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Área de Óptica
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incluso se preocupa por mi deteriorada salud mental.

A continuación agradezco a todos los que han sido y son miembros del

grupo subversivo El fotón charro especialmente por aguantarme cuando in-

vado su territorio profiriendo blasfemias en alta voz. No nombro a todos

por si me dejo alguno. Mención especial merece aquél que me ha proporcio-
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cuando aún no sab́ıa qué queŕıa ser de mayor. Ellos y mi compañera de
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Introduction

In recent decades there has been renewed interest in study of the interaction be-

tween electromagnetic fields and matter. The main reason is undoubtedly the

availability of shorter and more intense laser pulses which are continuously im-

proving in such a way that it takes only a few months to reduce their duration

by a few femtoseconds and their intensity by some terawatts. Hence, theoretical

assumptions that earlier seemed experimentally unfeasible, are now realized in lab-

oratories in a fairly straightforward way. On the other hand, experiments are now

so abundant that a better understanding of the physical phenomena involved is

necessary to interpret the results obtained. This joint effort involves researchers

who come from such different disciplines as optics, atomic and molecular physics,

plasma physics, and, recently, even nuclear physics, quantum electrodynamics and

astrophysics. The possibilities of such a broad subject are therefore unlimited.

One of the most attractive phenomena is harmonic generation because it has

been shown to be a process able to provide us with coherent and relatively intense

radiation sources with frequencies in the range of the ultraviolet and soft X-rays.

The infrared and visible laser being so important in all aspects relating to atomic

and molecular structure, we can expect that the X-ray laser will play a similar role

regarding nuclear structure, relativistic phenomena, and perhaps other applications

which are barely imagined today. As an example, the creation of electron-positron

pairs has been observed in laser experiments, a phenomenon that will be more

likely if the frequencies of the lasers are higher. Another possible application of

3



4 Introduction

high harmonics currently under study is the achievement of trains of attosecond

pulses, for which the name of ”ultrashort” is really long.

The generation of high harmonics seems to be strongly linked to the ionization

process. As we shall see, the ionization and subsequent recombination of electrons

is the source of the harmonics in a low density gas. In a solid or plasma, harmonic

radiation is generated by the motion of the electrons ionized either by the laser or

by any other mechanism. Moreover, if we wish to obtain significant efficiencies we

need much more than a single radiating atom or electron: we need an extended

medium whose particles, the more the better, will emit radiation in a coherent way.

This is the reason why the study of the propagation of harmonics is also crucial.

In this work, we wish to add our small contribution to the study of harmonic

generation and propagation in ionizing media. Since we are not very good in

the lab and computers are becoming cheaper and cheaper, our contribution will be

theoretical, with a lot of numerical calculations because simulations are a very good

tool not only for understanding the physical phenomena but also for contrasting

the experimental results. The ionizing media we are referring to are mainly of

two kinds. First, we have isolated atoms, which are relatively easy to study. The

conclusions obtained from the study of isolated atoms can be extended to the

case of rare gases in which atom-atom interactions can be neglected. However,

if we raise the density of the medium as well as the laser intensity in such a

manner that the ionization becomes noticeable, atom-atom (or ion-ion) and atom-

free electron interactions dramatically change the phenomenology, rendering the

radiation emitted completely different. This is why we also have to study other

ionizing media such as solids, which rapidly generate a plasma when impinged by

intense enough pulses. As we shall see below, plasmas are also able to generate

high harmonics and they even have some advantages over gases in this respect.

To date, the problem of the interaction of an atom and an electromagnetic
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field has only been exactly solved in the case of hydrogen-like atoms, which is the

one we shall consider along this work. However, regarding harmonic generation

the results can be extended without important changes to other kinds of atoms.

The experimental results are quite similar with low pressure alkaline and noble

gases. This is undoubtedly due to the fact that the processes involved in harmonic

generation, in particular ionization, are qualitatively the same for all of them.

The study of solid media is even more difficult because the number of particles

involved in the interactions is practically infinite. Again, it has been experimentally

observed that the harmonics generated by media as different as aluminum and

plastic are similar in the case of short and intense enough pulses. The reason is

that for such pulses a nearly complete ionization is achieved in very few optical

cycles (sometimes less than one) and afterwards both of them only comprise a set

of electrons and atoms moved by the field. We can therefore idealize our medium

by representing it by a set of atoms, which again will be hydrogen-like for the sake

of simplicity, and which -after ionization- become an ion plus an electron evolving

according to the laws of classical electrodynamics.

With regard to the electric field, we shall always consider this to be linearly

polarized. In this case, both the scientific interest (the generation of harmonics is

more efficient with linearly polarized fields in gases and in solids) and the numerical

simplicity (this permits us to reduce the dimensionality of the problem) coincide.

Moreover, the incident pulses will have only one main frequency. Both elliptically

polarized fields and several-colour pulses are currently being studied owing to their

possible application in the generation of ultrashort pulses and in the control of the

efficiency of the harmonics, but we shall not use them in the present work. We

shall neglect the effect of the secondary field in the case of the interaction of the

field with single atoms because it is expected to be very weak. By contrast, when

dealing with extended media, this secondary field will be essential and the total
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field will be calculated in a self-consistent way.

Regarding the structure of this report, we have split the contents into four

chapters. The first one is introductory and we shall use it to establish the basis

of our work as well as to make a brief summary of what is known up to now.

We shall review non-linear atomic ionization phenomenology, especially in the

tunnelling regime, which is the most interesting for high harmonics generation,

recalling some of the models proposed to explain that generation; we shall recover

the expressions for the ionization rates that we shall use; we shall define what

we mean when we speak about the emission spectrum of a (classical or quantum)

system; we shall also review the generation of harmonics by free electrons. Finally,

we shall sketch some aspects of the generation and propagation of harmonics in

ionizing (or ionized) media which will be used later. Chapter two is devoted to

the study of the generation of harmonics in a very simple system composed of

two bound levels whose population can be ionized into a continuum state and

then rescatter back with the core. The aim of this chapter is to determine the

influence of a time-dependent ionization and the transitions between bound states

on harmonic generation. These two effects are usually neglected in existing models.

In chapter three, we explain how we simulate the interaction of a plasma with

a laser pulse, paying special attention to certain problems which crop up when

the dynamics of the particles is relativistic and to the inclusion of the ionization

process, which is not usual in most of the codes. In chapter four, we shall explain

the results obtained in our study of the harmonics generated during the ionization

of a solid by a laser, establishing the relative importance of the different processes

that contribute to this generation; we shall also see the importance of propagation

effects, such as phase mismatch, frequency shifts or frequency filtering, in the case

of large enough media.

Before we start, it is also appropriate to make a comment about the units used
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in this report. We have nearly always used atomic units, which are the most useful

to study the interaction between atoms and electromagnetic fields. Recall that

atomic units are defined from the identities e = m = h̄ = 1, c � 137, where e

and m are the absolute values of the charge of the electron and its mass, and c is

the speed of light in vacuum. In this system, since h̄ = 1, both the energy and

frequency are expressed with the same variable ω. In the sections in which purely

classical issues are dealt with, we prefer to use Gaussian units because they are

more usual in the literature. The expressions related to electromagnetic fields are

almost identical in both unit systems. In addition, when we refer to experimental

data such as wavelengths or laser intensities we shall give the equivalence in SI

units for the better understanding of readers not familiar with atomic units.
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Chapter 1

Preliminary concepts

1.1 Nonlinear atomic ionization

Atomic photoionization is a phenomenon that has drawn physicists’ attention for

almost a century and which is still very much alive. After being crucial for the

introduction and acceptance of quantum theory, it is nowadays a clear example of

the inadequacy of perturbative approaches to explain certain physical processes.

The ionization of a quantum system is nonlinear when the condition ω0 < Ip is

fulfilled, where ω0 is the frequency of the incident radiation and Ip is the ionization

potential, i.e. the energy necessary to extract the least bound electron of the system

[1]. It is clear that such a process violates Einstein’s expression for the photoelectric

effect [2], but one can overcome this problem if a multiphoton ionization which

satisfies Kω0 > Ip, K being the integer number of photons absorbed by the system,

is introduced. Multiphoton processes are of course not restricted to the case of

ionization (which is a transition from a bound to a continuum level) but they can be

extended to any transition between bound states, changing Bohr’s third postulate

from its initial form ω0 = Ef − Ei to the multiphoton one Kω0 = Ef − Ei.

Physically, the possibility of having multiphoton transitions is justified by the

uncertainty principle for energy and time, δωδt ≥ 1, which permits the system to

pass through virtual states during a time δt with an energy defect δω.

9
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1.1.1 Kinds of nonlinear ionization

The nonlinear ionization process mainly depends on three parameters: the fre-

quency ω0 and amplitude E0 of the electromagnetic field and the ionization po-

tential of the electron Ip. In fact, a combination of these parameters, the so-called

Keldysh adiabaticity parameter [3] defined as

γ =
ω0(2Ip)

1/2

E0

=

√
Ip

2Up

, (1.1)

separates the different regimes of nonlinear ionization in atoms. Up = E2
0/4ω

2
0 is

the ponderomotive energy, which is the mean energy absorbed by a free electron

from the electromagnetic field in one optical cycle.

Let us now review the different kinds of ionization when the electromagnetic

field amplitude is much lower than the atomic field (good reviews of the interaction

of atoms with intense fields, including many references, can be found in [1, 4, 5, 6,

7]).

Multiphoton ionization

If the condition γ � 1 is fulfilled -that is, the ionization potential is much higher

than the ponderomotive energy, which happens for relatively high frequencies (al-

ways below the ionization potential, of course) or weak fields- the most likely

process is the so-called multiphoton ionization (MPI). In this case, we can graph-

ically describe the process as the absorption of an integer number of photons K

by an electron, which passes to the continuum with a kinetic energy given by

ωf = Kω0 − Ip. The ionization rate (probability of ionization in a time unit) for

weak fields takes the form

w = σ(K)

(
E2

0

ω0

)K

, (1.2)

where σ(K) is the generalized cross section, which depends on the frequency and

the polarization of the field and also on the atomic structure but not on the field
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intensity. It is evident that for K = 1 we recover the well-known photoelectric

effect formula, whose dependence on the field intensity is linear. However, when

the field is intense enough, processes involving a number of photons higher than

that strictly necessary can take place with a similar probability. In this case, we

have above-threshold ionization (ATI), for which the final energy of the electron

will be ωf = (K + S)ω0 − Ip, S being the additional number of absorbed photons.

The first experiments about multiphoton ionization were performed in 1977 by

Lompré et al. [8], whilst above-threshold ionization was first reported by Pierre

Agostini et al. in 1979 [9].

Tunnelling ionization

Let us now go to the case when the Keldysh parameter is smaller than unity,

which happens for very low frequencies and moderately intense fields. We are

then within the so-called tunnelling ionization (TI) regime, which will be the most

interesting for us due to the peculiarity of the harmonics generated in it. In order

to understand what happens in this regime, it is very useful to remember how an

intense static field affects an atom. Let us think, for the sake of simplicity, of a

hydrogen atom in its fundamental state. The wavepacket is then strongly bounded

by the Coulomb barrier, as we can observe in figure 1.1a. When an external field

that is linearly polarized in the x direction is applied, the instantaneous potential

is modified, taking the form V = −1/r + Ex (figure 1.1b). The electron ”sees”

a potential barrier through which it can go via the tunnelling effect if the field is

intense enough. The calculations used to obtain the ionization rate are relatively

simple and yield the expression [10]

w =
4

E
exp

(
− 2

3E

)
, (1.3)

which, as expected, grows with the field intensity.

In the tunnelling regime we have no static field but the frequency is so small
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Figure 1.1: Scheme of the evolution of the atomic wavepacket in the absence of an
external field (a), when the field permits tunnelling ionization (b) and when the
field is so intense that there is barrier suppression.

that we can use an adiabatic approach, valid when the optical cycle is much longer

than the tunnelling time. This tunnelling time can be estimated simply as the

ratio of the distance between the points where the potential barrier crosses the

unperturbed energy of the electron and the velocity of the electron inside the

barrier [11, 12]. The result is τt ≈
√

Ip/E0. The electron can pass through the

barrier when this time is shorter than one optical cycle, i.e., when the Keldysh

parameter is smaller than unity. It can then be assumed that the electron ”sees”

a potential barrier which evolves so slowly that it permits the electron to cross via

tunnelling. After half a cycle the field will change its sign and part of the ionized

population will come back to the neighbourhood of the core. We shall later see

the important effect of this population on the generation of harmonics.

Barrier suppression ionization

The limiting case of tunnelling is the so-called barrier suppression ionization (BSI),

which is depicted in figure 1.1c. This kind of ionization takes place when the field

amplitude is so high that the potential barrier lies below the ionization potential

level, the electron wavepacket being free to escape from the nucleus. For even

higher intensities, and contrary to what one would expect intuitively, the ionization

is not so fast, but a stabilization regime can be reached in which a large amount of

the population is trapped in the bound states closest to the continuum (Rydberg
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states) due to interference effects in the wavefunction. Both barrier suppression

ionization and stabilization cannot be readily observed in the experimental setting

because they require such intense fields that the atoms are first ionized either by

tunnelling or by multiphoton channels during the first part of the pulses before

they interact with the peak pulses.

1.2 Ionization rate in the tunnelling regime

We believe that it is convenient to sketch the deduction of the expression for the

ionization rate in the tunnelling regime since it will be used quite frequently along

this work [1, 14, 15].

Let us start with the expression which gives the probability amplitude of a

transition between an initial bound state |i〉 and a final continuum state |f〉, which

is given in the interaction picture by the S-matrix element [13]:

aif (t) = −i
∫ t

0
〈Ψf | V (r, t′) | Ψ0

i 〉dt′. (1.4)

where V (r, t) includes, in principle, both the Coulomb potential and the interaction

with the external electromagnetic field.

The Keldysh-Faisal-Reiss approach [3, 16, 17] (KFR in the literature) consists

in neglecting the Coulomb contribution to the continuum state. In this case, the

interaction term in the momentum gauge takes the form

V (r, t) =
p · A

c
+

A2

2c2
(1.5)

and the final state is a Volkov wave:

Ψ
(V )
f = exp

[
−ipr +

i

2

∫
(p +

A

c
)2dt

]
. (1.6)

If we wish to take into account the effect of the atomic potential on the final

state, we can use the perturbative theory and pass from Ψ
(V )
f to IΨ

(V )
f , where the
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Coulomb correction is given by [14]

I = exp
(
−i

∫ −Z

r
dt

)
, (1.7)

where Z is the atom or ion charge. This correction is determined by the moments of

time during which the field is near its extreme values because then the probability

of the electron crossing the barrier is maximum. The integral in (1.4) takes one

or another value depending on the initial state and on the electromagnetic field

polarization. For instance, when the initial state has a principal quantum number

n and an orbital number l = 0, and the field is linearly polarized, E = E0 cos ω0t x̂,

the transition amplitude, if the field is weak enough, is

anf (t) =
2n

n!

(CIZπ

n

)1/2
∫ t

0
exp [ig(t′)]dt′, (1.8)

where CI = (2Z3/n3E0)
2n comes from the Coulomb interaction term I and the

function g(t) is defined as

g(t) =

(
p2

2
+

Z2

2n2
+

E2
0

4ω2
0

)
t +

pxE0

ω2
0

cos ω0t −
E2

0

8ω3
0

sin 2ω0t. (1.9)

In order to solve (1.8), the different contributions of each field cycle must be

added, and the following expression is obtained for the transition probability

Wnf (t) = |anf (t)|2 =

∣∣∣∣∣anf

(
2π

ω0

)∣∣∣∣∣
2
ω2

0t

2π
δ

(
p2

2
+

Z2

2n2
+

E2
0

4ω2
0

− Nω0

)
. (1.10)

N is the number of photons absorbed in the process and the Dirac δ function

stands for energy conservation. In order to find the angular and energy distribution

of the ionized electrons in the Nth-order process, it is sufficient to divide the

previous expression by time, multiply the result by the final state density and

integrate this over the momentum, obtaining

dwN

dΩ
=

22n−1pω2
0ZCI

(2π)3nn!2

∣∣∣∫ 2π/ω0

0
exp [ig(t)]dt

∣∣∣2, (1.11)
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where the momentum p must fulfill the energy conservation law in equation (1.10).

The integral in (1.11) is not easy to solve unless further approximations are done.

In the tunnelling limit, when the field is below the barrier suppression value, the

saddle-point or stationary phase method can be used (see, for instance, [18, 19]).

In this method the only contributions to the integral that are taken into account

are those coming from the most significant points, which are the classical turning

points, i.e. those for which ġ(t) = 0. Using this approximation and integrating

over the angular momentum, it follows that

wN =
ω2

0CI2
2n

2πZp
exp

(
− 2Z3

3En3
− p2γ3

3ω0

)
, (1.12)

where γ is the Keldysh parameter. Finally, summing up the number of photons

we will have the total transition probability per unit of time

w =
22nnCIE

4Zn!2

(3En3

πZ3

)1/2
exp

(
− 2Z3

3n3E

)
, (1.13)

where we have used the condition that γ << 1 in the tunnelling regime. If we

compare the previous expression with the one obtained for circular polarization,

when the field amplitude always remains the same, we observe that

wl =
(3En3

πZ3

)1/2
wc, (1.14)

where it is clear that this difference comes from averaging the electric field over

one optical cycle in previous calculations. Hence, if we wish to use this expression

for a time-dependent instantaneous field we must neglect the term 3En3/πZ3.

It is also possible to perform the same calculations when the initial state has an

angular momentum different from zero and for non-hydrogen-like atoms or ions.

The general result is [20]

w(|E|) = CI |Cnl|2f(l, m)
Z2

2n2

(n3|E|
2Z3

)m+1
exp

(
− 2Z3

3n3|E|
)
, (1.15)
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where n, l, m are the effective quantum numbers and f and Cnl are defined as

f(l, m) =
(2l + 1)(l + |m|)!

2|m|(|m|)!(l − |m|)! , |Cnl|2 =
22n

n(n + l)!(n − l − 1)!
. (1.16)

In order to obtain averaged expressions, we have to substitute |E| by E0 and

add the term (3E0n
3/πZ3)1/2. It is trivial to check that in the case of the ground

level of the hydrogen atom and a static field expression (1.15) reduces to (1.3).

The validity of the previous formulae is restricted, as we have mentioned, to

the tunnelling regime. This imposes two restrictions on the field intensity. First,

to ensure that the Keldysh parameter is smaller than one and that an adiabatic

approach is valid, the field has to be intense enough (or its frequency very small,

so that we should be within the infrared or even the microwaves regions in which

tunnelling has been observed from Rydberg states [13, 21]). In this sense, when

γ ≈ 1 both tunnelling and multiphoton ionization coexist, although it has been

observed that the obtained expressions are a good approximation in this borderline

situation [22]. On the other hand, we know that to avoid the barrier suppression

the field intensity cannot be too high. Calculation of the critical field value for

which the potential barrier is exceeded is very simple if we assume that the electron

escapes in the direction of the electric field. In this case, we only have to equate the

bound energy −Ip with the sum of the atomic and the interaction potential −Z/x+

Ex, obtaining a critical field Ecr = I2
p/4Z [23]. For the hydrogen ground level its

value is E1s
cr = 0.0625 a.u., which means an intensity I � 1.4×1014W/cm2. In fact,

for a tridimensional system such as hydrogen, the critical value is higher because

the motion of the electron is not restricted to the direction of the field polarization.

The real barrier suppression occurs, in the case of the ground state, for a field

E1s
cr � 0.15 a.u. (I � 1015W/cm2) [24, 25]. When the field amplitude is greater

than this value, the expressions for the tunnelling ionization rate overestimate the

real ionization rates in the barrier suppression regime [14].

In any case, these formulae are used in calculations dealing with atomic ioniza-
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tion due to their simplicity and also because they have been tested experimentally

with good results for different media [26]. We are especially interested in them

because of their strong indirect dependence on time via the oscillating field.

1.3 Emission spectrum of a system. Harmonic

generation

Harmonic generation is perhaps the most typical process of nonlinear optics. This

phenomenon has been much studied since the appearance of the first experimental

evidence of second harmonic generation in crystals [27, 28] due to the availabil-

ity of more and more intense lasers. In rare gases, after the observation of low

order harmonics, which could be explained with perturbative theories, higher or-

der harmonics were soon detected whose intensity did not decrease exponentially

with their order. Harmonics higher than the 150th order have recently been ob-

served with neodymium (λ = 1053 nm) and titanium-sapphire (λ = 800 nm) lasers

[29, 30]. Nowadays, the aim is not to break high frequencies records, since the soft

X-ray range is easily reached, but rather to obtain better intensity efficiencies,

as well as to gain a better understanding of the different mechanisms underlying

coherent emission at such high frequencies.

Harmonic generation is therefore a general phenomenon. When we illuminate a

medium with an intense electromagnetic field, both free and bound charges oscillate

in a nonlinear way. This produces a secondary emission not only with the incident

frequency but with other contributions, some of which are integer multiples of the

initial one. These latter are the harmonics.

Before describing the generation of harmonics in real systems, it is convenient

to recall what we mean when talking about the emission spectrum of a system.

In this section we shall not use atomic but Gaussian units because the latter are

more common in the literature.
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1.3.1 Emission spectrum of classical particles

Liénard-Wiechert potentials are appropriate to find the energy radiated by a clas-

sical accelerated particle. We shall also use them when speaking about plasma

simulations, so we think it useful to recall how they are calculated in 3D space.

Let us start from the wave equations for the scalar and vector potentials [31]

∇2φ − 1

c2

∂2

∂t2
φ = −4πρ, (1.17)

∇2A − 1

c2

∂2

∂t2
A = −4π

c
J, (1.18)

where ρ and J are respectively the charge and current densities, and we have

imposed the Lorentz gauge condition

∇ · A +
1

c

∂

∂t
φ = 0. (1.19)

The electric and magnetic field are given by

E = −∇φ − 1

c

∂

∂t
A, (1.20)

B = ∇× A. (1.21)

The Green’s function technique is used to solve the wave equation. The retarded

Green’s function for the three-dimensional wave equation is [32]

G+(r, t; r′, t′) =
δ(t′ − t + R/c)

R
; t > t′, R = |r − r′|, (1.22)

and the solution of the scalar potential is obtained simply as

φ(r, t) =
∫ ∫

G+(r, t; r′, t′)ρ(r′, t′)dr′dt′. (1.23)

The expression for the vector potential is obtained by replacing ρ by J/c. If we

have only one particle whose charge is qm, position rm and velocity vm, the charge

and current densities can be expressed as

ρ(r, t) = qmδ[r − rm(t)] = qmδ
[
r − rm(0) −

∫ t

0
dτvm(τ)

]
, (1.24)

J(r, t) = qmvm(t)δ[r − rm(t)] = qmvm(t)δ
[
r − rm(0) −

∫ t

0
dτvm(τ)

]
.(1.25)
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Substituting (1.22) and (1.24) in (1.23) and performing the integral over t′ we

arrive at

φm(r, t) = qm

∫ dr′

R
δ
[
r′ − rm(0) −

∫ t−R/c

0
dτvm(τ)

]
, (1.26)

and introducing the new variable

u = r′ − rm(0) −
∫ t−R/c

0
dτ vm(τ); du = (1 − βm · n)|t−R/c dr′, (1.27)

with βm = vm/c, n = (r′ − r)/R (the unit vector in the direction of observation).

|t−R/c means that βm must be measured in the retarded time. The solution of

(1.26) is quite simple with the new variable,

φm(r, t) =
qm

Rn(1 − βm · nm)

∣∣∣∣∣
ret

, (1.28)

where Rm = |r − rm|, nm = (rm − r)/Rm and now the retarded time is t′m =

t−Rm(t′)/c and the position rm(t′m) = rm(0) +
∫ t′m
0 dτvm(τ). In a similar way the

solution for the vector potential can be obtained,

Am(r, t) =
qmβm

Rm(1 − βm · nm)

∣∣∣∣∣
ret

. (1.29)

Once we have the potentials, we can use (1.20) and (1.21) to obtain the electric

and magnetic fields. The calculation is slightly tedious and the result is [31]

Em(r, t) = qm

[
nm − βm

γ2
mR2

m(1 − βm · nm)3
+

nm × [(nm − βm) × β̇m]

cRm(1 − βm · nm)3

]∣∣∣∣∣
ret

, (1.30)

Bm(r, t) = nm

∣∣∣∣∣
ret

× Em(r, t), (1.31)

with β̇m = dβm/dt and γm = (1 − β2
m)−1/2. It is clear that the electric (and

magnetic) field includes two different contributions. The first part in (1.30), which

will be written E(v)
m , varies as R−2 and vanishes when we depart from the particle

a long way. This is the velocity or near field. By contrast, the second one, which

is called acceleration or far field, varies as R−1. This is the most important one
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and can propagate as a wave. It will be written E(a)
m . From now on we shall drop

the subindices to unburden the notation.

