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Abstract

Efficient control of the static and dynamic properties of magnetic textures at the
nanoscale is one of the key elements towards energy-efficient spintronics. The
control of magnetic textures such as domain walls and skyrmions can be achieved
using several methods, including magnetic field, spin-polarized current, and laser
pulses. These approaches opened up new avenues towards exploring spintronics-
based applications such as racetrack memories, logic gates, artificial neuron synapses,
and sensors. However, the growing need to minimize the energy consumption of
computational and data storage devices imposes the to find new alternatives to
control magnetic systems. One of the promising alternatives that has emerged in
the last few years is the use of electric fields. It has been shown that in artificial
multiferroics, electric field-induced strain can be used to achieve efficient control
over magnetic systems via magnetoelastic coupling. This method showed great
potential due to its low energy dissipation rates. Despite these achievements, the
strain effects on magnetic systems are still a topic of fundamental research. The aim
of this thesis is to explore new ways to use strain to control the statics and dynamics
of magnetization in ferromagnetic systems by means of micromagnetic simulations
as well as analytical models.

First, using electro-mechanical and micromagnetic simulations, we propose a new
method to control the current-driven skyrmion motion. We show that in a piezo-
electric/magnetic device, a transverse strain gradient can be created due to the
non-uniform electric field profile in the piezoelectric layer. Such a strain gradient
will be transferred to the magnetic system, inducing a force on the skyrmions that
can be used to control their dynamics. In particular, we demonstrate that such a
force tunes the skyrmion Hall effect in both ideal and disordered films.

In the second part, we focus on exploring the effects of both uniform and space-
dependent strain on magnetic domain walls (DWs) in perpendicularly magnetized
ferromagnetic strips. We show that uniform in-plane strains enable efficient switch-
ing of the DW state between Néel and Bloch configurations. Then, we demonstrate
that both in-plane and out-of-plane strain gradients can drive DW motion in the
absence of magnetic fields and spin-polarized current. On one hand, we find that the
effect of an out-of-plane strain gradient on a DW is equivalent to that of an external
field. In-plane strain gradients, on the other hand, induce particular dynamics where
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the DW does not exhibit Walker breakdown. We demonstrate that this dynamics
relies on the dependency of the internal DW angle on the local strain, which results
in a new damping torque that prevents the onset of turbulent DW motion.

In the last part of this thesis, we put emphasis on the spin-orbit torque (SOT) driven
Néel DWs stabilized via uniform in-plane strain. We show that in narrow strips,
such DWs move with a velocity that depends linearly on the applied current up to a
threshold value, where their velocity starts gradually decreasing and subsequently
vanishes. We attribute this behavior to the precessional SOT that changes the
DW internal configuration from Néel to Bloch, which eventually cancels out the
torques contributing to the system. In wide strips, we again find that the DW
stops moving beyond a certain threshold current; however, its internal structure
exhibits a non-uniform pattern with complex transient dynamics. We explore this
transient dynamics using micromagnetic simulations as well as an extended one-
dimensional (1D) model that accounts for both time and space variations of the
DW coordinates. Using this extended model, we demonstrate that the DW internal
structure a regular ripple structure with 180◦ kinks, with the kink width being
dependent on the exchange interaction and the magnetoelastic anisotropy. Besides,
we note distortions in the DW shape, which we attribute to the competition between
SOT and the exchange torque.
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Resumen

El control eficiente de las propiedades estáticas y dinámicas de las texturas mag-
néticas es uno de los elementos clave hacia una spintrónica más eficiente desde
el punto de vista energético. El control de texturas magnéticas como las paredes
de dominio (DW, por sus siglas en inglés) y skyrmiones se ha logrado utilizando
varios métodos, incluyendo campos magnéticos, corrientes de espín y pulsos láser.
Estos enfoques han abierto nuevas vías para explorar aplicaciones basadas en la
spintrónica, como memorias magnéticas, puertas lógicas, neuronas artificiales y
sensores. Sin embargo, la creciente necesidad de minimizar el consumo de energía
de los dispositivos informáticos y de almacenamiento de datos impone la necesidad
de encontrar nuevas alternativas para controlar sistemas magnéticos. Una de las
alternativas más prometedoras que ha surgido en los últimos años es el uso de cam-
pos eléctricos. Se ha demostrado que en multiferroicos artificiales, la deformación
mecánica inducida por un campo eléctrico puede utilizarse para lograr un control
eficiente sobre sistemas magnéticos mediante el acoplamiento magnetoelástico. Este
método ha mostrado un gran potencial debido a sus bajos índices de disipación
de energía. A pesar de estos logros, la manipulación de la respuesta magnética
mediante esfuerzo mecánico sigue siendo un tema de investigación fundamental.

El objetivo de esta tesis es explorar nuevas formas de utilizar la deformación para
controlar la estática y dinámica de la magnetización en sistemas ferromagnéticos a
través de simulaciones micromagnéticas y modelos analíticos.

En primer lugar, utilizando simulaciones electro-mecánicas y micromagnéticas, pro-
ponemos un nuevo método para controlar el movimiento de skyrmiones impulsado
por corriente. Mostramos que en una estructura piezoeléctrica/magnética aparece
un gradiente de deformación transversal debido al perfil no uniforme del campo
eléctrico en la capa piezoeléctrica. Este gradiente de deformación se transferirá
al sistema magnético, induciendo una fuerza sobre los skyrmiones que se puede
utilizar para controlar su dinámica. En particular, demostraremos que esta fuerza
controla el efecto Hall de los skyrmiones tanto en películas ideales como en otras
realistas.

En la segunda parte, nos centramos en explorar los efectos de una deformación,
tanto uniforme como variable espacialmente, en la estructura y el movimiento de
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paredes en tiras ferromagnéticas magnetizadas perpendicularmente. Mostramos que
una deformación uniforme en el plano permite un cambio en la configuración de las
paredes de dominio entre patrones de Néel y Bloch. Seguidamente, mostramos que
es posible utilizar gradientes de deformación tanto en el plano como fuera del plano
para impulsar el movimiento de las paredes de dominio en ausencia de campos
magnéticos y corrientes de espín. Por un lado, encontramos que los gradientes de
deformación fuera del plano son similares a los campos externos en términos de
movimiento de las paredes de dominio. Por otro lado, mostramos que los gradientes
de deformación en el plano inducen una dinámica particular en la que la pared de
dominio no muestra la transición al régimen turbulento. Demostramos que esta
dinámica depende del ángulo interno de la pared y de la deformación local, lo que
resulta en un nuevo torque de amortiguamiento que evita el inicio del movimiento
turbulento de la pared.

En la última parte de esta tesis, se estudia el comportamiento de las paredes de
dominio de Néel impulsadas por corrientes de espin generados por acoplamiento
espin-orbita (SOT) y estabilizadas mediante deformación uniforme en el plano.
Mostramos que, en tiras estrechas, estas paredes se mueven con una velocidad
que aumenta casi linealmente hasta un umbral de corriente, a partir de la cual su
velocidad comienza a disminuir gradualmente y finalmente se anula. Atribuimos
este comportamiento al SOT precesional, que cambia la configuración interna de
la pared de Néel a Bloch, lo que finalmente anula los torques que contribuyen al
sistema. En tiras anchas, nuevamente encontramos que la pared deja de moverse
más allá de un cierto umbral de corriente. Sin embargo, su estructura interna exhibe
un patrón no uniforme con una dinámica transitoria compleja. Exploramos esta
dinámica transitoria utilizando simulaciones micromagnéticas, así como un modelo
extendido en una dimensión que tiene en cuenta las variaciones tanto temporales
como espaciales de las coordenadas de la pared de dominio. Utilizando dicho
modelo, demostramos que la estructura interna de la pared de dominio adopta
una configuración espacial caracterizada por la presencia de transiciones de 180º
localizadas, cuya anchura depende de la interacción de intercambio y la anisotropía
magnetoelástica. Además, observamos distorsiones en la forma de la pared, que
atribuimos a la competencia entre el SOT y el torque de intercambio.
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Introduction 1
Spintronics, short for "spin electronics", is a scientific field that investigates the
interplay between electron spin and charge [1]. This area of research has shown
great potential since the discovery of Giant Magnetoresistance by Albert Fert and
Peter Grunberg, for which they were awarded the Nobel Prize in 2007 [2, 3].
Spintronics has served as the foundation for various devices such as magnetic
random-access memories (MRAMs) [4, 5], logic gates [6–9], racetrack memories
[10, 11], sensors[12, 13], and artificial neuron synapses [8, 14–16]. Despite the
technological advancements, spintroncis is still a topic of investigation in terms of
the challenges related to energy costs and data capacity [17, 18]. Compared to
complementary metal-oxide semiconductor technology (CMOS), spintronics offers a
promising pathway towards a significant reduction in energy consumption, enhanced
device battery life, and fast operation speed since the spin of an electron can be
manipulated in a faster timescale than its charge. However, spintronics is still in the
early stages compared to CMOS, and physicists are continuously exploring routes to
improve its capabilities.

The development of reliable devices for spintronics applications involves a good
understanding of magnetic systems and their dynamics at the nanoscale. The
concept of magnetism is related to the atomic magnetic moment, which is a result
of the spin and orbital momentum of the electrons orbiting around the nucleus
[19]. In materials, magnetism originates from the interacting magnetic moments,
resulting in different magnetic orders such as ferromagnetism, antiferromagnetism,
and ferrimagentism [20]. Ferromagnetic materials, in particular, were the first
building blocks of spintronic devices since they provide a net magnetic moment,
allowing their measurement using simple experimental techniques. The atomic
magnetic moments in such materials align in parallel, providing strong permanent
magnetization (magnetic moment per unit volume) in the absence of external
magnetic fields. To minimize their energy, ferromagnets tend to divide into multiple
regions, where the orientation of the magnetic moments changes from one region
to another. These uniformly magnetized regions are commonly called magnetic
domains.
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Fig. 1.1.: a) Overview of the Magnetic Random Access Memory (MRAM) architecture
using an array of Magnetic Tunnel Junctions (MTJs) for data storage. The
inset depicts a single MTJ consisting of two ferromagnetic layers separated by a
metallic layer. The lower layer, known as the fixed layer, maintains a constant
magnetization direction, while the upper layer, referred to as the free layer, allows
for reversible magnetization switching. In MRAMs, information is encoded using
the relative magnetic orientations of these layers: "0" when they are parallel
and "1" when they are antiparallel. The resistance of the MTJ changes based
on this alignment, facilitating data read and write operations. Adapted from
[4]. b) Schematic representation of a magnetic Domain Wall (DW) showing two
antiparallel magnetic domains separated by a gradual transition in magnetization.
c) Schematics of the magnetic Racetrack Memory concept, where a ferromagnetic
nanowire contains multiple magnetic domains separated by DWs. Data is encoded
based on the presence or absence of these DWs, and it is transported using highly
polarized spin currents that drive the DWs along the wire. The inset illustrates
the components for reading and writing data in racetrack memory. Data retrieval
involves measuring the TMR of an MTJ element connected to the racetrack.
Writing data is achieved by employing the fringing fields of a DW manipulated
within a second ferromagnetic nanowire oriented perpendicular to the storage
nanowire. Adapted from [10]. d) Illustration of a magnetic skyrmion structure.
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Manipulating the magnetization of a ferromagnet is traditionally done using a
variety of techniques including magnetic fields and spin-polarized currents. This
allowed for the discovery of several magneto-resistive effects [21–23] such as
anisotropic magnetoresistance (AMR), tunneling magnetoresistance (TMR), and
the giant magnetoresistance (GMR), which paved the way for the first realization
of MRAMs and sensors as shown in Fig.1.1(a). The discovery of magnetic textures
offered more versatility for magnetization manipulation. Magnetic domain walls
(DWs) are gradual transitions of magnetization between two adjacent domains
oriented in different directions, as shown in Fig.1.1(b). Efficient DW dynamics was
a key element in opening avenues to explore a new generation of spintronic devices,
such as the DW-based racetrack memory proposed by S. Parkin in 2008 [10]. This
type of memory offers advantages like non-volatility, high-density storage, and fast
access time. The racetrack memory, which is shown in Fig.1.1(c), is based on the
motion of magnetic domains along a nanowire. The data in such memory is encoded
in the domains between adjacent DWs or in the DW itself. This technology has
the potential to overcome the limitations of traditional RAMs, such as their volatile
nature and limited scalability.

The discovery of topological 2D magnetic textures, such as magnetic skyrmions,
marked a breakthrough in the history of spintronics. Skyrmions were first proposed
theoretically by A.N. Bogdanov in 1989 [24] and later observed experimentally by
S. Muhlbauer et al. in 2009 using neutron scattering techniques [25]. Afterwards,
extensive research has been conducted to study their static and dynamic properties
[26–31]. Skyrmions, which are twisting magnetization textures (see Fig.1.1(d)),
are considered topologically protected with a significant robustness against defects
and thermal fluctuations that typically exist in real devices. However, they have
exhibited undesired properties, such as the skyrmion Hall effect (SkHE). SkHE
occurs when skyrmions are subjected to an external driving force and deviate
from their path due to the gyrotropic nature of magnetization dynamics. This
effect is detrimental to the performance of skyrmion-based devices, such as racetrack
memories, where skyrmions are intended to follow a straight path from the writing to
the reading elements of the track. To solve this problem, researchers proposed several
methods, such as the use of synthetic antiferromagnets (SAF) (two ferromagnetic
layers coupled antiferromagnetically via metallic spacer) [32], narrow magnetic
films to confine the skyrmion between the system boundaries [33], or engineering
the spin-orbit coupling (SOC) in the system [34]. The good understanding of
skyrmion physics plays a pivotal role in the development of many skyrmion-based
computing devices, including logic [14, 35–37], neuromorphic [38, 39], and memory
applications [40, 41].
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There is a growing need to explore methods that provide more freedom to drive or
control magnetization dynamics [42]. In recent years, one promising approach has
been the use of hybrid heterostructures, including multiferroics [43–45]. In such
systems, the magnetization control can be accomplished using direct or indirect
electric field effects. While direct electric field effects allow the magnetization con-
trol through magnetoelectric effect [46], indirect effects enable the magnetization
manipulation via secondary mechanisms such as electric field-induced strain [47,
48]. Mechanical strain has been demonstrated to be an efficient tool to control
magnetization in different systems [49–52]. Motivated by these facts, the aim of this
thesis is to explore possible ways of using strain to drive or control magnetization
dynamics in perpendicularly magnetized systems, using a combination of micro-
magnetic simulations and analytical models. Our goal is to study the potential of
strain-based magnetization control and unveil its underlying physical mechanisms.

This thesis is structured in the following way:

Chapter 2 is devoted to presenting the theoretical background of this work. We
will begin with an overview of the basic concepts of magnetism and introduce the
micromagnetic formalism. Subsequently, we will discuss magnetization dynamics,
introducing the Landau-Lifshitz-Gilbert equation, and addressing the additional
torques arising from spin-polarized currents. Finally, we will explore magnetic
patterns, DWs, and skyrmions in particular, discussing their static and dynamic
properties from the micromagnetic perspective.

In chapter 3, we propose a strain-based approach to control the SkHE for current-
driven skyrmion dynamics. We demonstrate that using the inverse piezoelectric
effect, a transverse strain gradient can be generated in hybrid piezoelectric/magnetic
systems. Due to the magnetoelastic coupling, this gradient generates a force acting
on the skyrmions that can be used to control their trajectories for any arbitrary
applied current. Moreover, we show that our proposed method works efficiently in
the presence of structural disorder and enables the control of skyrmion motion with
moderate voltages.

In chapter 4, we investigate the influence of uniform and space-dependent strain
on magnetic domain walls in perpendicularly magnetized systems. On one hand, a
uniform strain is shown to enable reversible switching of the DW configuration at
rest between the Bloch and Néel patterns. On the other hand, strain gradients are
used to drive magnetic domain walls in the absence of magnetic fields and external
currents. We demonstrate that due to the dependence of the domain wall energy
on the in-plane strain, it moves rigidly regardless of the strain gradient strength.
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Furthermore, we demonstrate that average DW velocities in the range of 500 m/s
can be obtained using voltage-induced strain in piezoelectric/ferromagnetic devices
under realistic conditions.

Chapter 5 is devoted to investigating current-driven Néel DW dynamics in presence
of uniform in-plane strain. The work is be based on micromangetic simulations
and analytical models and it demonstrates that bistable Néel DWs stabilized by
non-chiral interaction (in-plane strain in our case) exhibit very different dynamics
with respect to conventional chiral Néel DWs. The investigation will also show that
such DWs behave differently in narrow strips compared to wide ones, which display
a much richer behaviour. In particular, the DW internal structure exhibits 180◦-kink
structures, which forces the DW to deform adopting a ripple-like shape.

In chapter 6 the main conclusions of work and future perspectives are outlined.
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Theoretical background 2
This chapter serves as a theoretical background for our research, providing the nec-
essary tools to understand the behavior of ferromagnetic systems at the nanoscale.
It starts by introducing the basic concepts of magnetism. Then, it briefly reviews the
micromagnetic theory, a framework that examines magnetic systems by considering
continuous magnetization vector fields rather than individual magnetic moments.
Within this chapter, we discuss the contributions to the total micromagnetic energy
density, which arise from interactions of different nature. Furthermore, this chap-
ter delves into magnetization dynamics governed by the Landau-Lifshitz-Gilbert
equation along with its associated torques. It discusses both the static and dynamic
properties of magnetic textures, such as DWs and skyrmions, within the micromag-
netic formalism. This chapter will serve as the cornerstone for the modeling and
analytical investigations discussed within this thesis.

2.1 Basic concepts in magnetism

The magnetic moment is a fundamental quantity in magnetism [53, 54]. From a
classical perspective, it can be associated with electrical current loops. The magnetic
moment µ corresponding to a current I circulating through a loop of radius R

reads

µ = I

∫
dS = IπR2n (2.1)

where S is the surface vector with modulus equal to the surface area of the loop and
n is the vector normal to the surface. The magnetic moment µ is measured in units
of A m2.

Since electric charges have mass, the magnetic moment µ is closely linked to the
angular momentum L

µ = γL (2.2)

7



where γ is a constant called the gyromagnetic ratio, which is proportional to the
mass-to-charge ratio, as we will demonstrate later.

In presence of a uniform magnetic field B, the magnetic moment µ experiences a
torque that reads [20]

τ = µ × B (2.3)

Since the torque is related to the time variation of the angular momentum τ = dL
dt

Eq. (2.3) can be transformed into

dµ
dt

= γµ × B (2.4)

This equation dictates that the magnetic moment will precess around the magnetic
field B with a frequency fL = γ|B|

2π , which is known as Larmor frequency [55]. The
sketch of the magnetic moment preccesion is represented in Fig. 2.1.

The classical description of the magnetic moment can be used to describe the atomic
magnetic moment. Let us consider an electron orbiting around a proton. Relying
on Bohr’s atomic model, an electron in the ground state possesses an angular
momentum Le = me v d n = h̄n, with me being the electron mass, v its velocity, and
d the orbit radius. The electric current generated by the electron motion is I = − |e|

T ,
where T = 2πd

v is the orbital period and e is the electron charge with negative sign.
Hence, the electron magnetic moment reads

µ = Iπd2 = − |e|
2me

Le = −µB (2.5)

where µB = 9.274 × 10−24A m2 is Bohr magneton, which is commonly used as a
unit to measure the magnetic moment at the atomic scale. From Eq. (2.5), we can
infer the electron’s gyromagnetic ratio γ = − e

2me
. The classical description that

relies only on the electron orbital angular momentum is not enough to explain the
origin of magnetism, and spin, the electron’s intrinsic angular momentum, needs
to be taken into account. When measured along a specific direction, the spin of an
electron takes a value of S = ± h̄

2 . The magnetic moment associated with the spin
can be expressed as [55]

µ = −gµB
h̄

S (2.6)
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Fig. 2.1.: Illustration of a magnetic moment µ precessing around a uniform magnetic field
B due to the torque τ

where g is the so-called g-factor, which is approximately g ≈ 2 for electrons [20].

The quantum origin of the magnetic moment demonstrates the inadequacy of the
classical approach to fully explain the underlying principles of magnetism. However,
when dealing with materials containing millions of atomic magnetic moments, the
quantum approach becomes impractical due to the necessity of solving complex
quantum many-body problems [56]. To bridge the gap between the classical and
quantum descriptions, a mesoscopic approach known as Micromagnetism was
developed. In this approach, a magnetization vector is employed to represent the
magnetic moment per unit volume, denoted as M =

∑ µ
V , with V representing an el-

ementary volume of dimensions much smaller than the atomic scale. It is considered
that the magnetization is uniform within this volume and that it changes smoothly
from one elementary volume to another, allowing us to treat M as a continuous
and smooth vector field throughout the system. This is the main assumption of the
micromagnetic formalism, which is described in the next section.

2.2 Micromagnetism

Micromagnetism is a theory that describes magnetic materials at the sub-micrometer
scale. Unlike purely quantum mechanical theories, micromagnetics does not account
for individual spins or the non-deterministic effects. Instead, this theory successfully
incorporates essential quantum mechanical effects that underlie ferromagnetism,
such as the exchange interaction, within a classical framework that describes mag-
netization in terms of continuous vector fields. The fundamental assumption in this

2.2 Micromagnetism 9
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Fig. 2.2.: Diagram illustrating different approaches to describe magnetism across varying
length scales. The micromagnetic theory, central to this thesis, operates within
the mesoscopic scale, spanning from nanometers to micrometers. This theory
treats the magnetization as a smooth vector field.

model is that the exchange interaction within the magnetic material is sufficiently
strong to maintain magnetization alignment on a characteristic volume V , signifi-
cantly larger than the atomic lattice volume a3 but small enough to resolve magnetic
textures such as DWs and skyrmions [57], as illustrated in Fig. 2.2.

In a ferromagnetic specimen, the spin direction changes only by a small angle
between neighboring atoms due to the strong exchange interaction. This legitimates
the use of the magnetization vector field M(r) to describe the magnetic system
within the micromagnetic theory. This magnetization vector changes smoothly in
space and can be expressed as

M(r) = Msm(r) (2.7)

where Ms is the saturation magnetization that represents the modulus of M(r) and
is considered constant, which is a valid approximation as long as we are well below
the Curie temperature T ≪ TC [58]. m(r) is the normalized magnetization vector,
and it is the main variable of micromagnetics. Since we assume a fixed modulus
for m(r), in particular |m(r)| = 1, the derivative of such a vector will always be
orthogonal to it, giving
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m(r) · dm(r) = 0 (2.8)

This interesting property will be used in later derivations within this thesis.

