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Abstract: Livestock monitoring is a task traditionally carried out through direct observation by
experienced caretakers. By analyzing its behavior, it is possible to predict to a certain degree events
that require human action, such as calving. However, this continuous monitoring is in many cases
not feasible. In this work, we propose, develop and evaluate the accuracy of intelligent algorithms
that operate on data obtained by low-cost sensors to determine the state of the animal in the terms
used by the caregivers (grazing, ruminating, walking, etc.). The best results have been obtained using
aggregations and averages of the time series with support vector classifiers and tree-based ensembles,
reaching accuracies of 57% for the general behavior problem (4 classes) and 85% for the standing
behavior problem (2 classes). This is a preliminary step to the realization of event-specific predictions.

Keywords: cow; extensive livestock; machine learning; monitoring; sensorized wearable device

1. Introduction

The Food and Agriculture Organization (FAO) lists a series of challenges that the world
is currently facing, and which will be aggravated in the future: population growth generates
an increase in demand for agricultural products, while urbanization shifts labor from the
food and agricultural systems typical of more rural areas into cities [1]. Simultaneously, meat
consumption trends are increasing globally, while modern societies are growingly concerned
about food safety and quality, ethical treatment and well-being of farm animals and the
minimization of the environmental impact of livestock production [2]. Farms are facing
increasing economic pressure for optimization and cost reduction, leading to an increment in
the number of animals per farm (which favors economies of scale) and reducing labor costs
associated with expert farmers who observe, monitor, and manage the herd [3].

These challenges especially affect very extensive livestock farming systems, which are
typical to Spain’s dehesas and Portuguese montados, characterized by a sustainable, much
lower-intensive use of land than other European systems also considered extensive [4].
The increased distance to and between the animals requires more time and fuel to monitor,
which translates into increased costs and reduced competitiveness [5].

To address these issues, the use of automation has been steadily growing in the field of
farming, leading to the development of Precision Livestock Farming (PLF), a management
system of production based on new technologies which aims to improve the efficient use
of resources and to reduce costs. Recent advances in the Wireless Internet of Things (W-
IoT) and wearable technology allow, among others, the development of PLF techniques
based on remote monitoring of animal health and welfare parameters in a continuous and
automated way [6].

Accelerometers are one of the most common methods used to monitor cattle activity.
Data from these sensors have been used to classify physiological states such as walking,
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ruminating, lying, etc., [7]. One of the best indicators used to predict calving is the frequency
of lying bouts (transitions from standing to lying) [8]. Statistical analysis can be used to
detect deviation from normal cow behavior, which can be used as an important input for
the farmer [8].

The detection of lying bouts is trivial using sensors placed on the legs or back of an
animal [9,10]. Collars [11,12] and ear-based devices [13,14] on the other hand, make it easier
to detect feeding events (eating, drinking, ruminating), but the differentiation between
lying and standing behaviours is challenging, due to the similar characteristics of the
signals measured by the sensors [15]. Our focus on long-term monitoring, however, limits
the possible location of the system to the collar, due to the size and weight of the batteries.

Although many prototypes have been presented in different studies, none combines
the Global Navigation Satellite System (GNSS) reception, wireless capabilities, and battery
energy management allowing long-term monitoring of our design, which has been opti-
mized for use in extensive farming. The proposed design will allow the collection, analysis,
and decision-making based on real-time data obtained from the studied animals.

In this study, data compiled by a low-cost neck-mounted sensorized wearable device,
presented in González-Sánchez et al. [16] is analyzed, and different machine learning
algorithms are used to produce models that allow the detection of different physiological
states of the animal based on the information captured by the sensors.

2. Materials and Methods

In this section, we present the equipment used during this study, as well as the data
collection procedure and the structure of the resulting dataset.

2.1. Hardware

To collect the data that has been used to train and evaluate the different machine
learning architectures presented in this paper, we have fitted neck-mounted wearable
devices, previously presented in González-Sánchez et al. [16], to different cows. The collars
are powered using a lithium-ion battery and enclose the following components in a polymer
(ABS) box sealed with a nitrile O-ring:

• Digital thermometer in contact with the skin of the cows that provides temperature
data in a −55 to 125 °C range with an accuracy of ±0.5 °C.

