the
corresponding projections of the same reference pulse, thus obtaining their relative phase [16].
Measuring the reference pulse with any scalar technique, the vector pulse is fully reconstructed.
In Ref. [17], SI is also used, with an in-line single-channel implementation through a bulk
interferometer that overcomes the stability requirement. In this case, the relative phase is
obtained from the interference between two common projections of the pulse (eliminating the
need of an additional reference pulse), while one of the components is measured with any scalar
technique. TURTLE [18] proposes another approach, based on measuring three polarization
projections (with any scalar method). Two orthogonal pulse components are characterized by two
of those measurements, and the third one provides the relative phase between them. Recently, a
similar approach has been presented for d-scan, using a third fundamental spectrum projection to
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obtain the relative linear phase [19]. DFG-XTURTLE [20] combines TURTLE and XFROG
[21] to characterize vector pulses in the ultraviolet range. Time-resolved ellipsometry [22],
chip-integrated plasmonic [23], and nanointerferometric [24] measurements also characterize
vector pulses but are less utilized than the previous techniques due to their greater complexity.

Those spectral interferometric methods require a known scalar reference pulse, i.e., they need
two (or more) measurements to reconstruct a vector pulse: one to characterize the reference
scalar pulse, and other to obtain the relative phase between the two polarization components. We
show here that a-swing encodes all the information required to fully characterize a vector pulse
in a single trace, thus serving as a self-referenced method. This technique presents a simple
in-line configuration, with common optical elements, and easily adaptable for a broad range
of pulse durations and bandwidths [13,25]. These characteristics confer robustness, simplicity,
and versatility to the system. Recently, it has been shown that a-swing can characterize pulses
in different spectral bands over more than an octave with the same setup [26], and employing
diverse modulating functions [27].

In this work, we firstly investigate analytically the a-swing trace expression for a vector
input pulse and perform simulations to show that this trace encodes the spectral phases of
both components, including their relative phase. To extract this information from the trace, we
developed a new reconstruction strategy based on a nonlinear optimization algorithm, detailed in
Section 3. Next, we present experimental measurements and their corresponding reconstructions,
validated with simulations. Lastly, we discuss the conclusions.

2. Vector pulse measurement: amplitude swing

2.1. Amplitude swing for scalar pulses

For our purpose of measuring vector pulses from a single measurement, we will be based on
the a-swing technique. A-swing consists in generating two replicas of the unknown scalar pulse
with a fixed time delay between them, while varying their relative amplitude. For each relative
amplitude, the spectrum of the signal of a nonlinear interaction with matter (e.g., second harmonic
generation, SHG) of the interference pulse is recorded, thus obtaining a two-dimensional trace
[Eq. (1)]. This trace encodes the input pulse spectral phase, from which the pulse can be retrieved
[13,25]. This can be achieved by using the experimental setup presented in Fig. 1. The input
pulse (horizontal linear polarization in this example) passes through a rotating multiple-order
waveplate (MWP), generating the two delayed replicas, whose relative amplitude depends on the
MWP axes orientation, θ (angle between MWP fast axis and horizontal axis). A linear polarizer
(LP) selects one polarization projection of the MWP pulse, which then generates a nonlinear
signal, recorded by a spectrometer for each angle θ, obtaining a trace given by:

SSHG(ω, θ) =

|︁|︁|︁|︁|︁∫ (︃∫
E(ω′)[cos2θ ei ρf (ω

′) + sin2θ ei ρs(ω
′)] eiω′t dω′

)︃2
e−iωt dt

|︁|︁|︁|︁|︁2 (1)

where E(ω) represents the input pulse, and ρf(ω) and ρs(ω) are the spectral phases acquired by
the fast and slow pulse replicas after propagating through the MWP.