2.3 Micromagnetic energy terms

In this section, the total micromagnetic free energy is discussed and an overview of
the terms involved is provided. Despite the quantum origin of some energy contri-
butions such as exchange and anisotropy [20], micromagnetic theory successfully
incorporates them in a semi-classical framework using the assumptions discussed in
Sec. 2.2, as will be shown in the following [55].

2.3.1 Exchange energy

The exchange interaction favors the alignment of neighboring spins (i.e. magnetic
moments) in the same direction, resulting in the ferromagnetic order. This interac-
tion is a purely quantum mechanical effect, and it is related to the fact that identical
fermions (e.g. electrons) must have anti-symmetric wave functions, as the Pauli
exclusion principle dictates [59, 60]. Hence, two electrons with the same spin cannot
occupy the same position, which minimizes Coulomb energy [56]. The exchange
energy between neighboring spins at the atomic scale reads [61]

Eex = −
∑
ij

Jij(Si · Sj) (2.9)

where Jij is the exchange integral between the spin i and j.

Assuming that Si and Sj have the same modulus |S|, Eq. (2.9) can be written as

Eex = −
∑
ij

Jij |S|2 cos ϕij (2.10)

where ϕij is the angle between the spins Si and Sj .

For infinitesimal tilting between two neighboring spins, one can use Taylor expansion
where cos ϕij = 1 − ϕij

2

2 +O
(
ϕij

4
)
, which simplifies Eq. (2.10) into
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Eex = cst +
∑
ij

Jij |S|2

2 ϕij
2 (2.11)

where cst = −
∑

ij Jij |S|2 is a constant.

Considering that ϕij = |mi − mj | ≈ (rij · ∇) m, where rij is the distance vector be-
tween neighboring spins, the exchange energy per unit volume in the micromagnetic
framework reads

Eex = Aex
[
(∇mx)2 + (∇my)2 + (∇mz)2

]
(2.12)

where Aex = 2zJij |S|2
a being called the exchange stiffness with z is the number of

atoms in one unit-cell of the crystal structure, and a is the lattice constant.

2.3.2 Dzyaloshinskii-Moriya energy

Another type of exchange interactions that occurs in magnetic materials is the so-
called anti-symmetric exchange, known as Dzyaloshinskii-Moriya interaction (DMI).
In 1960, Dzyaloshinskii constructed a model to describe weak ferromagnetism.
Based on symmetry arguments, he introduced an asymmetric term to the exchange
Hamiltonian that was later named the Dzyaloshinskii-Moriya interaction [62, 63].
Moriya found that the mechanism behind this interaction relies partly on spin-orbit
coupling. In a simple description, the mechanism that leads to this anti-symmetric
interaction can be seen as a particular case the indirect exchange (see [64] pag. 44),
but it includes a non-magnetic atom with strong spin-orbit coupling as sketched in
Fig. 2.3. The DMI energy expression at the atomic scale is given as

EDM =
∑
ij

dij · (Si × Sj) (2.13)

In this expression, Si and Sj represent the spins in the neighboring sites and dij is
the DMI vector, whose magnitude is measured in Joules [63].

The DMI can exist in both bulk and thin magnetic films in different forms. As our
work focuses on thin magnetic layers, we will discuss only the interface DM (iDMI).
The iDMI occurs typically in thin multi-layers with broken inversion symmetry, such
as heavy metal/ferromagnetic (HM/FM) systems, as illustrated in Fig. 2.3 [65, 66].
The iDMI energy per unit volume in the micromagnetic framework reads [67, 68]
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Fig. 2.3.: Schematic representation of the interface Dzyaloshinskii-Moriya interaction mech-
anism where two ferromagnetic atoms interact through a heavy metal atom with
strong SOC.

EDM = D[(m · ∇)mz − (∇ · m)mz] (2.14)

where D is the so-called continuous effective DMI constant and is measured in the
units of J m−2 [69]. The relationship between D and d = |dij | depends on the lattice
type and is inversely proportional to both the lattice constant a and the film thickness
tFM. Specifically, for a simple cubic lattice oriented along the [001] direction, D can
be expressed as D = d

a tFM
. Similarly, in the case of a face-centered cubic lattice

oriented along the [111] direction, the relationship reads D = d
√

3
a tFM

[69].

2.3.3 Magneto-crystalline anisotropy energy

The magneto-crystalline anisotropy is associated with the spin-orbit coupling at
the quantum scale. In simple words, this type of anisotropy originates from the
interaction between the spins and the electric fields of the atomic lattice [20, 64].
This interaction causes the spins to align along a specific crystallographic axis [20].
The symmetry of the lattice structure is responsible for the manifestation of distinct
magnetic anisotropy types. For systems with uniaxial anisotropy, the micromagnetic
energy density reads

Ean = Ku(1 − (m · ek)2) (2.15)
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with ek being the unit vector along the easy axis and Ku the uniaxial anisotropy
constant measured in the units of J m−3.

When examining the role of the uniaxial anisotropy constant Ku on defining the
magnetization orientation, we can determine two distinct situations: first, if Ku < 0,
the magnetization prefers to lay in the plane perpendicular to ek, called easy plane.
However, if Ku > 0 the magnetization prefers to align with the easy axis ek. In
the case of ultra-thin multilayer structures such as Oxide/FM/HM, an additional
contribution to Ku arises due to interfacial effects. This contribution is referred
to as surface anisotropy and is due to the spin-orbit interaction with neighboring
layers such as heavy metals [70–74]. Surface anisotropy exhibits an inverse scaling
relationship with the thickness of the magnetic film and plays a pivotal role in
creating PMA [75]. Considering both sources of anisotropy, namely bulk and surface,
the uniaxial anisotropy constant can be expressed as

Ku = Kbulk + Ks
tFM

(2.16)

where Kbulk is bulk magneto-crystalline anisotropy constant in J m−3, Ks is the sur-
face magneto-crystalline anisotropy constant in J m−2, and tFM is the ferromagnetic
layer thickness.

2.3.4 Zeeman energy

Zeeman energy is related to the interaction of the magnetic moments with an
externally applied magnetic field. It tends to align the magnetization of the system
parallel to the field. In the continuum micromagnetics the Zeeman energy per unit
volume reads

EZ = −µ0Msm · Hext (2.17)

where Hext is the applied magnetic field in A m−1.

2.3.5 Magnetostatic energy

The magnetostatic energy refers to the energy of the magnetic moments in their self-
generated magnetic field [76–78]. The magnetostatic field due to the magnetization
itself can be obtained from the scalar potential as
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Hd(r) = −∇Φ(r) (2.18)

with

Φ(r) = 1
4π

[∫
Ω

ρ(r′)
| r − r′ |

dr′ +
∫

∂Ω

σ(r′)
| r − r′ |

dr′
]

(2.19)

where ρ = −Ms∇ · m is the magnetic volume charge density and σ = Msm · n is
the magnetic surface charge density, with n being the vector normal to the surface.
The magnetostatic energy per unit volume is expressed as

Ed = −µ0Ms
2 m · Hd (2.20)

In the case of uniformly magnetized bodies the averaged magnetostatic field is given
by

Hd = −N · M (2.21)

where N is a diagonal tensor called demagnetizing tensor, whose components are
called demagnetizing factors.

2.4 Energy minimization and effective field

The total micromagnetic energy includes all the energy contributions discussed
within sec. 2.3 and reads

E(m) =
∫

V

(
Aex | ∇m |2 +D[(m · ∇)mz − (∇ · m)mz] + Ku[1 − (m · ek)2]−

µ0Ms
2 m · Hd − µ0Msm · Hext

)
dV (2.22)

where the integration extends over the volume V of the ferromagnet.

As shown in Eq. (2.22), the total energy is a functional of the magnetization m(r),
which is a space-dependent vector field. Hence, to find the equilibrium state of the

2.4 Energy minimization and effective field 15



energy in Eq. (2.22), the latter should be minimized, fulfilling δE = 0 with δE being
its variational. The variation of Eq. (2.22) reads [79]

δE(δm) =
∫

V
(2Aex∇m · ∇(δm) + D[(∇ · m)δmz + mz(∇ · δm) − ∇mz · δm

−m · ∇δmz] − 2Ku(m · ek)(ek · δm) − µ0Msδm · Hd − µ0Msδm · Hext) dV

(2.23)

where ∇m·∇(δm) = ∇mx∇(δmx)+∇my∇(δmy)+∇mz∇(δmz), and the reciprocity
theorem was used to evaluate the variational of the magnetostatic energy, since the
a variation of m induces a variation of Hd [79].

Using the divergence theorem together with the identity ∇ · (AB) = A(∇ · B) + B ·
(∇A) we can rewrite Eq. (2.23) as

δE(δm) = −
∫

V
(2Aex∇ · (∇m) − 2D[(∇ · m)ez + ∇mz] + 2Ku(m · ek)ek

+µ0MsHd + µ0MsHext) · δm dV +
∮

S

(
2Aex

∂m
∂n + D[m × (n × ez)]

)
· δm dS

(2.24)

where n is the vector normal to the surface, and we used the fact that mz =
m · ez =⇒ δmz = δm · ez to evaluate the variational of iDMI energy. The first term
in the rhs of Eq. (2.24) denotes the integral over the ferromagnetic volume and
the second one refers to the integral over the surface. ∂m

∂n is the derivative of the
magnetization across the direction normal to the surface.

Eq. (2.24) can be further simplified to

δE(δm) = −d

∫
V

(µ0MsHeff · δm) dV +
∮

S

(
2Aex

∂m
∂n + D[m × (n × ez)]

)
·δmdS

(2.25)

where the effective field of the system reads
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Heff = 2Aex
µ0Ms

∇2m + 2D

µ0Ms
[(∇ · m)ez − ∇mz]

+ 2Ku
µ0Ms

(m · ek)ek + Hd + Hext (2.26)

Considering the constraint |m| = 1, the variation of the magnetization δm is solely
related to the change of the magnetization orientation. Hence, we can express
it as δm = m × δθ, with δθ being the variation of the magnetization orientation.
Therefore, for a system without iDMI contribution (D = 0), Eq. (2.25) becomes

δE(δm) = µ0Ms

∫
V

(m × Heff) · δθ dV +
∮

S

(
2Aex

∂m
∂n × m

)
· δθ dS (2.27)

As mentioned in the beginning of this section, the minima of the energy functional
must satisfy δE(δm) = 0 for any variations of δθ. Hence, Eq. (2.27) implies that
equilibrium must fulfill two conditions:

Heff × m = 0, ∀r ∈ V (2.28a)

∂m
∂n × m = 0, ∀r ∈ S (2.28b)

Eq. (2.28a) is generally known as Brown’s condition [80] and dictates that in
equilibrium, the magnetization is aligned with the effective field at every point of
the ferromagnet. On the other hand, Eq. (2.28b) which represents the boundary
condition, dictates that the variation of m normal to the surface S is parallel to m.
As mentioned in sec. 2.2, the spatial derivatives of the magnetization m are always
orthogonal to it. Hence, the boundary condition in Eq. (2.28b) is usually reduced
to ∂m

∂n = 0. In the case of non-zero iDMI (D ̸= 0), the boundary condition in Eq.
(2.28b) is modified to include the iDMI contribution and reads [69, 81]

∂m
∂n = D

2Aex
m × (ez × n) (2.29)
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2.5 Magnetoelastic energy

Up to here, we discussed the conventional micromagnetic energy terms as well as
their corresponding effective fields. However, in this thesis, our aim is to explore
the effects of mechanical strain on magnetization static and dynamic processes
via magnetoelastic coupling. The magnetoelastic coupling relates to the change in
magnetization due to a mechanical deformation. This includes the change of various
magnetic interactions such as exchange, DMI, and anisotropy [82–84].

Let us consider that our anisotropy energy density is a function of the magnetization
m and the strain tensor εij , where Ean = Ean(m, εij). To find out the strain-induced
variation of the anisotropy energy density, we expand it in Taylor series at εij as

Ean = Ean(m, 0) +
∑
ij

∂Ean(m, 0)
∂εij

εij (2.30)

The second term on the rhs of Eq. (2.30) shows the change of the magneto-crystalline
anisotropy energy due to the mechanical strain contribution. From Eq. (2.30), the
magnetoelastic energy density can be expressed as

Emel =
∑
ij

∑
kl

Bijkl (ei · m) (ej · m) εkl (2.31)

where we used ∂εij Ean(m, 0) =
∑

ij

∑
kl Bijkl (ei · m) (ej · m) as an expansion coef-

ficient with Bijkl being the magnetoelastic coupling tensor and ei is the unit vector
along the strain direction. Considering cubic symmetry, the magnetoelastic energy
density reduces to [85]

Emel =
∑

i=x,y,z

B1εiim
2
i +

∑
i,j=x,y,z

B2εijmimj (2.32)

where B1 = B1111 and B2 = B2323 are the magnetoelastic coupling tensor compo-
nents in Voigt notation [86–88].

When magnetized along a specific direction, a magnetostrictive ferromagnet deforms.
Its elastic energy reads [89, 90]

Eel = 1
2
∑
ij

∑
kl

cijklεijεkl (2.33)
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where cijkl is the elastic stiffness tensor. Assuming cubic symmetry, Eq. (2.33)
reads

Eel =
∑

i=x,y,z

c11
2 ε2

ii +
∑

i,j=x,y,z

c12εiiεjj +
∑

i,j=x,y,z

2c44ε2
ij (2.34)

where c11 = c1111, c12 = c1122 and c44 = c2323 are the elastic tensor component in
Voigt notation.

For a uniformly magnetized ferromagnet with a free surface boundary, the spon-
taneous magnetostrictive deformation can be found by minimizing the sum of Eq.
(2.31) and Eq. (2.33) with respect to εij . This minimization yields the so-called
spontaneous strain tensor εeq

ij , whose components read

εeq
ii = B1

c12 − m2
i (c11 + 2c12)

(c11 − c12)(c11 + 2c12) (2.35a)

εeq
ij = − B2

2c44
mimj for i ̸= j (2.35b)

which presents the spontaneous deformation as a function of the magneto-elastic cou-
pling constant and the elastic stiffness constants. On the other hand, the conventional
equations used to characterize experimentally the spontaneous magnetostrictive
deformation for cubic crystals reads [90]

εeq
ii = 3

2λ100(m2
i − 1

3) (2.36a)

εeq
ij = 3

2λ111mimj for i ̸= j (2.36b)

where λ100 and λ111 are the magnetostriction constants along the [100] and [111]
crystallographic directions, respectively. Note that for an isotropic material λ100 =
λ111 = λs, with λs being the saturation magnetostriction constant.

Comparing the coefficients in Eqs. (2.35) and Eqs. (2.36), we can get the expression
of the magnetoelastic coupling constants as
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a) b)
V

Fig. 2.4.: Illustration depicting two methods of inducing strain in ferromagnetic materials:
a) Mechanical bending, where a magnetic thin film adheres to a flexible holder
under compression. Adapted from [91]. b) Sketch of a FM/PZ heterostructure,
strain in this case is generated by applying a voltage to the piezoelectric layer,
which is transmitted to the ferromagnet on top.

B1 = −3
2λ100(c11 − c12) (2.37a)

B2 = −3λ111c44 (2.37b)

Note that the unit of B1 and B2 is J m−3.

A common method to manipulate the magnetization of ferromagnetic systems is
based on applying external strain. This strain can be generated through mechanical
bending or by using a piezoelectric (PZ) material, as sketched in Fig. 2.4. It has
been demonstrated that in PZ/magnetic heterostructures, a strain as high as 1%
can be achieved by applying appropriate potential differences [92]. This strain
is significantly larger than the magnetic-induced deformation typically exhibited
by a ferromagnet, which is usually around 0.01% [85, 93]. Let us consider an
externally strained ferromagnetic system with cubic symmetry. We will disregard the
magnetic-induced deformation, as it is usually negligible compared to the externally
induced one. This simplification allows us to express the magnetoelastic energy in
the continuum approximation by integrating Eq. (2.32) as

Emel =
∫

V

 ∑
i=x,y,z

B1εii(ei · m)2 +
∑

i,j=x,y,z

B2εij(ei · m) (ej · m)

dV (2.38)
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For uniaxial strain εii this energy contribution is formally equivalent to the anisotropy
one Eq. (2.15), whereas a more complex dependency is found when shear strain εij

(i ̸= j) is present.

As mentioned in Sec. 2.4, to obtain the effective field related to an arbitrary energy
contribution its variation over m should be computed. Following the same procedure
in Sec. 2.4 the variational of the magnetoelastic energy reads

δEmel(δm) =
∫

V

 ∑
i=x,y,z

2B1εii(ei · m)ei +
∑

i,j=x,y,z

B2εij (ej · m) ei

+
∑

i,j=x,y,z

B2εij(ei · m)ej

 · δmdV (2.39)

The effective field due to the magnetoelastic coupling reads

Hmel =
∑

i=x,y,z

2B1εii(ei · m)ei +
∑

i,j=x,y,z

B2εij [(ej · m) ei + (ei · m)ej ] (2.40)

By adding Eq. (2.40) to Eq. (2.26), we can study the effect of strain on magnetization
dynamics, which is the main goal of the present thesis. It is noteworthy, that the
magnetoelastic energy does not modify the micromagnetic boundary conditions.

2.6 Magnetization dynamics

As anticipated in Sec. 2.1, in the presence of a uniform magnetic field, magnetic
moments experience a torque that triggers their precession around it, as evidenced
by Eq. (2.4). The same equation can be used to describe the dynamics of the
magnetization vector, but the latter will precess around the local effective field
originating from the various interaction involved in the system. However, due to the
interaction with the physical environment, the magnetization dynamic is modified
and instead of continuous precession the magnetization relaxes progressively and
aligns with Heff due to energy dissipation [94, 95]. Within continuum micromagnetic
theory, this mechanism is phenomenologically described by the Landau-Lifshitz (LL)
equation [96], which characterizes the spatially resolved magnetization dynamics in
presence of an effective field Heff . The LL equation was later modified by adding a
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a) b)

Fig. 2.5.: Schematic representation the magnetization dynamics mechanism. a) Magnetiza-
tion presession around the effective field due to the precessional torque. c) The
magnetization trajectory under the additional action of the damping torque.

phenomenological damping term incorporated by Gilbert [97]. Both formulations
are entirely equivalent when appropriate parameter transformations are applied.
However, the commonly used equation is the so-called Landau-Lifshitz-Gilbert (LLG)
equation, which reads

dm
dt

= −γ0m × Heff + αm × dm
dt

(2.41)

where is γ0 = |γ|µ0 with µ0 being the vacuum permeability, and α the phenomeno-
logical damping constant.

Eq. (2.41) can be written in explicit form if we multiply both sides by m, which
yields m × dm

dt = −γ0m × (m × Heff) − αdm
dt . Substituting this in Eq. (2.41) gives

the Landau-Lifshitz equation mentioned in the beginning of this section

dm
dt

= − γ0
1 + α2 m × Heff + αγ0

1 + α2 m × (m × Heff) (2.42)

To gain a better understanding of magnetization dynamics and relaxation, let us
consider a simplified scenario where all the spins in a magnetic system move together
coherently. In this case, we can treat the magnetization as a single spin, also known
as a macrospin [98]. Eq. (2.42) describes the behavior of this macrospin subject to
the action of an effective field Heff . The first term on the right-hand side represents
a precessional torque. This torque causes the macrospin to undergo a continuous
rotation around Heff as shown in Fig. 2.5(a). On the other hand, the second term is
a damping torque. This torque acts perpendicular to the precessional torque and
tends to align the macrospin parallel to the effective field, as shown in Fig. 2.5(b).
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Fig. 2.6.: Schematics of spin Hall effect. A longitudinal charge current, JHM, in heavy metal
(HM) is converted into a transverse spin current by spin-orbit scattering. The spin
current leads to a spin accumulation at the HM/FM interface that diffuses across
the interface into the FM and exerts a torque on the magnetization.

To take into account the contribution of spin-polarized currents on magnetization
dynamics, the LLG equation Eq. (2.41) needs to be augmented with external torques.
In this thesis, we will limit our discussion to the spin-orbit torque (SOT), which
originates from the spin Hall effect (SHE) in FM/HM systems. The spin Hall effect,
initially discovered by Mikhail I. Dyakonov in 1971 [99], has been experimentally
observed in FM/HM systems with different HM materials. SHE manifests itself when
a flow of electric charges traverse through a HM layer with a strong SOC. It leads
to a spin accumulation on the surfaces perpendicular to the current direction, that
subsequently diffuses into the FM layer exerting a torque on its magnetization, as
shown in Fig. 2.6. This torque is called SOT, and expressed as

τSOT = |ge|
2

µBJHMθsh
Ms|e|tFM

[m × (m × σ) − m × σ] (2.43)

where θsh is the spin Hall angle, JHM is the charge current density injected to the
HM layer and σ = eJ × ez is the spin current polarization with eJ being the unit
vector along the charge current direction as sketched in Fig. 2.6.

The SOT can be added to the LLG equation as an external torque, which become

dm
dt

= −γ0m × Heff + αm × dm
dt

+ τSOT (2.44)

2.7 Numerical micromagnetics

As mentioned before in this chapter, micromagnetic theory deals with the behavior
of magnetic materials at the nanoscale, typically focusing on magnetic domains,
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domain walls and other magnetic textures. Numerical methods play a crucial role
in understanding and simulating these complex phenomena. These methods pro-
vide means to solve the mathematical equations that govern the magnetic behavior,
namely LLG Eq. (2.41). Several numerical methods were used to solve micromag-
netic problems, such as finite difference (FDM) and finite element (FEM) methods.
While FEM are more suitable for investigating magnetic systems with curved and
non-regular shapes such as nanotubes or deformed systems, FDM shows satisfying
results in the case of regular systems, particularly for thin films and multilayers. In
this work, we used Mumax3 [100], an open-source micromagnetic solver that uses
FDM method, to solve LLG equation. Mumax offers built-in energy minimization
algorithms, different numerical integration schemes for solving LLG, a friendly user
interface and other custom-tailored features to add contributions to the effective
field. Mumax3 is based on the FDM methods where the simulated system is dis-
cretized in a regular mesh of cuboid cells. To avoid numerical errors, it is essential
to chose a cell size smaller than the exchange length ℓex =

√
Aex

µ0M2
s

or the wall width

δW =
√

Aex
Ku−µ0M2

s/2
in PMA systems.