• GNSS sensor that supplies localization data (latitude, longitude, and altitude) with a
2.5 m CEP.

• 9-axis Inertial Measurement Unit (IMU) which encompasses an accelerometer (3-axis),
a gyroscope (3-axis), and a magnetometer (3-axis).

• Embedded microcontroller dedicated to managing and storing the readings from the
previous sensors into an SD card.

2.2. Data Collection

The data collection procedure has been carried out on an extensive livestock farm in
Carrascal de Barregas, Salamanca, Spain consistently for a year, starting in August 2020
and ending in August 2021. This way, the recorded data points were evenly distributed
in the yearly seasonal cycle. As previously mentioned, the collars have been used to
collect sensor data associated with the physical behavior of cattle. This data has been
sampled at a frequency of 1 Hz in the GNSS and temperature sensor, while the IMU was
configured to output its reading at a 17.6 Hz rate. Furthermore, two human observers
directly monitored and recorded the actions performed by the cows using a custom-made
PC software application running on a laptop. Further information on the procedure is
available in González-Sánchez et al. [16]. The annotation of the cows’ actions was separated
into two groups of labels: general behavior and standing behavior. As part of the actions
within these two groups overlap, only one of the groups was used at a time. The labels that
compose each group are presented in Table 1.
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Table 1. Labelling groups composition.

ID Action

General behaviour

A1 Grazing-Eating
A2 Ruminating
A3 Neutral
A4 Walking

Standing behaviour

B1 Standing
B2 Lying

On a weekly basis, the recorded readings from the sensors were extracted from the
collars. Once the data was successfully collected, the human-annotated behavior of each
cow was cross-matched with the sensor data based on the timestamp of the reading to
annotate each registry, forming the final dataset. The distribution of the annotations in each
group present in the final dataset is presented in Figures 1 and 2.

 41.32%

 21.33%

 34.38%

 2.98%

0 5 10 15 20 25 30 35 40 45

A1: Grazing-Eating 

A2: Ruminating 

A3: Neutral 

A4: Walking 

Percentage

Figure 1. General behaviour class distribution in the dataset.
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Figure 2. Standing behaviour class distribution in the dataset.

There is a slight unbalance between classes in both groups, especially in action
A4 (walking), which is only present in a 3% of the labels corresponding to the general
behavior group.

The dataset obtained from the collection procedure contains more than 1900 h of
annotated data from 7 different specimens of beef cattle. As part of the sensor installation
works at 17.6 Hz, the dataset is composed of more than 120 million labeled data points. The
consequent abundance of data ensures a varied data sample, allowing us to implement an
independent cross-validation procedure through the utilization of data from cows that have
been isolated (not used) during the fitting process of the models to evaluate the quality of
the results.

2.3. Data Preprocessing

The data can be considered as a set of non-consecutive equispaced time series for each
animal. The sampling frequency is too small to attempt predictions at that level, which
makes it necessary to group the data in some time intervals that constitute the prediction
unit of the system.

Thus, the first step will consist of the aggregation in moving time windows of a width
that we will consider variable in the study, but that has to represent a compromise between
the prediction capacity—it will represent the time range for which a prediction will be
valid—and the computational capabilities of the system.

As aggregation measures for time series of the type (xn)n
i=1 we have considered the

moments of different order of the distribution: the mean

x̄ =
1
n

n

∑
i=1

xi , (1)
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the standard deviation

σx =

√
1

n − 1

n

∑
i=1

(xi − µ)2 , (2)

and the skewness, calculated using the unbiased Fisher-Pearson standardized moment
coefficient, which is given by

G1(x) =
√

n(n − 1)
n − 2

m3(x)
m3/2

2 (x)
, (3)

where

mk(x) =
1
n

n

∑
i=1

(x − xi)
k , (4)

is the biased sample k-th central moment.
Class labels are always aggregated using the mode, given that they are discrete attributes.

2.4. Model Construction

The stages in model building are shown schematically in Figure 3. The first of these
stages is the generation of shifted temporal information using the preceding values in
chronological order. In case no information is available, these instances are discarded. Thus,
a system using k groups of the preceding time steps, each of them obtained by aggregation
in an interval δt, will be required to run the amount of time corresponding to these before
it starts predicting, which accounts for kδt units of time.