The energy flux is given by the Poynting vector, S = c/4π E×B = c/4π |E|2n,

from which we can obtain the emitted power per unit solid angle

dP (t)

dΩ
= R2|S(t)|. (1.32)

When the particle moves with a velocity much lower than c in our reference

frame, we can approximate the acceleration field by

E(a) =
q

c

[n × n × β̇

R

]∣∣∣∣∣
ret

, (1.33)

and hence
dP (t)

dΩ
=

q2

4πc3
|v̇|2 sin2 Θ, (1.34)

where Θ is the angle between the direction of observation and the particle’s accel-

eration. Integrating over the solid angle, we shall obtain the total power radiated

by the charge, which is the well-known Larmor’s expression in the non-relativistic

regime [31]

P (t) =
2

3c3
|d̈(t)|2, (1.35)

where d = qr is the dipole momentum of the particle. We shall always deal

with signals which have finite duration because in our simulations (and also in the

laboratory) an infinite time has no sense. Hence, we can define the power spectrum

as ∑
n≥0

S(ωn) =
1

T

∫ T

0
P (t) dt, (1.36)

where T is the duration of the signal and ωn = nΔω = 2πn/T . Expanding the

dipole acceleration in Fourier series,

d̈(t) =
∞∑

n=−∞

¨̃d(ωn)e−iωnt (1.37)
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and using Parseval’s theorem

1

T

∫ T

0
|d̈(t)|2 dt = 2

∞∑
n=0

|¨̃d(ωn)|2, (1.38)

we arrive at

S(ωn) =
4

3c3
|¨̃d(ωn)|

2

. (1.39)

This expression, as we have said, is valid in the non-relativistic regime (v � c),

which, in the case of a charge moving inside an external electromagnetic field, co-

incides with the dipole approximation, i.e. we can use it when the field wavelength

is much longer than the dimensions of the system. With this approximation, the

emission spectrum of a classical system is determined by its dipole acceleration.

By contrast, calculations are more difficult in the relativistic regime. The

generalized Larmor’s formula for the total emitted power has the form [33]

P (t) =
2q2

3c3
γ6[β̇2 − (β × β̇)2]. (1.40)

When the motion of the particle is periodic, the system emits only with frequen-

cies which are integer multiples of the proper frequencies, i.e. it emits harmonics

ωl = lω0. In this case, if the observation point is very distant from the area in

which the acceleration is produced, the power per unit solid angle radiated in each

mode during an optical cycle is [31]

dS(ωl)

dΩ
=

q2ω4
0l

2

(2πc)3

∣∣∣∣∣
∫ 2π/ω0

0
dt n × (n × v)eilω0(t−n·r(t)/c

∣∣∣∣∣
2

, (1.41)

which is an expression that can be used to calculate the power in each harmonic

component emitted by free charges under relativistic motion. If we have charge and

current densities instead of single charges, we shall replace qv by J. In the case of

extended media, we shall use the squared modulus of the Fourier transform of the

field, measured at a sufficient distance from the medium, as the power spectrum.

It is proportional to dS/dΩ.



22 Chap. 1 Preliminary concepts

1.3.2 Quantum system spectrum

In the case of a quantum system, things are rather more complicated and an in-

depth study is out of the scope of this work. Here we shall sketch a very simple

scheme which will permit us to relate the quantum spectrum with the classical one

[34, 35, 36]. Thorough studies on classical and quantum spectra can be found, for

instance, in references [37, 38].

Let us start with the Hamiltonian describing the interaction between the atom

system and the external field,

H = HA + HF − d · E. (1.42)

HA and HF are the corresponding atom and field Hamiltonians and −d · E is

the interaction term. The field Hamiltonian, neglecting the zero-point energy, is

HF =
∑

k,λ h̄ωka
†
k,λak,λ, with ωk = kc. The electric field operator in the dipole

approximation takes the form

E = i
∑
k,λ

(2πh̄ωk

V0

)1/2
(ak,λ − a†

k,λ)ε̂k,λ, (1.43)

where ak,λ and a†
k,λ are the creation and annihilation operators of a plane wave

with wave vector k and polarization λ, V0 is the quantization volume and the real

unitary vectors ε̂k,λ form a linear polarization basis. The Hamiltonian (1.42) is

therefore written as

H = HA +
∑
k,λ

h̄ωka
†
k,λak,λ − ih̄

∑
k,λ

Ck,λdk,λ(ak,λ − a†
k,λ), (1.44)

with Ck,λ = (2πωk/h̄V0)
1/2 and dk,λ = d · ε̂k,λ. We obtain the evolution of the

annihilation operator by using Heisenberg’s equations of motion,

ih̄
dak,λ

dt
= [ak,λ, H], (1.45)

which yields

ȧk,λ = −iωkak,λ + Ck,λdk,λ, (1.46)
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which can be formally solved to obtain

ak,λ(t) = ak,λ(0)e−iωkt + Ck,λ

∫ t

0
dk,λ(t

′)eiωk(t′−t)dt′. (1.47)

The corresponding equation for the creation operator is obtained by complex

conjugates of the previous equation. The energy exchange between the system and

the field during the interaction time is given by

1

T

∫ T

0
dt P (t) =

1

T

∑
k,λ

h̄ωk〈a†
k,λ(t)ak,λ(t)〉. (1.48)

The number of photons in mode (k, λ) is calculated using (1.47),

〈a†
k,λ(t)ak,λ(t)〉 = 〈a†

k,λ(0)ak,λ(0)〉

+ 2Re
[
Ck,λ

∫ t

0
〈a†

k,λ(0)dk,λ(t
′)〉e−iωkt′dt′

]

+ |Ck,λ|2
∫ t

0
dt′

∫ t

0
dt′′〈d†

k,λ(t
′)dk,λ(t

′′)〉eiωk(t′′−t′). (1.49)

It is evident that the first term represents the number of photons at the initial

time and will be null if the corresponding modes are not excited at the beginning

of the interaction. Regarding the second summand, this stands for the absorption

or the stimulated emission in mode (k, λ), i.e. with the same frequency and po-

larization as the external field. If that mode is initially a coherent state |αk,λ〉, we

shall have αk,λ|αk,λ〉 = α(k,λ)|αk,λ〉 and then

2Re
[
Ck,λ

∫ t

0
〈α†

k,λ(0)dk,λ(t
′)〉e−iωkt′dt′

]
= 2Re

[
α(k,λ)Ck,λ

∫ t

0
〈dk,λ(t

′)〉e−iωkt′dt′
]
.

(1.50)

Thus, the expected value of the dipole projection in the field polarization di-

rection gives us the absorption or stimulated emission spectrum. Obviously, this

term also vanishes if the mode |ak,λ〉 is not initially excited and hence the third

term is the only one of interest for us. It comes from scattering and spontaneous

emission and depends on the dipole correlation function,

〈a†
k,λ(t)ak,λ(t)〉(S) = |Ck,λ|2

∫ t

0
dt′

∫ t

0
dt′′〈d†

k,λ(t
′)dk,λ(t

′′)〉eiωk(t′′−t′) (1.51)
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Frequently, the approximation 〈d†(t′)·d(t)〉 � 〈d†(t′)〉·〈d(t)〉 is done and hence

the spectrum is calculated as

〈a†
k,λ(t)ak,λ(t)〉(S) ≈ |Ck,λ|2

∣∣∣∫ t

0
dt′〈dk,λ(t

′)〉eiωkt′
∣∣∣2. (1.52)

The validity of this approximation is only guaranteed when dealing with a set

of N atoms instead of a single one. In that case dk,λ =
∑

i dk,λ,i and (1.51) becomes

〈a†
k,λ(t)ak,λ(t)〉(S) = |Ck,λ|2

N∑
i=1

N∑
j=1

∫ t

0
dt′

∫ t

0
dt′′〈d†

k,λ,i(t
′)dk,λ,j(t

′′)〉eiωk(t′′−t′). (1.53)

If the atoms are far enough apart from each other, the interactions among them

can be neglected, having 〈d†
k,λ,i(t

′)dk,λ,j(t
′′)〉 = 〈d†

k,λ,i(t
′)〉〈dk,λ,j(t

′′)〉 if i 	= j. We

shall have 〈a†
k,λ(t)ak,λ(t)〉(S) = C

(S)
N + I

(S)
N , with

C
(S)
N = |Ck,λ|2

N∑
i,j=1,i�=j

∫ t

0
dt′

∫ t

0
dt′′〈d†

k,λ,i(t
′)〉〈dk,λ,j(t

′′)〉eiωk(t′′−t′)

� N2|Ck,λ|2
∣∣∣∫ t

0
dt′〈d†

k,λ,i(t
′)〉e−iωkt′

∣∣∣. (1.54)

I
(S)
N = |Ck,λ|2

N∑
i=1

∫ t

0
dt′

∫ t

0
dt′′〈d†

k,λ,i(t
′)dk,λ,i(t

′′)〉eiωk(t′′−t′)

� N |Ck,λ|2
∫ t

0
dt′′〈d†

k,λ,i(t
′)dk,λ,i(t

′′)〉eiωk(t′′−t′), (1.55)

where we have assumed that all the atoms experience the same field, i.e. the dipole

approximation is still valid. When the number of photons is large, the coherent

contribution C
(S)
N is much greater than the incoherent one, I

(S)
N , and it makes sense

to calculate the spectrum from the expected value of the dipole moment instead

of its correlation. The importance of the incoherent term has been studied for

two-level [39] and hydrogen-like [40] atoms, but we shall not study this here. With

this approximation and using (1.48), we shall have

1

T

∫ T

0
dt P (t)(S) =

∑
k,λ

2πω2
k

V0

∫ T

0
dt′

∫ T

0
dt′′〈d†

k,λ(t
′)〉〈dk,λ(t

′′)〉eiωk(t′′−t′). (1.56)
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If we define the Fourier components of the dipole as

d̃k,λ(ωk) =
1

T

∫ T

0
dt e−iωkt〈dk,λ(t)〉, (1.57)

and transform the sum over the wave vectors in the k-space in a sum over frequen-

cies by integrating over the solid angle

∑
k

=
∑
n

∫ k2 dΩ(
2π
L0

)2 , (1.58)

we obtain
1

T

∫ T

0
dt P (t)(S) =

∑
n≥0

ω2
n

2πc3

∫
dΩ

∑
λ

|d̃n,λ(ωn)|2, (1.59)

where we have used the fact that the quantization length is L0 = V
1/3
0 = cT

because Δk = Δω/c. If we perform the integral and sum over both polarizations,

we have
1

T

∫ T

0
dt P (t)(S) =

∑
n≥0

S(ωn) =
∑
n≥0

4

3c3
ω4

n|d̃(ωn)|2. (1.60)

In the case of a harmonic signal the equality
¨̃
d(ω) = ω2d̃(ω) is fulfilled and we

obtain the classical expression (1.39). In the general case, since it is not possible

in practice to integrate over an infinite time but only up to a maximum time T , it

is clear that

∫ T

0
e−iωtd̈(t)dt = e−iωT ḋ(T ) + iωeiωTd(T ) − ω2

∫ T

0
e−iωtd(t)dt, (1.61)

and hence when both the dipole and its velocity vanish at t = T , the difference

between the spectrum calculated using the dipole acceleration and the dipole mo-

mentum will be the ω4 factor, but it will not be the same in general, especially if

there is a noticeable ionization because in this case the dipole does not vanish at

all at the end of the calculation, except if we use an immense grid. That is why

dipole acceleration is used instead of dipole momentum, making use of Ehrenfest’s

theorem [41, 42, 43] and calculating the dipole acceleration with

d̈(t) = 〈−∇H〉. (1.62)
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In the present work, when we speak about atomic spectra, we refer to the

expression analogous to the classical one (1.39) (without the prefactor). In the

two-level system case it is very easy to calculate. When making comparisons

with hydrogen spectra, dipole acceleration will be calculated by means of equation

(1.62).

1.4 Harmonic generation in atoms

Let us now review the main characteristics of the harmonic spectrum generated

by an atom irradiated by an intense laser pulse. We choose hydrogen for a simple

reason: it is the only real system which to date has been exactly simulated by

solving the time-dependent Schrödinger equation. Recently, attempts have been

made to solve helium, the following system in complexity but for a restricted range

of field parameters and not without difficulties [44, 45]. The results for hydrogen

can be automatically extended to the rest of hydrogen-like ions by rescaling the

atomic variables and indeed to any atomic system for which the one active electron

approximation works correctly (especially alkaline elements). In any case, the main

characteristics of the harmonic spectrum of hydrogen have also been observed

in many experiments with different gases. The spectra to be shown here were

calculated with a ten-cycle long trapezoidal pulse as shown in figure 1.2. When we

refer to the field amplitude we mean the flat envelope part, which is the only one

considered to calculate the spectra.

We begin with the case of a very weak field for which ionization is negligible. In

this situation, only the transitions between bound levels are relevant. Harmonics

are generated when the electron absorbs K photons and moves from an initial

state |i〉 to a final one |f〉 passing through virtual intermediate states, as was

explained in section 1.1 and is depicted in figure 1.3. Since the final state is not

stable, the electron will come back to the initial one, emitting a photon with
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Figure 1.2: Scheme of the laser pulse used to calculate the spectra.

Figure 1.3: Scheme of the harmonic generation process in transitions between
bound states.

energy Kω0. K must be an odd number because of the symmetry of the Coulomb

potential. Transitions involving an even number of photons are not permitted in

this case. The relative intensity of the harmonics will decrease depending on the

field parameters, but the existence of intermediate (or final) resonant states with

the laser frequency can make things different.

In figure 1.4 we see a harmonic spectrum which is typical of the transitions

among bound states. A few harmonics are visible together with other relevant

frequencies determined by the different resonances
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Figure 1.4: Harmonic spectrum of hydrogen for a pulse with frequency ω0 = 0.1
a.u. and amplitude E0 = 0.02 a.u.

In the multiphoton ionization regime, the mechanism is very similar, but in this

case the transition energy will be greater than the ionization potential and thus

the final state will not be bound but will lie inside the continuum. The scheme is

represented in figure 1.5. In this case the number of visible harmonics as well as

their intensities basically depend on the amplitude of the electric field: the higher

the amplitude, the more likely the different channels of above-threshold ionization

and the higher the harmonics. In figure 1.6 we see an example of a multiphoton

spectrum. The shape is quite similar to the bound-bound transition case, but

the peaks are more intense and the relative importance of resonances is lower.

Harmonics higher than the seventh correspond to above-threshold processes and

are less and less probable.

As we already know, the atom dynamics in the tunnelling ionization regime is

different from the multiphoton case and this will have great bearing on the har-

monic yield. The spectrum has certain peculiar features which have been observed
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Figure 1.5: Scheme of the process of harmonic generation in the multiphoton
ionization regime. Photons represented with white arrows indicate the possibility
of above-threshold ionization.

Figure 1.6: Harmonic spectrum of hydrogen for a pulse with frequency ω0 = 0.1
a.u. and amplitude E0 = 0.04 a.u.
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Figure 1.7: Harmonic spectrum of hydrogen when the pulse has a frequency ω0 =
0.04 a.u. and amplitude E0 = 0.06 a.u. The arrow points to the frequency given
by equation (1.63).

in experiments and also in the first computer simulations performed by Krause et

al. [42]. There are usually a few low order harmonics whose intensities decrease

exponentially following the perturbative laws. Then, a wide region of harmonics

with similar intensities appears, called a plateau. This plateau ends sharply at a

cutoff frequency given by the empirical law

ωco = Ip + 3.17Up. (1.63)

Beyond this frequency, the intensity of the harmonics decreases quickly and

higher order harmonics are hardly visible. In figure 1.7 we see a typical spec-

trum corresponding to the tunnelling ionization regime. The differences with the

previous ones need no additional comment.

It is clear from expression (1.63) that the maximum frequency can be made

higher by decreasing the frequency of the field and raising its intensity. In fact, as

has been previously mentioned, harmonics with orders greater than the 150th have
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Figure 1.8: Harmonic spectrum for a pulse with frequency ω0 = 0.04 a.u. and
amplitude E0 = 0.15 a.u. The maximum frequency is scarcely 1.6Up.

been observed when the incident wavelengths are in the visible range. In spite of

this, this process is not the panacea. First, if we try to use much more intense

lasers, we move to the barrier suppression regime. In this case, the maximum

frequency does not follow the law (1.63) and, what is even worse, the visibility of

the harmonics is seriously damaged, as we can see in figure 1.8. Second, but no less

important, the harmonics emitted by each atom will not add coherently but will

be lost during propagation due to phase mismatch effects. We shall see how these

mismatch effects will be more important when the medium is denser. This is why

high harmonics are only observed in very rare media and thus with low efficiency.

Several theories have been advanced in recent years to explain this strange

behaviour of the harmonics generated in the tunnelling regime. Let us recall the

two most successful ones, which are very useful for understanding the physical

phenomena and which have been ”patched up” on many occasions. We shall use

both them when studying the effect of bound-bound transitions in the tunnelling
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regime.

1.4.1 The classical model

This is usually known as the simpleman’s model and it is really the simplest of

all. It assumes that once the wavepacket has become ionized, it behaves as a

classical particle that evolves in the external electromagnetic field, both the effect

of the Coulomb potential and the typical phenomenology of a quantum wavepacket

(diffusion, coherent effects, etc.) being neglected. This model was proposed by van

Linden and Muller [46], and Gallagher [47] to study above-threshold ionization and

used by Corkum [48] and Kulander and Schafer [49] to explain the plateau in the

harmonic spectrum in the tunnelling regime.

Let us assume that we have a particle which ionizes at the instant t0 and evolves

under a monochromatic external field which is linearly polarized in the x direction.

Its classical equations of motion are

d2x

dt2
= −E0 sin(ω0t) (1.64)

dx

dt
=

E0

ω0

[cos(ω0t) − cos(ω0t0)] + v0(t0) (1.65)

x = − E0

ω0
2
[ω0(t − t0) cos(ω0t0) + sin(ω0t0) − sin(ω0t)]

+ v0(t0)(t − t0) + x0(t0). (1.66)

Here, we have neglected relativistic effects (magnetic field and inertial mass

correction) because the field intensity is so small in the tunnelling regime that

they are not relevant. We can see that the velocity includes two distinct terms,

a drift term, vd = v0(t0) − E0/ω0 cos(ω0t0), and a ponderomotive term, vp =

E0/ω0 cos(ω0t), which describes the oscillation in the external field. This is why

the trajectory depends strongly on the initial phase of the electric field ω0t0. Some

particles come back to the core position once, several times, or never. Those which

return acquire some kinetic energy from the electric field. This model proposes
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that there exists the probability that the returning particles will recombine and

go back to the ground state during rescattering. At that moment, the electron

emits a photon whose energy equals the particle’s energy: kinetic plus ionization

potential. In order to calculate the kinetic energy at the instant of recollision, we

can assume that the initial velocity in the tunnelling regime is zero because it is an

adiabatic process and because zero is the mean value of the velocity in the initial

state. The initial position, x0(t0), depends on the shape of the potential barrier but

we can assume in first approximation that it is also very small as compared with

the excursion suffered by the electron and hence x0(t0) � 0. In this case, we have

to look for solutions of x(t) = 0, t > t0 in equation (1.66) and find T (t) = v2(t)/2.

In figure 1.9a we have depicted the trajectories of the ionized particles in half

a cycle as a function of the initial phase. The returning particles are those which

left the atom with initial phases ω0t0 ∈ [π/2, π] ∪ [3π/2, 2π]. We see the kinetic

energy of the particles that return at the instant of the first recollision in figure

1.9b. The maximum energy takes a well-known value, TM = 3.17Up, precisely

when ω0t0 � 107◦, 287◦. Further recollisions do not raise this maximum energy.

We notice, therefore, that a very simple classical picture provides us with the

first explanation of the reason why high harmonics are generated in the tunnelling

regime. This model can be extended to different regimes. In the case of multi-

photon ionization, the important difference is that we can no longer consider the

initial velocity to be null because it will be given by the energy excess taken from

the field in the ionization process; i.e. v0(t0) = [2(Kω0 − Ip − Up)]
1/2. This new

contribution to the drift velocity shifts the trajectories and hence fewer particles

with high kinetic energy return to the core. Moreover, the ponderomotive energy

measured in photon numbers is also lower in this regime, which is another reason

preventing us from obtaining high order harmonics. The only possibility to get

them would be to raise the field intensity such that the probability of high order
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Figure 1.9: Trajectories of the ionized particles as a function of the initial phase (a).
Solid lines represent the trajectories which recross x = 0; dotted lines represent
those which never cross again. Dashed line represents the amplitude of the electric
field. Graph (b) represents the kinetic energies of the returning particles at the
instant of their first recollision with the core.
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above-threshold processes is relevant However, in this case, too, the probability of

the electrons coming back to the core decreases. Regarding the barrier suppression

regime, the electrons that are ionized before the field lowers the potential barrier

to the rest energy of the electron (whether by tunnelling or multiphoton absorp-

tion) behave in the same way we as have explained above. From this point on, the

rest of electrons are instantaneously released and have a negligible probability of

coming back to the atom again. This explains the decrease in the intensity and

number of harmonics in the barrier suppression regime [50].