In numerical micromagnetics, the magnetostatic contribution is the most time con-
suming part of the simulation. Mumax takes advantage of the periodic nature of the
FDM discretization and evaluates the demagnetizing field as a discrete convolution
of the magnetization with the demagnetizing tensor N̄ as Hd i = N̄ij ∗ Mi with
i, j = 1, ..., n being the cell number and (∗) the convolution product. Mumax uses
direct and inverse Fourier transforms together with the convolution theorem to
accelerate the demagnetizing field computation [100]. Additionally, the simulations
are made using graphical processing units (GPUs) instead of central ones (CPUs),
which make mumax a very efficient micromagnetic tool.
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2.8 Magnetic textures

2.8.1 Magnetic domain walls

Typically, a bulk ferromagnetic specimen splits into multiple regions known as
domains. The magnetization orientation changes from one domain to the next, and
the boundaries separating these domains are called magnetic domain walls (DWs).
To understand the physical mechanisms involved in the magnetization switching of
a ferromagnetic material, it is essential to grasp both the static and dynamic aspects
of magnetic DWs. In the context of this thesis, our focus will be primarily on DWs in
perpendicularly magnetized thin ferromagnetic strips.

In a thin ferromagnetic strip with PMA, two DW types can appear. On one hand,
the so-called Bloch DWs, which typically appear in single FM layers where iDMI is
not involved [85]. In a Bloch DW the magnetization rotates gradually about the
axis perpendicular to it. On the other hand, the so-called Néel DWs, which usually
stabilize in HM/FM thin layers with significant iDMI [67]. Contrary to Bloch DWs,
the magnetization in a Néel DW rotates along the axis parallel to it. Fig. 2.7(a) and
(b) shows micromagnetic simulation snapshots of the two DW types.

In this section, we will discuss the static and dynamic features of magnetic DWs
using a one-dimensional (1D) model. This model maps LLG equation Eq. (2.41)
into the DW parameters, namely the DW position q and angle φ, and assumes that
the DW profile is one-dimensional [101]. In the derivation of the model we will
write LLG in spherical coordinates assuming m = (sin θ cos ϕ, sin θ sin ϕ, cos θ), with
θ and ϕ being the spherical coordinates as sketched in Fig. 2.7(c).

Static properties of a magnetic DW

Let us first examine the static properties of a magnetic DW, namely its width ∆ and
its internal angle φ (defined as the angle with respect to x−axis), which implicitly
defines the DW type. We assume that the magnetization changes only along x-axis,
and that the DW profile is given by the so-called Walker ansatz (see Appendix. A.1
for detailed derivation of the ansatz) [101, 102], which reads

θ(x, t) = 2 tan−1 eQ
x−q(t)

∆ (t) (2.45a)

ϕ(x, t) = φ(t) (2.45b)
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Fig. 2.7.: Micromagnetic snapshot of: a) Bloch DW structure, b) Néel DW structure. c)
Schematic representation of the DW parameters within the one-dimensional (1D)
approach used in this section. ∆ is the DW width, φ is the internal DW angle, θ is
the polar magnetization angle and ϕ is its azimuthal angle.

where Q = ±1 is a parameter that defines the DW configuration, Q = +1(−1) for up-
down(down-up) configuration starting from the left to the right of the ferromagnetic
strip along x-axis. Then we express the full micromagnetic energy per unit volume,
including DMI (see Eq. (2.22)) using the spherical coordinate of the magnetization
(see Appendix. A.1 for further details)

E = Aex

[(
∂θ

∂x

)2
+ sin2θ

(
∂ϕ

∂x

)2]
+ Keff sin2θ + Ksh sin2θ sin2ϕ+

D

[
cos ϕ

∂θ

∂x
+ sin θ cos θ

(
sin ϕ

∂ϕ

∂x

)]
(2.46)

where Keff = Ku − 1
2µ0M2

s Nz and Ksh = 1
2µ0M2

s (Ny − Nx) with Nx, Ny, and Nz

being the demagnetizing factors (see Eq. (2.21)), whose detailed expressions can be
found in [61].

Using Eq. (2.45a) and Eq. (2.45b), and integrating the energy density Eq. (2.46)
along x-axis yields the DW energy per unit surface

UDW =
∫ +∞

−∞
Edx = 2Aex

∆ + 2∆(Keff + Kshsin2φ) + πQD cos φ (2.47)

The DW surface energy depends on both ∆ and φ. Minimizing Eq. (2.47) with
respect to them yields
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0 = ∂UDW
∂φ

= 2∆Ksh sin 2φ − πQD sin φ (2.48a)

0 = ∂UDW
∂∆ = −2Aex

∆ + 2Kshsin2φ (2.48b)

Solving Eq. (2.48a) and Eq. (2.48b), we obtain the expression for φ and ∆ at equi-
librium. These expressions allows us to gain insight into the factors that determine
the specific type of DW configuration (i.e. Bloch or Néel) and its width.

The DW internal angle at equilibrium reads

φ0 =


0 |πD| > |4∆Ksh| , QD > 0

π |πD| > |4∆Ksh| , QD < 0

cos−1
[

πQD
4∆Ksh

]
|πD| < |4∆Ksh|

(2.49)

which shows that DMI favours a pure Néel DW structure if it is dominant in the
system.

Eq. (2.49) shows explicitly that the competition between shape anisotropy and DMI
defines the type of stabilized DWs. Let us suppose that Ksh ≫ D, then the argument
in the cos−1 tends to zero, leading to φ0 = π

2 , which represents a pure Bloch DW
structure. A mixed DW configuration is also possible when both shape anisotropy
and DMI are comparable. In Fig. 2.8, we present micromagnetic simulations results
plotted together with the 1D model prediction (Eq. (2.49)) for the equilibrium DW
angle versus the iDMI constant. It can be observed that the 1D model provides a
good prediction for the DW type at equilibrium, as it shows a good quantitative
agreement with the simulation results.

From Eq. (2.48b) the DW width in equilibrium is found as

∆0 =
√

Aex
Keff + Kshsin2φ0

(2.50)

It is worth highlighting that, in the case of of thin FM layers with strong PMA
(Keff ≫ Ksh), the DW width at rest reduces to ∆0 ≈

√
Aex
Keff

.

2.8 Magnetic textures 27



𝐷(mJ m−2) 𝐷(mJ m−2)

0.01

−0.01

0.00

0.0 0.1 0.2 0.0

𝜑
0
(d
eg
)

180

135

90

45

0

0.0 0.1 0.2−0.1−0.2

𝜇M

1D Model

𝑚𝑥

𝑚𝑦

Bloch DW

Néel DW

𝑚
Néel DW

a) b)

Fig. 2.8.: a) Equilibrium DW in-plane magnetization components versus DMI constant D
computed from µM simulations. b) DW equilibrium internal angle φ0 versus DMI
constant D computed from both 1D model (Eq. (2.49)) and µM simulations.
Adapted from [103].

Field-driven magnetic DW dynamics within the 1D-model

As previously explained in Sec. 2.3.4, under the effect of a magnetic field, the
magnetization of the ferromagnet tends to align parallel to the direction of the
applied field. Thus, when a DW is present, the domain that aligns parallel to the
external field expands, while the antiparallel domain contracts, as shown in Fig.
2.9. This dynamic interplay leads to the translation of the DW along the length of
the ferromagnetic strip. Let us now focus on understanding the field-driven DW
dynamics using the 1D model. To do so, we add Zeeman energy to Eq. (2.46)
accounting for a field applied along the z-axis and integrate it along the x-axis,
which gives the DW surface energy density as

UDW = 2Aex
∆ + 2∆(Keff + Kshsin2φ) + πQD cos φ − 2Qµ0MsqHext (2.51)

The differential of the the DW surface energy density can be expressed in terms of q,
φ, and ∆ as

dUDW = ∂UDW
∂q

dq + ∂UDW
∂φ

dφ + ∂UDW
∂∆ d∆ (2.52)

and
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Fig. 2.9.: Schematic representation of the DW behaviour under externally applied field

along +z directions indicating the initial DW position q0 and its position q1 after
applying the field.

∂UDW
∂q

= −2Qµ0MsHext

∂UDW
∂φ

= 2∆Ksh sin 2φ − πQD sin φ

∂UDW
∂∆ = −2Aex

∆2 + 2
(
Keff + Ksh sin2 φ

)

Expressing Eq. (2.41) in spherical coordinates we obtain

δE
δϕ

= −µ0Ms sin θ

γ0

(
θ̇ + α sin θ ϕ̇

)
(2.54a)

δE
δθ

= µ0Ms
γ0

(
sin θ ϕ̇ − α θ̇

)
(2.54b)

where we used dm = dθ eθ + sin θdφ eφ and Heff = − 1
µ0Ms

δE
δθ eθ − 1

µ0Ms sin θ
δE
δφ eφ.

Therefore, the variation of the micromagnetic energy density can be expressed as
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δE = δE
δθ

δθ + δE
δϕ

δϕ = µ0Ms
γ0

(
sin θ ϕ̇ − α θ̇

)
δθ − µ0Ms sin θ

γ0

(
θ̇ + α sin θ ϕ̇

)
δϕ

(2.55)

Integrating Eq. (2.55) along x we get an expression for dUDW from LLG, which
reads (see Appendix. A.1 for further details)

dUDW =
∫ +∞

−∞
δE dx = −2µ0Ms

γ0

[(
α

q̇

∆ + Qφ̇

)
dq + (Qq̇ − α∆φ̇) dφ+(

α
π2

12
∆̇
∆

)
d∆
]

(2.56)

By comparing Eq. (2.51) with Eq. (2.56) we obtain the coupled equations describing
the DW dynamics in presence of a perpendicular external magnetic field as

(1 + α2) q̇

∆ = −α ΓA + QΓB (2.57a)

(1 + α2)φ̇ = −QΓA − αΓB (2.57b)

∆̇ = 12γ0
αµ0Msπ2

[
Aex
∆ − ∆

(
Keff + Ksh sin2 φ

)]
(2.57c)

where

ΓA = −γ0QHext

ΓB = γ0
Hsh
2 sin 2φ − γ0

π

2 QHDMI sin φ

with Hsh = Ms(Ny − Nx) and HDMI = D
µ0Ms∆ . Eq. (2.57a), Eq. (2.57b) and Eq.

(2.57c), describe the time evolution of the DW position, the DW internal angle, and
the DW width, respectively.

Eqs. (2.57a) and (2.57b) shed light on the complexity of DW dynamics under the
influence of a magnetic field, extending beyond simple translation as discussed
earlier in this section. In fact, additionally to the translational motion described
by Eq. (2.57a), the DW also undergoes a rotational dynamics associated with its
internal magnetic moment, described by Eq. (2.57b). When an external magnetic
field is applied, it contributes two distinct torques to the DW. The first torque, known
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as the damping field torque (αΓA), triggers the translational motion of the DW
along the x-axis. The second one, referred to as the precessional field torque (QΓA),
induces rotational motion of the DW internal magnetic moment around the z-axis. In
addition to the torques due to the external field, other torques from shape anisotropy
and DMI also come into play. Consequently, the DW dynamics is governed by the
interplay of these toques as sketched in Fig. 2.10(a). This interplay gives different
regimes, which will be explored and explained in the following.

As shown in Eq. (2.57b), the torques involved in the dynamics of φ are the field
precessional torque QΓA, the DMI damping torque αΓDMI = αγ0

π
2 QHDMI sin φ and

the shape anisotropy damping torque αΓsh = αγ0
Hsh

2 sin 2φ. In the case of negligible
DMI, an applied magnetic field tilts the internal DW angle away from its equilibrium
orientation (Bloch, φ = ±π

2 ) via the precessional torque (QΓA). This tilting of φ

activates the damping torque due to the shape anisotropy, which tries to bring φ back
to its equilibrium value. As long as the applied field is below a certain threshold,
the DW angle φ reaches a terminal value and eventually αΓsh balances QΓA leading
to the DW moving with a constant velocity along the x-axis as illustrated in Fig.
2.10(b). Increasing the external magnetic field strength further (|QΓA| > α|Γsh|)
leads the DW internal angle to rotate continuously, which initiates an oscillatory
motion of the DW as shown in Fig. 2.10(b). This oscillatory dynamics of the DW is
called Walker regime and was described theoretically by Walker in 1974 [101]. The
threshold field at which the DW transits to the oscillatory behavior is the so-called
Walker field HW.

In presence of DMI, similar dynamics takes place with the peculiarity that the DW at
equilibrium is Néel φ = 0(π), and the damping torque is the DMI one (αΓDMI). The
DW internal angle dynamics in this case relies on the interplay between the QΓA

and αΓDMI. As long as these torques can balance each other, the DW moves rigidly
with a constant velocity. Above the Walker field, oscillatory DW motion takes place
as explained in the preceding paragraph.

To quantify the field around which the DW dynamics transits from steady to oscilla-
tory dynamics (Walker field), we need to explore the steady state from Eqs. (2.57a)
and (2.57b). In fact, the steady state is reached when limt→+∞ φ̇ = 0. Using this
condition, we can calculate the DW angle at the steady state for two cases.

First, for negligible DMI (Bloch DWs are favored), the DW angle in the steady regime
reads

φs = 1
2 sin−1

(2Hext
αHsh

)
(2.59)

2.8 Magnetic textures 31



V D
W
=

ሶ𝑞
𝐻𝑒𝑥𝑡

𝑄Γ𝐴 𝛼Γ𝑠ℎ

𝛼Γ𝐷𝑀𝐼
D
W
p
o
si
ti
o
n
(𝑞
)

time
𝐻𝑊

a)

b) c)

𝐷 = 0

𝐷1 > 𝐷

𝐷2 > 𝐷1

Fig. 2.10.: a) Schematic representation of different torque contributions on DW dynamics.
b) Temporal evolution of the DW motion for Hext < HW and Hext > HW from
the 1D model. c) DW velocity versus applied magnetic field for different values
of iDMI constant (D).

where Walker field could be determined from this equation as HW =
∣∣∣αHsh

2

∣∣∣. Hence,
if Hext < HW the DW moves rigidly with a constant velocity given by

vs = ∆γ0QHext
α

(2.60)

If DMI is dominant (HDMI ≫ Hsh
2 ), the DW angle in the steady state reads

φs = sin−1
[ 2Hext

αQπHDMI

]
(2.61)

and the Walker field in this case is HW =
∣∣π

2 αQHDMI
∣∣.

The presence of DMI allows for larger DW velocities due to the increase in the Walker
field. By examining Eq. (2.59) and Eq. (2.61), we can observe that in the absence
of DMI oscillatory motion occurs when φs = ±π

4 , whereas if DMI is present, this
happens when φs = ±π

2 . The presence of DMI allows for reaching higher magnetic
fields before the velocity breakdown. This ultimately leads to larger DW velocities,
as illustrated in Fig. 2.10(c).
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SOTs driven magnetic DW dynamics

External magnetic fields have traditionally been considered the primary means for
driving DW dynamics in ferromagnets. However, from an application standpoint,
they are not well-suited since adjacent DWs are driven towards each other and
eventually are annihilated. This is a limitation to driving several DWs along ferro-
magnetic racetracks. In contrast, electric currents offer a more favorable approach
as they drive magnetic DWs in the same direction. This opens up possibilities for
moving trains of DWs collectively, which is advantageous for applications involving
data transport [104–106].

Now, let us focus on the case of SOT-driven DWs, where the spin current is injected
into the ferromagnet through the spin-Hall effect (see Fig. 2.6). To incorporate the
effect of SOTs we add the torque expression in Eq.(2.43) to the LLG equation as
shown in Sec. 2.6. Following the same integration method used for field-driven DW
dynamics (see Appendix. A.1), we can derive the dynamic equations governing the
motion of DWs under SOTs. These dynamic equations can be expressed as

(1 + α2) q̇

∆ = −α ΓA + QΓB (2.62a)

(1 + α2)φ̇ = −QΓA − αΓB (2.62b)

where now

ΓA = Qγ0
π

2 HSOT cos φ

ΓB = γ0
Hsh
2 sin 2φ − γ0

π

2 QHDMI sin φ

with HSOT = h̄θshJHM
2|e|µ0MstFM

is a constant linked to the SOT field magnitude.

The peculiarity of SOT-driven DW dynamics is manifested in the dependency of both
the precessional and the damping torques on the DW internal angle as ΓA ∝ cos φ.
This leads to a cancellation of SOT if cos φ ≈ 0, which explains why Bloch DWs are
insensitive it [107].

Considering that iDMI is strong enough HDMI ≫ Hsh
2 , the DW angle at the steady

state reads

φs = tan−1
[

QHSOT
αHDMI

]
(2.64)
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Fig. 2.11.: a) DW angle φ versus applied electric current for an SOT-driven DW. b) Terminal
velocity versus applied electric current for an SOT-driven DW, the figure shows
also the limiting velocity of the system calculated from Eq. (2.66). The material
parameters used are: Ms = 0.58 MA m−1, Aex = 20 pJ m−1, Ku = 0.9 MJ m−3,
D = 1 mJ m−2, α = 0.08, and tFM = 1 nm.

Then, the DW velocity in the steady state can be expressed as

vs = −∆πγ0QHSOT
2α

cos φ = −∆πγ0QHSOT
2α

1√(
QHSOT
αHDMI

)2
+ 1

(2.65)

Eq. (2.64) shows that increasing the SOT current continuously leads the DW angle
asymptotically to ±π

2 , which makes SOT less efficient as shown in Fig. 2.11(a). The
DW velocity then saturates and its value at saturation depends only on DMI field
as

vs = −γ0
∆π

2 HDMI (2.66)
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Note that the DW velocity relies on both spin Hall angle and DMI constant. A
detailed discussion about SOT driven DW dynamics could be found in [103].

2.8.2 Magnetic skyrmions

Similarly to magnetic DWs, skyrmions, come in two main types: Bloch and Néel.
Bloch skyrmions (shown in Fig. 2.12(a)), mainly form in bulk ferromagnetic mate-
rials with a B20 crystal structures. They result from a combined action of dipolar
and exchange interactions, along with bulk DMI [25]. Néel skyrmions, are typi-
cally observed in thin film multilayers and primarily emerge due to the interface
Dzyaloshinskii-Moriya interaction [108]. Néel skyrmions feature a distinct chiral
profile and a spin configuration reminiscent of a hedgehog-like structure as shown
in Fig. 2.12(b).

From a topological point of view, skyrmions have a non-vanishing topological charge,
which is given as [109]

Qsk = 1
4π

∫∫
m ·

(
∂m
∂x

× ∂m
∂y

)
dxdy (2.67)

To evaluate Qsk it is better to express Eq. (2.67) in polar coordinates, which reads

Qsk = 1
4π

∫ ∞

0

∫ 2π

0
sin θ(ρ)

(
∂θ(ρ)

∂ρ

∂ϕ(Φ)
∂Φ

)
dΦdρ = − 1

4π
[cos θ(ρ)]∞0 [ϕ(Φ)]2π

0 = pW
(2.68)

where p is the skyrmion polarity and W is the winding number.

The orientation of the skyrmion core defines its polarity p: a skyrmion core oriented
along +z(−z) yields p = +1(−1). The winding number W is related to the angle
by which the magnetization rotates when completing a full 2π rotation around
the skyrmion core. A skyrmion possesses a winding number W = 1, while an
antiskyrmion is characterized by W = −1, which represents the antiparticle of a
skyrmion in the standard model [110]. Hence, the topological charge of a skyrmion
is quantified and solely determined by its core polarity: Qsk = p = ±1 (Qsk = ∓1
for an antiskyrmion). Due to its unique topology, a skyrmion (or an antiskyrmion)
cannot be easily unwound through continuous transformations. This implies that
transitioning from a skyrmion state to a uniform ferromagnetic state with Qsk = 0
requires overcoming a large energy barrier. This property of magnetic skyrmions is
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Fig. 2.12.: a) Representation of a Néel magnetic skyrmion. The type of the DW in such
a skyrmion is Néel as can be seen in the bottom of the figure where we repre-
sent the magnetization transition in a string a long the skyrmion diameter. b)
Representation of a Bloch magnetic skyrmion. The type of the DW in such a
skyrmion is Bloch as can be seen in the bottom of the figure. The inset of the
figure shows the definition of the coordinates base that we will adopt for our
skyrmion chapter. The inset illustrates the spherical base first (|m|, ϕ, θ) and the
cylindrical base with (ρ, Φ, Z).

referred to as topological protection. However, it is noteworthy to mention that this
description holds for vector fields in the continuum limit. In real magnetic systems,
however, a skyrmion doesn’t exhibit this topological protection due to the fact that
the spins are discrete objects.

Magnetic skyrmion dynamics

As mentioned previously in this section, skyrmions are highly stable topological
structures. Within the micromagnetic continuum approximation, it has been shown
that the energy required for skyrmions destruction diverges [111, 112]. On the
other hand, experimental studies showed that skyrmions are very stable at room
temperature [108]. Furthermore, they are less sensitive to deformations, unless
under extreme conditions where their annihilation could take place [113, 114].
This features legitimate the treatment of magnetic skyrmion as rigid quasi-particle
structures [115–118]. On the other hand, in presence of external forces that tend
to drive them in a certain direction, skyrmions exhibit a deflection orthogonal to
the force. This effect was labeled as the skyrmion Hall effect (SkHe) [119]. In
this section, we will use Thiele’s model to explore the physical mechanism behind
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the skyrmion deflection. This model assumes the skyrmion as a moving point-like
quasi-particle, neglecting its internal degrees of freedom [115].

The dynamic equation describing magnetic skyrmion motion within Thiele’s model
framework reads (see Appendix. A.2 for detailed derivation)

G × v − α ¯̄D·v = Fext (2.69)

where G = |G|ez with

|G| = −µ0MstFM
γ0

∫∫
m ·

(
∂m
∂x

× ∂m
∂y

)
dxdy (2.70)

being the gyrovector, which reads |G| =−µ0MstFM
γ0

Qsk for any arbitrary magnetic
texture that has a non-vanishing topological charge Qsk [115]. The second-rank
tensor ¯̄D is the so-called dissipation tensor, whose components are

Dij = µ0MstFM
γ0

∫∫ (
∂m
∂xi

· ∂m
∂xj

)
dxdy (2.71)

Fext is the external force applied to the skyrmion and v is the skyrmion velocity.

The Eq. (2.69) is the general form for Thiele’s equation describing the motion of a
magnetic texture under the effect of an arbitrary external force. This equation was
widely used to investigate the dynamics of several exotic magnetic structures such
as skyrmion, vortices, skyrmioniums, bimerons, . . . [120–122]. The two terms in the
rhs of Eq. (2.69) describe the rotation of the skyrmion around its own axis and the
friction effects on the skyrmion upon its motion, respectively. Hence, if the skyrmion
moves in an arbitrary direction due to the external force Fext, it will experience a
force due to the gyrovector G that tends to make it move orthogonal to the force
direction. Then, the dissipative term α ¯̄D·v counteracts the gyrotropic term, pushing
the skyrmion to move along a tilted path with a given angle θSkHE as schematized in
Fig. 2.13.

