
There’s only one way to accurately

and efficiently support platform com-

binations such as these—testing, and

lots of it. However, running a software

package on 36 platform combina-

tions, release after release, is a

Herculean effort. The solution we

adopted was to distribute testing tasks

by running them in parallel. In addi-

tion to uncovering bugs, this

approach significantly speeded up

28 Dr. Dobb’s Journal l www.ddj.com l November 2006

Core Technology by Pablo Santos and Francisco J. Garcia

Distributed
Unit Testing

the testing process. The key to our distributed testing solution is

PNUnit, short for “Parallel NUnit.” PNUnit is a modified version of

the familiar NUnit (www.nunit.org) testing framework that was

originally ported from JUnit to .NET. The source code and related

files for PNUnit are available electronically; see “Resource Center,”

page 5.

We were already using NUnit to develop unit tests because our

development is .NET based. NUnit lets you write unit tests with all

.NET languages, and even adhere to test-driven development princi-

ples. Still, our primary concern was testing on multiple platforms

using distributed test scenarios. Unfortunately, stock NUnit doesn’t

support this, hence our decision to extend NUnit to support distrib-

uted testing.

One of the reasons we wanted to stick with the NUnit framework is

that we were familiar with its environment. Usually when you move to

a new testing platform, the first thing you have to do is learn a new

scripting language. By extending NUnit, we could use the same pro-

gramming language and constructions (test suites, fixtures, and the

like) that we were used to with regular unit testing.

Developing Automated Tests with PNUnit
Figure 1 shows the basic structure and main components of the

PNUnit system. Launcher is the program responsible for launching

test suites on test machines. It is called by a test configuration file

as an argument, reads the file, and sends instructions to the testing

machines. It then gathers test results and prints them on the

screen. The test configuration (testconf) file is written in XML and

contains a definition of the test scenario being created. It defines

Pablo is a Software Engineer at
Codice Software. He can be
reached at
psantosl@codicesoftware.com.
Francisco is a Professor of
Computer Science at the
University of Salamanca. You
can reach him at
fgarcia@usal.es

At Codice Software we design and develop software configuration management tools that run

on various combinations of operating systems and hardware platforms. For instance, both serv-

er and clients run on Windows XP/2000/2003/Vista, Linux, and Mac OS X. And since our soft-

ware uses .NET, it runs on native Microsoft implementation for Windows and Mono for UNIX-

like operating systems.

Figure 1: PNUnit high-level structure.

Runner

IPNUnitServices

IPNUnitAgent

TestAssembly

Launcher.exe
PNUnitAgent

Agent.exe

PNUnit
TestRunner

Supporting multiple platforms accurately
and efficiently

the appropriate assemblies, specifies where they have to run, and

identifies the data to execute. Figure 2, a typical testconf file, con-

tains at least one parallel test section (test group). Each test group

runs sequentially. Several tests are defined inside the test group

and identified with TestConf labels. Each test inside the group

runs in parallel, so each test group defines a parallel scenario.

The TestConf section tells Launcher in which assembly the

test resides, which method to invoke, and where the machine is

to launch it. Launcher uses this information to communicate

with the Agent. To handle communications, Launcher creates a

Runner for each test defined in a test group. The Runner is the

component that calls the Agent methods. More importantly,

Runner handles synchronization via the IPNUnitServices inter-

face that it exports to the tests. Runner also gathers test results

and informs Launcher about them.

Agents are located on test machines. Each test machine needs

to have at least one Agent waiting to run tests. Agent is a small

.NET application that, once started, registers a remote interface

called IPNUnitAgent. This is the interface that Runner uses to

launch the tests. PNUnitAgent is the actual component inside agents

that handles the various processes.

Each time PNUnit receives a call in the IPNUnitAgent::RunTest

method (meaning that a new test needs to be launched), it creates a

new instance of PNUnitTestRunner. In NUnit parlance,

PNUnitTestRunner is a real test runner. It creates a TestDomain

instance, runs the test specified by the remote Launcher, collects the

results, and notifies the remote Runner. Each test resides on regular

assemblies, just as if they were normal NUnit tests.

Where does the NUnit framework fit in? It is the key layer in

which PNUnitTestRunner resides. We take advantage of all of

November 2006 l www.ddj.com l Dr. Dobb’s Journal 29

Figure 2: Test script.

