Genetics and Epigenetics of Nasal Polyposis: A Systematic Review

Martin MJ^{1,2,3}, Garcia-Sanchez A^{1,2,4}, Estravis M^{1,2,4}, Gil-Melcón M⁵, Isidoro-Garcia M^{1,2,6,7}, Sanz C^{1,2,8}, Davila I^{1,2,4,9}

¹IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain

²Network for Cooperative Research in Health-RETICS ARADyAL, Salamanca, Spain

³Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain

⁴Department of Biomedical and Diagnostics Sciences, University of Salamanca, Salamanca, Spain

⁵Department of Otorhinolaryngology/Servicio de Otorrinolaringología, Hospital Universitario de Salamanca, Salamanca, Spain

⁶Department of Clinical Biochemistry/Servicio de Bioquímica Clínica, Hospital Universitario de Salamanca, Salamanca, Spain

⁷Department of Medicine, University of Salamanca, Salamanca, Spain

⁸Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain

⁹Department of Immunoallergy/Servicio de Inmunoalergia, Hospital Universitario de Salamanca, Salamanca, Spain

J Investig Allergol Clin Immunol 2021; Vol. 31(3): 196-211 doi: 10.18176/jiaci.0673

Abstract

Chronic rhinosinusitis (CRS) is an inflammatory disease of the nose and paranasal sinuses that is often associated with nasal polyposis (CRSwNP) in the most severe cases. As in other complex diseases, genetic factors are thought to play an important role in the risk and development of the disease. Environment may also modulate the epigenetic signature in affected patients. In the present systematic review, we aimed to compile all published data on genetic and epigenetic variations in CRSwNP since 2000. We found 104 articles, 24 of which were related to epigenetic studies. We identified more than 150 genetic variants in 99 genes involved in the pathogenesis of nasal polyposis. These were clustered into 8 main networks, linking genes involved in inflammation and immune response (eg, *MHC*), cytokine genes (eg, *TNF*), leukotriene metabolism, and the extracellular matrix. A total of 89 miRNAs were also identified; these are associated mainly with biological functions such as the cell cycle, inflammation, and the immune response. We propose a potential relationship between genes and the miRNAs identified that may open new lines of investigation. An in-depth knowledge of gene variants and epigenetic traits could help us to design more tailored treatment for patients with CRSwNP.

Key words: Nasal polyposis. Gene variants. Polymorphisms. Epigenetics. Chronic rhinosinusitis. Systematic review.

Resumen

La rinosinusitis crónica (CRS) es una enfermedad inflamatoria de las fosas nasales y los senos paranasales que, en los casos más graves, suele estar asociada a poliposis nasosinusal (CRSwNP). Al igual que otras enfermedades complejas, los factores genéticos podrían contribuir de forma notable, tanto al riesgo de padecerla como a su desarrollo; por su parte, los factores ambientales modularían la huella epigenética de los pacientes. El objetivo de esta revisión sistemática es recopilar toda la información publicada desde 2000 hasta mayo de 2020 sobre las variaciones genéticas y epigenéticas relacionadas con CRSwNP, extraída de un total de 104 artículos, 24 de ellos referentes a estudios epigenéticos. En estos artículos se han identificado más de 150 variantes genéticas en 99 genes implicados en la patogénesis de la CRSwNP, que se han agrupado en ocho redes funcionales principales, relacionadas con la inflamación, la respuesta inmune (incluyendo genes como MHC, TNF o genes de citocinas), el metabolismo de leucotrienos y con genes relacionados con la matriz extracelular. También se han identificado 89 miRNA asociados a funciones biológicas, como el ciclo celular, la inflamación y la respuesta inmune. Gracias al uso de herramientas bioinformáticas, se sugieren relaciones potenciales entre genes y miRNA relevantes para la enfermedad, lo que puede constituir nuevas líneas de investigación. Un conocimiento en profundidad de las variantes genéticas y las huellas epigenéticas de los pacientes con CRSwNP podría contribuir al diseño de tratamientos más personalizados y eficaces.

Palabras clave: Poliposis nasosinusal. Variantes genéticas. Polimorfismos. Epigenética. Rinosinusistis crónica. Revisión sistemática.

Introduction

Chronic rhinosinusitis (CRS) is an inflammatory disease of the nose and paranasal sinuses defined by the presence of 2 or more symptoms, 1 of which should be either nasal blockage, obstruction, congestion, or nasal discharge, in combination with facial pain or pressure, and/or reduction in or loss of smell for at least 12 weeks [1,2]. Two primary forms are widely recognized, namely, CRS with nasal polyposis (NP) in the middle meatus (CRSwNP) and CRS without NP (CRSsNP). Eosinophilic CRS is a subtype of CRSwNP associated with severe eosinophilic infiltration in sinus tissue, which is more common in Western countries. In contrast, noneosinophilic CRSwNP, which is characterized by neutrophil-dominant inflammatory infiltration, is much more prevalent in Asian countries such as China, Korea, and Japan, although the prevalence of eosinophilic CRSwNP is rising [3].

The prevalence of CRSwNP in the general population is around 4%, with the disease being more likely in males than females [4]. Onset is primarily in adulthood, on average at around 42 years [3]. Based on the 22-item Sinonasal Outcome Test score, CRS has a negative impact on quality of life compared with controls (42.0 vs 9.3). An increase in health care expenditure has also been reported, with estimated annual direct costs per patient of \$2609 in the US and €1861 in Europe. The indirect costs, ie, those derived from absenteeism and decreased productivity at work, are even greater, and CRS has been identified as one of the top 10 most costly health conditions for US employers (>\$20 billion per year) [2].

CRSwNP is often associated with asthma (26%-48% of patients), and a subset of patients develop aspirin exacerbated respiratory disease (AERD), which negatively affects the course of CRSwNP [5].

Early studies have reported an unusually high prevalence of CRSwNP within some families, pointing towards a genetic component [6,7]. Given that CRSwNP is a complex disease, we expect a plethora of variants in multiple genes, but not in a single gene. Technical approaches such as genome-wide association studies may provide an extensive overview of the genes associated with the disease when performed in large cohorts of well-characterized patients and appropriate controls. However, since only a few such studies have been performed to date, current knowledge of the genetic basis of CRSwNP comes mainly from candidate gene approaches [8].

As the interface between genes and environment, epigenetic modifications may help us to understand the etiology of complex traits and diseases, such as CRS, leading to a more in-depth knowledge of the clinical and molecular factors involved [9], allowing for the identification of different clusters of patients in different geographical areas, and, therefore, enabling us to select the most effective therapeutic intervention [10]. Authors have undertaken this approach by focusing on the 3 main epigenetic mechanisms, ie, DNA methylation, histone modifications, and noncoding RNAs, mostly microRNAs (miRNAs). Thus, by investigating regulation of gene expression in both CRSwNP patients and controls it will be possible to identify disease-specific epigenetic markers. Considering the large amount of information published in the last 20 years, we aimed to clarify the field by systematically reviewing all articles on the genetics and epigenetics of NP.

Methods

This systematic review was performed using the PRISMA guidelines for Systematic Reviews and Meta-Analysis and 2009 checklist and the GRADE recommendations [11].

We searched for original articles indexed from January 2000 to May 2020 describing genetic or epigenetic aspects of NP. We identified eligible studies using the following inclusion criteria: (1) primary study or meta-analysis; (2) written in English, French, or Spanish; (3) human participants (both children and adults); (4) patients with CRSwNP; and (5) description of mutations, single-nucleotide polymorphisms (SNPs), genetic variants, or epigenetic modifications in association with disease onset, severity, or population prevalence. The exclusion criteria were as follows: (1) animal, histological, in vitro, or in silico studies; (2) review articles; (3) transcriptomic or expression analysis without epigenetic/genotyping analysis; (4) articles focused on other diseases, in which NP was merely mentioned; (5) studies about CRS without specific reference to NP or those in which the CRSwNP patients were not explicitly identified; and (6) articles whose full-text version was not available to us or that were written in other languages.

The literature search was performed between May and June 2020 in PubMed, the Cochrane Library, and Scopus databases using the following terms: "nasal polyps" or "chronic rhinosinusitis" or "CRSwNP" and "gene" or "genetic" or "mutation" or "epigenetic" or "DNA methylation" or "sequencing" or "microRNA" or "polymorphism" or "genome-wide association study" or "microarray" or "gene profiling".

Three authors independently reviewed database search results, assessed titles, evaluated abstracts, and considered the study for full review. Any disagreements in either the title/ abstract or the full manuscript review phases were resolved by consensus. All eligible studies were formally evaluated and included in this systematic review.

The authors independently evaluated the quality appraisal and graded the risk of bias of the studies included.

The risk of bias was assessed using Rob2, the tool recommended for this purpose in randomized trials included in Cochrane Reviews [12], albeit slightly modified to fit the nature of the articles selected. Studies were classified as having low, moderate, or high risk of bias.

Quality was assessed using the Newcastle-Ottawa scale (NOS) [13]. Each study was awarded 1 point per positive item, according to the scale. Scores over 6 were classified as "high quality", those below 4 "low quality", and the remainder "moderate".

Gene pathway analysis of the genes found was performed using ShinyGO [14], FunRich 3.1.3 [15], and STRING [16]. miRNAs were analyzed using the online tool TAM2.0 [17] and miRSystem [18].

Results

Selection, Bias, and Quality of Articles

Our database search yielded 587 articles after removal of duplicates (Figure 1). After the title and abstract review, 408 articles were excluded since they did not fulfill the eligibility criteria. Therefore, 179 articles qualified for fulltext review. Of those, we eliminated 22 studies that did not include any gene variant or polymorphism, 20 articles that considered CRS patients as a whole (without differentiating between those with and those without NP), 15 reviews, 16 that analyzed other diseases (eg, asthma or cystic fibrosis), and merely mentioned NP concerning such diseases, and 2 that were meeting abstracts.

Finally, 104 articles were evaluated. Of these, 24 were related to epigenetics, 70 were candidate gene studies, 9 were genome-wide association studies (GWAS), and 1 was based on a SNP array.

A description of the 80 selected nonepigenetic studies is presented in Supplementary Table 1. Epigenetic articles are summarized in Supplementary Table 2.

We followed the Cochrane guidelines to assess the risk of bias of the studies selected using an adapted version of the Rob2 tool that fit the specific nature of the genetic analysis. Since our primary concern for bias referred to the lack of appropriate controls or techniques that were inappropriate for the intended aim, we responded to questions about intervention or randomization. Consequently, studies classified as being at high risk of bias were those in which healthy controls were missing or the methodology was not clearly explained in the text.

Figure 1. Flow diagram of the selection process. NP indicates nasal polyposis.

Under these conditions, 12.7% of the studies were considered at high risk of bias according to the algorithm (Figure 2A). The leading causes for qualifying a study as being at high risk included issues with the randomization process, ie, lack of healthy controls to compare with and poorly described methods. Two studies used public databases for information on the healthy population, thus raising concerns about the methodology applied to obtain these raw data. In summary, healthy controls were missing in 10 studies, and 1 article included human placenta as a control instead of nasal mucosa, which would be a more suitable tissue for comparison.

Consistently, 84.1% of the articles were considered to be of high quality after running the NOS questionnaire (Figure 2B). Overall, adequate case definition and nonresponse rate were the better scored categories. Fourteen articles were considered to be of moderate quality, mainly due to failed selection and definition of relevant controls. Only 1 study scored below 4.

Genetic Studies

A total of 99 genes and over 150 SNPs and genetic variants were identified as being related to NP in the selected articles and classified into those related to an increased risk of NP, those related to a reduced risk of NP, and those described as associated with the disease (Table 1).

A preliminary study of functional categories and GO pathways was performed using the ShinyGO v0.61 tool (Figure 3). The main functional categories included the cytokine-mediated signaling pathway, defense response, inflammatory response, response to cytokines, and immune response (FDR<1.5e-13), while the top high-level GO categories were response to stress, regulation of response to stimulus, and immune system process (Supplementary Table 3).

We also submitted the data for gene clustering using the STRING software. Figure 4 shows the results for the whole gene list cluster (Figure 4A), as well as clusters for those genes that increased the risk of NP (Figure 4B) and those that decreased the risk (Figure 4C). For purposes of clarity, those genes that failed to be connected were hidden.

Eight clusters were identified in the general list of genes. The most highly populated was the brown cluster (1), which mainly included HLA genes. An enrichment study showed this cluster to be associated with the immune response (FDR 3.67e-15), the cell surface receptor signaling pathway (FDR 7.49e-15), immune system processes (FDR 1.92e-12), and antigen processing and presentation (FDR 9.05e-10). The red cluster (2), consisting of cytokines and related genes, was accordingly associated with the cytokine-mediated signaling pathway (FDR 4.19e-17) and also with the response to stress (FDR 5.75e-13) and immune system processes (FDR 1.92e-12). The olive cluster (3) was related to the response to stress (FDR 5.75e-13) and, together with the turquoise cluster (4), to response to chemical stimulus (FDR 1.36e-11). The light green (5) and blue (6) clusters were involved mainly in signal transcription (FDR 1.42e-10), among other functions. Genes from the purple cluster (7) were implicated in general processes such as response to stimuli.

In the case of genes linked to the risk of developing disease, we decided to expand the network with the 5 most closely

Increase Risk	SNP/Variant	Decrease	SNP/Variant	Associated	SNP/Variant
		Risk			
ACE [54]	rs4309 rs4293	ALOX15 [55]	rs34210653	ADORA1 [64]	rs16851030 rs6664108
ADRB2 [69]	rs1042713(A)	AOAH [37,40]	rs4504543	AGER [48]	rs1800625
ANX4 [54]	rs7588022	CD8A [27]	rs3810831(C)	ALOX5 [56]	rs3780894
CACNG6 [37]	rs192808	DCBLD2 [37]	rs828618	ALOX5AP [56] ALOX15 [128]	rs17612127 rs34210653
CCL11 [68,70]	rs1490392522 (G) rs762429865 (5G)	EBI3 [136]	rs428253	AOAH [73]	rs4504543
CFTR [66]	ΔF508	FANCC [22,54]	rs1326188	BICD2 [21]	
CIITA [110]	rs12932187	HLA-B [22]	*57	CACNA11 [73]	rs3788568
COX2 [52]	rs20417(A) rs20417 (C)	HLA-Cw [22]	*04	CAT [53]	-21(TT)
FCER1A [65]	rs2427827(T)	HLA-DQA1 [24]	*05012	CD14 [133]	rs946564423 (C)
FCER1G [54]	rs4489574	HLA-DQB1 [19,24]	*0301	CYSLTR1 [56]	rs321090
FOXP3 [136]	rs2294018 rs2232365	HLA-DQ [26]	*07	CYP2S1 [55]	rs338598
FS1P [54]	rs502581 rs2631700 rs2631702	HLA-DR7 [24]		DCBLD2 [124]	rs828621 rs1371687 rs7615856 rs828618 rs8833
HLA-A [22]	*24 *33	HLA-DRB1 [22,25]	*08 *11	EMID [125]	rs6945102 rs4729697 rs221 rs10435333 rs6947185 rs4727494 rs13233066 rs1008064 rs1543883 rs13245946
HLA-B [22]	*07	HLA-DRB3 [19]			
HLA-Cw [22]	*01 *12	IL10 [54]	rs1800872 rs1554286		
HLA-DQB1 [19,24]	*0202 *0302	IL1A [139]	rs2856838	FOXP1 [55]	rs17718444
HLA-D [26]	*08 *09	IL1B [37]	rs16944	HLA-A74 [119]	
HLA-DR [24,26]	*09 *07 *16	IL4 [45]	-590C/T	HLA-DRA [21,23]	rs9268644 rs3129878 rs3129881 rs2239805
HLA-DRB1 [25]	*03 *04	IRAK4 [37,40]	rs4251431 rs4251559 rs4251513 rs146567	HLA-DQA1 [55]	rs1391371
				HLCS [21]	
				HSP70-2 [48]	rs1061581

Table 1. Genes and Corresponding Single-Nucleotide Polymorphisms (SNPs) Reported as Being Related to CRSwNP

(continued)

Increase Risk	SNP/Variant	Decrease Risk	SNP/Variant	Associated	SNP/Variant
HLA-DRB4 [19]		NOS1 [135]	rs9658281 rs1483757	IL1RN [39]	rs2234663
				IL18R1 [55]	rs6543124 rs206976
IFNRD1 [111]	rs7817 (T)	PPARG [140]	rs2960421 rs4135275 rs1875796	IL2 [39]	
IL10 [37,54]	rs1800870 rs1800896 rs3024498	P73 [129]	rs3765731 (A)	IL22RA1 [29]	rs4292900 rs4648936 rs16829225
IL1A [28,35,37,38]	4845 (G/T) rs17561 rs1800587	RG7SBP [54]	rs6870654	IL33 [55]	rs1888909
IL1B [32,35,50]	-511(C/T)	TBXASI [54]	rs13239058 rs10487667 rs6962291	IL4 [39]	rs8179190
IL1RL1 [36,41]	rs1420101 86-bp intron2 rs13431828	TSLP [137]	rs252706 rs764917	IRAK4 [31]	rs1461567 rs4251559
IL1RN [34]				KIAA1456 [73]	rs11779957
IL22 [29]	rs4292900 rs4648936 rs16829225			LAMA2 [73]	rs2571584
IL33 [37,41]	rs3939286 (A)			LAMB1 [73]	rs4727695
IL4 [32,43]	-590C>T (C)			LTA [48]	rs909253
KIFC3 [54]	rs2285700			LTC4S [56,57]	rs730012 (A)
LTF [138]	rs1126478			MET [71]	
LTC4S [57,58]	rs730012 (C)			MSRA [73]	rs7001821
MET [52,71]	rs78116323(G) rs38850			MUSK [73]	rs10817091
MMP2 [132]	rs857403			MYRF [55]	rs174535
MMP9 [37,131]	rs3918242 rs2274756			NAV3 [73]	rs1726427
MS4A2 [54]	rs573790			NOS1AP [135]	rs12047527
OSF2 [138]	-33C/G rs3829365			NOS2 [53,57,126]	-277(GG) CCTTT
PARS2 [115]	rs2873551 rs2270004 rs11577368 rs1180946 rs1180945			PARS2 [73]	rs2873551
				PTGDR [57]	-613 (C) -549(C) -441(C) -197(C/T)
RYBP [37,40]	rs4532099				

Table 1. Genes and Corresponding Single-Nucleotide Polymorphisms (SNPs) Reported as Being Related to CRSwNP (continued)

(continued)

Increase Risk	SNP/Variant	Decrease Risk	SNP/Variant	Associated	SNP/Variant
RYD5 [122]	rs113795008 rs2280540 rs2294083 rs2294082			SERPINA1 [72]	rs1243168 rs4900229
			_	SLC5A1 [21]	
SERPINA1 [40,72]	rs1243168 (T) rs4900229			SLC22A4 [55]	rs1050152
TAPBP [27]	rs2282851(T)			TAS2R13	rs1015443
TAS2R38 [59,61,141]	rs713598 (C) rs1726866 (A) rs10246939(C)			TAS2R20	rs12226920 rs12226919
TNF [30,35,37,47,49-51]	rs1800629 (A) rs1799724 (C)			TRIP12 [73]	rs10535833
				TNF [48]	rs1800629
TSLP [121]	rs1837253			TSLP [55]	rs1837253
				VSIR [21]	

Table 1. Genes and Corresponding Single-Nucleotide Polymorphisms (SNPs) Reported as Being Related to CRSwNP (continued)

linked genes to obtain a broader view of their functions. Five clusters were found for genes related to an increased risk of NP. The most highly populated corresponded to that including *COX* genes, which are mainly involved in aerobic electron transport chains (FDR 2.26e-08). A cytokine cluster was also identified. Three clusters were defined for genes associated with a reduced risk. One included the Fanconi anemia family (*FAN*), which could be implicated in DNA interstrand cross-link repair (FDR 1.32e-15). The other 2 clusters—*ILs* and *HLAs*—have already been mentioned. It should be noted that some genes, eg, *IL1A* and *IL10*, have been related to both higher and lower risk of NP, depending on the SNP studied (Table 1).

