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We present PSO-PARSIMONY, a newmethodology to search for parsimonious and highly accurate models
by means of particle swarm optimization. PSO-PARSIMONY uses automatic hyperparameter optimization
and feature selection to search for accurate models with low complexity. To evaluate the new proposal, a
comparative study with multilayer perceptron algorithm was performed with public datasets and by
applying it to predict two important parameters of the force–displacement curve in T-stub steel connec-
tions: initial stiffness and maximum strength. Models optimized with PSO-PARSIMONY showed an excel-
lent trade-off between goodness-of-fit and parsimony. The new proposal was compared with GA-
PARSIMONY, our previously published methodology that uses genetic algorithms in the optimization pro-
cess. The newmethod needed more iterations and obtained slightly more complex individuals, but it per-
formed better in the search for accurate models.

� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nowadays, there is a growing demand for auto machine learn-
ing (AutoML) tools to automatize tedious tasks such as hyperpa-
rameter optimization (HO), model selection (MS), feature
selection (FS) and feature generation (FG).

One of the current topics in this field corresponds to the devel-
opment of methods that help in the search for robust machine
learning (ML) models that are able to predict with good accuracy
under multiple and diverse input conditions. One of the most com-
mon strategies is the selection, among the most accurate models,
of those with lower complexity. A model that has good accuracy
and low complexity, i.e. a model with fewer input features, will
be much more robust to perturbations, faster and easier to under-
stand, and much cheaper to maintain and update.

In this article, we describe a new methodology, named PSO-
PARSIMONY, which uses an adapted particle swarm optimization
(PSO) to search for parsimonious and accurate models by means
of hyperparameter optimization (HO), feature selection (FS), and
the promotion of the best solutions according to two criteria:
low complexity and high accuracy. This paper also includes a com-
parison in performance with GA-parsimony, our previously pub-
lished methodology based on GA [20,27,19] that has been
successfully applied in a variety of contexts such as steel industrial
processes [23], hotel room-booking forecasting [28], mechanical
design [11], hospital energy demand [1], and solar radiation fore-
casting [3].

Finally, a detailed analysis of the application of both methods
for predicting force–displacement curves in steel T-joints is pre-
sented. The methods were tested for optimizing multilayer percep-
tron (MLP) models to predict two parameters defining the T-stub
curve: the initial stiffness and the maximum force.
2. Related works

In recent years, there has been a trend toward providing meth-
ods to make ML more accessible for people without expertise in
machine learning. The overarching aim is to reduce the human
effort necessary in tedious and time-consuming tasks.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.126414&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neucom.2023.126414
http://creativecommons.org/licenses/by/4.0/
mailto:fjmartin@unirioja.es
https://doi.org/10.1016/j.neucom.2023.126414
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom
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Companies like DataRobot, Strong Analytics, Mighty AI, Akkio,
CloudZero and Unity Technologies, among others, are currently pro-
viding services to automate a multitude of tasks in machine learn-
ing and artificial intelligence. In addition, new AutoML suites have
emerged such as Google Cloud AutoML1, Microsoft Azure ML2, Alteryx
Intelligence Suite3, and H2O AutoML4. Free software is also available,
such as Auto-WEKA, Auto-Sklearn 2.05, Hyperopt6, TPOT7, and,
for Deep Learning, Auto-Keras8 and Auto-PyTorch9. Many com-
panies and tools use hybrid methods based on high computational
resources fused with advanced optimization techniques.

2.1. The search of parsimony

The development of models with small datasets, i.e. a few hun-
dred or a few thousand rows, can result in overfitted models [29].
These overfitted models learn ”too much” well from the training
dataset, but are unable to generalize adequately. That is, their pre-
dictions fail when new input conditions appear. This is very com-
mon when training models with algorithms that have many
degrees of freedom and make them too ”flexible”, such as neural
networks with many layers and neurons, large regression trees, etc.

In ML, the problem of overfitting is solved by incorporating regu-
larization mechanisms within the algorithms, so that learning not
only takes into account how the model learns from the data, but also
the complexity of the model. Examples of regularization are widely
used, such as controlling the size of weights in ridge and Lasso
regressions, the use of dropout and weight decay in neural networks,
or the depth of decision trees or the number of leaves in them [26].

If the dataset is small, there may be a bias in the error estimate
if no adequate validation is performed [4,7]. Typically, the most
common strategy is to use a robust cross-validation such as
repeated cross-validation with a high number of repetitions [22].

An additional strategy to reduce the risk of over-fitting is to select
the model with the lowest complexity (most parsimonious) among
those models with similar accuracy [27]. The complexity of a model
can be defined in multiple ways, such as the number of input fea-
tures, the internal complexity of the model (by some defined metric),
or a combination of the above [19]. The less complex model will be
more robust to noise and disturbances, will have more stable predic-
tions, and will be easier to maintain and analyze [14]. For example,
imagine that several models have been trained with multiple combi-
nations of features and hyperparameters and those with the highest
accuracy have been selected through appropriate validation. Among
them, the model with the lowest number of input features should be
chosen because the disturbances or noise that may appear in the
attributes that have not been selected will not affect it, and the prob-
lem of collinearity that may exist between the non-selected variables
and the selected ones will be eliminated [21].

Some studies have focused on the context of automatically
seeking parsimonious and accurate models. For example, Ma and
Xia [15] used a tribe competition with GA to optimize FS in pattern
classification. Wei et al. [33] applied binary particle swarm opti-
mization (BPSO) in HO and FS to obtain an accurate SVM with a
reduced number of features. Similarly, Vieira et al. [30] optimized
a wrapper support vector machine (SVM) with BPSO to predict the
survival or death of patients with septic shock. Wan et al. [31]
combined GA with an ant colony optimization algorithm named
1 Ref: https://cloud.google.com/automl
2 Ref: https://azure.microsoft.com/es-es/products/machine-learning
3 Ref: https://www.alteryx.com/products/intelligence-suite
4 Ref: https://h2o.ai/platform/h2o-automl
5 Ref: https://www.automl.org/automl/autoweka
6 Ref: http://hyperopt.github.io/hyperopt
7 Ref: http://epistasislab.github.io/tpot
8 Ref: http://autokeras.com
9 Ref: https://www.automl.org/automl/autopytorch
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MBACO to select an optimal subset of features with minimum
redundancy and maximum discrimination ability. Ahila et al. [2]
improved accuracy and generalization performance of Extreme
Learning Machines (ELM) with PSO for power system disturbances.
Wang et al. [32] reported a comparative of chaotic moth-flame
algorithm against other methods in an HO and FS optimization
strategy for medical diagnoses. This method showed a significant
improvement in classification performance and obtained a smaller
feature subset.