To provide a quantitative description based on the preceding analysis, we can perform
algebraic manipulation of Eq. (2.69) for deriving expressions for the skyrmion
velocity. Let us examine a specific skyrmion configuration under the assumption

that: G = |G| ez , ¯̄D =
(

Dxx Dxy

Dyx Dyy

)
; with Dxx = Dyy = |D| and Dxy = Dyx = 0;

and F =Fxex. The skyrmion velocity components in this case read
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Fig. 2.13.: Schematic representation of the skyrmion motion mechanism. Under an external
applied force the skyrmion tends to follow a tilted path with a given angle θSkHE.

vx = dX

dt
= α |D| Fx

α2 |D|2 + |G|2
(2.72a)

vy = dY

dt
= |G| Fx

α2 |D|2 + |G|2
(2.72b)

where X, Y are the generalized skyrmion coordinates.

The skyrmion Hall angle reads

θSkHE = tan−1
(

vy

vx

)
= |G|

α|D|
(2.73)

The velocity formulas Eq. (2.72a) and Eq. (2.72b), reveal that the skyrmion
deflection is an intrinsic feature and does not depend on the external force. It
emerges from the gyrotropic nature of magnetization dynamics and the topological
characteristics ingrained within the skyrmion structure. Moreover, Thiele’s model
offers insights into the dynamic translation of skyrmions, illustrating that it is driven
by energy dissipation within the system, akin to the motion of magnetic domain walls.
In Figure 2.14, we present micromagnetic simulation results alongside experimental
Kerr microscopy images from [123], illustrating the motion of skyrmions in FM/HM
layers under the influence of SOT. Consistent with the description of skyrmion
dynamics provided by the Thiele model, skyrmions under the influence of SOT tend
to follow a tilted trajectory, exhibiting the skyrmion Hall effect. This phenomenon
has been confirmed through both simulation and experiments [119, 123, 124].
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Fig. 2.14.: a) Micromagnetic snapshots of the skyrmion motion under spin-orbit torques. b)
Kerr microscopy images for a skyrmion moving under electric current from the
work by Fert et al [123].

2.9 Conclusion

Within this chapter we presented the theoretical background required for our re-
search. We delved into the micromagnetic theory, which offers a framework for
studying magnetic systems by considering continuous magnetization vector fields
rather than individual magnetic moments. Subsequently, we explored the diverse
contributions to the overall micromagnetic energy originating from various inter-
actions. After that, we investigated the minimization of this energy as well as the
boundary conditions resulting from different contributions. Furthermore, we dis-
cussed magnetization dynamics and introduced the Landau-Lifshitz-Gilbert equation
augmented with the spin-orbit torque. This chapter has also examined both the
static and dynamic properties of DWs and skyrmions from the perspective of micro-
magnetic theory. This theoretical framework will serve as the cornerstone for the
subsequent modeling and analytical investigations discussed within this thesis.
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Electric field control of
current-driven skyrmion
dynamics

3

In this chapter, we propose a method to control the trajectory of current-driven
skyrmions using electric fields in hybrid piezoelectric/magnetic systems. By applying
a voltage between two lateral electrodes, a transverse strain gradient is created
as a result of the non-uniform electric field profile in the piezoelectric. Due to
magnetoelastic coupling, this transverse gradient leads to a lateral force on the
skyrmions that can be used to suppress the skyrmion Hall angle for any given current
density if a proper voltage is applied. We show that this method works under realistic
conditions, such as the presence of disorder in the ferromagnet, and that skyrmion
trajectories can be controlled with moderate voltages. Moreover, our method allows
for increasing the maximum current density that can be injected before the skyrmion
is annihilated at the nanostrip edge, which leads to an increase in the maximum
achievable velocities. This chapter is an adapted version of the author’s publication
[125].

3.1 Introduction

Since their observation in 2009 [25], magnetic skyrmions have attracted a lot of
attention, not only from the point of view of fundamental research but also because
they present some features, such as small size, topological protection, or being sensi-
tive to moderate current densities, that make them attractive for the development of
the next generation of spintronic devices. In this sense, different skyrmion-based
devices have been proposed, such as logic gates [14, 35–37], magnetic memories
[40, 41], artificial neuron spikes [38, 39] or microwave detectors [126]. The poten-
tial success of these devices relies on our capacity for nucleating, stabilizing, and
controlling the motion of skyrmions in an energy-efficient way.

Magnetic skyrmions can be moved using spin-polarized electrical currents [26],
anisotropy gradients [127], strain gradients [128], surface acoustic waves [129],
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magnetic field gradients [130], spin waves [131], temperature gradients [132], etc.
Regardless of the nature of the driving force, the skyrmion trajectory is not parallel
to the direction of this force but it deviates a certain angle from it, as explained in
Sec. 2.8.2, a phenomenon usually referred to as the skyrmion Hall effect (SkHE)
[118, 119, 124]. This universal phenomenon is due to the gyrotropic nature of
magnetization dynamics, which leads to the appearance of a force on the skyrmion
perpendicular to the driving one, the so-called Magnus force [133]. This is detri-
mental to the design of skyrmion-based devices, such as racetrack memories, where
skyrmions are intended to follow a straight path along the nanostrip. Consequently,
different approaches have been proposed to avoid it. For example, SkHE should
not be present in antiferromagnets [134, 135] because the skyrmion’s gyrovector
cancels out but, as far as we are concerned, the nucleation of isolated skyrmions in
antiferromagnets is still challenging. The SkHE is also absent in synthetic antiferro-
magnets [136] because the two interlayer-coupled skyrmions exhibit antiparallel
Magnus forces that cancel each other, but, although isolated skyrmions have been
stabilized in SAF [137], their controlled motion by electrical current or by any other
means is still in a premature state [138]. Other more exotic textures, like magnetic
Skyrmioniums, should also move without SkHE, since their topological charge is
roughly zero [139, 140].

Tuning the skyrmion gyrovector is not the only way to suppress the SkHE. An
alternative approach is based on inducing an external force to compensate the
Magnus force. Different methods have been proposed along this line. In fact, in
narrow strips, the skyrmion is repelled by the edges, and this repulsive transverse
force is useful to maintain the skyrmion moving straight along the track [32]. On
the other hand, it was shown that, by engineering Rashba and Dresselhaus spin-orbit
couplings, it is possible to suppress the skyrmion Hall angle for both Neel skyrmions
and Bloch antiskyrmions [34]. Heavy metal layers with reduced symmetry in chiral
multilayers are also a route to minimize the skyrmion Hall angle and to maximize
its speed via partial current polarization [33]. In any case, other methods providing
more freedom and versatility to manipulate skyrmion motion are desirable to develop
new technologies. In this chapter, we propose an approach for this purpose. It is
based on a transverse voltage-induced mechanical excitation of a piezoelectric layer
attached to the ferromagnetic nanostrip which, due to magnetoelastic coupling,
creates a transverse force on the skyrmion that can be used to totally suppress the
skyrmion Hall angle and to increase its velocity.

In the following, we present and discuss the results on which our proposal is based.
We will first study the electromechanical response of our system and characterize the
strain profile transferred to the ferromagnetic nanostrip along which the skyrmions
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move. Secondly, we use both micromagnetic simulations and Thiele’s model to show
that this strain profile creates a transverse force on the skyrmion that can be used
to correct its trajectory when driven by a current flowing parallel to the nanostrip.
Moreover, we derive the condition to suppress the skyrmion Hall angle for any given
value of the current density. In the last part, we show that our approach works under
realistic conditions, such as the presence of disorder in the sample, and that it can
be used to increase the maximum achievable skyrmion velocities.

3.2 Results and Discussions

3.2.1 Electro-mechanical characterization

The device proposed in our work is sketched in Fig. 3.1(a) where skyrmions move
along a perpendicularly magnetized ferromagnetic racetrack driven by a current
passing through an adjacent heavy metal. The HM/FM/Oxide trilayer is grown on
top of a thick piezoelectric (PZ) film with two extended lateral electrodes on top
of it, as shown in the Fig. 3.1(a). The basic idea of our proposal is that, due to
magneto-elastic coupling, the strain created in the system when a voltage is applied
between these two electrodes leads to a force on the skyrmions that can be used to
control their lateral motion.

Electromechanical simulations were performed using COMSOL [141]. As piezo-
electric material we used PZT-4 (Lead Zirconate Titanate) of dimensions ℓPZ =
1200 nm, wPZ = 1000 nm and tPZ = 100 nm (see Fig. 3.1(a)), whereas for the
HM/FM/Oxide we considered Pt[2 nm]/CoFeB[1 nm]/MgO[1 nm] with lateral di-
mensions ℓFM = 1024 nm, wFM = 500 nm and the following values for Young
modulus and Poisson ratio: YPt = 154 GPa, νPt = 0.385 [142], YCoFeB = 162 GPa,
νCoFeB = 0.3 [143], YMgO = 270 GPa and νMgO = 0.35 [144]. When calculating the
electromechanical response, we assume that the PZ bottom surface is clamped to
the substrate, and we consider the conductive nature of both FM and HM layers.
Fig. 3.1(b) shows the electric field lines in the PZ in the device cross section. As
can be observed, the field lines leak into the HM layer due to its conductive nature,
yielding a highly non-uniform field pattern. In particular, we note the profile of the
out-of-plane component Ez along the PZ/HM interface in the transversal direction,
which is plotted in Fig. 3.1(c) for an applied voltage of 10 V between the electrodes.
As can be noticed, the field strength is maximum at the edges, but it points in
opposite directions, and a gradual non-linear transition between these two extreme
values is obtained as we move from one edge to the other. The profile along the
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Fig. 3.1.: a) Schematic representation of the simulated device. (b) Device cross section
showing the electric field lines in the PZ substrate. c) Profile of the vertical
component Ez along the PZ/HM interface. The inset zooms out the profile in the
central region of the nanostrip.

central region, shown in the inset of Fig. 3.1(c), is approximately linear with a slope
dEz
dy ∼ 10 V/µm2.

The strain distribution in the device as a response of the PZ substrate to the electric
field is also calculated with COMSOL [141]. In particular, Fig. 3.2(a) shows
the profile of the strain component εyy transferred from the PZ to the FM for
different widths of the PZ substrate. As can be observed, a smooth quasi-linear
profile changing sign across the central point of FM is obtained in all cases. This
strain profile can be understood by looking at the electric field in Fig. 3.1(c) and
considering that, in the absence of external stress, we have εyy = d13Ez, where
d13 = −1.23 × 10−10C N−1 in our case. Other factors, such as residual stresses due
to substrate clamping, also affect the strain, but their contribution is small. In Fig.
3.2(b), the strain gradient at the center (y = 0) as a function of wPZ is plotted. The
gradual decrease is a consequence of the electric field scaling with the inverse of the
distance between electrodes

(
wPZ

−1).
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To sum up, our electromechanical simulations show that by applying moderate
voltages between the electrodes, it is possible to create strain gradients in the central
region of the FM racetrack in the order 10−2 µm−1. Moreover, the magnitude of
the gradient can be controlled by the applied voltage and the distance between the
electrodes.

3.2.2 Strain-control of the skyrmion Hall effect

In the previous section, we characterized the mechanical response of the device,
showing the creation of a transverse strain gradient due to the spacial electric field
profile. Let us now investigate how this strain gradient can be used to control the
lateral motion of skyrmions in our system. To do that, we perform micromagnetic
simulations of a skyrmion driven by a current flowing through the HM layer (Fig.
3.1(a)) in the presence of a transverse strain gradient ∂εyy

∂y . Simulations are carried
out using a GPU-based in-home modified version of Mumax3 [100] that includes
a magneto-elastic contribution to the effective field as introduced in Sec. 2.5 and
given by

Hmel = 1
µ0Ms

σij

δεm
ij

δm (3.1)

where σij and εm
ij are the stress and magnetic strain tensors, respectively, Ms is the

saturation magnetization, µ0 the vacuum permeability, and m(r, t) = M(r,t)
Ms

the
reduced magnetization. The Landau-Lifshitz-Gilbert dynamic equation is augmented
with Slonczewski-like spin-orbit torque that takes into account the contribution of
the current flowing through the HM, as shown in Sec. 2.6 [145]. The following
material parameter values, typical of Oxide/CoFeB/HM multilayers [146–150], were
used in the micromagnetic simulations: Aex = 20 pJ m−1 (exchange stiffness), Ms =
1 MA m−1 (saturation magnetization), Ku = 0.8 MJ m−3 (uniaxial anisotropy), D =
1.8 mJ m−2 (interfacial Dzyaloshinskii-Moriya), λs = 3.7 × 10−5 (magnetostriction),
α = 0.3 (damping constants), and θsh = −0.33 (spin Hall angle).

Fig. 3.3 shows the effect of the transversal strain gradient on the skyrmion dynamics.
In Fig. 3.3(b), we plot the skyrmion trajectory for an applied current density
10 GA m−2 and different values of the strain gradient ∂εyy

∂y . As can be observed,
the skyrmion Hall angle decreases as the strain gradient is increased. This trend is
confirmed in Fig. 3.3(c), where the skyrmion Hall angle is plotted as a function of the
strain gradient for three different applied current densities, showing a monotonous
decrease in all cases. The strain gradient, therefore, creates a force that pushes
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the skyrmion towards regions of higher strain. The origin of this force, which was
analyzed in [128], relies on the fact that the skyrmion energy is reduced as the strain
increases. This force, Fel, is schematically represented in Fig. 3.3(a) (green) together
with the driving force exerted by the current FSHE (yellow). Their associated
skyrmion Magnus forces, FMgns and F ′

Mgns, are also represented. Skyrmion dynamics
in our system can be understood in terms of these four forces acting on it.

In addition to micromagnetic simulations, the well-known Thiele’s model [115]
(presented in Sec. 2.8.2), can also give us useful information. In particular, analytical
expressions for the forces involved can be derived. Using Thiele’s equation Eq. (2.69)
with the forces due to the spin-polarized current FSHE and the strain gradient Fel,
the equation describing the skyrmion dynamics can be expressed as

G × V − α ¯̄D · V = FSHE + Fel (3.2)
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where G = −4π (Qsk) µ0Ms
γ0

tFMez is the gyrovector with Qsk = −1 the skyrmion

topological charge, V is the skyrmion velocity, and ¯̄D =
(

Dxx Dxy

Dyx Dyy

)
is the dissipa-

tion tensor with |D| = Dxx = Dyy = µ0πMs
2γ0

tFM
(
π2 − Ci(2π) + γE + log(2π)

)
, and

Dxy = Dyx = 0, with Ci and γE being the cosine integral function and Euler constant,
respectively. The force due to the Spin-Hall effect is given by FSHE = h̄θshJHM

2|e| π2η ∆
2 ex,

where θsh is the spin Hall angle, JHM is the current density flowing through the
HM, ∆ = 31 nm is the skyrmion wall width, e is the electron charge, and η is
a fitting parameter. On the other hand, the force due to the strain gradient is
given by Fel = 3π∆2λs

8 tFM (C11 + C12) ∂εyy

∂y ey, where λs is the magnetostriction,

C11 = Y(1−ν)
(1+ν)(1−2ν) and C12 = νY

(1+ν)(1−2ν) are the elastic constants, and tFM is the
ferromagnetic layer thickness. All these terms were calculated using the zero-radius
skyrmion ansatz described in [128].

From Eq. (3.2) the longitudinal and transversal components of the skyrmion velocity
are given by

Vx = α|D|FSHE + GFel
α2|D|2 + G2 (3.3a)

Vy = −GFSHE + α|D|Fel
α2|D|2 + G2 (3.3b)

so that the skyrmion Hall angle is

θSkHE = tan−1
(−GFSHE + α|D|Fel

α|D|FSHE + GFel

)
(3.4)

In Fig. 3.3(b) and Fig. 3.3(c), we show the predictions of the model (solid lines)
together with the results of micromagnetic simulations (symbols). The same pa-
rameter values have been used in both of them, with η = 1.05 as the only fitted
parameter in Thiele’s model. As can be observed, good quantitative agreement is
found, which indicates that Thiele’s model captures the most relevant features of
skyrmion dynamics in our system. The discrepancies between the simulations and
the model are mainly attributed to the fact that the skyrmion diameter depends on
the strain [151] and, therefore, it changes as the skyrmion moves in the presence
of a strain gradient, a feature not considered in Thiele’s model. Moreover, we can
extract from the model the condition that needs to be satisfied for the skyrmion to
move straight along the nanostrip without transversal deflection. By making either
Vy = 0 in Eq. (3.3b) or θSkHE = 0 in Eq. (3.4) we obtain
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Fel = G

α|D|
FSHE (3.5)

as the condition that guarantees the suppression of the skyrmion Hall effect. Using
Eq. (3.5) and the expressions of FSHE and Fel given above, we can obtain, for any
given current density JHM, the value of the strain gradient ∂εyy

∂y needed to cancel the
SkHE

∂εyy

∂y
= 2πηGh̄θsh

3α|D||e|∆λstFM (C11 + C12)JHM (3.6)

Fig. 3.4(a) shows the value of the strain gradient that cancels the skyrmion Hall effect
for different values of the applied current density as obtained from micromagnetic
simulations (green symbols) and from Eq.(3.6) (red line). Again, an excellent
agreement is found between them. The discrepancies are even smaller than in Figs.
3.3(b) and (c) because now the skyrmion moves horizontally, perpendicularly to the
strain gradient and, therefore, its diameter does not change during motion.

On the other hand, in Fig. 3.4(b), we plot the skyrmion speed as a function of
the current density obtained from micromagnetic simulations, both without strain
gradient (green symbols) and with the strain gradient that cancels the skyrmion
Hall effect (red symbols). The corresponding values obtained from Thiele’s model
are also shown with solid lines (orange and blue, respectively). As can be observed,
a linear increase in the longitudinal velocity (Vx) is obtained in both cases, but the
speed values are remarkably higher when the strain gradient is included. This can be
understood by considering that F′

Mgns, the Magnus force associated with Fel, points
along the positive x-axis (see Fig. 3.3(a) and Eq. (3.3a) and, as a result, it adds
up to FSHE, increasing the total force pushing the skyrmion along the nanostrip.
Therefore, by choosing the appropriate value of the strain gradient, which depends
linearly on the applied voltage, it is possible not only to suppress the skyrmion Hall
effect but also to increase its velocity significantly.

Up to now, we have shown that our scheme for tuning the skyrmion Hall angle
works for idealized samples, but it remains to be shown whether it would also
work under realistic conditions, where intrinsic pinning due to structural disorder
is known to play an important role in skyrmion dynamics [152]. With that goal in
mind, we carried out simulations with the same geometry and material parameter
values described before but now including disorder [153]. Disorder is modeled via a
Voronoi tessellation of the film in polygonal regions of average diameter d = 5 nm,
where both anisotropy constant and easy-axis orientation are different for each grain
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following a Gaussian distribution around their nominal values, Ku = 0.8 MJ m−3

and ek = {0, 0, 1}, with standard deviation σ = 2%. The results are shown in Fig.
3.5 together with those carried out in the absence of disorder for an applied current
density JHM = 30 GA m−2. This value is well above the range investigated in Fig.
3.3 because we are mainly interested in the flow regime.

Both the skyrmion speed (Fig. 3.5(a)) and skyrmion Hall angle (Fig. 3.5(b)) as a
function of the strain gradient are plotted. In the simulations with disorder (red
squares), the results are obtained by averaging over 10 realizations, each one with a
different grain distribution. As can be observed in Fig. 3.5(a), the increase in the
skyrmion speed with the strain gradient remains in the presence of disorder. On the
other hand, disorder leads to a reduction in the skyrmion Hall angle (Fig. 3.5(b))
[116, 154, 155], but also a monotonous decrease with the strain gradient is obtained,
as in the case without disorder. Although the results shown in this chapter were
carried out without considering thermal fluctuations in the simulations, some trials
were made at a finite temperature, and the results did not show a significant effect
on the skyrmion Hall angle for the current density range considered. In a recent
publication [156], it was shown that the skyrmion Hall angle is not significantly
affected by temperature unless a high-flow regime is reached where some distortion
on the skyrmion structure takes place. A previous computational study [157] showed
that the effect of temperature on the skyrmion Hall angle is most pronounced at
small drives where thermally-induced depinning occurs, whereas in the flow regime
it slightly increases with temperature.

3.2.3 Strain-enhanced skyrmion dynamics in narrow magnetic
racetrack systems

As pointed out in Sec. 3.1, in narrow nanostrips, the edges exert a repulsive force
on the skyrmions that affect their dynamics. In particular, this force increases as the
skyrmion deviates from the center (y = 0) and, at some point, it compensates the
Magnus force due to the current, and the skyrmion ends up in a horizontal trajectory
at a given distance yterm from the nanostrip central axis. However, for current
densities above a certain critical value Jc, the edge repulsion is not strong enough
to compensate the magnus force, and the skyrmion is annihilated at the edge. This
critical value, which depends on the nanowire width, limits the current range of
the device operability. In the last part of this chapter, we explore how our approach
can be used to increase this critical current. To do that, we simulate a nanostrip of
dimensions 1024 × 128 × 1 nm3, narrower but with the same material parameter
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values as the ones considered before (Fig. 3.1(a)). Thiele’s model was also used
by including an additional force in Eq. (3.2) that considers the repulsion from the
edges, Frep. Following previous works [59], it is modeled as Frep = kY (t)ey, where
k = 3.610−5 N m−1 is an elastic constant estimated from micromagnetic simulations,
and Y (t) is the skyrmion’s transversal position. The dynamic equation Eq. (3.2)
with the new term Frep can be solved analytically, yielding

X(t) = FSHE
α|D|

t + G2FSHE + Gα|D|Fel
α2|D|2k

(
1 − e− t

τ

)
(3.7)

Y (t) = GFSHE − α|D|Fel
α|D|k

(
1 − e− t

τ

)
(3.8)

where τ = G2+α2|D|2
α|D|k is the characteristic time for the skyrmion response to the edge

force.