We further explored the influence on biological functions of the genes that increase the risk by comparing them with the protective genes using the FunRich software application (Figure 5). Thus, differences in gene enrichment were noticeable for cytokine signaling and activity, IL-1 signaling, and MHC receptor activity, suggesting that activation of these pathways and processes may be linked to a reduced risk of disease.

Overview of Studies

Since the list of selected studies is extensive, we review them according to the clusters mentioned above in order to facilitate reading (Figure 4).

1) Brown cluster: HLA genes

Eight articles were dedicated to analyzing the association between *HLA* gene variants and NP [19-26]. Most of the variants described increased the risk of NP, and some have been confirmed in 2 different populations, namely, *DQA1*0201* in Hungarian [24] and Mexican [20] patients and *HLA-DRB1*03* and **04* in Turkish [22] and Mexican [25] patients. *HLA*- *DQB1*0301*, on the other hand, was reported to be linked to a reduced risk of NP in both Hungarian [24] and Iranian [19] cohorts.

Alromaih et al [27] studied the 2 related genes TAPBP and CD8, which are also included in this cluster, reporting that the minor allele C in CD8 rs3810831 would reduce the risk of NP, while the minor allele T in TAPBP rs2282851 would increase it.

2) Red cluster: IL and associated genes

Fourteen articles studied *IL* and related genes, although not all of them reported a significant association between the SNPs and the variants analyzed [28,29,38-41,30-37]. Thus, Erbek et al [35] and Mrowicka et al [32] found a positive correlation between *IL1B* –511C>T and NP, while others reported no association [34,38]. *IL1B* rs16944 was reported both as not associated [28] and associated with a reduced risk of NP [37].

The association has been shown to depend on the SNP. Thus, *IL1A* rs17561 [28,35,38,42], rs13431828 [40], and rs21800587 [28] have been associated with an increased risk of NP, while *IL1A* rs2856838 [28] was linked to a reduced risk.

Tewfik et al [31] studied a wide range of *IRAK4* SNPs, reporting that the C allele of rs1461567, the G allele of rs4251513, and the A allele of rs4251559 of the *IRAK4* gene were associated with high serum levels of IgE in NP patients. Likewise, Zhang et al [40] found an association between IgE levels and rs4251513, and reported that rs4251431, rs6582484, rs1461567, and rs3794262 were linked to a reduced risk of NP.

Despite not being included in the red cluster, IL4 was linked to other ILs that increased the risk of NP (Figure 4B) [33,39,43]. However, published data are controversial since the same SNP (-590C>T) has been reported to increase the risk [44], reduce the risk [45], and even not to be associated with NP [46].

Upregulated	Downregulated	Upregulated	Downregulated
ENSG00000248810.1 [83]	ENSG00000181123.4 [83]	XLOC_016248 [83]	hsa-miR-20a-5p [84]
ENSG00000253339.1 [83]	ENSG00000250360.1 [83]	XLOC_017561 [83]	hsa-miR-20b-5p [84]
hsa-miR-125b [86]	hsa-miR100-5p [84]	XLOC_018649 [83]	hsa-miR-23a-3p [84]
hsa-miR-125b-5p [84,89]	hsa-miR106a-5p [84]	XLOC_018891 [83]	hsa-miR-23a-5p [91]
hsa-miR-1290 [89]	hsa-miR-1226-3p [91]		hsa-miR-25-3p [94]
hsa-miR-141-3p [84]	hsa-miR-124 [85]		hsa-miR-29a-3p [84,94]
hsa-miR-142-3p [90]	hsa-miR-125b-2-3p [84]		hsa-miR-30e-3p [89]
hsa-miR-150-5p [88,89]	hsa-miR-125b-5p [84]		hsa-miR-30e-5p [89] hsa-miR-3149 [91]
hsa-miR-193a-5p [84]	hsa-miR-126-3p [84,89]		hsa-miR-3184-5p [91]
hsa-miR-19a [87]	hsa-miR-1273h-3p [89]		hsa-miR-3196 [91]
hsa-miR-200a-3p [84]	hsa-miR-1298-5p [91]		hsa-miR-3614-5p [89]
hsa-miR-200b-3p [84]	hsa-miR-1299 [91]		hsa-miR-362-3p [89]
hsa-miR-210-3p [89]	hsa-miR-130a [84,94]		hsa-miR-363-3p [89] hsa-miR-375 [91]
hsa-miR-210-5p [91]	hsa-miR-130a-3p [89]		hsa-miR-377-5p [91]
hsa-miR-30d-5p [84]	hsa-miR-130b-3p [84]		hsa-miR-3924 [91] hsa-miR-486-5n [89]
hsa-miR-30e-5p [84]	hsa-miR-138-5p [94]		hsa-miR-500a-5p [91]
hsa-miR-3146 [91]	hsa-miR-139-5p [89]		hsa-miR-532-3p [91]
hsa-miR-3178 [91]	hsa-miR-143-3p [89]		hsa-miR-548e-3p [91]
hsa-miR-320e [91]	hsa-miR-146a [92]		hsa-miR-574-5p [91]
hsa-miR-342-3p [89]	hsa-miR-152-3p [89]		hsa-miR-584-5p [89]
hsa-miR-34b-3p [84]	hsa-miR-16-5p [89]		hsa-miR-628-3p [89]
hsa-miR-34b-5p [84]	hsa-miR-17-5p [84]		hsa-miR-6503-3p [89]
hsa-miR-4485 [89]	hsa-miR-18a-5p [84]		hsa-miR-668-3p [91]
hsa-miR-449b-5p [84]	hsa-miR-18b-5p [84,94]		hsa-miR-6867-5p [89]
hsa-miR-449c-5n [84]	hsa-miR-19a-3n [89]		hsa-miR-708-5p [89] hsa-miR-92a-3p [84 87]
hsa-miR-585-3n [91]	hsa-miR-1914-5n [91]		hsa-miR-942-3p [89]
hsa-miR-92h-3n [84]	hsa-miR-193-3n [84 94]		XLOC_005882 [83]
XLOC 000122 [83]	hsa-miR-193b-3n [84]		XLOC_010505 [85] XLOC_010540 [83]
XLOC_003006 [83]	hsa-miR-199a-3n [89]		XLOC_015712 [83]
XLOC 011814 [83]	hsa-miR-199a-5p [89]		XLOC_018024 [83] XLOC_018529 [83]
XLOC 015500 [83]	hsa-miR-199h-3n [89]		XLOC_019396 [83]
MEG6_010000 [00]	nsu mit(-1770-5p [07]		XLOC_025155 [83]

Table 2. Noncoding Sequences With Differential Expression in CRSwNP Patients

Abbreviation: CRSwNP, chronic rhinosinusitis with nasal polyposis.

3) Olive cluster: TNF and related genes

The olive cluster is organized around TNF. Many studies have focused on this crucial gene, showing a positive correlation between rs1800629 and the risk of NP [35,37,42,47-50], although other authors failed to find such a correlation [28,51]. Thus, Mfuna-Endam et al [28] did not find an association for any of the 16 SNPs studied, while Berghea et al [51] reported rs1799724, but not rs1800629, as being associated with increased risk. Moreover, Szabo et al [48]

reported that the association with NP was linked to an ancestral haplotype (8.1), including rs1800629, *AGER* rs1800625, *HSP70-2* rs1061581, and *LTA* rs909253.

MT-CO2 (COX2) rs20417 [52] and *NOS-2* and *CAT* [53] have also been related to NP. Data and pathway analysis supported the association between *COX* genes and increased risk of NP, as shown in Figure 4B.

The olive cluster is closely related to the red cluster, with IL10 as the connecting node. IL10 rs1800870 [54] and rs1800896 [37] have been reported to be associated

Figure 2. Risk of bias (A) and quality assessment (B) of the selected articles.

with an increased risk of NP, whereas *IL10* rs1800872 and rs1554286 [54] seemed to confer protection against NP.

4) Turquoise cluster

In the case of *ALOX* genes, the missense variant rs34210653[A] (Thr560Met) in *ALOX15* would confer a 68% reduction in the risk of NP [55]; *ALOX5* rs3780894 and *ALOX5AP* rs17612127 have been associated with the disease [56]. While an association with NP has been published for LTC4S rs730012 [57,58], other authors did not find such a relationship [56].

5) Light green cluster: TAS genes

Taste receptor genes (*TAS*) have also been extensively studied in relation to NP. Mfuna-Endam et al [59] published an exhaustive overview of 19 TAS receptor genes, showing different allele frequencies between patients and controls for 57 SNPs in *TAS2R* genes and 16 SNPs in *TAS1R* genes.

Figure 3. Main biological functions involving the genes reported as being associated with chronic rhinosinusitis with nasal polyposis.

Figure 4. Clustering of genes associated with CRSwNP (A). Clusters associated with genes that increase (B) or decrease (C) the risk of chronic rhinosinusitis with nasal polyposis.

Several authors have focused on 3 SNPs of TAS2R38, ie. rs713598 (C145G; Pro>Ala), rs1726866 (C785T; Ala>Val), and rs10246939 (G886A; Val>Ile). The PAV genotype has been associated with better outcomes [60], while the alternate genotype AVI has been related to an increased risk of NP [61]. Other studies did not find any association between these variants and the disease [62,63].

With respect to ADORA1, differences in allele frequencies were reported only for NP patients with AERD [64].

6) Other clusters

The blue cluster genes FCER1A, FCER1G, and MS4A2 have been associated with an increased risk of NP [54,65].

In the purple cluster, it is worth mentioning a gene related to cystic fibrosis that has also been studied in NP, namely, *CFTR*, and the variant Δ F508, albeit with contrasting results. While it was significantly associated with NP in a Polish population [66], data from a Finnish cohort did not show any differences compared with healthy controls [67], and Wang et al [68] reported its presence in only 7% of American patients tested. Allele A of ADRB2 rs10452713 appeared to be more frequent in NP patients [69], while the association between CCL11 and NP was described as statistically weak [70].

Regarding the green cluster, MET has been associated with an increased risk of NP [52,71], while the SERPINA1 [72] and

and those that decrease the risk of chronic rhinosinusitis with nasal polyposis.

LAM genes [73] seemed to be associated with NP. However, Zhang et al [40] could not replicate the *LAM* results in a Chinese population.

Epigenetic Studies

Two of the selected studies focused on histone acetylation [74,75], 7 on DNA methylation [76-82], and 12 on ncRNAs, both lnc- [83] and miRNAs [84,85,94,86-93]. One article aimed to determine varying DNA modifications [95], and another explored polyadenylation [96]. We also included an mRNA expression study because it investigated miRNA machinery components in CRSwNP [97].

Histone Acetylation

Two studies by the same group examine hyperacetylation of histone H4 due to inhibition of histone deacetylase 2 (HDAC), which seemed to be associated with myofibroblast differentiation and extracellular matrix accumulation in NP (Supplementary Table 2).

DNA Modifications

While most articles refer to DNA methylation, Seiberling et al [95] also explored other modifications, such as bromination and chlorination of cytosines, and found significantly higher levels of 5-bromocytosine in polyps when compared with healthy ethmoid tissue.

Cheong et al [76] performed a genome-wide DNA methylation assay, comparing NP and blood samples from aspirin-intolerant asthma patients and aspirin-tolerant asthma patients. While several differentially methylated loci were found, the results must be interpreted with caution, given the purpose of this current systematic review and the lack of proper healthy controls.

Kim et al [79] performed a methylation profiling study comparing NP with uncinate process tissue and found that 397 and 387 genes were hypermethylated in patients with eosinophilic CRSwNP and noneosinophilic CRSwNP, respectively, and that 399 and 208 genes were hypomethylated compared with healthy controls. Most genes were involved in cancer pathways.

Specific genes involved in NP were selected to determine the degree of methylation in their promoter regions. *KRT19*, *NR2F2*, *ADAMTS1*, and *ZNF222* were the top 4 genes whose promoters were significantly hypomethylated in NP in Korean patients [78], whereas *COL18A1*, *EP300*, *GNAS*, and *SMURF1* were reported to be the 4 most changed genes in Chinese CRSwNP patients [82]. DNA methylation has also been studied in individual genes, such as *PLAT* [77], *TSLP* [80], and *IL8* [81].

RNAs

Most studies on noncoding RNAs focus on miRNA. Table 2 shows all the available lcnRNAs and miRNAs published in the selected articles (25 upregulated and 62 downregulated RNAs). Interestingly, in 1 study, not all the entities analyzed were accessible to us [93]. Therefore, we would suggest the interested reader check the original article for a complete overview.

We then analyzed the list of miRNAs using the online tool TAM 2.0. The results are shown in Figure 6. First, we analyzed upregulated and downregulated miRNAs and plotted them using bubble plots (Figure 6A and B, respectively). The size of the bubble indicates the number of input miRNAs present in each set. As shown, the top functions related to upregulated miRNAs were cell cycle (P-value 8.28e-9; FDR 3.34e-6), cell proliferation (P-value 1.42e-6; FDR 1.73e-4), and inflammation (P-value 2.60e-6; FDR 2.25e-4), while the top functions related to downregulated miRNAs were hormone-mediated signaling pathways (P-value 2.82e-13; FDR 8.55e-11), immune response (P-value 7.00e-13; FDR 1.41e-10), and inflammation (P-value 5.68e-10; FDR 3.27e-8). We also include correlations (Figure 6C) between deregulated miRNAs found in the studies selected and deregulated miRNAs in relevant disease conditions, such as allergic rhinitis and rhinosinusitis. However, the indexes were low compared with the top 3 diseases (also included in the plot).

The role of miRNAs in the development of NP has been reported through regulation of the expression of relevant genes, including *IL10* [86], *AHR* [85], *EGR2* [87], *EGFR* [91], *TGFB* [92], and *4E-BP1* [94].

In relation to miRNA processing, Zhang et al [97] studied the components of miRNA machinery and found that PACT mRNA expression was upregulated in CRSwNP compared with controls, while no differences were observed for other components.

Tian et al [98] demonstrated switching of 3'UTR lengths in nasal polyps when compared with uncinate process mucosa from the same patient. The authors also described a switch to distal or proximal polyA sites in several genes, including *DEDD*, *p53RPF*, *SOD1*, and *SOD2*, which may affect regulation of their expression.

Figure 6. Enrichment of miRNAs in biological processes. A, Functions involving miRNA upregulated in CRSwNP. B, Functions involving downregulated miRNA. C, Association between miRNA and relevant diseases. FXS, indicates fragile X syndrome; DM, diabetes mellitus; VM, viral myocarditis; AR, allergic rhinitis; R, rhinosinusitis; A, asthma.

Figure 7. Relevant genes linked to miRNA. Genes found in the selected genetic articles that have been published as connected to miRNA identified by the selected epigenetic articles.

Genes to miRNA

In an attempt to combine the information obtained from genetics and epigenetics studies, we ran the list of miRNAs and the list of genes using the online tool miRSystem to investigate synergies between the two. We found links for 25 genes out of 99 and 37 miRNAs out of 87 (Figure 7). Among them, *RYP* and *FOXP1* were connected with the largest number of miRNAs (15 and 14 miRNAs, respectively). The miRNAs that appeared to be associated with more genes in the list were hsa-miR-17-5p, hsa-miR-19a-3p, hsa-miR-20a-5p, and hsa-miR-27a-3p.

Discussion

In this systematic review, we bring together all the information on the genetics and epigenetics of NP published since 2000. Following the PRISMA guidelines for systematic reviews and meta-analysis, we found 104 articles published between 2000 and May 2020 that fulfilled our inclusion criteria. We identified more than 150 genetic variants in 99 genes involved in the pathogenesis of NP; these variants increase and decrease the risk of developing NP or are associated with the disease. Most of the studies were of good quality, with a low risk of bias. We also included a search for epigenetic mechanisms that may underlie the pathogenesis of NP. These epigenetic studies focused mainly on describing the miRNAs involved in NP or risk of NP. The 87 miRNAs identified are associated with biological functions such as cell cycle, inflammation, and immune response. DNA methylation has also been compared in NP patients and healthy controls. Both hypomethylated and hypermethylated genes and gene promoters have been identified and are mostly associated with cancer pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) [78].

To obtain a more in-depth knowledge of the published data, we analyzed the information compiled using the many tools available online. Our analysis of genetic studies was based on more than 13 000 healthy controls and over 9600 CRSwNP patients, as well as on 2 large database studies. Previous reviews [2,8] had already analyzed altered genes and associated functions in CRSwNP, although no thorough study of clusters has been performed to date. Eight main clusters were identified. Of these, the HLA gene cluster was the most populated one and appeared only as a cluster when analyzing those SNPs associated with reduced risk of CRSwNP, with a clear dominance of class II HLA genes over class I. In fact, the MHC class profile could be used to differentiate CRSsNP from CRSwNP, since upregulation of MHC-class I-mediated antigen presentation has been associated with CRSsNP [99].

Other critical functional clusters were those including *IL* genes (in association with *TNF* and *NOS*), leukotriene-related genes (*ALOX5* and -*15*), IgE receptor-related genes (*FCER*), taste receptors (*TAS-R*), and *CFRT*. Data for several genes, such as *TNF*, *TAS2R38*, and *NOS2*, were extracted from several studies performed in different populations, thus reinforcing the role of these genes in NP. Although the role of other genes has not been confirmed to date, recent studies on the efficacy of anti-IgE omalizumab [100], anti-IL4R dupilumab [101,102], and anti-IL5 mepolizumab [103] suggest the involvement of the *FCER* and *IL* genes in NP. Mechanisms depending on Fc epsilon receptor (FccR) activation have been reported to underlie airway inflammation and airway remodeling [102]. On the other hand, taste receptors seem to be associated more clearly with CRS [59].

It is worth mentioning the increased risk of CRSwNP associated with airway inflammation and extracellular matrix remodeling as per clustering analysis, which is consistent with the literature on relevant genes, ie, cyclooxygenase 2 (COX2) [99], matrix metalloproteinase (MMP) 2 and 9 [100,101], and cystic fibrosis transmembrane regulator (CFTR) [104]. Moreover, a transcriptomic analysis of the different stages of CRS, ranging from rhinitis to severe NP, has identified elevated expression of transcripts in polyps involved in extracellular matrix remodeling and chemoattraction of effector cells, strong induction of a combined IL4/IL13 signature, and decreased protease-inhibitor expression and metabolic genes [105].