Similar to these methods, we proposed GA-PARSIMONY [23], a
method to search for parsimonious solutions with GA by optimiz-
ing HO, FS, and parsimonious model selection.

GA-PARSIMONY can be considered as a special multi-objective
optimization method focused on the search for accurate and parsi-
monious ML models, which takes into account two fundamental
factors: the need to perform an optimal search due to the excessive
computational cost of each solution, and that the accuracy of the
model must prevail over the model complexity (parsimony). Previ-
ous work on this type of problem has shown that simultaneous
optimization of both objectives (accuracy and complexity) pro-
duces sub-optimal solutions from the point of view of accuracy
[23]. Therefore, GA-PARSIMONY is not a classical multi-objective
system that tries to optimize two objective functions simultane-
ously, but has, as a primary objective, the improvement of accuracy
and, as a secondary objective, the reduction of the complexity of
the model. To this end, genetic algorithms (GA) are used to search
for models with good accuracy but using a selection criterion that
also seeks to improve parsimony.

GA-PARSIMONY has demonstrated in numerous case studies
that it is capable of achieving accurate low complexity models. In
addition, it has also been compared to other existing AutoML
methodologies, showing a remarkable performance [19]. However,
due to the excessive computational cost, the number of individuals
that can be evaluated with GA in each generation is very small. This
makes GA not as efficient as in other optimization problems.

The aim of this work has been to develop a new method
adapted to this type of problems with the idea of improving the
accuracy of the models, but considering parsimony as GA-
PARSIMONY.

3. PSO-PARSIMONY methodology

Algorithm1: Pseudo-code of the PSO-PARSIMONY algorithm

1: Initialization of positions using a random and uniformly
distributed Latin hypercube within the ranges of feasible
values for each input parameter

2: Initialization of velocities
3: for t ¼ 1 to Tdo
4: Train each particle Xt

i and validate with cross validation
5: Fitness evaluation and complexity evaluation of each

particle

6: Update X̂i; X̂
p
i and the ^̂X

7: if early stopping is satisfied then

8: return ^̂X
9: end if

10: Generation of new neighborhoods if ^̂X did not improve

11: Update each L̂pi
12: Update positions and velocities according the formulas
13: Mutation of % of features
14: Limitation of velocities and out-of-range positions
15: end for

16: return best individual ^̂X
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Tuning model setting hyperparameters and, at the same time,
selecting a subset of the most relevant inputs require efficient
heuristic methods to manage such a combinatorial problem. In this
article, the search for the best model is based on an optimization
technique developed by Kennedy and Eberhart: the particle swarm
optimization (PSO) [13]. Its popularity has undoubtedly increased
due to its straightforward implementation and demonstrated high
convergence ratio. This section explains the PSO algorithm and
how we have modified it to find parsimonious models.

3.1. The underlying idea behind the PSO algorithm

The PSO algorithm mimics the social behavior of birds flocking
and fish schooling to guide the particles toward globally optimal
solutions. The movement of a particle is influenced by its own
experience (its best position achieved so far) and also by the expe-
rience of other particles (the best position within a neighborhood).
The formulation of canonical PSO contains expressions for calculat-
ing velocities and positions of particles. Considering a D-
dimensional search space, Xt

i and Vt
i describe the position and

velocity of the i-th particle in the t-th iteration, respectively. If
the iteration number t is clear from the context or unnecessary,
we drop the letter t and simply denote them as Xi and Vi, respec-

tively. The personal best is represented by X̂i whereas the local best

in each neighborhood is described by L̂i. The minimum value

among the personal bests represents the global best ( ^̂X) and, con-
sequently, the optimal solution. In this context, the velocity and
position of the next iteration are calculated as follows:

Vtþ1
i ¼ xVt

i þu1ri;2 � X̂t
i � Xt

i

� �
þu2ri;2 � L̂t

i � Xt
i ð1Þ

Xtþ1
i ¼ Xt

i þ Vtþ1
i ð2Þ

where t represents the current iteration and x is the inertia weight
that depreciates the contribution of the current velocity. The pur-
pose of this parameter is to prevent an uncontrolled increase in par-
ticle displacement. The coefficients u1 and u2 represent the
cognitive and social learning rates. They control the trade-off
between global exploration and local exploitation, i.e. how the local
and personal bests affect the calculation of the next position.
Finally, ri;1 and ri;2 are independent and uniformly distributed ran-
dom vectors in the range 0;1½ � whose purpose is to maintain the
diversity of the swarm.

3.2. A new PSO-based optimization technique with parsimony

In the framework of FS andmodel optimization, it is desirable to
simultaneously minimize the fitness function (J) and the model
complexity (Mc) to guarantee both accuracy and generalization
capacity. Thus, the modified version of PSO proposed herein
includes strategies for updating the personal best, local best and
the global best considering not only the goodness-of-fit, but also
the principle of parsimony (keeping in mind that goodness-of-fit
should be prioritized). Algorithm1 shows a summarized pseudo-
code of our modified version of the PSO algorithm. The following
subsections presents the proposed algorithm and each step in
detail.