<TestGroup>
 <ParallelTests>

 <ParallelTest>
 <Name>BasicLabelling</Name>
 <Tests>
 <TestConf>
 <Name>Server</Name>
 <Assembly>cmtest.dll</Assembly>
 <TestToRun>cmtest.server.Run</TestToRun>
 <Machine>linuxbox00:8080</Machine>
 <TestParams>
 <string>../server</string> <!-- server path -->
 </TestParams>
 </TestConf>

 <TestConf>
 <Name>Client00</Name>
 <Assembly>cmtest.dll</Assembly>
 <TestToRun>cmtest.LoadTest.SimpleFileGet</TestToRun>
 <Machine>winbox00:8080</Machine>
 <TestParams>
 <string>.\wkspaces</string> <!-- client path -->
 <string>linuxbox00:8084</string> <!-- server name -->
 </TestParams>
 </TestConf>

 <TestConf>
 <Name>Client01</Name>
 <Assembly>cmtest.dll</Assembly>
 <TestToRun>cmtest.LoadTest.SimpleFileGet</TestToRun>
 <Machine>winbox01:8080</Machine>
 <TestParams>
 <string>.\wkspaces</string> <!-- workspace dir -->
 <string>linuxbox00:8084</string> <!-- server name -->
 </TestParams>
 </TestConf>

 </Tests>
 </ParallelTest>

 </ParallelTests>
</TestGroup>

Each ParallelTest defines
tests to run in parallel.
Different ParallelTests
groups run sequentially.

To define a test we specify the
assembly where the test is
defined, the test fixture and the
machine in which it will be run.
Then each test can have params,
specific of each kind of test.

TestConf
Section Field

Meaning

Table 1: TestConf members.

Name Test name you want displayed on the results
screen.

Assembly .NET Assembly in which the test resides.

TestToRun Method name that defines the test to be run.

Machine Machine where you want the test executed.

TestParams Test-specific parameters.

30 Dr. Dobb’s Journal l www.ddj.com l November 2006

NUnit’s functionality to load/run tests and

collect results.

Synchronization Facilities
Runner is responsible for providing syn-

chronization mechanisms for the tests.

Example 1 presents the methods in the

IPNUnitServices interface. For now, it sim-

ply provides a barrier-based synchroniza-

tion mechanism.

You can initialize a barrier using Test

by defining the maximum number of ele-

ments that pass through the barrier, or

Test can just let Runner handle it. In the

latter case, Runner assumes that all tests

pass through the barrier, so it only

depends on the definition made in the

XML file. However, the former approach

is useful when you need to define syn-

chronization between a few participants

in the test.

As Figure 3 illustrates, the barrier mecha-

nism is a basic synchronization primitive.

All tests must pass through a barrier before

any of them are allowed to pass.

Figure 3: Barrier mechanism in action.

test00 test01 test02

Step 1: Only test00 is hitting the barrier

test00 test01 test02

barrier

barrier

Step 2: All clients hit the barrier, they can pass

Step 3: Tests passing through the barrier

test00 test01

test02

barrier

DISTRIBUTED UNIT TESTING Core Technology

November 2006 l www.ddj.com l Dr. Dobb’s Journal 31

Listing One, the barrier implementa-

tion, shows that there are two important

methods plus a constructor for the

Barrier class. The constructor initializes

the number of elements that must pass

through the barrier to release it. The

Enter() method is invoked when a test

enters a barrier. If it doesn’t enter a bar-

rier and all of the other involved tests

have gone through it, then the thread

goes to sleep using a Monitor. The sec-

ond method, Abandon(), is used to

release barriers under fail conditions.

For instance, if a test fails before hitting

a barrier, Abandon() is called, so that an

erroneous test won’t freeze the rest of

the tests.

With the Barrier method, we have

been able to implement large test suites,

covering all the basic core functionality of

our system. Still, it would be easy to

include some other primitives—sema-

phores, for instance.

Writing the Tests
At first glance, a PNUnit test doesn’t appear

that different from standard NUnit tests.

All the facilities available for a normal

NUnit test (assertions and the like) are also

available.

Listing Two presents a couple of PNUnit

tests.

The differences between a PNUnit and

regular NUnit test involve the functionalities

present in the PNUnit.Framework package.

It includes a class called PNUnitServices

through which the extended functionality

can be accessed.

The PNUnitServices class provides

methods for initializing a barrier,

public interface IPNUnitServices
{

void NotifyResult(string TestName,PNUnitTestResult result);
void InitBarrier(string TestName, string barrier);
void InitBarrier(string TestName, string barrier, int Max);
void EnterBarrier(string barrier);

}

Example 1: IPNUnitServices interface.