Another strength of the current systematic review is the inclusion of genetic and epigenetic mechanisms and our tentative approach to interconnect them. While we are aware that this approach is theoretical and based on software analysis and must be confirmed experimentally, it could be a good starting point for future research on the molecular mechanisms involved in CRSwNP. Interestingly, in the articles we reviewed, some of the miRNAs encoded in the MHC genes have been identified as being related to NP, namely, miR-152, miR-20a, and miR-19a. These may affect the expression of class I MHC molecules such as HLA-B [98].

Conversely, as a limitation of the present review, we must address the lack of proper controls in 10 of the 80 genetic studies, while most of the epigenetic articles include healthy tissues as controls. Furthermore, since over 80% of the genes were mentioned in only 1 study, their role in NP remains to be confirmed. Another limitation of some studies was the use of databases as a source of genetic data in healthy controls. While databases are easily accessible repositories of gene variation, critical clinical information about the patients is likely ignored. Therefore, it cannot be ruled out that the "supposedly" healthy population included mild cases of relevant atopy or asthma that could undermine the conclusions.

As CRS is a feature of cystic fibrosis in White populations, mutations in the cystic fibrosis transmembrane regulator gene (*CFTR*), a chloride channel of the plasma membrane, have also been associated with NP [68]. However, other authors did not find such an association [69]. For patients who were heterozygous for Δ F508 and a residual function allele, tezacaftor plus ivacaftor was found to improve lung function (FEV₁) when compared with placebo and ivacaftor alone [106]. This treatment has already been approved for Δ F508 carriers [2]. In a prospective study in the Netherlands, ivacaftor proved efficacious in NP in patients harboring the S125N mutation [107].

Finally, we cannot forget the new field of medical care resulting from exploration the therapeutic potential of miRNAs. Several ongoing clinical trials are testing the safety and efficacy of miRNAs for the diagnosis and treatment of diverse cancers [108]. Opening the field to other diseases, such as CRS, will undoubtedly be worth the effort.

Final Remarks

This systematic review aimed to bring together all the available information on the genetics and epigenetics of CRSwNP. The more than 100 articles reviewed provided data on multiple SNPs and genetic variants associated with the risk of developing the disease, which was both increased and reduced. Furthermore, several miRNAs and other epigenetic traits have been identified as differentially expressed in CRSwNP patients. Clusters of genes and the potential relationship between miRNAs and genes have been proposed. New lines of research are open for further investigation.

Funding

This research was funded by the Thematic Network of Cooperative Research in Health - RETICS (Red temática de investigación en salud Asma, Reacciones Adversas y Alérgicas, ARADYAL) of the Instituto de Salud Carlos III, grant number RD16/0006/0019.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

- Schleimer RP. Immunopathogenesis of Chronic Rhinosinusitis and Nasal Polyposis. Annu Rev Pathol Mech Dis. 2017;12:331-57.
- Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S, et al. European Position Paper on Rhinosinusistis and Nasal Polyps 2020. Rhinol Suppl. 2020;58:1-464.
- 3. Fujieda S, Imoto Y, Kato Y, Ninomiya T, Tokunaga T, Tsutsumiuchi T, et al. Eosinophilic chronic rhinosinusitis. Allergol Int. 2019;68:403-12.
- 4. Newton JR, Ah-See KW. A review of nasal polyposis. Ther Clin Risk Manag. 2008;4:507-12.
- Stevens WW, Schleimer RP, Kern RC. Chronic rhinosinusistis with nasal polyps. J Allergy Clin Immunol. 2016;4:565-72.
- 6. Grüneberg H. The inheritance of a disease of the accesaory nasal cavities. J Genet. 1934;29:367-74.
- Lockey RF, Rucknagel DL, Vanselow NA. Familial Occurrence of Asthma, Nasal Polyps, and Aspirin Intolerance. Ann Intern Med. 1973;78:57-63.
- Hsu J, Avila PC, Kern RC, Hayes MG, Schleimer RP, Pinto JM. Genetics of chronic rhinosinusitis: State of the field and directions forward. J Allergy Clin Immunol. 2013;131:977-93. e5.
- 9. Petronis A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature. 2010;465:721-7.
- Feinberg AP. The key role of epigenetics in human disease prevention and mitigation. N Engl J Med. 2018;378:1323-34.
- Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1 Introduction - GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64:383-94.
- Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019:14898.
- Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603-5.
- Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2019;36:2628-9.
- Pathan M, Keerthikumar S, Ang C, Gangoda L, Quek CYJYJ, Williamson NAA, et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics. 2015;15:2597-601.
- Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607-13.
- Li J, Han X, Wan Y, Zhang S, Zhao Y, Fan R, et al. TAM 20: tool for MicroRNA set analysis. Nucleic Acids Res. 2018;46:W180-5.
- Lu T-P, Lee C-Y, Tsai M-H, Chiu Y-C, Hsiao CK, Lai L-C, et al. miRSystem: An Integrated System for Characterizing Enriched Functions and Pathways of MicroRNA Targets. PLoS One. 2012;7:e42390.
- Esmaeilzadeh H, Nabavi M, Amirzargar AA, Aryan Z, Arshi S, Bemanian MH, et al. HLA-DRB and HLA-DQ Genetic Variability in Patients with Aspirin-Exacerbated Respiratory Disease. Am J Rhinol Allergy. 2015;29:e63-9.

- Fajardo-Dolci G, Solorio-Abreu J, Romero-Álvarez JC, Zavaleta-Villa B, Cerezo-Camacho O, Jiménez-Lucio R, et al. DQA1 and DQB1 association and nasal polyposis. Otolaryngol Head Neck Surg. 2006;135:243-7.
- Bohman A, Juodakis J, Oscarsson M, Bacelis J, Bende M, Torinsson Naluai Å. A family-based genome-wide association study of chronic rhinosinusitis with nasal polyps implicates several genes in the disease pathogenesis. PLoS One. 2017;12:e0185244.
- Keles B, Cora T, Acar H, Arbag H, Inan Z, Ozturk K, et al. Evaluation of HLA-A, -B, -Cw, and -DRB1 alleles frequency in Turkish patients with nasal polyposis. Otolaryngol Head Neck Surg. 2008;139:580-5.
- Kim J-H, Park B-L, Cheong HS, Pasaje CFA, Bae JS, Park JS, et al. HLA-DRA polymorphisms associated with risk of nasal polyposis in asthmatic patients. Am J Rhinol Allergy. 2012;26:12-7.
- 24. Molnar-gabor E, Endreffy E, Rozsasi A. HLA-DRB1, -DQA1, and -DQB1 Genotypes in Patients With Nasal Polyposis. Laryngoscope. 2000;110:422-5.
- Ramírez-Anguiano J, Yamamoto-Furusho JK, Barquera R, Beltrán O, Granados J. Association of HLA-DR3 and HLA-DR4 with sinonasal polyposis in Mexican Mestizos. Otolaryngol Head Neck Surg. 2006;135:90-3.
- Zhai L, Sun Y, Tang L, Liu H. Polymorphism between loci for human leukocyte antigens DR and DQ in patients with nasal polyps. Ann Otol Rhinol Laryngol. 2007;116:66-8.
- Alromaih S, Mfuna-Endam L, Bosse Y, Filali-Mouhim A, Desrosiers M. CD8A gene polymorphisms predict severity factors in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2013;3:605-11.
- Mfuna Endam L, Cormier C, Bossé Y, Filali-Mouhim A, Desrosiers M. Association of IL1A, IL1B, and TNF Gene Polymorphisms With Chronic Rhinosinusitis With and Without Nasal Polyposis. Arch Otolaryngol Neck Surg. 2010;136:187.
- 29. Endam LM, Bossé Y, Filali-Mouhim A, Cormier C, Boisvert P, Boulet L-P, et al. Polymorphisms in the interleukin-22 receptor alpha-1 gene are associated with severe chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2009;140:741-7.
- Bernstein JM, Anon JB, Rontal M, Conroy J, Wang C, Sucheston L. Genetic polymorphisms in chronic hyperplastic sinusitis with nasal polyposis. Laryngoscope. 2009;119:1258-64.
- Tewfik MA, Bossé Y, Lemire M, Hudson TJ, Vallée-Smejda S, Al-Shemari H, et al. Polymorphisms in interleukin-1 receptorassociated kinase 4 are associated with total serum IgE. Allergy. 2009;64:746-53.
- 32. Mrowicka M, Zielinska-Blizniewska H, Milonski J, Majsterek I, Olszewski J. Association of IL1 β and IL4 gene polymorphisms with nasal polyps in a Polish population. Mol Biol Rep. 2014;41:4653-8.
- Ahmed SAJ, Yas NK, Hatem HA. DNA Polymorphism of Interleukin IL-4 of Nasal Mucosal Stem Cells in Nasal Polyps of Iraqi Patients. Int J Bio Tech Res. 2017;7(3):11-6.
- Cheng Y-K, Lin C-D, Chang W-C, Hwang G-Y, Tsai S-W, Wan L, et al. Increased prevalence of interleukin-1 receptor antagonist gene polymorphism in patients with chronic rhinosinusitis. Arch Otolaryngol Head Neck Surg. 2006;132:285-90.
- Erbek SS, Yurtcu E, Erbek S, Atac FB, Sahin FI, Cakmak O. Proinflammatory Cytokine Single Nucleotide Polymorphisms in Nasal Polyposis. Arch Otolaryngol Neck Surg. 2007;133:705.

- 36. Castano R, Bossé Y, Endam LM, Desrosiers M. Evidence of association of interleukin-1 receptor-like 1 gene polymorphisms with chronic rhinosinusitis. Am J Rhinol Allergy. 2009;23:377-84.
- 37. Henmyr V, Vandeplas G, Halldén C, Säll T, Olze H, Bachert C, et al. Replication study of genetic variants associated with chronic rhinosinusitis and nasal polyposis. J Allergy Clin Immunol. 2014;133:273-5.
- Karjalainen J, Joki-Erkkila V-P, Hulkkonen J, Pessi T, Nieminen MM, Aromaa A, et al. The IL1A genotype is associated with nasal polyposis in asthmatic adults. Allergy. 2003;58:393-6.
- 39. Kuran G, Aslan H, Haytoglu S, Özalp Yuregir Ö, Tug Bozgodan S. IL-1RN VNTR, IL-2(-330), and IL-4 VNTR gene polymorphisms in patients with chronic rhinosinusitis with sinonasal polyposis. Turkish J Med Sci. 2019;49:1411-7.
- 40. Zhang Y, Endam LM, Filali-Mouhim A, Zhao L, Desrosiers M, Han D, et al. Polymorphisms in RYBP and AOAH Genes Are Associated with Chronic Rhinosinusitis in a Chinese Population: A Replication Study. PLoS One. 2012;7:e39247.
- 41. Buysschaert ID, Grulois V, Eloy P, Jorissen M, Rombaux P, Bertrand B, et al. Genetic evidence for a role of IL33 in nasal polyposis. Allergy. 2010;65:616-22.
- Bernstein IL, Li JT, Bernstein DI, Hamilton R, Spector SL, Tan R, et al. Allergy diagnostic testing: An updated practice parameter. Ann Allergy Asthma Immunol. 2008;100:S1-148.
- 43. Park SK, Heo KW, Jung H, Yea SS, Yang Y II. Expression of cyclooxygenase-2 and 5-lipoxygenase in nasal polyps associated with interleukin-4 promoter polymorphism -590. Otolaryngol Head Neck Surg. 2006;135:928-32.
- 44. Kim S-H, Park H-S, Holloway JW, Shin H-D, Park C-S. Association between a TGF [beta] 1 promoter polymorphism and rhinosinusitis in aspirin-intolerant asthmatic patients. Respir Med. 2007;101:490-5.
- 45. Yea SS, Yang Y-I, Park SK, Jang WH, Lee SS, Seog D-H, et al. Interleukin-4 C-590T Polymorphism is associated with Protection against Nasal Polyps in a Korean Population. Am J Rhinol. 2006;20:550-3.
- 46. Mrowicka M, Zielinska-Blizniewska H, Milonski J, Olszewski J, Majsterek I. Evaluation of oxidative DNA damage and antioxidant defense in patients with nasal polyps. Redox Rep. 2015;20:177-83.
- Batikhan H, Gokcan MK, Beder E, Akar N, Ozturk A, Gerceker M. Association of the tumor necrosis factor-alpha –308 G/A polymorphism with nasal polyposis. Eur Arch Otorhinolaryngology. 2010;267:903-8.
- 48. Szabó K, Polyánka H, Kiricsi Á, Révész M, Vóna I, Szabó Z, et al. A conserved linkage group on chromosome 6, the 81 ancestral haplotype, is a predisposing factor of chronic rhinosinusitis associated with nasal polyposis in aspirinsensitive Hungarians. Hum Immunol. 2015;76:858-62.
- 49. Szabó K, Kiricsi Á, Révész M, Vóna I, Szabó Z, Bella Z, et al. The -308 G>A SNP of TNFA is a factor predisposing to chronic rhinosinusitis associated with nasal polyposis in aspirin-sensitive Hungarian individuals: conclusions of a genetic study with multiple stratifications. Int Immunol. 2013;25:383-8.
- 50. Ismi O, Ozcan C, Polat G, Kul S, Gorur K, Puturgeli T. TNF- α and IL-1 β Cytokine Gene Polymorphism in Patients with Nasal Polyposis. Turk Arch Otolaryngol. 2017;55:51-6.

- 51. Berghea EC, Popa OM, Meirosu M, Popa LO, Bara C, Bumbacea RS. Association of TNF-alpha gene polymorphism with nasal polyposis in Romanian asthmatic patients. Rom J Rhinol. 2014;4.
- 52. Sitarek P, Zielinska-Blizniewska H, Dziki L, Milonski J, Przybylowska K, Mucha B, et al. Association of the –14C/G MET and the –765G/C COX-2 Gene Polymorphisms with the Risk of Chronic Rhinosinusitis with Nasal Polyps in a Polish Population. DNA Cell Biol. 2012;31:1258-66.
- Akyigit A, Keles E, Etem EO, Ozercan I, Akyol H, Sakallioglu O, et al. Genetic polymorphism of antioxidant enzymes in eosinophilic and non-eosinophilic nasal polyposis. Eur Arch Otorhinolaryngology. 2017;274:267-73.
- 54. Pavón-Romero GF, Pérez-Rubio G, Ramírez-Jiménez F, Ambrocio-Ortiz E, Bañuelos-Ortiz E, Alvarado-Franco N, et al. MS4A2-rs573790 Is associated with aspirin-exacerbated respiratory disease: Replicative study using a candidate gene strategy. Front Genet. 2018;9.
- Kristjansson RP, Benonisdottir S, Davidsson OB, Oddsson A, Tragante V, Sigurdsson JK, et al. A loss-of-function variant in ALOX15 protects against nasal polyps and chronic rhinosinusitis. Nat Genet. 2019;51:267-76.
- Al-Shemari H, Bossé Y, Hudson TJ, Cabaluna M, Duval M, Lemire M, et al. Influence of leukotriene gene polymorphisms on chronic rhinosinusitis. BMC Med Genet. 2008;9:21.
- Benito Pescador D, Isidoro-García M, García-Solaesa V, Pascual de Pedro M, Sanz C, Hernández-Hernández L, et al. Genetic association study in nasal polyposis. J Investig Allergol Clin Immunol. 2012;22:331-40.
- Alarcón A de, Steinke JW, Caughey R, Barekzi E, Hise K, Gross CW, et al. Expression of Leukotriene C 4 Synthase and Plasminogen Activator Inhibitor 1 Gene Promoter Polymorphisms in Sinusitis. Am J Rhinol. 2006;20:545-9.
- Mfuna Endam L, Filali-Mouhim A, Boisvert P, Boulet L-P, Bossé Y, Desrosiers M. Genetic variations in taste receptors are associated with chronic rhinosinusitis: a replication study. Int Forum Allergy Rhinol. 2014;4:200-6.
- Adappa ND, Zhang Z, Palmer JN, Kennedy DW, Doghramji L, Lysenko A, et al. The bitter taste receptor T2R38 is an independent risk factor for chronic rhinosinusitis requiring sinus surgery. Int Forum Allergy Rhinol. 2014;4:3-7.
- 61. Cantone E, Negri R, Roscetto E, Grassia R, Catania MR, Capasso P, et al. In Vivo Biofilm Formation, Gram-Negative Infections and TAS2R38 Polymorphisms in CRSw NP Patients. Laryngoscope. 2018;128:E339-45.
- 62. Gallo S, Grossi S, Montrasio G, Binelli G, Cinquetti R, Simmen D, et al. TAS2R38 taste receptor gene and chronic rhinosinusitis: new data from an Italian population. BMC Med Genet. 2016;17:54.
- 63. Purnell PR, Addicks BL, Zalzal HG, Shapiro S, Wen S, Ramadan HH, et al. Single Nucleotide Polymorphisms in Chemosensory Pathway Genes GNB3, TAS2R19, and TAS2R38 Are Associated with Chronic Rhinosinusitis. Int Arch Allergy Immunol. 2019;180:72-8.
- Kim S-H, Kim Y-K, Park H-W, Kim S-H, Kim S-H, Ye Y-M, et al. Adenosine deaminase and adenosine receptor polymorphisms in aspirin-intolerant asthma. Respir Med. 2009;103:356-63.
- 65. Dar SA, Rai G, Ansari MA, Akhter N, Gupta N, Sharma S, et al. $Fc\epsilon R1\alpha$ gene polymorphism shows association with high

IgE and anti-Fc ϵ R1 α in Chronic Rhinosinusitis with Nasal Polyposis. J Cell Biochem. 2018;119:4142-9.