1.4.2 Quantum model

There is no doubt about the importance of the simpleman’s model, which provides

us with a natural and meaningful explanation of the mechanism underlying har-

monic generation during atomic ionization. Notwithstanding, we cannot forget the

limitations arising from its purely classical nature, which somehow render it unsat-

isfactory. A more convincing quantum model was proposed in 1994 by Lewenstein

et al [51]. This model solves the time-dependent Schrödinger equation taking into

account four assumptions: (a) the only relevant bound state is the ground one, the

effect of the rest of them being neglected; (b) the depletion of the ground state

due to ionization is negligible; (c) the electron in the continuum behaves as a free

wavepacket moving in the electric field, the effect of the atomic potential being

neglected; and (d) the effect of transitions between continuum states with differ-

ent energies can also be neglected. To a certain extent, these four assumptions

limit the validity of the model. Regarding the third assumption, this is equiva-

lent to the above-mentioned Keldysh-Faisal-Reiss approach and can be accepted

whenever the ponderomotive energy is high enough; for instance, in the tunnelling

regime. If we restrict ourselves to that regime, the fourth one makes sense, but

is no longer acceptable in the above-threshold ionization case. Assumption (a) is
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questionable and later we shall attempt to offer an answer to it. The same is the

case of (c), which in principle does not seem to be justified since we are studying

ionization regimes, for which the depletion is important. In the original work, the

model is corrected by introducing a constant ionization rate and observing that

the generation of harmonics does not change relevantly. We shall also study this

aspect later on. To begin, however, let us accept the four assumptions and posit

that the electronic wavefunction can be expressed as

|ψ(t)〉 = eiIpt
(
a(t)|0〉 +

∫
dv b(v, t)|v〉

)
, (1.67)

where a(t) � 1 is the ground state amplitude, b(v, t) the continuum ones, and the

exponential factor stands for the oscillations of the ground state with its proper

frequency Ip. The Schrödinger equation in the dipole approximation takes the

form

i
∂

∂t
|ψ(t)〉 =

[
−1

2
∇2 + V (r) − E sin(t)x

]
|ψ(t)〉, (1.68)

where we are assuming that the field is linearly polarized in the x direction and

the units of frequency and energy are those of the field. Using (1.67) in (1.68) we

arrive at

ḃ(v, t) = −i
(v2

2
+ Ip

)
b(v, t) − E sin(t)

∂b(v, t)

∂vx

+ iE sin(t)dx(v), (1.69)

where d(v) = 〈v|r|0〉 is the dipole matrix element corresponding to the transition

whose projection along the polarization direction of the field is dx(v), which gives

us all the information we need to have about the atom. Equation (1.69) can be

solved in a formal manner, to obtain

b(v, t) = i
∫ t

0
dt′E sin(t′)dx(v + A(t) − A(t′))

× exp
{
−i

∫ t

t′
dt′′

[
(v + A(t) − A(t′′))2/2 + Ip

]}
. (1.70)
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A(t) = E cos(t)x̂ is the vector potential. Introducing (1.70) in (1.68) and using

assumption (d) we can find the dipole momentum

x(t) = 〈ψ(t)|x|ψ(t)〉 = 2Re
∫

dvd∗
x(v)b(v, t)

= 2Re

[
i
∫ t
0 dt′

∫
dpE sin(t′)dx(p − A(t′))d∗

x(p − A(t))e[−iS(p,t,t′)]

]
, (1.71)

Here, p = v + A(t) is the canonical momentum and the quasiclassical action is

S(p, t, t′) =
∫ t

t′
dt′′

(
[p − A(t′′)]2

2
+ Ip

)
. (1.72)

We can interpret (1.71) in the following way: E sin(t′)dx(p − A(t′)) is the prob-

ability amplitude for the electron to make a transition from the ground level to

the continuum with canonical momentum p at time t′. The wavepacket is then

propagated in the field, acquiring a phase given by the complex exponential of the

action S(p, t, t′), its momentum remaining unchanged (here we are neglecting the

effect of the atomic potential). Finally, the electron recombines at time t′ with a

probability amplitude given by d∗
x(p − A(t)).

In order to solve the integral over the momentum in (1.71), we can again use the

saddle-point method. We can justify this approach because the dipole momenta

vary much more slowly than the quasiclassical action and the integral can be well

approximated by the contributions of those points in which the gradient (in p) of

the action vanishes; i.e., precisely those in which the electron ionized at time t′

comes back to the original position at t:

∇pS(p, t, t′) = r(t) − r(t′) = 0. (1.73)

It is also clear that r(t) must be close to the origin if the transitions take place.

This can be checked by taking the dipole momentum dx(p − A(t′)) calculated for

the Coulomb potential and observing that its Fourier transform is localized close

to the nucleus in the scale of Bohr’s radius. We then recover the result of the
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simpleman’s model: the contribution of the electrons which are ionized and come

back to the core after moving in the external electric field is the most important

one to the dipole momentum, and hence to harmonic generation. With this in

mind, the result for the dipole is

x(t) = 2Re

[
i
∫ ∞

0
dτ

( π

ε + iτ/2

)3/2
d∗

x(pest(t, τ) − Ax(t))

dx(pest(t, τ) − Ax(t − τ))E sin(t − τ) exp[−iSest(t, τ)]

]
. (1.74)

Here τ = t − t′ is the returning point, and we have also defined the stationary

values of the x component of the momentum

pest(t, τ) = E[sin(t) − sin(t − τ)]/τ (1.75)

and the quasiclassical action

Sest(t, τ) =
1

2

∫ t

t−τ
dt′′(pest − A(t′′))

= (Ip + Up)τ − 2Up[1 − sin(τ)]/τ − UpC(τ) sin(2t − τ), (1.76)

where C(τ) = cos(τ) − 4 cos2(τ/2)/τ . The factor [π/(ε + iτ/2)]3/2 expresses the

effect of diffusion of the wavepacket during its excursion in the continuum. As we

already know, to study the emission spectrum of the atom we have to calculate

the Fourier components of the dipole, defined as

x2K+1 =
1

2π

∫ t0+2π

t0
dt x(t)e(2K+1)it. (1.77)

Even components are zero because of the symmetry of the Coulomb potential.

We have to solve a two-fold integral over variables t and τ -see (1.74) and (1.77)-

to find each component. Those integrals can be calculated using the saddle-point

method again, which will become a better and better approximation as the pon-

deromotive energy, the ionization potential and the harmonic order K become
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higher. Using this method, we obtain two additional conditions apart from (1.73)

∂S(p, t, τ)

∂τ
=

[p − A(t − τ)]2

2
+ Ip = 0, (1.78)

∂S(p, t, τ)

∂t
=

[p − A(t)]2

2
− [p − A(t − τ)]2

2
= 2K + 1. (1.79)

The first of these conditions, if Ip were zero, tells us that the initial velocity of

the electron when it escapes from the atom must be zero, v(t−τ) = pest(t, τ)−A(t−
τ) = 0. In fact, the ionization potential is not null, which means that the electron

must have a negative kinetic energy at time t − τ in order to cross the potential

barrier. This problem is solved if we permit τ to be complex. Its imaginary

part is the tunnelling time, which has been previously introduced. In any case, the

ionization potential in the tunnelling regime is much lower than the ponderomotive

energy and we can assume the velocity of the particle to be very small, thus

recovering another condition of the classical model, which assumed a null initial

velocity of the ionized electrons. As regards equation (1.79), this is simply the

energy conservation condition, as is evident using (1.78). This expression therefore

tells us that the maximum emitted frequency is given by the maximum kinetic

energy of the rescattering electron, exactly as proposed by the classical model. In

fact, to obtain the exact law which gives the cutoff frequency it is necessary to

solve the set of equations (1.73), (1.78) and (1.79) exactly. It is a difficult task

to solve them analytically but it can be done numerically. The result is slightly

different to the phenomenological one:

(2K + 1)max = 3.17Up + F (Ip/Up)Ip. (1.80)

The F (Ip/Up) factor takes the value 1.32 when Ip/Up � 0 and decreases when

that ratio grows. The difference with the classically predicted value is then very

small and can be linked to several factors. First, the electron is not exactly ionized

at x = 0 because it has to cross the potential barrier. Moreover, the wavepacket



40 Chap. 1 Preliminary concepts

spreads, reducing the contribution of the fastest electrons to the spectrum. Finally,

the atomic dipole momentum is not regular in the saddle-point for the Coulomb

potential and some additional corrections are needed to solve the integrals. This

also lowers the cutoff frequency to values closer to the classical one.

We can see that this quantum model is much more refined and consistent

than the simpleman’s one. However, it has some problems related to the initial

assumptions which need to be solved.

1.4.3 Solution of the time-dependent Schrödinger equation

The most straightforward way to study the interaction between a hydrogen-like

atom and an intense laser pulse is to solve the time-dependent Schrödinger equa-

tion. This option cannot be considered as another model comparable to the pre-

vious ones since we assume that the evolution of an atomic system in the non-

relativistic regime is perfectly described by the Schrödinger equation, whose results

are exact in this sense. The only problem, apart from the purely numerical ones

because the equation has not been solved analytically up to now, is that it is diffi-

cult to clear the results to draw out the information about the physical mechanisms

which generate them, because all the possible couplings between the external field

and the atomic structure are included. In any case, in order to check the validity

of any simple model, it is essential to compare its results with the reality given

by the Schrödinger equation (in the real world it is not at all easy to irradiate

an isolated hydrogen atom with an intense field and to observe the consequences,

leaving aside the interaction with the rest of the universe).

The Schrödinger equation for a hydrogen atom in the dipole approximation

and length gauge is

i
∂

∂t
ψ(r, t) =

[
−1

2
∇2 − 1

r
− E(t)x

]
ψ(r, t), (1.81)

where, as usual, we have chosen a field linearly polarized in the x direction. The
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earliest numerical solutions of this equation date from the last decade [52, 53, 54,

55]. Several methods can be used to solve it. The most common one consists

in splitting the wavefunction into its angular and radial parts, thus reducing the

problem to a set of partial derivative equations in time and the radial coordinate

for each angular component. In principle, this set is infinite, but one can see that

with a reduced number of angular momenta the results obtained are satisfactory.

There is no fixed rule for determining which is the maximum angular momentum

to be considered and, usually, it is a question of trial and error until we find that

nearly the whole population is included in the levels we are considering. In our

case, we have taken lmax = 70, which is a sufficient limit for our purposes. The

way to solve the equations for each angular momentum is not unique, but there are

several possible algorithms. We shall not study this problem in detail here because

we solve this equation merely to compare its results with those coming from our

models and, moreover, this is a widely debated issue in many publications (see,

for instance, [4, 7]). Here, we shall use the scheme developed by our group and

explained in reference [56].

Hence, the solution of the 3-dimensional Schrödinger equation for hydrogen

is currently relatively simple, but it does require considerable computing time,

especially when the field is very intense and one needs a huge spatial grid to follow

the evolution of the wavefunction far away from the core. This is why 1-dimensional

models have been used which reproduce, better or worse, the 3-dimensional results.

It is clear that a 1-dimensional calculation only makes sense if the field is linearly

polarized and all the relevant dynamics is restricted to the direction of polarization,

which happens for intense fields. The 1-dimensional equation takes the form

i
∂

∂t
ψ(x, t) =

[
−1

2

∂2

∂x2
+ V (x) − E(t)x

]
ψ(x, t). (1.82)

The most important problem is to find an atomic potential which replaces

the Coulomb potential. The most obvious choice is V (x) = −1/|x|, but, as usual,
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what seems easy at first glance is not the best because that potential involves prob-

lems arising from its singularity at the origin that cannot be avoided as in the 3-

dimensional case. This singularity causes a degeneracy of the energy levels and con-

siderable instability [57]. This is why a non-singular potential called the soft-core

or Rochester potential [58, 59, 60, 61], which has the form V (x) = −Z/
√

a2
0 + x2,

has been widely used. The most important advantage of this potential is that it

behaves asymptotically like the Coulomb potential and that it is regular at the

origin. It reproduces the ionization process quite well and has a Rydberg series

similar to that of hydrogen. In addition, the energy and parity have the same

eigenvalues, which is an advantage in the study of dipole electric transitions. By

contrast, the most negative counterpart is that the energy eigenvalues of bound

states are not equal to those of hydrogen, although we can adjust the Z and a0

parameters to drive the depth and width of the potential well, thus choosing the

ground state level. In particular, when Z = 1 a.u. and a0 = 1.412 a.u. we recover

an ionization potential of 0.5 a.u.

The numerical solution of the 1-dimensional Schrödinger equation is also well

documented and we shall not reproduce it here. All the details can be found in

the above-mentioned references and in Q. Su’s PhD thesis [62].

1.5 Harmonic generation by free electrons

Let us return for a moment to the classical world (and hence to Gaussian units). As

we have already stated, once the electron is ionized, it is a good approximation to

consider it as a classical particle subject to Newton’s equations of motion, especially

if the field is very intense and the effect of the core is negligible. We can then recover

the old problem of the motion of a charged particle in an electromagnetic field in

order to study its emission spectrum. This problem has been approached many

times in the literature, the classical work by Sarachik and Schappert in 1970 [63]
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perhaps being the most famous example. Here we shall give a simplified treatment

[64] since we are only interested in the case of a linearly polarized monochromatic

wave.

The motion of an electron in an electromagnetic field is governed by the Newton-

Lorentz equation
dp

dt
= −e

(
E +

v

c
× B

)
, (1.83)

from which, by performing the scalar product with the linear momentum, the

equation of the evolution of the kinetic energy follows

mc2dγ

dt
= −eE · v, (1.84)

where γ = (1+p2/m2c2)1/2 and p = γmv. Let us assume that the vector potential

is a monochromatic wave linearly polarized along y axis, A = A0 cos η ŷ, with

η = ω0t− k0x as phase. Here we neglect the effect of the radiation field on its own

dynamics, which is reasonable whenever the field wavelength is much longer than

the electron radius [10]. A recent study on the effect of the radiation field on the

spectrum emitted by a relativistic particle can be found in [65]. The electric and

magnetic fields are then E = A0k0 sin η ŷ, B = A0k0 sin η ẑ. From the evolution

equations we find two conservation laws

mcγ − px = α, (1.85)

py − e/cAy = py0 , (1.86)

where α and py0 are constants of motion given by the initial conditions. We notice

that on replacing γ by its value, (1.85) can be written as

px = (m2c2 − α2 + p2
y)/2α. (1.87)

There are two useful reference frames in this problem. The first one is the

laboratory frame (L), in which the particle is initially at rest. In this frame, the
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constants of motion are p(L)
y0

= 0, α(L) = mc. The other interesting frame is the

rest frame (R), defined as that in which, on average, the particle is at rest. In this

frame, the constants take values p(R)
y0

= 0, α(R) = mc(1 + a2
0/2)1/2 ≡ mcγ0, which

easily follow from (1.86) and (1.87). a0 = eA0/mc2 is the adimensional parameter

proportional to the field amplitude which drives the motion of the particle. Solving

the equations of motion, we arrive at the following expressions for the momentum

components in the R frame

p(R)
x =

mca2
0

4γ0

cos 2η, (1.88)

p(R)
y = mca0 cos η. (1.89)

In order to find the electron orbits, we notice that p = k0α/c dr/dη, which is

evident from (1.85) and dη/dt = ω0(1 − vx/c). Integrating (1.88) and (1.89) we

obtain

(kx)(R) =
a2

0

8γ0

sin 2η, (1.90)

(ky)(R) =
a0

γ0

sin η. (1.91)

and in the laboratory frame

p(L)
x =

mca2
0

2
cos2 η, (1.92)

p(L)
y = mca0 cos η, (1.93)

(kx)(L) =
a2

0

4

(
η +

sin 2η

2

)
, (1.94)

(ky)(L) = a0 sin η. (1.95)

We observe that the R frame moves with respect to the laboratory one with a

drift velocity vD = ca2
0(4+a2

0)
−1. Using the fact that the phase is Lorentz-invariant,

we also observe that the frequencies in both systems are related by the well-known

expression for the Doppler shift ωL = γ0ωR, where we have used the expression for

the drift velocity



Chap. 1 Preliminary concepts 45

The orbit solutions are obviously implicit since we cannot find the trajectory

r(t) explicitly because the x coordinate is included in η. However, we do notice

that the motion in R frame is periodic, both in the field and in the propagation

directions, with double frequency in the latter case. We obtain the orbit eliminating

the phase in parametric equations (1.90) and (1.91)

16(kx(R))2 = (ky(R))2((a0/γ0)
2 − (ky(R))2), (1.96)

which gives the well-known eight-shaped figure. In the laboratory frame, the tra-

jectory is not periodic due to the non-zero drift velocity. Figure 1.10 shows the

orbit of the electron in the rest frame (a) and the laboratory frame (b) for three

values of a0. We observe that the eight is broadened and the trajectory in the

laboratory frame is more peaked.

The calculations necessary to obtain the emitted radiation are easier in the R

frame because of the periodicity, which implies that the spectrum is only composed

of harmonics of the fundamental frequency, which can be even and odd depending

on the direction of observation because the oscillation frequency is different in both

directions. Expression (1.41) is used to calculate this spectrum. Once the emission

spectrum of the system is known in the R frame we can find it in the observer’s

frame by means of a Lorentz transformation. The calculations are quite complex

and the interested reader can find them in the original work [63], but here we can

recall some general conclusions. First, the spectrum is not composed of harmonics

of the initial frequency in the laboratory frame but rather of multiples of another

frequency that depends on the direction of observation and the field intensity,

which has the form ω0[1 + 1/2a2
0 sin2(θ/2)]−1. The frequencies shift towards the

red for very intense fields and large angles. In addition, a large part of the angular

distribution tends towards the direction of propagation due to the increase in drift

velocity. The total radiated power integrated over the whole space can be expressed

as an expansion in the parameter a2
0 when a0 < 1. For the kth harmonic Pk ∝ a2k

0 ,
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Figure 1.10: Orbits of an electron subject to a linearly polarized plane wave in the
rest (a) and laboratory (b) frames. The solid line corresponds to a2

0 = 0.01; the
dashed line to a2

0 = 0.1, and the dotted line to a2
0 = 1.
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such that it rapidly decreases with the harmonic order.

The reader may wonder if this mechanism, apparently so simple, is used in

practice to generate harmonics now that ultraintense lasers are available. The

answer is no. Experimental evidence of harmonic generation by free electrons is

very rare. The reason is that the radiation emitted by a single electron is too weak

and, as soon as many electrons are considered, the spectrum changes dramatically

due to the effects of propagation that we shall now explain.

1.6 Harmonic propagation in extended media.

Phase mismatch

Up to now we have tackled the generation of harmonics in single atoms or elec-

trons, assuming that the results can be extended to more complex systems. This

idea is supported by the experimental results, which roughly follow the theoretical

predictions. Nevertheless, the processes involved in the generation and propaga-

tion of harmonics in extended media are much more complicated than what we

have explained and many other important factors are involved. Perhaps the most

important ones are phase mismatch effects, because of the damage caused by them

to the visibility of harmonics.

1.6.1 Phase mismatch effects in neutral media

This problem has been specially studied By Anne L’Huillier’s group [66, 67, 68, 69]

for the case of rare gases and strong enough fields that prevent a perturbative

approach. Here we shall follow their approach and explain their main conclusions.

The aim is to find the resulting field of the coherent sum of the dipoles in an

extended medium. Let us think of a linearly polarized beam focused on an isotropic

slightly dense medium (it can be a low-pressure gas jet). The field inside the
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medium is described by the wave equation

∇2E − 1

c2

∂2E

∂t2
=

4π

c2

∂2P

∂t2
, (1.97)

where P is the macroscopic polarization. If the incident field is monochromatic

with frequency ω0, we can expand both the field and the polarization as Fourier

series

E(r, t) =
1

2

[∑
q

Eq(r)e
−iqω0t + c.c.

]
; P (r, t) =

1

2

[∑
q

Pq(r)e
−iqω0t + c.c.

]
; (1.98)

and the Fourier transform of (1.97) yields the set of equations

∇2Eq +
(qω0

c

)2
Eq = −4π

(qω0

c

)2
Pq. (1.99)

The polarization can be split into two contributions, Pq = PL
q + PNL

q , where

the linear polarization PL
q stands for the response of the medium to the field

propagated with frequency qω0 and can be regarded as the product of the qth

component of the field, multiplied by the susceptibility and by the density of atoms,

PL
q = Nχ(−qω0, qω0)Eq. We are thus neglecting the dependence of susceptibility

on the field intensity and the other higher order contributions. The non-linear

polarization includes all the processes which result from couplings between the

main frequency and lower order harmonics which generate a qth order oscillation.

Here we shall only consider the contribution of the fundamental field, E1 to higher

order polarizations. This approach is not valid in dense media, where the effect

of couplings among high order harmonics cannot be neglected [70]. In that case,

the problem of propagation is completely different because one needs to take into

account effects such as the local field, absorption saturation, etc. The wavenumbers

of the different modes are defined as

kq = q
ω0

c
nq = q

ω0

c

√
1 + 4πNχ(−qω0, qω0), (1.100)
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where nq are the refractive indices for each mode. Equation (1.99) reduces to

∇2Eq + k2
qEq = −4π

(qω0

c

)2
PNL

q . (1.101)

The right hand side term is by definition null in the case of the fundamental

harmonic. Equation (1.101) can alternatively be written in its integral form. In

this case, the Green function is G(r, r′) = eikqR/R [32], with R = |r − r′| and the

equation takes the form

Eq(r) =
(qω0

c

)2
∫ eikqR

R
PNL

q (r′)dr′. (1.102)

We can use the paraxial approximation to simplify the problem if we assume a

beam propagating along the x axis and we neglect the possibility of reflection in

the medium. Since we are interested in the far field radiation, we will have that

R � x − x′ + R2
⊥/2(x − x′), with R2

⊥ = (y − y′)2 + (z − z′)2. We then arrive at

eq(r) =
(qω0

c

)2
∫ e−iΔkqx

x − x′ exp

(
ikqR

2
⊥

2(x − x′)

)
pNL

q (r′)dr′, (1.103)

eq(r) = Eqe
−ikqx and pNL

q (r) = PNL
q e−iqk1x being the slowly-varying-in-space en-

velopes of the field and the polarization, and Δkq = kq − qk1 being the phase

mismatch between the polarization and the harmonic field. We have implicitly

assumed a homogeneous medium but this is in general false, particularly for a

gas jet, which has a roughly cylindrical shape. We can overcome this problem by

substituting the phase kx by the optical path integral
∫ x
−∞ k(x′)dx′. In the previ-

ous equation we have to change Δkqx by 〈Δkqx〉 =
∫ x
−∞ Δkq(x

′)dx′. Assuming a

cylindrical symmetry around the propagation axis, the number of photons emitted

in each mode per unit of time is

Υq =
c

4h̄qω0

∫
r′|eq(r

′)|2dr′. (1.104)

This study can be extended to long pulses (as compared with the optical cycle),

then considering the envelopes varying also slowly in time, eq(r
′, t′). In this case,
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the total number of photons is Nq =
∫

Υq(t
′)dt′, where the integral has to be

calculated along the pulse duration.

To solve equation (1.103), we need to know the non-linear response of the

medium . This response is given by the product of the dipole momentum and

the atomic density, pNL
q (x, r) = N(x)dq(x, r). In general, this cannot be solved

analytically, but in the case of very weak fields we can use a perturbative approach.