In Fig. 3.6, we show the skyrmion trajectory for a time window of 25 ns and
different values of the applied current density without strain gradient (Fig. 3.6(a))
and for a strain gradient of ∂εyy

∂y = 0.08 µm−1 (Fig. 3.6(b)). The trajectories
obtained from both micromagnetic simulations and Thiele’s model are shown. As
can be observed in Fig. 3.6(a), the terminal vertical displacement of the skyrmion
increases with the current density and, for the largest one, JHM = 60 GA m−2, the
skyrmion is annihilated when it hits the boundary (Y = wFM

2 = 64 nm ). This
terminal displacement is significantly reduced when the strain gradient is applied
(Fig. 3.6(b)), up to the point that for the smallest current density values it is negative.
This makes it possible for a current of JHM = 60 GA m−2 and higher to be injected
without the skyrmion being annihilated. Micromagnetic simulation and Thiele’s
model predict very similar behavior. The discrepancies between them are mainly
attributed to the fact that the skyrmion radius changes as it moves vertically, as
shown in the insets of Figs. 3.6(a) and (b), and also to the fact that the repulsion
from the edges is not accurately described with an elastic force when the skyrmion
is close to the edge [158]. In Fig. 3.6(c), we show the maximum current Jc that can
be injected without the skyrmion being annihilated at the edge of the nanostrip for
different values of ∂εyy

∂y . As can be observed, Jc increases with the strain gradient,
which proves that our approach can be used to inject higher currents in the nanostrip,
with the consequent increase in speed and operating range of the devices.
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3.3 Conclusion

To conclude, we showed in this chapter a new method to control the skyrmion
trajectory and cancel out the skyrmion Hall effect via electric field in hybrid piezo-
electric/magnetic multilayers. We investigated the electromechanical response of the
device when a voltage is applied between two lateral electrodes, finding a transver-
sal strain gradient in the central part of the ferromagnetic layer, the amplitude
of which is linear with the applied voltage and with the inverse of the distance
between the electrodes. Micromagnetic simulations show that such a strain gradient
leads to a transverse force on the skyrmion that can have a sizable effect on its
trajectory when driven by a current. In particular, the skyrmion Hall effect can be
cancelled for any given current density if proper voltage is applied. Moreover, the
strain gradient contributes to increasing the longitudinal velocity and in narrow
nanostrips, it allows for an increase of the maximum current density that can be
injected before the skyrmion is annihilated at the nanostrip edge. Our approach
works under realistic conditions, in particular in the presence of structural disorder
in the ferromagnet. From a broader perspective, we believe that the applicability
of our approach goes beyond the possibility of canceling the skyrmion Hall angle
but it provides additional degrees of freedom to control skyrmion motion, which
could have a strong impact in the design of skyrmion-based memories, logic and
neuromorphic computing devices.
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Absence of Walker
breakdown in the dynamics of
chiral Néel domain walls
driven by in-plane strain
gradients

4

In this chapter, the influence of mechanical strain on the static and dynamic proper-
ties of chiral domain walls in perpendicular magnetized strips is investigated using
micromagnetic simulations and an extended one-dimensional model. While uniform
strain allows to reversibly switch the DW configuration at rest between Bloch and
Néel patterns, strain gradients are suggested as an energy-sustainable manner to
drive DW motion without the need for magnetic fields nor electrical currents. It
is shown that an in-plane strain gradient creates a force on the DW that drives it
towards regions of higher tensile (compressive) strain for materials with positive
(negative) magnetostriction. Moreover, due to the dependence of the DW internal
energy on in-plane strain, a damping torque proportional to the local strain arises
during motion that opposes the precessional torque due to the driving force, which is
proportional to the strain gradient. After a transient period, where both the internal
DW angle and the velocity change non-monotonically, reaching their maximum
values asynchronously, both torques balance each other. This compensation prevents
the onset of turbulent DW dynamics, and steady DW motion with constant velocity
is asymptotically reached for any arbitrarily large strain gradient. Despite these
complex dynamics, our work points out that averaged DW velocities in the range of
500 m/s can be obtained using voltage-induced strain in piezoelectric/ferromagnetic
devices under realistic conditions. This chapter is an adaptation of the author’s
publication [159].
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4.1 Introduction

Reliable, fast, and efficient DW motion in perpendicularly magnetized media is a key
aspect in the development of new spintronic devices for a variety of applications,
such as memory [160], sensing [161], logic [162, 163], or neuromorphic computing
[164, 165]. As discussed in Sec. 2.8.1, when driven by an external force, such as
an out-of-plane field, the DW changes its internal structure due to the precessional
component of the driving force, which rotates it away from its orientation at rest
[85]. For low values of the driving force, a terminal DW angle is reached, for which
this precessional torque is counterbalanced by the restoring torque that tries to
bring it back to its equilibrium orientation, leading to the DW moving rigidly at a
constant velocity. Above a certain threshold value, however, this balance is no longer
possible, and continuous internal DW precession takes place during its motion, with
the consequent reduction in speed. This phenomenon is Walker breakdown[166]
explained already in chapter 2, and it is present, for example, when the driving force
is an out-of-plane field [167] or a spin-polarized current via the spin-transfer torque
[168]. It is not present, however, when Néel DWs move due to the spin Hall effect
(SHE) [169], but in this case the DW is tilted towards the Bloch configuration as
the current density increases, which reduces the efficiency of the SHE and leads to
a saturation in the maximum velocity achievable. It is also absent in systems that
exhibit antiferromagnetic coupling, such as antiferromagnets [170], ferrimagnets at
angular momentum compensation [171], or synthetic antiferromagnets [172], since
DW tilting is virtually suppressed due to strong exchange coupling.

Alternative ways to move DWs in perpendicularly magnetized media that do not
require external fields nor charge currents are being explored. Some of them are
based on using spatially variable physical quantities, such as anisotropy [173–176]
or temperature [177, 178]. Others are based on geometry engineering and curvature
effects [179]. Although the detailed mechanism that drives the DW in each case is
different, all of them are based on the fact that DW energy depends on the spatially
variable quantity, and consequently, a force appears that pushes the DW towards
regions where its energy is lowered. This force is typically dependent on the local
gradient of the spatially variable quantity [175], its effect is essentially equivalent
to that of an external magnetic field, and, as such, WB occurs when the gradient
exceeds a certain threshold value.

Recently, the effect of strain on magnetic DW dynamics has been reported in several
theoretical and experimental studies. It was shown that by optimizing the spatial
profile of the strain, one can trigger magnetic DWs motion along in-plane magnetized
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strips[180–183]. Besides, other works showed that strain could be a useful tool
to manipulate DW dynamics along perpendicularly magnetized films while being
driven by other means such as magnetic fields [184].

Here we investigate the possibility of moving Néel DWs in perpendicularly mag-
netized media using an in-plane strain gradient. The main difference with the
approaches mentioned before is that now not only DW energy but also its equi-
librium orientation depend on in-plane strain. As it will be shown, this leads to
substantial changes in DW dynamics with respect to the standard field-driven case.
In particular, the interplay between the different torques involved keeps the internal
DW angle bounded, preventing the appearance of precessional dynamics inside DW
for any arbitrary strain gradient.

In the rest of this chapter, we will first explore the static properties of a DW in
presence of a uniform strain. Later on we investigate the DW dynamics in presence
of space-dependent profiles of either in-plane or/and perpendicular strain based on
the extended one-dimensional model. Thereafter, the model predictions are tested
by micromagnetic simulations under realistic conditions and finally, we present the
main conclusions of this chapter and the perspectives of the work.

4.2 Results and Discussion

4.2.1 Static properties of a domain wall under uniform strain

Efficient control of the DW static properties is required for better manipulating them
during the dynamic regime. Hence, here we first analyze the effect of a uniform
strain on the DW features at rest. To do so, we rely on both micromagnetic simulation
and a reduced 1D model. We consider a system that consists of a Néel DW located
at the center of an infinite nanostrip subject to a uniform uniaxial strain εii (where
ii refers to strain direction i : x, y, z) as shown in Fig. 4.1(a). Although not shown
in the figure, we assume that this ferromagnetic nanostrip is in contact with a heavy
metal layer and that the Néel configuration is favored over the Bloch one due to the
interfacial Dzyaloshinskii-Moriya interaction (DMI) [169]. As mentioned in chapter
2, within the 1D model approach, the magnetization is assumed to change only
along the longitudinal x-axis (M = M(x, t)) [67, 101, 103, 185], and similarly to
Eq.(2.46) the DW energy per unit area considering the magnetoelastic contribution
reads
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Fig. 4.1.: a) Schematic representation of the system under study. A Néel DW is located
at the center of an ferromagnetic nanostrip subject to a uniform strain. b) DW
equilibrium angle φ0 as a function of the in-plane strain (εxx) for different values
of interface DMI constant D as computed from both micromagnetic simulations
(dots) and the 1D model (lines). c) Micromagnetic snapshots of down-up DW
equilibrium patterns under different values of the in-plane strain (εxx) for a
system with D = −0.025 mJ/m2.

UDW =
∫ +∞

−∞
[Aex(∇m)2 − Kum2

z − µ0Ms

2 m · Hd + D(mz∇m − (m · ∇)mz)

+ B1 εxx m2
x + B1 εzz m2

z] dx (4.1)

where m(x, t) = M(x,t)
Ms

is the normalized magnetization, Hd is the self-magnetostatic
field, and Aex, Ku, D, and B1 are the exchange, anisotropy, DMI, and first magne-
toelastic constants, respectively. We assume that the longitudinal in-plane εxx and
perpendicular εzz are the only components of the strain tensor present in the system,
and B1 = −3

2λs(C11 − C12), with λs being the saturation magnetostriction and C11

and C12 the elastic constants [186]. We use the standard 1D ansatz for the DW
profile [67, 101, 102], θ(x, t) = 2 tan−1[exp

(
Qx−q(t)

∆

)
], ϕ(x, t) = φ(t) where θ(x, t)

and ϕ(x, t) are the spherical coordinates of the magnetization as shown in Fig. 4.1,
and q, ∆, and φ are the DW position, width, and angle, respectively, whereas the
factor Q refers to up-down (Q = +1) or down-up (Q = −1) DW configurations.

By integrating Eq. (4.1) using the 1D ansatz and assuming that strain is uniform
over the system we obtain
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UDW = 2Aex
∆ + 2∆(Keff + Ksh sin2 φ + B1εxx cos2 φ − B1εzz) + πQD cos φ (4.2)

with Keff = Ku − 1
2µ0M2

s and Ksh = 1
2µ0M2

s (Ny − Nx) being the effective and shape
anisotropy constants, respectively. The internal DW angle at rest φ0 is obtained by
minimizing Eq. (4.2) with respect to φ. The resulting angle is

φ0 = cos−1
[

π QD

4∆(Ksh − B1εxx)

]
(4.3)

if π|D| < 4∆|Ksh − B1εxx|. Otherwise, φ0 = 0 (π) for D < 0 (> 0). As the term
proportional to εzz in Eq. (4.2) is independent on φ, the equilibrium internal DW
angle [Eq. (4.3)] is not affected by perpendicular strain. On the contrary, Eq. (4.3)
shows that the DW internal angle is dependent on in-plane strain εxx. Fig. 4.1(b)
shows the equilibrium angle φ0 as a function of in-plane strain for different values
of D as computed from the 1D model (lines) and from micromagnetic simulations
(dots). Typical material parameter values for Pt/Co were adopted for both the
1D model and micromagnetic simulations, which were performed using the GPU-
accelerated code MuMax3 [100]: Ms = 0.58 MA m−1, Aex = 30 pJ m−1, Ku =
0.9 MJ m−3, B1 = 1.2 MJ m−3 (λs = −5 × 10−5, C11 = 298 GPa, C12 = 133 GPa).
Bloch walls (φ0 = π

2 ) are found in the absence of DMI (for our nanowire dimensions
Ny ≪ Nx and, therefore, Ksh < 0), whereas large DMI (D = −1.8 mJ/m2) stabilizes
the Néel DWs with right-handed chirality (φ0 = 0). For intermediate values of DMI,
Fig. 4.1(b) shows that it is possible to sizably tune the equilibrium angle towards
Bloch (Néel) configuration by applying moderate positive (negative) strain (|εxx| <

5 × 10−4). This effect is also evident in Fig. 4.1(c), where micromagnetic snapshots
are shown for three different values of the in-plane strain (εxx). This is consistent
with a recent work[187] that showed how an in-plane anisotropy modulation can
be used to transform between Bloch and Néel DWs. Indeed, our analysis shows
that this can be done using in-plane strain. Namely, tensile (compressive) strain
favors Néel DWs for materials with B1 < 0 (> 0). Besides, for a given material,
changing the strain type (from tensile to compressive) can induce a transition from
Bloch to Néel DW under realistic strain magnitudes. These results suggest that the
current-driven DW dynamics under spin-orbit torques could also be also controlled
with the assistance of uniform in-plane strain [188].
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4.2.2 Strain-driven domain wall dynamincs

After proving the dependence of the equilibrium DW configuration on the in-plane
strain, let us now focus on its dynamics in presence of a space-dependent one. To
do so, we consider the same system as in Fig. 4.1(a), but with a DW subject to an
in-plane uniaxial strain εxx that changes linearly along the longitudinal coordinate
as shown in Fig. 4.2(a). To highlight the peculiarities of DW dynamics under such
in-plane strain, we compare it with that of a perpendicular strain εzz with the same
linear profile (Fig. 4.2(a)) but with a positive slope since, as it will be shown later,
the two gradients need to have opposite signs to produce DW motion along the
same direction. We keep the same material parameters as in Sec. 4.2.1 along with a
Gilbert damping constant α = 0.05. To understand the strain-driven DW mechanism,
we develop the one-dimensional (1D) model [67, 101, 103] by considering that the
strain varies linearly along the longitudinal x-axis as

εii(x) = ∂εii

∂x
x = ε′

iix (4.4)

By substituting Eq. (4.4) in Eq. (4.1) and integrating, the DW energy density now
reduces to

UDW = 2A

∆ + 2∆(Keff + Ksh sin2 φ − B1ε′
zz q + B1ε′

xx q cos2 φ) + πQ D cos φ (4.5)

which indicates that the term proportional to ε′
zz does not depend on the DW

angle φ, whereas the one proportional to ε′
xx does. Using Eq. (4.5), the equations

describing the DW dynamics within the 1D approach can be obtained following the
conventional procedure [189], which is detailed in Sec. 2.8.1, yielding

(1 + α2) q̇

∆ = −α ΓA(φ) + Q ΓB(q, φ) (4.6a)

(1 + α2)φ̇ = −Q ΓA(φ) − α ΓB(q, φ) (4.6b)

with
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Fig. 4.2.: a) Schematic representation of the system under study. A Néel DW is initially
located at the center of a ferromagnetic nanostrip subject to a strain gradient.
In-plane and perpendicular strain profiles are shown by red and blue colors
respectively. b) DW position (q) versus time as driven by two different in-plane
(red) and perpendicular (blue) strain gradients. c) Average DW velocity versus
strain slope for the in-plane (red) and perpendicular (blue) cases.
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ΓA(φ) = γ0∆Hmel(ε′
xx cos2 φ − ε′

zz) (4.7a)

ΓB(φ, q) = γ0

[(
Hsh

2 − Hmelε
′
xxq

)
sin 2φ − π

2 QHDMI sin φ

]
(4.7b)

where Hmel = B1/µ0Ms, Hsh = 2Ksh/µ0Ms and HD = D/µ0Ms∆ are magnetoelastic,
shape anisotropy and DMI fields, respectively. In what follows, we will refer to the
in-plane strain gradient case when ε′

xx ̸= 0 and ε′
zz = 0, and to the perpendicular

strain gradient case when ε′
xx = 0 and ε′

zz ̸= 0.

In analogy with the conventional field-driven case [67, 190], the term −α ΓA in
Eq. (4.6a) can be considered as the driving agent that pushes the DW along the
direction of decreasing energy, i.e. increasing tensile (compressive) strain if B1 < 0
(> 0) for the in-plane strain gradient case and increasing compressive (tensile) strain
if B1 < 0 (> 0) for the perpendicular one. On the other hand, the two terms on
the RHS of Eq. (4.6b) can be viewed as the precessional (−Q ΓA) and damping
(−α ΓB) in-plane torques that govern the internal DW angle dynamics. Two main
differences can be readily noticed between the in-plane and perpendicular cases.
First, the contribution of ε′

xx to the precessional torque (−Q ΓA) is modulated by a
factor cos2 φ, which is not the case for ε′

zz. Second, ε′
xx contributes to the damping

torque (−α ΓB), whereas ε′
zz does not. Moreover, this contribution also depends on

the DW position q [see Eq. (4.7b)]. As we show below, this term has a strong impact
on the response of the DW to the in-plane strain gradient.

Fig. 4.2(b) shows the time evolution of the DW position q predicted from the 1D
model for two representative values of in-plane (red) and perpendicular (blue) strain
gradients. Note that the dependence of the DW energy on ε′

xx and ε′
zz is of opposite

sign [see Eq. (4.5)] and, therefore, to produce DW motion along the same direction
the sign of the gradient also needs to be opposite. In our case B1 > 0, so ε′

xx < 0 and
ε′

zz > 0 lead to DW motion along the positive direction (+x). As can be observed
in Fig. 4.2(b), for small strain-gradients (|ε′

ii| = 0.2 µm−1), steady DW motion with
similar velocity is achieved in both in-plane and perpendicular cases. However, if
the strain gradient increases (|ε′

ii| = 0.4 µm−1) the response is very different. For
perpendicular strain (|ε′

zz| = 0.4 µm−1), the DW displays turbulent motion with a
low averaged velocity, typical when the system exceeds the WB limit. On the contrary,
the DW moves steadily with a higher velocity for the in-plane case (|ε′

xx| = 0.4 µm−1).
Fig. 4.2(c) shows the averaged DW velocity over a temporal window of 5 ns as a
function of the strain gradient for both in-plane (red) and perpendicular (blue)
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Fig. 4.3.: a) Temporal evolution of the DW angle and instantaneous velocity time as driven
by an in-plane strain gradient (ε′

xx ̸= 0 and ε′
zz = 0). b) Schematic representation

of different torque contributions on the studied DW dynamics. c) Maximum tilting
of the DW angle versus strain gradient. d) Characteristic time needed to reach
the maximum angle (blue) and maximum velocity (orange). e) Maximum (blue)
and terminal (orange) velocities versus strain gradient.
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cases. For perpendicular strain, we observe WB at ε′
zz,WB = απHDMI

2Hmel∆ ≈ 0.26 µm−1

as one would expect considering that the effect of a perpendicular strain gradient
is equivalent to that of an external magnetic field Heq = Hmelε

′
zz∆. Below WB

limit, the DW moves rigidly and reaches a terminal velocity proportional to the
strain gradient (V = γ0∆2

α Hmelε
′
zz), whereas above it the DW undergoes continuous

internal precession, the velocity is no longer uniform and DW mobility is significantly
reduced. For the in-plane case, however, no WB is observed and the DW mobility
remains constant for arbitrarily high values of the strain gradient. This absence of
WB in DW motion driven by an in-plane strain gradient is the main result of this
chapter, in what follows, we will focus on explaining the mechanism that makes it
possible.

Fig. 4.3(a) shows the time evolution of the DW angle φ (top) and its instanta-
neous velocity Vinst (bottom) for different values of the in-plane strain gradient
ε′

xx. As it can be observed, a transient period, where both φ and Vinst change
non-monotonically, takes place before the DW asymptotically reaches a steady ve-
locity and the angle goes back towards its initial value (φ = 0). In order to shed
light on this process, we analyze the different in-plane torques that govern the
dynamics of the DW angle in Eq. (4.6b). On the one hand, we have the pre-
cessional component of the driving force, −QΓA, which drives the angle away
from its equilibrium orientation. On the other hand, the damping torque (−αΓB)
has three contributions, i.e. αΓsh = −αγ0

Hsh
2 sin 2φ, αΓDMI = αγ0

QπHDMI
2 sin φ

and αΓε′
xx

(q) = αγ0Hmelε
′
xxq sin 2φ. The first two of them are the standard shape

anisotropy and DMI in-plane damping torques, and they are always present, regard-
less of the nature of the force that moves the DW. The third one, αΓε′

xx
(q), is specific

to the in-plane strain gradient case, and, unlike the rest of them, its strength de-
pends explicitly on the DW position q. These four in-plane torques are schematically
represented in Fig. 4.3(b), where their corresponding signs are consistent with an
up-down right-handed (Q = +1) DW moving along the x > 0 direction.

As soon as the DW starts moving due to the driving torque −αΓA, the corresponding
precessional component −QΓA tilts its angle away from the equilibrium orientation,
and a restoring torque appears, trying to bring it back to its orientation at rest. When
the driving force is an external field or a perpendicular strain gradient, the total
restoring torque is given by αΓsh + αΓDMI and if the driving force exceeds a certain
threshold value, such restoring torque cannot balance the precessional one, and
WB takes place. However, for an in-plane strain gradient, the third term, αΓε′

xx
(q),

which opposes the precessional torque, also comes into play, with the peculiarity
that its strength increases as the DW moves along the strain gradient (Fig. 4.3(b)),
therefore contributing to bringing the angle closer to its value at rest. In fact, this
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term guarantees that the DW angle remains bounded during motion regardless of
the magnitude of the driving force, since its strength, like that of the precessional
torque, is proportional to the strain gradient ε′

xx [Eq.(4.7.b)].

With this idea in mind, the transient behavior observed in Fig. 4.3(a) can be
understood as follows: As the DW starts moving and the angle deviates from
equilibrium value, the strength of the in-plane precessional torque −QΓA decreases,
whereas the in-plane damping torque −αΓB increases. Since they have opposite
signs, the total in-plane torque is gradually reduced up to a point where both terms
balance out (QΓA + αΓB = 0) and the tilting angle reaches its maximum deviation
(φmax). As shown in Fig. 4.3(c), this maximum deviation φmax increases with the
strain gradient ε′

xx but it saturates around π
3 , proving our finding that the angle

remains bounded no matter how large the strain gradient is. After φmax is reached at
a certain time t1, the total in-plane torque changes sign (|αΓB| > |QΓA|) and φ starts
decreasing, whereas the DW velocity continues increasing and up to reaching its
maximum value Vmax at a later time t2. Fig. 4.3(d) shows how the two characteristic
times of this transient dynamics, t1 and t2, depend on the strain gradient. As can
be observed, they decrease in a similar fashion. As the DW moves further into the
region of increasing strain, the term αΓε′

xx
becomes dominant (|Γε′

xx
| ≫ |ΓDMI|, |Γsh|)

and the DW angle gradually goes back to its initial Néel orientation according to
φ(q) = tan−1

(
Q∆
2αq

)
. The DW velocity, meanwhile, asymptotically reaches a terminal

value given by

Vterm = γ0Hmel∆2

α
ε′

xx (4.8)

Fig. 4.3(e) shows both the terminal and maximum velocities as a function of the
in-plane strain gradient. While the first one displays a perfectly linear trend, the
second one has a slightly stronger dependence so that the difference between them
increases with ε′

xx.

