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A B S T R A C T   

This paper introduces the effect of the crossed products of Hermite polynomials on Gram-Charlier 
densities. This allows capturing the impact of the interaction between skewness and kurtosis and 
evaluating this new parameter as an additional source of information for risk management. We 
show that our modified Gram-Charlier density presents an improved accuracy, especially at 
distribution tails. Risk quantification is assessed for S&P500 losses with backtesting procedures 
for Value-at-Risk and Median Shortfall.   

1. Introduction 

The leptokurtosis and skewness pattern of asset returns is a well-known fact since the early work of Mandelbrot (1963). Financial 
crises and turbulences have evidenced that the shocks have a big impact on the asset return distribution, generating fat tails but also an 
asymmetric response on both tails. Despite both features have a joint impact on tail risk, in finance researchers have not paid attention 
to the interaction between both phenomena − e.g., in physics, Labit et al. (2007) found a parabolic relationship between the third and 
fourth normalized central moments. We address this gap by showing to what extent the moment interaction may contribute to financial 
risk forecasting. 

For this purpose, we adopt a semi-nonparametric approach to the asset return density based on the Gram-Charlier (GC) series, 
which has been employed in the last decades to approximate frequency functions − see e.g. Del Brio et al. (2020), Jiménez et al. (2022), 
León and Ñíguez (2020), Mauleón (2010), Mauleón and Perote (2000), among others. This methodology allows a flexible fitting of the 
density by incorporating the effect of different moments with the addition of new parameters. The salient performance of this approach 
has been proved for derivative pricing and risk management, showing the importance of the consideration of skewness, kurtosis and 
even higher order moments. However, to the best of our knowledge, the impact of the interaction terms in the Hermite polynomial 
(HP) approximation has not been tested before. The rationale behind the consideration of the interaction terms is twofold: (i) From a 
theoretical viewpoint the expansion with crossed products of HPs is still a density in virtue of the orthogonality property of such 

* Corresponding author. 
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polynomials; (ii) The parameters associated to these ‘crossed terms’ capture the interaction between the moments, which might play an 
important role on the dynamic fitting. Therefore, this paper introduces a brand-new version of GC, named as Modified Gram Charlier 
(mGC), and shows the relevance of the interaction between even and odd moments (particularly between skewness and kurtosis) for 
the risk forecasting of a series of S&P500 index. Therefore, our contribution is valuable to both semi-nonparametric density fitting (a 
new density is provided) and risk management (risk assessment accuracy is proved) areas. 

The next section presents the mGC distribution and the risk measures employed for assessing model performance. An empirical 
application is presented in Section 3 and, finally, Section 4 concludes. 

2. Methodology 

2.1. The semi-nonparametric approach 

Traditionally, the semi-nonparametric estimation of a frequency function is characterized by a series of derivatives of a standard 
normal density φ(xt), which, considering n terms, can be expressed as a function f(xt) satisfying 

f (xt) =

[

1+
∑n

s=1
γsHs(xt)

]

ϕ(xt), (1)  

where Hs(xt) is the orthogonal series of HPs, which are recursively obtained as ( − D)sφ(xt) = Hs(xt)φ(xt), D = d
dxt

. As n → ∞ the Eq. (1) is 
called the GC series of Type A (Kendall and Stuart, 1977), which asymptotically represents any “regular” frequency function. This 
expansion integrates one but, for n finite, positivity is only satisfied in a restricted range − see e.g. Jondeau and Rockinger (2001). For 
solving this problem there have been proposed different positive transformations (León et al., 2009; Ñíguez and Perote, 2012) but also 
it has been recently argued that the positivity region enlarges as n increases (Lin and Zhang, 2022). Furthermore, the γs parameters are 
directly related to the first s moments, which allows measuring their relative importance in the fitting. We argue that by including the 
crossed HP terms as in Eq. (2) − modified GC, hereafter mGC− the interaction between the moments can be explicitly captured by δij 
parameters. Even more, the inclusion of the crossed terms might contribute to avoiding negative values by means of a more flexible 
parametrization. 

g(xt) =

[

1+
∑n

s=1
γsHs(xt)+

∑n

i=1
γs

∑n

j=1,j∕=i

δijHi(xt)Hj(xt)

]

ϕ(xt). (2) 

Most applications in finance − e.g. Jurczenko et al. (2004), León et al. (2009), Schlögl (2013)− only consider H3(xt) = x3
t − 3xt and 

H4(xt) = x4
t − 6x2

t + 3, so as γ3 and γ4 are related to skewness and excess kurtosis, respectively. We additionally consider the interaction 
between H3(xt) and H4(xt) − captured with parameter δ− to better accommodate the fitting at the tails: 

g(xt) = [1+ γ3H3(xt)+ γ4H4(xt)+ δH3(xt)H4(xt)]ϕ(xt) (3) 

Note that 
∫

g(xt)dxt = 1 since 
∫

Hi(xt)Hj(xt)ϕ(xt)dxt = 0, ∀i∕=j. 