We shall then write the response of the medium as Pq = Nχ(q)eq
1/2

q−1. Considering

an incident field with a Gaussian profile, as is usual in experiments, we shall have

e1 =
be0

b + 2ix
exp

(
− k1r

2

b + 2ix

)
, (1.105)

with b the so-called confocal parameter, which is related to the width of the focal

spot by the expression b = w2
0/k1; e0 is the maximum amplitude of the field.

Calculation of the number of photons emitted yields the result

Nq =
π2b3

4h̄
τqN

2
0 |χ(q)(e0/2)q|2|Fq|2. (1.106)

In the previous expression, N0 is the maximum value of the atomic density

distribution inside the medium, given by N(x) = N0ρ(x); τq is the integral of the

qth power of the temporal shape of the laser intensity (which thus depends on the

time envelope of the pulse), and Fq is the so-called phase matching factor, defined

as

Fq =
∫ ∞

−∞
e−i[〈Δkqx〉+φ(foc)](1 + 4x2/b2)1−q/22ρ(x)dx/b. (1.107)

φ(foc) = (q − 1) arctan(2x/b) is the Guoy phase shift for a Gaussian beam [71],

which is the π shift suffered by the beam in the focal spot. Close to the focal

region, the phase shift can be approximated by φ(foc) � Δk(foc)
q x = 2(q − 1)/b x.

If we consider the ideal case of a medium with a rectangular profile and width L

and a collimated beam (b � L), the phase matching factor takes the form

Fq =
2L

b

sin([Δkq + Δk(foc)
q ]L/2)

[Δkq + Δk
(foc)
q ]L/2

. (1.108)
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We see that the phase mismatch increases with the harmonic order and with

the decrease in the beam waist, both factors lowering the visibility of the harmon-

ics, specially the high order ones. It is useful to introduce two different lengths in

order to clarify our analysis. The first one is the amplification length, Lamp, given

by the size of the envelope of Pq (the area in which the amplitude of Pq is concen-

trated), which does not always coincide with the whole width of the medium, L;

the second one is the coherence length Lcoh, defined as the space along which there

is a constructive interference between the harmonics and the fundamental field. It

is usually defined as Lcoh = π/Δk. Δk has two contributions. One comes from

chromatic dispersion and the other from the focusing phase and there will therefore

be two corresponding coherence lengths, Ldisp
coh = π/Δk and Lfoc

coh � πb/2(q − 1).

The total coherence length will be the harmonic mean of both. In order to have

a good propagation,the ideal situation would be that the effects due to dispersion

and focusing should cancel each other out, which would yield an infinite coherence

length. In fact, we only need the coherence length to be as long as the amplification

length because no harmonics are generated beyond Lamp. However, if Lcoh < Lamp,

the output signal is oscillatory-like. To obtain the desired cancellation of effects,

Δkdisp must be negative because the other contribution is always positive and in-

creases with the harmonic order. In the case of rare gases, the value of Δkdisp

depends on the working range of frequencies: if the frequency is below the first

resonance, the refractive index increases slightly with the frequency (normal dis-

persion) and Δkdisp would be positive and small, the phase mismatch therefore

being solely due to the focusing geometry. If the frequency is higher and we enter

the resonance range, dispersion can take high values; positive if it is normal, or

negative if it is anomalous. In the latter case, dispersion and focusing effects can

cancel for some harmonics. If the frequency is higher than the ionization potential,

the existence of ionized electrons plays a decisive role, as we shall see.



52 Chap. 1 Preliminary concepts

Notwithstanding the previous considerations, high order harmonics and the

plateau structure are clearly visible in experiments. It is thus evident that a per-

turbative approach does not work properly for weak fields. Indeed, if one calculates

the phase mismatch from the polarization created by the dipole momenta obtained

in single atom simulations numerically, one sees that the phase mismatch is not so

important and is less dependent on the harmonic order [68]. This is no longer true

when the free electron density is high.

1.6.2 Phase mismatch effects in ionized media

When the frequency or the intensity of the field are high enough to yield a no-

ticeable ionization, we can no longer neglect the effect of free electrons in the

propagation of harmonics. Equation (1.103) can be extended taking into account

the absorption due to the free electrons, allowing Δkq to have an imaginary part.

We can then replace Δkqx by 〈Δkqx〉 =
∫ x
−∞(Δkq(x

′) − iκq(x
′))dx′. A simpler

approach can be made if the electron density is not very high. In this case, we

can neglect collisions among electrons and use the well-known expression for the

refractive index [72]

nel(ω) =

√√√√1 −
(

ωp

ω

)2

, (1.109)

ωp = (4πNq2/m)1/2 being the plasma frequency, which reduces to ωp = (4πNe)
1/2

for electrons in atomic units. For rare gases, the plasma frequency is always much

lower than the visible frequencies (if the wavelength of the laser is 1 μm, the

electron density must be greater than 1021 cm−3 to equalize the plasma and field

frequencies, but the densities are orders of magnitude lower in the experiments).

We can then approximate nel � 1 − ω2
p/2ω

2, which yields an additional phase

mismatch

Δkel
q =

ω2
p(q

2 − 1)

2qcω0

. (1.110)
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This new contribution is always positive and varies linearly with q for high

order harmonics. To have an idea of the magnitude of the phase mismatch caused

by free electrons, we can compare it with the focusing contribution. It can be

seen that for a beam with wavelength of 1 μm and confocal parameter b = 10

mm, the density above which the effect of free electrons is more important than

the focusing one is Ne ∼ 7 × 1014 cm−3, a thousand times lower than the density

which is typically found in experiments with noble gases with pressures of 15 Torr.

Hence, the effect of free electrons is the most important one in real cases and elicits

important phase mismatches.

Another effect strongly linked to the previous one is beam defocusing. Since

the field intensity is higher near its center, there are more ionized electrons in this

area, and hence its local refractive index is lower than the one in the external

part. Therefore, the field ”prefers” to propagate through the external part and

ring patterns are observed in the experimental harmonic fields. When the field is

very intense, the opposite occurs because the ponderomotive force is so high that

the electrons move away, filamentation appearing.

Let us now recall the harmonics generated by free electrons. The effects of phase

mismatches are especially dramatic in this case because the emitted radiation is

usually weak. These effects can be estimated by simply calculating the radiation

field of a set of electrons in an intense electric field. These calculations give as a

result that electron densities of the order of 1017 cm−3 are sufficient to permit con-

structive interference of only four or five harmonics, whose intensities scale as the

square of the free electron density, whilst the higher ones are practically invisible

due to phase mismatch effects [73]. Fortunately, when density increases, collective

effects become important and there are other mechanisms able to generate much

more intense harmonics.
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1.7 Harmonic generation in plasmas

A plasma is simply a gas of ionized particles. This gas is composed by electrons

and ions which, having a very different charge-mass ratio, behave in a different way

when moved by external and internal electromagnetic fields. The usual approach in

the study of plasmas is to treat electrons and ions as two fluids and split the system

dynamics into two parts whose spatial and temporal scales are different [74]. When

studying the interaction of plasmas with ultrashort pulses, a good approximation

is to assume that the ions move very little during the interaction time and that

they can be considered as fixed charges. The plasma can be then understood as

a gas of electrons subject to a static ionic potential and an external field. We

shall gain insight into these aspects when we explain the numerical simulation of

plasmas in chapter 3.

We already know that the propagation of an electromagnetic field in a gas of

electrons depends on the plasma frequency, or equivalently, on its density. The

critical density is the one for which the plasma frequency is equal to the field

frequency, Nc = mω2
0/4πq2. If we look at equation (1.109), we see that if the

density is below the critical value, the field can propagate inside the medium,

which is then called an underdense plasma. By contrast, when the density exceeds

the critical value, the field is completely absorbed in a very short space and the

medium is opaque for radiation with that frequency. This is the case of overdense

plasmas.

Study of the interaction between plasmas and intense electromagnetic fields

has been of great importance in recent years because of its interest in such differ-

ent disciplines as astrophysics, accelerated particle physics or inertial confinement

fusion [75].

One could think that the harmonics generated in plasmas would be similar to

those created by free electrons (section 1.5). For two reasons, this is not true:
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propagation effects and collective forces make the electron dynamics completely

different. The simplest model is to consider that the effect of the rest of the

charges on a single electron is equivalent to a restoring force. Therefore, the

evolution equation takes the form

dp

dt
= −e

(
E +

v

c
× B

)
− ω2

p0r, (1.111)

This new force completely changes the motion of the electron and hence the emitted

radiation [76]. The most evident consequence is that the drift velocity vanishes

due to the restoring force.

In the case of an underdense plasma, the most convenient method to study the

harmonics is to use a hydrodynamical description of the medium, which resembles

a fluid. Such study is out of the scope of this work but has been addressed in detail

in several references [64, 77]. The harmonics are observed to be generated by two

mechanisms: the effect of the nonlinear relativistic motion of the electrons analyzed

in section 1.5 and the collective oscillations of the electron density. Unfortunately,

both effects cancel in the lowest order and hence the generated harmonics are

rather weak. The final result, when defocusing effects and chromatic dispersion

are taken into account, is that the total power radiated in low harmonics has a

dependence of the type

P2M+1 ∝
(ωp0

ω0

)4M a4M
0

γ6M
0

P0, (1.112)

P0 being the incident field power and a0, γ0 the parameters defined in section 1.5.

The power decreases rapidly with the order because the plasma is underdense. The

maximum value is obtained when a0 = 2, and it diminishes beyond that intensity.

Thus, it is useless to raise the laser intensity very much because the generation of

harmonics will not be more efficient. Moreover, we have to take into account the

problems deriving from the phase mismatch effects explained above. It is therefore

not surprising that there is no exact evidence of harmonic generation in underdense

plasmas. The solution, as we shall see, is overdense plasmas.
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An overdense plasma is characterized by a plasma frequency greater than the

field frequency, which prevents the propagation of the field inside the medium and

causes its nearly total reflection. Unlike the underdense case, there is a considerable

body of experimental evidence of high order harmonic generation in overdense

plasmas. In the seventies, up to the eleventh harmonic was observed in experiments

with CO2 laser pulses with a duration of 2 ns [78]. The first revolution was an

experiment by Carman et al. in 1980. Those authors irradiated plastic and metallic

foils with a CO2 laser with an intensity higher than 1015 W/cm2, creating a plasma

which emitted harmonics up to the 46th order. These harmonics did not have

rapidly decreasing intensities but did display some kind of plateau structure [79,

80]. The observed harmonics were odd and even, and less intense half-harmonic

frequencies were also detected. These experiments immediately drew the attention

of many scientists because of their potential as an efficient mechanism to generate

high frequency coherent radiation. The earliest theoretical models explained the

experimental results reasonably well and a value was found for the cutoff frequency

up to which harmonics could be generated, given by

ωco =

√
N

Nc

ω0. (1.113)

From the previous expression, it is clear that the frequency limit is driven

by the maximum electron density and the laser wavelength (by means of Nc).

However, a recent experiment performed by Norreys et al. [81] has thrown doubt

on the previous results and the cutoff law. They used a neodymium laser with

5 ps pulses and an intensity of 1019 W/cm2 impinged onto plastic foil, observing

harmonics beyond the 70th order with efficiencies greater than 10−6, i.e., they

obtained megawatts of radiation in wavelengths of around 15 nm. If expression

(1.113) were correct, the electron density in the medium should have been 17 times

higher than the typical density of the target in the solid state, which is difficult to

believe. At the same time, more complex theoretical studies have been carried out,
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Figure 1.11: Spectrum of the reflected field when a pulse with a duration of 20
optical cycles and maximum amplitude E0 = 5 a.u. impinges perpendicularly onto
a homogeneous cold plasma whose density is four times the critical one.

many of them with the help of the so-called ”particle-in-cell” numerical simulations.

These have shed light on the generating mechanisms of these harmonics and have

reproduced the experimental results quite well [82, 83, 84, 85, 86]. Figure 1.11

shows a typical spectrum corresponding to the interaction between an intense

pulse and an overdense plasma.

There are several processes able to generate high frequency radiation in over-

dense plasmas but we shall not explain all of them here. Most of them are more

effective when the laser impinges obliquely onto the target surface and the direc-

tion of polarization is in the incidence plane (p polarization). This is because the

coupling of the field and the plasma oscillations, which are longitudinal, is more

intense in that case. Under normal incidence conditions, this coupling takes place

by means of the v × B term of the Lorentz force, which is of second order except

in the ultrarelativistic case. Despite this, we shall restrict ourselves to this par-
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ticular case since our interest lies in studying the effects of ionization, which in

principle do not depend on the geometry of the interaction. Let us therefore ex-

plain how harmonics are generated by the above-mentioned mechanism, forgetting

about others such as resonant absorption, parametric instabilities or transversal

inhomogeneities (see, for instance, [64] and references therein).

We have said that the electrons in a dense plasma are subject not only to the

external field but also to the collective forces which prevent their free motion in

the plasma and which in a first approximation are harmonic-like and depend on

the plasma frequency. These forces reduce the drift motion in the field propagation

direction and hence a more selective radiation both in frequencies and in directions

is obtained. We also have to take into account that the field is reflected in a very

short space, especially for high densities. The interaction takes place in a very thin

layer which oscillates as a mirror with twice the frequency of the incident pulse

(let us recall the eight-shaped figure with double frequency in the longitudinal

direction). An example of the oscillations of the surface electrons is offered in

figure 1.12, in which collective motion is clearly depicted. These surface oscillations

generate the whole secondary radiation, which is mainly reflected since it cannot

propagate inside the medium (except for very thin foils, as we shall show).

A simple approach to explain how harmonics are generated is the so-called

oscillating mirror model [85, 86]. This assumes a well defined boundary surface

between the vacuum and plasma which moves around the initial surface of the

medium, given by the position of the boundary ions, as shown in figure 1.12. The

simplest version of this model [86] solves the equation of motion for the electrons

(1.111). For a field which is linearly polarized in the y direction and propagates

along the x axis, perpendicularly to the boundary surface, the equations take the

form

dpy

dt
= −eEy

(
t − x

c

)
+ e

vx

c
Bz

(
t − x

c

)
, (1.114)
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Figure 1.12: Evolution of the free electron density at the surface of an overdense
plasma impinged by an intense electromagnetic field.
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dpx

dt
= −e

vy

c
Bz

(
t − x

c

)
− ω2

px, (1.115)

dx

dt
= vx, (1.116)

where the plasma frequency is assumed to be constant inside the medium. When

the plasma is highly overdense, it makes sense to think that the boundary surface

behaves like a perfect mirror in which the total field vanishes, and hence

ER

(
t +

x(t)

c

)
+

1 − βx

1 + βx

E0 sin

[
ω0

(
t − x(t)

c

)]
= 0, (1.117)

ER being the reflected field and assuming an incident field with constant amplitude

and frequency ω0. The relativistic factor (1− βx)/(1 + βx) comes from performing

a Lorentz transformation to the laboratory frame from the rest frame, on which

we should impose the continuity of the field [87].

Solving equations (1.114)-(1.117) we obtain a reflected field with high harmon-

ics due to the v×B term in the equations of motion and also due to the retardation

effect in equation (1.117), which plays a fundamental role. In a first approxima-

tion, we only obtain odd harmonics in our case (normal incidence and linearly

polarized field). The study can be extended to different geometries, obtaining dif-

ferent selection rules: in oblique incidence and polarization perpendicular to the

incidence plane (s polarization), odd s-polarized and even p-polarized harmonics

appear. The latter are less intense and vanish at normal incidence. If the field

impinges obliquely but is p-polarized, even and odd harmonics are obtained with

the same polarization as the incident field. In the case of circularly polarized

pulses, weak harmonics can be generated in any polarization but only at oblique

incidence. Under normal incidence conditions, no harmonics are generated because

the amplitude of the field is always constant [85, 86].

We have therefore seen that the collective oscillations of the surface of an over-

dense plasma with a sharp density profile subject to an intense laser pulse, in addi-

tion to other relativistic effects such as retardation, can generate high harmonics.
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In fact they are one of the most promising sources of coherent high frequency in-

tense radiation. In this section, we have not considered the effect of ionization

because we have assumed a preformed plasma. Later on, we shall see that things

change in the case of medium intensity fields, which need several optical cycles to

ionize the target.
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Chapter 2

Harmonic generation in an open
two-level system

In this chapter we shall attempt to explain the effect of a time-dependent ionization

rate and the role of bound-bound transitions on the harmonics generated by atoms

in the tunnelling ionization regime. With this aim, we shall introduce an atomic

model consisting of two bound levels whose population can be ionized (in this

sense we call it open) and rescattered with the core. We have chosen this model

because it is the simplest one which includes both bound-bound (one) and bound-

continuum (two) transitions. In spite of its simplicity, it can provide some useful

information.

2.1 Harmonic generation in two-level systems

Two-level systems have been widely used as a model for the interaction between

electromagnetic fields and matter [88]. It is clear that to reduce the dynamics

of a quantum system to the evolution of only two of its levels is a simplification

that can only be justified if the field intensity is low and its frequency is close to a

resonance. However, such a model can also yield information beyond its theoretical

range of validity.

Let us recall the evolution equations of a two-level system under the effect of an

63
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external field in the dipole approximation. We start with the Schrödinger equation

(we are using atomic units again)

i
∂

∂t
|ψ〉 = (H0 + Hint)|ψ〉. (2.1)

The atomic Hamiltonian H0 includes the kinetic energy term and the elec-

trostatic Coulomb potential, whereas the interaction Hamiltonian in the dipole

approximation is Hint = −E(t)x, where we are assuming a linearly polarized field

in the x direction. We further assume that the wavefunction is a linear combination

of two eigenstates of the atomic Hamiltonian

|ψ〉 = a0(t)|0〉 + a1(t)|1〉. (2.2)

If we place our energy origin at ground level, the atomic Hamiltonian acts over

both eigenstates as

H0|0〉 = 0|0〉,

H0|1〉 = ωT |1〉, (2.3)

where ωT is the transition frequency, i.e., the difference between the energy levels of

both states. Now we project (2.1) on both states to obtain the evolution equations

of the system

da0(t)

dt
= −iE(t)d01a1(t), (2.4)

da1(t)

dt
= −iE(t)d01a0(t) − iωT a1(t), (2.5)

where d01 = 〈1|x|0〉, which can be assumed to be real and we have used the fact

that, due to the symmetry of the potential, 〈0|x|0〉 = 〈1|x|1〉 = 0. The time-

dependent dipole moment will be d(t) = d01[a
∗
0(t)a1(t) + a0(t)a

∗
1(t)] and we use

its second derivative to calculate the spectrum. The population of the levels are

simply Pi(t) = |ai(t)|2. Equations (2.4) and (2.5) are nonlinear because of the
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time-dependent field and they cannot be solved analytically for a sinusoidal field.

This nonlinearity is able to generate frequencies other than the incident and the

transition frequencies.

Henceforth, we shall assume that our two-level system resembles the first two

states of the hydrogen atom coupled via an electric dipole transition, i.e., the

ground state 1s and the excited state 2px. The transition frequency in this case

is ωT = 0.375 a.u. and the dipole moment is d01 = 0.745 a.u. [89]. We shall also

choose the initial state to be the ground level. The effect of choosing the excited

level or a linear combination of both (ground and excited) as the initial state is

an enhancement of the couplings between the transition frequency and the laser

frequency, which results in more intense hyper-Raman lines (combinations of the

transition and field frequencies) in the observed spectrum [90]. When ionization

is taken into account, there is an additional effect consisting of the appearance of

two harmonic spectra with different intensities shifted by the transition frequency

[91, 92]. The field will always have the form E(t) = E0S(t) sin(ω0t), with an

envelope S(t) with a trapezoid shape, two ramp cycles and the rest of constant

amplitude. Here, we shall not address the effect of non-monochromatic fields,

which has been widely studied in the literature, especially the particular case

of two-colour pulses. Interested readers can obtain more information in [7], for

instance. To solve the evolution equations (2.4) and (2.5) numerically, we use a

fourth-order Runge-Kutta algorithm with a sufficiently small timestep [93].

Figure 2.1 shows the evolution of the populations of both states and the dipole

moment when our two-level system is subject to a pulse with a frequency of ω0 =

0.04 a.u. and an amplitude of E0 = 0.06 a.u., parameters corresponding to the

tunnelling ionization regime for the hydrogen atom. We note small oscillations in

the populations, the excited one always being less than 2 percent of the total. The

dipole moment also seems to oscillate harmonically with the laser frequency.
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Figure 2.1: Evolution of the population of the ground (solid line) and excited
(dotted line) states when the incident pulse has a frequency of ω0 = 0.04 a.u., an
amplitude of E0 = 0.06 a.u., and a duration of 10 optical cycles, two of them of
linear ramp turn-on (a). Plot (b) represents the corresponding dipole moment.
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Figure 2.2: Spectrum corresponding to the dipole acceleration for the same pa-
rameters as in figure 2.1.

If we Fourier transform the dipole acceleration (neglecting the two ramp cycles),

we obtain what is depicted in figure 2.2. We see that the fundamental frequency

is obviously the most intense one and that there are peaks corresponding to the

third and fifth harmonics and the transition frequency, in this case ωT � 9.4ω0,

also appears clearly surrounded by two satellite peaks at ωT −ω0 and ωT +ω0. This

is not a very stimulating spectrum, but it is well-known that a two-level system

can generate a harmonic spectrum with features similar to those of a real atom,

i.e., a plateau with harmonics of roughly the same frequency and a sharp cut-off

frequency [36]. Figures 2.3 and 2.4 show what happens when the field amplitude is

raised up to E0 = 0.5 a.u. First, both populations oscillate with greater amplitude,

more than a fourth of the total population reaching the excited level and smaller

oscillations with a higher frequency appear. In correspondence, the dipole moment

oscillates strongly in an anharmonic way. The result is clear in the spectrum, which

consists of intense peaks up to the 30th order with a plateau and a decreasing zone
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as from roughly the 21st harmonic. There are in addition other frequencies that

are combinations of the field and the transition frequencies.

An expression for the cut-off frequency can be obtained in a rigorous way

[89, 94] but it can be also obtained with a simple adiabatic approach [89, 90, 95].

In the case of small field frequencies, smaller than the transition and the Rabi

( ΩR = d01E0) ones, as is the case, one can envisage that the transitions take

place not between the non-perturbed states but between the instantaneous dressed

states, whose energies are calculated from the eigenvalues of the Hamiltonian

H =

(
0 d01E(t)

d01E(t) ωT

)
, (2.6)

and prove to be

λ± =
ωT

2
± 1

2

√
ω2

T + 4d2
01E(t)2. (2.7)

Thus, the effective transition frequency varies among the minimum and maxi-

mum of the energy difference between the dressed states, λ+−λ− =
√

ω2
T + 4 (E(t)d)2,

which give the values of the beginning, ωT , and the cutoff, ωco =
√

ω2
T + 4Ω2

R, of

the plateau. In this case, the cutoff frequency takes a value of ωco � 20.8ω0, which

fits in quite well with the result in figure 2.4. The appearance of this kind of spec-

trum in such a simple system has led some people to speculate that the plateau

structure observed in experiments could be related to bound-bound transitions.

However, it is obvious that when the field amplitude is half an atomic unit we can

no longer represent the hydrogen atom by a simple two-level system. In particu-

lar, we cannot forget the effects of ionization since in a real case hardly any bound

population would remain after a couple of cycles. Let us see, then, what happens

when we introduce ionization into our model.
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Figure 2.3: The same as in figure 2.1 but with a field amplitude of E0 = 0.5 a.u.
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Figure 2.4: Spectrum corresponding to the parameters of figure 2.3.