2.2. Amplitude swing applied to vector pulses

To measure vector pulses, we have chosen the original implementation of a-swing (Fig. 1) because
of its simplicity and versatility described before, and since it intrinsically deals with vector pulses,
manipulating the pulse polarization in the rotating MWP. Notice that this is not a sufficient
condition, as other techniques can manage polarization without measuring vector pulses (e.g.,
compact FROG [28] and SPIDER [29] versions, or self-referenced SI [30]).
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Fig. 1. A-swing experimental setup scheme: multiple-order waveplate (MWP), whose
fast axis is rotated at an angle θ with respect to the x-axis; linear polarizer (LP), with the
transmission axis horizontal; nonlinear crystal (NL); fundamental signal filter (F); and
convergent lens (L). A fiber-coupled spectrometer collects the nonlinear signal.

The input pulse to be measured is a vector pulse with horizontal —Ex(ω)— and vertical
—Ey(ω)— polarization components described as:

⎛⎜⎝
Ex(ω)

Ey(ω)

⎞⎟⎠ = ⎛⎜⎝
Ax(ω) ei ϕx(ω)

Ay(ω) ei ϕy(ω)

⎞⎟⎠ (2)

where Ax,y(ω) and φx,y(ω) are their spectral amplitudes and phases, respectively. The MWP
introduces the phases ρf(ω) and ρs(ω) to the fast and slow replicas, respectively, so the pulse in
the MWP axes coordinates is:

⎛⎜⎝
EMWP

f (ω, θ)

EMWP
s (ω, θ)

⎞⎟⎠ = ⎛⎜⎝
[Ex(ω) cos θ + Ey(ω) sin θ] ei ρf (ω)

[−Ex(ω) sin θ + Ey(ω) cos θ] ei ρs(ω)

⎞⎟⎠ (3)

and rewritten in the x- and y- axes is:

⎛⎜⎝
ELP

x (ω, θ)

ELP
y (ω, θ)

⎞⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

Ex(ω)[cos2θ ei ρf (ω) + sin2θei ρs(ω)]

+Ey(ω) cos θ sin θ[ ei ρf (ω) − ei ρs(ω)]

Ex(ω) cos θ sin θ[ ei ρf (ω) − ei ρs(ω)]

+Ey(ω)[cos2θ ei ρs(ω) + sin2θei ρf (ω)]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(4)

After the MWP, the LP selects one projection of this pulse —in this case the horizontal one,
ELP

x (ω, θ)—, which is the result of the interference of four components, whose amplitudes are
modulated by θ: horizontal fast (Exf), vertical fast (Eyf), horizontal slow (Exs), and vertical slow
(Eys), defined as:

Exf (ω, θ) = Ex(ω) cos2θ ei ρf (ω)

Eyf (ω, θ) = Ey(ω) cos θ sin θei ρf (ω)

Exs(ω, θ) = Ex(ω) sin2θ ei ρs(ω)

Eys(ω, θ) = − Ey(ω) cos θ sin θei ρs(ω)

(5)

The SHG spectrum of this interference pulse for different orientations of the MWP, SSHG
x (ω, θ),

is the a-swing trace, given by:

SSHG
x (ω, θ) = |ESHG

x (ω, θ)|2 =

|︁|︁|︁|︁|︁∫ (︃∫
ELP

x (ω′, θ) eiω′t dω′

)︃2
e−iωt dt

|︁|︁|︁|︁|︁2 (6)
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The SHG pulse can be written as:

ESHG
x (ω, θ)= Xff (ω) cos4θ + [Cxf ,yf (ω) + Cxf ,ys(ω)] cos3θ sin θ

+[Yff (ω) + Yfs(ω) + Yss(ω) +Xfs(ω)] cos2θsin2θ

+[Cxs,yf (ω) + Cxs,ys(ω)] cos θsin3θ + Xss(ω) sin4θ

(7)

where X coefficients are related to the SHG of Ex, Y coefficients to the SHG of Ey, and C