- Kostuch M, Klatka J, Semczuk A, Wojcierowski J, Kulczycki L, Oleszczuk J. Analysis of most common CFTR mutations in patients affected by nasal polyps. Eur Arch Otorhinolaryngol. 2005;262:982-6.
- 67. Hytönen M, Patjas M, Vento SI, Kauppi P, Malmberg H, Ylikosk J, et al. Cystic fibrosis gene mutations δ F508 and 394delTT in patients with chronic sinusitis in Finland. Acta Otolaryngol. 2001;121:945-7.
- 68. Wang X, Moylan B, Leopold DA, Kim J, Rubenstein RC, Togias A, et al. Mutation in the gene responsible for cystic fibrosis and predisposition to chronic rhinosinusitis in the general population. J Am Med Assoc. 2000;284:1814-9.
- 69. Bussu F, Tiziano FD, Giorgio A, Pinto AM, Corso E De, Angelozzi C, et al. Arg16gly Polymorphism of the beta2-Adrenoceptor Gene (ADRBeta2) as a Susceptibility Factor for Nasal Polyposis. Am J Rhinol. 2007;21:378-82.
- Ekinci S, Erbek SS, Yurtcu E, Sahin FI. Lack of Association between Eotaxin-1 Gene Polymorphisms and Nasal Polyposis. Otolaryngol Neck Surg. 2011;145:1036-9.
- Castano R, Bossé Y, Endam LM, Filali-Mouhim A, Desrosiers M. c-MET pathway involvement in chronic rhinosinusitis: A genetic association analysis. Otolaryngol Neck Surg. 2010;142:665-71.
- Kilty SJ, Bossé Y, Cormier C, Endam LM, Desrosiers MY. Polymorphisms in the SERPINA1 (Alpha-1-Antitrypsin) Gene are Associated with Severe Chronic Rhinosinusitis Unresponsive to Medical Therapy. Am J Rhinol Allergy. 2010;24:e4-9.
- 73. Bossé Y, Bacot F, Montpetit A, Rung J, Qu H-Q, Engert JC, et al. Identification of susceptibility genes for complex diseases using pooling-based genome-wide association scans. Hum Genet. 2009;125:305-18.
- 74. Cho J-S, Moon Y-M, Park I-H, Um J-Y, Moon J-H, Park S-J, et al. Epigenetic regulation of myofibroblast differentiation and extracellular matrix production in nasal polyp-derived fibroblasts. Clin Exp Allergy. 2012;42:872-82.
- 75. Cho J-S, Moon Y-M, Park I-H, Um J-Y, Kang J-H, Kim TH, et al. Effects of Histone Deacetylase Inhibitor on Extracellular Matrix Production in Human Nasal Polyp Organ Cultures. Am J Rhinol Allergy. 2013;27:18-23.
- Cheong HS, Park S-M, Kim M-O, Park J-S, Lee JY, Byun JY, et al. Genome-wide methylation profile of nasal polyps: relation to aspirin hypersensitivity in asthmatics. Allergy. 2011;66:637-44.
- Kidoguchi M, Noguchi E, Nakamura T, Ninomiya T, Morii W, Yoshida K, et al. DNA Methylation of Proximal PLAT Promoter in Chronic Rhinosinusitis With Nasal Polyps. Am J Rhinol Allergy. 2018;32:374-9.
- 78. Kim JYJ-Y, Kim DKD-K, Yu MS, Cha MJM-J, Yu SLS-L, Kang J. Role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps. Mol Med Rep. 2018;17:1219-27.
- Kim JYJ-Y, Cha MJM-J, Park YSY-S, Kang J, Choi JJJ-J, In SM, et al. Upregulation of FZD5 in Eosinophilic Chronic Rhinosinusitis with Nasal Polyps by Epigenetic Modification. Mol Cells. 2019;42:345-55.
- Li J, Jiao J, Gao Y, Zhang Y, Zhang L. Association between methylation in nasal epithelial TSLP gene and chronic rhinosinusitis with nasal polyps. Allergy, Asthma Clin Immunol. 2019;15:71.

- Li J, Jiao J, Wang M, Gao Y, Li Y, Wang Y, et al. Hypomethylation of the IL8 promoter in nasal epithelial cells of patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2019;144:993-1003.e12.
- Zheng YB, Zhao Y, Yue LY, Lin P, Liu YF, Xian JM, et al. Pilot study of DNA methylation in the pathogenesis of chronic rhinosinusitis with nasal polyps. Rhinology. 2015;53:345-52.
- Liu M, Guo P, An J, Guo C, Lu F, Lei Y. Genome-wide profiling of IncRNA and mRNA expression in CRSwNP. Mol Med Rep. 2019;49:3855-63.
- 84. Callejas-Díaz B, Fernandez G, Fuentes M, Martínez-Antón A, Alobid I, Roca-Ferrer J, et al. Integrated mRNA and microRNA transcriptome profiling during Differentiation of Human Nasal Polyp Epithelium reveals an altered Ciliogenesis. Allergy. 2020:0-1.
- 85. Liu CC, Xia M, Zhang YJ, Jin P, Zhao L, Zhang J, et al. Micro124mediated AHR expression regulates the inflammatory response of chronic rhinosinusitis (CRS) with nasal polyps. Biochem Biophys Res Commun. 2018;500:145-51.
- Luo X-Q, Shao J-B, Xie R-D, Zeng L, Li X-X, Qiu S-Q, et al. Micro RNA-19a interferes with IL-10 expression in peripheral dendritic cells of patients with nasal polyposis. Oncotarget. 2017;8:48915-21.
- Ma Z, Shen Y, Zeng Q, Liu J, Yang L, Fu R, et al. MiR-150-5p regulates EGR2 to promote the development of chronic rhinosinusitis via the DC-Th axis. Int Immunopharmacol. 2018;54:188-97.
- Ma Z-X, Tan X, Shen Y, Ke X, Yang Y-C, He X-B, et al. MicroRNA expression profile of mature dendritic cell in chronic rhinosinusitis. Inflamm Res. 2015;64:885-93.
- Qing X, Zhang Y, Peng Y, He G, Liu A, Liu H. Mir-142-3p Regulates Inflammatory Response by Contributing to Increased TNF-α in Chronic Rhinosinusitis With Nasal Polyposis. Ear Nose Throat J. 2019:1-7.
- 90. Xuan L, Luan G, Wang Y, Lan F, Zhang X, Hao Y, et al. MicroRNAs regulating mucin type O-glycan biosynthesis and transforming growth factor β signaling pathways in nasal mucosa of patients with chronic rhinosinusitis with nasal polyps in Northern China. Int Forum Allergy Rhinol. 2019;9:106-13.
- Yan D, Ye Y, Zhang J, Zhao J, Yu J, Luo Q. Human Neutrophil Elastase Induces MUC5AC Overexpression in Chronic Rhinosinusitis Through miR-146a. Am J Rhinol Allergy. 2020;34:59-69.
- Yu H, Ju J, Liu J, Li D. Aberrant expression of miR-663 and transforming growth factor-β1 in nasal polyposis in children. Exp Ther Med. 2018;15:4550-6.
- Zhou X, Zhen X, Liu Y, Cui Z, Yue Z, Xu A, et al. Identification of Key Modules, Hub Genes, and Noncoding RNAs in Chronic Rhinosinusitis with Nasal Polyps by Weighted Gene Coexpression Network Analysis. Biomed Res Int. 2020;2020:1-20.
- Zhang X-H, Zhang Y-N, Li H-B, Hu C-Y, Wang N, Cao P-P, et al. Overexpression of miR-125b, a Novel Regulator of Innate Immunity, in Eosinophilic Chronic Rhinosinusitis with Nasal Polyps. Am J Respir Crit Care Med. 2012;185:140-51.
- 95. Seiberling KA, Church CA, Herring JL, Sowers LC. Epigenetics of chronic rhinosinusitis and the role of the eosinophil. Int Forum Allergy Rhinol. 2012;2:80-4.
- 96. Tian P, Sun Y, Li Y, Liu X, Wan L, Li J, et al. A Global Analysis of Tandem 3'UTRs in Eosinophilic Chronic Rhinosinusitis with Nasal Polyps. PLoS One. 2012;7:e48997.

- 97. Zhang Y-N, Cao P-P, Zhang X-H, Lu X, Liu Z. Expression of MicroRNA machinery proteins in different types of chronic rhinosinusitis. Laryngoscope. 2012;122:2621-7.
- 98. Tian P, Li J, Liu X, Li Y, Chen M, Ma Y, et al. Tandem alternative polyadenylation events of genes in non-eosinophilic nasal polyp tissue identified by high-throughput sequencing analysis. Int J Mol Med. 2014;33:1423-30.
- 99. Bassiouni A, Ou J, Schreiber A, Geoghegan J, Tsykin A, Psaltis AJ, et al. The global transcriptomic signature in sinonasal tissues reveals roles for tissue type and chronic rhinosinusitis disease phenotype. Rhinology. 2020;58:273-83.
- Gevaert P, Omachi TA, Corren J, Mullol J, Han J, Lee SE, et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. J Allergy Clin Immunol. 2020;146:595-605.
- 101. Jonstam K, Swanson BN, Mannent LP, Cardell LO, Tian N, Wang Y, et al. Dupilumab reduces local type 2 pro-inflammatory biomarkers in chronic rhinosinusitis with nasal polyposis. Allergy Eur J Allergy Clin Immunol. 2019;74:743-52.
- 102. Sastre J, Dávila I. Dupilumab: A New Paradigm for the Treatment of Allergic Diseases. J Investig Allergol Clin Immunol. 2018;28:139-50.
- 103. Gevaert P, Bruaene N Van, Cattaert T, Steen K Van, Zele T Van, Acke F, et al. Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis. J Allergy Clin Immunol. 2011;128:989-95.e8.
- 104. Aghasafari P, George U, Pidaparti R. A review of inflammatory mechanism in airway diseases. Inflamm Res. 2019;68:59-74.
- Ordovas-Montanes J, Dwyer DF, Nyquist SK, Buchheit KM, Vukovic M, Deb C, et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature. 2018;560:649-54.
- Johnson BJ, Choby GW, O'Brien EK. Chronic rhinosinusitis in patients with cystic fibrosis—Current management and new treatments. Laryngoscope Investig Otolaryngol. 2020;5:368-74.
- 107. Gostelie R, Stegeman I, Berkers G, Bittermann J, van der Drift IL, van Kipshagen PJ, et al. The impact of ivacaftor on sinonasal pathology in S1251N-mediated cystic fibrosis patients. PLoS One. 2020;15:1-14.
- 108. Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS. Therapeutic miRNA and siRNA: Moving from Bench to Clinic as Next Generation Medicine. Mol Ther - Nucleic Acids. 2017;8:132-43.
- 109. Adappa ND, Farquhar D, Palmer JN, Kennedy DW, Doghramji L, Morris SA, et al. TAS2R38 genotype predicts surgical outcome in nonpolypoid chronic rhinosinusitis. Int Forum Allergy Rhinol. 2016;6:25-33.
- 110. Bae JS, Pasaje CFA, Park BL, Cheong HS, Kim J-H, Uh S-T, et al. Genetic association analysis of CIITA variations with nasal polyp pathogenesis in asthmatic patients. Mol Med Rep. 2013;7:927-34.
- 111. Baldan A, Presti AR Lo, Belpinati F, Castellani C, Bettin MD, Xumerle L, et al. IFRD1 gene polymorphisms are associated with nasal polyposis in cystic fibrosis patients. Rhinology. 2015;53:359-64.
- 112. Cormier C, Bossé Y, Mfuna L, Hudson TJ, Desrosiers M. Polymorphisms in the tumour necrosis factor alpha-induced protein 3 (TNFAIP3) gene are associated with chronic rhinosinusitis. J Otolaryngol Head Neck Surg. 2009;38:133-41.

- Utolaryngol Head Neck Surg. 2010;39:188-95.
 - J Investig Allergol Clin Immunol 2021; Vol. 31(3): 196-211 doi: 10.18176/jiaci.0673

- 113. Fruth K, Best N, Amro M, Ingel K, Gosepath J, Mann WJ, et al. No evidence for a correlation of glutathione S-tranferase polymorphisms and chronic rhinosinusitis. Rhinology. 2011;49:180-4.
- 114. Fruth K, Goebel G, Koutsimpelas D, Gosepath J, Schmidtmann I, Mann WJ, et al. Low SPINK5 expression in chronic rhinosinusitis. Laryngoscope. 2012;122:1198-204.
- 115. Henmyr V, Lind-Halldén C, Halldén C, Säll T, Carlberg D, Bachert C, et al. Chronic Rhinosinusitis Patients Show Accumulation of Genetic Variants in PARS2. PLoS One. 2016;11:e0158202.
- 116. Kilty SJ, Desrosiers MY. Chronic sinusitis and α 1-antitrypsin deficiency: Potential role for protease in rhinosinusitis? J Otolaryngol Head Neck Surg. 2008;37:E179-82.
- 117. Kim S-H, Park H-S, Holloway JW, Shin H-D, Park C-S. Association between a TGF β 1 promoter polymorphism and rhinosinusitis in aspirin-intolerant asthmatic patients. Respir Med. 2007;101:490-5.
- 118. Kosugi EM, Camargo-Kosugi CM De, Weckx LLM, Guerreiroda-Silva IDC, Gregório LC. Interleukin-6 -174 G/C promoter polymorphism and nasal polyposis. Rhinology. 2009;47:400-4.
- 119. Luxenberger W, Posch U, Berghold A, Hofmann T, Lang-Loidolt D. HLA patterns in patients with nasal polyposis. Eur Arch Otorhinolaryngol. 2000;257:137-9.
- 120. Molga P, Fendler W, Borowiec M, Pietruszewska W. Impact of -160701G/2G MMP1 gene polymorphism on morbidity and clinical course in patients with chronic rhinosinusitis with nasal polyps. Otolaryngol Pol. 2016;70:23-32.
- 121. Nakayama T, Hirota T, Asaka D, Sakashita M, Ninomiya T, Morikawa T, et al. A genetic variant near TSLP is associated with chronic rhinosinusitis with nasal polyps and aspirinexacerbated respiratory disease in Japanese populations. Allergol Int. 2020;69:138-40.
- 122. Özdaş S, İzbirak A, Özdaş T, Özcan KM, Erbek SS, Köseoğlu S, et al. Single-Nucleotide Polymorphisms on the RYD5 Gene in Nasal Polyposis. DNA Cell Biol. 2015;34:633-42.
- 123. Palikhe S, Uuganbayar U, Trinh HKT, Ban G-Y, Yang E-M, Hae-Sim P, et al. A Role of the ABCC4 Gene Polymorphism in Airway Inflammation of Asthmatics. Mediators Inflamm. 2017;2017.
- 124. Pasaje CFA, Bae JS, Park B-L, Cheong HS, Kim J-H, Jang A-S, et al. DCBLD2 gene variations correlate with nasal polyposis in Korean asthma patients. Lung. 2012;190:199-207.
- 125. Pasaje CFA, Bae JS, Park BL, Cheong HS, Kim JH, Jang AS, et al. Possible role of EMID2 on nasal polyps pathogenesis in Korean asthma patients. BMC Med Genet. 2012;13:2.
- 126. Pascual M, Sanz C, Isidoro-García M, Dávila I, Moreno E, Laffond E, et al. (CCTTT)n polymorphism of NOS2A in nasal polyposis and asthma: a case-control study. J Investig Allergol Clin Immunol. 2008;18:239-44.
- 127. Sachse F, Becker K, Rudack C. Incidence of Staphylococcal Colonization and of the 753Q Toll-like Receptor 2 Variant in Nasal Polyposis. Am J Rhinol Allergy. 2010;24:e10-3.
- 128. Song Y, Yang E, Kim S, Jin HJ, Park H. Effect of Genetic Polymorphism of ALOX15 on Aspirin-Exacerbated Respiratory Disease. Int Arch Allergy Immunol. 2012;159:157-61.
- 129. Tournas A, Mfuna L, Bossé Y, Filali-Mouhim A, Grenier J-P, Desrosiers M. A pooling-based genome-wide association study implicates the p73 gene in chronic rhinosinusitis. J Otolaryngol Head Neck Surg. 2010;39:188-95.

- 130. Wang L-F, Chien C-Y, Kuo W-R, Tai C-F, Juo S-HH. Matrix Metalloproteinase-2 Gene Polymorphisms in Nasal Polyps. Arch Otolaryngol Head Neck Surg. 2008;134:852.
- 131. Wang L-F, Chien C-Y, Tai C-F, Kuo W-R, Hsi E, Juo S-HH. Matrix metalloproteinase-9gene polymorphisms in nasal polyposis. BMC Med Genet. 2010;11:85.
- 132. Wang L-F, Chien C-Y, Chiang F-Y, Chai C-Y, Tai C-F. Expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 in recurrent chronic rhinosinusitis with nasal polyposis. Kaohsiung J Med Sci. 2013;29:26-31.
- 133. Yazdani N, Amoli MM, Naraghi M, Mersaghian A, Firouzi F, Sayyahpour F, et al. Association between the functional polymorphism C-159T in the CD14 promoter gene and nasal polyposis: Potential role in asthma. J Investig Allergol Clin Immunol. 2012;22:406-11.
- 134. Zhang F, Xiong Z-G, Cao P-P, You X-J, Gao Q-X, Cui Y-H, et al. Lack of Association of Clara Cell 10-kDa Protein Gene Variant with Chronic Rhinosinusitis in a Chinese Han Population. Am J Rhinol. 2008;22:376-80.
- 135. Zhang Y, Endam LM, Filali-Mouhim A, Bossé Y, Castano R, Desrosiers M. Polymorphisms in the nitric oxide synthase 1 gene are associated with severe chronic rhinosinusitis. Am J Rhinol Allergy. 2011;25:e49-54.
- 136. Zhang Y, Wang C, Zhao Y, Zhang L. Some Polymorphisms in Epstein-Barr Virus-induced Gene 3 Modify the Risk for Chronic Rhinosinusitis. Am J Rhinol Allergy. 2013;27:91-7.
- 137. Zhang Y, Wang X, Zhang W, Han D, Zhang L, Bachert C. Polymorphisms in thymic stromal lymphopoietin gene demonstrate a gender and nasal polyposis-dependent association with chronic rhinosinusitis. Hum Immunol. 2013;74:241-8.
- 138. Zielinska-Blizniewska H, Sitarek P, Milonski J, Dziki L, Przybylowska K, Olszewski J, et al. Association of the –33C/G OSF-2 and the 140A/G LF gene polymorphisms with the risk of chronic rhinosinusitis with nasal polyps in a Polish population. Mol Biol Rep. 2012;39:5449-57.
- 139. Mfuna Endam L, Cormier C, Bossé Y, Desrosiers M. Genetic Variants in IL1A but not TNFA are Associated with Severe Chronic Rhinosinusitis: A Replication Study. J Allergy Clin Immunol. 2009;123.
- 140. Bardy JJ, Sarovich DS, Price EP, Steinig E, Tong S, Drilling A, et al. Staphylococcus aureus from patients with chronic rhinosinusitis show minimal genetic association between polyp and nonpolyp phenotypes. BMC Ear Nose Throat Disord. 2018;18.
- 141. Adappa ND, Truesdale CM, Workman AD, Doghramji L, Mansfield C, Kennedy DW, et al. Correlation of T2R38 taste phenotype and in vitro biofilm formation from nonpolypoid chronic rhinosinusitis patients. Int Forum Allergy Rhinol. 2016;6:783-91.

Manuscript received December 29, 2020; accepted for publication January 22, 2021.