2.2 Effect of time-dependent ionization on the

harmonics generated by bound-bound tran-

sitions [95]

The effect of ionization on a closed system such as a two-level atom is the loss of

both population and coherence. The simplest way to include it in our equations

is by means of an ionization rate that will describe the amplitude decay in each

level. We shall then have an open two-level system, as seen in figure 2.5, whose

equations of motion are

da0(t)

dt
= −iE(t)d01a1(t) −

γ0(t)

2
a0(t), (2.8)

da1(t)

dt
= −iE(t)d01a0(t) −

[γ1(t)

2
+ iωT

]
a1(t). (2.9)

The ionization rates are obtained from equation (1.15) considering the 1s and
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Figure 2.5: Scheme of the open two-level system. Arrows represent the population
transfer.

2p states

γ0(t) = 4E−2
0 |E(t)| exp

(
− 2

3|E(t)|

)
, (2.10)

γ1(t) = 2−7E−4
0 |E(t)| exp

(
− 1

12|E(t)|

)
. (2.11)

Both rates strongly, though indirectly, depend on time through the electric

field, as we see in figure 2.6. The ionization has two maxima, corresponding to

the extremes of the field, and vanishes when the field changes its sign. When the

field amplitude is E0 = 0.06 a.u., the ionization rate in the excited state is four

orders of magnitude greater than the ground state and hence is the most important

one. Solving equations (2.8) and (2.9) for our usual parameters (E0 = 0.06 a.u.,

ω0 = 0.04 a.u.), we obtain a spectrum which differs considerably from that of the

two-level system, as we see in figure 2.7. The mere inclusion of a time-dependent

ionization causes the generation of high harmonics (here up to the 50th order)

with higher intensities than the few peaks of the closed two-level system. The

most intense peaks are those close to the transition frequency of the two levels.

We can better understand what happens by taking a look at the temporal

evolution of the populations and the dipole moment, depicted in figure 2.8. The

ground state population decreases almost monotonically, despite small Rabi-like

oscillations which are not visible in the figure, whereas the excited one varies
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Figure 2.6: Ionization rates along an optical cycle for a sinusoidal field with an
amplitude of E0 = 0.06 a.u. The solid line represents the ground state rate and
the dotted line the excited state rate. Notice the difference in the scales.

Figure 2.7: Spectrum corresponding to the solution of equations (2.8) and (2.9)
for an external field with the same parameters as in figure 2.2.
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Figure 2.8: The same as in figure 2.1 but introducing time-dependent ionization
in both levels.
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sharply, never being greater than 4 × 10−3. These sharp variations have their

maxima when the field goes to zero. The effect of these oscillations on the dipole

moment can be observed in plot 2.8b, which clearly explains the generation of

high harmonics. The oscillations in the population of the excited state are due to

the following mechanism: the external field excites a small part of the population

from the first to the second state, which undergoes a rapid depletion because of

the high ionization rate. When the field is zero, the ionization rate vanishes and

part of the population can survive in the excited level exactly at that instant,

although it ionizes as soon as the field amplitude increases slightly. The excited

level therefore acts as an intermediate state for the ground state population to

be ionized. In fact, the population directly ionized from the excited state is much

smaller than the population ionized from the excited one, as seen in figure 2.9. The

much greater population at ground level cannot cancel its minimal ionization rate.

Actually, we could neglect ionization from the ground level by making γ0(t) = 0

and the spectrum obtained would be the same (for the parameters we are using,

of course).

High harmonics could be interpreted from the above-mentioned adiabatic point

of view. The addition of ionization rates is equivalent to a dynamical broadening

of the energy levels by an imaginary term. This term is huge when the field is

maximum or minimum in the case of the excited level and therefore the instanta-

neous energies of the dressed states are broadened beyond the transition frequency,

which yields very high harmonics.

Before going further, we wish to remark that the generation of high harmonics

does not depend on the exact form of the ionization rates; instead, it exists when-

ever these rates depend on time. One could argue that the form of γ1(t) given by

expression (2.11) is not valid because for most of the time the excited level is in

the barrier suppression regime for the field amplitude we are using. We can use
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Figure 2.9: Ionized populations from ground (solid line) and excited (dotted line)
levels in the case of figure 2.8.

a semiclassical approach and assimilate the ionization with the flux of population

that goes over the barrier, whose velocity is the linear momentum of the released

electrons, which is given by the difference in energy between the excited level and

the top of the barrier, p =
√

2|Vef + ω1|. The maximum of the potential barrier

−1/x − E(t)x is Vef = −2
√
|E| and ω1 = −ε2 = 0.125 a.u. When the field am-

plitude is below the classical critical value E
(cr)
1 = 0.0039, the excited state lies

below the barrier and we can neglect ionization. Thus, the ionization rate would

take the form [95]

γ
(sc)
1 (t) =

√
4|E(t)|1/2 − 2ω1 Θ(|E(t)| > E

(cr)
1 ). (2.12)

This expression gives us an ionization rate whose maximum is smaller than the

one in (2.11), but it has the disadvantage that it has no derivative at E
(cr)
1 . This

affects the harmonic spectrum obtained with it, as observed in figure 2.10. Again,

we have high order harmonics and in this case the intensities do not decrease but
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Figure 2.10: Spectrum obtained with expression (2.12) for the ionization from the
excited level when the field has the same parameters as in figure 2.7.

remain more or less the same up to very high frequencies, with no cutoff. A further

example is depicted in figure 2.11, where a simple dependence γ1(t) ∝ |E(t)|2 has

been chosen and there are fewer harmonics, although they also exist.

We can then deduce that it is a general trend that a rapidly varying-in-time

ionization generates high harmonics in a two-level system, regardless of the exact

form of the ionization rate. This is an alternative mechanism to the transitions

between bound and free states which are responsible, as we explained in section

1.4, for the plateau and cutoff frequency in the tunnelling regime spectra. These

transitions should be taken into account in any realistic model.

2.3 Harmonic generation with two-level systems

including ionization and recombination [96]

In order to recover the plateau of harmonics and the cutoff frequency, we have to

take into account the transitions between high energy continuum states and bound
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Figure 2.11: Spectrum obtained with an ionization rate for the excited level pro-
portional to |E(t)|2 for the same field parameters as in figure 2.7.

states. We shall do this by refining our two-level system such that it includes

recombination, at the same time trying to keep the model simple to be able to

interpret its results. We shall assume that the ionized population goes to the

continuum and there evolves as a classical particle but keeping a quantum trace;

namely, a phase which permits a coherent recombination when it comes back to

the core position. Let us now explain the model step by step [96].

Following our equations (2.8) and (2.9), the population ionized from the |j〉
level (ground or excited) during a timestep Δt is

ΔP ion
j

Δt
= γj(t)|aj(t)|2. (2.13)

This population generates a wavepacket at each instant of time whose amplitude

is [ΔP ion
j ]1/2 with an appropriate phase factor. This phase can be found if we admit

that in the tunnelling regime everything evolves adiabatically, and hence it is the

same phase as that of the leaving level except for a sign due to the interaction
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with the field which changes the parity of the state. Explicitly, the amplitude of

the wavepacket ionized from |j〉 between t0 and t0 + Δt is

aion
j (t0; t0) = [ΔP ion

j ]1/2 aj(t0)

|aj(t0)|
E(t0)

|E(t0)|
. (2.14)

This wavepacket evolves as a classical particle subject to the external field

according to equations (1.64)-(1.66). Here we neglect the effect of the atomic

potential on the continuum wavepacket, as well as the spatial dependence of the

field, the magnetic field and the rest of the relativistic effects. We can justify

these assumptions since the field intensity in the tunnelling regime is low, the

excursion of the ionized particle will be much shorter than the laser wavelength

and its velocity will be much smaller than c. We then continue within the range of

validity of the dipole approximation. From equation (1.72), we obtain the change

of phase of the particle in the continuum, given by the classical action

Φ(t0, t) =
∫ t

t0
dt′

{ ẋ(t′)2

2
+ Ij

}
. (2.15)

Following on with our adiabatic point of view, we assume that the potential

energy of the state does not change during the ionization process and hence the

potential energy term in equation (2.15) is I0 = 0 for the ground state and I1 = ωT

for the excited one. This will affect the cutoff frequency in the spectrum, as we

shall see below. Thus, the evolution of each wavepacket ionized at t0 will be

aion
j (t0; t) = aion

j (t0; t0)e
−iΦ(t0,t). (2.16)

As we already know, some of these particle-wavepackets will return to the ion

position and some of them will not. We can forget about the latter ones since they

will not contribute to harmonic generation and we shall only take into account

those which return and only the first time they do so. The following recollisions do

not change the cutoff frequency of the harmonics and they only slightly affect the

intensities of the plateau harmonics [97, 98]. We assume that when the particles
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return, they interact with the bound states as an additional pseudolevel. The

evolution equations take the form

da0(t)

dt
= −γ0(t)

2
a0(t) − iE(t)[d01a1(t) + d0ca

cont
0 (t)], (2.17)

da1(t)

dt
= −

(γ1(t)

2
+ iωT

)
a1(t) − iE(t)[d01a0(t) + d1ca

cont
1 (t)], (2.18)

where the amplitude of the states in the continuum which rescatter with the core

is

acont
j (t) =

∫ t

0
aion

j (t0; t)δ(x(t0; t))dx(t0; t). (2.19)

The Dirac delta distribution means that we only consider the recombination

of the ionized states when their classical trajectory, x(t), crosses the coordinate

origin. The dipole matrix elements between a free continuum state and the bound

ones can be computed taking the continuum state as a plane wave [23, 51] and

take the form

d0c(v) = i
27/2α5/4

π

v

(v2 + α)3 , (2.20)

d1c(v) =
27α7/4

π

v2

(4v2 + α)3(v2 + ε1)
, (2.21)

where α is twice the ionization potential and ε1 is the energy of the excited level.

The assumption that recombination only takes place at the instant of time when

the ionized particle is at the origin leads to an underestimation of the transition

probability djc(v)Δt, since the numerical timestep Δt is much smaller than the

actual interaction time, especially if we take into account the broadening of the

wavefunction during its excursion in the continuum. To avoid this, we correct

the recombination term, multiplying djc(v) by Ti/Δt, where Ti = lint/v is the

interaction time, which is proportional to the interaction length (typically the atom

size) and inversely proportional to the particle’s velocity. For the sake of simplicity,

we shall use constant dipole moments djc = djc(vprom), where vprom = 0.665E0/ω0
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is the mean velocity of the particles when they first rescatter with the core, which

has been computed numerically. In any case, the choice of the expression for the

dipole moment does not qualitatively affect our results.

If we solve equations (2.17) and (2.18) for our usual parameters, we obtain

the spectrum depicted in figure 2.12. Note that the first harmonics are similar to

the ones in figure 2.7, in which no recombination was included. The novelty of the

spectrum is the existence of higher harmonics with a notorious plateau structure up

to a cutoff frequency close to the 55th harmonic, followed by a sharp decrease. This

spectrum resembles the one obtained for a real hydrogen atom in the tunnelling

ionization regime. The position of the cut-off frequency is slightly different from

that obtained in the real hydrogen: ωT + 3.17Up instead of Ip + 3.17Up. This

results from keeping the potential energy of the tunneled electron fixed during

the ionization and excursion, implying that the maximum energy of the electrons

ionized from the upper level at the instant of the rescattering with the core is

precisely ωT +3.17Up. We know that this can be corrected since the electrons leave

the ion not at x = 0, but at a different position, and also because the recollision

does not take place exactly at x = 0 due to the broadening of the wavepacket.

Taking these aspects into account, the cut-off position would be more diffuse. In

any case, for the parameters we are using, the difference between Ip and ωT is only

two or three harmonics; i.e., almost negligible.

We can separate the effects of time-dependent ionization and coherent recom-

bination as in figure 2.13, in which we have depicted the spectrum obtained from

solving equations (2.17) and (2.18) using time-independent averaged ionization

rates (see section 1.2), which in our case are γpr
0 = 4(3/πE0)

1/2 exp(−2/3E0),

γpr
1 = 2−11/2(3/π)1/2E

−5/2
0 exp(−1/12E0). Comparing this spectrum with the pre-

vious one, we notice that the lower order harmonics are much less intense, while the

the higher ones remain roughly the same. It is then clear that the exact form of the
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Figure 2.12: Spectrum corresponding to the solution of equations (2.17) and (2.18)
for an external field with the same parameters as in figure 2.2.

ionization rates is only important for the intensities of the lower order harmonics.

We can also observe, as in previous cases, the time evolution of populations

and the dipole moment, depicted in figure 2.14. At first sight, they are quite

similar to the case when only ionization was considered (figure 2.8). As regards the

populations, the difference with the previous case is minimal, the final population

of the ground level being slightly greater, due to the returning electrons, and the

excited population being almost the same. Regarding the dipole moment, the

difference is seen in small oscillations when the dipole has a low value, which can

be appreciated in detail in figure 2.15. These small oscillations are responsible for

the generation of higher order harmonics; those corresponding to the plateau and

the cut-off area.

The fact that the population returning to the bound states from the continuum

is so small suggests an alternative interpretation of the physics involved in our

model. Harmonics have been usually attributed to transitions from the continuum
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Figure 2.13: Harmonic intensities obtained with time-independent averaged ion-
ization rates (black dots) and time-dependent ones (open triangles).

to bound states, neglecting the transitions between bound states. We believe that

the role of these transitions is important because the values of dipole moments

corresponding to transitions between bound states are orders of magnitude higher

than those belonging to transitions between bound-free states [23]. Moreover, the

ionized population spreads over all the free states and the fraction of population in

the relevant states, those with high kinetic energies which generate high harmonics,

is very small. We can analyze this in further detail. The total dipole moment in our

system consists of two different parts, d(t) = db−b + db−c, where the contributions

of the bound-bound the bound-free transitions are, respectively

db−b = d01(a0a
∗
1 + a∗

0a1), (2.22)

db−c = d0c(a0a
cont∗
0 + a∗

0a
cont
0 ) + d1c(a1a

cont∗
1 + a∗

1a
cont
1 ). (2.23)

In figure 2.16 we observe the spectrum generated by each of these contributions.

The bound-bound one is in this case four orders of magnitude higher than in the
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Figure 2.14: Time evolution of populations (a) and the dipole moment (b) when
both ionization and recombination are included in our model. The field parameters
are E0 = 0.06 a.u. and ω0 = 0.04 a.u.
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Figure 2.15: Detail of figure 2.14b. The dotted line represents the dipole moment
when recombination is not taken into account.

case of the plateau harmonics, its importance being quite clear.

In our opinion, the mechanism by which harmonics are generated is the follow-

ing: the coupling between bound states and high energy free states induces fast

oscillations in the bound states amplitudes. As a consequence, the dipole moment

between them oscillates with those high frequencies, generating the harmonic spec-

trum. The bound-bound transition then acts like a resonator or amplifier of the

small oscillations due to the coherent recombination. Of course, the spectrum of

free-bound transitions includes those high order components but its contribution is

noticeably smaller. In a real atom, even free-free transitions, which are forbidden

in our simple model, generate a spectrum with the same characteristics known

to us [99], but also in this case the dipole matrix elements between free states

are smaller and hence their contribution to the spectrum is also small. Only if the

pulse is much longer than the time needed to fully ionize the atom will the free-free

contribution become dominant in the harmonic generation process.
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Figure 2.16: Intensities of the harmonics generated by the bound-bound transition
(black dots) and bound-free transition (open triangles) contributions to the dipole
acceleration for the same parameters as in the previous figure.

We can offer a further basis to this idea from the calculations made with short-

range potentials with a limited number of bound states. Becker et al. have studied

the dynamics of a system with a regularized delta-function potential [100], obtain-

ing spectra which are qualitatively similar to the hydrogen spectrum but several

orders of magnitude less intense. Krause et al. [42] compared hydrogen spectra

with those obtained with a Yukawa-like potential, V (r) = −Ze−αr/r, which al-

lows one to change the number of bound states simply by changing the Z and

α parameters. In figure 2.17, we see a comparison of the harmonic spectrum of

hydrogen and those obtained with the Yukawa-like potential with one (Z = 1.93

a.u., α = 1 a.u.), two (Z = 1.16 a.u., α = 0.17 a.u.) and four (Z = 1.05 a.u.,

α = 0.05 a.u.) bound states and the same ground state energy. When only one

bound state exists, the harmonics are very weak, whereas when there are four the

similarity with the hydrogen spectrum is considerable. This is due not only to the
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Figure 2.17: Intensity of the harmonics generated by a Coulomb potential (black
dots) and a Yukawa-like potential with one (black squares), two (crosses) and
four (open triangles) bound states and the same ionization potential. The field
parameters are E0 = 0.06, ω0 = 0.04.
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existence of resonances that enhance the efficiency of ionization but also to the

amplification of the dipole oscillations among the above bound states.

To check the validity of our model we can compare our results with the solution

of the one-dimensional Schrödinger equations described in section 1.4.3. We believe

this is the best benchmark of our model, which is also one-dimensional. In this

case, we choose the parameters of the potential Z = 1 a.u. and a0 = 1.412

a.u., which yield the energy of the fundamental state Ip = 0.5 a.u. The first

excited state has a different energy from three-dimensional hydrogen and we have

to change the parameters in our model to ωT = 0.267 a.u., d01 = 1.297 a.u. Figure

2.18 shows the comparison between the results of our model and those given by

the one-dimensional Schrödinger equation. Not only the cut-off position, with a

shift due to the potential energy difference Ip − ωT , but also the intensities of the

intermediate harmonics are similar. In fact, the most remarkable difference appears

in the first harmonic intensity, which is much higher in the hydrogen calculation

than in ours. This is due to the fact that our dipole acceleration does not include

the motion of the free wavepackets outside the core, which has the field frequency

and which is of course included in the 1D hydrogen equation results. One last fact

supporting the importance of bound-bound transitions is that the contributions to

the dipole acceleration of the first bound-bound transition are much greater than

that corresponding to the transitions between these first two bound states and

the continuum state with momentum k =
√

6Up in the one-dimensional hydrogen,

which is roughly the one which gives the cut-off frequency, as we observe in figure

2.19. The first contribution has the same order of magnitude as the total radiation,

whereas the bound-continuum contribution is several orders of magnitude weaker.

In sum, we can say that the role of bound-bound transitions in harmonic gener-

ation in the tunnelling ionization regime is more important than usually assumed.

Likewise, the fact that the ionization process is not uniform but strongly time-
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Figure 2.18: Comparison of the intensity of the harmonics given by our model (full
curve) and the one-dimensional Schrödinger equation (black dots) for parameters
ω0 = 0.04 a.u. and E0 = 0.04 a.u. (a ), E0 = 0.06 a.u. (b) and E0 = 0.08 a.u. (c).
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Figure 2.19: Harmonics generated by the one-dimensional Schrödinger equation
for E0 = 0.06 a.u. and ω0 = 0.04 a.u. Crosses represent the total harmonic yield,
black squares the contribution from the dipole between the ground and first excited
level and open circles the contribution from the dipole between the first two bound

states and a continuum level with momentum k =
√

6Up.

dependent along an optical cycle is an additional mechanism which can generate

harmonics and which is specially relevant in the intensities of the lower harmonics.

The open two-level model introduced by us provides a fair amount of information

about these two aspects, but we wish to remark that in no way is it a univer-

sal model; rather, it can only be used in the tunnelling regime, since it does not

take into account multiphoton or barrier suppression transitions when the field is

more intense, nor the effect of other bound levels. In spite of these limitations, it

is qualitatively acceptable and gives reasonable results when compared with the

one-dimensional Schrödinger equation.
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Chapter 3

Numerical simulation of the
interaction between plasmas and
laser pulses

The aim of this chapter is to explain the models and algorithms we have used

to simulate the interaction between an ionizing medium and an intense electro-

magnetic field. We shall use two different models. One of them is a so-called

”particle-in-cell” (PIC) code, widely used in a broad variety of problems in plasma

physics, and the other is a much simpler model that has the advantage of permit-

ting us to adequately study the generation and propagation of harmonics during

the ionization of a not very dense medium with a relatively weak field.

3.1 Plasma simulation via particle codes

There are two possible approaches in the field of plasma simulations. One is the

description of the plasma as a fluid, completely disregarding the particular features

of its components. In this case, one has to solve the magnetohydrodynamic equa-

tions of the plasma, which differ depending on the problem in question. The other

possibility is the kinetic description, which takes into account more detailed models

of the plasma, including the interactions among particles through the electromag-

91
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netic field. This second approach includes the solution of the kinetic equations of

the plasma in the phase space (Vlasov or Fokker-Planck [74]) and the simulation

of single particles, following the evolution of a set of particles interacting among

themselves and with the external fields. Each of these descriptions has its own

advantages and disadvantages. Magnetohydrodynamical codes have proved useful

in large scale problems dealing with experimental devices but they lack sufficient

detail to explain the basic physical phenomena when the energy distribution of

the particles is very different from a Maxwellian one (for instance, a cold plasma

generated by photoionization). In this case, the description with particles is nec-

essary. The same happens when the trajectories of the single electrons cross, i.e.

when collisions become important. This is why we shall first use use a particle

description, which conserves almost all the physics of real problems at the expense

of extending the calculations.

Here we shall summarize the main characteristics of a particle code, without

discussing all the details. The description will become more detailed with regard

to the particular model we have chosen. The literature contains many references

to the particle simulation of plasmas, which in recent years has become one of the

most important disciplines in the field of plasma physics. We refer the interested

reader to the works [74, 101, 102], which were used by us, for further information.

A recent report about simulations in plasma physics can be found, for instance, in

[103].

The idea of describing a plasma by means of the motion of its particles may seem

completely absurd if we take into account the number of particles usually existing

in experiments (we can think in terms of more than 1020 particles in one cm3) and

recall that we have to solve the equations of motion for each particle, as well as

Maxwell equations to find the fields generated by them and the external ones. With

currently available computers, it is impossible to simulate the motion of more than
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108 particles along a few optical cycles within a reasonable amount of time. So what

are these particle codes, so widely used and so commonly accepted by the scientific

community? The explanation is that code ”particles” are not real particles but

macroparticles or charge clouds with finite dimensions, which include many point

particles and move as a whole. This trick of grouping the charge in large particles

seems at first sight unjustified, mainly because it implies a loss of information

about particle-particle collisions (very harmful in numerical simulations due to the

Coulomb potential singularity), which are frequent in the case of high densities.

However, several reasons permit us to justify, to a certain extent, this approach.

In the case of a hot plasma, whose particles have an initial velocity distribution

with a thermal energy, there is a characteristic length, λD =
√

kT/4πe2N0, called

the Debye length, which defines the radius inside which particle-particle effects are

more important and outside which collective effects become crucial. If we are only

interested in the effects with a scale greater than λD, we can disregard collisions

among particles because they will be screened by collective forces. The second

argument is that it is not possible, numerically, to consider point particles since

we are constricted by our space-time grid. Hence, we can benefit from this and

choose our particles’ width as greater than the Debye length, reducing in this case

the collisional cross section to a much smaller value than in the zero-radius case.