Shift generation Scaler Classifier

Figure 3. Stages in the construction of models.

The second stage shown in Figure 3 is standardization. Several of the classifiers to be
described later are scale-dependent, so it is necessary to define some prior standardization
or normalization process. Each of the attributes has been standardized by subtracting the
mean and dividing by the standard deviation, that is,

xscaled =
x − x̄

σx
. (5)

The final stage is the training of classifier algorithms based on machine learning im-
plementations available in the scikit-learn package [17], as shown in Table 2. The resulting
methods include a trivial classifier that predicts the majority class to serve as a baseline,
logistic regression, support vector regression, decision trees, and ensemble methods based
on them (random forest, gradient boosting, and extremely randomized trees).

Table 2. Classifiers used. The short name is used below to identify the methods in the results section.
The class name refers to the sklearn package.

Method Short Name Class References

Baseline baseline dummy.DummyClassifier -
Logistic regression logistic linear_model.LogisticRegression [18]
Support vector regression svm svm.SVC [19]
Decision tree decision-tree tree.DecisionTreeClassifier [20]
Random Forest random-forest ensemble.RandomForestClassifier [21]
Extra randomized trees extra-trees ensemble.ExtraTreesClassifier [22]
Gradient boosting gradient-boosting ensemble.GradientBoostingClassifier [23]
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2.5. Evaluation

To design the evaluation procedure, we seek a process that adequately represents the
generalization capacity of the proposal. To this end, we seek to study the behavior of the
system when applied to a new cow. To perform this evaluation in an unbiased manner, we
train a model with all but one of the cows, The system’s performance would be evaluated
then with this excluded data. The process would then be repeated by varying the subset of
data that is left out so that an unbiased evaluation is available for each of the data in the set.
This methodology is called Leave One Group Out cross-validation.

Since two different types of annotations were performed (Figures 1 and 2) two eval-
uations will be performed, one for each of these scenarios. Accuracy has been chosen as
a global metric to compare the models. Other metrics will be analyzed for more relevant
models, including F1, precision, recall, Cohen’s κ, and Matthews’ φ.

3. Results and Discussion

Figure 4 displays the mutual information metrics for various aggregation methods in
relation to the class. It is evident that, for dynamic components such as angular velocity
and acceleration, the aggregation mechanism yielding the highest mutual information
is the standard deviation. This implies that standard deviation captures more about the
underlying patterns of these dynamic components with respect to the class than other
aggregation methods. Conversely, the third-order moment (skewness) contributes minimal
information in this context, indicating that its utility for distinguishing between classes
is limited. Based on these findings, it is advisable to limit the aggregation to second-
order moments.

accX accY accZ gyroX gyroY gyroZ temp

Attribute
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Figure 4. Mutual information with respect to class (y-axis) for the different variables (x-axis) as a
function of aggregation methods. Labels accX, accY, accZ refer to triaxial acceleration; gyroX, gyroY
and gyroZ refer to triaxial angular velocity. temp represents the measured temperature. Data was
obtained from a random sample of 200,000 values.

Regarding temperature data, a different trend is observed. The mean temperature
value provides more informative insights into class differentiation than the standard de-
viation. This suggests that the average temperature over time is more indicative of the
class than the variability of temperature readings. Therefore, for temperature data, fo-
cusing on the mean value as the primary aggregation metric could be more beneficial for
classification purposes.

The accuracy outcomes for each of the evaluated algorithms are illustrated in Figure 5.
Here, a pattern emerges showing a slight improvement in accuracy as the window size
increases. Although the increment is minimal, it conveys an essential insight into the
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selection of an optimal step size. This step size should align with the practical timeframe for
human actions, particularly concerning the interval within which decisions are made based
on the evolving situation. A pragmatic approach would be to choose a window duration
that supports timely and effective decision-making, without unnecessarily complicating
the analysis with too granular data or overlooking important trends due to overly broad
windows. Therefore, based on the observed data and considering the dynamics of human
response times, a window size ranging from 30 to 120 s emerges as a reasonable compromise.
This is also consistent with the uncertainty present in the annotation process itself, subject to
possible delays between observation and annotation. The proposed time scale is consistent
with the labelers’ perception, as has been corroborated through interviews with them.
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(a) Standing behaviour
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(b) General behaviour
Figure 5. Accuracy (y-axis) as a function of the method (hue) and the size of the window (x-axis).