Miguel Estravis

E-mail: estravis@usal.es

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY TABLE 1:

Reference	Study type	Populatio n/ Country	Objective	Sample Size	Source	Genes	SNP/Mutation	Results/conclusion
Adappa et al. 2016 [109]	CG	USA	To determine whether TAS2R38 genetics predicts outcomes in CRS patients following sinus surgery	82 CRSwNP 41 CRSsNP	NP, sinona sal tissue	TAS2R38	rs713598 (G/C; Ala/Pro)) rs1726866 (G/A; Val-Ala) rs10246939 (T/C; Ile-Val)	The genotype PAV/PAV was related to lower incidence of failing therapy and less frequent sinus surgeries
Ahmed et al. 2017 [33]	CG	Iraq	To clarify the role of <i>IL4</i> polymorphism in NP	22 healthy controls (HC) 36 NP	NP, inferio r turbin ate mucos a (ITM)	IL4	?	The polymorphism was found in NP patients but not in controls
Akygit et al. 2017 [53]	CG	Turkey	To identify genetic polymorphism of <i>SOD2</i> , <i>CAT</i> , <i>iNOS</i> enzymes in E- CRSwNP and NE- CRSwNP patients.	188 HC 65 E-CRSWNP 65 NE-CRSWNP	Blood	NOS2 SOD2 CAT	-277A/G 16C/T -21A/T	The GG genotype (NOS2) and TT genotype (CAT) distributions were different between E-CRSwNP and controls
Alromaih et al. 2013 [27]	pGWA S	Canada	To identify whether genetic factors associated with MHC1 deficiency are present in CRS	196 HC 154 CRSwNP 52 CRSsNP	Blood	CD8A TAPBP	rs3810831 rs2282851	The minor allele C in <i>CD8A</i> (OR 0.706; p=0.047) and heterozygous CT (OR 0.370; p=0.012) had a protective effect on the development of CRS. The minor allele T in <i>TAPBP</i> (OR 1.53; p=0.009) and heterozygous TT (OR 2.67; p=0.042) were associated with an increased risk for CRS.
Al-Shemari et al. 2008 [56]	CG	Canada	To evaluate the effects of SNPs on CRS in a panel of genes related to cysteinyl leukotriene metabolism	200 HC 179 CRSwNP 27 CRSsNP	Blood	ALOX5 AP	rs12430915 rs9506352 rs4769870 rs9579648 rs4076128 rs9579649 rs11616333 rs9315051 rs4769055 rs4420371 rs9578196 rs4466940 rs4293222 rs9578200 rs12429692 rs9285076 rs10162089 rs9670198 rs4254165 rs4319601 rs4356336 rs4769063 rs17612127 rs4238139	Three SNPs located within the ALOX5 (rs3780894), CYSLTR1 (rs321090) and ALOX5AP (rs17612127) genes reached the nominal p-value threshold (p < 0.05) for association with CRS. However, none of these SNPs resisted multiple testing adjustment.
							rs3780894 rs3780901 rs2279435 rs7099684 rs1565096 rs1487562 rs7919239 rs2291427 rs7393696 rs2115819 rs11239523 rs4948672 rs7089063	
						CYSLTR2	rs2406939 rs9595961 rs11617224 rs17072059 rs6420296 rs7330127 rs2407249 rs7335898 rs9568087 rs9285169 rs12184704	
						LTC4S	rs321090 rs321007 rs321006 rs730012	
							rs2291418 rs166624	
Bae et al. 2013 [110]	CG	Korea	I o investigate the association between <i>CIITA</i> and NP	All asthma patients: 158 CRSwNP 309 CRSsNP	Blood	CIITA	rs12932187 rs4781019 rs6498126 rs4781011 rs11074938 rs11074934 rs11074939 rs8043545 rs7404786 rs7201430 rs6498119 rs4781024 rs1139564 rs7189406 rs4774 rs6498124 rs4781016	I wo SNPs (rs12932187 and rs11074938) and 2 haplotypes (<i>CIITA</i> _BL1_ht2 and <i>CIITA</i> _BL1_ht5) were demonstrated to be associated with nasal polyps (P=0.001-0.01, OR=0.53-2.35 depending on the genetic model). After multiple testing correction only rs12932187 retained the association with nasal polyps (Pcorr=0.02).

Baldan et al. 2015 [111]	CG	Italy	To investigate the effect of 3 <i>IFRD1</i> SPNs on the development of NP in CF patients	CF patients: 40 with NP 103 without NP	Blood	IFRD1	rs6968084 (C>T) rs3807213 (A>C) rs7817 (C>T)	rs7817-CT showed 4-fold higher probability of NP than CC; the TT showed 7.3-fold increased probability. The CAT haplotype showed higher probability of NP (OR 2.63, p=0.004) compared to the CCC haplotype.
Batikhan et al. 2010 [47]	CG	Turkey	To investigate the possible association of <i>TNF</i> -308G/A with NP	95 HC 97 NP patients	Blood	TNF	rs1800629	The presence of the <i>TNF</i> -308 G/A SNP was an independent risk factor for development of NP (OR, 3.68; Cl, 1.27–10.7; p = 0.016)
Benito- Pescador et al. 2012 [57]	CG	Spain	To analyze polymorphisms in <i>LTC45</i> , <i>CYSLTR1</i> , <i>PTGDR</i> , and <i>NOS2</i> as representative genes of inflammation pathways in a population of patients with NP	245 HC 241 NP: 145 asthma 81 NSAID 75 aspirin triad	Blood	LTC4S CYSLTR1 PTGDR NOS2	rs730012 (-444A>C) 927 T>C -613 C>T -549 T>C -441 C>T -197 T>C CCTTT	The –444A>C <i>LTC4S</i> polymorphism was significantly associated with NP and atopy (P=.033) and with NP and atopic asthma, (P=.012). A significant association was found when the (CCTTT) repetition of the <i>NOS2A</i> gene was present more than 14 times in patients with NP and asthma (P=.034), in patients with P olyposis and intolerance to nonsteroidal anti-inflammatory drugs (P=.009), and in patients with the aspirin triad (P=.005). The <i>PTGDR</i> diplotype CCCT/CCCC (~513C, ~549CC, ~441CC and ~197TC) was more frequent in patients with NP (P=.043), NP with asthma (P=.013), and the aspirin triad (P=.041)
Berghea et al. 2014 [51]	CG	Romania	To investigate the association between <i>TNF</i> SNP with NP in Romanian patients with asthma	45 NP (38 NSAID+ 7 ATA) 61 without NP (8 NSAID+ 53 ATA)	Blood	TNF	rs1799724 (-857 C>T) rs1800629 (-308 G>A) rs361525 (-238 G>A)	There was an association of -857C>T with NP (p=0.01 ATA; p=0.05 NSAID). The allele T was more frequent in NP patients than in non-NP patients.
Bernstein et al. 2009 [30]	CG	USA	To investigate the role of 7 proinflammatory, 4 anti-inflammatory, one Toll receptor and 2 chemokine polymorphism in patients with massive NP	153 HC 179 NP	Buccal cells	TNF IL1A IL1B IL6 TGFB1 IL10 CD14 CCL5/ RANTES CCL2	rs1800629 rs3783521 rs17561 rs3087258 rs1143634 rs13447445 rs11466315 rs1800895 rs1800894 rs1800896 rs2569190 rs2107538 rs3917882	The frequency of the A allele in <i>TNF</i> is significantly higher in patients with NP versus controls (OR 1.86; 95% Cl, 1.4– 3.09)
Bohman et al. 2017 [21]	GWAS	Sweden	To identify genetic markers and genes associated with susceptibility to CRSwNP using a family- based GWAS	393 HC 427 CRSwNP	Blood	HLCS HLA-DRA BICD2 VSIR SLC5A1		Pathway analyses using top 1000 markers with the most significant association p- values resulted in 138 target genes. Comparisons with data from expression quantitative trait loci showed the most skewed allelic distributions in cases with CRSwNP compared with HC for the genes HLCS, HLA-DRA, BICD2, VSIR and SLC5A1
Bosse et al. 2009 [73]	GWAS	Canada	To perform pooling- based GWAS in two case-control cohorts, one of them consisting of patients with CRSwNP	189 HC 210 with severe CRS 157 CRSwNP 53 CRSsNP	Blood	LAMA2 PARS2 NAV3 LAMB1	rs2571584 rs2873551 rs1726427 rs4727695	600 SNPs from 445 genes that were potentially associated with CRS (P < 0.05). Each of these novel high-priority SNPs had allele frequency differences between cases and controls at a level worthy of additional investigation. The most significant SNP for each of the top 10 genes are shown in this table.

-		r	1	I		1	1		
							CACNA1I	rs3788568	
							KIAA1456	rs11779957	
							MUSK	rs10817091	
							TRIP12	rs10535833	
							AOAH	rs4504543	
							MSRA	rs7001821	
Bussu et al. 2007 [69]		CG	Italy	To evaluate the potential involvement of ADRB2 A16G polymorphism in sinonasal polyposis	47 HC 56 NP	Blood	ADRB2	rs1042713 (g.5285A>G)	The presence of Arg (A allele) is significantly higher in NP patients than in controls (p=0.0386)
Buysschaert		GWAS	Belgium	To investigate whether	415 HC	Blood	IL1RL1	rs1420101	Rs3939286 was significantly associated
et al. 2010 [41]				certain SNPs predispose to NP	273 NP		IKZF2	rs12619285	with NP (OR 1.60; 95% CI 1.16-2.22; p=0.0041). The A-allele conferred a risk for NP (OR 1.53; 95% CI 1.21-1.96;
							GATA2	rs4431128	p=0.0041).
							IL5	rs4143832	Rs1420101 may increase risk when in combination with rs3939286
							SH2B3	rs3184504	
							WDR36	rs2416257	
							мнс	rs2269426	
							МҮВ	rs9494145	
							GFRA2	rs748065	
							IL33	rs3939286	
Cantone et al. 2018 [61]		CG	Italy	To investigate the relevance of TAS2R38	100 CRSwNP	Saliva, blood	TAS2R38	rs713598 (C145G; Pro>Ala)	The nonfunctional genotype (AVI) is more frequent among CRS patients than in the
				genetic variants in the susceptibility to				rs1726866 (C785T; Ala>Val)	general population (25% vs. 18.4%, P=0.034). No relationship with severity
				bacterial infections				rs10246939 (G886A;Val>IIe)	was found.
Castano et al. 2009 [36]		CG	Canada	To investigate whether whether certain	187 HC	Blood	IL1RL1	rs974389 rs10204137 rs985523 rs10208293	Statistically significant allelic associations with CRS were noted for 5 SNPs
				polymorphisms in the	154 CRSwNP			rs1041973 rs12105808	(rs10204137, p=0.04; rs10208293, p=0.03;
				IL1RL1 gene are differentially present in	52 CRSsNP			rs1420103 rs12712142	rs13431828, p=0.008; rs2160203, p=0.03,
				patients with surgery- unresponsive CRS and in				rs1921622 rs12996097 rs2160203 rs13431828	and rs4988957, p=0.03).
				control subjects				ro2771177 ro17606274	But only one SNP significantly associated with CRSwNP (rs13431828, n=0,008)
								rs4988957	with crown (1919491020, p=0.000)
Castano et		CG	Canada	To assess the	196 HC	Blood	MET	rs38840 rs2237711 rs1024658	The genotype distribution of two SNPs in
al. 2010 [71]				association of polymorphisms in the	154 CRSwNP			rs10271561 rs10243024	the <i>MET</i> gene
				MET gene with CRS in a Canadian population	52 CRSsNP			rs40239 rs714180 rs38855	(rs388840, rs38850) displayed a significantly different genotypic
								rs38841 rs38857	distribution (p≤ 0.05) between CRS
								rs39747	patients and controls. The most significant association in the MET gene
								rs38845 rs38846 rs2200440 rs1752600	was found with SNP rs38850 (p=0.004).
								rs7798983 rs2402118	
								rs38849	
								rs722134 rs38850 rc1621	
								131021	
Chang at al		66	Taiwan	To assess the	103 HC	Blood	II 1P	1542530	There were significant differences in the
2006 [34]			i aiw/d[]	association of <i>IL1B</i> and	88 CPC	воод	ILID	+3953C5T	distribution
				polymorphisms with CRS	61 CRSwNP		IL1RN	Variable number tandem repeat of	of the IL1RN polymorphism between the control
					27 CRSsNP			an 86–base pair segment in intron 2	subjects and patients with CRS (P=.05).
									of <i>IL1RN</i> occurred more frequently in the
									CRS patient

								group (OR 3.3; 95% CI, 1.25-9.18, P=0.01).
Cormier et al. 2009 [112]	CG	Canada	To determine whether SNP in <i>TNF, TNFAIP3</i> , and <i>TNFAIP6</i> genes were associated with CRS	196 HC 206 CRS 154 CRSwNP	Blood	TNF TNFAIP3 TNFAIP6	rs2229094 rs3093672 rs1121800 rs769177 rs1321136r rs77669888 s1800750 rs9267502 rs2256965 rs9469027 rs2256974 rs1800629 rs2857706 rs361525 rs3093561 rs4987027 rs5029935 rs5029938 rs5029939 rs661561 rs610604 rs50 29965 rs6433371 rs16830015 rs670782 rs10183099 rs2342910 rs3771891	Two polymorphisms in <i>TNFAIP3</i> (rs3757173 and rs5029938) are weakly associated with severe CR5 but no association was found with genetic variants in TNF or <i>TNFAIP6</i> . None was associated to risk of NP.
Dar et al. 2018 [65]	CG	India	To assess the risk of CR5wNP conferred by SNPs in <i>FccR1α</i> gene in a North Indian cohort	50 HC 100 CRSwNP	Blood	FCER1A	rs10432475 rs2427827 rs2251746 rs2298804 rs2298805 rs2269718	In those cases with high serum IgE, the T allele of rs2427827 is significantly more frequent in CRSwNP patients (OR 2.24; p=0.02)
De Alarcon et al. 2016 [58]	CG	USA	To evaluate the association of <i>LTC4S and</i> <i>PAI-1</i> variants with CRS	66 HC 16 CRSsNP 117 CRSwNP	Blood, polyp fibrobl asts	LTC4S SERPINE1 (PAI1)	rs730012 (-444A>C) rs1799762 (4G/5G ins.)	The C allele of <i>LTC4S</i> was more frequent in those NP patients also diagnosed with chronic hyperplastic eosinophilic sinusitis (p<0.04)
Ekinci et al. 2011 [70]	CG	Turkey	To examine whether there is an association of eotaxin-1 (<i>CCL11</i>) gene polymorphisms with NP	93 HC 85 NP	Blood	CCL11	rs1490392522 (-384A>G) rs762429865 (67 G>A)	The selected SNPs are more frequent in NP patients than in HC (p=0.044 and p=0.019, respectively). However, their relation was statistically poor (association coefficient =0.18).
Erbek et al. 2007 [35]	CG	Turkey	To investigate the association between NP and SMPs of the proinflammatory cytokines <i>IL1A</i> , <i>IL1B</i> , <i>TNFα</i> .	106 HC 82 NP	Blood	IL1A IL1B TNF	4845G>T -511C>T rs361525 (-238 G>A) rs 1800629 (-308G>A)	The 4845GTand 4845TTgenotypes of the <i>IL1A</i> gene were associated with NP (P<.05). The frequency of the <i>IL1B</i> –511 CC and CT were significantly higher in patients with NP than in controls (P=.01). There was a significantly high risk of susceptibility to NP in patients with the -308 GA genotype (P=.001).
Esmaeilzade h et al. 2015 [19]	CG	Iran	To investigate the association of <i>HLA-DRB</i> and - <i>DQ</i> genetic variabilities in patients with AERD	100 HC 50 CRSwNP + asthma	Blood	HLA- DRB1	HLA-DRB1*0101 HLA-DRB1*15 HLA-DRB1*16 HLA-DRB1*0301 HLA-DRB1*04 HLA-DRB1*07 HLA-DRB1*08 HLA-DRB1*0901 HLA-DRB1*1001 HLA-DRB1*110 HLA-DRB1*110 HLA-DRB1*1301 HLA-DRB1*1302	Two variations are associated with increased risk of NP: <i>HLA-DRB4</i> , OR 2.34, CI 1.37–4.00, p>0.01 <i>HLA-DQB1*0302</i> , OR 4.56, CI 2.10–9.91, p<0.01 Two variations are associated with reduced risk of NP: <i>HLA-DRB3</i> , OR 0.41, CI 0.24–0.68, p<0.01 <i>HLA-DQB1*0301</i> , OR 0.39, CI 0.21–0.73, p<0.01

-									[
								HLA-DRB1 1305	
								HLA-DRB1*14	
							HLA- DRB3	HLA-DRB3	
							HLA-	HLA-DRB4	
							DRB4		
							HLA- DRB5	HLA-DRB5	
							0.000	ULA DOA180101	
							HLA- DQA1	HLA-DQA1*0101	
								HLA-DQA1*0102	
								HLA-DQA1*0103	
								HLA-DQA1*0104	
								HLA-DQA1*0201	
								HLA-DQA1*0301	
								HLA-DQA1*0401	
								HLA-DQA1*0501	
							HLA-	HLA-DQB1*0201	
							DQB1	HLA-DQB1*0301	
								HLA-DQB1*0302	
								HLA-DOB1*0303	
								HLA-DOB1*0305	
								HLA-DOB1*0401	
								HIA-DOB1*0501	
								HLA-DOB1*0601	
								HLA DOB1*0602	
								HLA-DQB1 0002	
					-			HLA-DQB1*0604	
Fajardo- Dolci et al.		CG	Mexico	contribution of the	151 HC	Blood	HLA- DQA1	HLA-DQA1*0101/4	Ine allele <i>HLA-DQA1*0201</i> was found to be involved in susceptibility to develop
2006 [20]				human major histocompatibility	31 NP			HLA-DQA1*0102	simple NP, without asthma, aspirin intolerance, or any other allergic
				complex HLA-DQA1, – DQB1, and TNF α genes				HLA-DQA1*0103	diseases. OR 6.79 CI (1.9-23.9)
				with simple nasal polyposis.				HLA-DQA1*0201	13% etiological fraction was found for the haplotype HLA-DQA1*0201-DQB1*0201
								HLA-DQA1*030101	(P=0.016).
								HLA-DQA1*0401	
								HLA-DQA1*0501	
	-						HLA-	HLA-DQB1*0201	
							DQBI	HLA-DQB1*0301	
								HLA-DQB1*0302	
								HLA-DQB1*0402	
								HLA-DQB1*0501	
								HLA-DQB1*0502	
								HLA-DOB1*0503	
								HIA-DOB1*0504	
								HLA-DQB1*0601	