For cold plasmas, the Debye length would be null and the microscopic field would

not be screened. However, we can go further into the land of quantum physics

and consider that electrons are not point particles but wavepackets, which not

only move but broaden when subjected to electromagnetic fields, so that collisions

among point particles will never occur whereas they will among charge clouds. In

our case, the grid size will typically be ten or twenty atomic units and the particle

size will be the same or similar. The time needed by a free Gaussian packet to pass

from a width of one atomic unit (that of the electron inside the atom) to ten atomic
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Figure 3.1: Basic cycle in a particle code.

units is roughly twenty atomic units, a tenth of an optical cycle for the frequencies

we are dealing with and hence to treat such a packet as a macroparticle is not so

absurd. All these justifications are obviously partial and one can always fall back

on the authority argument, which in this case says that particle simulations have

given very good results that can be checked experimentally. Such simulations are

widely accepted nowadays and important problems only arise when the plasmas

are highly overdense, with electron densities orders of magnitude higher than in

solids, which make binary collisions crucial in the system dynamics.

In a code particle we have the following variables:

- The position rj and momentum pj of each particle.

- The charge ρi and current Ji densities in the spatial grid points.

- The electromagnetic fields Ei, Bi in the spatial grid points which must be

interpolated in each particle’s position to find the force which acts on it and moves

it.

Hence, the code consists of the iteration of a cycle such as that shown in figure

3.1. Variations appear when one goes to the specific solution of each step. In our

case, we shall use a one-dimensional in space, two-dimensional in velocity (1D2V)
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code. Let us explain this. If a plane wave normally impinges onto a thin homoge-

neous slab, we can assume that all the spatial variations will occur in the direction

of propagation of the field because there is symmetry in the transversal plane and

all the particles in the medium move in the same way. In a real experiment, we

shall have a more or less focused beam, but if the slab width is much smaller than

the beam width, which can be achieved with very thin slabs (there are experiments

with foils measuring only tens of nanometre in thickness), and if the laser is in-

tense and only slightly focused (at present, it is possible to obtain intensities of

1018 W/cm2, which are higher than the ones we use, focused on sections of tenths

of mm2), we can carry out the plane wave approximation without making any im-

portant mistakes. Hence, we lose typically transversal effects such as self-focusing,

channel formation, etc., which occur when the intensities are higher than those

we are interested in. The geometry of our simulations is depicted in figure 3.2,

in which the electric field is polarized along the y direction. The motion of the

charges take place in the XY plane and there is no vz velocity component. Due

to the symmetry, the particles are assumed to be slabs with width a and infinite

transversal dimensions, i.e., they are charge sheets instead of particles. In this

and next section, we again use Gaussian units, which are more appropriate than

atomic ones.

Let us start with the solution of the equations of motion of the particles. We

shall use a leapfrog method, which consists in finding positions and momenta in

alternate instants of time. If we have the equations of motion

dp

dt
= q

[
E +

1

c
v × B

]
, (3.1)

dr

dt
= v. (3.2)

with p = mγv, we assume we know the momenta at instant t − Δt/2 and the

positions and forces at t, and hence the momenta are advanced to t + Δt/2 and
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Figure 3.2: Scheme of the interaction geometry

the positions to t + Δt. There are several possible algorithms of the leapfrog type.

We shall use one by Boris, which is fast and can be reversed in time [101]. If we

set u = γv, with γ2 = 1+u2/c2, the finite difference equation for each momentum

that needs to be solved is

un+1/2 − un−1/2

Δt
=

q

m

[
En +

1

c

un+1/2 + un−1/2

2γn
× Bn

]
. (3.3)

The easiest way to solve this equation is to separate the force corresponding

to the electric field and the magnetic one. This can be achieved by defining two

intermediate momenta u+ and u− as

u− = un−1/2 +
qEnΔt

2m
, (3.4)

u+ = un+1/2 − qEnΔt

2m
. (3.5)

(3.6)

Using (3.4) and (3.5) in (3.3), we arrive at

u+ − u−

Δt
=

q

2mcγn
(u+ + u−) × Bn. (3.7)



Chap. 3 Plasma simulation 97

It can be seen that (γn)2 = 1 + (u−/c)2 = 1 + (u+/c)2 to second order in

Δt. Equation (3.7) is only a rotation of u around the axis defined by B an angle

θ = −2 arctan(qBΔt/2mcγ), which can be solved in two steps

u′ = u− + u− × t, (3.8)

u+ = u− + u′ × s, (3.9)

with t = qΔtB/2mcγn, s = 2t/(1 + t2). Once we know un+1/2, the positions are

advanced as

rn+1 = rn + vn+1/2Δt = rn +
un+1/2Δt

γn+1/2
, (3.10)

with γn+1/2 =
√

1 + (un+1/2/c)2. In this way we integrate the equations of motion

in a fast and effective manner. In our case, we have only to advance vx, vy and

x. Let us now explain now how to calculate the charge and current densities from

the positions and velocities of the particles.

In all our simulations, we shall keep the ions fixed since they are much heavier

than the electrons and they hardly move during our short pulses. We have checked

our results including the motion of the ions and they remain basically unchanged

for our parameters. The positive charge density will then be constant and can

be calculated at the beginning (in the case of a preionized plasma) in a way that

cancels the initial negative charge density, which will be uniform along the slab

width. Hence, only the negative charge density will be calculated at each timestep.

We use a linear interpolation method. Let us consider that our charge sheets have

the same length as the space grid, Δx, and that they are uniformly charged. We

then distribute their charge between the two closest grid points, as is depicted

in figure 3.3. If a particle is placed between the points i and i + 1, exactly at

(i + r)Δx, the charge assigned to point i will be qi = q(1 − r) and the charge

assigned to point i + 1, qi+1 = qr. This kind of interpolation is what gives the

name of these simulations: ”particle-in-cell” (PIC). The effect of interpolation is
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Figure 3.3: Scheme of the charge interpolation of a Δx long particle.

to smooth the binary interactions among particles and to reduce the noise in the

results.

Once we have assigned the charge of each particle to the grid points, the charge

density is calculated simply by summing up the whole charge at each point and

dividing it by the spatial step. In this way we need only one loop over the particles

to have the charge density at each grid point. Regarding the current density, the

mechanism is the same but we have to multiply each charge by the corresponding

velocity. An identical linear interpolation is also used to calculate the fields in the

positions of the particles after solving the Maxwell equations. The most conflictive

point is to solve the Maxwell equations, especially when the intensity is high and

relativistic effects become important. We shall study this aspect in the next section.

3.2 Solution of Maxwell equations. Relativistic

correction in PIC codes [104]

When solving the Maxwell equations, it is usual to start directly from the equations

for the electric and magnetic fields

∇× E = −1

c

∂

∂t
B, (3.11)
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∇× B =
1

c

∂

∂t
E +

4π

c
J, (3.12)

∇ · E = 4πρ, (3.13)

∇ · B = 0. (3.14)

The solutions of Faraday’s and Ampère’s laws are very simple in our 1D2V ap-

proximation; the one regarding the inexistence of magnetic monopoles is trivial and

Coulomb’s law becomes an algebraic equation in the k-space [101]. The problem

is precisely equation (3.13), which is an instantaneous non-local equation, i.e., the

longitudinal field in one point depends on the charge density in its surroundings

at the same instant of time. Obviously, this happens because the solution of the

Maxwell equations includes both retarded and advanced terms. The latter have no

clear physical meaning and can lead us to some mistakes in the relativistic case,

when retardation becomes important. This is why we prefer to solve the wave

equations for the potentials (1.17) and (1.18) and choose the retarded solutions,

which in the case of continuum charge and current densities in the Lorentz gauge

can be written as [105]

φ(r, t) =
∫ ρ(r′, t′)

|r − r′|

∣∣∣∣∣
t′

dr′, (3.15)

A(r, t) =
1

c

∫ J(r′, t′)

|r − r′|

∣∣∣∣∣
t′

dr′, (3.16)

where t′ = t − |r − r′|/c. Similarly to the single particle case (1.24), the charge

density of a discrete set of point charges is

ρ(r, t) =
∫

dr
∑
m

qmδ[r − rm(t)]

=
∫

dr
∑
m

qmδ
[
r − rm(0) −

∫ t

0
dτvn(τ)

]
. (3.17)

The common approach in plasma particle calculations is to compute the charge

density from equation (3.17) discretized in the spatial grid

ρ(ri, t) =
1

ΔV

∑
m

xα
m=xα

i

qm. (3.18)
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ΔV is the volume element of the spatial grid; i labels the spatial cell in the grid,

and the summatory is restricted to those particles whose position rm at instant t′

is within the cell located at ri, i.e. xα
m = xα

i , in 4-vector notation. Once the charge

density has been calculated in this way, one is tempted to substitute it in (3.15)

and calculate the scalar potential as

φ(ri, t) =
∑
j

ρ(r′j, t − |ri − r′j|/c)
|ri − r′j|

ΔV, (3.19)

which is clearly wrong since for a single particle it reduces to the retarded Coulomb

potential

φ(ri, t) =
q

|ri − r′(t′)| , (3.20)

and we know that the right expression is given by the Liénard-Wiechert potential

(1.28), in which the velocity of the particle is included. The reason for the mislead-

ing equation (3.19) is that we have implicitly taken as unity the spatial integral of

the retarded delta function in (3.17), whilst in fact

∫
δ[r′ − rm(t′)]dr′ =

∫ 1

1 − βm · n

∣∣∣∣∣
t′(u)

δ(u)du �= 1. (3.21)

Calculation of the fields generated by the charges in a particle code should

introduce retardation at two different levels. First, one has to use the charge den-

sities calculated at previous times and, second, the velocity denominators charac-

teristic of the Liénard-Wiechert correction must be taken into account. One way

of performing both steps simultaneously is to compute the potential associated

with each charge and to calculate the total potential as the superposition of these

single-particle potentials,

φ(r, t) =
∑
m

φm(r, t) =
∑
m

1

1 − vm(t′m) · nm(t′m)/c

qm

|r − rm(t′m)| . (3.22)

Although this is a correct way of calculating the whole potential, it lacks one

of the best advantages of PIC algorithms, which is the possibility of calculating
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the charge and current densities associated with a set of charges and using them

to compute the corresponding fields. Hence, we only need a loop of size Np, where

Np is the total number of particles, to have the densities in the whole grid and

another loop of size Ng, where Ng is the number of points of the spatial grid, to

solve the Maxwell equations in each point. By contrast, using equation (3.22) we

shall need a loop over all the particles to compute the potential in a single grid

point with coordinate r. This would require a double loop of size Np ×Ng to solve

the potential in the whole grid. If we did this, the computation time would be

unreasonably long. Fortunately, we can overcome this problem with the help of a

series of approximations.

The assumption of fixed ions simplifies our calculations because the ionic poten-

tial, φi(r), remains constant in time, although the method can easily be extended

to mobile ions. The total charge density is then ρ(r, t) = P (r) − N(r, t), P being

the positive charge density and N the negative one. The latter will generate a

scalar potential φe(r, t) and a vector potential A(r, t) (the fixed ions do not con-

tribute to the vector potential). First, let us factorize the summation of equation

(3.22) into a set of partial summations of particles which share the same volume el-

ement at the same time (xα
m = x′α). The charge of the particles being the same, as

is usual in simulations with preformed plasmas but not when ionization is present

and each particle has a different charge, we have

φe(r, t) = −
∫

dr′
N(r′, t′)

|r − rm|
1

N (r′, t′)

∑
m

xα
m=x′α

1

1 − vm(t′) · n/c
, (3.23)

where N (r, t) is the number of particles sharing the same volume element at time

t. Defining the averaged velocity of the electrons in each volume element as

v(r′, t′) =
1

N (r′, t′)

∑
m

xα
m=x′α

vm(t′), (3.24)

we have vm(t′) = v(r, t′) + Δvm(t′). The velocity term in the denominator in

equation (3.23) may be expressed as a Taylor series in the velocity fluctuations,
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Δvm(t′)/c

1

1 − vm(t′) · n/c
� 1

1 − v(t′) · n/c
×

⎧⎨
⎩1 +

Δvm(t′) · n/c

1 − v(t′) · n/c
+

[
Δvm(t′) · n/c

1 − v(t′) · n/c

]2

+ · · ·
⎫⎬
⎭ .(3.25)

Performing the summation in equation (3.23), the first term of the Taylor

series amounts to N (r′, t′) and the second one vanishes because of the definition

of Δvm(t′). The third one contains the following sum,

∑
m

xα
m=x′α

(Δvm(t′) · n)
2

=
1

2

∑
m

xα
m=x′α

Δv2
m(t′) =

3N (r′, t′)

2m
kBT (r′, t′), (3.26)

where we have assumed an isotropic distribution of the velocity fluctuations and we

have introduced a local time-dependent non-relativistic temperature T (r, t) [106].

kB is the Boltzmann constant. Keeping the series expansion at second order, the

potential approximation suitable for our particle-in-cell calculations is

φe(r, t) � −
∫ 1

|r − r′|
N(r′, t′)

1 − v(t′) · n/c

{
1 +

3kBT (r′, t′)/2mc2

[1 − v(t′) · n/c]2

}
dr′. (3.27)

In principle, this truncated expression is only valid if |Δv(t)| < c − v(t). This

is ensured for particles faster than average by the relativistic dynamics itself. The

velocity distribution in the relativistic regime is, however, strongly asymmetric

and particles with velocities well below the mean value may exist. Although these

particles do not fulfill the truncation condition, their contribution to the integral is

not essential, since their velocity-dependent denominator is large. Regarding the

vector potential, we can write this as

A(r, t) = −
∫

dr′
N(r′, t′)

c|r − rm|
1

N (r′, t′)

∑
m

xα
m=x′α

v(t′) + Δvm(t′)

1 − [v(t′) + Δvm(t′)] · n/c
. (3.28)

If we define the current density as

J(r, t) =
∑
m

xα
m=x′α

qmvm(t′)δ(r − r′)
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=
∑
m

xα
m=x′α

qmδ(r − r′)[v(t′) + Δvm(t′)] = −v(r, t)N(r, t), (3.29)

then the first term in the sum of equation (3.28) leads to a mean-velocity contri-

bution to the vector potential of

Av(r, t) �
∫ 1

c|r − r′|
J(r′, t′)

1 − v(t′) · n/c

{
1 +

3kBT (r′, t′)/2mc2

[1 − v(t′) · n(t′)/c]2

}
dr′. (3.30)

The second term of the summatory can be evaluated as

∑
m

xα
m=x′α

Δvm(t′)

1 − [v(t′) + Δvm(t′)] · n/c
�

∑
mxα

m=x′α

Δvm(t′) (Δvm(t′) · n)

[1 − v(t′) · n/c]2
, (3.31)

and, for an isotropic distribution of the velocity fluctuations, we might find

AΔv(r, t) � −
∫ 1

|r − r′|
N(r′, t′)n

[1 − v(t′) · n(t′)/c]2
3

2

kBT (r′, t′)

mc2
. (3.32)

The complete vector potential is therefore A(r, t) = Av(r, t)+AΔv(r, t). These

expressions are useful for three-dimensional calculations with relativistic plasmas,

either cold or hot, whenever the approximations we have used are valid. But we are

interested in a much simpler case: a cold plasma and a one-dimensional medium.

The first condition simplifies the expressions by making T (r, t) = 0. In particular,

the term AΔv(r, t) vanishes. Regarding the second one, let us try to find adequate

expressions for the one-dimensional potentials.

For a cold plasma, we can write equation (3.27) in cylindrical coordinates

(ρ, ϕ, x) (see figure 3.4) as

φe(x, t) � − ∫
dx′ ∫ ∫

ρdρdϕN2(x′,t′)
R

×
[
N(x′, t′) + Jx(x

′, t′)x−x′

Rc
+ Jy(x

′, t′)ρ cos ϕ
Rc

+ Jz(x
′, t′)ρ sin ϕ

Rc

]−1
, (3.33)

where, as always, R = |r−r′| and we have used equation (3.29) and n = (r−r′)/R.

Since R = c(t − t′), and keeping x′ constant, we have RdR = ρdρ, and hence

φe(x, t) � −c2
∫

dx′ ∫ t−|x−x′|/c
−∞ dt′

∫ 2π
0 dϕN2(x′, t′)

×
{
cN(x′, t′) + Jx(x

′, t′)ζ + [Jy(x
′, t′) cos ϕ + Jz(x

′, t′) sin ϕ]
√

1 − ζ2
}−1

,(3.34)
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Figure 3.4: Geometry of the one-dimensional problem in cylindrical coordinates.

with ζ = (x−x′)/[c(t− t′)]. The integral over the angle ϕ can be easily calculated,

giving the final expression for the scalar potential as

φe(x, t) � −2πc2
∫

dx′ ∫ t−|x−x′|/c
−∞ dt′N2(x′, t′)

×
{
[cN(x′, t′) + Jx(x

′, t′)ζ]2 − [J2
y (x′, t′) + J2

z (x′, t′)] [1 − ζ2]
}−1/2

. (3.35)

In a similar way one can obtain the expression for the vector potential, which

takes the form

A(x, t) � −2πc
∫

dx′ ∫ t−|x−x′|/c
−∞ dt′N(x′, t′)J(x′, t′)

×
{
[cN(x′, t′) + Jx(x

′, t′)ζ]2 − [J2
y (x′, t′) + J2

z (x′, t′)] [1 − ζ2]
}−1/2

. (3.36)

We notice that the scalar potential as well as each component of the vector

potential can be written as

Λ(x, t) �
∫

dx′FΛ(x′, x, t − |x − x′|/c) (3.37)

where FΛ(x′, x, t− |x−x′|/c) is the corresponding integral in time. It is clear that

despite our one-dimensional approximation, integration of the potentials has a

two-dimensional complexity since it depends on two variables, x and x′. This bidi-

mensionality reflects the anisotropy of the electric field induced by the relativistic
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velocity. There are, however, situations which allow a one-dimensional reduction

of equations (3.35) and (3.36). Let us consider the case of a thin plasma slab whose

radiation we wish to observe at a considerable distance from it. In this situation,

R >> |x − x′| for most of the region where the integral FΛ(x′, x, t − |x − x′|/c)
extends. We can therefore approximate (3.35) as

φe(x, t) � −2π
∫

dx′
∫ t−|x−x′|/c

−∞

c2N2(x′, t′)dt′{
c2N2(x′, t′) − [J2

y (x′, t′) + J2
z (x′, t′)]

}1/2
, (3.38)

and the components of the potential vector can also be approximated similarly.

Also, for the case we are interested in, the external electric field is transversal

and it is expected that the charges will mainly move in the transversal plane,

and hence |J2
y (x′, t′) + J2

z (x′, t′)| > |J2
x(x′, t′)|, thus ensuring the correctness of the

approximation. We have therefore reduced the problem to finding the solution of

four equations of the type:

Λ(x, t) =
∫

dx′FΛ

(
x′, t − |x − x′|

c

)
, (3.39)

which are easily solved numerically. In order to do this, we split the integrals

into two contributions, one propagating rightward and the other leftward. If the

spatial grid extends along the interval [0, L], each integral is computed as Λ(x, t) =

Λ+(x, t) + Λ−(x, t), where

Λ+(x, t) =
∫ x

0
dx′FΛ

(
x′, t − |x − x′|

c

)
, (3.40)

Λ−(x, t) =
∫ L

x
dx′FΛ

(
x′, t +

|x − x′|
c

)
. (3.41)

Choosing the spatial and temporal steps such that Δx = cΔt, we have

Λ+(x + Δx, t + Δt) = Λ+(x, t) +
∫ x+Δx

x
dx′FΛ

(
x′, t − |x − x′|

c

)
. (3.42)

Calculation of the integral between x and x + Δx, at second order, is

∫ x+Δx

x
dx′FΛ

(
x′, t − |x − x′|

c

)
� Δx

2
[FΛ(x, t) + FΛ(x + Δx, t + Δt)], (3.43)
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and the same holds for the part propagating from right to left

Λ−(x − Δx, t + Δt) = Λ−(x, t) +
∫ x

x−Δx
dx′FΛ

(
x′, t +

|x − x′|
c

)
, (3.44)

and the integral is solved as

∫ x

x−Δx
dx′FΛ

(
x′, t +

|x − x′|
c

)
� Δx

2
[FΛ(x, t) + FΛ(x − Δx, t + Δt)]. (3.45)

The boundary conditions are Λ+(0, t) = 0, Λ−(L, t) = 0. FΛ(x, t) is always an

integral of the type

FΛ(x, t) =
∫ t

t0
dt′gΛ(x, t′), (3.46)

where t0 is the initial time and gΛ(x, t) is a function of the charge and current

densities. We can propagate the integral simply as

FΛ(x, t + Δt) = FΛ(x, t) + Δt gΛ

(
x, t +

Δt

2

)
. (3.47)

With the leapfrog method, we know the velocities and therefore the current

density at half-integer time instants and we can use them in gΛ(x, t + Δt/2). For

the charge density, we take N(x, t+Δt/2) = 1/2[N(x, t)+N(x, t+Δt)]. Thus, we

calculate the potentials in a simple and fast way. To calculate the fields, we use

equations (1.20) and (1.21), which, for our geometry, reduce to

Ex = − ∂

∂x
φ − 1

c

∂

∂t
Ax, (3.48)

Ey = −1

c

∂

∂t
Ay + E0y, (3.49)

Bz =
∂

∂x
Ay + B0z, (3.50)

where E0y, B0z are the electric and magnetic components of the incident field,

which take the form E0y(x, t) = B0z(x, t) = E0S(η) sin(η), with η = ω0t− k0x and

S an envelope which, from now on and unless otherwise specified, has the shape

of a sine squared function. Equations (3.48)-(3.50) are solved by transforming the

derivatives into finite differences at first order.
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We shall now estimate the importance of the relativistic corrections we have to

include in the code to see in which range of parameters they must be taken into

account. To this end, we have performed simulations of a pulse with a frequency of

ω0 = 0.05 a.u. (or wavelength roughly λ0 � 0.9 μm) and a duration of twenty cycles

impinging a slab of a preformed plasma of width 0.1λ0 (to keep the approximation

made in equation (3.38) valid) and density 1.65 times the critical value. We have

solved the potentials with the Liénard-Wiechert correction (equation (3.38) and

the same for the vector potential) and without it, using the retarded Coulomb

potentials, which is equivalent to assuming v/c << 1 and hence J/c << N , i.e.,

we use the expressions

φe(x, t) � −2πc
∫

dx′
∫ t−|x−x′|/c

−∞
N(x′, t′)dt′, (3.51)

A(x, t) � 2π
∫

dx′
∫ t−|x−x′|/c

−∞
J(x′, t′)dt′. (3.52)

The contribution of the positive charges is always

φp(x, t) � 2πc
∫

dx′
∫ t−|x−x′|/c

−∞
P (x′, t′)dt′. (3.53)

Figure 3.5 shows the harmonic spectra of the field transmitted through the slab

(a) and reflected by it (b) when the field amplitude is moderate (1 a.u.). We see that

the difference when the Liénard-Wiechert correction is included (dotted line) and

when it is neglected (solid line) is minimal, although the transmitted harmonics are

slightly more intense, the contrary of the reflected ones. The profiles of the reflected

and transmitted fields have not been depicted because they seem identical. We can

conclude that for the non-relativistic regime, which these parameters correspond,

the Liénard-Wiechert correction is not important and can be neglected.