Ex fast

Ex slow Eyslow

Ey fast

ϕx - ϕy

ϕx ϕy

Xff

Xfs

Xss

Cxf,yf

Cxs,yf

Cxs,ys

Cxf,ys

Yff

Yfs

Yss

Fig. 2. Terms involved in the SHG signal that constitutes the a-swing trace. The pulse that
generates this nonlinear signal has four components (represented inside the rectangles), and
each possible combination between them (ten in total, represented by arrows) leads to a
term of the SHG pulse [Eq. (7)]. Red (blue) arrows indicate the terms associated with the
horizontal (vertical) projection of the vector pulse, which encodes φx (φy); whereas purple
arrows indicate the crossed terms, which encode the relative phase (φx – φy).

coefficients to the SHG of the crossed terms of Ex and Ey; while the subscripts f and s indicate
the fast and slow replicas, respectively. From the point of view of the laboratory reference system,
the nonlinear signal presents three terms associated with the horizontal projection, three with
the vertical projection, and four crossed terms. On the other hand, from the point of view of
the MWP replicas, it presents three terms related to the fast replica, three to the slow replica,
and four crossed terms. These interrelationships between the pulse components are illustrated in
Fig. 2, from which it is deduced how the trace encodes the individual spectral phases of both
components (encoded in the individual interference of X and Y coefficients, respectively), and
their relative phase (due to the interferences between Ex and Ey pulses, encoded in C coefficients).
We have corroborated this assumption by numerical simulations with different input vector pulses
(see Supplement 1, Fig. S1 and S2), also confirming the absence of ambiguities regarding the
signs of the phases of the polarization components. This analysis is essential to understand that
despite measuring the SHG of a single projection, it encodes the full vector pulse information.
In the case of x- (y-) linearly polarized pulses, the components of the SHG pulse are reduced
to Xff, Xfs, and Xss (Yff, Yfs, and Yss), and thus the corresponding SHG spectrum of the a-swing
trace presents six terms (all possible combinations of these three SHG pulses, as shown in Ref.
[13]). Analogously, the SHG spectrum generated with vector pulses is constituted by 55 terms,
resulting from all the combinations with repetition of sets of two elements from the ten SHG

pulse components [Eq. (7)], i.e., ⎛⎜⎝
10 + 2 − 1

2
⎞⎟⎠ = 55.

Thus, the polarization state of the vector input pulse is encoded in the a-swing trace. This
sensitivity to vector pulses is inherent to the concept of amplitude modulation of the replicas of
the pulse components, independent of the particular implementation that we show here using a

https://doi.org/10.6084/m9.figshare.25289827
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bulk polarization interferometer (MWP and LP). As usual, the information cannot be analytically
extracted, so a devoted reconstruction algorithm is needed.

3. Reconstruction algorithm

To characterize the vector pulse, we have implemented a new dedicated strategy —presented in
this section— that follows several steps to retrieve the full pulse information. As said before, the
input pulse is defined referred to two polarization components, Ex and Ey [Eq. (2)]. Both spectral
amplitudes are obtained from the measured spectra, as Ax,y(ω) =

√︁
Sx,y(ω). The spectral phases

—φx(ω) and φy(ω)— are the unknown functions to be recovered by the retrieval algorithm from
the a-swing trace. From each pulse spectral amplitude and phase, we calculate the temporal
intensity I(t) and phase ϕ(t), showing in the results (Section 4) the intensity and phase in both
domains.

For application in the retrieval algorithm, the a-swing trace can be simulated for a given vector
pulse, which will be reconstructed afterwards. Since the origin of the time axis can be defined
arbitrarily, and a global constant phase does not modify the pulse envelope, we force to zero the
phase offset —φ0 = φ(ω0)— and the time for the maximum of the pulse (related to the arrival
time or delay τ, i.e., to the spectral phase linear term) of Ex(ω), thus the zero- and first-order
relative phases —∆φ0 = φ0x − φ0y and ∆τ = τx − τy (positive ∆τ means that the y-component
arrives before the x-component)— are codified in φy(ω). The spectral phases introduced by
the MWP —ρf(ω) and ρs(ω)— depend on the ordinary and extraordinary refractive indices,
which are known since they can be calculated from their respective Sellmeier equations [31], and
the MWP thickness, which is given by the manufacturer or calibrated using in-line SI [17], for
instance. Analogously, the dispersion of the other elements of the setup can be considered within
the reconstruction algorithm, so that it does not affect to the input pulse retrieval. The SHG field
is simulated by squaring the pulse in the temporal domain, assuming a flat spectral response on
the nonlinear crystal. The calculated signal is the spectrum of the SHG pulse as a function of the
MWP orientation (the simulated a-swing trace).