3.2.1. Steps 1 and 2: initialization
The process starts with a random initial swarm of models

X0
1;X

:
2; . . . ;X

0
s

n o
ð3Þ

generated by a random and uniformly distributed Latin hypercube
within the ranges of feasible values for each input parameter. We
3

denote this operation as randomLHS s; Dð Þ, where s and D represent
the number of particles in the swarm and the dimensions of the
design space, respectively.

Each particle X0
i , which represents a model configuration, is

characterized by a subset of input variables and the values of set-
ting hyperparameters to be optimized. Similarly, initial velocities

V0
1;V

0
2; . . . ;V

0
s

n o
are randomly generated according to the follow-

ing expression:

randomLHS s; Dð Þ � X0
1;X

0
2; . . . ;X

0
s

n o

2
ð4Þ
3.2.2. Steps 3 to 5: training and evaluation with parsimony criterion
The main loop (line 3) is repeated, at most, a maximum number

T of iterations. This loop consists of several substeps. First, each of
the s particles of the swarm is trained and evaluated. The training
and validation steps of the models are conducted by k-fold cross-
validation (CV). This method is repeated n times to ensure the
robustness of the model against different subsamples of training
data.

Firstly, the goodness-of-fit of models is assessed by J. The root
mean square error (RMSE) of the CV process is utilized herein as
fitness function J Xt

i

� � ¼ RMSECV , where RMSECV denotes the mean
of the RMSE of the n k-Fold CV runs. The RMSE penalizes large devi-
ations from the target values. This feature is particularly advanta-
geous in the context of steel connections because models should
predict the connection response with a similar degree of accuracy
throughout the entire design space. However, in other problems it
could be more interesting to use other metrics, such as the mean
absolute error (MAE). Thus, the user should choose the appropriate

metric accordingly. In this way, the personal best (X̂i) of each par-
ticle is computed in each iteration. Secondly, models are re-
evaluated according to their complexity. The principle of parsi-
mony states that in the case of two models with similar accuracy,
the simplest is the best. Model complexity depends on the model
structure and is related to its robustness to perturbations and
noise. In this case, complexity has been defined by
Mc ¼ 109NFS þ Intc , where NFS is the number of selected features
and Intc is an internal complexity measurement which depends
on the ML algorithm. For example, the sum of the squared weights
in MLP, Intc ¼

P
w2

i , the number of leaves in regression trees (RT),
etc. Thus, in this formula, NFS dominates the other measure and,
then, Intc only comes into play when the two compared solutions
have the same NFS.

From now on, X̂p
i denotes the personal best of the i-th particle

considering the parsimony criterion. In accordance with this prin-

ciple, we propose the following strategy for updating the X̂p
i . For

each particle of the swarm, the X̂p
i is updated to the new position

if the fitness value of this new position J Xið Þ is clearly lower than
the current value, or if it is better and also has lower complexity.

On the other hand, X̂p
i is not updated if J Xið Þ is clearly higher than

the current value. For intermediate cases, where J Xið Þ is within a

tolerance in regards to the X̂, the complexity criterion is applied.

Then, the X̂p
i is updated to the new particle position only if its com-

plexity Mc Xið Þ is lower than the current value. This strategy, there-
fore, requires a user-defined tolerance (tol) to establish the limits
wherein the complexity criterion is applicable. Note that, at this
point, the tolerance is applied with respect to the fitness value of

X̂i and not of the one of X̂p
i . This prevents, in each step, an update

of X̂p
i to a much worse solution than X̂i.
The particle exhibiting the lowest fitness value in the process is

chosen as global best, ^̂X. A pseudo-code of the X̂p
i update follows:
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Pseudo-code X̂p
i update

ifJ Xið Þ < J X̂p
i

� �
� tolthen

X̂p
i ¼ Xi

else ifJ Xið Þ 6 J X̂p
i

� �
and Mc Xið Þ 6 Mc X̂p

i

� �
then

X̂p
i ¼ Xi

else ifJ Xið Þ 6 J X̂i

� �
þ tol and Mc Xið Þ < Mc X̂p

i

� �
then

X̂p
i ¼ Xi

endif
10 Available athttps://github.com/jodivaso/PSOparsimony.
11 Available in Python Package Index (PyPI).
3.2.3. Steps 7 to 9: early stopping
Although the optimization ends when the maximum number of

iterations T is reached, the proposed PSO-PARSIMONY also includes
an early stopping criterion that can be used if J does not improve
within a predefined tolerance and a fixed number of iterations.

3.2.4. Steps 10 to 12: updates with parsimony criterion
After training each particle and evaluating their performance,

the neighborhoods have to be updated.
The topology of the swarm defines the subset of particles

(neighborhood) with which each particle can exchange informa-
tion. Many different topologies have been designed and studied
for PSO [12]. We adopted the adaptive random topology originally
proposed by Clerc [6]. In this topology, each particle in the swarm
informs K particles randomly (the same particle can be chosen sev-
eral times) and itself, where K is usually set to 3. As a result, each
particle is informed by a number of particles (neighborhood) that
can vary from 1 to s. If an iteration does not show an improvement

in the fitness value of the global best ^̂X, new neighborhoods are
randomly generated following the same process. This topology
provides more diversity in the swarm than using, for instance, a
single global best and is less susceptible to being trapped in local
minima. However, the convergence rate is generally slower than
in a global best topology.

The next step in the PSO consists of updating the velocities and
positions of the particles in order to evolve toward better solutions.
This update is performed with a modified version of Eqs. 1 and 2 to
promote simpler (and accurate) solutions: the personal bests com-

puted with parsimony are used (X̂p
i ).

For this particular case where FS is included in the PSO, the bin-
ary status of features deserves special treatment. In our proposal, a
continuous PSO is applied for both FS and model hyperparameters
optimization. The real number xd corresponding to the feature d is
compared with a threshold value, a. Then, feature d is included in
the input subset if xd P a. Otherwise, the feature is discarded. This
approach avoids the premature convergence that characterizes the
binary version of particle swarm optimization (BPSO) [30].