2.2. Risk measures 

Model validation in risk management is usually tested in terms Value-at-Risk (VaR). Alternatively, Kou and Peng (2014) suggest the 
use of Median Shortfall (MS), which outperforms expected shortfall (ES) in terms of tail risk, robustness, elicitability, backtesting, and 
surplus invariance − He et al. (2021). For a return with conditional mean μt, variance σt and mGC distribution, and given the confidence 
level α and the time horizon t + 1, VaR and MS may be obtained as 

VaRα,t+1 = μt+1 + σt+1qα, (4) 

Fig. 1. Sketch on the backtesting procedure.  
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MSα,t+1 = VaR1+α
2 , t+1 (5)  

where qα is the α-quantile of the GC distribution computed for the mGC in Eq. (3) according to 

∫qα

− ∞

g(xt)dxt =

∫qα

− ∞

ϕ(xt)dxt − ϕ(qα)[γ3H2(qα)+ γ4H3(qα)+ δH4(qα)H2(qα)+ 4δH3(qα)H1(qα)+ 12δH2(qα)+ 24δ]. (6) 

Following Basel Committee’s recommendations, we select 99%-VaR and 99%-MS. In the next section, backtesting techniques (with 
a rolling window of size WE) are considered to examine mGC’s performance to forecast ex-post real losses − see e.g., Jiménez et al. 
(2020, 2022). Fig. 1 illustrates the procedure. 

3. Empirical application 

To show the risk assessment of incorporating the mGC density, we select an arbitrary series of S&P500, comprising 12 years of daily 
prices (Pt), spanning from December 7th, 2010 to January 6th, 2022 (2790 observations).1 Focusing on the right tail, we compute daily 
percentage losses as 

Lt = − 100[ln(Pt) − ln(Pt− 1)]. (7) 

Descriptive statistics in Table 1 feature the characteristics of a heavy-tailed and skewed distribution. 
Table 2 shows the Maximum likelihood (ML) estimates of GC (with parameters γ3 or/and γ4) and mGC with an AR(1)-GARCH(1,1) 

for the mean-variance modeling. 
The ML estimates are computed for the first in-sample window of the backtesting with a size of 1000 observations, jointly estimated 

with an AR-GARCH structure and the four different density specifications. The odd and even parameters (γ3 and γ4) are significant, 
showing positive skewness and leptokurtosis. Importantly, the “crossed-parameter” (δ) is also significant and the mGC is better off in 
terms of Log-likelihood and AIC criteria, reflecting the information content of the interaction between skewness and kurtosis.2 The 
relevance of this parameter in the fitting is illustrated in Fig. 2, where the right tails for the S&P500 losses reveal that the mGC density 
seems to outperform the other alternatives at the extremes. 

Table 1 
Descriptive statistics for S&P500 losses.  

Obs. Min. Median Mean Max. Standard Deviation Variance Excess Kurtosis Skewness 

2790 − 8.968 − 0.070 − 0.048 12.765 1.078 1.162 17.844 0.927 

S&P 500 index percentage losses from December 7th, 2010 to January 6th, 2022. 

Table 2 
Fitted GC densities for S&P500.  

Parameter GC3(γ3) GC4(γ4) GC(γ3γ4) mGC(γ3γ4δ) 

φ0 − 0.088 − 0.105 − 0.082 − 0.112  
(0.000) (0.000) (0.000) (0.000) 

φ1 − 0.040 − 0.045 − 0.057 − 0.052  
(0.337) (0.328) (0.319) (0.313) 

ω 0.041 0.035 0.034 0.037  
(0.000) (0.000) (0.000) (0.000) 

α 0.140 0.149 0.147 0.138  
(0.000) (0.000) (0.000) (0.000) 

β 0.810 0.810 0.811 0.813  
(0.000) (0.000) (0.000) (0.000) 

γ3 0.033 – 0.065 0.033  
(0.000) – (0.000) (0.058) 

γ4 – 0.050 0.045 0.049  
– (0.000) (0.000) (0.000) 

δ – – – 0.002  
– – – (0.000) 

AIC 591.068 567.568 554.500 550.929 
LogLik − 289.534 − 277.784 − 270.250 − 268.464 

φ0 and φ1 are the parameters of the AR(1) model; ω, α and β are the parameters of the GARCH (1,1) model; γ3, γ4 and δ are the parameters of the GC/ 
mGC distributions. P-values in parentheses. AIC and LogLik correspond to Akaike Information Criterion and Log-Likelihood, respectively. 