Listing One
public class Barrier
{

private int mCount;
private int mMaxCount;
private Object mLock = new Object();
public Barrier(int maxCount)
{

mCount = 0;
mMaxCount = maxCount;

}
public void Enter()
{

lock(mLock)
{

++mCount;
if(mCount >= mMaxCount)
{

mCount = 0;
Monitor.PulseAll(mLock);

}
else

Monitor.Wait(mLock);
}

}
public void Abandon()
{

lock(mLock)
{

—mMaxCount;
if(mCount >= mMaxCount)
{

mCount = 0;
Monitor.PulseAll(mLock);

}

}
}

}

Core Technology DISTRIBUTED UNIT TESTING

entering it as previously described, and

retrieving the test name and test parame-

ters. Why doesn’t the test access the

IPNUnitServices interface directly? Be-

cause of an implementation problem:

Since the test runs on a different applica-

tion domain than the PNUnitTestRunner,

the interface received from the remote

Runner must be made available to the

running test. This is done with the Create-

InstanceAndUnwrap API.

So the tests listed in Listing Two simply

create a barrier, then use it to synchronize

each other. The first barrier waits after ini-

tialization, making the second one wait for it

in the EnterBarrier statement. With only

these primitives, you can implement com-

plex scenarios and distribute the tests over

the network.

Listing Three is a typical configuration

file. The script specifies both the methods

where tests are implemented and the

machines to execute them. Of course, the

test machines must have an Agent started

and listening in the correct port number—

8080 by default—and the assemblies must

be deployed, too.

Conclusion
Over the past few months, we’ve been using

PNUnit for three types of tests—smoke, load,

and merging tests. Smoke tests are run every

time a developer finishes a task, together

with regular NUnit test suites. Smoke tests

basically cover core product functionality,

and have been extended to include more

and more test cases.

Each time we create a new release (typi-

cally once a week), the “integrator” (one of

our team members) merges all the tasks to

create a new baseline, then executes all the

smoke tests. However, he does so by launch-

ing them on different platform combinations,

covering all our supported platforms. Merge

tests (a large test suite covering lots of branch-

merging scenarios) are also executed during

integration on different platforms. Finally,

PNUnit tests are specifically designed to be

scalable. Each test implements simple opera-

tions so they can be combined on the testconf

script, and easily define load scenarios

through the available test machines.

We’ve also started to use PNUnit on a

cluster (about 50 Xeon machines), letting us

test software under heavy load conditions.

The framework has proved to be very useful

on our project, having detected many bugs

over the months.

There are still several aspects of the frame-

work that need improvement. For instance,

tests are currently only run from the command

line, and results are gathered this way. A huge

step forward would be to include GUI testing

support in the framework. Also, it would be

useful to be able to record user events and play

them back as with other tools, but with the

added power of multiplatform support. DDJ

Listing Two
using System;

using NUnit.Framework;
using PNUnit.Framework;

namespace SimpleTest
{

[TestFixture]
public class Test
{

[Test]
public void FirstTest()
{

string[] testParams =
PNUnitServices.Get().GetTestParams();

PNUnitServices.Get().InitBarrier(“BARRIER”);
// wait two seconds
System.Threading.Thread.Sleep(2000);
PNUnitServices.Get().WriteLine(

string.Format(
“FirstTest started with param {0}”,
testParams[0]));

PNUnitServices.Get().EnterBarrier(“BARRIER”);
}
public void SecondTest()
{

PNUnitServices.Get().WriteLine(
“Second test will wait for first”);

PNUnitServices.Get().InitBarrier(“BARRIER”);
// will wait for the first test
PNUnitServices.Get().EnterBarrier(“BARRIER”);
PNUnitServices.Get().WriteLine(

“First test should be started now”);
}

}
}

Listing Three
<TestGroup>

<ParallelTests>
<ParallelTest>

<Name>SimpleTest</Name>
<Tests>

<TestConf>
<Name>FirstTest</Name>
<Assembly>test00.dll</Assembly>

<TestToRun>SimpleTest.Test.FirstTest</TestToRun>
<Machine>localhost:8080</Machine>
<TestParams>

<string>Option1</string>
</TestParams>

</TestConf>
<TestConf>

<Name>SecondTest</Name>
<Assembly>test00.dll</Assembly>
<TestToRun>SimpleTest.Test.SecondTest</TestToRun>
<Machine>testbox:8080</Machine>

</TestConf>
</Tests>

</ParallelTest>
</ParallelTests>

</TestGroup>

32 Dr. Dobb’s Journal l www.ddj.com l November 2006

PNUnit is a modified version of the familiar NUnit
testing framework