The inertia weight is defined as linearly decreasing with the
iterations, according to Shi and Eberhart [24], x ¼ xmax�
xmax �xminð Þ t

T where t represents the current iteration and T is a
predefined maximum number of iterations. Thus, high values of
x in the first iterations have the ability to explore new areas. On
the contrary, lower values of x at the end of the process promote
a refined search in local regions.

3.2.5. Steps 13 and 14: mutation and limitation
Finally, this modified version of the PSO also incorporates a

mutation operator for the FS similar to that used in GA. The oper-
ator tries to prevent the premature convergence of the swarm. By
default, the mutation rate m is set to 1=F, where F represents the
4

number of features of the problem. This value guarantees that at
least one feature will change its status in each iteration (from 0
to 1 or vice versa). Concretely, for each particle i, the algorithm
takes each xd of the F components of Xi that belong to features
(only those of the features, those of the hyper-parameters are not
mutated). For each xd of each particle, a random number between
0 and 1 is generated. If this random number is smaller thanm, then
xd is mutated, i.e, if xd is a discarded feature (xd < a) then xd
changes to a new random value between a and 1, in order for xd
to be selected (analogously if xd P a).

After updating velocities and positions and the mutation step,
the particles are confined in order to avoid out-of-range positions.
In this paper, the absorbing wall approach is utilized by default for
this purpose [34]. Thus, when a particle is out of the feasible range,
the position is set to the boundary and velocity is set to zero.
3.2.6. Steps 15 and 16: output
As explained before, the process ends if either the maximum

number of iterations T is reached or the early stopping criterion
is satisfied. The final result is the position of the best particle of

the whole process, ^̂X. The process explained in this section can
be applied to each ML algorithm technique and dataset.
4. Performance analysis

4.1. Performance analysis of PSO-PARSIMONY vs GA-PARSIMONY with
public datasets

Thirteen public datasets from the UCI repository [8], with differ-
ent numbers of rows and features, were selected to perform the
comparison between PSO-PARSIMONY and GA-PARSIMONY with
two tolerances: tol ¼ 10�6 and tol ¼ 10�3. The effect of tol is highly
dependent on the ability of machine learning models to explain the
problem. Thus, a fine-tuning of tol should be performed on a case-
by-case basis (as is explained in Section 4.2) to search for optimal
trade-off between parsimony and J but, due to the high computa-
tional costs for the development of the experiment (where several
months of computation were needed), it was decided to choose
two representative tolerances: a very low one, 10�6 and an inter-
mediate one that produced a good compromise between parsi-
mony and J in higher dimensional data sets, 10�3.

Table 1 shows a summary of the PSO-PARSIMONY settings for
evaluating the performance with the public datasets. The GA-
PARSIMONY settings were similar to previous experiments in
[11], but with a population size of 24, a maximum number of gen-
erations of G ¼ 200, and an early stopping of 35, the same as in the
PSO-PARSIMONY experiments. Following empirical studies, xmax

and xmin were set to 0:9 and 0:4, respectively [25,9]. In addition,
the cognitive and social learning rate were set to 1

2 þ ln 2ð Þ, as sug-
gested by Clerc [5]. In this case, MLPRegressor algorithm from
sklearn package was selected to train and validate the multilayer
perceptron models (MLP) with a 5-repeated 5-fold cross validation.

The algorithm was defined by default with a single hidden layer
of neurons with sigmoid activation functions. The hyperparame-
ters to be modified, as well as the range of them, are defined in
Table 1.

PSO-PARSIMONY was implemented by the authors in the
Python language10. Also, a new GA-PARSIMONY Python version11

of the GAparsimony R package [16] was developed. All experiments
were implemented in nine separate 24 core servers from the Beronia

https://github.com/jodivaso/PSOparsimony


Table 1
Initial setting parameters for PSO-PARSIMONY and the MLP hyperparameter search-
ing space.

Parameter Description Values

u1 Cognitive learning rate 0:5þ ln 2ð Þ
u2 Social learning rate 0:5þ ln 2ð Þ

numindiv Number of swarm particles 24
iter Number of iterations in optimization process 200
early Num of iterations for early stopping 35
tol Margin to consider J similar 10�6

a Lower feature’s prob. of being considered input 0:5
xmax;xmin Parameters to calculate inertia weights 0:9;0:4

K Number of particles to be informed for each one 3
m Mutation rate 0:03

k� fold Number of folds in Repeated-CV 5
runs Number of run in Repeated-CV 5
MLP Number of hidden neurons (search space) [1, 2,. . ., 25]

Weight decay (search space) 10 �6:0;3:0½ �

Solver L-BFGS
Activation function sigmoid
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cluster at the University of La Rioja. Each server was composed of
two Intel Xeon E5-2670 (2.30 Ghz) with 128 GB of RAM memory.

Table 2 shows the results of the best models obtained with PSO-
PARSIMONY versus GA-PARSIMONY, with tol ¼ 10�6 and for the 13
public datasets. From left to right, columns are for each dataset:
the name, the number of rows (#rows) and the total features
(#feats); and for each algorithm (PSO and GA): the average of 5
runs of J, the number of features (NFS), the elapsed time in minutes
(time) and the number of iterations (iters). It can be observed that
for each one of the 13 datasets, PSO found a solution with better
accuracy. However, PSO was more costly (in terms of computa-
tional effort), since it required more iterations and more time.
Roughly speaking, PSO was three times slower and needed dou-
bling the iterations than GA.

The same experiments were repeated with tol ¼ 10�3 to observe
the behavior of the methods in the search for parsimony. Table 3
shows that GA with tol ¼ 10�3 achieved a higher reduction in the
number of NFS in ten datasets with respect to tol ¼ 10�6, especially
in datasets with high dimensionality (bank; puma; ailerons;
tecator; crime). PSO also improved the reduction of NFS in
pm10; concrete; puma;meta; tecator and crime, although it was not
as significant as with GA.