Different algorithms have been employed in spectral phase retrievals of scalar pulse measure-
ments, such as Nelder-Mead Simplex [12], projections [32], differential evolution [26,33], and
neural networks [34,35]. In the literature it is shown that the Levenberg-Marquardt algorithm
[36,37] is robust reconstructing scalar pulses from d-scan [38–40] and a-swing [13,25,27]
measurements, so we choose this algorithm but any other could be used in principle. It is a
well-known nonlinear optimization constrained algorithm to invert multivariable problems, in
which the spectral phase is parametrized, and it is iteratively modified while minimizing a merit
function, which is the square of the difference between simulated and experimental traces.

The reconstruction strategy runs several consecutive optimization steps (lasting a few minutes
in total), whose outputs are used as a seed for the following optimization. In the first step, an
initial guess of φx(ω) is quickly retrieved using only the angles of the trace θ = n π/2 (being n
an integer) and their adjacent angles. The reason is that at these MWP angles the SHG signal
depends only on Ex(ω) [see Eq. (4), (5) and (6)] due to the amplitude modulation on θ. Because
of the LP orientation (0°), the contribution of Ex(ω) on the trace is greater than the contribution
of Ey(ω). For other LP orientations, the vector pulse information is also encoded on the trace, but
the relative weights of both components change. To do this, we parametrize φx(ω) with a Taylor
expansion up to order three (i.e., group delay dispersion, GDD, and third-order dispersion, TOD),
and we optimize it starting with a random guess phase. In the second stage, in which the same
part of the trace is used, the spectral phase φx(ω) is upgraded by optimizing the values of its
discretized derivative in 32 equally spaced points along the frequency axis, while interpolating in
the rest of the frequency interval. In the third and fourth steps, we reconstruct φy(ω), including
the parameters ∆φ0 and ∆τ as mentioned before, using the full trace (the whole MWP scan in θ).
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In the third step it is parametrized by a Taylor expansion (fast optimization), while in the fourth
one we optimize its derivative values, reducing the frequency sampling to 30 points.

In the fifth and sixth stages, we refine individually the derivative values of both spectral phases
φx(ω) and φy(ω), respectively. Lastly, in the seventh step, we run a simultaneous optimization of
the derivative values of both spectral phases, reducing each component sampling to 16 points
(plus ∆φ0 and ∆τ). The relative amplitude between the x and y fundamental spectra can be
experimentally calibrated or optimized in the algorithm if needed.

This reconstruction strategy has been firstly validated with simulated traces (see Supplement 1,
Fig. S3), and later applied and validated with experimental traces as shown in the next section.

4. Experimental setup and results

4.1. Vector pulses generation

To apply the proposed vector pulse measurement and reconstruction, we firstly generated the
vector pulses to be measured, which could come from any experiment of shaping setup. In
our case, we produced them by propagating horizontal linearly polarized laser pulses through a
shaping system (independent of the a-swing detection explained in Section 2). It consists of a
retarder plate (or two consecutive plates), where we define θg as the orientation of its fast axis
with respect to the horizontal axis (Fig. 3). The scalar feeding pulses preceding vector shaping
—central wavelength at ∼800 nm, Fourier-limited pulse duration of ∼60 fs (full-width at half
maximum, FWHM), 5 kHz repetition rate, and ∼0.2 mJ per pulse— are emitted by a Ti:sapphire
chirped pulse amplification (CPA) system (Spitfire ACE, Spectra Physics).