					r	1	HLA-DOB1*0602	
							HLA-DOR1*0603	
							TEA-DODI 0003	
						TNF	rs1800629 (-308 G>A)	
							rs361525 (-238 G>A)	
Fruth et al. 2011 [113]	CG	Germany	To analyze the potential association of GST	52 HC	NP, ITM	GST	GST-T1	No correlation
			polymorphisms and CRS.	118 CRS			GST-M1	
				69 CRSwNP			GST-P1	
				49 CRSsNP				
Fruth et al	60	Germany	To shed light on the	30 HC	NP	SPINK5	rs17775319 (G1258A)	No correlation
2012 [114]		Germany	significance of SPINK5	50 000000	ITM	51 1110	C2475T	
			inflammatory diseases	59 CRSWINP			624751	
			of the upper respiratory tract.	15 CRSsNP			rs1243172589 (A2915G)	
							rs745601984 (A1103G)	
Gallo et al.	CG	Italy	To confirm the	39 HC	Blood	TAS2R38	rs713598 (G/C; Ala/Pro))	No differences found in genotypic
2010 [02]			between TAS2R38	36 CRSwNP			rs1726866 (G/A; Val-Ala)	distribution
			genotype, CRS, and related comorbidities.	17 CRSsNP			rs10246939 (T/C; Ile-Val)	
Henmyr et	GWAS	Turkey.	To investigate the	1588 HC from	Blood.	II.1A	rs17561	Some SNPs are associated with increased
al. 2014 [37]	0	Finland,	reproducibility of	Illumina data	databa	,		risk of NP:
		Korea, USA,	associations with	base	se			IL1A rs17561
		Belgium	CRSSNP and CRSWNP.	613 Belgian patients:		IL1B	rs16944	RYBP rs4532099
				275 CRSwNP		RYBP	rs4532099	TNF rs1800629
				338 CRScND		DCBLD2	rs828618	// 22 **202028C
	-			556 CH55INF		TNFA	rs1800629	1633 153339280
							rs361525	<i>IL10</i> rs1800870
	-					10111		CACNG6 rs192808
						AUAH	rs4504543	MMP9 rs3918242
						IL33	rs3939286	
						IRAK4	rs4251431	Some SNPs are associated with reduced
	-					IL10	rs1800870	risk of NP
						CACNG6	rs192808	<i>IL1B</i> rs16944
						MMP9	rs3918242	DCBLD2 rs828618
							rc17577	AOAH rs4504543
							121/2//	IRAK4 rs4251431
Henmvr et	CG	Sweden.	To screen for rare	372 HC	Blood	PARS2	rs143717155 rs116816976	A significant surplus of variation was
al. 2016		1000Genom	variants in PARS2 and to	120 CDCurbID			rs35201073 rs12023572	observed in the CRS patients (p=0.048).
[113]		con oject	accumulation of such	120 CK2WNP			rs370234936 rs61768813	Haplotype analysis of the region showed
			variants in CKS patients.	172 CRSsNP			rs2270004 rs145005088 rs563439229	a significant excess of rare haplotypes in the CRS patients compared to HC in the
							rs1180946 rs1180945 rs11577368 rs116416055	following SNPs:
							rs145866387	rs2873551, rs2270004, rs11577368, rs1180946, rs1180945
							rs74617964 rs1180947	TTAGC n=0.0049
								11CCC p=0.0048
								TCAGT p=0.0016
Hytönen et	CG	Finland	To investigate if the frequency of the most	135 CRS	Blood	CFTR	ΔF508	No abnormal distribution was observed in CER patients
ai. 2001 [07]			common CFTR					Ciri patienta
			mutations was more			1		

			common among CRS patients with or without NP.	91 CRSsNP 46 CRSwNP			394delTT	
Ismi et al. 2017 [50]	CG	Turkey	To determine the genetic susceptibility of NP formation to TNF	91 HC 71 CRSwNP	Blood	TNF	-308G>A	There was a statistically significant increase in the expression of the <i>TNF</i> -308 GG and <i>IL1B</i> -511 CC genotypes in the
			and IL1B polymorphisms			IL1B	-511T>C	patients with NP
Karjalainen et al. 2003	CG	Finland	To establish whether IL1A and IL1B have an	35 CRSwNP	Blood	IL1A	4845G>T	The risk of NP was markedly increased in IL1A allele G homozygous subjects (OR
[38]			effect on susceptibility to NP.	210 CRSsNP		IL1B	-511C>T	2.73; 95%CI 1.40–5.32, p=0.005). In the case of <i>IL1B</i> no significant associations were found.
Keles et al.	CG	Turkey	To evaluate whether	100 HC	Blood	HLA-A	HLA-A *01	HLA-B*07 and -Cw*12 alleles were
2008 [22]			there is a relationship between HLA-A, -B, -Cw, and -DRB1 alleles and	66 NP			HLA-A *02	than in the control group.
			developing NP.				HLA-A *03 HLA-A *11	HLA-B*57 and -Cw*04 alleles were significantly lower in the NP patients than in the control group.
							HLA-A *24	In the NP patients with ASA, there was a
							HLA-A *26	HLA-A*24, -Cw*01, -Cw*12, and - DRB1*04 alleles.
							HLA-A *33	HLA-A*33 and -Cw*12 alleles in NP
						HLA-B	HLA-B *07	patients who had polypectomy history were significantly higher than in the control group
							HLA-B *15	In NP patients, a significantly decreased
							HLA-B *35	frequency of the HLACw*
							HLA-B *51	04 and -DRB1*11 alleles was shown.
							HLA-B *57	
						HLA-Cw	HLA-Cw *01	-
							HLA-Cw *02	
							HLA-Cw *03	
							HLA-Cw *04	
							HLA-Cw *06	
							HLA-Cw *07	
							HLA-Cw *08	
							HLA-Cw *12	-
						HLA- DRB1	HLA-DRB1*01	
							HLA-DRB1*04	
							HLA-DRB1*07	
							HLA-DRB1*11	
							HLA-DRB1*14	
Kilty et al. 2010 [116]	CG	Canada	To investigate the association between	196 HC	Blood	SERPINA1	rs11558262 rs1956707 rs11832	Two SNPs (rs1243168 and rs4900229) were associated with the disease.
			SNPs in the SERPINA1 gene and CRS	154 CRSwNP			rs2071274 rs1243160	rs1243168 T allele was significantly
				27 CRSsNP			rs1243163 rs2230075	associated with severity (p<0.01)
							rs1243166 rs2239651 rs1243167	
							rs1243168 rs1243169 rs2753934	
							rs1243171 rs3748316 rs12884390	
							rs4900229 rs1303 rs17287271 rs4900230	
							rs17580	

							rs17751614	rs4905198	
							rs17751769 rs17824797	rs6575424	
								rs6647	
								rs709932	
								rs7151526	
								rs8010121	
								rs877081	
Kim et al.	CG	Korea	To evaluate the	456 HC	Blood	TGFB1	rs13447445		No association with NP
2007 [117]			association of TGFB1 polymorphisms with an	206 AERD					
			AERD phenotype in the Korean population	72 NP					
				324 ATA					
				10 NP					
Kim at al		Karaa	To evoluete esseciations	192.110	Disad	404	m11086033		No association with ND was described
2009 [64]	6	Korea	between genetic	136 AERD	ыооч	ADA	1511080932		Cignificant differences between normal
			adenosine deaminase and adenosine	130 AERD		400841	15244076		and patients with
			receptors with the AERD phenotype	47 NF 181 ATA		ADURAI	rs6664108		AERD in the ADORA1 SNP genotype frequencies for rs16851030 (P=0.001) and
				10 NP			rs6427994		rs6664108 (P=0.013).
							rs16851030		
							rs12744240		
						ADORA2A	rs5996696		
							rs5751876		
						ADORA3	rs2298191		
							rs10776727		
							rs1544224		
							rs2229155		
Kim et al. 2012 [23]	CG	Korea	To investigate the associations of HLA-DRA	158 CRSwNP	Blood	HLA-DRA	rs9268628 A>0	C	4 SNPs were significantly associated with NP
()			polymorphisms with NP in asthmatic and AERD	309 CRSsNP			rs3129871 C>/	Ą	Rs9268644 p=0.009
			patients.				rs9268633 G>	4	Rc3129878 n=0 033
							rs9405035 G>/	Ą	D-2120881 p=0.012
							rs14004 C>A		RS3129881 p=0.013
							rs9268644 C>/	4	Rs2239805 p=0.029
							rs9268645 G>	с	And the haplotype (rs3129871; rs8084; rs2239805; rs2239804; rs7192;
							rs3129878 A>0	C	rs4935354; rs7194; rs1051336; rs1041885) TAAATGGA (p=0.029)
							rs3135392 G>	г	
							rs6926374 G>/	A	
							rs3129881 C>	г	
							rs17496549 C	۶T	
							rs6911777 T>0	2	
							rs3129886 C \1	-	
							rs8084 (>A		
							rs222080E A	~	
							132237003 A>	~	
							152239804 G>	•	
	1		1				rs/192 G>T		
							rs4935354 A>(3	

							rs1051336 G>A	
							rs1041885 A>T	
Kostuch et al. 2005 [66]	CG	Poland	To determine the prevalence of the most common CFTR mutations in patients with NP without suspicion of CF.	70 human placentas 44 NP	Blood, placen ta	CFTR	ΔF508 G551D G542X N1303K	ΔF508 is more frequent in patients than in HC (p=0.0032) and in the general Polish population as well (P =0.0059).
							1717-1G>A W1282X R553X ΔΙ507	
Kosugi et al. 2013 [118]	CG	Brazil	To analyze the relationship between an IL6 polymorphism and asthmatic NP patients.	81 HC 45 asthmatic with NP 63 non asthmatic NP 45 asthmatic without NP	Blood	IL6	rs374295772 (-174G>C)	Genotype distribution was non- significant, but GG genotype appeared more frequently in all inflammatory groups.
Kristjansson et al. 2019 [55]	GWAS	Iceland, UK	To search for sequence variants affecting the risk of NP or CRS	Iceland 353939 HC	Databa se	HLA- DQA1	rs1391371	The mentioned variants at ten loci were found that associate with NP at genome- wide significance.
				3188 cases		IL33	rs1888909	The variant with the largest effects on the
				UK		TSLP	rs1837253	risk of NP is a low-frequency missense variant rs34210653[A] (Thr560Met) in
				406147 HC		ALOX15	rs34210653	ALOX15 that confers a 68% reduction in NP risk (p= 8.0x10 ⁻²⁷
				2420 cases		10p14	rs1444782	OR 0.32, 95% CI 0.26, 0.39).
				2420 00303		FOXP1	rs17718444	
						CYP2S1	rs338598	
						IL18R1	rs6543124	
						SI C22A4	rs1050152	
						MYRF	rs174535	
Kuran et al.	CG	Turkey	To analyze possible	98 HC	Blood	IL1RN	rs2234663	Distribution of genotypes of IL1RN and
2015 [55]			increase susceptibility	78 NP		IL4	rs8179190	(p=0.0001)
			to Nr.			IL2	rs206976	
Luxenberger et al. 2000	CG	Austria	To determine the association of HLA-A, -B,	1070 HC	Blood	HLA-A		A significant association was seen with HLA-A74
[119]			-DR, and –DQ with NP	89 NP		HLA-B		and nasal polynosis
						HLA-DR		
						HLA-DQ		
Mfuna Endam et al. 2009 [29]	CG	Canada	To explore association between SMPs in IL22RA1 and severe CRS	196 HC 206 CRS 154 CRSwNP 52 CRSsNP	Blood	IL22RA1	rs10465895 rs2502450 rs10751768 rs3795300 rs10794665 rs10903031 rs3936073 rs11249201 rs4292900 rs11577442 rs4648936 rs11578307 rs11578657 rs4648942 rs12070496 rs4660187	Three SNPs (rs4292900 Pnom =0.0006, OR 1.757; rs4648936 Pnom=0.0011, OR 1.716; rs16829225 Pnom=0.0014, OR 1.977) show significant differences in allelic frequencies between cases and controls
Mfuna Endam et al. 2010 [28]	CG	Canada	To replicate the CRS associations recorded	196 HC	Blood	ILIA	rs12092673 rs6424157 rs12408946 rs16829225 rs7418238 rs7513249 rs17561 rs1800587 rs783521	For rs17561, this study replicated previous results about the association of the TT homozygote genotype (OR, 3.39;
			for IL1A, IL1B, and TNF				rs2048874	P=.007). The protective effect of

				in a cohort of Canadian	206 CRS			rs2856838	rs6722023	rs2856838 (OR, 0.38; P=.002) and the risk
				patients with severe CRS.	154 CRSwNP		IL1B	rs16944		effect of rs1800587 (OR=3.16, P=.008) are enhanced with the homozygote form of the minor allele
					52 CRSsNP		TNF	rs1121800	rs3093561	
								rs13211368	rs3093672	with SNPs in IL1B or TNF.
								rs1800629 rs1800750	rs361525	
								rs2229094	rs4987027	
								rs2256965	rs769177	
								rs2256974 rs2857706	rs7766988	
									rs9267502	
									rs9469027	
Mfuna		GWAS	Canada	To identify taste	GCRS1	Blood	TAS2R1	rs17788846	rs6874254	57 SNPs in TAS2Rs and 16 SNPs in TAS1Rs
Endam et al. 2014 [59]				receptor associated with CRS and verify	196 HC			rs41483	rs882142	had allele frequency differences above 10% between controls and patients
				whether known SNP replicated in their CRS	206 CRS			rs12374524 rs6555620	rs4272105 rs11739710	(range, 10.2% to 32.4%).
				cohort				rs10746553	rs3110986	Three coding SNPs associated with CRS were identified: 1 in the TAS2R13 gene
					GCR52			rs1015855	rs3094363	(rs1015443, biallelic differences of 13.8% in GCRS1), and 2 others in the TAS2R49
					190 HC		TA\$2810	rs669503		gene (rs12226920, biallelic difference of 16.0% in GCRS1; and rs12226919, biallelic
					408 CRSwNP			rs10845219		difference of 11.9% in GCRS1)
							TAS2012	rc101E442		
							1432113	151015442		
								151015445		
							TAS2R14	rs3851586		
								rs1013311		
								rs3741843		
							TAS2R3	rs765007		
								rs6962760		
							TAS2R38	rs4726481		
								rs10246939		
								rs1726866		
							TAS2R39	rs11979433		
							TAS2R4	rs2234002		
								rs2190245		
							TAS2R41	rs2966709 rs2966715	rs12536735	
								rs2949746	rs1806578	
								rs2949770	rs2966701	
									rs2966699	
							TAS2R43	rs2966699	rs2708333 rs2597975	
								rc2708264	rc7313682	
								rs2599396	rs2597974	
							TAS2R44	rs4763616		
								rs2010481		
							TAS2R46	rs2708389		
								rs11533164		
								rs2708377		
								rs2255418		
							TAS2R48	rs10772420		
1	1	1	1	1	1	1	1	1		1

						TAS2R49	rs1463237 rs10772408 rs4298989 rs12226920	
							rs12581501 rs12226919 rs11054150	
						TAS2R5	rs35010424	
							rs11769672	
							rs11773137	
							rs1859646	
						TAS2R50	rs2900554	
							rs6488331	
						TAS2R7	rs7313019	
						TAS1R1	rs11122100	
							rs12080675	
						TAS1R2	rs28410948 rs6686865 rs7417542	
							rs9662598 rs7411042	
							rs4920566 rs6685177 rs1	2137730
							rs6603912 rs6684577 rs12063142	
							rs3935570 rs12042960 rs7418296	
Molga et al. 2016 [120]	CG	Poland	To assess genetic predisposition of	463 HC	Blood	MMP1	rs199750 (-1607 G/GG)	The frequency of genotypes was not significant related to CRSwNP. but GG is
()			MMP1 -1607 G/GG	206 CRSwNP				relates to increases number of surgeries (p=0.002) and bronchial asthma (p=0.021)
			polymorphism to CRSwNP					
Molnar- Gabor et al.	CG	Hungary	To investigate whether there is an association	50 HC	Blood	HLA-DR5		The odds ratios for developing nasal polyposis increased in people carrying the
2000 [24]			Detween HLA-DRB1, - DQA1, and DQB1 alleles	50 CRSwNP		HLA-DR7		DR7 (OR 2.55) allele with the linked DQA1*0201 (OR 2.52) and DQB1*0202
			and developing w			HLA- DQA1	HLA-DQA1*0101	DR5 (OR 0.66) linked with DQA1*05012 (OR 0.69) DOB1*0301 (OR 0.57) alleles
							HLA-DQA1*0102	showed a decreased odds
							HLA-DQA1*0103	ratio value.
							HLA-DQA1*0104	
							HLA-DQA1 0201	
							HIA-DOA1*05011	
							HLA-DQA1*05012	
						HLA-	1-10	
						DRB1		
						HLA- DQB1	HLA-DQB1*0201	
							HLA-DQB1*0202	
							HLA-DQB1*0302	
							HLA-DQB1*0301	
							HLA-DUB1*0303	
							HLA-DOB1*0502	
							HIA-DOB1*0601	
							HIA-DOB1*0602	
							HIA-DOB1*0603	
							HLA-DUDI 0003	

							HLA-DQB1*0604	
Mrowicka et	CG	Poland	To investigate the	200 HC	Blood	IL1B	rs55778004 (-511C>T)	The TT genotype for C-511T mutation
al. 2014 [32]			relationship between IL1B	208 CRSwNP				associated with
			and II 4 promoter				5000 T	the risk of developing NP in a Polish
			polymorphisms			11.4	-590C>1	population
Nakayama	GWAS	Japan	To perform an	1908 HC	Blood	TSLP	rs1751303 rs3806933	Significant association between CRSwNP
et al. 2020 [121]			association study of CRSwNP and AERD with	499 CRSwNP			rs10056340 rs1898671	and rs1837253, rs3806932 and rs3806933, with the most significant
			genetic variants in the TSLP locus				rs1837253 rs2416257	association being observed at rs1837253 (p= 1.27x10 ⁻⁶ ; OR, 1.60; 95% CI, 1.32-
							*******	1.94)
							153800932 151438073	
Ozdas et al. 2015 [122]	CG	Turkey	To analyze SNPs of the RYD5 gene and to	238 HC	Blood	RYD5	rs113795008 rs7951297	Four SNPs (rs113795008, rs2280540, rs2294083, and rs2294082)
			determine the effect on polyp formation	196 NP			rs535294582 rs2294083	were significantly associated with NP. The
							rs2280540 rs2294082	individuals with combined genotypes of six risk alleles (rs113795008 rs2280540
							rs144999256 rs61997072	rs7951297, rs2294083, and rs2294082)
							rs148962288	compared with the ones with one or four
								risk alleles.
Palikhe et al. 2017 [123]	CG	Korea	To investigate the potential associations	120HC	Blood	ABCC4	rs868853 (A>G)	No significant association
			between ABCC4 gene polymorphisms and	270 asthma			rs839951 (C>G)	
			asthma genotype.	106 NP				
Park et al.	CG	Korea	To evaluate expression	70 HC	Blood	IL4	-590 C>T	A T>C exchange at -590 position was
2006 [43]			of cyclooxygenase (COX)-2 and 5-	61 NP				correlated with NP. The T allele was significantly more frequent in NP
			lipoxygenase (5-LO) associated with IL4					(p=0.028).
			promoter polymorphism -590 in NP tissues					
Pasaio et al	66	Koroa	To ovploro the	200 HC	Databa	DCRLD2	rc2420224 rc929619	Six SNDs were associated with the
2012a [124]	69	Kolea	association of DCBLD2	509 HC	se	DCBLDZ	152455224 15626016	presence of NP:
			of NP in asthma patients	158 NP+asthma			rs1371687 rs828616	rs1371687, rs7615856, rs828621,
							rs9838238 rs16840208	rs828618, rs828616, and rs8833. After multiple testing adjustment, only
							rs17278047 rs17270986	rs828621 remained significant (p=0.006)
							rs7615856 rs1062196	
							rs828621 rs8833	
Pasaje et al.	CG	Korea	To investigate the	309 asthma no	Databa	EMID	rs6945102 rs1476652	Ten EMID2 SNPs (rs6945102, rs4729697,
2012b [125]			association between EMID and NP	NP	se		rs4729697 rs6973489	rs221, rs10435333, rs6947185, rs4727494, rs13233066, rs1008064,
				158 asthma+NP			rc10227610 rc7902156	rs1543883, and rs13245946) were associated with the presence of pasal
							1510257010 157802150	polyps (p= 0.004- 0.05, OR 0.61-1.32)
							rs9986717 rs10953342	depending on the genetic model.
							rs10254516 rs12668018	rs6945102, rs4729697, rs221, and rs10435333, were found to be
							rs10239458 rs1008064	significantly associated with NP in the overall Korean asthma patients even after
							rs221 rs13232646	multiple testing corrections
							rs10435333 rs1543883	
							rs6944691 rs1859625	
							rs6942770 rs6947089	
							rs9640666 rs9969331	
							150947185 IS12538381	
							rs11770876 rs17135512	
							rs11772022 rs1558015	
							rs11772003 rs10250055	
							rs10223928 rs6947735	
							rs4729705 rs2158739	
							rs10254310 rs10279545	
	1				1			