1 Results are robust to different time periods and the use of other leptokurtic and skewed financial return series.  
2 The parameter (δ) is significant for the full backtesting (1,790 times) with only 17 exceptions at 10% confidence. 
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The in-sample results are corroborated by the out-of-sample performance in terms of both VaR and MS criteria. Table 3 presents 
backtesting results in panels A and B, for 99%-VaR and 99%-MS, respectively.3 Model performance is assessed in terms of the Bernoulli 
test, Independence test, Conditional Coverage Test (CC), Dynamic Quantile (DQ) test, and QL ratio, which exhibit robust results. 
Expansions that only account for skewness (γ3) are rejected and the model with kurtosis parameter alone (γ4), although significant, 
presents a poorer performance than the mGC model. In addition, mGC outperforms GC(γ3γ4), according to the QL ratio. Furthermore, 
in both risk measures the Bernoulli test shows the best performance for mGC considering the number of observed exceptions which are 
the closest to the expected exceptions. Thus, the mGC model exhibits a remarkable performance for backtesting 99%-VaR and 99%-MS. 

Our analysis corroborates that the interaction term between skewness and kurtosis seems to be meaningful for risk forecasting. 
However, Fig. 3 shows that the correlation dynamics of the interaction term (δ) with γ3 (γ4) is high (mild). In particular, excess kurtosis 
seems to be quite stable, but skewness and the interaction term seem to be significantly affected by turmoil periods. This means that the 
interaction term is particularly useful to capture the asymmetric impact of shocks at the distribution tails in times of high instability. In 
these scenarios, considering the interaction terms of skewness with the parameters related to heavy tails seems to be a relevant source 
of information to provide accurate risk measures. 

Fig. 2. Fitted densities for standardized S&P500 losses.  

Table 3 
Backtesting 99%-VaR and 99%-MS.  

Panel A: VaR 99%   
E.E. 18            

Model Exc. Bern. Test Indep. Test CC Test DQ Test QL QL Ratio 
γ3 39 18.796 (0.000) 1.193 (0.275) 19.989 (0.000) 48.356 (0.000) 0.038 – 
γ4 23 1.347 (0.246) 1.073 (0.300) 2.419 (0.298) 6.173 (0.520) 0.036 0.943 
γ3γ4 24 1.897 (0.168) 4.195 (0.041) 6.092 (0.048) 16.487 (0.021) 0.036 0.947 
γ3γ4δ 19 0.067 (0.796) 1.674 (0.196) 1.741 (0.419) 6.035 (0.536) 0.036 0.945 
Panel B: MS 99%   
E.E. 9            
Model Exc. Bern. Test Indep. Test CC Test DQ Test QL QL Ratio 
γ3 18 21.519 (0.000) 3.633 (0.057) 25.151 (0.000) 62.322 (0.000) 0.024 – 
γ4 16 4.518 (0.034) 0.289 (0.591) 4.807 (0.090) 8.263 (0.310) 0.021 0.875 
γ3γ4 20 10.132 (0.001) 1.505 (0.220) 11.637 (0.003) 24.621 (0.001) 0.021 0.889 
γ3γ4δ 15 3.412 (0.065) 0.254 (0.615) 3.666 (0.160) 7.643 (0.365) 0.020 0.855 

E.E. stands for the expected exceptions and Exc. is the number of observed. Conditional Coverage (CC) tests the null hypothesis of correct model 
specification, where exceptions satisfy the Unconditional Coverage and Independence test. Dynamic Quantile (DQ) (with 4 lags) tests the null hy
pothesis of correct model specification. P-values in parentheses (significance level is 5%). QL (Quantile Loss) ratio compares every model with GC (γ3), 
QL<1 means that the model outperforms the first model. Furthermore, QL ratio for GC (γ3γ4) in comparison to mGC (γ3γ4 δ) provides values of 0.997 
and 0.962 for 99%-VaR and 99%-MS, respectively, being GC (γ3γ4) the first model for this case. 

3 Expected Shortfall (ES) was also backtested with similar results. 
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4. Conclusions 

The empirical analysis in this work points out the significant information content of the “interaction” terms in the GC expansions. 
From a theoretical viewpoint, these new parameters do not impose problems on the up-to-one integration of the GC expansion and 
might help to solve the positivity problems of the short CG expansions. From an empirical perspective, we illustrate that they 
contribute to improving the fitting at the tails and thus the risk measures. This finding is not only good news for risk management but 
also for the understanding of how distribution tails evolve in response to shocks that induce higher leptokurtosis and skewness at the 
same time. 

A more exhaustive analysis of the GC expansion with all possible interaction terms would be an outstanding contribution to future 
research. In particular, the contribution of these terms on parameter identification and/or positivity conditions of GC densities is still to 
be determined. The multiple applications of this new density (e.g. to tail dependence or derivative pricing) and the multivariate 
extensions for portfolio choice and hedging are also interesting avenues for research. 
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