𝜃𝜃𝑔𝑔
Retarder plate 

(shaping 

system)
Feeding 

pulse

Pulse to be 

measured 

(to a-swing)

Fig. 3. Experimental generation of the vector pulses to be measured, using a retarder plate
(or two consecutive) as shaping system.

Just for validation purposes of the later a-swing reconstructions, we will simulate those vector
pulses. To do this, we need to know the feeding pulse and the shaping system. We firstly measured
the scalar feeding pulse (Fig. 4) delivered by the laser, using the conventional a-swing [13].
Note that this pulse is not Fourier-limited, but it presents small negative GDD and TOD, being
broadened to a duration of 86 fs (FWHM). Then, we simulate its propagation through the retarder
plate (using Sellmeier equations and obtaining its thickness through in-line SI experimental
calibration [17]) at the corresponding angle θg to calculate the vector pulse. The shaping plates
were calibrated for the pulse simulation —validation purpose— but note that this is not necessary
for the a-swing reconstruction.

In a first experiment, the vector pulses to be measured were generated in the shaping system
with a 2-mm quartz retarder plate (delay of 65.6 fs and phase retardation of 0.34π for 800 nm)
in different orientations (θg = 15◦, 30◦, 45◦). To further test our proposal, we generated in a
second experiment a vector pulse using two consecutive retarder plates (5 mm of quartz in total),
both oriented at θg = 45◦, introducing a global 160.9 fs delay and 1.30π phase retardation (for
800 nm). The phase retardations are given subtracting the 2πm term associated with the order of
the plate m, as it can be calculated from the delay and is not relevant to define the effect of the
phase in the pulse.

https://doi.org/10.6084/m9.figshare.25289827
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Fig. 4. Measurement of the scalar feeding pulse with a-swing: (A) experimental and retrieved
traces; (B) experimental spectrum (solid) and reconstructed spectral phase (dashed); (C)
temporal intensity (solid) and phase (dashed) of the retrieved pulse, whose duration (FWHM)
is inset.

4.2. Vector pulses measurement

The vector pulses generated in that way are afterwards measured with the a-swing detection,
shown in Fig. 1. As explained in Section 2, the vector pulses to be measured propagate through a
rotating MWP (the rotation angle is scanned in steps of 2°), splitting both polarization projections
in fast and slow replicas, whose amplitudes are modulated by θ. The MWP used for the a-swing
detection (quartz, 2-mm thickness) introduces a known delay of 65.6 fs between the fast and
slow pulses, and a known phase retardation of 0.34π (remember that the 2πm term is subtracted)
for 800 nm (previously calibrated with in-line SI [17]). This delay must be of the order of the
Fourier-limited pulse duration with a remarkable tolerance up to three times larger or smaller
(notice that this condition does not apply to the actual duration of an eventually chirped pulse),
while the phase retardation can be chosen arbitrarily, as discussed in Refs. [13,25]. A LP selects
the horizontal projection of the MWP output pulse, which then passes through a type-I BBO
nonlinear crystal (20-µm thickness) for the SHG process. The remaining fundamental signal
is filtered out with a second LP (F). The SHG radiation, focused with a lens (L) to enhance
the signal/noise ratio, is collected by an optical fiber connected to a spectrometer (HR4000,
Ocean Optics Inc.), integrating multiple pulses at each MWP angle. The fundamental spectra are
recorded with another spectrometer (AvaSpec 2048-USB1, Avantes Inc.). Since the response of
the detection system (fiber plus spectrometer) is different for horizontal and vertical axes, the
relative amplitude has been set as an unknown in the retrieval algorithm (this response can also
be calibrated with a±45° linearly polarized input pulse). From the a-swing measurement, the
studied vector pulses are reconstructed. As said before, these reconstructed vector pulses will be
compared with the simulated vector pulses.