							rs4045	rs6945961	
							rc60/0700	rc13245946	
							rs4727491	rs17470799	
							rs13238748	rs10237510	
							rs4727494	rs17135617	
							m12222066	rc17125621	
							1513233000	1517155621	
							rs869127		
Pascual et al. 2008	CG	Spain	To analyze the (CCTTT)n polymorphism of NOS2	98 HC	Blood	NOS2	(CCTTT)n		Allele frequency distribution is significantly different between HC and NP
[126]			and/or asthma	46 NP					associated with increased risk of NP (OR
				150 asthma					14.39, 93% CI, 3.02 - 68.60, P = .001)
Pavon- Romero et	SNP array	Mexico	To evaluate whether contribution to	179 HC	Blood	ACE	rs4309†		In AERD vs. HC, we identified 22 associated SNPs, with 11 SNPs
al. 2018 [54]			reported in other	120 AERD			rs4293†		associated with risk in 7 genes (ACE,
			associated with AERD in Mexican nations	179 asthma		MS4A2	rs576790†		ANX4; denoted as t in the adjacent
			inexical patients				rs502581†		associated: ACE rs4309 (C allele p = 0.0001 OR = 1.92 CL 95% = $1.37-2.69$)
						FSIP2	rs2631700†		and MS4A2 rs573790 (C allele p = 0.0002, OR = 1.94 CL95% = 1.35–2.79)
							rs2631702†		By contrast 11 SNPs in 5 genes (PPARG
						KIFC3	rs2285700†		IL10, RG7SBP, TBXAS1, and FANCC) were associated with protection.
						ANX4	rs7588022†		·····
						FCER1G	rs4489574†		
							rs7528588		
						IL10	rs1800896†		
							rs3024498†		
							rs1554286		
							rs1800872		
						PPARG	rs2960421		
							rs4135275		
							rs1875796		
						RGS7BP	rs6870654		
						TBXAS1	rs13239058		
							rs10487667		
							rs6962291		
						FANCC	rs1326188		
Purnell et al. 2019 [63]	CG	USA	To determine the frequency of 6 SNPs in	1000 Genomes database	Buccal cells	TAS2R38	rs713598		No differences between CRSwNP and CRSsNP
[00]			genes with bitter taste signaling function.	74 CRS		GNB3	rs5443		
			-9	41 CRSwNP		TAS2R19	rs10772420		
				33 CRSsNP		TAS2R20	rs12226920		
						RGS21	rs7528947		
							rs1175152		
Ramirez-	CG	Mexico	To determine the	99 HC	Blood	HLA-	HLA-DRB1*02		Significant increase in the *03 and *04
al. 2006 [25]			association of HLA-DRB1 alleles with NP in the Mexican Mastiza	34 NP		DKB1	HLA-DRB1*03		(UK 2.2, p=0.009) allele trequencies.
			population.				HLA-DRB1*04		Significant decrease in the *08 allele (OR 0.2, p=0.01)
							HLA-DRB1*05		
							HLA-DRB1*07		
							HLA-DRB1*08		

Sachse et al. 2010 [127]	CG	Germany	To detect staphylococcal colonization in nasal	51 HC 68 NP	NP, ITM	TLR2	rs5743708	The minor allele A is not associated with NP
Sitarek et al. 2012 [52]	CG	Poland	To investigate the	200 HC	Blood	COX2	rs20417	Increased risk (p>0.001) of CRSwNP
2012 [52]			and MET gene polymorphisms with the risk of CRSwNP.	195 NP		MET	rs78116323	6.05) and G allele of MET (OR 5.52) The combined genotype GC/GG had
								increased risk (OR 4.07, p<0.001)
Song et al. 2012 [128]	CG	Korea	To investigate the genetic contribution of ALO15 to the development of AERD.	195 HC 171 AERD (49 NP)	Blood	ALOX15	rs34104097 rs7220870 rs2664592	The patients carrying haplotype 1 (GCG) of Rs34104097, Rs7220870, and Rs2664592 showed a significantly higher total eosinophil count compared to the other haplotypes (p = 0.008) in the AERD
				229 ATA (9 NP)		74/5	4000520	group
2013 [49]		nungary	TNFa -308G>A SMP has a role in the genetic predisposition to CRS in a Hungarian population.	326 CRSwNP 49 CRSsNP	cells	INF	12190053	A allele-containing genotypes among the AIA CRSwNP patients
Szabo et al.	CG	Hungary	To examine whether the	169 HC	Buccal	TNF	rs1800629	Carriers of 8.1 AH carried all 4 studied
2015 [48]			association between TNFa -308A allele and AIA CRSwNP is due to	244 CRSwNP	cells	AGER	rs1800625	SNPs in homozygotic or heterozygotic forms. This AH is significantly associated with CRSwNP (p=0.014)
			this allele or to the presence of the	57 CRSsNP		HSP70-2	rs1061581	-
			haplogroup (AH) in chromosome 6.			LTA	rs909253	-
Tewfik et al.	CG	USA	To investigate whether	154 CRSwNP	Blood	TLR11	rs4286521 rs4833095	Blood IgE levels have been shown to be
2009 [31]			polymorphisms in the genes encoding key TLR	27 CRSsNP			rs5743611 rs5743594	raised in patients with CRSwNP
			signaling molecules might be associated				rs4833103	The C allele of rs1461567, the G allele of rs4251513, and the A allele of rs4251559
			with total serum IgE levels.			TLR2	rs13150331 rs4696480	of the IRAK4 gene are associated with high serum levels of IgE in the NP
							rs1898830 rs4696483	patients.
							rs3804100 rs5743704	
							rs5743708 rs7656411	
							rs1339 rs17030340	
							rs2289318 rs7695605	
						TLR3	rs956239 rs4861699	-
							rs5743305 rs7657186	
							rs6552950 rs3775296	
							rs35140061 rs7668666	
							rs3775292 rs35311343	
							rs5743317 rs3775291	
							rs5743318 rs10025405	
							rs4862633 rs4608848	
							rs6857595 rs1519309	
						TLR4	rs10983754 rs10759930	
							rs10759932 rs2149356	
							rs4986790 rs4986791	
							rs11536889 rs11536898	
							rs1554973 rs7860896	
							rs/037225 rs2183016	
						TLR6	rs5/43810 rs5743808	
							rs5/43/94 rs5/43/88	
							rsb833914	

		[[TI R9	rs352162 rs352140	
						TENS	13552102 13552140	
							rs5743836 rs187084	
							rs352143 rs11717574	
						TLR10	rs4513579 rs11466657	
							rs11096955 rs11466652	
							rs10856839 rs7653908	
						CD14	rc7701577 TC	
						0014	13//215//_10	
							rs4914_CG	
							rs2569190_GA	
							rs2569193_GA	
							rs2563310_GA	
						MD2/LY9	rs1905045_TC	
						6	rs16938755_TC	
							rs11786591_CT	
							rs6472812_GA	
							rs10504554_TC	
							rs17226566_TC	
							rs12544736_TG	
							rs16938766_GC	
						MYD88	rs2239621 rs4988453	
							rs7744 rs6767684	

							150790045	
						IRAK4	rs11182250 rs1461567	
							rs4251580 rs4251520	
							rs4251559 rs17121283	
							rs6582484 rs4251459	
							620-1delAC rs4251487	
							821delT rs4251583	
							T877C	
							134231313	
							A1188+520G	
							G1189-1T	
							rs4251545	
						TRAF6	rs3740961 rs5030437	
							rs5030416 rs5030411	
							rs331455	
Tournas et	 GWAS	Canada	To verify an association	196 HC	Blood	P73	rs3765731	The A allele of rs3765731 was
al. 2010	G 11/13	Cundud	between p73 and CRS.	454 000 100	5.000	,,,,,		differentially expressed in NP when
[153]				154 CRSwNP			123/02092	compared to no (p=0.037).
				52 CRSsNP				The A allele has a protective effect: AA+AG vs GG OR 0.5391, p=0.0036.
Wang et al.	CG	USA	To determine whether	123 HC	Blood	CFTR	ΔF508	Only 11 patients had one of the selected
2000 [68]			mutations in the CFTR	147 CBS			G542X	mutations in the CFTR gene.
			responsible for CF,	177 013			5572A	
			preuispose to CRS.				N1303K	
Wang et al. 2008 [130]	CG	Taiwan	To investigate the role of MMP2 tagging SNPSs	136 HC	Blood	MMP2	rs2438656 rs857403	rs857403 T allele was associated with increased risk (OR 2.07 p=0.03) but it
-			and promoter functional polymorphism in the	136 CRSwNP			rs1030868 rs1477017	could not be replicated with additional controls.

	1	1	I.		I.	r		4050605 0000674	
				development of NP.				rs1053605 rs9302671	
								rs2241145 rs2241146	
								rs243849 rs12599775	
								rs243847 rs243844	
								rs243840 rs2287076	
								rs11639960 rs243832	
								rs7201	
Wang et al.		CG	Taiwan	To investigate the role	730 HC	Blood	MMP9	rs3918242	The T allele of promoter SNP rs3918242
2010 [131]				and promoter functional	203 CRSwNP			rs2664538	dominant (nominal $p = 0.023$, empirical $p = 0.022$, $OR = 1.62$) and additive models
				development of NP.				rs3787268	(nominal p = 0.012, empirical p = 0.011, OP = 1.60) The A allele of re2274756 bac
								rs2274756	a nominal p value of 0.034 under the
									additive model, the most significant
									hapiotype was IGGA p=0.0045
Wang et al. 2013 [132]		CG	Taiwan	To investigate the relative expression of	31 HC	Blood	MMP2	rs243865	Genetic polymorphisms of MMP-2 and MMP-9 functional promoters were not
				MMPs in the non- recurrent and recurrent	30 CRSwNP		MMP9	rs3918242	associated with the recurrence of NP.
				NP as compared to control individuals.					
Yazdani et		CG	Iran	To investigate the	87 HC	Blood	CD14	rs946564423	Significant association of the C allele in
al. 2012 [133]				association between the polymorphism C-159T in	107 CRSwNP				NP patients (or 1.88, p=0.04)
()				CD14 gene and NP.					
Yea et al.		CG	Korea	To investigate the	70 HC	Blood	IL4	-590C/T	The presence of T allele was associated
2006 [45]				IL-4 promoter	106 CRS				p=0.028)
				polymorphism and NP.	61 CRSwNP				
Zhai et al.		CG	China	To explore a potential	81 HC	Blood	HLA-DR	*04	Frequency of allele was significantly
2007 [26]				association between NP and polymorphisms at	30 NP			*07	higher in patients for DR*09 and -*16 and DQ-*08 and -*09. DQ*07 frequency was
				loci for HLA-DR and HLA-DQ.				*08	lower in patients.
								*00	
								~09	
								*10	
								*11	
								*12	
								*13	
								*14	
								*15	
								*16	
							HLA-DQ	*02	
								*04	
								*05	
								*06	
								*07	
								*00	
								*08	
								*09	
Zhang et al. 2008 [134]		CG	China	To examine whether there is an association	180 HC	Blood	CC10 (SCGB1A1	+38A>G	No association
				between Clara cell 10kDa protein	90 CRSwNP)		
				(CC10)+38A>G, plasma CC10 levels and CRS.	130 CRSsNP				
Zhang -t -l			Canad-	To determine whether	197.00	Dia - d	NOST	**1004255	
2nang et al. 2011 [135]		CG	Canada	polymorphisms in gene	181 HC	RIOOD	NUS1	151004350	p=0.0023, OR 0.62;
				regulating NO synthesis	154 CRSwNP			rs1483757	rs9658281, p =0.0129, O 0.66) remained

				are associated with CRS.	52 CRSsNP			rs545654	significant after correction for multiple
								rs9658281	testing. Homozygote allele C (p=0.0017; OR 0.28) in rs1483757 locus increased the risk.
							NOS1AP	rs10458392	rc12047527 in NOS1AB showed
								rs10919117	significant association (p<0.05) with CRS
								rs12022557	
								rs12047527	
								rs12061249	
								rs3923367	
								rs4657164	
								rs6676638	
								rs6677052	
								rs6677606	
								rs7416392	
								rs7546353	
								rs6681981	
								rc8179404	
Zhong et al			China	To configate and outpad	215.110	Blood	04053	*2072551	DedE22000 CND in DVDD increased the visk
2012a [40]		CG	China	genetic association	315 HC	BIOOD	PAR52	1528/3551	of CRSwNP (OR 2.76, p=3.2x10 ⁻⁶).
				Chinese population.	306 CRSWNP		IL22RA1	rs4292900	Selected SNPs in AOAH and IRAK4 were
					332 CRSSNP			rs4648936	0.60-0.79, p<0.05)
								rs16829225	
							TNFRSF1B	rs235214	
								rs496888	
								rs652625	
								rs7550488	
							TRIP12	rs1035833	
							IL1RL1	rs13431828	
								rs10204137	
		-					IL1A	rs17561	
								rs2856838	
								rs2048874	
								rs1800587	
							FAM79B	rs13059863	
							RYBP	rs4532099	
							TSLP	rs3806932	
							1521	rc2289276	
		-					10000	roje71594	
							TNEAIDS	rc2757172	
							INFAIP3	rc5070038	
							141404	1372200	
							LAMBI	154/2/095	
							AOAH	rs4504543	
							MET	rs38850	
							RAC1	rs836479	
							CACNA2D 1	rs6972720	
							KIAA1456	rs11779957	
	1	1	1	1	1	1	1	1	1

		r		r			1	1
						MSRA	rs7001821	
						MUSK	rs10817091	
						PDGFD	rs12574463	
						NOS1	rs1483757	
						NAV3	rs1726427	
						IRAK4	rs4251431	
							rs6582484	
							rs1461567	
							rs3794262	
						SERPINA1	rs1243168	
							rs4900229	
						UBE3A	rs1557871	
						SLC13A3	rs393990	
						CACNA1I	rs3788568	
Zhang et al.	CG	China	To examine association	315 HC	Blood	EBI3	rs428253	Risk analysis showed rs428253 of EBI3
2013a [136]			between specific SNPs in/around the FOXP3	306 CRSwNP			rs6613	gene to play a protective role among both CRSsNP (GG/CC) and CRSwNP (CG/CC)
			and EBI3 genes and susceptibility to CRS	332 CRSsNP			rs353698	subjects. Haplotype analysis of the FOXP3 gene region further indicated that CRS
							rs2302164	risk was higher in individuals carrying the haplotype GG in rs2294018–rs2232365
						FOXP3	rs2294018	block, compared
							rs3060515	with wild-type AG haplotype
							rc2232365	
							rc3761548	
							rc4824747	
Zhang et al	 6	China	To explore associations	315 HC	Blood	TSID	rc1545169	SNPs rs252706 (AA genotype: P=0.012
2013b [137]	CG	China	between SNPs	206 CBSWND	ыооч	ISLF	rs754017	OR 0.552) and rs764917 (CA genotype: P=0.001_OR 0.182) displayed protective
			and development of CRS				13/0491/	roles among CRSwNP, but not CRScNP
				552 CR55INP			1512053750	subjects.
							1007 1000	
							rs12654933	
							rs10455025	
							rs11466741	
							rs13156086	
							rs6886755	
							rs252706	
							rs2416259	
Zielinska at al. 2012	CG	Poland	To investigate the association between LF	200 HC	Blood	LTF	rs1126478	Rs1126478 LF (OR 4.78; 95% CI 3.07– 7.24), the -33C/G OSF2 (OR 3.48; 95% CI
[138]			and OSF2 polymorphisms with the	195 CRSwNP		fgOSF2	rs3829365	2.19–5.52) and the rs3829365 OSF2 (OR 16.45; 95% Cl 6.71–40.30) genotypes
			risk of CRSwNP in Poland				-33C/G	were associated with an increased risk of CRSwNP.
1		1		1			1	1