Finally, Table 4 shows a comparison of the average of features
obtained with the two tolerances (tol ¼ 10�6 and tol ¼ 10�3, and

for both methods. Columns methodXNFS corresponds with the mean

of features obtained with method and tol ¼ 10�X . dGANFS and dGANFS

indicate the difference between the number of features for both
tolerances so that positive values show parsimony reductions
and negative values the opposite. In small datasets, the observed
parsimony reduction is very small or even negative, although the
negative values are all lower (in absolute value) than �0:5. Actu-
ally, tol must be adjusted for each database to obtain the best
trade-off between J and parsimony, as explained in the next sec-
tion. In this case, the chosen value was not optimized for each
dataset but it reduced complexity for higher dimensional datasets
although no improvement in parsimony reduction was observed
for other lower dimensional datasets. Thus, for most of these data-
bases a finer tuning of ”tol” will be necessary. However, a signifi-
cant reduction is observed in high dimensional datasets such as
ailerons; tecator and crime. GA-PARSIMONY obtained better parsi-
mony, but it is important to emphasize that the main objective
of the PSO-PARSIMONY was to improve the accuracy of the models.
The results shown in Tables 2 and 3 demonstrate that, although
PSO-PARSIMONY obtained less parsimonious models than GA-
PARSIMONY, the new method obtained better accuracy models in
5

all datasets. In short, PSO-PARSIMONY is a good alternative to find
better solutions with a good balance between accuracy and
parsimony.

If we analyze the overall performance of both methods we can
conclude that PSO needs more iterations, but obtains more accu-
rate models than GA, since the latter stops the optimization pro-
cess too early. Due to the excessive computational cost, the
number of individuals that can be evaluated with PSO or GA in
each generation is very small. This makes GA crossover mecha-
nisms not as efficient as in other GA-based optimization problems
where hundreds or thousands of individuals can be evaluated.
Thus, in a few generations, GA-PARSINOMY produces populations
of individuals that are very similar to each other. This low diversity
causes GA optimization to quickly be stuck at a local minimum,
making the search for accurate models suboptimal. However, PSO
can perform finer tuning and find more accurate solutions,
although the computational cost is higher and the solutions are
more complex.

The diversity in a population with numindiv individuals can be
defined as:

Fdist ¼

X
i

X
j

dij

numindiv2 ð5Þ

where dij corresponds to the Euclidean distance between the binary
vectors defining the selected features of the i and j individuals. Thus,
the larger this value is, the more diversity exists in that population.
The left side of Fig. 1 shows the evolution of Fdist for GA-
PARSIMONY and PSO-PARSIMONY with crime dataset and in the
first 80 iterations. The right side of the figure shows the number
of features that have changed their status (selected/unselected)
between consecutive iterations. It can be observed how the diver-
sity of GA drops sharply from the first iterations, while with PSO
the diversity decreases slowly. However, GA performs many more
feature state changes in the first iterations than PSO, which allows
it to track a larger number of feature combinations, although it
decreases drastically as iterations pass and individuals become
more and more similar to each other.

In terms of the complexity of the solutions, GA outperformed
PSO, finding more parsimonious solutions (with smaller number
of features) on most of the datasets (11 out of 13). The crossover
mechanisms of optimization with GA yield solutions with a
reduced number of features within a few generations. However,
this sharp reduction means that the obtained solutions cannot con-
tinue to improve in accuracy in the next generations. It can be
observed that the difference between PSO and GA (with respect
to parsimony) was smaller for data sets with a reduced number
of features. In those cases, the solutions found by the PSO method
were about 10% more complex than those found by GA. However,
in datasets with a larger number of features, PSO found more accu-
rate solutions, but using twice as many features as the solutions
found by GA. While GA substantially reduces complexity in a few
generations, thanks to the crossover mechanism between individ-
uals, PSO is much more inefficient when the number of features is
high, since the selection is performed on the basis of a probability
that is slowly updated by the particle velocity. Thus, the change of
state of a feature, between being selected or not (or vice versa),
only occurs when the probability is higher than 0:50 (the a value).
4.2. Detailed performance analysis of PSO-PARSIMONY vs GA-
PARSIMON in a case of study

The case study presented herein focuses on the bolted T-stub
component (Fig. 2a), which corresponds to the tension zone in
beam-to-column connections. The T-stub component comprises



Table 2
PSO-PARSIMONY vs. GA-PARSIMONY with 13 public datasets [8] (results are the average of 5 runs with 5-fold cross-validation with each methodology and tol ¼ 10�6).

dataset #rows #feats PSOJ GAJ PSONFS GANFS PSOtime GAtime PSOiters GAiters

strike 625 7 .8259 .8644 1.6 3.0 89.2 20.9 86.6 57.8
no2 500 8 .6561 .6598 6.0 6.0 60.5 15.2 98.2 42.0
pm10 500 8 .8397 .8417 5.8 5.4 35.5 18.5 76.8 41.8
concrete 1030 9 .2810 .2944 7.6 8.0 454.9 194.9 101.2 46.4
housing 506 14 .3066 .3221 10.6 9.7 244.1 73.2 145.9 55.8
bodyfat 252 15 .1049 .1110 3.0 4.8 100.2 34.9 135.8 58.4
meta 504 18 .7102 .7123 9.2 6.0 5.1 3.8 79.4 45.2
cpu_act 8192 22 .1246 .1254 14.4 14.0 2261.9 936.9 141.0 62.6
bank 8192 33 .6339 .6383 23.6 23.4 1308.9 425.1 162.8 70.2
puma 8192 33 .1803 .1810 6.1 5.0 3586.1 1051.8 115.0 47.0
ailerons 13750 41 .3827 .3828 17.7 15.0 3710.5 1196.8 115.9 49.0
tecator 240 125 .0321 .0328 74.0 32.6 114.5 69.2 115.2 88.6
crime 2215 128 .5959 .5960 56.4 27.8 843.2 413.6 194.2 135.8

Table 3
PSO-PARSIMONY vs. GA-PARSIMONY with 13 public datasets [8] (results are the average of 5 runs with each methodology and tol ¼ 10�3).