For each pulse generated in the first experiment (2-mm quartz retarder plate with different
orientations as shaping system, see Section 4.1), we present the experimental and retrieved
traces for θg values of 15°, 30°, and 45° (the root mean square (rms) errors are 1.83%, 2.10%,
and 2.75%, respectively) [Fig. 5(A)], and the comparison between the simulated and retrieved
intensity and phase of the vector pulses (both x- and y-component) in the spectral and temporal
domains [Fig. 5(B) and 5(C)], as given by Eq. (2) and its inverse Fourier-transform. The spectra
in x- and y-axis presents frequencies of null intensity due to the interference between the fast and
slow pulses in the retarder plate, so the spectral phase exhibits a π discontinuity (where the phase
derivative is infinite). This is more demanding for the retrieval algorithm than a continuous
phase. However, when these modulations cause only one frequency of null intensity, as in the
2-mm quartz retarder plate (Fig. 5), it is possible to reproduce these π discontinuities, finding a
good agreement between the simulated and retrieved pulses.

In the case of the second experiment (two consecutive retarder plates as shaping), the x- and y-
spectra are very modulated (both present three zeros) due to the higher delay, not being possible
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Fig. 5. Experimental a-swing results and comparison with simulations of vector pulses
generated by a retarder plate (65.6 fs delay and 0.34π phase retardation) whose axis
orientation is 15° (first row), 30° (second row), and 45° (third row): (A) experimental and
retrieved traces; (B) experimental and simulated spectra (solid), and reconstructed and
simulated spectral phases (dashed); (C) temporal intensities (solid) and phases (dashed) of
the retrieved and simulated pulse components. Red: horizontal retrieved; blue: vertical
retrieved; black: horizontal simulated; cyan: vertical simulated.

Fig. 6. Experimental a-swing results and comparison with simulations of a vector pulse
generated by two consecutive retarder plates (160.9 fs delay and 1.30π phase retardation)
whose axis orientation is 45°: (A) experimental and retrieved traces; (B) experimental
and simulated spectra (solid), and reconstructed and simulated spectral phases (dashed);
(C) temporal intensities (solid) and phases (dashed) of the retrieved and simulated pulse
components. Red: -45° (slow) retrieved; blue: 45° (fast) retrieved; black: -45° simulated;
cyan: 45° simulated. Simulated spectra of the pulse at 45° and -45° are the same.
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to reconstruct the spectral phase with our current frequency sampling (32 points) in the retrieval
algorithm. To overcome this issue, we perform the measurements (Fig. 6) rotating -45° our
coordinate system (it coincides with the coordinate axes of the retarder plates, but it is not a
requirement). The spectra at -45° (x′, slow) and 45° (y′, fast) do not present zeros [Fig. 6(B)],
enabling to reconstruct the vector pulse using the same retrieval strategy, and with minimum
experimental modifications (just rotate the optical elements). Although this issue has been
easily overcome here by rotating the coordinate system, it would be interesting in the future
to study new retrieval strategies. Even though the x′ and y′ pulse components hardly overlap
in time [Fig. 6(C)], their relative phase is so far encoded in the trace [Fig. 6(A)]. In the same
line, numerical simulations (see Supplement 1, Fig. S2, row 3) confirm that the a-swing trace
depends on the relative phase even if there is no temporal overlap at all. The agreement between
simulated and retrieved pulses is good (the rms error between the traces is 3.41%), evidencing
the capability to fully reconstruct vector pulses with a single a-swing trace.

Since the reconstruction provides the full vector pulse information, we have calculated the
parameters that characterize the polarization ellipse (variable in time and frequency) for the
pulses: the ellipticity ε (defined as the ratio between the minor and major axis, while its sign
indicates the helicity, positive for right-handed and negative for left-handed polarization) and the
azimuthal angle χ (the orientation of the polarization ellipse: angle between its major axis and
the x-axis), showing the results in Fig. 7 and 8. Regarding the polarization state, for ε = ±1 it
corresponds to circular polarization with said helicity, while ε = 0 identifies linear polarization.

Fig. 7. Polarization ellipticity and azimuth in spectral (A) and time domain (B) of the vector
pulses generated with a 2-mm quartz retarder plate (65.6 fs delay), being its axis orientation
15° (first row), 30° (second row) and 45° (third row). Red: retrieved azimuth; blue: retrieved
ellipticity; black: simulated azimuth; cyan: simulated ellipticity.