In evaluating the performance of the various algorithms, it becomes clear that a
subset of them stands out in terms of efficacy. This group, distinguished by its superior
results, comprises ensemble methods such as random forest, gradient boosting, and extra
randomized trees, alongside support vector machines (SVMs).

In Figure 6, we observe the computational costs of the algorithms on a semilogarithmic
scale, as introduced in Figure 5a. Among the top performers in accuracy, extremely
randomized trees excel in computational efficiency for small window sizes, while support
vector machines are more efficient for larger window sizes. This distinction highlights
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the need to balance accuracy with computational resources when choosing an algorithm.
Essentially, for quick, small-scale analyses, extremely randomized trees are preferred due
to their speed and lower computational demands. In contrast, for more extensive data
analyses, support vector machines are better suited because they handle increased data
volume efficiently. This insight guides a strategic selection of algorithms based on the
analysis scale and computational constraints, ensuring optimal performance and efficiency.
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(b) General behaviour
Figure 6. Computing time (y-axis) as a function of the method (hue) and the size of the window
(x-axis).

In Figure 7, we present detailed results highlighting how accuracy varies with the
number of shifts, where a shift refers to steps incorporating information from the previous
time window, with a fixed window size of 120 s. The data indicates a general trend:
accuracy tends to improve slightly as the number of shifts increases. This suggests that the
algorithms effectively leverage the incremental data from previous windows to enhance
performance without falling into the trap of overfitting. Essentially, the addition of data
points from successive time windows, each carrying less influential but still relevant
information, appears to enrich the model’s learning process within the examined range of
parameters. This trend underscores the algorithms’ capacity to assimilate and benefit from
extended temporal data, optimizing accuracy while maintaining generalization capabilities.
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Figure 7. Accuracy (y-axis) as a function of the method (hue) and the maximum shift (x-axis) for a
fixed window size of 120 s.

The results for experiments conducted with a window size of 120 s and up to 10 shifts
are compiled in Tables 3 and 4. These tables also account for statistical uncertainty by
including the standard error of the mean.

Finally, confusion matrices for the best-performing algorithms for each of the groups
of labels are shown in Figure 8. In these matrices, all instances have been added together
and divided by the total number of instances to normalize the result. It should be noted
that this does not match the average accuracy in each evaluation, which is the statistically
correct estimator for the performance of the system when tested on a new cow. In the
case of the first standing behavior, we have a binary classification with a mean accuracy
of 0.85. Due to the uncertainty of the process and even of the labeling process itself, we
can consider this result sufficiently satisfactory. In the case of the general behavior, we
have a four-class classification with a negligible amount of instances in one of the classes.
Among the remaining three, there is a confusion term between the grazing and resting
classes, which are not so easily differentiated. Apart from that, the ruminating state is more
clearly distinguished.
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Figure 8. Confusion matrices for each of the groups of labels, normalized by the total observations.

Table 3. Detailed metrics for Standing behaviour, using a 120 window size and a 10-step horizon.

Method Time (s) Accuracy F1 Precision Recall Cohen’s κ Matthews’ φ

baseline 0.15 ± 0.02 0.58 ± 0.04 0.59 ± 0.06 0.63 ± 0.06 0.58 ± 0.04 −0.02 ± 0.01 −0.04 ± 0.02
logistic 0.17 ± 0.02 0.85 ± 0.03 0.84 ± 0.03 0.84 ± 0.02 0.85 ± 0.03 0.45 ± 0.09 0.46 ± 0.10
svm 0.58 ± 0.01 0.84 ± 0.03 0.83 ± 0.03 0.83 ± 0.03 0.84 ± 0.03 0.42 ± 0.10 0.43 ± 0.10
decision-tree 0.21 ± 0.02 0.71 ± 0.05 0.70 ± 0.06 0.74 ± 0.04 0.71 ± 0.05 0.17 ± 0.05 0.19 ± 0.05
random-forest 1.18 ± 0.05 0.83 ± 0.03 0.82 ± 0.03 0.82 ± 0.03 0.83 ± 0.03 0.39 ± 0.09 0.41 ± 0.09
extra-trees 0.55 ± 0.01 0.84 ± 0.03 0.83 ± 0.03 0.83 ± 0.03 0.84 ± 0.03 0.41 ± 0.10 0.43 ± 0.10
gradient-boosting 1.90 ± 0.11 0.83 ± 0.03 0.82 ± 0.03 0.82 ± 0.03 0.83 ± 0.03 0.39 ± 0.09 0.41 ± 0.09