dataset #rows #feats PSOJ GAJ PSONFS GANFS PSOtime GAtime PSOiters GAiters

strike 625 7 .8385 .8648 1.8 3.0 105.1 16.3 88.0 39.6
no2 500 8 .6560 .6601 6.0 6.0 59.8 17.5 102.8 46.4
pm10 500 8 .8399 .8414 5.4 5.4 36.5 17.5 85.4 36.8
concrete 1030 9 .2894 .2953 7.4 7.8 468.0 160.9 107.2 41.6
housing 506 14 .3126 .3256 11.0 10.0 215.8 74.6 104.0 61.0
bodyfat 252 15 .1071 .1081 3.4 2.0 97.3 40.2 128.2 69.2
meta 504 18 .7104 .7112 6.8 3.6 4.0 4.9 67.8 75.8
cpu_act 8192 22 .1241 .1247 14.8 13.4 1241.7 788.3 84.6 50.0
bank 8192 33 .6342 .6379 23.6 19.8 1298.8 629.1 177.8 101.6
puma 8192 33 .1805 .1810 4.6 4.2 2188.6 1028.4 96.0 51.2
ailerons 13750 41 .3823 .3829 17.8 10.4 2663.2 1144.7 115.2 65.6
tecator 240 125 .0323 .0331 60.0 25.8 126.9 44.5 131.2 69.4
crime 2215 128 .5934 .5957 49.8 19.8 797.8 410.5 185.6 143.6

Table 4
Parsimony obtained with tol ¼ 10�3 and tol ¼ 10�6 for both methods.

dataset #feats GA6NFS GA3NFS dGANFS
PSO6NFS PSO3NFS dPSONFS

strike 7 3.0 3.0 0.0 1.6 1.8 �0.2
no2 8 6.0 6.0 0.0 6.0 6.0 0.0
pm10 8 5.4 5.4 0.0 5.8 5.4 0.4
concrete 9 8.0 7.8 0.2 7.6 7.4 0.2
housing 14 9.7 10.0 �0.3 10.6 11.0 �0.4
bodyfat 15 4.8 2.0 2.8 3.0 3.4 �0.4
meta 18 6.0 3.6 2.4 9.2 6.8 2.4
cpu 22 14.0 13.4 0.6 14.4 14.8 �0.4
bank 33 23.4 19.8 3.6 23.6 23.6 0.0
puma 33 5.0 4.2 0.8 6.1 4.6 1.5
ailerons 41 15.0 10.4 4.6 17.7 17.8 �0.1
tecator 125 32.6 25.8 6.8 74.0 60.0 14.0
crime 128 27.8 19.8 8.0 56.4 49.8 6.6
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two t-shape profiles tied by their flanges with one or more rows of
bolt (Fig. 2b). The tensile load applied to the web is transferred by
the flange in bending and by the bolts in tension. During this pro-
cess, the contact between the flanges produces a prying action that
increases the forces developed in the bolts. The contact area, as
well as the pressure magnitude, evolves during the loading pro-
cess, complicating an adequate evaluation of the force–displace-
ment response. Non-linear material laws, large deformations, and
the existence of different failure patterns also present further chal-
lenges to calculating the T-stub component.

Numerical approaches such as the Finite Element (FE) method
constitute a reliable tool for assessing steel connections. Fig. 3
shows the results of one simulation with an advanced FE model
of the T-stub component [10]. The FE model includes complete
stress–strain nonlinear material relationships and a refined charac-
terization of the bolt, including threaded length, nut, and washers.
6

Additionally, the main novelty of the numerical model is the
implementation of a continuum damage mechanics model to sim-
ulate the failure of the bolted connection. Thus, the force–displace-
ment response of the T-stub can be fully characterized, from the
initial stiffness up to the fracture point (Fig. 3b). Interested readers
can refer to [10] for an in-depth description of the FE model.

Finally, in this study, the objective was to improve previous
experiments [11,18] by obtaining more precise and parsimonious
models to predict three key parameters of the T-stub force–dis-
placement curve response: initial stiffness kið Þ, maximum strength
Fuð Þ and displacement at failure df

� �
. However, previous work

showed that the target df was not deterministic, so that the intrin-
sic error of the estimation cannot be further reduced even if mod-
els with lower validation error are achieved. Thus, modeling efforts
were focused on the other two targets: ki and Fu, that are funda-
mental to estimate the safety of the T-stub.



Fig. 1. Evolution of diversity (left) and number of features that change state (selected/unselected) between consecutive iterations (right) with GA-PARSIMONY and PSO-
PARSIMONY and crime dataset.

Fig. 2. Tension zone on steel connections. (a) End-plate beam-to-column connection, (b) equivalent T-stub model, and (c) T-stub geometry.
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4.2.1. Dataset
The advanced FE model constituted an excellent tool for the

generation of a training and testing dataset. Therefore, training
data were created with 820 FE simulations from a Design of Com-
puter Experiments (DoCE). DoCE accounts for the deterministic
nature of computer experiments, assuming that numerical noise
is negligible. For these cases, space-filling sampling techniques
are appropriate because they uniformly distribute the points
throughout the design space. One of the most widely used space-
filling designs is the Latin hypercube sampling (LHS), introduced
by McKay et al. in 1979 [17]. LHS divides each input into n equally
probable intervals and selects a random value in each interval. The
principal advantage of this method is that each input variable is
represented in every division of its range. Additionally, a test data-
set consisting of 76 samples was generated separately to check the
accuracy and generalization capacity of models to predict unseen
data.
7

LHS method was used to define the input values of the subse-
quent FE simulations with different conditions. Table 5 describes
the feasible ranges of T-stub geometrical parameters (Fig. 2c) and
the mechanical properties of the hot-rolled profiles and bolts used
herein. For each combination of input values, a FE simulation was
conducted to characterize the response of the T-stub component.
Regarding the outputs, the performance of models was evaluated
for their prediction of two key parameters of the force–displace-
ment curve: initial stiffness kið Þ and maximum strength Fuð Þ.