Increasing the field amplitude by one order of magnitude, up to E0 = 10 a.u.,

which means an increase in intensity by a factor of 100 (I0 ≈ 4 × 1018 a.u.), dra-

matically changes the results, as seen in figure 3.6. In this case, the increase in the
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Figure 3.5: Harmonic spectrum of the transmitted (a) and reflected (b) fields in a
thin slab when we make a calculation with (dotted line) and without (solid line)
the Liénard-Wiechert correction. The incident pulse has a frequency of ω0 = 0.05
a.u., a duration of twenty cycles, and an amplitude E0 = 1 a.u.
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Figure 3.6: The same as in figure 3.5 but with a field amplitude of E0 = 10 a.u.
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Figure 3.7: Evolution in space (horizontal axis) and time (vertical axis) of the
longitudinal electric field Ex for an incident pulse with maximum amplitude E0 =
10 a.u. when the Liénard-Wiechert correction is not included in the computation
of the potentials.
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Figure 3.8: The same as in figure 3.7 but introducing Liénard-Wiechert correction.

transmitted harmonic intensities when the Liénard-Wiechert correction is included

is several orders of magnitude, whilst the reflected ones are less intense. To gain

insight into what is happening, we observe figures 3.7 and 3.8. The first depicts the

evolution of the longitudinal Ex field in space (horizontal axis) and time (vertical

axis) during the previous simulations using the retarded Coulomb potentials. We

observe the oscillations of the field near the pulse maximum. These oscillations are

restricted to the slab space (between x = 0 and x = 0.1λ0) and are generated by

the motion of the electrons due to the v × B term of the Lorentz force, the same

mechanism that generates harmonics, as we already know. When the external

field decreases, the oscillations are damped and the longitudinal field diminishes.

Figure 3.8 represents the same field when the Liénard-Wiechert correction is taken

into account. Now, the oscillations of the longitudinal field are much more intense

due to the breaking of the symmetry of the Coulomb potential. Let us recall that
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the field generated by a moving relativistic charge had two contributions (equation

(1.30), the velocity or near field, which depends on the distance to the observa-

tion point as R−2, and the acceleration or far field, which decreases as R−1. The

latter is the radiation field because of its longer range and because it is commonly

detected. However, in our case the velocity field is more interesting because in

a thin slab the near field dominates the electromagnetic interactions. This field,

for a single particle, can be written in terms of its instantaneous position and the

non-retarded time in the laboratory frame as [31]

E(r, t) =
qn

γ2R2[1 − β2 sin2 ψ]3/2
, (3.54)

where ψ = arccos(n · v). This field is strongly anisotropic because the effective

charged observed in the direction orthogonal to the charge’s displacement is much

larger than the charge at rest. In our calculations, particles mainly move in the

direction parallel to the field polarization, i.e. along the y axis. As they quiver,

their effective charge observed in the x direction fluctuates from the rest charge to

higher values. When the effective charge is greater than the rest charge, the ions,

which are fixed (or at least move much slower than electrons) and have a constant

effective charge, cannot compensate the excess of negative charge and hence the

longitudinal field increases due to this transitory non-neutrality. The result is an

enhancement of plasma oscillations, which is reflected in the scattered radiation. It

should also be noted that since the plasma neutrality is lost, a residual longitudinal

field may be detected at some distance from the target.

We have observed, therefore, that the Liénard-Wiechert correction may be

important for very intense fields, but for fields whose amplitude is close to the

atomic unit or smaller, its influence is weak. That, and also in order to simplify

the computations, is why we shall neglect the Liénard-Wiechert correction and all

our simulations will be made with the retarded Coulomb potentials.
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3.3 Ionization in a PIC code

So far we have not mentioned ionization, which is the key point in our work. To

include it in a particle code, we have to introduce an additional step in the loop

in figure 3.1 in which the ionization is calculated and the corresponding particles

included. We do this immediately after calculating the fields from the Maxwell

equations and before moving the particles. We start with an initial configuration

in which every point in the spatial grid inside the slab is assigned a bound charge,

Q0, and a corresponding density Nb(x, 0) = N0 = Q0/Δx. Both the positive and

the negative free charges are zero (we could also start from a partial ionization

state, but this possibility has not been considered here). At each time step, we

compute the amount of ionized charge from equation

∂

∂t
Nb(x, t) = −W (x, t)Nb(x, t), (3.55)

where W is the ionization rate. We shall then have that the ionized charge density

between t and t + Δt is ΔNb(x, t + Δt) = W (x, t)Nb(x, t)Δt. Once we know the

ionized charge, we create a particle with charge q = ΔNb(x, t+Δt)Δx and we place

it in the grid point corresponding to position x. At the same time, we increase the

positive charge density at that point to the same extent that the bound density

decreases.

All our work deals with photoionization and we shall assume that the ioniza-

tion rate is completely determined by the electric field, neglecting the collisional

ionization. Collisional ionization may be important in some regimes and when the

times considered are long enough. In our case, the main reason for disregarding

collisional ionization is that it depends on the collisional cross section and this be-

comes more important when the ions become heavier. We shall consider hydrogen

ions, which are the lightest ones, for which the probability of collisional ionization

is very small, as we shall show. We choose hydrogen because of the simplicity of



114 Chap. 3 Plasma simulation

its ionization rates, which we already know, and also because it is an one-electron

atom and there is only one ionization stage, which considerably simplifies the cal-

culations. We shall use as the ionization rate the simple expression (1.3) with

a field amplitude depending on time and space, which is the most widely used

expression in the literature

W (x, t) =
4

|E(x, t)| exp

(
− 2

3|E(x, t)|

)
, (3.56)

where, again, we are using atomic units. The impact ionization rate is given by

the expression [107] Wcol = Nv̄σ(v̄), where N is the electron density, v̄ the mean

velocity, which satisfies v̄ = |J/N |, and σ(v̄) is the collisional cross section, which

depends on the velocity of the incident electrons. There is no universal expression

for collisional cross sections since they depend on many factors. Generally, inter-

polations of experimental data fitted by simple curves are used. In particular, use

is often made of the expression [108, 109]

σ(K) =
1

IpK

[
A ln

(
K

Ip

)
+

N∑
i=1

Bi

(
1 − Ip

K

)i]
, (3.57)

where K is the electron’s kinetic energy , Ip is the ionization potential of the atom

or the ion, and A, Bi are particular constants for each species. For hydrogen, it

is sufficient to take four terms in the summatory to obtain a cross section with

93% reliability. The data are: Ip = 13.6, A = 0.1845, B1 = −0.0186, B2 = 0.1231,

B3 = −0.1901 and B4 = 0.9527. Ip is obviously given in electronvolts and the

other constants in 10−13eV2cm2.

We see the photoionization rate as a function of the field amplitude in figure

3.9a. We shall use the same expression for higher fields, out of its theoretical

range of validity, because in those cases total ionization occurs well before the

field reaches its maximum value, during the first part of the pulse, as we shall

see, and no important errors will be incurred. In figure 3.9b, we see the impact

ionization rate in the case of a hydrogen medium with critical density. Even the
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Figure 3.9: Photoionization rate as a function of the field amplitude given by
equation 3.56 (a). Collisional ionization rate as a function of the velocity of the
incident electron given by expression 3.57 (b).
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maximum impact rate, which is close to a velocity of three atomic units, is orders

of magnitude lower than the photoionization rate when the field is approximately

0.1 atomic units. If the density were ten times the critical value, the collisional

ionization rate would also be irrelevant and this is why we do not consider it in

our calculations. We refer interested readers to previous works dealing with the

role of collisional ionization in the propagation of electromagnetic fields in ionizing

media, which is always less important than the role of photoionization when the

ions are small, the densities are not very high and the fields have intensities similar

to the ones we are using [107, 110, 111].

We also neglect the possibility of recombination for a simple reason: when

densities are high, the loss of coherence due to phase mismatches and interactions

among free electrons causes the disappearance of the high harmonics that we have

studied in the case of isolated atoms and which are also observed in rare media,

i.e. there is no coherent recombination. In addition, the population transfer,

whether coherent or incoherent (due to collisions, etc.) from free to bound states

is irrelevant when the fields are very intense because the kinetic energy of electrons

is very high and the ions cannot capture them. For the same reasons, we neglect

the contribution of the bound population to the propagation of the field, which is

much less important than the contribution of free electrons, except maybe if there

are resonances, which we assume is not the case. When there are no resonances,

the effect of the bound population can be associated with a background dielectric

permittivity, ε, different from the vacuum one and the solution of the propagation

equations is exactly the same except for a normalization of the variables. Hence,

we shall assume that the medium is transparent when it is totally non-ionized.
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3.4 Fixed charge model for the generation of a

plasma by a laser

We shall now describe another model, much simpler than the previous one, which

will permit us to study the effects of ionization in the non-relativistic and low

density case with ease. This model was introduced by Brunel in 1990 [112] and

has been widely used, whether in its original form or with some changes, in works

dealing with propagation in ionizing media [107, 110, 113, 114, 115, 116]. Once

again, we shall only consider the contribution of free electrons to the atomic po-

larization, disregarding any effect of the atomic potential as well as all relativistic

effects (which is only valid for low intensity fields) and the motion of the charges

inside the medium (which is only valid for not very high densities). Hence, the

problem is one-dimensional since the geometry is still like that shown in figure 3.2

but without a magnetic field. We assume that we have the vacuum in the x < 0

semiplane and that an initially transparent ionizing medium extends over the in-

terval [0, L]. The wave equation for the electric field, polarized along the y axis, is

then quite simple
∂2E

∂x2
− 1

c2

∂2E

∂t2
=

4π

c2

∂J

∂t
, (3.58)

where the current density is

J(t) = −Nv̄ = − 1

ΔV

N (t)∑
i=1

vi(t). (3.59)

As usual, N is the free electron density, v̄ the fluid mean velocity, N the number

of free electrons in a volume ΔV and vi the velocity of the ith electron within this

volume. The current at instant t + Δt is given by

J(t + Δt) = − 1

ΔV

N (t)∑
i=1

vi(t + Δt) − 1

ΔV

N (t+Δt)∑
i=N (t)+1

vi(t + Δt). (3.60)

The second summatory on the right hand side of expression (3.60) stands for

the electrons which have been ionized in the interval [t, t + Δt], since we neglect
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the motion of the electrons from one cell to another (that is why this is a fixed

charges model). If we restrict ourselves to the tunnelling ionization regime, we can

approximate the velocity of the ionized electrons to zero, and hence that contribu-

tion vanishes. Thus, subtracting (3.59) from (3.60), dividing by Δt and passing to

the continuum limit, the evolution equation for the current density is

∂J

∂t
= − 1

ΔV

N (t)∑
i=1

dvi

dt
. (3.61)

All the electrons in the same cell have the same equation of motion, v̇i = −E,

and therefore, the evolution equation for J becomes

∂J

∂t
= NE =

ω2
p0

4π
nE, (3.62)

where ωp0 =
√

4πN0 is the maximum plasma frequency when the whole population

is ionized and n = N/N0 is the normalized free electron density or ionization degree,

whose evolution is given by
∂n

∂t
= W (1 − n), (3.63)

where W (x, t) is the ionization rate given by expression (3.56). We have used the

fact that the bound population is Nb = N0 − N since the charges do not move.

Equations (3.58), (3.62) and (3.63) give the complete evolution of our model, in

which only the effect of ionization is included in the propagation of the field, which

is therefore separated from all other effects occurring in a real plasma and which

are included, more or less precisely, in particle codes.

We can write (3.58) in its integral form

E(x, t) = Ei(x, t) − 2π

c

∫ L

0
dx′J

(
x′, t − |x − x′|

c

)
, (3.64)

where Ei(x, t) is the incident field. We clearly see that the total field is the sum

of the incident one and the reaction field induced by J . The reflected field is

simply Er(t) = E(0, t) − Ei(0, t). The numerical solution of equations (3.62) and
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(3.63) will be performed using a fourth-order Runge-Kutta method and (3.64)

will be solved by splitting the integral into leftward propagating and rightward

propagating parts, as was explained in section 3.2. In this way, we can reduce the

spatial grid and accelerate the calculations.
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Chapter 4

Propagation of harmonics in
laser-generated plasmas

Once we have set forth all our theoretical and numerical tools, let us study how

harmonics are generated and propagated during the ionization of a dense medium

by an intense laser pulse. We shall begin with harmonic generation and after that

we shall comment on certain propagation effects.

4.1 Harmonics generated by inhomogeneous ion-

ization [114, 115]

In order to study whether it is possible to generate harmonics during the propaga-

tion of a laser pulse through an ionizing medium, let us use the simple model de-

scribed in section 3.4. If the incident field has the form Ei(x, t) = 2Fi(x, t) cos(ω0t−
k0x), with a slowly-varying-in-time-and-space envelope Fi(x, t), we can search for

solutions of the equations (3.62), (3.63) and (3.64) as Floquet series

E(x, t) =
∞∑

q=−∞
E2q+1(x, t) exp[−i(2q + 1)ω0t], (4.1)

J(x, t) =
∞∑

q=−∞
j2q+1(x, t) exp[−i(2q + 1)ω0t], (4.2)

n(x, t) =
∞∑

q=−∞
n2q(x, t) exp[−i2qω0t], (4.3)

121
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W (x, t) =
∞∑

q=−∞
w2q(x, t) exp[−i2qω0t]. (4.4)

The ionization rate W , as well as N , have even terms only because they depend

on the field intensity. By contrast, E and J only have odd terms. We assume

that all harmonic amplitudes are slowly-varying-in-time, but not in space, since

a noticeable reflection may appear when the densities are high enough. We shall

also assume that: (a) the ionization rate is much lower than the laser frequency,

i.e. only a small proportion of the electrons are ionized during an optical cycle;

(b) for this reason, the harmonics are weak and we can ignore their effect on the

fundamental one, which (c) is the only source of the other harmonics (we neglect

the couplings among high harmonics). All these assumptions can be summarized in

two conditions: the field is weak enough to provide a slow ionization and the density

of the medium is low enough to prevent strong couplings. With these, substituting

the series (4.1)-(4.4) in (3.62), (3.63) and (3.64), we obtain the following set of

equations [115]

E1(x, t) = Ei(x, t) exp(ik0x)

− 1

2
ik0

(
ωp0

ω0

)2 ∫ ∞

0
dx′ exp(ik0|x − x′|)n0E1

(
x′, t − |x − x′|

c

)
,(4.5)

∂n0

∂t
= w0(1 − n0), (4.6)

E2q+1(x, t) =
1

2
ik2q+1

(
ωp0

ω2q+1

)2 ∫ ∞

0
dx′ exp(ik0|x − x′|)

×
[
w2q

ω2q

E1

(
x′, t − |x − x′|

c

)
+

w2(q+1)

ω2(q+1)

E−1

(
x′, t − |x − x′|

c

)]
,(4.7)

where kr = rk0, ωr = rω0 and E−1 = E∗
1 . From equation (4.7) we see that

there will be harmonic generation whenever the ionization rate has high Fourier

components; that is, whenever its dependence on time is fast. This is the case of

the expression used by us in the tunnelling regime. Moreover, the field will not

be uniform during propagation through the medium and, as a consequence, W
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will vary appreciably in space. This inhomogeneity means that the harmonics are

generated only in those places where ionization takes place. Equation (4.7) can

be solved in an approximate way when the density of the medium is very low and

there is hardly any reflection. In this case, it is also possible to make a Floquet

expansion in the spatial coordinate x [112]. We shall not repeat this here since the

slowly-varying envelope approximation fails to describe the propagation of the field

when densities are close to their critical value and reflection is important, which is

precisely the most interesting case for us [115]. Indeed, the temporal dependence of

the ionization rate is again an efficient mechanism for the generation of harmonics.

These harmonics were originally expected to be visible during the transmission

of a pulse through a low density gas [112, 113] and they were in fact observed

experimentally with a CO2 laser inciding on noble gases [117]. However, we already

know that during pulse propagation there is a phase mismatch that causes a loss

of visibility of the harmonics in a very short space, especially when there are

free electrons. We decided to use media with densities close to or higher than the

critical one, where the harmonics can be generated in the same way but are reflected

instead of being transmitted [114, 115]. The advantage of reflected harmonics is

that they will propagate in vacuum and hence phase mismatch effects will be

minimal.

In figure 4.1a we observe the reflected field and the degree of ionization at the

boundary when a pulse of maximum amplitude E0 = 0.08 a.u., length 15 cycles

and frequency ω0 = 0.05 a.u. (which unless otherwise stated is the one we shall use

from now on) impinges on a slab with density N0 = Nc when it is fully ionized and

whose thickness is 20λ0. We notice the absence of reflection before the peak of the

incident pulse arrives at the boundary surface. At that instant, the field amplitude

is high enough to ionize the medium, which changes from transparent to having a

density equal to the critical one, at least in the area close to the boundary. Hence,
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Figure 4.1: (a) Reflected field (thick solid line) when a pulse of frequency ω0 =
0.05 a.u., length 15 cycles and maximum amplitude E0 = 0.08 a.u. impinges on
a medium whose density is equal to the critical one under complete ionization
conditions and whose thickness is 20λ0. The dashed line represents the incident
pulse and the thin solid line the free electron density at the boundary. (b) Spectrum
corresponding to the reflected field in (a).
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Figure 4.2: Evolution in space and time of the free electron density inside the
medium for the case of figure 4.1.

the reflected pulse is less intense and shorter than the incident one. We can also

check what we anticipated above: ionization is mainly produced when the electric

field is close to its extreme values and therefore the free electron density profile

increases stepwise. As a consequence, the reflected field contains harmonics, as we

can see in figure 4.1b. These harmonics are not very intense in comparison with

the fundamental one, but they are perfectly visible up to a relatively high order.

Figure 4.2 depicts the evolution in space and time of the free electron density. We

observe the propagation of the ionization front and the stepwise decrease in the

stationary plasma density across the medium due to the absorption of the field. In

any case, we shall now focus on the reflected field, leaving the effects of propagation

for later sections.

In order to obtain a reasonably intense reflected pulse, the medium density

should be close to the critical value; otherwise the reflection will be very small. In
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Figure 4.3: Same as figure 4.1a for values of the maximum density 0.1Nc (a), 0.4Nc

(b), 2Nc (c) and 5Nc (d).
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figure 4.3 we see the reflected pulses and density profiles for four different density

values; figure 4.4 shows the corresponding spectra. When N0 = 0.1Nc (a), the

reflection is negligible and there is no full ionization, even at the boundary. The

reflected harmonics are very weak. When the density is raised up to N0 = 0.4Nc

(b) we obtain a higher reflected field, although the boundary is still not completely

ionized. There are more harmonics and these are more intense. For overcritical

values, N0 = 2Nc (c) and N0 = 5Nc (d), the reflection grows noticeably and the

maximum amplitude of the reflected pulse is nearly the same as the incident one,

but, as we have already mentioned, the pulse is shorter and asymmetric. This

effect could be used to obtain pulses with a sharp turn-on profile. Regarding the

harmonics, they are more intense than in the undercritical cases, but their quality

is poorer due to phase mismatch effects caused by the fast ionization and the high

free electron density near the boundary. Observing 4.1b and 4.4, it may be seen

that the best choice to obtain visible harmonics is to have a density equal or slightly

lower than the critical one.

The effect of the intensity of the incident pulse is similar to that of the medium

density. Figure 4.5 shows the reflected fields, the densities at the boundary, and

the spectra for maximum amplitude values E0 = 0.06 and E0 = 0.1 a.u. when the

maximum density of the medium is critical. In the case of the weaker field, there

is evidently less ionization and the reflected field is therefore lower and has fewer

harmonics, although they are clearly visible. The result is quite similar to the

one obtained for parameters E0 = 0.08 a.u. and N0 = 0.1Nc. By contrast, when

the amplitude is E0 = 0.1 a.u. the ionization is faster and starts before the pulse

maximum arrives at the boundary. As a result, the reflected pulse is longer and

more intense. The harmonics are also more intense, but also broader. It appears

as though the density were higher and the field less intense.
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Figure 4.4: Spectra corresponding to the reflected fields in figure 4.3.
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Figure 4.5: Reflected fields and free electron densities at the boundary in the case
of a slab whose maximum density takes the critical value when the maximum pulse
amplitudes are E0 = 0.06 (a) and 0.1 (b) a.u. (c) and (d) show the corresponding
spectra.
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4.2 Effect of ionization for intense fields [118]

Until now, we have used the fixed-charge model to explain harmonic generation due

to time-and-space-dependent ionization. However, it is possible that this simple

model, which considers the free electrons as an ideal fluid in which no collective

effects are included, may not give very reliable results. We shall now check the

validity of this model, comparing its results with those obtained in the particle-in-

cell simulations [118].

It can be expected that the fixed charges model will clearly fail for strongly

overcritical media because in this case the collective effects are more relevant.

Hence, we shall focus on the case of slightly overdense media, which is also the most

interesting one regarding harmonic generation, owing to both to ionization and

relativistic effects. In addition, we shall now use thin slabs because the harmonics

are generated in a short space and enlarging the target only exacerbates the time-

consuming calculations. In any case, we shall later see the effects of propagation

in thicker slabs when the density and the field intensity are not very high.

We shall consider the parameters related to the slab as fixed. The thickness

of the slab will be 0.1λ0 and its density under full ionization conditions will be

N0 = 1.69Nc (ωp0 = 1.3ω0). The incident pulse will have a duration of twenty

cycles and its maximum amplitude will take three values: E0 = 0.1, 0.4 and 4

a.u. In figure 4.6 we show the reflected pulses obtained with both models -PIC

and fixed charges- for the three intensities of the incident field. It can be observed

that the result is nearly identical for the weakest field and slightly different in the

other two cases. We could conclude that the simple model works very well for weak

fields and rather well even for strong fields... However, this depends on what we

expect of the model. Since we are interested in the harmonics, we have calculated

the spectra of these reflected fields, which are shown in figures 4.7, 4.8 and 4.9. All

these figures show the results obtained with the PIC code (a), the simple model
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Figure 4.6: Fields reflected on a slab whose thickness and density are, respectively,
0.1 λ0 and N0 = 1.69 Nc when it is irradiated by a pulse with a length of 20 cycles
and a maximum amplitude of E0 = 0.1 (a), 0.4 (b) and 4 (c) a.u. The solid line
represents the results obtained with a PIC calculation and the dashed line those
from the fixed charge model.
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(b) and with a PIC code when we consider that the slab is fully ionized before the

interaction with the laser (c).

For a field amplitude of 0.1 a.u. (figure 4.7) we see that the harmonics ob-

tained with both models are almost identical, the only difference being the loss

of visibility in the case of the PIC calculation due to the effect of the interaction

among particles, which makes the noise level higher. Apart from this, the inten-

sity and shape of the harmonics are exactly the same. By contrast, when we use a

preionized slab the result is completely different, with only a small third harmonic

peak three orders of magnitude less intense than when we consider ionization. It

is now clear that in this case the radiation emitted by the plasma is controlled by

the ionization process and that the fixed charge model reproduces the results of

the more complex PIC calculation very well. Here, the common approximation in

PIC calculations of assuming that the slab is fully preionized is completely wrong.