Up to now, we have investigated DW motion in presence of separate in-plane or
perpendicular strain gradients. Although this assumption could be applied to some
piezoelectric/magnetic systems, depending on the cut directions of the piezoelectric
substrate, it is also possible to find that both in-plane and perpendicular strains
are present in the system [191]. Therefore, investigating their joint effect on DW
motion is also relevant. Thus, we consider the system in Fig. 4.2(a) with both
ε′

xx ̸= 0 and ε′
zz ̸= 0. We parameterize them as ε′

zz = −βε′
xx with β = | ε′

zz
ε′

xx
|

being the ratio between them. Considering that they should have opposite signs to
produce DW motion in the same direction, the expression in Eq. (4.7.a) becomes
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Fig. 4.4.: a) Average DW velocity as a function of the strain gradient for different β =
|ε′

zz/ε′
xx|. b) Instantaneous DW velocity as a function of time for different values

β and ε′
xx = −0.61 µm−1. c) Time evolution of the longitudinal component of

the internal DW magnetization (mx = cos φ) for different ratios β and ε′
xx =

−0.61 µm−1.

ΓA(φ) = γ0∆Hmelε
′
xx(cos2 φ + β), whereas the ΓB(φ, q) remains the same as in Eq.

(4.7.b).

Fig. 4.4 shows the dynamics of DWs for different values of the ratio β. As it can
be noticed from Fig. 4.4(a), where the average DW velocity is plotted versus the
strain gradient, the system does not depict any WB for any value of β. However,
when we look at the instantaneous velocity plotted in Fig. 4.4(b) for a relatively
high strain gradient (ε′

xx = −0.61 µm−1
) two regimes are depicted. On the one

hand, when β < 1 the system behaves similarly to the pure in-plane strain gradient
case explained before, where no instabilities are found. On the other hand, when
β ≥ 1 the instantaneous DW velocity exhibits a nonlinear behavior during the
transient dynamics. After reaching a maximum, the DW velocity decreases towards
its terminal value. To shed more light on this complex transient dynamics, Fig. 4.4(c)
shows the longitudinal component of the DW internal magnetization mx = cos φ as
a function of time for different values of β. It can be seen from Fig. 4.4(c) that the
DW internal magnetization oscillates during the transient period for β ≥ 1 leading to
the onset of turbulent motion. Afterwards, it reaches an equilibrium value, and the
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DW recovers a steady motion. We note that the behavior shown in Fig. 4.4 depends
on both β and ε′

xx, and therefore, for larger values of ε′
xx than the ones shown here,

the transient period of unstable DW motion appears for β < 1 as well.

We can interpret the results of Fig. 4.4 similarly to those obtained for in-plane strain
gradients in terms of the action of the involved torques. In fact, by adding the
contribution of ε′

zz, the strength of the precession torque (−QΓA) increases, while
the damping torque (−αΓB) remains unaffected. This leads to a local breakdown of
the compensation scheme explained before, and consequently, turbulent motion can
take place if ε′

zz is large enough. On the other hand, as the DW moves, the damping
torque −αΓB ∝ q gains strength and is eventually able to compensate the precession
torque −QΓA. Then, the DW angle goes back towards its equilibrium configuration
(φ = 0), and the DW recovers the steady motion with a constant terminal velocity
given by

Vterm = γ0Hmel∆2

α
ε′

xx(1 + β) (4.9)

which shows that adding the contribution of the perpendicular strain gradient
enhances significantly the DW motion in the steady regime.

Thus far, we have theoretically shown the absence of WB for a DW driven by in-
plane strain gradients based on the 1D model. In doing so, we explored high-strain
situations to prove that steady DW dynamics could be reached regardless of the
strength of the driving force. However, in practice, there are limitations to the
magnitude of the strain gradient that can be applied and the distance over which
it can be maintained. Not only a large strain gradient can introduce mechanical
damage in the device, but if strain is large enough to compete with perpendicular
anisotropy (|B1εxx| ∼ Keff), which in our case happens when εxx ∼ 0.06, the
nucleation of in-plane domains starts taking place, and the system depicted in Fig.
4.2(a), with a DW separating two antiparallel domains, is no longer stable. Therefore,
to explore the plausibility of our proposal under realistic conditions, micromagnetic
simulations (µM) were performed using the same material parameters given before
and a strain gradient over the strip length, which is fixed to 1 µm. Fig. 4.5(a)
shows the time evolution of the DW angle φ for different values of ε′

xx as computed
from both micromagnetic simulations (dots) and the 1D model (lines). As it can
be observed, the simulations support the 1D results shown in Fig. 4.3. Indeed, the
internal angle remains bounded even for the highest values of the strain gradient.
To get a good agreement between the 1D model and the µM results, it was necessary
to take into account in the former the sizable variations of the DW width [167] as
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it goes deeper into the highly strained region and its effect on the demagnetizing
factors[192]. Using the same method as for the (q, φ) 1D dynamic equations [103,
189], the following additional dynamic equation for the DW width is obtained (refer
to Appendix. A.3 for further details)

∆̇ = 12γ0
αµ0Msπ2

[Aex
∆ − ∆

(
Keff + Ksh sin2 φ − B1ε′

zz q + B1ε′
xx q cos2 φ

)]
(4.10)

Fig. 4.5(b) shows the average DW velocity Vavg as a function of the in-plane strain
gradient for different values of α obtained from micromagnetic simulations (dots)
and from the 1D model (lines). Due to the limitations mentioned before, the terminal
velocity predicted by the 1D model Eq. (4.8) is not accessible in a 1 µm long strip.
On the other hand, the non-linear dependence with ε′

xx observed for all values of α

is due to the fact that the velocity is averaged over a short time interval in which the
DW velocity is highly non-uniform, unlike in Fig. 4.1(c), where the time interval
(5 ns) is significantly larger than this transient period so that Vavg ≈ Vterm. In any
case, Fig. 4.5(b) confirms that the absence of WB revealed from our 1D model
remains true under realistic modeling. In Fig. 4.5(c), we show the average DW
velocity versus strain gradient for different widths of ferromagnetic strip. As it can
be seen, the average velocity is not affected by the strip width, and good agreement
with the 1D model is found. This confirms that the physics underlying DW motion
under strain demonstrated by the 1D model is valid not only for narrow strips but
for wide ones as well.

Fig. 4.5(d) shows the average DW velocity for the case where in-plane and per-
pendicular strain gradients are applied simultaneously to the system with a ratio
β = | ε′

zz
ε′

xx
|. As can be observed, micromagnetic simulation confirms the onset of

turbulent DW motion at ε′
xx = −0.077µm−1 if both strain gradients are of the same

magnitude (β = 1). However, the additional contribution of the ε′
zz increases the

average DW velocity. The dynamics after the transient period explained in the
previous section with the 1D model (where the DW recovers the steady motion) are
not accessible via micromagnetic simulation because of the limitations to the strain
magnitude explained above.

To sum up, our simulations show that high DW velocities can be achieved under
realistic conditions, especially if we take into account that, as shown in our previous
publications [125, 128], in-plane strain gradients in the order of 10−2 µm−1 can
be realized in hybrid ferromagnetic/piezoelectric devices by applying moderate
voltages between conveniently located electrodes over the piezoelectric substrate.
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Fig. 4.5.: a) Time evolution of the DW angle φ for different values of the in-plane strain
gradient (ε′

xx). b) Average DW velocity as a function ε′
xx for different values of

the damping constant α. c) Average DW velocity for different strip widths under
in-plane strain gradients and α = 0.05. d) Average DW velocity as a function
of the strain gradient for different values of the ratio between perpendicular an
in-plane strain gradients β = | ε′

zz

ε′
xx

|. In all graphs, micromagnetic results and the
1D results are shown by dots and lines respectively.
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4.3 Conclusion

We studied the influence of strain on the statics and dynamics of DWs in ferromag-
netic strip with perpendicular anisotropy. Our theoretical study shows that uniform
strain can be used to tune the DW internal angle between Bloch and Neel config-
uration. It is also shown that DW dynamics driven by an in-plane strain gradient
is qualitatively different from the response to other driving forces, such as external
field, spin-polarized current or perpendicular strain gradients. In particular, such
dynamics occurs without Walker breakdown and, ideally, a DW velocity proportional
to the strain gradient is obtained regardless of the strain gradient magnitude. We
show that the origin of this phenomenon lies in the fact that the DW internal angle
in equilibrium depends on strain. This leads to a dynamic torque that opposes its
tilting and whose strength increases as the DW moves towards increasingly strained
regions, and prevents the onset of internal DW oscillations. On the other hand, the
maximum DW velocity achievable with our approach is not limited by their intrinsic
dynamic properties but on the feasibility of keeping perpendicularly magnetized
domains stable in regions of high in-plane strain. In any case, our micromagnetic
simulations show that averaged velocities in the order of 500 m/s can be achieved
under realistic conditions easily achievable in experimental setups. These velocities
are in the range of spin-orbit torques driven DW motion but they are reached with
much less energy dissipation since Joule heating is absent. Furthermore, our system
reveals complex dynamics where DW angle and, therefore, also its inertia, are not
uniquely determined by its velocity but they can largely be tuned with strain, which
opens a new avenue to explore dynamic phenomena.
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Internal dynamics of domain
walls driven by spin-orbit
torques under uniform strain

5

In this chapter, we investigate the SOT-driven dynamics of Néel DWs stabilized
via uniform in-plane (IP) mechanical strain using micromagnetic simulations and
analytical models. We start by examining how DWs in narrow strips respond to an
external current in the presence of uniform strain. We observe that, at a critical
current value, the DW stops moving completely, remaining static even if we keep
increasing the current. This phenomenon is linked to the effect of the precessional
component of the SOT, which causes a gradual transition in the DW configuration
from Néel to Bloch. With the aim of confirming whether these effects hold true in
broader systems, we expand our study to wider strips. In this case, we again find that
the DW stops moving beyond a certain threshold current, but this time its internal
magnetization displays non-uniform patterns and non-linear dynamical regimes. To
better understand the underlying physics governing this intricate DW behavior, we
extend the 1D model to account for spatial variations of the DW components. We
identify an internal twist with a 180◦-kink form, where the kink width depends on
the ratio between exchange and magnetoelastic anisotropy. Simultaneously, we note
distortions in the DW structure due to the competition between SOTs and exchange
torque. We also delve into the factors influencing DW motion cessation. We found
that this behavior originates from a balance between non-linear and dispersive
effects in the system. The content of this chapter is the subject of a manuscript under
preparation, which will be submitted in the next few months.

5.1 Introduction

We start this chapter reviewing some aspects of DWs already discussed in chapter
2 and introducing Vertical Bloch lines. As mentioned in Sec. 2.8.1, in presence of
external stimuli such as spin-polarized currents or magnetic fields, DWs depict two
dynamical regimes according to Walker’s model [101]. The first one is called the
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steady regime, where the DW moves with a constant velocity proportional to the
external force strength. However, if this force exceeds a certain threshold value, the
DW dynamics transits to a precessional regime where its internal magnetic moments
oscillate continuously with a frequency proportional to the external force.

It has been shown that one-dimensional DWs in narrow strips depict uniform preces-
sional dynamics where their internal magnetic moments oscillate coherently. In wide
strips, however, the magnetic moments inside the DW oscillate non-uniformly, lead-
ing to highly nonlinear behaviors where the formation of complex space-dependent
structures such as vertical Bloch lines (VBLs) typically takes place [193–196]. VBLs,
which have been reported in both Bloch and Néel DWs, are curling structures char-
acterized by a twist of the DW internal magnetization along its length [197]. In
the absence of DMI, VBLs exhibit a four-fold degeneracy where four states with
different chiralities

(
C = ±1

2

)
and magnetic charge (Q = ±1) belong to the same

energy level and exist with the same probability, as represented in Fig. 4.1. In this
context, the magnetic charge (Q) quantifies the polarity of the domains surrounding
the VBL. Specifically, a magnetic charge Q = +1 means a head-to-head VBL, while
Q = −1 signifies a tail-to-tail one as sketched in Fig. 4.1. Additionally, positive
chirality corresponds to a clockwise rotation of the magnetization, whereas negative
chirality corresponds to an anticlockwise one. In absence of DMI, VBLs nucleate
successively in pairs and propagate with the same velocity, leading to a pure preces-
sional behavior similar to one-dimensional DWs. When DMI comes into play, the
VBL energy level with 4-fold degeneracy splits into two distinct levels with 2-fold
degeneracy each, which leads to the nucleation of VBLs with different energies along
the DW. These structures subsequently move at different velocities and annihilate
by collision, leading the DW to maintain a constant velocity above the threshold
external magnetic field [198].

In this chapter, we investigate the dynamics of achiral Néel DWs stabilized via
in-plane strains under SOTs in both narrow and wide strips. In the following, we
will explore the dynamics of such DWs in narrow strips using both the 1D model and
micromagnetic simulations. Then we will check these dynamics in a wider system by
using an extended model that allows for the DW position and internal angle to vary
along the width of the strip. Finally, we will summarize the findings of our work and
present our conclusions.
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Fig. 5.1.: Four VBL structures with different magnetic charges Q and chiralities C.

5.2 SOT driven achiral Néel DW dynamics in narrow
strips

The system under study is schematically represented in Fig. 5.2(a). It consists
of a very long nanostrip of width W and thickness tFM made of a ferromagnet
with strong perpendicular anisotropy and a Néel DW located at the center. The
ferromagnet is subject to a longitudinal uniform strain εxx strong enough to favor
the Néel configuration over the Bloch one in the DW. Certainly, it was recently
shown [187] that by inducing a sufficiently strong in-plane anisotropy, it is possible
to stabilize Néel DWs in absence of interfacial DMI and we demonstrated in chapter
4 that this can be achieved using longitudinal strain εxx [159]. As indicated in Fig.
5.2(a), our DW is also subject to a SOT induced by an electric current density JHM

flowing through an adjacent heavy metal underneath that pushes the DW along the
+x direction.

Micromagnetic simulations are carried out with mumax3 [100] for a nanostrip
of length L = 1024 nm, thickness tFM = 1 nm and variable width W using 1 nm
cubic cells for the discretization. The following magnetic and elastic material
parameters were used in our study: Aex = 20 pJ/m (exchange stiffness), Ms =
0.58 MA/m (saturation magnetization), Ku = 0.9 MJ/m3 (uniaxial anisotropy),
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Fig. 5.2.: a) Schematic representation of the system under study. A Néel DW is located
at the center of an ferromagnetic nanostrip subject to a uniform strain and a
spin-curent generated through spin-Hall effect. b) DW average velocity versus
applied current computed after a 50 ns time window from both µM simulations
(dots) and the 1D model (solid line). c) DW average velocity versus applied
current computed after a 50 ns time window from the 1D model under different
IP strains εxx. d) Steady state DW angle versus applied current for different
values of the IP strain εxx.
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α = 0.08 (Gilbert damping), θsh = −0.33 (spin Hall angle), D = 0 (DMI constant),
λs = −5 × 10−5 (magnetostrictive coefficient), C11 = 218 GPa and C12 = 133 GPa
(elastic constants).

Let us first focus on the SOT dynamics of our Néel DWs in narrow strips. We consider
the ferromagnet in Fig. 5.2(a) with W = 24 nm and we develop a 1D model using
a similar approach as presented in Sec. 2.8.1. The dynamic equations in this case
read

q̇

∆ = −αΓSOT + ΓAN (5.1)

φ̇ = −ΓSOT − αΓAN (5.2)

with

ΓSOT = γ0
1 + α2

π

2 HSOT cos φ

ΓAN = γ0
1 + α2 HAN sin 2φ

Eq.(5.1) and (5.2) describe the evolution of the DW position q and its internal
angle φ over time, respectively. The functions ΓSOT(φ(t)) and ΓAN(φ(t)) denote the
torques associated with the spin current and the in-plane anisotropy, respectively,
where HSOT = h̄θshJHM

2eµ0Msℓz
and HAN = Hsh

2 −Hmelεxx, with Hsh = Ms (Ny − Nx) being
the shape anisotropy field and Hmel = B1

µ0Ms
the magnetoelastic anisotropy field.

Fig. 5.2(b) shows the average DW velocity computed over a time window of
50 ns from both micromagnetic simulations (µM) and the 1D model. It can be
observed that, below a certain threshold current density (Jm), the DW velocity scales
quasi-lineally with the applied current. However, beyond Jm, the DW velocity starts
decreasing gradually until it fully vanishes at a certain current density Jc and remains
unchanged if the current density keeps increasing. In Fig. 5.2(c), we show the
average DW velocity versus current for different values of the strain εxx. It can be
noted that the threshold current above which the DW velocity vanishes is gradually
increased while raising the strain value. This increase allows for enhanced maximum
DW velocity since one can inject higher currents before the DW stops.

In the same context, the 1D model allows us to quantify the DW angle and velocity
at the steady state, as well as the threshold currents over which the DW velocity
starts decreasing and stops. Solving Eq. (5.1) for φ̇ = 0 yields
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φs = arcsin
[

πh̄θshJHM

8 α e tFM(Ksh
2 − B1εxx)

]
(5.3)

if the current is smaller then the critical one (JHM < Jc). Above this critical current
a Bloch wall is found (φ = ±π

2 ). Note that Ksh = 1
2µ0MsHsh.

Substituting Eq. (5.3) in Eq. (5.1) gives the DW velocity at the steady state

|vs| = γ0∆πh̄|θsh|
4α |e| tFM µ0 Ms

|JHM|

√√√√1 −
(

πh̄|θsh|
8α |e| tFM(Ksh

2 − B1εxx)

)2

|JHM|2 (5.4)

if the current is bellow the critical one JHM < Jc. Above this critical current,
|vs| = 0.

The critical currents, Jc and Jm, can be determined from Eq.(5.4) by respectively
imposing |vs| = 0 and d|vs|/dJHM = 0

|Jc| =
8α|e|tFM(Ksh

2 − B1εxx)
πh̄|θsh|

(5.5)

|Jm| = 1√
2

|Jc| (5.6)

The DW velocity shown in Fig. 5.2 is a direct consequence of the changes that its
internal angle undergoes. This becomes evident from Eq. (5.3), where it is analyt-
ically shown that, if JHM overcomes Jc, the DW changes to a Bloch configuration
with φ = −π

2 . This DW angle behavior is depicted in Fig. 5.2(d), where we can see
how the increase of the applied current changes gradually the DW angle from φ = 0
to φ = −π

2 .

To understand the physical mechanism behind this behavior, let us analyze the
DW dynamics depicted in Fig. 5.2 in terms of the torques involved in Eq. (5.1)
and Eq. (5.2). Once the applied current is turned on, the damping component
of SOT (αΓSOT) triggers the DW displacement along x-axis. Simultaneously, its
corresponding precessional component (ΓSOT) tilts the internal DW angle away
from its equilibrium (φ = 0). The tilt of the DW angle strengthens the damping
in-plane anisotropy torque (αΓAN), which starts competing with ΓSOT trying to
bring the DW angle back to its equilibrium. As long as the applied current is below
the threshold Jc, these torques balance each other, leading the DW angle to reach
a steady state value according to Eq. (5.3). Afterwards, the DW velocity reaches
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a constant value that only depends on the applied current and the in-plane strain,
as displayed in Eq. (5.4). Once the applied current surpasses the threshold, ΓSOT

becomes dominant and brings the DW angle to the Bloch configuration (φ = −π
2 ),

which cancels out all the torques acting on the DW, leading it to a complete stop.
This DW behavior was also recently reported for bistable Néel DWs stabilized via
shape anisotropies in narrow strips depicting a uniform internal DW configuration
along the transverse direction [199].

5.3 SOT driven achiral Néel DW dynamics in wide strips

5.3.1 Achiral Néel DW dynamics in wide strips

Let us focus now on investigating the DW dynamics in wider strips with the aim
of checking whether the behavior observed in Sec. 5.2 is universal. To do so, we
keep the system as in Fig. 5.2(a) with the same material parameters but now with a
variable width W .

Fig. 5.3(a) shows the DW velocity versus applied current obtained from µM simula-
tions for strips with different widths plotted together with the prediction of the 1D
model Eq. (5.4). As can be observed, the 1D model predicts that the DW velocity
initially increases with current up to approximately 160 GA/m2 and then it starts
decreasing gradually until it becomes null when JHM reaches 240 GA/m2, remaining
immobile for larger current values. As explained in Sec. 5.2, this behavior is due to
the fact that by increasing the current, the DW internal angle gradually tilts from a
Néel (φ = 0, π) to a Bloch configuration

(
φ = ±π

2
)
, which makes SOT increasingly

inefficient to move the DW [107]. A very similar behavior is obtained from µM
simulations for the narrowest nanostrip (W = 24 nm), which indicates that the DW
behaves like a rigid 1D object in this case. For the other cases, however, the initial
regime of increasing velocity remains practically unchanged, but instead of getting
a gradual decreasing regime, the DW abruptly comes to a complete stop when a
certain critical current Jc is reached, which is a clear indication that the DW deviates
from the 1D behavior. This becomes obvious if one looks at Fig. 5.3(b), where
we show typical snapshots of the magnetization for three different widths and an
applied current above Jc. They correspond to the steady state once the DW stops
and, as it can be observed, in the three cases the DW presents a regular undulating
structure consisting of a concatenation of segments of the same curvature but of
alternating sign. In the enlarged area, we present a detailed view of the transition
region separating two consecutive segments magnetized along positive +x (top) and
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Fig. 5.3.: a) DW average velocity versus applied current from µM simulations for strips
with different widths together with the 1D model prediction. b) Micromagnetic
snapshots of the DW structure at the steady state for strips with different widths.
The inset shows a magnification of the magnetization inside the DW. c) Critical
width for unstable linear solution versus the in-plane strain from both micromag-
netic simulation and a linear stability analysis of Eq.(5.9) and Eq.(5.10). The blue
curve was obtained form Eq. (A.65) and the LSA was detailed in Appendix. A.4.2.

−x (bottom) directions, respectively.In the transition region, which extends only
over a few nanometers, the magnetization points along the −y direction. Though
these structures belong to the Bloch lines (BL) family, they have different features,
as will be discussed later in this chapter. Hence, in what follows, we will refer to
them as kinks for the sake of simplicity.

5.3.2 Extended collective coordinates model and steady state DW
structure

Considering the structures shown by the DWs (Fig. 5.3(b)), and with the aim
of understanding their features and the dynamic processes that lead to them, we
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generalize the 1D model mentioned previously in Sec. 5.2 allowing both DW
coordinates q and φ to vary along the y-axis. To do so, we used a modified Walker
ansatz [101] to include the space variation of both the DW position q(t, y) and its
internal angle φ(t, y) as follows

 θ(x, y, t) = 2 tan−1
(
ex−q(y,t)

∆

)
ϕ(x, y, t) = φ(y, t)

(5.7)

where θ and ϕ are the spherical coordinates of the magnetization as sketched in Fig.
5.2(a).