4.2.2. Experiment settings
The initial setting parameters for PSO-PARSIMONY in this

experiment are rather similar to the ones presented in Table 1.
The only differences are tol (the margin to consider J similar) and
the size of the swarm. Concretely, six values of tol have been con-
sidered: [10�6;0:001;0:003;0:005;0:01;0:025]. The particle swarm
was evaluated with eight different sizes in this experiment, from 5



Fig. 3. Advanced FE model of the T-stub bolted component. a) FE simulation: equivalent plastic strain (PEEQ); b) Force–displacement response: FE model vs. Experimental
test.

Table 5
Ranges of the input features included in the DoCE.

Variable Description [units] Range

dbolt Nominal bolt diameter [–] M12 - M27
clearance Difference between bolt hole and bolt diameter

[mm]
0.50–3.50

tflange Flange thickness of the T-shape profile [mm] 8.00–30.00
tweb Web thickness of the T-shape profile [mm] 5.00–20.00
Lflange Flange length of the T-shape profile [mm] 52.00–

180.00
r Flange-to-web connection radius [mm] 9.75–43.00
n Dist. from center of the hole to edge of flange [mm] 15.75–

106.00
b Width of the T-shape profile [mm] 42.00–

187.00
Lthread Thread length of the bolt [mm] 2.50–60.25
ry Yield strength of the struct. steel [MPa] 200–400
ru Stress at the max. tensile load of the structural steel

[MPa]
300–800

Eh Strain-hardening coefficient of the structural steel
[MPa]

1000–3000

ryb Yield strength of the bolt steel [MPa] 640–1098
rub Stress at the maximum tensile load of the bolt steel

[MPa]
800–1200

�ub Strain at the maximum tensile load of the bolt steel
[-]

0.07–0.14
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to 40 particles. Also note that the number of input features is 15,
which is a size that seems suitable for the PSO-PARSIMONY
method according to the results presented in Section 4.1.

Again, experiments were implemented on nine separate 24-
core servers from the Beronia cluster at the University of La Rioja.

4.2.3. Performance analysis
Table 6 shows results of the best models from 5 runs obtained

with PSO-PARSIMONY versus GA-PARSIMONY and with different
values of tol. In this experiments, PSOJ and GAJ corresponded to
the RMSECV error of the standardized logarithmic of the target. Log-
arithmic was used to transform the output to be close to a normal
distribution. Therefore, results improved upon the previous exper-
iments in [11].

In Table, PSONFS and GANFS are the number of features, PSOPw2

and GAPw2 the internal model complexity, and PSOtime and GAtime

the elapsed time in minutes. The table show the best model
obtained from 5 different runs of PSO-PARSIMONY and GA-
PARSIMONY. Bold numbers indicate the best value for each tol
8

value and target variable comparing between both methodologies.
Red numbers indicate the best score for each target variable.

From the Table 6 it can be seen that PSO obtained better solu-
tions than GA for low tol 6 0:001. For these ranges, NFS were iden-
tical although the internal complexity of the models was higher in
PSO than in GA. In addition, PSO needed more time than GA to find
the best solution. These results were similar to those obtained with
the public datasets. In both target variables, the best solution is
obtained by PSO with tol ¼ 0:001. Note that PSO combined with
a lower tolerance (tol ¼ 1e� 6) found a solution with the same
score for ki and the same number of features as the best one, but
with higher internal complexity.

Additionally, Table 7, shows the averaging results of the 5 runs
including the mean of the non-normalized testing error Jtst for PSO
and GA methods: PSOJtst and GAJtst; and the mean of the PSO and GA

iterations: PSOiters and GAiters. PSOJ and GAJ correspond to the normal-

ized values to see the effect of tol, while PSOJtst and GAJtst correspond to
the de-normalized values for comparison with previous works.

In this case, it can be observed that the best results were
obtained with tol ¼ 10�6. For both targets, the best validation J
errors were obtained with PSO. However, the testing errors (Jtst)
were higher in PSO for Fu, probably because PSO obtained models
with slightly higher internal complexity. In contrast, with ki the
average testing errors improved for the models obtained with
PSO, although the average NFS was lower in GA (10:8 vs. 11:0).
Finally, iteration and times were clearly higher in PSO-
PARSIMONY than in GA-PARSIMONY.

Figs. 4 and 5 show the average value of NFS and the minimum,
mean and maximum values of PSOJ and GAJ of 5 runs with

tol ¼ 10�6 and different number of particles (numindiv). Finally,
Fig. 6 represents the range of times employed by both methods
and for each number of particles.

From these figures it can be clearly deduced that PSO-
PARSIMONY has a much more robust and stable behavior, obtain-
ing better solutions even with 10 or 5 particles. Although PSO-
PARSIMONY needs more time to obtain the solutions and gets
slightly less parsimonious solutions, the reduced minimum–maxi-
mum range observed in the PSO method ensures convergence to
better solutions with a smaller number of particles and number
of algorithm runs. For example, in our application case, 10 particles
in PSO achieve better results than 40 individuals in GA. In terms of
time, 10 particles in PSO take (roughly speaking, in mean) half as
long as 40 in GA. In addition, GA needs more runs to guarantee that



Table 6
Comparative of the best MLP model obtained from 5 runs of PSO-PARSIMONY and GAPARSIMONY with a population size of P ¼ 35, different tol values and for maximum strength
(Fu) and initial stiffness (ki).