The ellipticity and the azimuth vary periodically along the wavelength axis [Fig. 7(A) and
8(A)]. The relative amplitude between the fast and slow replicas in the retarder plate is β = tan θg,
which is constant. Thus, for the wavelengths that satisfy ∆φ(ω) = πm, the ellipticity is zero
and the azimuth is zero (even values of m do not modify the polarization, which corresponds to

https://doi.org/10.6084/m9.figshare.25289827
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Fig. 8. Polarization ellipticity and azimuth in spectral (A) and time domain (B) of the vector
pulse generated with two consecutive retarder plates (160.9 fs delay) oriented at 45°. Red:
retrieved azimuth; blue: retrieved ellipticity; black: simulated azimuth; cyan: simulated
ellipticity. Retrieved (C) and simulated (D) vector electric field in the temporal domain, with
their corresponding projections in gray color. The color scale indicates the ellipticity, being
-1 and +1 left- and right-handed circular polarization, respectively, and 0 linear polarization).

Ay(ω) = 0) or maximum (χ = 2θg, odd m values, due to operation as half-wave plate for that
wavelength), i.e., the pulse is linearly polarized at 0° or 2θg. Besides, for the wavelengths that
verify ∆φ(ω) = π/2 + πm, the absolute value of ellipticity is maximum (|ε | = tan θg), reaching
circular polarization (ε = ±1) only for the case of θg = 45◦ [Fig. 7(A3) and 8(A)] where the
amplitudes are equal. The periodic variation of the polarization ellipse is faster in the case of two
consecutive retarder plates (Fig. 8) than in the case of one retarder plate (Fig. 7, row 3), due to
the higher delay between both polarization components.

The evolution of the polarization ellipse in the time domain is less intuitive than in the spectral
domain. To visualize it better, we plot the temporal evolution of the vector electric field [Fig. 8(C)
and 8(D)] of the pulse generated with two consecutive retarder plates. This pulse is almost
linearly polarized (ε ≈ 0) at its front and rear parts due to the high delay compared to the pulse
duration, perpendicular between them (χ ≈ 0◦ and χ ≈ 90◦, respectively). In the intermediate
part, the pulse describes a left-handed ellipse, being circular polarization (ε = −1) when the
amplitudes of both components are the same. The retrieved and simulated results show a good
agreement in the regions with non-negligible pulse intensity.

5. Conclusions

We have characterized complex ultrashort vector pulses, which exhibit time- (and frequency-)
varying polarization, from a single amplitude swing trace measurement. For this purpose, we
have demonstrated analytically, numerically, and experimentally that all the information needed
to characterize vector pulses is codified in the amplitude swing trace. Subsequently, we have
developed a reconstruction strategy to extract this information, validating it both numerically and
experimentally. This way, the amplitude swing capability to measure vector pulses is proven.
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Vector pulses are characterized by the spectral amplitudes (experimentally recorded) and
phases of two polarization components, including their relative phase. We have analyzed the
diverse terms contributing to the amplitude swing trace and identified those codifying both
polarization projections spectral phases and their relative phase. The developed reconstruction
strategy used to extract the pulse information from the measured trace is based on several steps
of a nonlinear optimization algorithm (in our case, the Levenberg-Marquardt, but any other
could be used). We have applied this strategy to retrieve vector pulses experimentally generated
by propagating linearly polarized pulses through different retarder plates. By simulating this
propagation, we validate the measured pulses. We find a good agreement between simulated
and retrieved pulses, even when there is a small temporal overlap between both polarization
components.

In sum, it is possible to completely reconstruct a complex vector pulse from a single amplitude
swing trace. This trace can be measured with a simple and compact in-line setup, with common
and inexpensive optical elements, and can benefit from other advantages of amplitude swing
(e.g., flexibility in pulse bandwidth, chirp, or broad spectral region of application).
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