Plugging this new ansatz in the energy density Eq. (2.22) and integrating it along
x-axis yields the DW energy density per unit surface as

UDW = Aex

[
2
∆ − 4

∆
dq(y, t)

dy
+ 2

∆

(dq(y, t)
dy

)2
+ 2∆

(dφ(y, t)
dy

)]
+ 2∆Keff

+ 2∆Ksh sin2(φ(y, t)) + 2∆B1εxx cos2(φ(y, t)) (5.8)

Using Eq. (5.8) together with LLG equation Eq.(2.41) and following the procedure
developed in Appendix. A.4 we get two partial differential equations describing the
DW dynamics as

(1 + α2)∂t
q

∆ = αD∂yy
q

∆ − αΓSOT − D∂yyφ + ΓAN (5.9)

(1 + α2)∂tφ = D∂yy
q

∆ − ΓSOT + αD∂yyφ − αΓAN (5.10)

where D = 2γ0Aex
µ0Ms

is a dispersive-like constant, ΓSOT = γ0π
2 HSOT cos φ is the SOT

torque and ΓAN = γ0HAN sin 2φ is the in-plane anisotropy torque. Note that the
partial derivatives are represented as ∂i ≡ ∂

∂i , where i stands for the variable with
respect to which we are performing the differentiation.

In order to confirm whether our model captures the behavior observed in µM
simulations, we check the stability of the steady state solutions of Eq. (5.9) and
Eq. (5.10) for JHM > Jc. For that purpose, we carry out a linear stability analysis
(LSA) of the two PDEs of our model, Eq. (5.9) and Eq. (5.10), as detailed in
Appendix. A.4. The LSA unveils that, at a critical width Wc = π

√
Aex

Ksh−B1εxx
(see Eq.

(A.65)), a stationary bifurcation takes place, where the uniform solution (q = cst
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and φs = −π
2 ) becomes unstable and, instead, space-dependent patterns will appear

as illustrated in Fig. 5.3(b). This behavior is clearly displayed in Fig. 5.3(c), where
we plot the critical width Wc versus the applied strain from both the model and µM
simulation. Interestingly, both approaches agree on predicting the phase boundary,
separating the pure 1D DW behavior from the intricate 2D behavior observed for
the largest widths in Fig. 5.3(b).

Once we have a clear proof that our model captures the main features exhibited by
DW in 2D strips, let us explore its steady state structure when JHM > Jc. With this
aim, we impose equilibrium conditions (∂t

q
∆ = 0 and ∂tφ = 0) to Eqs. (5.9) and

(5.10) and solve them analytically to get both the space-dependent DW angle φ(y)
and position q(y) at the steady state as

φ(y) = 2 tan−1
[
e

−Qy
λ

]
(5.11)

q(y) = Ω
2 y2 + Ωr

2 y + Ω
2 λ2Li2

(
−e

2y
λ

)
+ Ω

24π2λ2 (5.12)

where λ =
√

Aex
Ksh−B1εxx

is the kink width, Q = ±1 denotes the orientation of the in-

plane magnetization around the kink, Ω = −Qπ∆h̄θshJHM
8|e|AextFM

and Li2(x) is the Spence’s
function (Dilogarithm) [200].

Fig. 5.4(a) and Fig. 5.4(b) show the transverse component of internal DW mag-
netization my = sin φ(y) and position q(y) along y-axis for W = 256 nm and
JHM = 200 GA/m2 obtained from both µM simulations, Eq. (5.11) and Eq. (5.12),
respectively. As can be perceived from the two figures, both µM simulation and the
model agree on predicting the steady state of the DW internal structure. Remarkably,
the internal twist of the DW takes the form of a 180◦-kink where the DW internal
magnetization at the kink transition is always pointing towards the −y direction
(i.e. φ(y) = −π

2 ) as one can also confirm from Fig. 5.4(b). This orientation is
a direct consequence of the SOT, which forces the magnetization in the kink to
point alongside its corresponding effective field, HSOT. This phenomenon results
in a two-fold degeneracy within the system. Specifically, it allows for only two
possible orientations of magnetization around the kink: either transitioning from
an "+x" orientation to a "−x" one (↑→↓) or vice versa (↓→↑). On the other hand,
when examining the DW position q(y), we observe that the DW shifts in opposite
directions around the center of the kink. This behavior is attributed to the fact
that the force exerted by the SOT points in opposite directions on both sides of the
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Fig. 5.4.: a) The transverse magnetization my = sin φ(y) along y-axis from both Eq.(5.11)
and µM simulation with W = 256 nm, JHM = 200 GA/m2 and εxx = 2%. b)
DW displacement along y−axis from both Eq. (5.12) and µM simulation with
W = 256 nm and εxx = 2%. c) Schematic representation of the SOT acting along
the DW within regions of different magnetization orientations.
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kink, as schematized in Fig. 5.4(c). Hence, it experiences a stretching effect where
the inversely in-plane-oriented parts of the DW move in opposite directions. We
can anticipate from Eq. (5.12) that the amount of DW stretching is a compromise
between the SOT and exchange, which becomes evident as Ω ∝ JHM

Aex
. This predicts

the crucial role that the DW elasticity is poised to play on its structure and stability,
as we will explore in the following section.

5.3.3 Transient dynamics and kinks stabilization

After examining the DW steady state structure and unveiling the main features
of the nucleated kinks, let us now focus on understanding the transient regime,
including their nucleation. As described previously in Sec. 5.3.1, the achiral Néel
DW stops under SOT if the applied current JHM is above a certain threshold. This
phenomenon is related to the nucleation of magnetic kinks inside the DW, which is
initially triggered by the precessional component of the SOT (ΓSOT). Hence, when
JHM is above the threshold Jc, ΓSOT becomes important, leading the internal spins
of the DW to rotate away from their equilibrium (φ(y) = 0, π) as shown in Fig. 5.5,
where we plot all the torques involved in Eq. (5.10) as a function of y at different
time instants. Due to the inhomogeneity of the demagnetizing field near the DW
boundary [189], its internal spins there rotate with different angular velocities with
respect to the ones located far from the strip edge, as schematized in Fig. 5.5(b).
As soon as neighboring spins in an arbitrary region along the DW start exhibiting
a large non-colinearity (see Fig. 5.5(b)), the one with the largest tilting reverses,
leading to the nucleation of kink pairs as schematized in Fig. 5.5(c). When the
first kink pairs appear, the nucleation spreads along the DW due to the precessional
dispersive-like torque (D∂yy

q
∆). This becomes evident in Fig. 5.5(c), where it can

be seen that this torque is the dominant one.

Right after the nucleation regime, the kinks start evolving slowly towards a steady
state by moving and annihilating via kink-kink or kink-edge collisions. The post-
nucleation regime is found to be much slower compared to the nucleation one.
While the nucleation time is around tnucl = 0.1 ns the time required to reach the
final state varies in the range tf = 1 − 100 ns depending on the strip width. This is
ascribed to the fact that after nucleating the kinks over the DW, the precessional SOT
(ΓSOT) and dispersive-like (D∂yy

q
∆) torques compensate each other. Afterwards,

the dynamics of φ(t, y) is essentially associated with the damping contributions of
the exchange dispersive-like torque (αD∂yyφ) and IP anisotrpy one (ΓAN), both
of which are considerably smaller, as evidenced by the torques plot in Fig. 5.5(b).
These findings anticipate that the number of kinks at nucleation is not necessarily
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Fig. 5.5.: Sketch of the internal DW structure together with its corresponding micromagnetic
snapshot and a plot of the space distribution of various torques involved the
dynamics of φ(t, y) as presented in Eq. (5.10) for: a) t=0 ns when the current
is turned on. b) t= 0.01 ns when the spins along the DW starts tilting from
their equilibrium positions due to SOT. c) t=0.3 ns where the first kink pairs are
nucleated. d) t=1 ns when the nucleation has spread along the DW.
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Fig. 5.6.: Spatio-temporal diagrams of the magnetization inside the DW from both µM
simulation and the numerical solution of the model (Eq. 5.9 and Eq. 5.10) for an
applied current JHM = 175 GA/m2 and two different widths W = 128 nm (left
panel), W = 512 nm (right panel).

equivalent to their number at the final state. A confirmation of such a claim is in
Fig. 5.6, where the time evolution of my along the DW is shown for two systems
with different widths (W ). The discrepant time scales between the nucleation and
relaxation regimes lead to first nucleating a given number of kinks, which causes
the precessional torques to compensate for each other (see Fig .5.5(d)). Afterwards,
these kinks evolve slowly, undergoing annihilation and eventually reaching a final
state where all the torques are balanced. This reveals the difference between the
physical mechanism upon which the DW stops in the narrow and wide strip cases.
While in a quasi-1D system the DW stops because all the torques vanish, in wider
strips the DW stops due to a local balance between the dispersive, spin-orbit, and
the anisotropy torques.

Let us now examine the dependence of the number of kinks (k) at the final state
on the strip width (W ) and the applied current (JHM). Fig. 5.7(a) shows k in the
steady state versus the applied current for different widths. As can be remarked, for
a fixed current, the number of kinks increases with W . Similarly, by increasing the
current for a fixed width steps appear in which the number of kinks increases by
one. To gain more insight into this behavior, let us examine how the DW length (see
Fig. 5.7(b)) changes when we increase the applied current. To do so, we compute
the DW length using the following formula
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the DW length and the relevant parameters to compute it. c) DW elongation
(∆ℓDW = ℓDW − W ) and total energy E versus current for a strip width W = 256
nm computed via µM simulations.
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In Fig. 5.7(c), we show both the DW elongation (∆ℓDW = ℓDW − ℓ0 where, ℓ0 = W

is the DW length at rest) as well as its total energy when the system passes from
one to two kinks as JHM increases for W = 256 nm. It can be observed that the
appearance of a new kink inside the DW is anticipated by a significant DW elongation
and a drastic increase of its energy. This behavior is ascribed to the DW surface
pressure, which is enhanced when more kinks come into play since the DW local
curvature radius is reduced [201–203]. It is worth mentioning that the transition
from a k number of kinks to k + 1 could be accompanied by a critical regime (red
shaded region in Fig. 5.7(c)) where the DW becomes unstable and undergoes more
intricate non-linear dynamics, which is out of the scope of the present chapter.
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5.4 Conclusion

To sum up, we have explored the SOT-driven dynamics of magnetic Néel DWs
stabilized by uniform IP strain through micromagnetic simulations and analytical
models. Initially, we investigated how DWs in narrow magnetic strips respond
to externally applied current. Our findings revealed that, at a critical current
value, the DW reaches a complete halt, remaining static irrespective of the applied
current strength. This phenomenon is primarily attributed to the SOT precessional
component, leading to a gradual transition in the DW configuration from Néel to
Bloch, which are insensitive to SOTs. Expanding our investigation to wider strips,
we observed a similar cessation of DW displacement beyond a specific threshold
current. However, in this case, the internal magnetization of the DW exhibited a
twist along the transverse direction. To gain deeper insights into the underlying
physics governing this intricate DW behavior, we extended the collective coordinates
1D model to account for spatial variations of the DW variables along y-axis. This
model extension allowed us to identify an internal twist characterized by a 180◦-kink
structure, where the kink width is found to depend on exchange interactions and
magnetoelastic anisotropy. Additionally, we observed distortions in the DW structure
due to the competition between SOTs and exchange torques. Furthermore, our
investigation revealed that the cessation of DW displacement in wide strips is the
result of a balance between non-linear and dispersive effects.
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Conclusions and Perspectives 6
This thesis was devoted to exploring the effects of mechanical strain on the static
and dynamic properties of magnetic textures, namely DWs and skyrmions. The
work has been carried out using micromagnetic simulation and a set of analytical
models.

We started by exploring the effect of in-plane strain gradients on the current-driven
skyrmion dynamics. In this part, we demonstrated that such strain gradients can be
used to control the skyrmion motion in a versatile way, allowing for the displace-
ment of the skyrmion in different directions. Furthermore, we showed that this
approach can be used to minimize the skyrmion Hall effect, enabling the straight
motion of skyrmions along the tracks. We also demonstrated that our approach
works efficiently under realistic conditions, such as the presence of structural dis-
order. Finally, we proposed that strain gradients can be used in narrow magnetic
racetracks to rectify skyrmion trajectories and raise the threshold current beyond
which skyrmions are annihilated at the track boundaries. Our proposed approach for
controlling current-driven skyrmions holds significant potential due to its versatility.
Looking ahead, our perspective is centered on exploring the experimental feasibility
of this method, and the possibilities to use it for logic and neuromorphic computing
devices.

We also investigated the effects of both uniform and space-dependent strain on
static and dynamic properties of DWs in PMA systems. First, we demonstrated that
uniform strain can be used to switch between Néel and Bloch DWs. Later on we
showed that space-dependent strain can be used to drive DW dynamics without
magnetic fields or spin-polarized currents. We found that in-plane strain gradients
trigger a special DW dynamics where Walker breakdown does not take place. This
effect was explored via both micromagnetic simulations and the 1D model, which
both agreed on predicting the absence of turbulent DW dynamics.

Additionally, we explored the SOT-driven dynamics of Néel DWs stabilized via in-
plane strain. This study was divided into two parts. On one hand, in narrow
ferromagnetic strips, we found that, beyond a threshold current, the DW stops
moving and remains static since SOT switches its internal structure from Néel to
Bloch configuration. On the other hand, in wide strips, the DW was found to
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depict the same behavior, with the peculiarity that its internal structure exhibits
non-uniform patterns and more intricate transient dynamics. This behavior was
understood with an extended model that includes both space and time variations of
the DW coordinates. Such a model revealed that, in wide strips, the DW stops due
to a precise balance between the different torques involved, dispersive exchange,
spin-orbit, anisotropy and magnetoelastic. If such a balance is broken, intricate non-
linear dynamical regimes take place, including dissipative solitons. As a perspective,
we aim to further explore this dynamical regimes and the mechanisms behind their
existence.

In addition to the research work presented in this thesis manuscript, the author
actively engaged in a close collaboration with experimental researchers and made
significant contributions to several research projects through modeling and simula-
tion. These collaborative works were conducted as part of the MagnEFi ITN. Among
them we highlight the following:

• In collaboration with Sensitec Gmbh and Johannes Gutenberg University, we
experimentally demonstrated that the DW injection from a nucleation pad to a
magnetic nanowire can be improved by using a uniform in-plane strain. By
performing micromagnetic simulations, we were able to explain this improved
injection in terms of the effective anisotropy. This anisotropy influences the
switching in the nucleation pad as well as the pining at the nanowire entrance
[204].

• In collaboration with Eindhoven University of Technology, we experimentally
demonstrated field-free SOT switching of a SAF through the introduction of
interlayer Dzyaloshinskii-Moriya interactions. Including the new interlayer
DMI contribution to our micromagnetic simulation, we were able to effectively
explain the physical mechanism behind this switching and evidence its origin
[205].

• In a second collaboration with Sensitec Gmbh and Johannes Gutenberg Uni-
versity, we proposed and evaluated an inexpensive and CMOS-compatible
method to locally apply strain on a Si/SiOx substrate. Using Kerr microscopy,
we experimentally demonstrated how the magnetoelastic energy landscape,
created by a pair of openings in a magnetic nanowire, enables the creation of
pinning sites for in-plane vortex walls that propagate in a magnetic racetrack.
These observations were explained via micromagnetic simulation and a 1D
model. The behavior observed in this work was attributed to the local strain
gradients that take place due to the openings in the Si/SiOx substrate. This
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gradients compete with the magnetic field, leading to pin or modify the DW
velocity [206].
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APPENDIX A
A.1 One-dimensional model

In this section we present some aspects about the one-dimensional model that are
not detailed in the thesis.

A.1.1 Magnetic DW profile

We consider a thin ferromagnetic strip with perpendicular magnetization. In the
absense of any external field or current the energy per unit volume can be expressed
as

E = Aex | ∇m |2 +Ku(1 − m2
z) + µ0M2

s
2 Nzm2

z (A.1)

Using spherical coordinates for the magnetization

m = (sin θ cos ϕ, sin θ sin ϕ, cos θ) (A.2)

and assuming that m changes only along the longitudinal direction, Eq. (A.1) can
be rewritten as

E [θ(x)] = Aex

(
∂θ

∂x

)2
+ Keff sin2 θ (A.3)

where Keff = Ku − µ0M2
s

2 Nz is the effective anisotropy including both the magne-
tocrystalline and the magnetostatic contributions as discussed previously in Sec.
2.8.1.

To find a profile θ(x) that minimizes the energy we assume a small variation of
θ(x) → θ(x) + δθ(x). Following a variational procedure where the Eq. (A.3) should
satisfy dE(θ)/dθ = 0 we end up with a second order differential equation for θ(x) as
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Aex
∂2θ

∂x2 − 2Keff cos θ sin θ = 0 (A.4)

Multiplying Eq. (A.4) by ∂θ
∂x , integrating it along x-axis and solving the resulting first

order differential equation yields

θ(x) = 2 tan−1 e± x
∆ (A.5)

Eq. (A.5) describes the DW spatial profile with ∆ =
√

Aex
Keff

being the DW width and
it is the commonly used SW ansatz in reduced models like the ones used in this
thesis [101].

A.1.2 Derivation of the dynamic equations

In this subsection we will present the detailed derivation of the 1D model dynamic
equations.

Considering the constraint |m| = 1 and the magnetization vector in spherical
coordinates Eq. (A.2), the magnetization gradient reads

∇m = (∇θ)eθ + sin θ(∇ϕ)eϕ (A.6)

where θ and ϕ are the magnetization spherical coordinates. Using Eq. (A.2) and
Eq. (A.6) the micromagnetic energy density terms presented in Sec. 2.3 can be
expressed as

Eex = Aex(∇m)2 = Aex
[
(∇θ)2 + sin2 θ(∇ϕ)2

]
(A.7)

Ed = −1
2µ0MsHd · m = −1

2µ0M2
s m · N̄m = −1

2µ0M2
s

(
Nxm2

x + Nym2
y + Nzm2

z

)
= −1

2µ0M2
s

[
Nz + (Nx − Nz) sin2 θ + (Ny − Nx) sin2 θ sin2 ϕ

]
(A.8)

with Nx, Ny and Nz are the demagnetizing factors discussed before in Sec. 2.8.1.

Eanis = Ku
(
1 − (m · ez)2

)
= Ku sin2 θ (A.9)
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EZ = −µ0MsHext · m = −µ0Ms (Hx sin θ cos ϕ + Hy sin θ sin ϕ + Hz cos θ) (A.10)

with Hx, Hy and Hz being the Cartesian components of the external field.

EDM = D [mz(∇m) − (m · ∇)mz] = D(mz
∂mx

∂x
− mx

∂mz

∂x
+ mz

∂my

∂y
− my

∂mz

∂y
)

= D

[
cos ϕ

∂θ

∂x
+ sin ϕ

∂θ

∂y
+ sin θ cos θ

(
sin ϕ

∂ϕ

∂x
− cos ϕ

∂ϕ

∂y

)]
(A.11)

The DW profile within the 1D model is described by the well-known Walker ansatz,
which was derived previously in Eq. (A.5) and reads [67, 101]

θ(x, t) = 2 tan−1 eQ
x−q(t)

∆ (A.12a)

ϕ(x, t) = φ(t) (A.12b)

where q denotes the DW position along x-axis, φ the internal DW angle with respect
to x-axis and Q = +1 for an up-down DW or Q = −1 for a down-up DW going from
left to right across the wall along the x-axis.

Using Eq. (A.12) the total micromagnetic energy density can be expressed as

E = Aex
sin2 θ

∆2 + Keff sin2 θ + Ksh sin2 θ sin2 ϕ + QD cos ϕ

(sin θ

∆

)
− µ0Ms(Hx sin θ cos ϕ + Hy sin θ sin ϕ + Hz cos θ) (A.13)

where Keff = Ku − 1
2µ0M2

s Nz and Ksh = 1
2µ0M2

s (Ny − Nx). The following identities
were used in the derivations

∇θ(x, t) = ∂θ

∂x
= Q

sin θ

∆ (A.14a)

δθ(x, t) = −Q
sin θ

∆ δq (A.14b)

θ̇(x, t) = −Q
sin θ

∆ q̇ (A.14c)

∇ϕ = δϕ = 0 (A.14d)

ϕ̇ = φ̇ (A.14e)

By integrating Eq. (A.13) along the x-axis, the DW surface energy density UDW

reads
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UDW =
∫ +∞

−∞
Edx = 2Aex

∆ + 2∆(Keff + Ksh sin2 φ) + πQD cos φ

− µ0Msπ∆(Hx cos φ + Hy sin φ) − 2Qµ0MsqHz (A.15)

where the following integrals were used

∫ +∞

−∞
sin2 θ dx = 2∆ (A.16a)∫ +∞

−∞
(x − q) sin2 θ dx = 0 (A.16b)∫ +∞

−∞
cos θ sin θ dx = 0 (A.16c)∫ +∞

−∞
(x − q)2 sin2 θ dx = ∆3 π2

6 (A.16d)∫ +∞

−∞
sin θ dx = π∆ (A.16e)∫ +∞

−∞
cos θ dx = 2Qq (A.16f)

The differential of the DW energy density with respect to the DW coordinates reads

dUDW = ∂UDW
∂q

dq + ∂UDW
∂φ

dφ (A.17)

with

∂UDW
∂q

= −2Qµ0MsHz (A.18a)

∂UDW
∂φ

= 2∆Ksh sin 2φ − πQD sin φ (A.18b)

As explained in Sec. 2.6, magnetization dynamics is governed by LLG equation
augmented only with the damping-like SOT

dm
dt

= −γ0m × Heff + αm × dm
dt

− h̄JHMθsh
2µ0Ms|e|tFM

[m × (m × σ)] (A.19)

Using spherical coordinates in Eq. (A.19) we obtain
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δE
δϕ

= −µ0Ms sin θ

γ0

(
θ̇ + α sin θ ϕ̇ + γ0HSOT cos θ sin ϕ

)
(A.20a)

δE
δθ

= µ0Ms
γ0

(
sin θ ϕ̇ − αθ̇ + γ0HSOT cos ϕ

)
(A.20b)

where HSOT = h̄θshJHM
2eµ0MstFM

, dm = dθ eθ + sin θdφ eφ and Heff = − 1
µ0Ms

δE
δθ eθ −

1
µ0Ms sin θ

δE
δφ eφ.