Target tol PSOJ GAJ PSONFS GANFS PSOPw2 GAPw2 PSOtime GAtime

Fu 1e-06 .06109 .06179 12 12 210.4 161.4 639.9 266.1
0.001 .06089 .06131 12 12 220.5 138.7 389.0 248.3
0.003 .06216 .06185 12 12 183.2 132.3 270.1 228.0
0.005 .06243 .06397 12 11 182.8 141.7 293.1 123.8
0.010 .06322 .06265 12 12 199.5 134.2 225.9 94.9
0.025 .06268 .06262 12 12 133.8 153.1 230.6 217.7

ki 1e-06 .05021 .05086 11 11 132.9 120.7 592.5 154.9
0.001 .05021 .05067 11 11 128.0 145.0 331.3 182.3
0.003 .05031 .05240 11 10 139.5 152.0 437.7 334.8
0.005 .05105 .05083 11 11 174.7 126.2 260.0 359.0
0.010 .05119 .05253 11 11 136.1 136.1 222.6 173.9
0.025 .05306 .05205 11 10 188.4 141.2 203.8 217.5

Table 7
PSO-PARSIMONY vs GA-PARSIMONY with a population size of P ¼ 35, different tol values and for maximum strength (Fu) and initial stiffness (ki) (results are the average of the 5
runs). Note: PSOJ and GAJ correspond to the normalized values to see the effect of tol, while PSOJtst and GAJtst correspond to the de-normalized values for comparison with previous
works.

tol PSOJ GAJ PSOJtst GAJtst PSONFS GANFS PSOtime GAtime PSOiters GAiters

Fu

1e-06 .06154 .06338 10.09 9.80 12.0 12.0 446.4 199.4 113.4 52.8
0.001 .06166 .06288 9.77 10.09 12.0 11.2 355.3 195.7 95.6 56.8
0.003 .06263 .06390 10.32 10.32 12.0 10.8 315.2 155.8 86.2 49.4
0.005 .06309 .06437 9.98 9.47 11.8 10.8 282.1 146.3 79.4 42.2
0.010 .06379 .06374 10.43 10.74 11.8 10.8 248.4 151.0 71.2 54.4
0.025 .06391 .06456 10.09 10.42 11.6 10.8 214.8 189.3 62.8 71.2

ki

1e-06 .05038 .05205 7.69 7.81 11.0 10.8 469.5 203.2 124.5 53.4
0.001 .05078 .05133 7.90 8.15 10.8 10.8 343.0 173.9 92.4 49.8
0.003 .05075 .05344 7.73 7.92 11.0 10.2 450.6 177.7 122.6 54.0
0.005 .05166 .05226 7.13 8.07 11.0 10.4 253.5 252.8 70.4 79.4
0.010 .05255 .05366 7.45 8.17 10.4 9.7 247.8 183.3 70.6 76.7
0.025 .05353 .05317 7.77 7.86 10.8 10.4 206.2 126.2 62.4 55.4
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Fig. 4. Mean of NFS (left) and Range: [min, mean, max] (right) of 5 runs of PSOJ and GAJ for Fu with different number of particles (numindiv) and tol ¼ 10�6.
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Fig. 5. Mean of NFS (left) and Range: [min, mean, max] (right) of 5 runs of PSOJ and GAJ for ki with different number of particles (numindiv) and tol ¼ 10�6.

Fig. 6. Range: [min, mean, max] of 5 runs of PSOtime and GAtime for Fu (left) and ki (right) targets with different number of particles (numindiv) and tol = 10�6.
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the solution obtained is accurate, due to the wider min–max range,
while one run in PSO guarantees a good solution. Hence, if one per-
forms 5 runs of GA and 1 in PSO, PSO would obtain a better solution
than GA being 10 times faster.

As previously discussed, it is important to note that this is not a
classical optimization problem where J and complexity are of equal
relevance. As observed in these experiments, the search is focused
on J, but it is highly probable to stop at a local minimum if the
model complexity drops too fast.

Thus, the higher initial computational cost of PSO-PARSIMONY
can be compensated by reducing the number of particles and the
number of runs. This also makes it more suitable for searching
models with larger datasets where the computational cost for each
individual is higher.
10
5. Conclusions

The search for parsimonious models by means of feature
selection and hyperparameter fitting can be a difficult and com-
putationally intensive task. The development of strategies to
reduce the number of models to be trained and evaluated is
one of the fundamental objectives in this field. In this sense, this
work shows a new methodology based on PSO for the simultane-
ous search of the best model parameters and the selection of the
most influential input features, always aiming to balance robust-
ness and parsimony. The main innovation of this method is the
strategy to update the personal best using a complexity criterion

X̂p (and thus, the local best and the global best). This allows us to
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meet the goal of obtaining not only accurate but also parsimo-
nious models.

Our experiments have shown that PSO-PARSIMONY obtains
more accurate models than our previous GA-PARSIMONY method-
ology, although it needs a higher number of iterations to converge
and obtains slightly less parsimonious models than the previous
method. However, the new method has been shown to be much
more efficient and robust in finding good solutions even with a
reduced number of individuals and fewer runs. On the contrary,
GA-PARSIMONY requires more individuals and more runs, since
it has a wider minimum–maximum range of accuracy, being much
less robust, and the individuals generated are similar to each other.
Thus, by reducing the number of particles and algorithm runs, the
PSOmethod can balance the computational effort required for each
optimization.

Although this methodology is a promising method, it has been
observed that in high-dimensional datasets the models are sub-
stantially more complex than those obtained with GA-
PARSIMONY. While GA substantially improves parsimony in a
few generations, thanks to the crossover mechanism between indi-
viduals, the PSO optimization process for feature selection, based
on particle velocity changes, makes it much more inefficient when
the number of features is high. Thus, although this methodology
can be successfully used on datasets with a small number of fea-
tures, further research is needed to improve the method with
high-dimensional datasets in order to reduce the computational
effort and find accurate and parsimonious solutions. One idea for
future research is the realization of a hybrid methodology combin-
ing GA crossover mechanisms in the early stages of the search pro-
cess to quickly improve parsimony and then using PSO to improve
model accuracy.

Although it is a promising method, it has been observed that it
substantially worsens the search for parsimony with high-
dimensionality datasets. Thus, although this methodology can be
successfully used on datasets with a small number of features, fur-
ther research is needed to improve the method for reducing the
computational effort and finding accurate and parsimonious solu-
tions with high-dimensionality datasets.
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