Reference	Objective	Tissue	Epigenetic assay	Population	Significant findings
Callejas-Diaz et al. 2020 [84]	To identify which key mRNA and miRs are regulating in vitro mucociliary differentiation of human adult basal stem cells under pathological and healthy conditions.	NP, inferior turbinate mucosa (ITM; control)	miRNA	Spain	Transcriptome related to ciliogenesis and cilia function is significantly impaired during differentiation of CRSwNP epithelium due to an altered expression of microRNAs, particularly of those belonging to mir-34 and mi- 449 families
Cheong et al. 2011 [76]	To analyze the genome-wide DNA methylation levels in nasal polyps from patients with AIA.	NP, buffy coats	Genome-wide DNA methylation	China	 332 loci in 296 genes were hypermethylated in AIA vs ATA. These genes are involved in ectoderm development, hemostasis, and wound healing. 158 loci in 141 genes were hypomethylated in AIA vs ATA. Relevant pathways were lymphocyte proliferation, cell proliferation, leukocyte activation, and immune response.
Cho et al. 2012 [75]	To study the effect of trichostatin A (TSA), a histone deacetylase inhibitor, on TGFβ1-induced myofibroblast differentiation and ECM accumulation in NP fibroblasts.	NP, ITM	Histone acetylation control	Korea	The expression levels of HDAC2, α -SMA and TGF- β 1 were increased in NP compared to normal tissues. TSA induced hyperacetylation of histones, inhibiting them. HDAC inhibition is associated with myofibroblast differentiation and ECM accumulation in NP.
Cho et al. 2013 [75]	To investigate the inhibitory effect of TSA on myofibroblast differentiation and ECM production in nasal polyp organ cultures.	NP tissue cultures	Histone acetylation control	Korea	TSA inhibited HDAC and induced hyperacetylation of histones H4
Kidoguchi et al. 2018 [77]	To investigate the methylation levels at 3 CpG sites in the proximal PLAT promoter and their effects on gene expression in NP tissue.	NP, ITM	DNA methylation	Japan	Methylation of -618, -121, and -105 CpGs was significantly higher in NP. <i>PLAT</i> expression was lower (p>0.001). The methylation changes at -618 site showed a negative correlation with the gene expression changes between NP and ITM (r=65, p<0.01).
Kim et al. 2018 [78]	To elucidate whether DNA methylation of specific genes is involved in the development of NP.	NP, ITM	DNA methylation	Korea	The promotor regions of 10 and 30 genes were hypermethylated and hypomethylated, respectively, in NP samples compared with controls. The top four genes with altered hypomethylation in NP tissues were <i>KRT19, NR2F2, ADAMTS1</i> and <i>ZNF222</i> .
Kim et al. 2019 [79]	To investigate the expression and distribution of FZD5 and the role of eosinophil infiltration in CRSwNP pathogenesis.	NP, uncinated process tissue	Methylation profiling	Korea	397 and 387 genes were differentially hypermethylated and 399 and 208 genes were hypomethylated in the E- CRSwNP and NE-CRSwNP groups, respectively, compared to the control tissues. Most of the differentially methylated genes were associated with cancer pathways. FZD5 was significantly hypomethylated in the E- CRSwNP compared to the NE-CRSwNP group.
Li et al. 2019a [80]	To determine whether there was any association between abnormal DNA methylation of TSLP gene and CRS	NP, ethmoid mucosa (CRSsNP) patients	DNA methylation	China	There was an increase in methylation ratios of 4 CpGs (2, 22, 23, 24) of TSLP gene had increased in the CRSwNP patients compared to the CRSsNP and

	pathogenesis.	and ITM			control subjects, significantly related to disease status (p<0.02)
Li et al. 2019b [81]	To determine whether there was any association between abnormal DNA methylation of IL8 promoter and CRS pathogenesis.	NP, ethmoid mucosa (CRSsNP) patients and ITM	DNA methylation	China	Three CpGs (-116, -106, -31) were significantly hypomethylated in the CRSwNP group compared with CRSsNP and HC.
Liu et al. 2018 [85]	To study the role of miR124 in CRSwNP.	NP, ITM	miRNA	China	MiR124 expression was reduced in NP tissues, which negatively correlated with the expression of AHR. This may be critical to the development of inflammatory response in CRSwNP.
Liu et al. 2019 [83]	To characterize the transcriptome profiles of mRNAs and IncRNAs in patients with CRSwNP.	GEO datasets, blood samples	IncRNA	China	A total of 265 differentially expressed IncRNAs were obtained, including 56 upregulated and 209 downregulated genes.
Luo et al. 2017 [86]	To test whether miR-17-92 cluster is associated with suppressing IL-10 in peripheral DC.	Blood samples	miRNA	China	A negative correlation was found between expression of II-10 and miR- 19a in DC from NP patients. miR19-1 was upregulated while miR-17, -18a, - 19b, -20a and -92a showed no differences between NP and HC.
Ma et al. 2015 [88]	To investigate miRNAs expression profiles of peripheral blood DCs in CRS patients.	Blood samples	miRNA	China	There were 31 miRNAs changed in all CRS patients with respect to HC, and 49 miRNA that changed exclusively in CRSwNP. miR-210-3p, miR-125b-5p, and miR- 150-5p were upregulated in CRS, while miR-708-5p and miR-126-3p were downregulated.
Ma et al. 2018 [87]	To investigate the effects and mechanism of miR-150- 5p to promote the development of CRS via the DC-Th axis.	Blood samples	miRNA	China	miR-150-5p was upregulated in DCs from CRS patients compared with HC, and DCs Promote Naïve T Cells Proliferation. MiR-150-5p further regulated EGR2 and inhibited DCs, leading to an abnormal DC-Th axis.
Qing et al. 2019 [89]	To investigate the mechanisms between the miR-142-3p and TNF-a activation in vitro and in vivo	NP, ITM	miRNA	China	miR-142-3p may participate in the regulation of the body's inflammatory response through the LPS-TLR-TNF-a signaling pathway in CRSwNP.
Seiberling et al. 2012 [95]	To determine the presence of 5-bromo-cytosine, 5- chloro-cytosine and methylated cytosine in CRSwNP.	NP, posterior ethmoid tissue (HC)	DNA modification	USA	The levels of 5-Bromocytosine were significantly higher in polyps (p=0.007). Aberrant methylation patterns in polyp eosinophils may help explain the pathogenesis of CRSwNP.
Tian et al. 2012 [96]	To explore the profiling of tandem alternative polyA (APA) sites in NP.	NP, uncinated process mucosa	Genome-wide polyadenylation site sequencing	China	There was a switching of 3'UTR lengths in NP compared with nasal uncinate process mucosa from the same patient. 105 genes were switched to distal polyA sites in the nasal polyps and 90 genes were switched to proximal poly(A) sites. Besides, 213 genes were upregulated in NP while 414 genes were downregulated.
Xuan et al. 2019 [90]	To evaluate miRNAs profiles and relevant biological pathways in CRSwNP and	Nasal mucosa	miRNA array	China	24 miRNAs showed differential expression. 5 miRNAs (miR-210-5p, miR-3178 miR-585-30 miR-3146 and

	control subjects.				miR-320e) were significantly upregulated (p < 0.05, fold change >2), and 19 miRNAs, including miR-32-3p, miR-1299, miR-3196, miR-3924, miR- 548e-3p, miR-3184-5p, miR-375, miR- 23a-5p, miR-377-5p, miR-574-5p, miR- 3149, miR-500a-5p, miR-125b-2-3p, miR-1914-5p, miR-532-3p, miR-612, miR-1298-5p, miR-1226-3p, and miR- 668-3p, were significantly downregulated in CRSwNP tissue (p < 0.05, fold change <0.5).
Yan et al. 2020 [91]	To examine human neutrophil elastase-induced MUC5AC overexpression in CRS via miR-146a.	NP, uncinated process mucosa	miRNA	China	EGFR is a target of miR-146a. This miRNA is downregulated in NP reducing the inhibition of EGFR, and therefore MUC5AC expression levels were increased.
Yu et al. 2018 [92]	To evaluate the roles of TGFβ1 and miR-663 in the pathogenesis of NP in children.	Nasal mucosa, peripheral blood eosinophils (PBE)	miRNA	China	The expression of miR-633 was significantly reduced in polyps and PBE from CRS patients, while <i>TGFB1</i> mRNA was significantly increased. miR-633 binds to the 3'UTR of <i>TGFB1</i> and regulated its expression.
Zhang et al. 2012b [94]	To determine the pattern of expression and biological role of miRNAs in CRS.	NP, ethmoidal mucosa, inferior turbinate tissue	miRNA	China	miR-125b was upregulated in CRSwNP when compared to CRSsNP. This may enhance type I IFN expression through suppressing 4E-BP1 protein expression in airway epithelial cells.
Zhang et al. 2012c [97]	To investigate the expression of miRNA machinery components in CRS.	NP, ethmoid sinus mucosa	mRNA expression	China	PACT mRNA expression was found to be upregulated in CRSwNP as compared with controls. The rest of the miRNA machinery components including Drosha, Dicer, TRBP, FXR1 and E1F2C2, showed no differences between patients and controls.
Zheng et al. 2015 [82]	To identify whether DNA methylation pays a role in the pathogenesis of NP.	NP, ITM	DNA methylation	China	198 genes had a differential methylated signal in their promoter region when comparing NP samples with ITM samples. The four most changed genes were <i>COL18A1</i> , <i>EP300</i> , <i>GNAS</i> and <i>SMURF1</i> .
Zhou et al. 2020 [93]	To explore the pathogenesis of CRSwNP from the perspective of genes.	CRSwNP datasets. NP, nasal mucosa (HC)	Functional enrichment analysis, including non- coding RNAs	China	Two clusters of genes, IncRNAs and miRNAs were found to be related to CRSwNP. Main miRNA involves were: miR-130a, miR-27a-3p, miR-193-3p, miR-29a-3p, miR-18b-5p, miR-138-5p, and miR-25- 3p.

Functional Category	Enrichment FDR	Genes in list	Total genes	Genes
Cytokine-mediated signaling pathway	2.63e-16	29	950	IL1B IL1RN IL22RA1 CCL11 IRAK4 TSLP EBI3 IL1RL1 FCER1G IL1A PPARG TNF NOS2 ALOX5 MMP2 MMP9 IL10 IL33 ALOX15 CIITA HLA-DRB3 HLA-DRB1 HLA- DQA1 HLA-DRB5 HLA-DRA HLA-C HLA-B HLA-A HLA-DRB4
Defense response	1.10e-15	38	2062	NOS2 IL33 FCER1G PTGDR CD14 CCL11 CIITA LTF IL1B IL10 TNF HLA-A ALOX5 FOXP3 IL1A IL1RL1 PPARG ALOX5AP AOAH IL1RN IL22RA1 MS4A2 ADORA1 CYSLTR1 SERPINA1 IRAK4 AGER TSLP HLA- DRB1 MMP9 ALOX15 HLA- DRB3 HLA-DQA1 HLA-DRB5 HLA- DRA HLA-C HLA-B HLA-DRB4
Inflammatory response	1.10e-15	27	856	IL33 PTGDR CD14 CCL11 CIITA NOS2 IL1B IL10 TNF ALOX5 FOXP3 IL1A IL1RL1 PPARG ALOX5AP AOAH IL1RN MS4A2 FCER1G ADORA1 CYSLTR1 SERPINA1 AGER TSLP HLA-DRB1 MMP9 ALOX15
Response to stress	7.689e-15	52	4507	NOS2 MMP2 CAT IL1B HSPA2 IL1RN IL33 TRIP12 FANCC FCER1G PTGDR CD14 CCL11 MSRA CIITA CFTR LTF DCBLD2 TP73 NOS1 MMP9 IL1A IL10 TNF HLA-A IFRD1 ALOX5 FOXP3 IL1RL1 PPARG ALOX5AP AOAH IL22RA1 MS4A2 ALOX15 ADORA1 ADRB2 CYSLTR1 SERPINA1 IRAK4 MT-CO2 AGER MET TSLP HLA- DRB1 HLA-DRB3 HLA-DRA HLA-C HLA-B HLA-DRB4

Response to cytokine	1.04e-13	30	1372	IL1B IL1RN
				IL22RA1 CCL11
				IRAK4 TSLP CIITA
				NOS2 EBI3
				IL1RL1 FCER1G
				DRB1 HLA-DOA1
				HLA-DRB5 HLA-
				DRA HLA-C HLA-B
				HLA-A HLA-DRB4
Immune system	1.124e-13	45	3539	RUNX2 IL1B
process				IL1RN CD8A
				FCER1G CD14
				CCL11 ACE LTF
				HI A-B HI A-A
				NOS2 MMP9 EBI3
				TAPBP IL1A
				IL1RL1 MS4A2
				FANCC ALOX15
				ADORA1
				CYSLTR1 LTA
				HLA-DQB1 HLA-
				TSLP ALOX5
				TP73 CAT
				FCER1A
				SERPINA1
Cellular response to	1.121e-13	29	1278	IL1B IL1RN
cytokine stimulus				IL22RA1 CCL11
				CIITA II 1A
				PPARG ALOX15
				TNF ALOX5 MMP2
				MMP9 IL10 IL33
				HLA-DRB3 HLA-
				DRB1 HLA-DQA1
				HLA-DRB5 HLA-
Immune response	1 41e-13	30	2602	CD8A FCFR1G
	1.410-10		2002	CD14 CCL11 IL1B
				LTF FOXP3 IL10
				CIITA AGER TNF
				HLA-B HLA-A
				NOS2 IL1A IL1RL1
				IL1RN IL33 MS4A2
				DRB1 HI A-DOA1
				IRAK4 HLA-DRB5
				HLA-DRA HLA-C
				HLA-DRB4
				PPARG ALOX5
				MMP9 EBI3
				TAPBP CAT
Cell surface receptor	2.29e-13	43	3287	MUSK MET II 1B
signaling pathway	2.200 10		5201	IL1RN IL22RA1
5 51 ···· ···				CD8A FCER1G
				CD14 CCL11
				ANXA4 IRAK4 LTF

				TSLP TNF FOXP3
				FBI3 II 1A II 1RI 1
				RUNX2 33
				MS4A2 ADORA1
				ADRB2 CVSI TR1
				MMP9 PPARG
				AGER HLA-C
				HLA-B HLA-A
				HLA-DRB4
Cellular response to	4.85e-13	44	3536	IL1B HSPA2
chemical stimulus				PPARG IL1RN
				IL22RA1 FANCC
				FCER1G CD14
				CCL11 MSRA
				IRAK4 CFTR LTF
				MMP9 ALOX5AP
				TSLP ALOX15
				AGER TNF NOS2
				MMP2 NOS1 EBI3
				II 1RI 1 CAT
				RUNX2 10
				PTGDR ADRB2
				CIITA LTC4S MET
	5 00 40			
Cellular response to	5.90e-12	39	2938	IL1B HSPA2
organic substance				PPARG IL1RN
				IL22RA1 CD14
				CCL11 IRAK4
				CFTR LTF TSLP
				AGER TNF NOS2
				MMP2 NOS1 EBI3
				IL1RL1 CAT
				RUNX2 IL10
				FCER1G PTGDR
				ADRB2 CIITA IL1A
				ALOX15 HLA-
				DRB1 ALOX5
				MMP9 IL33 HLA-
				DRB3 HLA-DQA1
				HLA-DRB5 HLA-
				DRA HLA-C HLA-B
				HLA-A HLA-DRB4
Response to organic	1.593e-11	42	3547	NOS2 NOS1 IL1B
substance				HSPA2 PPARG
				IL1RN II 22RA1
				CD14 CCI 11
				IRAK4 CETR I TE
				CIITA AGER THE
				TBXAS1 TP73
				MMP2 MMP0 FRI2
				RUNX2 FOED10
				HLA-DQA1 HLA-
				DRB5 HLA-DRA
				HLA-C HLA-B
_				HLA-A HLA-DRB4
Regulation of immune	2.414e-10	30	1909	FCER1G CD14
	1		1	

				II 10 II 33 AGER
				TNF HLA-B HLA-A
				IL1RL1 MS4A2
				ALOX15 ADORA1
				LTF PPARG TSLP
				HLA-DRB1 TP73
				EBI3 CD8A
				FCER1A HLA-
				DRB3 HLA-DQA1
				IRAK4 HLA-DRB5
				HLA-DRA HLA-C
				HLA-DRB4
Regulation of immune	5.63e-10	25	1325	FCER1G CD14
response				IL1B FOXP3 IL10
				AGER TNF HLA-B
				HLA-A IL1RL1
				IL33 MS4A2
				ALOX15 LTF
				PPARG CD8A
				FCER1A HLA-
				DRB3 HLA-DRB1
				HLA-DQA1 IRAK4
				HLA-DRB5 HLA-
				DRA HLA-C HLA-
				DRB4
Regulation of response	1.05e-09	46	4820	IL1B IL1RN IL33
to stimulus				FCER1G CD14
				CCL11 IRAK4
				NOS2 LTF FOXP3
				MET IL10 TSLP
				ADRB2 AGER
				TNF HLA-B HLA-A
				CFTR TP73 NOS1
				EBI3 IL1A IL1RL1
				CAT RUNX2
				PPARG ALOX5AP
				AOAH MS4A2
				ALOX15 ADORA1
				LTA RGS7BP
				MMP9 TRIP12
				HLA-DRB1
				NOS1AP CD8A
				FCER1A HLA-
				DRB3 HLA-DQA1
				HLA-DRB5 HLA-
				DRA HLA-C HLA-
				DRB4
Cvtokine secretion	3.78e-09	13	285	CD14 NOS2
-,		-		FOXP3 IL1A IL10
				IL33 TNF IL1RL1
				IL1B AGER TSLP
				ANXA4 HLA-DRB1
Cellular response to	4.23e-09	13	289	CCL11 NOS2
interferon-gamma				CIITA PPARG
				HLA-DRB3 HLA-
				DRB1 HLA-DQA1
				HLA-DRB5 HLA-
				DRA HLA-C HLA-B
				HLA-A HLA-DRB4
Interferon-gamma-	4.76e-09	11	178	PPARG CIITA
mediated signaling				HLA-DRB3 HLA-
pathway				DRB1 HLA-DQA1
-				HLA-DRB5 HLA-
				DRA HLA-C HLA-B
				HLA-A HLA-DRB4
Regulation of	6.81e-09	15	448	IL33 NOS2
inflammatory response				FOXP3 IL1RL1
				IL1B PPARG
				ALOX5AP AOAH
				IL10 FCER1G
				ADORA1 AGER
				TSLP TNF MMP9
Antigen processing and	9.27e-09	14	384	FCER1G HLA-
presentation				DRB1 HLA-DRA
				HLA-B TAPBP

				HLA-DQB1 HLA-
				DRB3 HLA-DQA1
				HLA-DRB5 HLA-C
				HLA-A HLA-DRB4
Deenenge to interferen	0.070.00	10	210	
Response to interferon-	9.276-09	15	312	
gamma				
				DRA HI A-C HI A-B
				HI A-A HI A-DRB4
Regulation of cytokine	1.269e-08	12	257	CD14 FOXP3
secretion				IL1A IL10 IL33
				TNF IL1RL1 IL1B
				AGER TSLP
				ANXA4 HLA-DRB1
Positive regulation of	1.51e-08	32	2621	IL1B IL1RN IL33
response to stimulus				FCER1G CD14
				CCL11 IRAK4 LTF
				IL10 TSLP ADRB2
				TNF HLA-B CFTR
				FOXP3 TP73
				NOS1 IL1RL1 CAT
				ALOX5AP
				ADORA1 AGER
				ALOX15 HLA-
Cytokine production	4 970-08	10	925	
Cytokine production	4.376-00	19	920	
				TSI P AGER TNF
				IL1RL1 FCER1G
				IRAK4 NAV3
				ANXA4 HLA-DRB1
				EBI3
Interleukin-6 production	4.97e-08	10	172	IL1B IL1RN NOS2
				IL10 TNF FOXP3
				IL33 FCER1G
				AGER TSLP
Secretion	7.35e-08	26	1861	CACNA1I CD14
				NOS2 FOXP3 IL1A
				IL1B IL10 IL33
				ACE TNF CFTR
				IL1RL1 IL1RN
				FCER1G ADORA1
				MI-CO2 AGER
				SERPINAL HI A-C
Positive regulation of	7.35e-08	20	1069	CACNA1
transport	7.550 00	20	1005	FCFR1G CD14
transport				CETR II 1A II 10
				33 TNF 1RI 1
				II 1B HSPA2
				PPARG ADORA1
				AGER ADRB2
				TSLP NOS1 HLA-
				DRB1 NOS1AP
				TP73
Regulation of cytokine	8.36e-08	18	852	IL1B IL1RN CD14
production				NOS2 LTF FOXP3
				IL1A IL10 IL33
				TSLP AGER TNF
				IL1RL1 FCER1G
		i	1	
				INAV3 AINAA4
				HLA-DRB1 EBI3
Regulation of defense	8.789e-08	19	968	HLA-DRB1 EBI3 IL33 CD14 NOS2

Supplementary Table 3.

				IL1RL1 IL1B PPARG ALOX5AP AOAH IL10 FCER1G ADORA1 AGER LTF TSLP TNF MMP9 IRAK4
Regulation of peptide secretion	9.132e-08	15	559	CD14 FOXP3 IL1A IL1B IL10 IL33 TNF CFTR IL1RL1 ADORA1 AGER NOS2 TSLP ANXA4 HLA-DRB1