When the incident field amplitude is raised up to 0.4 a.u. (figure 4.8), the

results begin to change. The harmonics produced by ionization are still visible but

there is a difference of nearly one order of magnitude in the intensity of the third

harmonic between the PIC calculation (a) and the simple model (b). Moreover,

this intensity is the same in the case of the preionized slab (c), although in this

latter case the peak is clearer because of the absence of phase mismatch effects

produced by ionization. In this situation, we can say that the ionization process

must be included to perfectly describe the radiation emitted by the medium but

that collective effects begin to play the most important role.

Finally, when we reach an amplitude of 4 a.u., the spectra obtained with the

ionizing and preionized slab are almost identical, whereas the fixed charge model

results are completely different. Hence, this simple model is not at all good for

describing the interaction in the case of intense fields, for which the ionization

is hardly important and we can disregard its contribution, as has been done in
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Figure 4.7: Spectra corresponding to the reflected field in 4.6a obtained with the
PIC calculation (a), the fixed charge model (b) and a PIC code with a preionized
slab.
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Figure 4.8: The same as figure 4.7 for a field amplitude of 0.4 a.u.
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Figure 4.9: The same as figure 4.7 for a field amplitude of 4 a.u.
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Figure 4.10: Evolution of the free electron density when the incident field has an
amplitude of 0.1 (a) and 4 (b) a.u.

previous works [84, 85].

The nature of the harmonics generated in the two limiting cases is very differ-

ent, as we already know. To state this in even clearer terms, we have represented

the evolution in space and time of the free electron energy in both cases. For

the weakest field, harmonics are generated during the ionization stage, as we have

explained above. It can be observed how the ionization advances stepwise inside

the medium once the pulse approaches its maximum. When the ionization is com-

pleted, the only mechanism that generates harmonics is the relativistic magnetic
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Figure 4.11: Time evolution of the bound electron density in the middle of the slab
for incident amplitudes of 0.1 (dotted line), 0.4 (dashed line) and 4 (solid line) a.u.

force, which is very faint for such a weak field. However, when E0 = 4 a.u., the

ionization occurs very fast, taking place almost instantaneously in the whole slab

after the first cycle of the pulse (when the amplitude of the field is much lower

than its maximum and the tunnelling ionization rate can be used) and, as soon

as it has occurred, the electrons begin to oscillate like a moving mirror. The

spatial inhomogeneity of the free electron density inside the medium is also more

important.

The importance of each mechanism (ionization and magnetic field) in the total

harmonic yield is related to the time required by the medium to become fully

ionized. When this time is comparable to the length of the pulse, harmonics

will be mainly generated by the ionization process and will have that peculiar

broadened shape. By contrast, when this time is very small, the spectrum will

consist of sharper peaks generated by the magnetic force. In figure 4.11 we have

depicted the evolution of the bound electron density in the middle of the slab for
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the three values of the incident pulse amplitude. In the most intense case (E0 = 4

a.u.), the ionization is completed in less than one optical cycle, as stated above,

and therefore there are no harmonics due to ionization. In the case of the weakest

field (E0 = 0.1 a.u.), the ionization time is approximately four optical cycles,

long enough to generate harmonics. In the intermediate case (E0 = 0.4 a.u.),

the ionization time is roughly two cycles. It is then clear that in order to obtain

harmonics by ionization, the ionization time has to be longer than one cycle. On

the other hand, in order to obtain the harmonics through the v × B force, we

require that an intense enough field should interact with the electrons over several

cycles.

The relative importance of these two regimes will depend on the part of the

interaction time during which they are effective. To gain insight into this, in figure

4.12 we have represented the spectrum obtained for the medium amplitude field

when a pulse of 40 cycles is considered. The pulse envelope has the same turn-

on and turn-off shapes as the 20 cycle envelope, but a central part with twenty

cycles of constant amplitude is added. Choice of the same turn-on guarantees

that the ionization process is identical in both cases, whilst the addition of the

intermediate constant amplitude part means that the time during which the fully

ionized medium generates harmonics is longer. We see the increase in the height

of the peak corresponding to the third harmonic and a reduction in the broadened

peaks corresponding to the ionization process. These observations confirm our

previous statement.

We can conclude this section by saying that regarding harmonic generation

there are two regimes of ionization, whose difference is given by the relationship

between the ionization time and the total length of the pulse. In the case of weak

fields, the ionization time is several optical cycles and the harmonics are generated

by the time-and-space-dependent ionization. In this case, Brunel’s fixed charge
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Figure 4.12: Spectrum of the field reflected when the slab is impinged by a pulse
of maximum amplitude E0 = 0.4 a.u. and length 40 cycles, ten of turn on, twenty
of constant amplitude and ten of turn off (solid line). Dotted line represents the
result of figure 4.8, calculated for a twenty cycle long pulse without a constant
amplitude part in the center.
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model works very well to explain the results. When the field is more intense,

however, the ionization time is reduced and higher harmonics are observed due to

the magnetic component of the relativistic force acting on the electrons. The role

of ionization is then negligible and we can assume that the plasma is preionized

before it interacts with the main part of the pulse, which is the one close to its

maximum.

4.3 Propagation effects

Let us now, somewhat belatedly comment on some of the propagation effects. We

shall focus on two chromatic effects such as blueshift and low-frequency filtering

and, briefly, on phase mismatch effects in the case of high density media.

4.3.1 Wavelength changes. Blueshift

In the harmonics spectra produced by ionization that have been shown up to now,

there is one feature common to all of them: the peaks are asymmetric, and always

tend towards higher frequencies. In some cases it is also clear that the positions of

the maxima do not coincide with the integer harmonic of the incident frequency

but rather with a higher value. This effect is known as blueshift and is a direct

consequence of the ionization process. Let us explain this frequency shift in simple

terms [119, 120].

As the field propagates inside the medium, the latter begins to ionize, varying

its refraction index η (here we do not use the common notation n in order to avoid

confusion with the normalized free electron density). This produces a change in

the phase of the field during its propagation through an interval δx, given by

φ = kδx = k0ηδx. The frequency shift will be δω = −dφ/dt = −k0∂η/∂t δx. The

total frequency shift undergone by the field when propagating between x = 0 and
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x = L will be

Δω = −ω0

c

∫ L

0
dx

∂η(x, t)

∂t
. (4.8)

This equation is valid only when the change in the refraction index is slow and

when the electric field is initially monochromatic, which is not a good approxima-

tion for very short pulses whose spectral curve is broad. In the case of not very

dense media, we can use the expression for the refraction index given by equation

(1.109), expanding the square root as η � 1 − ω2
p/2ω

2
0 = 1 − N/2Nc. Hence, the

frequency shift will be

Δω � ω0

2cNc

∫ L

0
dx W (x, t)(N0 − N), (4.9)

where we have used equation (3.63) for the time derivative of the free electron

density. It is clear from (4.9) that there is a frequency shift of positive sign and

that this shift will be greater if the ionization is fast and the medium is dense and

thick. It is also clear that if we increase the fundamental frequency its harmonics

will be shifted too.

In figure 4.13 we can observe how the low harmonics are generated and propa-

gated through a medium with a maximum density of N0 = 0.1Nc for a pulse with

a maximum amplitude of E0 = 0.08 a.u. We observe the continuous broadening of

the peaks, which are slowly shifted to higher frequencies. The results were obtained

with the fixed charge model.

In fact, this frequency shift is not as simple as it appears to be. The blueshift

occurs only in the part of the pulse which ionizes the medium, whilst the rest

does not undergo blueshift. Figure 4.14 shows two plots corresponding to two

different instants of the propagation of the pulse inside the medium, in this case

for a maximum density of N0 = 0.4Nc, for which the propagation effects are

more important. A strong phase modulation can be seen. The part close to the

maximum, which is the one that ionizes the medium, is compressed and propagates
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Figure 4.13: Spatial evolution of the harmonics in a medium with a maximum
density of N0 = 0.1Nc and an incident pulse of amplitude of E0 = 0.08 a.u.

with a wavelength longer than the incident one. In turn, the pulse tail propagates

through a medium whose density, and therefore whose refraction index, varies

smoothly. Since that index is smaller than unity, the wavelength is longer than the

vacuum wavelength. This phase modulation and the changes in the ”instantaneous

wavelength” affect the frequency of the transmitted pulse. We can see the time

evolution of the transmitted field in figure 4.15. The maximum amplitude of the

pulse is slightly lower than the incident one, as is expected due to the reflection,

which is not very high for these undercritical densities (figure 4.3b). In both

plots, we see the blueshift near the pulse peak and the small redshift in its tail.

This broadens the spectra of the peaks and, since the blueshift is much more

important when the field is close to the maximum, the mean frequency of the

pulse is increased.

The literature contains several references to frequency shifts during the propa-
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Figure 4.14: Propagation of a pulse of maximum amplitude of E0 = 0.08 a.u.
through a medium with maximum density N0 = 0.4Nc. Plot (a) shows the field
inside the medium (thick solid line), the field as it would propagate in vacuum
(dotted line) and the free electron density profile in the medium (thin solid line)
ten cycles after the pulse reaches the boundary. Plot (b) shows the same twenty
cycles after the pulse reaches the boundary.
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Figure 4.15: Transmitted pulse in the previous case when the pulse crosses a slab
with a thickness of 20λ0 (a). Plots (a) and (b) show details of the zone close to
the pulse maximum and tail, respectively.
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gation of not very intense fields through low-density ionizing media, both of theo-

retical [107, 110, 116, 119, 120, 121] and experimental [122, 123, 124] interest.

When the field is very intense, the frequency shifts are different. In this case the

ionization is very fast, as we have already explained, and occurs during the leading

part of the pulse. The electrons are dragged by this front due to the ponderomotive

force and the rest of the pulse finds a lower density. The effect is opposite to the one

described above and the mean shift tends to lower frequencies. A small redshift

is then visible [85, 116]. The same inhomogeneity generates the waveshocks in

overdense plasmas. A different situation arises when the pulse impinges onto an

ionization front generated not by the pulse but by other means, which moves

with relativistic velocity in the opposite direction. In this case there is a strong

blueshift because the initial frequency cannot propagate through the medium and

changes to a final value given by the plasma dispersion relationship ω2
f = ω2

0 + ω2
p

[125, 126, 127]. One further effect which appears in the case of intense fields is the

Doppler shift, which also affects the radiation from moving electrons, as stated in

section 1.5. However, its contribution is usually less important than the previous

ones.

4.3.2 Phase mismatch effects

In addition to frequency shifts, phase mismatch effects due to the ionization process

and the existence of free electrons appear. As we already know, these effects are

also very important. The phase mismatch will deteriorate the visibility of the

harmonics and these will disappear after a more or less short propagation length.

In the case of a not very dense medium, this length can be many wavelengths and

the phase mismatch depends on the product of the free electron density multiplied

by the propagation length [113]. For dense media, this no longer holds.

Figure 4.16 shows the propagation of the low harmonics when the density is
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higher than in figure 4.13. As the density is increased, the harmonics are created

closer to the boundary and are broadened faster, visibility rapidly being lost. For

overcritical densities the variation is not significant because the main part of the

pulse is reflected and the ionization is only visible in a very thin layer of the slab.

The rest of the pulse is then propagated through a medium with low free electron

density.

Hence, when the medium is dense the transmitted harmonics undergo a strong

phase mismatch, while the reflected ones are generated in a very thin layer in

which the ionization is important and then propagate in vacuum. This is why the

reflected harmonics will be of better quality and will be more visible.

4.3.3 Harmonic filtering in overdense plasmas [128]

In the previous section, we have explored an effect related to the frequency of the

propagating field in a weakly-dense plasma, the blueshift. When the medium is

overdense, the incident pulse cannot propagate through it and is almost completely

reflected, its amplitude decreasing exponentially inside the medium. When the

field is intense enough to generate harmonics through the mechanism of relativistic

magnetic force, and depending on the medium density, some harmonic frequencies

may be higher than the plasma frequency and can propagate freely inside the

medium. Hence, the lowest harmonics may be reflected whilst the transmitted field

has only high harmonics, the medium behaving like a low frequency filter. This

effect has been observed in numerical simulations [129] and also experimentally

[130] and can be used to estimate the electron density in the medium directly.

This is true in the case of a preformed plasma, but if the plasma is generated

by the pulse and the medium is initially transparent, the field can penetrate it

until the free electron density exceeds the critical value for its frequency, as we

have mentioned. The transmitted field will be lower or higher, depending on the
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Figure 4.16: Propagation of the harmonics due to the ionization for densities of
N0 = 0.4Nc (a), Nc (b), 2Nc (c) and 5Nc (d). The field amplitude is always
E0 = 0.08 a.u.
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rate of ionization of the medium. In addition, we must take into account that the

ionization is not homogeneous, especially when the medium is thick enough. In this

case, there is a very thin, completely ionized layer which attenuates the transmitted

field amplitude. As a result, the pulse is initially absorbed but its evanescent part

which crosses the ionized layer, as soon as its intensity becomes so low that it is

no longer able to ionize the medium, propagates through a transparent bulk and

is not completely filtered.

Let us begin with a preionized slab, which is the easiest one. The thickness

of the slab is equal to the wavelength of the incident pulse, whose frequency is

ω0 = 0.05 a.u. Figure 4.17 shows the spectrum of the transmitted field when

E0 = 0.5 a.u. and N0 = 7Nc (a), and E0 = 4 a.u. and N0 = 15Nc. The

critical density for the harmonics is N (m)
c = ω2

m/4π = m2Nc, and so in case (a)

the medium is overdense for the fundamental frequency but underdense for all its

odd harmonics, while in case (b) it is also overdense for the third harmonic and

underdense for the higher ones. The results of simulations agree perfectly in both

cases and the harmonics are quite visible, especially in the case of the more intense

laser and denser medium.

Figure 4.18 shows the transmitted pulses whose spectra have been shown pre-

viously. At the beginning there is no propagated field, but then a shorter and less

intense pulse appears whose frequency is the corresponding harmonic. The peak

of the transmitted pulse corresponds approximately to the peak of the incident

pulse, which is logical since it is precisely when the field is maximum that the sur-

face oscillations are greater and the harmonics more intense (the delay of roughly

three optical cycles appears because we measure the transmitted pulse at a point

two wavelengths distant from the right surface of the slab, whose thickness is one

wavelength).

Let us now study the case when the medium is not previously ionized but the
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Figure 4.17: Spectrum of the field transmitted through a preionized slab of thick-
ness λ0. The medium density and the maximum amplitude of the incident pulse
are, respectively, N0 = 7Nc, E0 = 0.5 a.u. (a); N0 = 15Nc, E0 = 4 a.u. (b).
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Figure 4.18: Transmitted pulses whose spectra are depicted in figure 4.17.
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Figure 4.19: Transmitted pulse (a) and its spectrum (b) for an amplitude of E0 =
0.5 a.u. impinging on an initially transparent slab of thickness λ0 and density
N0 = 7Nc.
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pulse itself generates the plasma. Figure 4.19 shows the transmitted pulse and its

spectrum when E0 = 0.5 a.u. and N0 = 7Nc. We see that the pulse propagates,

although its amplitude varies in a strange way and the spectrum does not show any

sign of filtering, the typical broadened and blueshifted ionization peaks appearing.

Figure 4.20 shows the evolution of the electron density corresponding to this case,

affording a better description of what is happening. The incident pulse enters the

medium without any opposition because the initial amplitude is not able to ionize

it (this corresponds to the initial peak of the transmitted pulse). However, as soon

as the amplitude increases, the medium begins to ionize, not homogeneously but

in a decreasing way along the medium. When the pulse reaches its maximum, a

stationary regime is attained with a completely ionized layer of small thickness.

If this thickness is lower than the penetration depth, the evanescent wave can

go through it and propagate freely because its amplitude is not high enough to

completely ionize the bulk and it only undergoes phase mismatch effects, but not

a strong attenuation. That is precisely what occurs in this case.

If we increase the field amplitude up to E0 = 4 a.u., we obtain the results

depicted in figures 4.21 and 4.22. The pulse begins to propagate but, as soon as

it ionizes the medium, the transmitted wave has a frequency which is three times

the initial one. This is also visible in the spectrum, which shows a third harmonic

two orders of magnitude more intense than the fundamental one, which has been

filtered. In the density plot, we see that the ionization is slow until the peak of the

pulse, whose evanescent part is intense enough to ionize the whole slab. In this

situation, the overdense region inside the plasma exceeds the penetration depth

of the incident field but does not affect the propagation of the higher harmonics,

which are mainly generated at the plasma surface.

One last example, which is even more interesting, is shown in figures 4.23 and

4.24. In this case, the field amplitude is still E0 = 4 a.u. but the medium is denser,
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Figure 4.20: Evolution in space and time of the free electron density corresponding
to the parameters in figure 4.19.

N0 = 15Nc. Observing the spectrum, one could conclude that there is no perfect

filtering of the first and third harmonics, regardless of the high density of the

slab. However, upon inspection of the transmitted field, we see that the problem

is in fact more complicated and that the transmitted field has a time-dependent

frequency, called chirped, although in this case the variation is not smooth: initially

the transmitted field is governed by the fundamental frequency component ω0; after

some cycles it shows a steplike transition to a frequency of 3ω0, and finally another

step transition to 5ω0. The mechanism underlying this step-chirping is the time

evolution of the filtering property of the target as the ionization increases the

charge density to overcritical values, first for the fundamental frequency and then

for the third harmonic.

This time-dependent filter can be easily understood with the help of figure 4.24.

The first part of the pulse enters the medium, ionizing a very thin slice. This part
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Figure 4.21: Transmitted pulse (a) and its spectrum (b) for an amplitude of E0 = 4
a.u. impinging on an initially transparent slab of thickness λ0 and density N0 =
7Nc.
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Figure 4.22: Evolution in space and time of the free electron density corresponding
to the parameters in figure 4.21.

corresponds to the first intense burst in the transmitted pulse. In approximately

two cycles, the amplitude of the incident field has grown enough to ionize a length

greater than the penetration depth for the first harmonic, which is then reflected.

This point corresponds to the first shift in frequency from ω0 to 3ω0. The third

harmonic, generated at the surface, propagates inside the target until the eighth

cycle, when the surface layer becomes overcritical for this harmonic along a distance

which exceeds the penetration depth. This point is observed at the tenth cycle of

the transmitted field. After this, the plasma filters the fundamental and third

harmonic, being transparent to the fifth and higher harmonics.

Another important point that we wish to highlight is that the transmitted

pulses are more intense when the slab is not preionized, which is logical since the

medium is initially transparent and its final effective thickness is less than the slab

thickness. This has to be taken into account when estimating the transmittivity
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Figure 4.23: Transmitted pulse (a) and its spectrum (b) for an amplitude of E0 = 4
a.u. impinging on an initially transparent slab of thickness λ0 and density N0 =
15Nc.
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Figure 4.24: Evolution in space and time of the free electron density corresponding
to the parameters in figure 4.23.

in experiments, some of which have shown a transmitted field that is much more

intense than the expected value [131, 132]. This high transmittivity may also be

affected by relativistic effects such as self-induced transparency due to the decrease

in the effective plasma frequency caused by the growth of the electrons’ inertial

mass, or the hole-boring due to transversal effects, or even to the presence of

strong magnetic fields created during the ionization process. However, none of

these factors is able to explain such a high transmittivity for laser intensities below

1018W/cm2, which are in principle insufficient to yield these relativistic effects.

We have therefore seen that the ionization dynamics is important not only for

the generation of harmonics but also for propagation in the ionized medium. This

latter example of harmonic filtering can be useful to obtain pulses with special

features in their temporal profile and in their frequency, and it is also a good

method for measuring plasma densities.
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Conclusions

Along this work, we have examined the interaction between an intense electro-

magnetic field and ionizing media in an attempt to gain further insight into the

generation and propagation of harmonics in such media. Our study comprises

a purely theoretical aspect developed on the basis of numerical solutions of the

evolution equations corresponding to each model. These models have consisted of

rather drastic simplifications of reality but, nevertheless, the results obtained with

them are consistent, at least qualitatively, with the results from more complicated

models and even with experimental results.

Let us summarize the conclusions that can be drawn from our work

Regarding harmonic generation in atoms [95, 96]

We have proposed a new model which improves the standard two-level atom with

the inclusion of ionization and coherent recombination.

• We have checked the importance of the time-dependence of the ionization

rates in harmonic generation, a factor which had not been previously taken

into account in the study of this process. The fast variation of the population

of the states generates new oscillations in the dipole which result in high order

harmonics. This mechanism is essential for understanding the intermediate

frequencies in the spectrum.

• The addition of recombination by means of a semiclassical approach has

159
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revealed the important role played by bound-bound transitions in the atomic

harmonic spectra, even when the ionization is important, especially in the

tunnelling regime. Such transitions can be said to act as resonators of the

oscillations induced by the recombination of free states, amplifying them and

increasing the intensity of the harmonics.

Regarding the simulation of the interaction between intense fields and
solids [104]

• We have developed a particle code to study the evolution of a plasma. In

this code, we solve Maxwell equations using the retarded potentials, thus

conserving causality.

• We have implemented photoionization in our code, which has permitted us

to study the dynamics of the generation of a plasma, hitherto not tackled.

• We have observed the importance of some relativistic effects which appear

in simulations as a consequence of the inclusion of the retarded Liénard-

Wiechert potentials. To our knowledge, these effects had not been previously

mentioned.

• A simple code, which we call fixed charge, has been developed to study the

propagation of a pulse through an ionizing medium. This model permits

us to separate the effect of ionization from other effects related to collective

phenomena in a plasma.

Regarding harmonic generation in a plasma [114, 115, 118]

Harmonics generated in a plasma can be due to two different processes: ionization

and the relativistic motion of electrons. Study of both mechanisms leads us to the

following conclusions:
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• On studying the harmonics generated by inhomogeneous time-dependent ion-

ization in extended media, we see that they can be detected not only in the

field transmitted through underdense gases but also in the fields reflected in

near-critical and overdense media.

• The relative importance of both processes has been studied, establishing the

regimes in which each of them is more important. These regimes can be

discriminated by the value of the ratio between the ionization time and the

duration of the pulse. If the field is not intense enough to generate harmonics

by the relativistic motion of electrons, ionization plays the main role since

it is the only mechanism able to generate harmonics. By contrast, when the

field does have enough intensity to generate relativistic harmonics, ionization

is important if the time during which it is produced is at least 1/5 of the

duration of the pulse. In this case, the usual assumption of considering a

preformed plasma is incorrect.

Regarding the effects of propagation [128]

• In the case of the harmonics generated by ionization, we observed a blueshift

as they propagate through the medium and a loss of visibility due to phase

mismatch effects, which renders the harmonics invisible after a few wave-

lengths. The reflected harmonics, which propagate in vacuum, do not un-

dergo phase mismatch and are observed more easily than the transmitted

ones.

• In the case of highly dense preionized targets, we saw that the harmonics

generated by the relativistic motion of electrons can be filtered and do not

appear in the transmitted field if the target is thick enough. In the case

of non-preionized targets, the filtering is time-dependent and changes as the

pulse ionizes the medium and the free electron density increases. This results
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in a transmitted pulse whose frequency is increased stepwise.
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