Table 4. Detailed metrics for General behaviour, using a 120 window size and a 10-step horizon.

Method Time (s) Accuracy F1 Precision Recall Cohen’s κ Matthews’ φ

baseline 0.69 ± 0.11 0.33 ± 0.00 0.34 ± 0.00 0.34 ± 0.01 0.33 ± 0.00 0.00 ± 0.00 −0.001 ± 0.003
logistic 1.66 ± 0.04 0.53 ± 0.02 0.52 ± 0.02 0.53 ± 0.02 0.53 ± 0.02 0.29 ± 0.02 0.30 ± 0.02
svm 71.00 ± 4.00 0.56 ± 0.02 0.55 ± 0.02 0.56 ± 0.02 0.56 ± 0.02 0.33 ± 0.03 0.34 ± 0.03
decision-tree 1.60 ± 0.09 0.43 ± 0.02 0.44 ± 0.02 0.45 ± 0.02 0.43 ± 0.02 0.16 ± 0.02 0.16 ± 0.02
random-forest 13.50 ± 0.50 0.57 ± 0.03 0.55 ± 0.02 0.56 ± 0.02 0.57 ± 0.03 0.33 ± 0.04 0.34 ± 0.04
extra-trees 4.87 ± 0.08 0.56 ± 0.02 0.55 ± 0.02 0.56 ± 0.02 0.56 ± 0.02 0.33 ± 0.03 0.33 ± 0.03
gradient-boosting 74.00 ± 3.00 0.57 ± 0.02 0.56 ± 0.02 0.56 ± 0.02 0.57 ± 0.02 0.34 ± 0.03 0.35 ± 0.03

While it is true that there may be room for improvement in the results, such as through
the study of hyperparameters of the models used, the selection of these is complicated
because having data from only 9 groups would make it difficult to consider the statistics as
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sufficient. The results shown demonstrate the possibility of predicting the state of livestock
using information from neck-mounted sensors up to a certain level of precision. Improving
the limits of these metrics remains open as future work.

4. Conclusions

A system capable of detecting high-level features describing the condition of cattle
has been defined and implemented. For this purpose, two groups of labels corresponding
to two problems have been used: general behavior (4 classes) and standing behavior
(2 classes). The accuracy achieved in these tasks is 0.57 and 0.85 respectively.

According to the study conducted, the generation of the most relevant features arises
from the dispersion measurements of the time series of the sensors in the intervals in which
the aggregation is performed. Means provide a smaller amount of information, while
moments of order three provide a negligible amount of information.

The algorithms that produce the best models in the sense of accuracy are tree-based
ensemble methods (random forest, gradient boosting, extra randomized trees) and support
vector machines. The most computationally efficient algorithm with respect to the training
time is extremely randomized trees in the cases with a small window size and support
vector machines in those with a larger window size.

A direct comparison of these results with those from similar studies is always chal-
lenging since they are greatly dependent on the location of the sensor, the duration of
the observations and the sets of behaviours to classify. In our case, the focus lies on the
long-term monitoring of multiple animals in extensive farming, all factors that inevitably
lead to an expected decrease in the performance of the algorithms. Indeed, the data labeling
process is challenging in this setup, limiting the observer’s capabilities to correctly annotate
the animal behaviour.

Despite this, we found our results consistent with those presented in the meta-analysis
study in [7], which shows similar values of accuracy for standing and lying behaviour. The
developed system can be used to detect lying bouts (transitions from standing to lying
positions), which are a strong indicator for incoming calving events.
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