The variation of the micromagnetic energy density from Eq. (A.20) can be expressed
as

δE = ∂E
∂θ

δθ + ∂E
∂ϕ

δϕ (A.21)

Integrating Eq. (A.21) along x-axis gives

dUDW =
∫ +∞

−∞
dx = −2µ0Ms

γ0

[(
α

q̇

∆ + Qφ̇ + γ0
π

2 QHSOT cos φ

)
dq + (Qq̇ − α∆φ̇) dφ

]
(A.22)

Using Eq. (A.22) and Eq. (A.17) we get the dynamic equations describing the DW
motion in presence of an external field Hz and a spin-polarized current JHM as

(1 + α2) q̇

∆ = −α ΓA + QΓB (A.23a)

(1 + α2)φ̇ = −QΓA − αΓB (A.23b)

where

ΓA = −γ0QHz + Qγ0
π

2 HSOT cos φ

ΓB = γ0
Hsh
2 sin 2φ − γ0

π

2 QHDMI sin φ

and HDMI = D
µ0Ms∆ .
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A.2 Thiele’s Model

In this appendix we derive the skyrmion dynamic equation presented in chapter 2
Eq. (2.69), which is also called Thiele’s equation. To do so we consider LLG equation
augmented with the damping-like SOT as shown in Eq. (A.19).

Eq. (A.19) LLG can be rearranged as

∂m
∂t

= γ0m ×
(

−Heff + α

γ0

∂m
∂t

+ HSOT

)
︸ ︷︷ ︸

H0

(A.25)

where HSOT = − h̄JHMθsh
2µ0Ms|e|tFM

(m × σ).

By multiplying both sides of Eq. (A.25) by m× we get

1
γ0

m × ∂m
∂t

= m· (H0 · m) − H0 (A.26)

The main assumption of Thiele’s model is based on considering the magnetic struc-
ture (i.e. DW, Vortex or Skyrmion) as a rigid body moving along the ferromagnetic
sample maintaining its structure, without distortion. This assumption results in the
following mathematical formulation

m (r,t) =m (r−vt) (A.27)

with v being the velocity and r = (x, y, z) the position vector.

∂m
∂t

= − (v · ∇) m =
∑

i

vi
∂m
∂xi

(A.28)

The total force acting on the magnetic texture reads

F =
∑

−µ0Ms

∫
Heff · ∂m

∂xi
dV (A.29)

Using Eqs. (A.27)-(A.29), Eq. (A.26) can be rewritten as

1
γ0

∑
i

[
vim × ∂m

∂xi
+αvi

∂m
∂xi

]
= Heff−HSOT+m· (H0 · m) (A.30)
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Multiplying both sides of Eq. (A.30) by −
∑

i µ0Ms
∫ ∂m

∂xi
dV and considering a 2D

system where dV = tFMdS we can write

−µ0MstFM
γ0

∫∫ ∑
i

∑
j

[
vi

(
∂m
∂xi

× ∂m
∂xj

)
· m

+αvi

(
∂m
∂xi

· ∂m
∂xj

)]
dxdy = F+FSOT (A.31)

Finally, Eq. (A.31) can be written in the tensor form yielding the well-known Thiele
equation

G × (v+u) − ¯̄D· (αv−ξu) =F+FSOT (A.32)

where G = Gez with

G = −µ0MstFM
γ0

∫∫
m ·

(
∂m
∂x

× ∂m
∂y

)
dxdy (A.33)

being the gyrovector, which reads G=−µ0MstFM
γ0

Qsk for any arbitrary magnetic texture

with a non-vanishing topological charge Qsk [115]. The second-rank tensor ¯̄D is the
so-called dissipation tensor, whose components read

Dij = µ0MstFM
γ0

∫∫ (
∂m
∂xi

· ∂m
∂xj

)
dxdy (A.34)

Fext is the external force originating from magnetic fields, spin-currents, anisotropy
gradients, etc.

Eq. (A.32) is the general form for Thiele equation describing the motion of a
magnetic texture under the effect of an arbitrary external force. This equation is
widely used to investigate the dynamics of several exotic magnetic structure such as
skyrmion, vortices, skyrmioniums, bimerons, . . . .
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A.3 DW dynamics driven via strain gradients: Analytical
model

In this section we focus our attention on the 1D Model description of the DW motion
induced by strain gradients, either in-plane (εxx(x) = ε′

xxx with ε′
xx ≡ ∂εxx/∂x) or

perpendicular (εzz(x) = ε′
zzx with ε′

zz ≡ ∂εzz/∂x) strain gradients, as discussed in
chapter 4.

Considering that the magnetoelastic energy density reads Emel = B1(ε′
xx x cos2 ϕ sin2 θ−

ε′
zz x sin2 θ), the DW surface energy density in presence of the strain gradients

reads

UDW = 2A

∆ + 2∆
[
Keff + Ksh sin2 φ + B1ε′

xxq cos2 φ − B1ε′
zzq
]

+ πQD cos φ

(A.35)

where
∫+∞

−∞ x sin2 θdx = 2q∆ was used.

The differential of the surface DW energy with respect to q, φ and ∆ reads

dUDW = ∂UDW

∂q
(dq) + ∂UDW

∂φ
(dφ) + ∂UDW

∂∆ (d∆) (A.36)

where

∂UDW

∂q
= 2∆B1

(
ε′

xx cos2 φ − ε′
zz

)
∂UDW

∂φ
= 2∆

(
Ksh − B1ε′

xxq
)

sin 2φ − πQD sin φ

∂UDW

∂∆ = −2A

∆2 + 2
(
Keff + Ksh sin2 φ

)
+ 2qB1

(
ε′

xx cos2 φ − ε′
zz

)
On the other hand using LLG equation in spherical coordinates as shown in Appendix.
A.1, we can express dUDW as

dUDW =
∫ +∞

−∞
δEdx

= −2µ0Ms
γ0

{[
α

q̇

∆ + Qφ̇

]
dq + [Qq̇ − α∆φ̇]dφ +

[
α

π2

12
∆̇
∆

]
d∆
} (A.37)
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where the same identities of Appendix. A.1 are used now.

From Eq. (A.36) and Eq. (A.37) we get the 1D model equations describing the DW
dynamics in presence of strain gradients as

α
q̇

∆ + Qφ̇ = −γ0∆Hmel
(
ε′

xx cos2 φ − ε′
zz

)
(A.38a)

−Q
q̇

∆ + αφ̇ = −γ0

[
Hsh
2 sin 2φ − π

2 QHDMI sin φ − Hmelε
′
xxq sin 2φ

]
(A.38b)

∆̇ = 12γ0
αµ0Msπ2

[
A

∆ − ∆
(
Keff + Ksh sin2 φ

)
− ∆B1q

(
ε′

xx cos2 φ − ε′
zz

)]
(A.38c)

where Hsh = 2Ksh
µ0Ms

, HDMI = D
µ0Ms∆ and Hmel = B1

µ0Ms
. These equations, already

presented in chapter 4, are presented again here in their general form (including
both in-plane and perpendicular contributions):

(
1 + α2

) q̇

∆ = −αΓA(φ) + QΓB(q, φ) (A.39a)(
1 + α2

)
φ̇ = −QΓA(φ) − αΓB(q, φ) (A.39b)

∆̇ = 12γ0
αµ0Msπ2

[
A

∆ − ∆
(
Keff + Ksh sin2 φ

)
− ∆B1q

(
ε′

xx cos2 φ − ε′
zz

)]
(A.39c)

where

ΓA(φ) = γ0∆Hmelε
′
xx cos2 φ − γ0∆Hmelε

′
zz

ΓB(φ, q) = Γsh + ΓDMI + Γε′
xx

= γ0
Hsh
2 sin 2φ − γ0

π

2 QHDMI sin φ − γ0Hmelε
′
xxq sin 2φ

Eqs. (A.39a)-(A.39c) are numerically solved for two particular cases: either in-plane
(εxx(x) = ε′

xxx with ε′
xx ̸= 0, and εzz = 0) or perpendicular (εzz(x) = ε′

zzx with
ε′

zz ̸= 0 , and εxx = 0) strain gradients. Typical results were shown in chapter 4.
However, the 1D model also allows us to extract some analytical results which are
described in the following for perpendicular and in-plane cases respectively.
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A.3.1 DW dynamics under perpendicular strain gradient

Perpendicular strain gradient (ε′
zz) enters in 1D model equations similarly to an

equivalent out-of-plane field (Heq = ∆Hmelε
′
zz) and, consequently, the DW dynamics

under ε′
zz is easily predicted from well-known bases of the field-driven DW motion.

Under low perpendicular strain gradient, the DW reaches a steady-state regime with
constant terminal velocity given by

vt = −γ0∆
α

Heq = γ0∆2

α
Hmelε

′
zz (A.40)

However, there is a limit for this rigid DW motion, the so-called Walker breakdown,
which takes place when equivalent driving field (Heq = ∆Hmelε

′
zz is higher than∣∣α

2 πQHDMI
∣∣). Note also that in our case HDMI ≫ Hsh. Therefore, the Walker

breakdown perpendicular strain gradient threshold, (ε′
zz)WB, reads as

(
ε′

zz

)
WB = − 1

∆Hmel

∣∣∣∣α2 πQHDMI

∣∣∣∣
For perpendicular strain gradient above the Walker breakdown, ε′

zz > (ε′
zz)WB, the

DW depicts a turbulent regime where its internal DW moment precesses periodically
whereas the DW displaces as it was shown in Fig. 4.2(a) of chapter 4.

A.3.2 DW dynamics under in-plane strain gradient

Under in-plane strain gradient (ε′
xx) the DW dynamics is significantly different and

novel. On one hand, the in-plane strain gradient contribution includes a factor
cos2 φ

(
Heq

ε′
xx

(φ) = ∆Hmelε
′
xx cos2 φ

)
in the corresponding term of ΓA(φ) which is

not present for the perpendicular gradient case. On the other hand, it also adds a
term Γε′

xx
= −γ0Hmelε

′
xxq sin 2φ in ΓB(φ, q), which is proportional to both the DW

position (q) and to the sin 2φ, and therefore, competes with the shape anisotropy(
Γsh = γ0

Hsh
2 sin 2φ

)
and with the DMI

(
ΓDMI = −γ0

π
2 QHDMI sin φ

)
terms. These

terms make the DW dynamic induced by in-plane strain gradient significantly dif-
ferent from conventional field-driven case, as already shown in Fig. 4.2 of chapter
4. Indeed, no Walker breakdown occurs for any arbitrarily high in-plane strain
gradients, and after a transient the DW depicts a terminal regime where the DW
angle goes back asymptotically to 0 (that is, φ(t → ∞) ≡ φt → φ0 ≈ 0 ) according
to
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φt = tan−1
(

Q∆
2αq

)
(A.41)

which can be deduced by solving φ̇ = 0 in the large time window limit (t → ∞)
where

∣∣Γε′
xx

∣∣ ≫ |Γsh + ΓDMI|. This is followed by a temporal evolution of the DW
velocity that asymptotically approaches to a terminal value (vt). This terminal
velocity can be directly deduced from Eq. (A.39a) by imposing φ = 0, resulting in

vt = −γ0
α

∆2Hmelε
′
xx (A.42)

In order to further support our discussion on the transient DW dynamics under
in-plane strain gradient (ε′

xx), Fig. A.1 shows the temporal evolution of the different
torques acting on the DW as corresponding to the Fig. 4.3(b) of the main text.
These torques are the four terms on the rhs of Eqs. (A.39a) and (A.39b). As the DW
starts from its equilibrium state, before the strain gradient is applied (t < 0), all the
torques are identically zero. Upon the application of the strain gradient at t = 0, the
precession torque due to the in-plane strain gradient (QΓA) suddenly increases its
strength. However, the three damping contributions

(
αΓsh, αΓDMI, αΓε′

xx

)
gradually

evolve away from zero. Fig. A.1 shows that after a transient both αΓsh and αΓDMI

tend to zero, whereas the two other torques due to the strain gradient remain finite
and compensates each other, QΓA = −αΓε′

xx
, triggering the internal DW moment

to return asymptotically to its initial Néel state (φt → φ0 = 0). This compensation,
which takes place dynamically as the DW moves toward high strain values (|εxx|
increases as q increases), is the responsible of the absence of Walker breakdown
under in-plane strain gradients.

A.3.3 Micromagnetic details and results

In order to further validate our 1DM results of the DW dynamics driven by strain
gradients, here we also analyzed them using a full micromagnetic model (µM).
The magneto-elastic interaction is introduced as an additional contribution to the
effective field, Hmel = − 1

µ0Ms
δEmel
δm . Micromagnetic simulations were carried out with

Mumax3 [100], with same material parameters as describe before: Ms = 0.58 MA/m
, A = 20 pJ/m, Ku = 0.9 MJ/m3, B1 = 1.2 MJ/m3 (λs = −5 × 10−5, C11 =
298 GPa, C12 = 233 GPa). Typical µM results are shown in Fig. A.1 for in-
plane (εxx(x) = ε′

xxx with ε′
xx ̸= 0, and εzz = 0) or perpendicular (εzz(x) = ε′

zzx

with ε′
zz ̸= 0, and εxx = 0) strain gradients with two different magnitudes: |ε′

ii| =
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Fig. A.1.: a) Temporal evolution of the different torques entering in Eq. (A.39b) for the DW
dynamics under an in-plane strain gradient of ε′

xx = −0.12µm−1. b) Micromag-
netic results of the temporal evolution of the DW position under in-plane (ε′

xx)
and perpendicular (ε′

zz) strain gradients with two different magnitudes: |ε′
ii| =

0.0024µm−1 and |ε′
ii| = 0.024µm−1 ( i : x for in-plane strain gradient, or i : z for

perpendicular strain gradient). Material parameters and dimensions are provided
in Chapter 4.

0.0024µm−1 and |ε′
ii| = 0.024µm−1. Here the DMI and damping parameters are

D = −0.5 mJ/m2 and α = 0.01 respectively. As it can be observed in Fig. A.1 and
similar to 1D model predictions, for perpendicular strain gradient the DW dynamics
is rigid for small strain gradients

(
ε′

zz = 0.0024 µm−1), but it becomes turbulent
above a Walker breakdown threshold (see blue curve for ε′

zz = 0.024 µm−1 rigid
regime for any arbitrary strain gradient (see red curves in Fig. A.1 for both ε′

xx =
0.0024µm−1 and ε′

xx = 0.024µm−1).
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A.4 Internal magnetic DW twist in presence of uniform
strain: Mathematical details

A.4.1 Extended collective coordinates model for DW dynamics

In this section we will present the derivation of the 2D collective coordinate model
used in chapter 5.

As discussed in chapter 5, we extended the collective coordinates model [101, 103,
107] to account for both space and time variation of the DW degrees of freedom. To
do so, we used a modified Walker ansatz to include the space variation of both the
DW position q(t, y) and its internal angle φ(t, y) as follows

 θ(x, y, t) = 2 atan
(
ex−q(y,t)

∆

)
φ(x, y, t) = φ(y, t)

(A.43)

where θ and φ are the spherical coordinates of the magnetization as explain in
chapter 5.

Our work was mainly focused on DWs in a PMA system in presence of the magneto-
elastic anisotropy contribution due to a longitudinal in-plane strain εxx. In this case,
our DW total energy density reads

UDW =
∫ +∞

−∞
[Aex(∇m)2 − Kum2

z − µ0Ms

2 m · Hd + B1 εxx m2
x] dx (A.44)

Plugging the ansatz Eq. (A.43) in Eq. (A.44) and integrating it, yields

UDW = Aex

[
2
∆ − 4

∆
dq(y, t)

dy
+ 2

∆

(dq(y, t)
dy

)2
+ 2∆

(dφ(y, t)
dy

)]
+ 2∆Keff

+ 2∆Ksh sin2(φ) + 2∆B1εxx cos2(φ) (A.45)

where Eq. (A.45) describes the DW energy per unit area, and was calculated using
the same set of integrals shown in Appendices.A.1 and A.2.

The differential of the DW energy density Eq. (A.45) reads
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dUDW = ∂UDW
∂q(y, t)dq(y, t) + ∂UDW

∂φ(y, t)dφ(y, t) (A.46)

with
∂UDW
∂q(y, t) = 4Aex

∆
d2q(y, t)

dy2 (A.47a)

∂UDW
∂φ(y, t) = 4Aex∆d2φ(y, t)

dy2 + 2∆ sin 2φ (Ksh − B1εxx) (A.47b)

On the other hand, the energy variation can also be evaluated from LLG equation.
To do so we need first to write this equation in spherical coordinates. Considering
that the magnetization derivative reads dm = dθ eθ + sin θ dφ eφ and the effective
field can be written as Heff = − 1

µ0Ms
δE
δθ eθ − 1

µ0Ms sin θ
δE
δφeφ, LLG equation can be

rearranged as

θ̇ = − γ0
µ0Ms sin θ

δE
δφ − α sin θφ̇ − γ0HSOT cos θ sin ϕ

φ̇ = 1
sin θ

(
γ0

µ0Ms
δE
δθ − α θ̇ − γ0HSOT cos θ

) (A.48)

where E is the total energy of the system per unit volume. Hence, the DW energy
variation can be deduced from LLG equation Eq. (A.48) as

dUDW = 2µ0Ms
γ0

[
−φ̇(y, t) − α

q̇(y, t)
∆ − γ0HSOT cos φ(y, t)

]
dq(y, t)

+ 2µ0Ms
γ0

[q̇(y, t) − α∆φ̇(y, t)] dφ(y, t) (A.49)

By direct comparison of Eq. (A.46) and Eq. (A.49), the partial differential dynamic
equations describing the evolution of the DW position and its internal angle are

(1 + α2)∂t
q

∆ = αD∂yy
q

∆ − αΓSOT − D∂yyφ + ΓAN (A.50)

(1 + α2)∂tφ = D∂yy
q

∆ − ΓSOT + αD∂yyφ − αΓAN (A.51)

where D = 2γ0Aex
µ0Ms

is a dispersive-like constant, ΓSOT = γ0π
2 HSOT cos φ is the SOT

torque and ΓAN = γ0HAN sin 2φ is the in-plane anisotropy torque. HAN = Hsh
2 −

Hmelεxx is the in-plane anisotropy field including the magnetoelastic and shape
contributions.
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A.4.2 Linear stability analysis

As mentioned in chapter 5, with aim to determine the critical width above which the
1D solution of the DW internal structure is unstable, we carry out a linear stability
analysis (LSA) of Eq. (A.50) and Eq. (A.51) [207, 208]. To do so, let us reconsider
the two equation in Eq. (A.50) and Eq. (A.51) and rewrite them using a redefinition
of constants to simplify them as

∂tq = σ1∂yyq

f(q, φ, ξ)︷ ︸︸ ︷
−σ3∆α cos φ − σ2∆∂yyφ + σ4∆ sin 2φ (A.52)

∂tφ = σ1∂yyφ −σ3 cos φ + ασ2
∆ ∂yyq − ασ4 sin 2φ︸ ︷︷ ︸
g(q, φ, ξ)

(A.53)

where σ1 = ΓG
2Aex
µ0Ms

, σ2 = ΓLL
2Aex
µ0Ms

, σ3 = ΓLL
π
2 HSOT and σ4 = ΓLL

(
Hsh

2 − Hmelεxx

)
with ΓLL = γ0

1+α2 and ΓG = αγ0
1+α2 .

Eqs. (A.52) and (A.53) can be rewritten as

∂tq = σ1∂yyq + f(q, φ, ξ) (A.54)

∂tφ = σ1∂yyφ + g(q, φ, ξ) (A.55)

where the solution domain of Eq. (A.54) and Eq. (A.55) is D = [0, W ] with W being
the width of the ferromagnetic strip and ξ is an arbitrary control parameter that can
induce bifurcations in the system.

Let us now consider that q = q0+q̃ and φ = φ0+φ̃ with q0, φ0 being the homogeneous
solutions and q̃,φ̃ are infinitesimal perturbation to the homogeneous state. We then
need to incorporate the width W explicitly into the equations. To do so, we use the
transformation y → Wy, which changes the domain D = [0, W ] to the unit interval
D = [0, 1]. Using these assumption, Eqs. (A.54) and (A.55) become

∂tq̃ = σ1
W 2 ∂yy q̃ + f(q0 + q̃, φ0 + φ̃, ξ) (A.56)

∂tφ̃ = σ1
W 2 ∂yyφ̃ + g(q0 + q̃, φ0 + φ̃, ξ) (A.57)
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Using U =
(

q̃

φ̃

)
we can rewrite the equations above as

∂tU = F (U, ξ) (A.58)

where F (U, ξ) =
(

σ1
W 2 ∂yy q̃
σ1
W 2 ∂yyφ̃

)
+
(

f(q0 + q̃, φ0 + φ̃, ξ)
g(q0 + q̃, φ0 + φ̃, ξ)

)
.

Differentiating F with respect to U at the homogeneous equilibrium U0 =
(

0
π
2

)
, we

obtain L, the linearization of F , as

L =
(

σ1
W 2 ∂yy 0

0 σ1
W 2 ∂yy

)
+
(

∂q̃f(q0, φ0, ξ) ∂φ̃f(q0, φ0, ξ)
∂q̃g(q0, φ0, ξ) ∂φ̃g(q0, φ0, ξ)

)
(A.59)

Subsequently, stability of U0 can be analyzed via solutions of

∂tU = LU (A.60)

Since our interest is to investigate the stability of the steady state homogeneous
solutions, we limit our analysis to the steady state with ∂tU = 0. Then we can
analyse the spectrum of L assuming an ansatz solution as U = A sin (k π y) which
gives

LU = MkA sin (k π y) (A.61)

where

Mk =
(

−π2 σ1 k
W 2 + ∂q̃f(q0, φ0, ξ) ∂φ̃f(q0, φ0, ξ)

∂q̃g(q0, φ0, ξ) −π2 σ1 k
W 2 + ∂φ̃g(q0, φ0, ξ)

)

Then, the homogeneous solution U0 is stable if and only if

Tr(Mk) < 0 (A.62)
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and

Det(Mk) > 0 (A.63)

Using the two conditions in Eq. (A.62) and Eq. (A.63), we end the up with a system
of two inequations as

{
σ1
W 2 π2k2 + σ3 + π2k2 σ1

W 2 + 2ασ4 < 0
−σ1
W 2 π2k2(σ3 − π2k2 σ1

W 2 + 2ασ4) + σ2
∆W 2 π2k2(σ3∆α + σ2∆

W 2 π2k2 − 2σ4∆) > 0
(A.64)

Solving the inequations in Eq. (A.64) for W , we obtain the critical width over which
the homogeneous steady state solution becomes unstable for k = 1 as

W > π

√
Aex

Ksh − B1εxx
(A.65)

Eq. (A.65) represents the critical width above which the uniform solution of Eqs.
(A.50) and (A.51) becomes unstable. As discussed in chapter 5, bellow this critical
width the DW internal structure at the steady state depicts a Bloch pattern. In
contrary, when the strip width is larger then then critical one the DW depicts
non-uniform patterns, which we called kinks.
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